m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <net/udp_tunnel.h>
41 #ifdef CONFIG_NET_RX_BUSY_POLL
42 #include <net/busy_poll.h>
43 #endif
44 #include <linux/workqueue.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/log2.h>
48 #include <linux/aer.h>
49 #include <linux/bitmap.h>
50 #include <linux/cpu_rmap.h>
51
52 #include "bnxt_hsi.h"
53 #include "bnxt.h"
54 #include "bnxt_sriov.h"
55 #include "bnxt_ethtool.h"
56
57 #define BNXT_TX_TIMEOUT         (5 * HZ)
58
59 static const char version[] =
60         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
61
62 MODULE_LICENSE("GPL");
63 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
64 MODULE_VERSION(DRV_MODULE_VERSION);
65
66 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
67 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
68 #define BNXT_RX_COPY_THRESH 256
69
70 #define BNXT_TX_PUSH_THRESH 164
71
72 enum board_idx {
73         BCM57301,
74         BCM57302,
75         BCM57304,
76         BCM57417_NPAR,
77         BCM58700,
78         BCM57311,
79         BCM57312,
80         BCM57402,
81         BCM57404,
82         BCM57406,
83         BCM57402_NPAR,
84         BCM57407,
85         BCM57412,
86         BCM57414,
87         BCM57416,
88         BCM57417,
89         BCM57412_NPAR,
90         BCM57314,
91         BCM57417_SFP,
92         BCM57416_SFP,
93         BCM57404_NPAR,
94         BCM57406_NPAR,
95         BCM57407_SFP,
96         BCM57414_NPAR,
97         BCM57416_NPAR,
98         BCM57304_VF,
99         BCM57404_VF,
100         BCM57414_VF,
101         BCM57314_VF,
102 };
103
104 /* indexed by enum above */
105 static const struct {
106         char *name;
107 } board_info[] = {
108         { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
109         { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
110         { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
111         { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
112         { "Broadcom BCM58700 Nitro 4-port 1Gb/2.5Gb/10Gb Ethernet" },
113         { "Broadcom BCM57311 NetXtreme-C Single-port 10Gb Ethernet" },
114         { "Broadcom BCM57312 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
115         { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
116         { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
117         { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
118         { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
119         { "Broadcom BCM57407 NetXtreme-E Dual-port 10GBase-T Ethernet" },
120         { "Broadcom BCM57412 NetXtreme-E Dual-port 10Gb Ethernet" },
121         { "Broadcom BCM57414 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
122         { "Broadcom BCM57416 NetXtreme-E Dual-port 10GBase-T Ethernet" },
123         { "Broadcom BCM57417 NetXtreme-E Dual-port 10GBase-T Ethernet" },
124         { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
125         { "Broadcom BCM57314 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
126         { "Broadcom BCM57417 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
127         { "Broadcom BCM57416 NetXtreme-E Dual-port 10Gb Ethernet" },
128         { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
129         { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
130         { "Broadcom BCM57407 NetXtreme-E Dual-port 25Gb Ethernet" },
131         { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
132         { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
133         { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
134         { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
135         { "Broadcom BCM57414 NetXtreme-E Ethernet Virtual Function" },
136         { "Broadcom BCM57314 NetXtreme-E Ethernet Virtual Function" },
137 };
138
139 static const struct pci_device_id bnxt_pci_tbl[] = {
140         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
141         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
142         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
143         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
144         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
145         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
146         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
147         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
148         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
149         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
150         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
151         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
152         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
153         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
154         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
155         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
156         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
157         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
158         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
159         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
160         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
161         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
162         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
163         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
164         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
165 #ifdef CONFIG_BNXT_SRIOV
166         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
167         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
168         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = BCM57414_VF },
169         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = BCM57314_VF },
170 #endif
171         { 0 }
172 };
173
174 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
175
176 static const u16 bnxt_vf_req_snif[] = {
177         HWRM_FUNC_CFG,
178         HWRM_PORT_PHY_QCFG,
179         HWRM_CFA_L2_FILTER_ALLOC,
180 };
181
182 static const u16 bnxt_async_events_arr[] = {
183         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
184         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
185         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
186         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
187         HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
188 };
189
190 static bool bnxt_vf_pciid(enum board_idx idx)
191 {
192         return (idx == BCM57304_VF || idx == BCM57404_VF ||
193                 idx == BCM57314_VF || idx == BCM57414_VF);
194 }
195
196 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
197 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
198 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
199
200 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
201                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
202
203 #define BNXT_CP_DB(db, raw_cons)                                        \
204                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
205
206 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
207                 writel(DB_CP_IRQ_DIS_FLAGS, db)
208
209 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
210 {
211         /* Tell compiler to fetch tx indices from memory. */
212         barrier();
213
214         return bp->tx_ring_size -
215                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
216 }
217
218 static const u16 bnxt_lhint_arr[] = {
219         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
220         TX_BD_FLAGS_LHINT_512_TO_1023,
221         TX_BD_FLAGS_LHINT_1024_TO_2047,
222         TX_BD_FLAGS_LHINT_1024_TO_2047,
223         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
224         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
225         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
226         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
227         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
228         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
229         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
230         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238 };
239
240 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
241 {
242         struct bnxt *bp = netdev_priv(dev);
243         struct tx_bd *txbd;
244         struct tx_bd_ext *txbd1;
245         struct netdev_queue *txq;
246         int i;
247         dma_addr_t mapping;
248         unsigned int length, pad = 0;
249         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
250         u16 prod, last_frag;
251         struct pci_dev *pdev = bp->pdev;
252         struct bnxt_tx_ring_info *txr;
253         struct bnxt_sw_tx_bd *tx_buf;
254
255         i = skb_get_queue_mapping(skb);
256         if (unlikely(i >= bp->tx_nr_rings)) {
257                 dev_kfree_skb_any(skb);
258                 return NETDEV_TX_OK;
259         }
260
261         txr = &bp->tx_ring[i];
262         txq = netdev_get_tx_queue(dev, i);
263         prod = txr->tx_prod;
264
265         free_size = bnxt_tx_avail(bp, txr);
266         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
267                 netif_tx_stop_queue(txq);
268                 return NETDEV_TX_BUSY;
269         }
270
271         length = skb->len;
272         len = skb_headlen(skb);
273         last_frag = skb_shinfo(skb)->nr_frags;
274
275         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
276
277         txbd->tx_bd_opaque = prod;
278
279         tx_buf = &txr->tx_buf_ring[prod];
280         tx_buf->skb = skb;
281         tx_buf->nr_frags = last_frag;
282
283         vlan_tag_flags = 0;
284         cfa_action = 0;
285         if (skb_vlan_tag_present(skb)) {
286                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
287                                  skb_vlan_tag_get(skb);
288                 /* Currently supports 8021Q, 8021AD vlan offloads
289                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
290                  */
291                 if (skb->vlan_proto == htons(ETH_P_8021Q))
292                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
293         }
294
295         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
296                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
297                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
298                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
299                 void *pdata = tx_push_buf->data;
300                 u64 *end;
301                 int j, push_len;
302
303                 /* Set COAL_NOW to be ready quickly for the next push */
304                 tx_push->tx_bd_len_flags_type =
305                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
306                                         TX_BD_TYPE_LONG_TX_BD |
307                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
308                                         TX_BD_FLAGS_COAL_NOW |
309                                         TX_BD_FLAGS_PACKET_END |
310                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
311
312                 if (skb->ip_summed == CHECKSUM_PARTIAL)
313                         tx_push1->tx_bd_hsize_lflags =
314                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
315                 else
316                         tx_push1->tx_bd_hsize_lflags = 0;
317
318                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
319                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
320
321                 end = pdata + length;
322                 end = PTR_ALIGN(end, 8) - 1;
323                 *end = 0;
324
325                 skb_copy_from_linear_data(skb, pdata, len);
326                 pdata += len;
327                 for (j = 0; j < last_frag; j++) {
328                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
329                         void *fptr;
330
331                         fptr = skb_frag_address_safe(frag);
332                         if (!fptr)
333                                 goto normal_tx;
334
335                         memcpy(pdata, fptr, skb_frag_size(frag));
336                         pdata += skb_frag_size(frag);
337                 }
338
339                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
340                 txbd->tx_bd_haddr = txr->data_mapping;
341                 prod = NEXT_TX(prod);
342                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
343                 memcpy(txbd, tx_push1, sizeof(*txbd));
344                 prod = NEXT_TX(prod);
345                 tx_push->doorbell =
346                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
347                 txr->tx_prod = prod;
348
349                 tx_buf->is_push = 1;
350                 netdev_tx_sent_queue(txq, skb->len);
351                 wmb();  /* Sync is_push and byte queue before pushing data */
352
353                 push_len = (length + sizeof(*tx_push) + 7) / 8;
354                 if (push_len > 16) {
355                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
356                         __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
357                                          push_len - 16);
358                 } else {
359                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
360                                          push_len);
361                 }
362
363                 goto tx_done;
364         }
365
366 normal_tx:
367         if (length < BNXT_MIN_PKT_SIZE) {
368                 pad = BNXT_MIN_PKT_SIZE - length;
369                 if (skb_pad(skb, pad)) {
370                         /* SKB already freed. */
371                         tx_buf->skb = NULL;
372                         return NETDEV_TX_OK;
373                 }
374                 length = BNXT_MIN_PKT_SIZE;
375         }
376
377         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
378
379         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
380                 dev_kfree_skb_any(skb);
381                 tx_buf->skb = NULL;
382                 return NETDEV_TX_OK;
383         }
384
385         dma_unmap_addr_set(tx_buf, mapping, mapping);
386         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
387                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
388
389         txbd->tx_bd_haddr = cpu_to_le64(mapping);
390
391         prod = NEXT_TX(prod);
392         txbd1 = (struct tx_bd_ext *)
393                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
394
395         txbd1->tx_bd_hsize_lflags = 0;
396         if (skb_is_gso(skb)) {
397                 u32 hdr_len;
398
399                 if (skb->encapsulation)
400                         hdr_len = skb_inner_network_offset(skb) +
401                                 skb_inner_network_header_len(skb) +
402                                 inner_tcp_hdrlen(skb);
403                 else
404                         hdr_len = skb_transport_offset(skb) +
405                                 tcp_hdrlen(skb);
406
407                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
408                                         TX_BD_FLAGS_T_IPID |
409                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
410                 length = skb_shinfo(skb)->gso_size;
411                 txbd1->tx_bd_mss = cpu_to_le32(length);
412                 length += hdr_len;
413         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
414                 txbd1->tx_bd_hsize_lflags =
415                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
416                 txbd1->tx_bd_mss = 0;
417         }
418
419         length >>= 9;
420         flags |= bnxt_lhint_arr[length];
421         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
422
423         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
424         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
425         for (i = 0; i < last_frag; i++) {
426                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
427
428                 prod = NEXT_TX(prod);
429                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
430
431                 len = skb_frag_size(frag);
432                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
433                                            DMA_TO_DEVICE);
434
435                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
436                         goto tx_dma_error;
437
438                 tx_buf = &txr->tx_buf_ring[prod];
439                 dma_unmap_addr_set(tx_buf, mapping, mapping);
440
441                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
442
443                 flags = len << TX_BD_LEN_SHIFT;
444                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
445         }
446
447         flags &= ~TX_BD_LEN;
448         txbd->tx_bd_len_flags_type =
449                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
450                             TX_BD_FLAGS_PACKET_END);
451
452         netdev_tx_sent_queue(txq, skb->len);
453
454         /* Sync BD data before updating doorbell */
455         wmb();
456
457         prod = NEXT_TX(prod);
458         txr->tx_prod = prod;
459
460         writel(DB_KEY_TX | prod, txr->tx_doorbell);
461         writel(DB_KEY_TX | prod, txr->tx_doorbell);
462
463 tx_done:
464
465         mmiowb();
466
467         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
468                 netif_tx_stop_queue(txq);
469
470                 /* netif_tx_stop_queue() must be done before checking
471                  * tx index in bnxt_tx_avail() below, because in
472                  * bnxt_tx_int(), we update tx index before checking for
473                  * netif_tx_queue_stopped().
474                  */
475                 smp_mb();
476                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
477                         netif_tx_wake_queue(txq);
478         }
479         return NETDEV_TX_OK;
480
481 tx_dma_error:
482         last_frag = i;
483
484         /* start back at beginning and unmap skb */
485         prod = txr->tx_prod;
486         tx_buf = &txr->tx_buf_ring[prod];
487         tx_buf->skb = NULL;
488         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
489                          skb_headlen(skb), PCI_DMA_TODEVICE);
490         prod = NEXT_TX(prod);
491
492         /* unmap remaining mapped pages */
493         for (i = 0; i < last_frag; i++) {
494                 prod = NEXT_TX(prod);
495                 tx_buf = &txr->tx_buf_ring[prod];
496                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
497                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
498                                PCI_DMA_TODEVICE);
499         }
500
501         dev_kfree_skb_any(skb);
502         return NETDEV_TX_OK;
503 }
504
505 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
506 {
507         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
508         int index = txr - &bp->tx_ring[0];
509         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
510         u16 cons = txr->tx_cons;
511         struct pci_dev *pdev = bp->pdev;
512         int i;
513         unsigned int tx_bytes = 0;
514
515         for (i = 0; i < nr_pkts; i++) {
516                 struct bnxt_sw_tx_bd *tx_buf;
517                 struct sk_buff *skb;
518                 int j, last;
519
520                 tx_buf = &txr->tx_buf_ring[cons];
521                 cons = NEXT_TX(cons);
522                 skb = tx_buf->skb;
523                 tx_buf->skb = NULL;
524
525                 if (tx_buf->is_push) {
526                         tx_buf->is_push = 0;
527                         goto next_tx_int;
528                 }
529
530                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
531                                  skb_headlen(skb), PCI_DMA_TODEVICE);
532                 last = tx_buf->nr_frags;
533
534                 for (j = 0; j < last; j++) {
535                         cons = NEXT_TX(cons);
536                         tx_buf = &txr->tx_buf_ring[cons];
537                         dma_unmap_page(
538                                 &pdev->dev,
539                                 dma_unmap_addr(tx_buf, mapping),
540                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
541                                 PCI_DMA_TODEVICE);
542                 }
543
544 next_tx_int:
545                 cons = NEXT_TX(cons);
546
547                 tx_bytes += skb->len;
548                 dev_kfree_skb_any(skb);
549         }
550
551         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
552         txr->tx_cons = cons;
553
554         /* Need to make the tx_cons update visible to bnxt_start_xmit()
555          * before checking for netif_tx_queue_stopped().  Without the
556          * memory barrier, there is a small possibility that bnxt_start_xmit()
557          * will miss it and cause the queue to be stopped forever.
558          */
559         smp_mb();
560
561         if (unlikely(netif_tx_queue_stopped(txq)) &&
562             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
563                 __netif_tx_lock(txq, smp_processor_id());
564                 if (netif_tx_queue_stopped(txq) &&
565                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
566                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
567                         netif_tx_wake_queue(txq);
568                 __netif_tx_unlock(txq);
569         }
570 }
571
572 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
573                                        gfp_t gfp)
574 {
575         u8 *data;
576         struct pci_dev *pdev = bp->pdev;
577
578         data = kmalloc(bp->rx_buf_size, gfp);
579         if (!data)
580                 return NULL;
581
582         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
583                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
584
585         if (dma_mapping_error(&pdev->dev, *mapping)) {
586                 kfree(data);
587                 data = NULL;
588         }
589         return data;
590 }
591
592 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
593                                      struct bnxt_rx_ring_info *rxr,
594                                      u16 prod, gfp_t gfp)
595 {
596         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
597         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
598         u8 *data;
599         dma_addr_t mapping;
600
601         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
602         if (!data)
603                 return -ENOMEM;
604
605         rx_buf->data = data;
606         dma_unmap_addr_set(rx_buf, mapping, mapping);
607
608         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
609
610         return 0;
611 }
612
613 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
614                                u8 *data)
615 {
616         u16 prod = rxr->rx_prod;
617         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
618         struct rx_bd *cons_bd, *prod_bd;
619
620         prod_rx_buf = &rxr->rx_buf_ring[prod];
621         cons_rx_buf = &rxr->rx_buf_ring[cons];
622
623         prod_rx_buf->data = data;
624
625         dma_unmap_addr_set(prod_rx_buf, mapping,
626                            dma_unmap_addr(cons_rx_buf, mapping));
627
628         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
629         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
630
631         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
632 }
633
634 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
635 {
636         u16 next, max = rxr->rx_agg_bmap_size;
637
638         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
639         if (next >= max)
640                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
641         return next;
642 }
643
644 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
645                                      struct bnxt_rx_ring_info *rxr,
646                                      u16 prod, gfp_t gfp)
647 {
648         struct rx_bd *rxbd =
649                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
650         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
651         struct pci_dev *pdev = bp->pdev;
652         struct page *page;
653         dma_addr_t mapping;
654         u16 sw_prod = rxr->rx_sw_agg_prod;
655         unsigned int offset = 0;
656
657         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
658                 page = rxr->rx_page;
659                 if (!page) {
660                         page = alloc_page(gfp);
661                         if (!page)
662                                 return -ENOMEM;
663                         rxr->rx_page = page;
664                         rxr->rx_page_offset = 0;
665                 }
666                 offset = rxr->rx_page_offset;
667                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
668                 if (rxr->rx_page_offset == PAGE_SIZE)
669                         rxr->rx_page = NULL;
670                 else
671                         get_page(page);
672         } else {
673                 page = alloc_page(gfp);
674                 if (!page)
675                         return -ENOMEM;
676         }
677
678         mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
679                                PCI_DMA_FROMDEVICE);
680         if (dma_mapping_error(&pdev->dev, mapping)) {
681                 __free_page(page);
682                 return -EIO;
683         }
684
685         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
686                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
687
688         __set_bit(sw_prod, rxr->rx_agg_bmap);
689         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
690         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
691
692         rx_agg_buf->page = page;
693         rx_agg_buf->offset = offset;
694         rx_agg_buf->mapping = mapping;
695         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
696         rxbd->rx_bd_opaque = sw_prod;
697         return 0;
698 }
699
700 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
701                                    u32 agg_bufs)
702 {
703         struct bnxt *bp = bnapi->bp;
704         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
705         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
706         u16 prod = rxr->rx_agg_prod;
707         u16 sw_prod = rxr->rx_sw_agg_prod;
708         u32 i;
709
710         for (i = 0; i < agg_bufs; i++) {
711                 u16 cons;
712                 struct rx_agg_cmp *agg;
713                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
714                 struct rx_bd *prod_bd;
715                 struct page *page;
716
717                 agg = (struct rx_agg_cmp *)
718                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
719                 cons = agg->rx_agg_cmp_opaque;
720                 __clear_bit(cons, rxr->rx_agg_bmap);
721
722                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
723                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
724
725                 __set_bit(sw_prod, rxr->rx_agg_bmap);
726                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
727                 cons_rx_buf = &rxr->rx_agg_ring[cons];
728
729                 /* It is possible for sw_prod to be equal to cons, so
730                  * set cons_rx_buf->page to NULL first.
731                  */
732                 page = cons_rx_buf->page;
733                 cons_rx_buf->page = NULL;
734                 prod_rx_buf->page = page;
735                 prod_rx_buf->offset = cons_rx_buf->offset;
736
737                 prod_rx_buf->mapping = cons_rx_buf->mapping;
738
739                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
740
741                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
742                 prod_bd->rx_bd_opaque = sw_prod;
743
744                 prod = NEXT_RX_AGG(prod);
745                 sw_prod = NEXT_RX_AGG(sw_prod);
746                 cp_cons = NEXT_CMP(cp_cons);
747         }
748         rxr->rx_agg_prod = prod;
749         rxr->rx_sw_agg_prod = sw_prod;
750 }
751
752 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
753                                    struct bnxt_rx_ring_info *rxr, u16 cons,
754                                    u16 prod, u8 *data, dma_addr_t dma_addr,
755                                    unsigned int len)
756 {
757         int err;
758         struct sk_buff *skb;
759
760         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
761         if (unlikely(err)) {
762                 bnxt_reuse_rx_data(rxr, cons, data);
763                 return NULL;
764         }
765
766         skb = build_skb(data, 0);
767         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
768                          PCI_DMA_FROMDEVICE);
769         if (!skb) {
770                 kfree(data);
771                 return NULL;
772         }
773
774         skb_reserve(skb, BNXT_RX_OFFSET);
775         skb_put(skb, len);
776         return skb;
777 }
778
779 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
780                                      struct sk_buff *skb, u16 cp_cons,
781                                      u32 agg_bufs)
782 {
783         struct pci_dev *pdev = bp->pdev;
784         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
785         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
786         u16 prod = rxr->rx_agg_prod;
787         u32 i;
788
789         for (i = 0; i < agg_bufs; i++) {
790                 u16 cons, frag_len;
791                 struct rx_agg_cmp *agg;
792                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
793                 struct page *page;
794                 dma_addr_t mapping;
795
796                 agg = (struct rx_agg_cmp *)
797                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
798                 cons = agg->rx_agg_cmp_opaque;
799                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
800                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
801
802                 cons_rx_buf = &rxr->rx_agg_ring[cons];
803                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
804                                    cons_rx_buf->offset, frag_len);
805                 __clear_bit(cons, rxr->rx_agg_bmap);
806
807                 /* It is possible for bnxt_alloc_rx_page() to allocate
808                  * a sw_prod index that equals the cons index, so we
809                  * need to clear the cons entry now.
810                  */
811                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
812                 page = cons_rx_buf->page;
813                 cons_rx_buf->page = NULL;
814
815                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
816                         struct skb_shared_info *shinfo;
817                         unsigned int nr_frags;
818
819                         shinfo = skb_shinfo(skb);
820                         nr_frags = --shinfo->nr_frags;
821                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
822
823                         dev_kfree_skb(skb);
824
825                         cons_rx_buf->page = page;
826
827                         /* Update prod since possibly some pages have been
828                          * allocated already.
829                          */
830                         rxr->rx_agg_prod = prod;
831                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
832                         return NULL;
833                 }
834
835                 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
836                                PCI_DMA_FROMDEVICE);
837
838                 skb->data_len += frag_len;
839                 skb->len += frag_len;
840                 skb->truesize += PAGE_SIZE;
841
842                 prod = NEXT_RX_AGG(prod);
843                 cp_cons = NEXT_CMP(cp_cons);
844         }
845         rxr->rx_agg_prod = prod;
846         return skb;
847 }
848
849 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
850                                u8 agg_bufs, u32 *raw_cons)
851 {
852         u16 last;
853         struct rx_agg_cmp *agg;
854
855         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
856         last = RING_CMP(*raw_cons);
857         agg = (struct rx_agg_cmp *)
858                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
859         return RX_AGG_CMP_VALID(agg, *raw_cons);
860 }
861
862 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
863                                             unsigned int len,
864                                             dma_addr_t mapping)
865 {
866         struct bnxt *bp = bnapi->bp;
867         struct pci_dev *pdev = bp->pdev;
868         struct sk_buff *skb;
869
870         skb = napi_alloc_skb(&bnapi->napi, len);
871         if (!skb)
872                 return NULL;
873
874         dma_sync_single_for_cpu(&pdev->dev, mapping,
875                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
876
877         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
878
879         dma_sync_single_for_device(&pdev->dev, mapping,
880                                    bp->rx_copy_thresh,
881                                    PCI_DMA_FROMDEVICE);
882
883         skb_put(skb, len);
884         return skb;
885 }
886
887 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
888                            u32 *raw_cons, void *cmp)
889 {
890         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
891         struct rx_cmp *rxcmp = cmp;
892         u32 tmp_raw_cons = *raw_cons;
893         u8 cmp_type, agg_bufs = 0;
894
895         cmp_type = RX_CMP_TYPE(rxcmp);
896
897         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
898                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
899                             RX_CMP_AGG_BUFS) >>
900                            RX_CMP_AGG_BUFS_SHIFT;
901         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
902                 struct rx_tpa_end_cmp *tpa_end = cmp;
903
904                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
905                             RX_TPA_END_CMP_AGG_BUFS) >>
906                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
907         }
908
909         if (agg_bufs) {
910                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
911                         return -EBUSY;
912         }
913         *raw_cons = tmp_raw_cons;
914         return 0;
915 }
916
917 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
918 {
919         if (!rxr->bnapi->in_reset) {
920                 rxr->bnapi->in_reset = true;
921                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
922                 schedule_work(&bp->sp_task);
923         }
924         rxr->rx_next_cons = 0xffff;
925 }
926
927 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
928                            struct rx_tpa_start_cmp *tpa_start,
929                            struct rx_tpa_start_cmp_ext *tpa_start1)
930 {
931         u8 agg_id = TPA_START_AGG_ID(tpa_start);
932         u16 cons, prod;
933         struct bnxt_tpa_info *tpa_info;
934         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
935         struct rx_bd *prod_bd;
936         dma_addr_t mapping;
937
938         cons = tpa_start->rx_tpa_start_cmp_opaque;
939         prod = rxr->rx_prod;
940         cons_rx_buf = &rxr->rx_buf_ring[cons];
941         prod_rx_buf = &rxr->rx_buf_ring[prod];
942         tpa_info = &rxr->rx_tpa[agg_id];
943
944         if (unlikely(cons != rxr->rx_next_cons)) {
945                 bnxt_sched_reset(bp, rxr);
946                 return;
947         }
948
949         prod_rx_buf->data = tpa_info->data;
950
951         mapping = tpa_info->mapping;
952         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
953
954         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
955
956         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
957
958         tpa_info->data = cons_rx_buf->data;
959         cons_rx_buf->data = NULL;
960         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
961
962         tpa_info->len =
963                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
964                                 RX_TPA_START_CMP_LEN_SHIFT;
965         if (likely(TPA_START_HASH_VALID(tpa_start))) {
966                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
967
968                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
969                 tpa_info->gso_type = SKB_GSO_TCPV4;
970                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
971                 if (hash_type == 3)
972                         tpa_info->gso_type = SKB_GSO_TCPV6;
973                 tpa_info->rss_hash =
974                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
975         } else {
976                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
977                 tpa_info->gso_type = 0;
978                 if (netif_msg_rx_err(bp))
979                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
980         }
981         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
982         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
983         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
984
985         rxr->rx_prod = NEXT_RX(prod);
986         cons = NEXT_RX(cons);
987         rxr->rx_next_cons = NEXT_RX(cons);
988         cons_rx_buf = &rxr->rx_buf_ring[cons];
989
990         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
991         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
992         cons_rx_buf->data = NULL;
993 }
994
995 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
996                            u16 cp_cons, u32 agg_bufs)
997 {
998         if (agg_bufs)
999                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1000 }
1001
1002 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1003                                            int payload_off, int tcp_ts,
1004                                            struct sk_buff *skb)
1005 {
1006 #ifdef CONFIG_INET
1007         struct tcphdr *th;
1008         int len, nw_off;
1009         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1010         u32 hdr_info = tpa_info->hdr_info;
1011         bool loopback = false;
1012
1013         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1014         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1015         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1016
1017         /* If the packet is an internal loopback packet, the offsets will
1018          * have an extra 4 bytes.
1019          */
1020         if (inner_mac_off == 4) {
1021                 loopback = true;
1022         } else if (inner_mac_off > 4) {
1023                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1024                                             ETH_HLEN - 2));
1025
1026                 /* We only support inner iPv4/ipv6.  If we don't see the
1027                  * correct protocol ID, it must be a loopback packet where
1028                  * the offsets are off by 4.
1029                  */
1030                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1031                         loopback = true;
1032         }
1033         if (loopback) {
1034                 /* internal loopback packet, subtract all offsets by 4 */
1035                 inner_ip_off -= 4;
1036                 inner_mac_off -= 4;
1037                 outer_ip_off -= 4;
1038         }
1039
1040         nw_off = inner_ip_off - ETH_HLEN;
1041         skb_set_network_header(skb, nw_off);
1042         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1043                 struct ipv6hdr *iph = ipv6_hdr(skb);
1044
1045                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1046                 len = skb->len - skb_transport_offset(skb);
1047                 th = tcp_hdr(skb);
1048                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1049         } else {
1050                 struct iphdr *iph = ip_hdr(skb);
1051
1052                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1053                 len = skb->len - skb_transport_offset(skb);
1054                 th = tcp_hdr(skb);
1055                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1056         }
1057
1058         if (inner_mac_off) { /* tunnel */
1059                 struct udphdr *uh = NULL;
1060                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1061                                             ETH_HLEN - 2));
1062
1063                 if (proto == htons(ETH_P_IP)) {
1064                         struct iphdr *iph = (struct iphdr *)skb->data;
1065
1066                         if (iph->protocol == IPPROTO_UDP)
1067                                 uh = (struct udphdr *)(iph + 1);
1068                 } else {
1069                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1070
1071                         if (iph->nexthdr == IPPROTO_UDP)
1072                                 uh = (struct udphdr *)(iph + 1);
1073                 }
1074                 if (uh) {
1075                         if (uh->check)
1076                                 skb_shinfo(skb)->gso_type |=
1077                                         SKB_GSO_UDP_TUNNEL_CSUM;
1078                         else
1079                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1080                 }
1081         }
1082 #endif
1083         return skb;
1084 }
1085
1086 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1087 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1088
1089 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1090                                            int payload_off, int tcp_ts,
1091                                            struct sk_buff *skb)
1092 {
1093 #ifdef CONFIG_INET
1094         struct tcphdr *th;
1095         int len, nw_off, tcp_opt_len;
1096
1097         if (tcp_ts)
1098                 tcp_opt_len = 12;
1099
1100         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1101                 struct iphdr *iph;
1102
1103                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1104                          ETH_HLEN;
1105                 skb_set_network_header(skb, nw_off);
1106                 iph = ip_hdr(skb);
1107                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1108                 len = skb->len - skb_transport_offset(skb);
1109                 th = tcp_hdr(skb);
1110                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1111         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1112                 struct ipv6hdr *iph;
1113
1114                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1115                          ETH_HLEN;
1116                 skb_set_network_header(skb, nw_off);
1117                 iph = ipv6_hdr(skb);
1118                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1119                 len = skb->len - skb_transport_offset(skb);
1120                 th = tcp_hdr(skb);
1121                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1122         } else {
1123                 dev_kfree_skb_any(skb);
1124                 return NULL;
1125         }
1126         tcp_gro_complete(skb);
1127
1128         if (nw_off) { /* tunnel */
1129                 struct udphdr *uh = NULL;
1130
1131                 if (skb->protocol == htons(ETH_P_IP)) {
1132                         struct iphdr *iph = (struct iphdr *)skb->data;
1133
1134                         if (iph->protocol == IPPROTO_UDP)
1135                                 uh = (struct udphdr *)(iph + 1);
1136                 } else {
1137                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1138
1139                         if (iph->nexthdr == IPPROTO_UDP)
1140                                 uh = (struct udphdr *)(iph + 1);
1141                 }
1142                 if (uh) {
1143                         if (uh->check)
1144                                 skb_shinfo(skb)->gso_type |=
1145                                         SKB_GSO_UDP_TUNNEL_CSUM;
1146                         else
1147                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1148                 }
1149         }
1150 #endif
1151         return skb;
1152 }
1153
1154 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1155                                            struct bnxt_tpa_info *tpa_info,
1156                                            struct rx_tpa_end_cmp *tpa_end,
1157                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1158                                            struct sk_buff *skb)
1159 {
1160 #ifdef CONFIG_INET
1161         int payload_off;
1162         u16 segs;
1163
1164         segs = TPA_END_TPA_SEGS(tpa_end);
1165         if (segs == 1)
1166                 return skb;
1167
1168         NAPI_GRO_CB(skb)->count = segs;
1169         skb_shinfo(skb)->gso_size =
1170                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1171         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1172         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1173                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1174                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1175         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1176 #endif
1177         return skb;
1178 }
1179
1180 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1181                                            struct bnxt_napi *bnapi,
1182                                            u32 *raw_cons,
1183                                            struct rx_tpa_end_cmp *tpa_end,
1184                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1185                                            bool *agg_event)
1186 {
1187         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1188         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1189         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1190         u8 *data, agg_bufs;
1191         u16 cp_cons = RING_CMP(*raw_cons);
1192         unsigned int len;
1193         struct bnxt_tpa_info *tpa_info;
1194         dma_addr_t mapping;
1195         struct sk_buff *skb;
1196
1197         if (unlikely(bnapi->in_reset)) {
1198                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1199
1200                 if (rc < 0)
1201                         return ERR_PTR(-EBUSY);
1202                 return NULL;
1203         }
1204
1205         tpa_info = &rxr->rx_tpa[agg_id];
1206         data = tpa_info->data;
1207         prefetch(data);
1208         len = tpa_info->len;
1209         mapping = tpa_info->mapping;
1210
1211         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1212                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1213
1214         if (agg_bufs) {
1215                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1216                         return ERR_PTR(-EBUSY);
1217
1218                 *agg_event = true;
1219                 cp_cons = NEXT_CMP(cp_cons);
1220         }
1221
1222         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1223                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1224                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1225                             agg_bufs, (int)MAX_SKB_FRAGS);
1226                 return NULL;
1227         }
1228
1229         if (len <= bp->rx_copy_thresh) {
1230                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1231                 if (!skb) {
1232                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1233                         return NULL;
1234                 }
1235         } else {
1236                 u8 *new_data;
1237                 dma_addr_t new_mapping;
1238
1239                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1240                 if (!new_data) {
1241                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1242                         return NULL;
1243                 }
1244
1245                 tpa_info->data = new_data;
1246                 tpa_info->mapping = new_mapping;
1247
1248                 skb = build_skb(data, 0);
1249                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1250                                  PCI_DMA_FROMDEVICE);
1251
1252                 if (!skb) {
1253                         kfree(data);
1254                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1255                         return NULL;
1256                 }
1257                 skb_reserve(skb, BNXT_RX_OFFSET);
1258                 skb_put(skb, len);
1259         }
1260
1261         if (agg_bufs) {
1262                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1263                 if (!skb) {
1264                         /* Page reuse already handled by bnxt_rx_pages(). */
1265                         return NULL;
1266                 }
1267         }
1268         skb->protocol = eth_type_trans(skb, bp->dev);
1269
1270         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1271                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1272
1273         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1274             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1275                 u16 vlan_proto = tpa_info->metadata >>
1276                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1277                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1278
1279                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1280         }
1281
1282         skb_checksum_none_assert(skb);
1283         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1284                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1285                 skb->csum_level =
1286                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1287         }
1288
1289         if (TPA_END_GRO(tpa_end))
1290                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1291
1292         return skb;
1293 }
1294
1295 /* returns the following:
1296  * 1       - 1 packet successfully received
1297  * 0       - successful TPA_START, packet not completed yet
1298  * -EBUSY  - completion ring does not have all the agg buffers yet
1299  * -ENOMEM - packet aborted due to out of memory
1300  * -EIO    - packet aborted due to hw error indicated in BD
1301  */
1302 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1303                        bool *agg_event)
1304 {
1305         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1306         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1307         struct net_device *dev = bp->dev;
1308         struct rx_cmp *rxcmp;
1309         struct rx_cmp_ext *rxcmp1;
1310         u32 tmp_raw_cons = *raw_cons;
1311         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1312         struct bnxt_sw_rx_bd *rx_buf;
1313         unsigned int len;
1314         u8 *data, agg_bufs, cmp_type;
1315         dma_addr_t dma_addr;
1316         struct sk_buff *skb;
1317         int rc = 0;
1318
1319         rxcmp = (struct rx_cmp *)
1320                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1321
1322         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1323         cp_cons = RING_CMP(tmp_raw_cons);
1324         rxcmp1 = (struct rx_cmp_ext *)
1325                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1326
1327         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1328                 return -EBUSY;
1329
1330         cmp_type = RX_CMP_TYPE(rxcmp);
1331
1332         prod = rxr->rx_prod;
1333
1334         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1335                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1336                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1337
1338                 goto next_rx_no_prod;
1339
1340         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1341                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1342                                    (struct rx_tpa_end_cmp *)rxcmp,
1343                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1344                                    agg_event);
1345
1346                 if (unlikely(IS_ERR(skb)))
1347                         return -EBUSY;
1348
1349                 rc = -ENOMEM;
1350                 if (likely(skb)) {
1351                         skb_record_rx_queue(skb, bnapi->index);
1352                         skb_mark_napi_id(skb, &bnapi->napi);
1353                         if (bnxt_busy_polling(bnapi))
1354                                 netif_receive_skb(skb);
1355                         else
1356                                 napi_gro_receive(&bnapi->napi, skb);
1357                         rc = 1;
1358                 }
1359                 goto next_rx_no_prod;
1360         }
1361
1362         cons = rxcmp->rx_cmp_opaque;
1363         rx_buf = &rxr->rx_buf_ring[cons];
1364         data = rx_buf->data;
1365         if (unlikely(cons != rxr->rx_next_cons)) {
1366                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1367
1368                 bnxt_sched_reset(bp, rxr);
1369                 return rc1;
1370         }
1371         prefetch(data);
1372
1373         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1374                                 RX_CMP_AGG_BUFS_SHIFT;
1375
1376         if (agg_bufs) {
1377                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1378                         return -EBUSY;
1379
1380                 cp_cons = NEXT_CMP(cp_cons);
1381                 *agg_event = true;
1382         }
1383
1384         rx_buf->data = NULL;
1385         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1386                 bnxt_reuse_rx_data(rxr, cons, data);
1387                 if (agg_bufs)
1388                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1389
1390                 rc = -EIO;
1391                 goto next_rx;
1392         }
1393
1394         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1395         dma_addr = dma_unmap_addr(rx_buf, mapping);
1396
1397         if (len <= bp->rx_copy_thresh) {
1398                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1399                 bnxt_reuse_rx_data(rxr, cons, data);
1400                 if (!skb) {
1401                         rc = -ENOMEM;
1402                         goto next_rx;
1403                 }
1404         } else {
1405                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1406                 if (!skb) {
1407                         rc = -ENOMEM;
1408                         goto next_rx;
1409                 }
1410         }
1411
1412         if (agg_bufs) {
1413                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1414                 if (!skb) {
1415                         rc = -ENOMEM;
1416                         goto next_rx;
1417                 }
1418         }
1419
1420         if (RX_CMP_HASH_VALID(rxcmp)) {
1421                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1422                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1423
1424                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1425                 if (hash_type != 1 && hash_type != 3)
1426                         type = PKT_HASH_TYPE_L3;
1427                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1428         }
1429
1430         skb->protocol = eth_type_trans(skb, dev);
1431
1432         if ((rxcmp1->rx_cmp_flags2 &
1433              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1434             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1435                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1436                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1437                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1438
1439                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1440         }
1441
1442         skb_checksum_none_assert(skb);
1443         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1444                 if (dev->features & NETIF_F_RXCSUM) {
1445                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1446                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1447                 }
1448         } else {
1449                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1450                         if (dev->features & NETIF_F_RXCSUM)
1451                                 cpr->rx_l4_csum_errors++;
1452                 }
1453         }
1454
1455         skb_record_rx_queue(skb, bnapi->index);
1456         skb_mark_napi_id(skb, &bnapi->napi);
1457         if (bnxt_busy_polling(bnapi))
1458                 netif_receive_skb(skb);
1459         else
1460                 napi_gro_receive(&bnapi->napi, skb);
1461         rc = 1;
1462
1463 next_rx:
1464         rxr->rx_prod = NEXT_RX(prod);
1465         rxr->rx_next_cons = NEXT_RX(cons);
1466
1467 next_rx_no_prod:
1468         *raw_cons = tmp_raw_cons;
1469
1470         return rc;
1471 }
1472
1473 #define BNXT_GET_EVENT_PORT(data)       \
1474         ((data) &                               \
1475          HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1476
1477 static int bnxt_async_event_process(struct bnxt *bp,
1478                                     struct hwrm_async_event_cmpl *cmpl)
1479 {
1480         u16 event_id = le16_to_cpu(cmpl->event_id);
1481
1482         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1483         switch (event_id) {
1484         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1485                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1486                 struct bnxt_link_info *link_info = &bp->link_info;
1487
1488                 if (BNXT_VF(bp))
1489                         goto async_event_process_exit;
1490                 if (data1 & 0x20000) {
1491                         u16 fw_speed = link_info->force_link_speed;
1492                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1493
1494                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1495                                     speed);
1496                 }
1497                 /* fall thru */
1498         }
1499         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1500                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1501                 break;
1502         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1503                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1504                 break;
1505         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1506                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1507                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1508
1509                 if (BNXT_VF(bp))
1510                         break;
1511
1512                 if (bp->pf.port_id != port_id)
1513                         break;
1514
1515                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1516                 break;
1517         }
1518         case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1519                 if (BNXT_PF(bp))
1520                         goto async_event_process_exit;
1521                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1522                 break;
1523         default:
1524                 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1525                            event_id);
1526                 goto async_event_process_exit;
1527         }
1528         schedule_work(&bp->sp_task);
1529 async_event_process_exit:
1530         return 0;
1531 }
1532
1533 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1534 {
1535         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1536         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1537         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1538                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1539
1540         switch (cmpl_type) {
1541         case CMPL_BASE_TYPE_HWRM_DONE:
1542                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1543                 if (seq_id == bp->hwrm_intr_seq_id)
1544                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1545                 else
1546                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1547                 break;
1548
1549         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1550                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1551
1552                 if ((vf_id < bp->pf.first_vf_id) ||
1553                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1554                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1555                                    vf_id);
1556                         return -EINVAL;
1557                 }
1558
1559                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1560                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1561                 schedule_work(&bp->sp_task);
1562                 break;
1563
1564         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1565                 bnxt_async_event_process(bp,
1566                                          (struct hwrm_async_event_cmpl *)txcmp);
1567
1568         default:
1569                 break;
1570         }
1571
1572         return 0;
1573 }
1574
1575 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1576 {
1577         struct bnxt_napi *bnapi = dev_instance;
1578         struct bnxt *bp = bnapi->bp;
1579         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1580         u32 cons = RING_CMP(cpr->cp_raw_cons);
1581
1582         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1583         napi_schedule(&bnapi->napi);
1584         return IRQ_HANDLED;
1585 }
1586
1587 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1588 {
1589         u32 raw_cons = cpr->cp_raw_cons;
1590         u16 cons = RING_CMP(raw_cons);
1591         struct tx_cmp *txcmp;
1592
1593         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1594
1595         return TX_CMP_VALID(txcmp, raw_cons);
1596 }
1597
1598 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1599 {
1600         struct bnxt_napi *bnapi = dev_instance;
1601         struct bnxt *bp = bnapi->bp;
1602         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1603         u32 cons = RING_CMP(cpr->cp_raw_cons);
1604         u32 int_status;
1605
1606         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1607
1608         if (!bnxt_has_work(bp, cpr)) {
1609                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1610                 /* return if erroneous interrupt */
1611                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1612                         return IRQ_NONE;
1613         }
1614
1615         /* disable ring IRQ */
1616         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1617
1618         /* Return here if interrupt is shared and is disabled. */
1619         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1620                 return IRQ_HANDLED;
1621
1622         napi_schedule(&bnapi->napi);
1623         return IRQ_HANDLED;
1624 }
1625
1626 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1627 {
1628         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1629         u32 raw_cons = cpr->cp_raw_cons;
1630         u32 cons;
1631         int tx_pkts = 0;
1632         int rx_pkts = 0;
1633         bool rx_event = false;
1634         bool agg_event = false;
1635         struct tx_cmp *txcmp;
1636
1637         while (1) {
1638                 int rc;
1639
1640                 cons = RING_CMP(raw_cons);
1641                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1642
1643                 if (!TX_CMP_VALID(txcmp, raw_cons))
1644                         break;
1645
1646                 /* The valid test of the entry must be done first before
1647                  * reading any further.
1648                  */
1649                 dma_rmb();
1650                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1651                         tx_pkts++;
1652                         /* return full budget so NAPI will complete. */
1653                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1654                                 rx_pkts = budget;
1655                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1656                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1657                         if (likely(rc >= 0))
1658                                 rx_pkts += rc;
1659                         else if (rc == -EBUSY)  /* partial completion */
1660                                 break;
1661                         rx_event = true;
1662                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1663                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1664                                     (TX_CMP_TYPE(txcmp) ==
1665                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1666                                     (TX_CMP_TYPE(txcmp) ==
1667                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1668                         bnxt_hwrm_handler(bp, txcmp);
1669                 }
1670                 raw_cons = NEXT_RAW_CMP(raw_cons);
1671
1672                 if (rx_pkts == budget)
1673                         break;
1674         }
1675
1676         cpr->cp_raw_cons = raw_cons;
1677         /* ACK completion ring before freeing tx ring and producing new
1678          * buffers in rx/agg rings to prevent overflowing the completion
1679          * ring.
1680          */
1681         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1682
1683         if (tx_pkts)
1684                 bnxt_tx_int(bp, bnapi, tx_pkts);
1685
1686         if (rx_event) {
1687                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1688
1689                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1690                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1691                 if (agg_event) {
1692                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1693                                rxr->rx_agg_doorbell);
1694                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1695                                rxr->rx_agg_doorbell);
1696                 }
1697         }
1698         return rx_pkts;
1699 }
1700
1701 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1702 {
1703         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1704         struct bnxt *bp = bnapi->bp;
1705         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1706         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1707         struct tx_cmp *txcmp;
1708         struct rx_cmp_ext *rxcmp1;
1709         u32 cp_cons, tmp_raw_cons;
1710         u32 raw_cons = cpr->cp_raw_cons;
1711         u32 rx_pkts = 0;
1712         bool agg_event = false;
1713
1714         while (1) {
1715                 int rc;
1716
1717                 cp_cons = RING_CMP(raw_cons);
1718                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1719
1720                 if (!TX_CMP_VALID(txcmp, raw_cons))
1721                         break;
1722
1723                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1724                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1725                         cp_cons = RING_CMP(tmp_raw_cons);
1726                         rxcmp1 = (struct rx_cmp_ext *)
1727                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1728
1729                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1730                                 break;
1731
1732                         /* force an error to recycle the buffer */
1733                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1734                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1735
1736                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1737                         if (likely(rc == -EIO))
1738                                 rx_pkts++;
1739                         else if (rc == -EBUSY)  /* partial completion */
1740                                 break;
1741                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1742                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1743                         bnxt_hwrm_handler(bp, txcmp);
1744                 } else {
1745                         netdev_err(bp->dev,
1746                                    "Invalid completion received on special ring\n");
1747                 }
1748                 raw_cons = NEXT_RAW_CMP(raw_cons);
1749
1750                 if (rx_pkts == budget)
1751                         break;
1752         }
1753
1754         cpr->cp_raw_cons = raw_cons;
1755         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1756         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1757         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1758
1759         if (agg_event) {
1760                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1761                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1762         }
1763
1764         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1765                 napi_complete(napi);
1766                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1767         }
1768         return rx_pkts;
1769 }
1770
1771 static int bnxt_poll(struct napi_struct *napi, int budget)
1772 {
1773         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1774         struct bnxt *bp = bnapi->bp;
1775         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1776         int work_done = 0;
1777
1778         if (!bnxt_lock_napi(bnapi))
1779                 return budget;
1780
1781         while (1) {
1782                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1783
1784                 if (work_done >= budget)
1785                         break;
1786
1787                 if (!bnxt_has_work(bp, cpr)) {
1788                         napi_complete(napi);
1789                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1790                         break;
1791                 }
1792         }
1793         mmiowb();
1794         bnxt_unlock_napi(bnapi);
1795         return work_done;
1796 }
1797
1798 #ifdef CONFIG_NET_RX_BUSY_POLL
1799 static int bnxt_busy_poll(struct napi_struct *napi)
1800 {
1801         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1802         struct bnxt *bp = bnapi->bp;
1803         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1804         int rx_work, budget = 4;
1805
1806         if (atomic_read(&bp->intr_sem) != 0)
1807                 return LL_FLUSH_FAILED;
1808
1809         if (!bnxt_lock_poll(bnapi))
1810                 return LL_FLUSH_BUSY;
1811
1812         rx_work = bnxt_poll_work(bp, bnapi, budget);
1813
1814         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1815
1816         bnxt_unlock_poll(bnapi);
1817         return rx_work;
1818 }
1819 #endif
1820
1821 static void bnxt_free_tx_skbs(struct bnxt *bp)
1822 {
1823         int i, max_idx;
1824         struct pci_dev *pdev = bp->pdev;
1825
1826         if (!bp->tx_ring)
1827                 return;
1828
1829         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1830         for (i = 0; i < bp->tx_nr_rings; i++) {
1831                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1832                 int j;
1833
1834                 for (j = 0; j < max_idx;) {
1835                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1836                         struct sk_buff *skb = tx_buf->skb;
1837                         int k, last;
1838
1839                         if (!skb) {
1840                                 j++;
1841                                 continue;
1842                         }
1843
1844                         tx_buf->skb = NULL;
1845
1846                         if (tx_buf->is_push) {
1847                                 dev_kfree_skb(skb);
1848                                 j += 2;
1849                                 continue;
1850                         }
1851
1852                         dma_unmap_single(&pdev->dev,
1853                                          dma_unmap_addr(tx_buf, mapping),
1854                                          skb_headlen(skb),
1855                                          PCI_DMA_TODEVICE);
1856
1857                         last = tx_buf->nr_frags;
1858                         j += 2;
1859                         for (k = 0; k < last; k++, j++) {
1860                                 int ring_idx = j & bp->tx_ring_mask;
1861                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1862
1863                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1864                                 dma_unmap_page(
1865                                         &pdev->dev,
1866                                         dma_unmap_addr(tx_buf, mapping),
1867                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1868                         }
1869                         dev_kfree_skb(skb);
1870                 }
1871                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1872         }
1873 }
1874
1875 static void bnxt_free_rx_skbs(struct bnxt *bp)
1876 {
1877         int i, max_idx, max_agg_idx;
1878         struct pci_dev *pdev = bp->pdev;
1879
1880         if (!bp->rx_ring)
1881                 return;
1882
1883         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1884         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1885         for (i = 0; i < bp->rx_nr_rings; i++) {
1886                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1887                 int j;
1888
1889                 if (rxr->rx_tpa) {
1890                         for (j = 0; j < MAX_TPA; j++) {
1891                                 struct bnxt_tpa_info *tpa_info =
1892                                                         &rxr->rx_tpa[j];
1893                                 u8 *data = tpa_info->data;
1894
1895                                 if (!data)
1896                                         continue;
1897
1898                                 dma_unmap_single(
1899                                         &pdev->dev,
1900                                         dma_unmap_addr(tpa_info, mapping),
1901                                         bp->rx_buf_use_size,
1902                                         PCI_DMA_FROMDEVICE);
1903
1904                                 tpa_info->data = NULL;
1905
1906                                 kfree(data);
1907                         }
1908                 }
1909
1910                 for (j = 0; j < max_idx; j++) {
1911                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1912                         u8 *data = rx_buf->data;
1913
1914                         if (!data)
1915                                 continue;
1916
1917                         dma_unmap_single(&pdev->dev,
1918                                          dma_unmap_addr(rx_buf, mapping),
1919                                          bp->rx_buf_use_size,
1920                                          PCI_DMA_FROMDEVICE);
1921
1922                         rx_buf->data = NULL;
1923
1924                         kfree(data);
1925                 }
1926
1927                 for (j = 0; j < max_agg_idx; j++) {
1928                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1929                                 &rxr->rx_agg_ring[j];
1930                         struct page *page = rx_agg_buf->page;
1931
1932                         if (!page)
1933                                 continue;
1934
1935                         dma_unmap_page(&pdev->dev,
1936                                        dma_unmap_addr(rx_agg_buf, mapping),
1937                                        BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1938
1939                         rx_agg_buf->page = NULL;
1940                         __clear_bit(j, rxr->rx_agg_bmap);
1941
1942                         __free_page(page);
1943                 }
1944                 if (rxr->rx_page) {
1945                         __free_page(rxr->rx_page);
1946                         rxr->rx_page = NULL;
1947                 }
1948         }
1949 }
1950
1951 static void bnxt_free_skbs(struct bnxt *bp)
1952 {
1953         bnxt_free_tx_skbs(bp);
1954         bnxt_free_rx_skbs(bp);
1955 }
1956
1957 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1958 {
1959         struct pci_dev *pdev = bp->pdev;
1960         int i;
1961
1962         for (i = 0; i < ring->nr_pages; i++) {
1963                 if (!ring->pg_arr[i])
1964                         continue;
1965
1966                 dma_free_coherent(&pdev->dev, ring->page_size,
1967                                   ring->pg_arr[i], ring->dma_arr[i]);
1968
1969                 ring->pg_arr[i] = NULL;
1970         }
1971         if (ring->pg_tbl) {
1972                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1973                                   ring->pg_tbl, ring->pg_tbl_map);
1974                 ring->pg_tbl = NULL;
1975         }
1976         if (ring->vmem_size && *ring->vmem) {
1977                 vfree(*ring->vmem);
1978                 *ring->vmem = NULL;
1979         }
1980 }
1981
1982 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1983 {
1984         int i;
1985         struct pci_dev *pdev = bp->pdev;
1986
1987         if (ring->nr_pages > 1) {
1988                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1989                                                   ring->nr_pages * 8,
1990                                                   &ring->pg_tbl_map,
1991                                                   GFP_KERNEL);
1992                 if (!ring->pg_tbl)
1993                         return -ENOMEM;
1994         }
1995
1996         for (i = 0; i < ring->nr_pages; i++) {
1997                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1998                                                      ring->page_size,
1999                                                      &ring->dma_arr[i],
2000                                                      GFP_KERNEL);
2001                 if (!ring->pg_arr[i])
2002                         return -ENOMEM;
2003
2004                 if (ring->nr_pages > 1)
2005                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2006         }
2007
2008         if (ring->vmem_size) {
2009                 *ring->vmem = vzalloc(ring->vmem_size);
2010                 if (!(*ring->vmem))
2011                         return -ENOMEM;
2012         }
2013         return 0;
2014 }
2015
2016 static void bnxt_free_rx_rings(struct bnxt *bp)
2017 {
2018         int i;
2019
2020         if (!bp->rx_ring)
2021                 return;
2022
2023         for (i = 0; i < bp->rx_nr_rings; i++) {
2024                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2025                 struct bnxt_ring_struct *ring;
2026
2027                 kfree(rxr->rx_tpa);
2028                 rxr->rx_tpa = NULL;
2029
2030                 kfree(rxr->rx_agg_bmap);
2031                 rxr->rx_agg_bmap = NULL;
2032
2033                 ring = &rxr->rx_ring_struct;
2034                 bnxt_free_ring(bp, ring);
2035
2036                 ring = &rxr->rx_agg_ring_struct;
2037                 bnxt_free_ring(bp, ring);
2038         }
2039 }
2040
2041 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2042 {
2043         int i, rc, agg_rings = 0, tpa_rings = 0;
2044
2045         if (!bp->rx_ring)
2046                 return -ENOMEM;
2047
2048         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2049                 agg_rings = 1;
2050
2051         if (bp->flags & BNXT_FLAG_TPA)
2052                 tpa_rings = 1;
2053
2054         for (i = 0; i < bp->rx_nr_rings; i++) {
2055                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2056                 struct bnxt_ring_struct *ring;
2057
2058                 ring = &rxr->rx_ring_struct;
2059
2060                 rc = bnxt_alloc_ring(bp, ring);
2061                 if (rc)
2062                         return rc;
2063
2064                 if (agg_rings) {
2065                         u16 mem_size;
2066
2067                         ring = &rxr->rx_agg_ring_struct;
2068                         rc = bnxt_alloc_ring(bp, ring);
2069                         if (rc)
2070                                 return rc;
2071
2072                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2073                         mem_size = rxr->rx_agg_bmap_size / 8;
2074                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2075                         if (!rxr->rx_agg_bmap)
2076                                 return -ENOMEM;
2077
2078                         if (tpa_rings) {
2079                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2080                                                 sizeof(struct bnxt_tpa_info),
2081                                                 GFP_KERNEL);
2082                                 if (!rxr->rx_tpa)
2083                                         return -ENOMEM;
2084                         }
2085                 }
2086         }
2087         return 0;
2088 }
2089
2090 static void bnxt_free_tx_rings(struct bnxt *bp)
2091 {
2092         int i;
2093         struct pci_dev *pdev = bp->pdev;
2094
2095         if (!bp->tx_ring)
2096                 return;
2097
2098         for (i = 0; i < bp->tx_nr_rings; i++) {
2099                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2100                 struct bnxt_ring_struct *ring;
2101
2102                 if (txr->tx_push) {
2103                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2104                                           txr->tx_push, txr->tx_push_mapping);
2105                         txr->tx_push = NULL;
2106                 }
2107
2108                 ring = &txr->tx_ring_struct;
2109
2110                 bnxt_free_ring(bp, ring);
2111         }
2112 }
2113
2114 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2115 {
2116         int i, j, rc;
2117         struct pci_dev *pdev = bp->pdev;
2118
2119         bp->tx_push_size = 0;
2120         if (bp->tx_push_thresh) {
2121                 int push_size;
2122
2123                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2124                                         bp->tx_push_thresh);
2125
2126                 if (push_size > 256) {
2127                         push_size = 0;
2128                         bp->tx_push_thresh = 0;
2129                 }
2130
2131                 bp->tx_push_size = push_size;
2132         }
2133
2134         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2135                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2136                 struct bnxt_ring_struct *ring;
2137
2138                 ring = &txr->tx_ring_struct;
2139
2140                 rc = bnxt_alloc_ring(bp, ring);
2141                 if (rc)
2142                         return rc;
2143
2144                 if (bp->tx_push_size) {
2145                         dma_addr_t mapping;
2146
2147                         /* One pre-allocated DMA buffer to backup
2148                          * TX push operation
2149                          */
2150                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2151                                                 bp->tx_push_size,
2152                                                 &txr->tx_push_mapping,
2153                                                 GFP_KERNEL);
2154
2155                         if (!txr->tx_push)
2156                                 return -ENOMEM;
2157
2158                         mapping = txr->tx_push_mapping +
2159                                 sizeof(struct tx_push_bd);
2160                         txr->data_mapping = cpu_to_le64(mapping);
2161
2162                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2163                 }
2164                 ring->queue_id = bp->q_info[j].queue_id;
2165                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2166                         j++;
2167         }
2168         return 0;
2169 }
2170
2171 static void bnxt_free_cp_rings(struct bnxt *bp)
2172 {
2173         int i;
2174
2175         if (!bp->bnapi)
2176                 return;
2177
2178         for (i = 0; i < bp->cp_nr_rings; i++) {
2179                 struct bnxt_napi *bnapi = bp->bnapi[i];
2180                 struct bnxt_cp_ring_info *cpr;
2181                 struct bnxt_ring_struct *ring;
2182
2183                 if (!bnapi)
2184                         continue;
2185
2186                 cpr = &bnapi->cp_ring;
2187                 ring = &cpr->cp_ring_struct;
2188
2189                 bnxt_free_ring(bp, ring);
2190         }
2191 }
2192
2193 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2194 {
2195         int i, rc;
2196
2197         for (i = 0; i < bp->cp_nr_rings; i++) {
2198                 struct bnxt_napi *bnapi = bp->bnapi[i];
2199                 struct bnxt_cp_ring_info *cpr;
2200                 struct bnxt_ring_struct *ring;
2201
2202                 if (!bnapi)
2203                         continue;
2204
2205                 cpr = &bnapi->cp_ring;
2206                 ring = &cpr->cp_ring_struct;
2207
2208                 rc = bnxt_alloc_ring(bp, ring);
2209                 if (rc)
2210                         return rc;
2211         }
2212         return 0;
2213 }
2214
2215 static void bnxt_init_ring_struct(struct bnxt *bp)
2216 {
2217         int i;
2218
2219         for (i = 0; i < bp->cp_nr_rings; i++) {
2220                 struct bnxt_napi *bnapi = bp->bnapi[i];
2221                 struct bnxt_cp_ring_info *cpr;
2222                 struct bnxt_rx_ring_info *rxr;
2223                 struct bnxt_tx_ring_info *txr;
2224                 struct bnxt_ring_struct *ring;
2225
2226                 if (!bnapi)
2227                         continue;
2228
2229                 cpr = &bnapi->cp_ring;
2230                 ring = &cpr->cp_ring_struct;
2231                 ring->nr_pages = bp->cp_nr_pages;
2232                 ring->page_size = HW_CMPD_RING_SIZE;
2233                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2234                 ring->dma_arr = cpr->cp_desc_mapping;
2235                 ring->vmem_size = 0;
2236
2237                 rxr = bnapi->rx_ring;
2238                 if (!rxr)
2239                         goto skip_rx;
2240
2241                 ring = &rxr->rx_ring_struct;
2242                 ring->nr_pages = bp->rx_nr_pages;
2243                 ring->page_size = HW_RXBD_RING_SIZE;
2244                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2245                 ring->dma_arr = rxr->rx_desc_mapping;
2246                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2247                 ring->vmem = (void **)&rxr->rx_buf_ring;
2248
2249                 ring = &rxr->rx_agg_ring_struct;
2250                 ring->nr_pages = bp->rx_agg_nr_pages;
2251                 ring->page_size = HW_RXBD_RING_SIZE;
2252                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2253                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2254                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2255                 ring->vmem = (void **)&rxr->rx_agg_ring;
2256
2257 skip_rx:
2258                 txr = bnapi->tx_ring;
2259                 if (!txr)
2260                         continue;
2261
2262                 ring = &txr->tx_ring_struct;
2263                 ring->nr_pages = bp->tx_nr_pages;
2264                 ring->page_size = HW_RXBD_RING_SIZE;
2265                 ring->pg_arr = (void **)txr->tx_desc_ring;
2266                 ring->dma_arr = txr->tx_desc_mapping;
2267                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2268                 ring->vmem = (void **)&txr->tx_buf_ring;
2269         }
2270 }
2271
2272 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2273 {
2274         int i;
2275         u32 prod;
2276         struct rx_bd **rx_buf_ring;
2277
2278         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2279         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2280                 int j;
2281                 struct rx_bd *rxbd;
2282
2283                 rxbd = rx_buf_ring[i];
2284                 if (!rxbd)
2285                         continue;
2286
2287                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2288                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2289                         rxbd->rx_bd_opaque = prod;
2290                 }
2291         }
2292 }
2293
2294 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2295 {
2296         struct net_device *dev = bp->dev;
2297         struct bnxt_rx_ring_info *rxr;
2298         struct bnxt_ring_struct *ring;
2299         u32 prod, type;
2300         int i;
2301
2302         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2303                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2304
2305         if (NET_IP_ALIGN == 2)
2306                 type |= RX_BD_FLAGS_SOP;
2307
2308         rxr = &bp->rx_ring[ring_nr];
2309         ring = &rxr->rx_ring_struct;
2310         bnxt_init_rxbd_pages(ring, type);
2311
2312         prod = rxr->rx_prod;
2313         for (i = 0; i < bp->rx_ring_size; i++) {
2314                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2315                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2316                                     ring_nr, i, bp->rx_ring_size);
2317                         break;
2318                 }
2319                 prod = NEXT_RX(prod);
2320         }
2321         rxr->rx_prod = prod;
2322         ring->fw_ring_id = INVALID_HW_RING_ID;
2323
2324         ring = &rxr->rx_agg_ring_struct;
2325         ring->fw_ring_id = INVALID_HW_RING_ID;
2326
2327         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2328                 return 0;
2329
2330         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2331                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2332
2333         bnxt_init_rxbd_pages(ring, type);
2334
2335         prod = rxr->rx_agg_prod;
2336         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2337                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2338                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2339                                     ring_nr, i, bp->rx_ring_size);
2340                         break;
2341                 }
2342                 prod = NEXT_RX_AGG(prod);
2343         }
2344         rxr->rx_agg_prod = prod;
2345
2346         if (bp->flags & BNXT_FLAG_TPA) {
2347                 if (rxr->rx_tpa) {
2348                         u8 *data;
2349                         dma_addr_t mapping;
2350
2351                         for (i = 0; i < MAX_TPA; i++) {
2352                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2353                                                             GFP_KERNEL);
2354                                 if (!data)
2355                                         return -ENOMEM;
2356
2357                                 rxr->rx_tpa[i].data = data;
2358                                 rxr->rx_tpa[i].mapping = mapping;
2359                         }
2360                 } else {
2361                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2362                         return -ENOMEM;
2363                 }
2364         }
2365
2366         return 0;
2367 }
2368
2369 static int bnxt_init_rx_rings(struct bnxt *bp)
2370 {
2371         int i, rc = 0;
2372
2373         for (i = 0; i < bp->rx_nr_rings; i++) {
2374                 rc = bnxt_init_one_rx_ring(bp, i);
2375                 if (rc)
2376                         break;
2377         }
2378
2379         return rc;
2380 }
2381
2382 static int bnxt_init_tx_rings(struct bnxt *bp)
2383 {
2384         u16 i;
2385
2386         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2387                                    MAX_SKB_FRAGS + 1);
2388
2389         for (i = 0; i < bp->tx_nr_rings; i++) {
2390                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2391                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2392
2393                 ring->fw_ring_id = INVALID_HW_RING_ID;
2394         }
2395
2396         return 0;
2397 }
2398
2399 static void bnxt_free_ring_grps(struct bnxt *bp)
2400 {
2401         kfree(bp->grp_info);
2402         bp->grp_info = NULL;
2403 }
2404
2405 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2406 {
2407         int i;
2408
2409         if (irq_re_init) {
2410                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2411                                        sizeof(struct bnxt_ring_grp_info),
2412                                        GFP_KERNEL);
2413                 if (!bp->grp_info)
2414                         return -ENOMEM;
2415         }
2416         for (i = 0; i < bp->cp_nr_rings; i++) {
2417                 if (irq_re_init)
2418                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2419                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2420                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2421                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2422                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2423         }
2424         return 0;
2425 }
2426
2427 static void bnxt_free_vnics(struct bnxt *bp)
2428 {
2429         kfree(bp->vnic_info);
2430         bp->vnic_info = NULL;
2431         bp->nr_vnics = 0;
2432 }
2433
2434 static int bnxt_alloc_vnics(struct bnxt *bp)
2435 {
2436         int num_vnics = 1;
2437
2438 #ifdef CONFIG_RFS_ACCEL
2439         if (bp->flags & BNXT_FLAG_RFS)
2440                 num_vnics += bp->rx_nr_rings;
2441 #endif
2442
2443         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2444                 num_vnics++;
2445
2446         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2447                                 GFP_KERNEL);
2448         if (!bp->vnic_info)
2449                 return -ENOMEM;
2450
2451         bp->nr_vnics = num_vnics;
2452         return 0;
2453 }
2454
2455 static void bnxt_init_vnics(struct bnxt *bp)
2456 {
2457         int i;
2458
2459         for (i = 0; i < bp->nr_vnics; i++) {
2460                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2461
2462                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2463                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2464                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2465                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2466
2467                 if (bp->vnic_info[i].rss_hash_key) {
2468                         if (i == 0)
2469                                 prandom_bytes(vnic->rss_hash_key,
2470                                               HW_HASH_KEY_SIZE);
2471                         else
2472                                 memcpy(vnic->rss_hash_key,
2473                                        bp->vnic_info[0].rss_hash_key,
2474                                        HW_HASH_KEY_SIZE);
2475                 }
2476         }
2477 }
2478
2479 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2480 {
2481         int pages;
2482
2483         pages = ring_size / desc_per_pg;
2484
2485         if (!pages)
2486                 return 1;
2487
2488         pages++;
2489
2490         while (pages & (pages - 1))
2491                 pages++;
2492
2493         return pages;
2494 }
2495
2496 static void bnxt_set_tpa_flags(struct bnxt *bp)
2497 {
2498         bp->flags &= ~BNXT_FLAG_TPA;
2499         if (bp->dev->features & NETIF_F_LRO)
2500                 bp->flags |= BNXT_FLAG_LRO;
2501         if (bp->dev->features & NETIF_F_GRO)
2502                 bp->flags |= BNXT_FLAG_GRO;
2503 }
2504
2505 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2506  * be set on entry.
2507  */
2508 void bnxt_set_ring_params(struct bnxt *bp)
2509 {
2510         u32 ring_size, rx_size, rx_space;
2511         u32 agg_factor = 0, agg_ring_size = 0;
2512
2513         /* 8 for CRC and VLAN */
2514         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2515
2516         rx_space = rx_size + NET_SKB_PAD +
2517                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2518
2519         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2520         ring_size = bp->rx_ring_size;
2521         bp->rx_agg_ring_size = 0;
2522         bp->rx_agg_nr_pages = 0;
2523
2524         if (bp->flags & BNXT_FLAG_TPA)
2525                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2526
2527         bp->flags &= ~BNXT_FLAG_JUMBO;
2528         if (rx_space > PAGE_SIZE) {
2529                 u32 jumbo_factor;
2530
2531                 bp->flags |= BNXT_FLAG_JUMBO;
2532                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2533                 if (jumbo_factor > agg_factor)
2534                         agg_factor = jumbo_factor;
2535         }
2536         agg_ring_size = ring_size * agg_factor;
2537
2538         if (agg_ring_size) {
2539                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2540                                                         RX_DESC_CNT);
2541                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2542                         u32 tmp = agg_ring_size;
2543
2544                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2545                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2546                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2547                                     tmp, agg_ring_size);
2548                 }
2549                 bp->rx_agg_ring_size = agg_ring_size;
2550                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2551                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2552                 rx_space = rx_size + NET_SKB_PAD +
2553                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2554         }
2555
2556         bp->rx_buf_use_size = rx_size;
2557         bp->rx_buf_size = rx_space;
2558
2559         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2560         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2561
2562         ring_size = bp->tx_ring_size;
2563         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2564         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2565
2566         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2567         bp->cp_ring_size = ring_size;
2568
2569         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2570         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2571                 bp->cp_nr_pages = MAX_CP_PAGES;
2572                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2573                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2574                             ring_size, bp->cp_ring_size);
2575         }
2576         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2577         bp->cp_ring_mask = bp->cp_bit - 1;
2578 }
2579
2580 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2581 {
2582         int i;
2583         struct bnxt_vnic_info *vnic;
2584         struct pci_dev *pdev = bp->pdev;
2585
2586         if (!bp->vnic_info)
2587                 return;
2588
2589         for (i = 0; i < bp->nr_vnics; i++) {
2590                 vnic = &bp->vnic_info[i];
2591
2592                 kfree(vnic->fw_grp_ids);
2593                 vnic->fw_grp_ids = NULL;
2594
2595                 kfree(vnic->uc_list);
2596                 vnic->uc_list = NULL;
2597
2598                 if (vnic->mc_list) {
2599                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2600                                           vnic->mc_list, vnic->mc_list_mapping);
2601                         vnic->mc_list = NULL;
2602                 }
2603
2604                 if (vnic->rss_table) {
2605                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2606                                           vnic->rss_table,
2607                                           vnic->rss_table_dma_addr);
2608                         vnic->rss_table = NULL;
2609                 }
2610
2611                 vnic->rss_hash_key = NULL;
2612                 vnic->flags = 0;
2613         }
2614 }
2615
2616 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2617 {
2618         int i, rc = 0, size;
2619         struct bnxt_vnic_info *vnic;
2620         struct pci_dev *pdev = bp->pdev;
2621         int max_rings;
2622
2623         for (i = 0; i < bp->nr_vnics; i++) {
2624                 vnic = &bp->vnic_info[i];
2625
2626                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2627                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2628
2629                         if (mem_size > 0) {
2630                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2631                                 if (!vnic->uc_list) {
2632                                         rc = -ENOMEM;
2633                                         goto out;
2634                                 }
2635                         }
2636                 }
2637
2638                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2639                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2640                         vnic->mc_list =
2641                                 dma_alloc_coherent(&pdev->dev,
2642                                                    vnic->mc_list_size,
2643                                                    &vnic->mc_list_mapping,
2644                                                    GFP_KERNEL);
2645                         if (!vnic->mc_list) {
2646                                 rc = -ENOMEM;
2647                                 goto out;
2648                         }
2649                 }
2650
2651                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2652                         max_rings = bp->rx_nr_rings;
2653                 else
2654                         max_rings = 1;
2655
2656                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2657                 if (!vnic->fw_grp_ids) {
2658                         rc = -ENOMEM;
2659                         goto out;
2660                 }
2661
2662                 /* Allocate rss table and hash key */
2663                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2664                                                      &vnic->rss_table_dma_addr,
2665                                                      GFP_KERNEL);
2666                 if (!vnic->rss_table) {
2667                         rc = -ENOMEM;
2668                         goto out;
2669                 }
2670
2671                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2672
2673                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2674                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2675         }
2676         return 0;
2677
2678 out:
2679         return rc;
2680 }
2681
2682 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2683 {
2684         struct pci_dev *pdev = bp->pdev;
2685
2686         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2687                           bp->hwrm_cmd_resp_dma_addr);
2688
2689         bp->hwrm_cmd_resp_addr = NULL;
2690         if (bp->hwrm_dbg_resp_addr) {
2691                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2692                                   bp->hwrm_dbg_resp_addr,
2693                                   bp->hwrm_dbg_resp_dma_addr);
2694
2695                 bp->hwrm_dbg_resp_addr = NULL;
2696         }
2697 }
2698
2699 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2700 {
2701         struct pci_dev *pdev = bp->pdev;
2702
2703         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2704                                                    &bp->hwrm_cmd_resp_dma_addr,
2705                                                    GFP_KERNEL);
2706         if (!bp->hwrm_cmd_resp_addr)
2707                 return -ENOMEM;
2708         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2709                                                     HWRM_DBG_REG_BUF_SIZE,
2710                                                     &bp->hwrm_dbg_resp_dma_addr,
2711                                                     GFP_KERNEL);
2712         if (!bp->hwrm_dbg_resp_addr)
2713                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2714
2715         return 0;
2716 }
2717
2718 static void bnxt_free_stats(struct bnxt *bp)
2719 {
2720         u32 size, i;
2721         struct pci_dev *pdev = bp->pdev;
2722
2723         if (bp->hw_rx_port_stats) {
2724                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2725                                   bp->hw_rx_port_stats,
2726                                   bp->hw_rx_port_stats_map);
2727                 bp->hw_rx_port_stats = NULL;
2728                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2729         }
2730
2731         if (!bp->bnapi)
2732                 return;
2733
2734         size = sizeof(struct ctx_hw_stats);
2735
2736         for (i = 0; i < bp->cp_nr_rings; i++) {
2737                 struct bnxt_napi *bnapi = bp->bnapi[i];
2738                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2739
2740                 if (cpr->hw_stats) {
2741                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2742                                           cpr->hw_stats_map);
2743                         cpr->hw_stats = NULL;
2744                 }
2745         }
2746 }
2747
2748 static int bnxt_alloc_stats(struct bnxt *bp)
2749 {
2750         u32 size, i;
2751         struct pci_dev *pdev = bp->pdev;
2752
2753         size = sizeof(struct ctx_hw_stats);
2754
2755         for (i = 0; i < bp->cp_nr_rings; i++) {
2756                 struct bnxt_napi *bnapi = bp->bnapi[i];
2757                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2758
2759                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2760                                                    &cpr->hw_stats_map,
2761                                                    GFP_KERNEL);
2762                 if (!cpr->hw_stats)
2763                         return -ENOMEM;
2764
2765                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2766         }
2767
2768         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2769                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2770                                          sizeof(struct tx_port_stats) + 1024;
2771
2772                 bp->hw_rx_port_stats =
2773                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2774                                            &bp->hw_rx_port_stats_map,
2775                                            GFP_KERNEL);
2776                 if (!bp->hw_rx_port_stats)
2777                         return -ENOMEM;
2778
2779                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2780                                        512;
2781                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2782                                            sizeof(struct rx_port_stats) + 512;
2783                 bp->flags |= BNXT_FLAG_PORT_STATS;
2784         }
2785         return 0;
2786 }
2787
2788 static void bnxt_clear_ring_indices(struct bnxt *bp)
2789 {
2790         int i;
2791
2792         if (!bp->bnapi)
2793                 return;
2794
2795         for (i = 0; i < bp->cp_nr_rings; i++) {
2796                 struct bnxt_napi *bnapi = bp->bnapi[i];
2797                 struct bnxt_cp_ring_info *cpr;
2798                 struct bnxt_rx_ring_info *rxr;
2799                 struct bnxt_tx_ring_info *txr;
2800
2801                 if (!bnapi)
2802                         continue;
2803
2804                 cpr = &bnapi->cp_ring;
2805                 cpr->cp_raw_cons = 0;
2806
2807                 txr = bnapi->tx_ring;
2808                 if (txr) {
2809                         txr->tx_prod = 0;
2810                         txr->tx_cons = 0;
2811                 }
2812
2813                 rxr = bnapi->rx_ring;
2814                 if (rxr) {
2815                         rxr->rx_prod = 0;
2816                         rxr->rx_agg_prod = 0;
2817                         rxr->rx_sw_agg_prod = 0;
2818                         rxr->rx_next_cons = 0;
2819                 }
2820         }
2821 }
2822
2823 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2824 {
2825 #ifdef CONFIG_RFS_ACCEL
2826         int i;
2827
2828         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2829          * safe to delete the hash table.
2830          */
2831         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2832                 struct hlist_head *head;
2833                 struct hlist_node *tmp;
2834                 struct bnxt_ntuple_filter *fltr;
2835
2836                 head = &bp->ntp_fltr_hash_tbl[i];
2837                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2838                         hlist_del(&fltr->hash);
2839                         kfree(fltr);
2840                 }
2841         }
2842         if (irq_reinit) {
2843                 kfree(bp->ntp_fltr_bmap);
2844                 bp->ntp_fltr_bmap = NULL;
2845         }
2846         bp->ntp_fltr_count = 0;
2847 #endif
2848 }
2849
2850 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2851 {
2852 #ifdef CONFIG_RFS_ACCEL
2853         int i, rc = 0;
2854
2855         if (!(bp->flags & BNXT_FLAG_RFS))
2856                 return 0;
2857
2858         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2859                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2860
2861         bp->ntp_fltr_count = 0;
2862         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2863                                     GFP_KERNEL);
2864
2865         if (!bp->ntp_fltr_bmap)
2866                 rc = -ENOMEM;
2867
2868         return rc;
2869 #else
2870         return 0;
2871 #endif
2872 }
2873
2874 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2875 {
2876         bnxt_free_vnic_attributes(bp);
2877         bnxt_free_tx_rings(bp);
2878         bnxt_free_rx_rings(bp);
2879         bnxt_free_cp_rings(bp);
2880         bnxt_free_ntp_fltrs(bp, irq_re_init);
2881         if (irq_re_init) {
2882                 bnxt_free_stats(bp);
2883                 bnxt_free_ring_grps(bp);
2884                 bnxt_free_vnics(bp);
2885                 kfree(bp->tx_ring);
2886                 bp->tx_ring = NULL;
2887                 kfree(bp->rx_ring);
2888                 bp->rx_ring = NULL;
2889                 kfree(bp->bnapi);
2890                 bp->bnapi = NULL;
2891         } else {
2892                 bnxt_clear_ring_indices(bp);
2893         }
2894 }
2895
2896 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2897 {
2898         int i, j, rc, size, arr_size;
2899         void *bnapi;
2900
2901         if (irq_re_init) {
2902                 /* Allocate bnapi mem pointer array and mem block for
2903                  * all queues
2904                  */
2905                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2906                                 bp->cp_nr_rings);
2907                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2908                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2909                 if (!bnapi)
2910                         return -ENOMEM;
2911
2912                 bp->bnapi = bnapi;
2913                 bnapi += arr_size;
2914                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2915                         bp->bnapi[i] = bnapi;
2916                         bp->bnapi[i]->index = i;
2917                         bp->bnapi[i]->bp = bp;
2918                 }
2919
2920                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2921                                       sizeof(struct bnxt_rx_ring_info),
2922                                       GFP_KERNEL);
2923                 if (!bp->rx_ring)
2924                         return -ENOMEM;
2925
2926                 for (i = 0; i < bp->rx_nr_rings; i++) {
2927                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2928                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2929                 }
2930
2931                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2932                                       sizeof(struct bnxt_tx_ring_info),
2933                                       GFP_KERNEL);
2934                 if (!bp->tx_ring)
2935                         return -ENOMEM;
2936
2937                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2938                         j = 0;
2939                 else
2940                         j = bp->rx_nr_rings;
2941
2942                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2943                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2944                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2945                 }
2946
2947                 rc = bnxt_alloc_stats(bp);
2948                 if (rc)
2949                         goto alloc_mem_err;
2950
2951                 rc = bnxt_alloc_ntp_fltrs(bp);
2952                 if (rc)
2953                         goto alloc_mem_err;
2954
2955                 rc = bnxt_alloc_vnics(bp);
2956                 if (rc)
2957                         goto alloc_mem_err;
2958         }
2959
2960         bnxt_init_ring_struct(bp);
2961
2962         rc = bnxt_alloc_rx_rings(bp);
2963         if (rc)
2964                 goto alloc_mem_err;
2965
2966         rc = bnxt_alloc_tx_rings(bp);
2967         if (rc)
2968                 goto alloc_mem_err;
2969
2970         rc = bnxt_alloc_cp_rings(bp);
2971         if (rc)
2972                 goto alloc_mem_err;
2973
2974         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2975                                   BNXT_VNIC_UCAST_FLAG;
2976         rc = bnxt_alloc_vnic_attributes(bp);
2977         if (rc)
2978                 goto alloc_mem_err;
2979         return 0;
2980
2981 alloc_mem_err:
2982         bnxt_free_mem(bp, true);
2983         return rc;
2984 }
2985
2986 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2987                             u16 cmpl_ring, u16 target_id)
2988 {
2989         struct input *req = request;
2990
2991         req->req_type = cpu_to_le16(req_type);
2992         req->cmpl_ring = cpu_to_le16(cmpl_ring);
2993         req->target_id = cpu_to_le16(target_id);
2994         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2995 }
2996
2997 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2998                                  int timeout, bool silent)
2999 {
3000         int i, intr_process, rc, tmo_count;
3001         struct input *req = msg;
3002         u32 *data = msg;
3003         __le32 *resp_len, *valid;
3004         u16 cp_ring_id, len = 0;
3005         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3006
3007         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3008         memset(resp, 0, PAGE_SIZE);
3009         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3010         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3011
3012         /* Write request msg to hwrm channel */
3013         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3014
3015         for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3016                 writel(0, bp->bar0 + i);
3017
3018         /* currently supports only one outstanding message */
3019         if (intr_process)
3020                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3021
3022         /* Ring channel doorbell */
3023         writel(1, bp->bar0 + 0x100);
3024
3025         if (!timeout)
3026                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3027
3028         i = 0;
3029         tmo_count = timeout * 40;
3030         if (intr_process) {
3031                 /* Wait until hwrm response cmpl interrupt is processed */
3032                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3033                        i++ < tmo_count) {
3034                         usleep_range(25, 40);
3035                 }
3036
3037                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3038                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3039                                    le16_to_cpu(req->req_type));
3040                         return -1;
3041                 }
3042         } else {
3043                 /* Check if response len is updated */
3044                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3045                 for (i = 0; i < tmo_count; i++) {
3046                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3047                               HWRM_RESP_LEN_SFT;
3048                         if (len)
3049                                 break;
3050                         usleep_range(25, 40);
3051                 }
3052
3053                 if (i >= tmo_count) {
3054                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3055                                    timeout, le16_to_cpu(req->req_type),
3056                                    le16_to_cpu(req->seq_id), len);
3057                         return -1;
3058                 }
3059
3060                 /* Last word of resp contains valid bit */
3061                 valid = bp->hwrm_cmd_resp_addr + len - 4;
3062                 for (i = 0; i < 5; i++) {
3063                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3064                                 break;
3065                         udelay(1);
3066                 }
3067
3068                 if (i >= 5) {
3069                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3070                                    timeout, le16_to_cpu(req->req_type),
3071                                    le16_to_cpu(req->seq_id), len, *valid);
3072                         return -1;
3073                 }
3074         }
3075
3076         rc = le16_to_cpu(resp->error_code);
3077         if (rc && !silent)
3078                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3079                            le16_to_cpu(resp->req_type),
3080                            le16_to_cpu(resp->seq_id), rc);
3081         return rc;
3082 }
3083
3084 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3085 {
3086         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3087 }
3088
3089 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3090 {
3091         int rc;
3092
3093         mutex_lock(&bp->hwrm_cmd_lock);
3094         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3095         mutex_unlock(&bp->hwrm_cmd_lock);
3096         return rc;
3097 }
3098
3099 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3100                              int timeout)
3101 {
3102         int rc;
3103
3104         mutex_lock(&bp->hwrm_cmd_lock);
3105         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3106         mutex_unlock(&bp->hwrm_cmd_lock);
3107         return rc;
3108 }
3109
3110 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3111 {
3112         struct hwrm_func_drv_rgtr_input req = {0};
3113         int i;
3114         DECLARE_BITMAP(async_events_bmap, 256);
3115         u32 *events = (u32 *)async_events_bmap;
3116
3117         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3118
3119         req.enables =
3120                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3121                             FUNC_DRV_RGTR_REQ_ENABLES_VER |
3122                             FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3123
3124         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3125         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3126                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3127
3128         for (i = 0; i < 8; i++)
3129                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3130
3131         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3132         req.ver_maj = DRV_VER_MAJ;
3133         req.ver_min = DRV_VER_MIN;
3134         req.ver_upd = DRV_VER_UPD;
3135
3136         if (BNXT_PF(bp)) {
3137                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3138                 u32 *data = (u32 *)vf_req_snif_bmap;
3139
3140                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3141                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3142                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3143
3144                 for (i = 0; i < 8; i++)
3145                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3146
3147                 req.enables |=
3148                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3149         }
3150
3151         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3152 }
3153
3154 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3155 {
3156         struct hwrm_func_drv_unrgtr_input req = {0};
3157
3158         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3159         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3160 }
3161
3162 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3163 {
3164         u32 rc = 0;
3165         struct hwrm_tunnel_dst_port_free_input req = {0};
3166
3167         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3168         req.tunnel_type = tunnel_type;
3169
3170         switch (tunnel_type) {
3171         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3172                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3173                 break;
3174         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3175                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3176                 break;
3177         default:
3178                 break;
3179         }
3180
3181         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3182         if (rc)
3183                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3184                            rc);
3185         return rc;
3186 }
3187
3188 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3189                                            u8 tunnel_type)
3190 {
3191         u32 rc = 0;
3192         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3193         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3194
3195         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3196
3197         req.tunnel_type = tunnel_type;
3198         req.tunnel_dst_port_val = port;
3199
3200         mutex_lock(&bp->hwrm_cmd_lock);
3201         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3202         if (rc) {
3203                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3204                            rc);
3205                 goto err_out;
3206         }
3207
3208         if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
3209                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3210
3211         else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
3212                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3213 err_out:
3214         mutex_unlock(&bp->hwrm_cmd_lock);
3215         return rc;
3216 }
3217
3218 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3219 {
3220         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3221         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3222
3223         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3224         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3225
3226         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3227         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3228         req.mask = cpu_to_le32(vnic->rx_mask);
3229         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3230 }
3231
3232 #ifdef CONFIG_RFS_ACCEL
3233 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3234                                             struct bnxt_ntuple_filter *fltr)
3235 {
3236         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3237
3238         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3239         req.ntuple_filter_id = fltr->filter_id;
3240         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3241 }
3242
3243 #define BNXT_NTP_FLTR_FLAGS                                     \
3244         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3245          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3246          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3247          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3248          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3249          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3250          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3251          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3252          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3253          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3254          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3255          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3256          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3257          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3258
3259 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3260                                              struct bnxt_ntuple_filter *fltr)
3261 {
3262         int rc = 0;
3263         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3264         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3265                 bp->hwrm_cmd_resp_addr;
3266         struct flow_keys *keys = &fltr->fkeys;
3267         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3268
3269         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3270         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3271
3272         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3273
3274         req.ethertype = htons(ETH_P_IP);
3275         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3276         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3277         req.ip_protocol = keys->basic.ip_proto;
3278
3279         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3280         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3281         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3282         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3283
3284         req.src_port = keys->ports.src;
3285         req.src_port_mask = cpu_to_be16(0xffff);
3286         req.dst_port = keys->ports.dst;
3287         req.dst_port_mask = cpu_to_be16(0xffff);
3288
3289         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3290         mutex_lock(&bp->hwrm_cmd_lock);
3291         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3292         if (!rc)
3293                 fltr->filter_id = resp->ntuple_filter_id;
3294         mutex_unlock(&bp->hwrm_cmd_lock);
3295         return rc;
3296 }
3297 #endif
3298
3299 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3300                                      u8 *mac_addr)
3301 {
3302         u32 rc = 0;
3303         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3304         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3305
3306         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3307         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3308         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3309                 req.flags |=
3310                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3311         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3312         req.enables =
3313                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3314                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3315                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3316         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3317         req.l2_addr_mask[0] = 0xff;
3318         req.l2_addr_mask[1] = 0xff;
3319         req.l2_addr_mask[2] = 0xff;
3320         req.l2_addr_mask[3] = 0xff;
3321         req.l2_addr_mask[4] = 0xff;
3322         req.l2_addr_mask[5] = 0xff;
3323
3324         mutex_lock(&bp->hwrm_cmd_lock);
3325         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3326         if (!rc)
3327                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3328                                                         resp->l2_filter_id;
3329         mutex_unlock(&bp->hwrm_cmd_lock);
3330         return rc;
3331 }
3332
3333 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3334 {
3335         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3336         int rc = 0;
3337
3338         /* Any associated ntuple filters will also be cleared by firmware. */
3339         mutex_lock(&bp->hwrm_cmd_lock);
3340         for (i = 0; i < num_of_vnics; i++) {
3341                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3342
3343                 for (j = 0; j < vnic->uc_filter_count; j++) {
3344                         struct hwrm_cfa_l2_filter_free_input req = {0};
3345
3346                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3347                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3348
3349                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3350
3351                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3352                                                 HWRM_CMD_TIMEOUT);
3353                 }
3354                 vnic->uc_filter_count = 0;
3355         }
3356         mutex_unlock(&bp->hwrm_cmd_lock);
3357
3358         return rc;
3359 }
3360
3361 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3362 {
3363         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3364         struct hwrm_vnic_tpa_cfg_input req = {0};
3365
3366         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3367
3368         if (tpa_flags) {
3369                 u16 mss = bp->dev->mtu - 40;
3370                 u32 nsegs, n, segs = 0, flags;
3371
3372                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3373                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3374                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3375                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3376                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3377                 if (tpa_flags & BNXT_FLAG_GRO)
3378                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3379
3380                 req.flags = cpu_to_le32(flags);
3381
3382                 req.enables =
3383                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3384                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3385                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3386
3387                 /* Number of segs are log2 units, and first packet is not
3388                  * included as part of this units.
3389                  */
3390                 if (mss <= BNXT_RX_PAGE_SIZE) {
3391                         n = BNXT_RX_PAGE_SIZE / mss;
3392                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3393                 } else {
3394                         n = mss / BNXT_RX_PAGE_SIZE;
3395                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3396                                 n++;
3397                         nsegs = (MAX_SKB_FRAGS - n) / n;
3398                 }
3399
3400                 segs = ilog2(nsegs);
3401                 req.max_agg_segs = cpu_to_le16(segs);
3402                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3403
3404                 req.min_agg_len = cpu_to_le32(512);
3405         }
3406         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3407
3408         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3409 }
3410
3411 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3412 {
3413         u32 i, j, max_rings;
3414         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3415         struct hwrm_vnic_rss_cfg_input req = {0};
3416
3417         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3418                 return 0;
3419
3420         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3421         if (set_rss) {
3422                 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3423                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3424                                  BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3425                                  BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3426
3427                 req.hash_type = cpu_to_le32(vnic->hash_type);
3428
3429                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3430                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3431                                 max_rings = bp->rx_nr_rings - 1;
3432                         else
3433                                 max_rings = bp->rx_nr_rings;
3434                 } else {
3435                         max_rings = 1;
3436                 }
3437
3438                 /* Fill the RSS indirection table with ring group ids */
3439                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3440                         if (j == max_rings)
3441                                 j = 0;
3442                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3443                 }
3444
3445                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3446                 req.hash_key_tbl_addr =
3447                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3448         }
3449         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3450         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3451 }
3452
3453 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3454 {
3455         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3456         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3457
3458         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3459         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3460                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3461                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3462         req.enables =
3463                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3464                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3465         /* thresholds not implemented in firmware yet */
3466         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3467         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3468         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3469         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3470 }
3471
3472 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3473                                         u16 ctx_idx)
3474 {
3475         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3476
3477         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3478         req.rss_cos_lb_ctx_id =
3479                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3480
3481         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3482         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3483 }
3484
3485 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3486 {
3487         int i, j;
3488
3489         for (i = 0; i < bp->nr_vnics; i++) {
3490                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3491
3492                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3493                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3494                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3495                 }
3496         }
3497         bp->rsscos_nr_ctxs = 0;
3498 }
3499
3500 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3501 {
3502         int rc;
3503         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3504         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3505                                                 bp->hwrm_cmd_resp_addr;
3506
3507         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3508                                -1);
3509
3510         mutex_lock(&bp->hwrm_cmd_lock);
3511         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3512         if (!rc)
3513                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3514                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3515         mutex_unlock(&bp->hwrm_cmd_lock);
3516
3517         return rc;
3518 }
3519
3520 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3521 {
3522         unsigned int ring = 0, grp_idx;
3523         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3524         struct hwrm_vnic_cfg_input req = {0};
3525         u16 def_vlan = 0;
3526
3527         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3528
3529         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3530         /* Only RSS support for now TBD: COS & LB */
3531         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3532                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3533                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3534                                            VNIC_CFG_REQ_ENABLES_MRU);
3535         } else {
3536                 req.rss_rule = cpu_to_le16(0xffff);
3537         }
3538
3539         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3540             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3541                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3542                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3543         } else {
3544                 req.cos_rule = cpu_to_le16(0xffff);
3545         }
3546
3547         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3548                 ring = 0;
3549         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3550                 ring = vnic_id - 1;
3551         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3552                 ring = bp->rx_nr_rings - 1;
3553
3554         grp_idx = bp->rx_ring[ring].bnapi->index;
3555         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3556         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3557
3558         req.lb_rule = cpu_to_le16(0xffff);
3559         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3560                               VLAN_HLEN);
3561
3562 #ifdef CONFIG_BNXT_SRIOV
3563         if (BNXT_VF(bp))
3564                 def_vlan = bp->vf.vlan;
3565 #endif
3566         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3567                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3568
3569         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3570 }
3571
3572 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3573 {
3574         u32 rc = 0;
3575
3576         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3577                 struct hwrm_vnic_free_input req = {0};
3578
3579                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3580                 req.vnic_id =
3581                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3582
3583                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3584                 if (rc)
3585                         return rc;
3586                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3587         }
3588         return rc;
3589 }
3590
3591 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3592 {
3593         u16 i;
3594
3595         for (i = 0; i < bp->nr_vnics; i++)
3596                 bnxt_hwrm_vnic_free_one(bp, i);
3597 }
3598
3599 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3600                                 unsigned int start_rx_ring_idx,
3601                                 unsigned int nr_rings)
3602 {
3603         int rc = 0;
3604         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3605         struct hwrm_vnic_alloc_input req = {0};
3606         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3607
3608         /* map ring groups to this vnic */
3609         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3610                 grp_idx = bp->rx_ring[i].bnapi->index;
3611                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3612                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3613                                    j, nr_rings);
3614                         break;
3615                 }
3616                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3617                                         bp->grp_info[grp_idx].fw_grp_id;
3618         }
3619
3620         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3621         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3622         if (vnic_id == 0)
3623                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3624
3625         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3626
3627         mutex_lock(&bp->hwrm_cmd_lock);
3628         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3629         if (!rc)
3630                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3631         mutex_unlock(&bp->hwrm_cmd_lock);
3632         return rc;
3633 }
3634
3635 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3636 {
3637         u16 i;
3638         u32 rc = 0;
3639
3640         mutex_lock(&bp->hwrm_cmd_lock);
3641         for (i = 0; i < bp->rx_nr_rings; i++) {
3642                 struct hwrm_ring_grp_alloc_input req = {0};
3643                 struct hwrm_ring_grp_alloc_output *resp =
3644                                         bp->hwrm_cmd_resp_addr;
3645                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3646
3647                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3648
3649                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3650                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3651                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3652                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3653
3654                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3655                                         HWRM_CMD_TIMEOUT);
3656                 if (rc)
3657                         break;
3658
3659                 bp->grp_info[grp_idx].fw_grp_id =
3660                         le32_to_cpu(resp->ring_group_id);
3661         }
3662         mutex_unlock(&bp->hwrm_cmd_lock);
3663         return rc;
3664 }
3665
3666 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3667 {
3668         u16 i;
3669         u32 rc = 0;
3670         struct hwrm_ring_grp_free_input req = {0};
3671
3672         if (!bp->grp_info)
3673                 return 0;
3674
3675         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3676
3677         mutex_lock(&bp->hwrm_cmd_lock);
3678         for (i = 0; i < bp->cp_nr_rings; i++) {
3679                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3680                         continue;
3681                 req.ring_group_id =
3682                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3683
3684                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3685                                         HWRM_CMD_TIMEOUT);
3686                 if (rc)
3687                         break;
3688                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3689         }
3690         mutex_unlock(&bp->hwrm_cmd_lock);
3691         return rc;
3692 }
3693
3694 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3695                                     struct bnxt_ring_struct *ring,
3696                                     u32 ring_type, u32 map_index,
3697                                     u32 stats_ctx_id)
3698 {
3699         int rc = 0, err = 0;
3700         struct hwrm_ring_alloc_input req = {0};
3701         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3702         u16 ring_id;
3703
3704         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3705
3706         req.enables = 0;
3707         if (ring->nr_pages > 1) {
3708                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3709                 /* Page size is in log2 units */
3710                 req.page_size = BNXT_PAGE_SHIFT;
3711                 req.page_tbl_depth = 1;
3712         } else {
3713                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3714         }
3715         req.fbo = 0;
3716         /* Association of ring index with doorbell index and MSIX number */
3717         req.logical_id = cpu_to_le16(map_index);
3718
3719         switch (ring_type) {
3720         case HWRM_RING_ALLOC_TX:
3721                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3722                 /* Association of transmit ring with completion ring */
3723                 req.cmpl_ring_id =
3724                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3725                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3726                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3727                 req.queue_id = cpu_to_le16(ring->queue_id);
3728                 break;
3729         case HWRM_RING_ALLOC_RX:
3730                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3731                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3732                 break;
3733         case HWRM_RING_ALLOC_AGG:
3734                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3735                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3736                 break;
3737         case HWRM_RING_ALLOC_CMPL:
3738                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3739                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3740                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3741                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3742                 break;
3743         default:
3744                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3745                            ring_type);
3746                 return -1;
3747         }
3748
3749         mutex_lock(&bp->hwrm_cmd_lock);
3750         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3751         err = le16_to_cpu(resp->error_code);
3752         ring_id = le16_to_cpu(resp->ring_id);
3753         mutex_unlock(&bp->hwrm_cmd_lock);
3754
3755         if (rc || err) {
3756                 switch (ring_type) {
3757                 case RING_FREE_REQ_RING_TYPE_CMPL:
3758                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3759                                    rc, err);
3760                         return -1;
3761
3762                 case RING_FREE_REQ_RING_TYPE_RX:
3763                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3764                                    rc, err);
3765                         return -1;
3766
3767                 case RING_FREE_REQ_RING_TYPE_TX:
3768                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3769                                    rc, err);
3770                         return -1;
3771
3772                 default:
3773                         netdev_err(bp->dev, "Invalid ring\n");
3774                         return -1;
3775                 }
3776         }
3777         ring->fw_ring_id = ring_id;
3778         return rc;
3779 }
3780
3781 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3782 {
3783         int i, rc = 0;
3784
3785         for (i = 0; i < bp->cp_nr_rings; i++) {
3786                 struct bnxt_napi *bnapi = bp->bnapi[i];
3787                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3788                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3789
3790                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3791                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3792                                               INVALID_STATS_CTX_ID);
3793                 if (rc)
3794                         goto err_out;
3795                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3796                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3797         }
3798
3799         for (i = 0; i < bp->tx_nr_rings; i++) {
3800                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3801                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3802                 u32 map_idx = txr->bnapi->index;
3803                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3804
3805                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3806                                               map_idx, fw_stats_ctx);
3807                 if (rc)
3808                         goto err_out;
3809                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3810         }
3811
3812         for (i = 0; i < bp->rx_nr_rings; i++) {
3813                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3814                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3815                 u32 map_idx = rxr->bnapi->index;
3816
3817                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3818                                               map_idx, INVALID_STATS_CTX_ID);
3819                 if (rc)
3820                         goto err_out;
3821                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3822                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3823                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3824         }
3825
3826         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3827                 for (i = 0; i < bp->rx_nr_rings; i++) {
3828                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3829                         struct bnxt_ring_struct *ring =
3830                                                 &rxr->rx_agg_ring_struct;
3831                         u32 grp_idx = rxr->bnapi->index;
3832                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3833
3834                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3835                                                       HWRM_RING_ALLOC_AGG,
3836                                                       map_idx,
3837                                                       INVALID_STATS_CTX_ID);
3838                         if (rc)
3839                                 goto err_out;
3840
3841                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3842                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3843                                rxr->rx_agg_doorbell);
3844                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3845                 }
3846         }
3847 err_out:
3848         return rc;
3849 }
3850
3851 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3852                                    struct bnxt_ring_struct *ring,
3853                                    u32 ring_type, int cmpl_ring_id)
3854 {
3855         int rc;
3856         struct hwrm_ring_free_input req = {0};
3857         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3858         u16 error_code;
3859
3860         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3861         req.ring_type = ring_type;
3862         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3863
3864         mutex_lock(&bp->hwrm_cmd_lock);
3865         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3866         error_code = le16_to_cpu(resp->error_code);
3867         mutex_unlock(&bp->hwrm_cmd_lock);
3868
3869         if (rc || error_code) {
3870                 switch (ring_type) {
3871                 case RING_FREE_REQ_RING_TYPE_CMPL:
3872                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3873                                    rc);
3874                         return rc;
3875                 case RING_FREE_REQ_RING_TYPE_RX:
3876                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3877                                    rc);
3878                         return rc;
3879                 case RING_FREE_REQ_RING_TYPE_TX:
3880                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3881                                    rc);
3882                         return rc;
3883                 default:
3884                         netdev_err(bp->dev, "Invalid ring\n");
3885                         return -1;
3886                 }
3887         }
3888         return 0;
3889 }
3890
3891 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3892 {
3893         int i;
3894
3895         if (!bp->bnapi)
3896                 return;
3897
3898         for (i = 0; i < bp->tx_nr_rings; i++) {
3899                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3900                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3901                 u32 grp_idx = txr->bnapi->index;
3902                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3903
3904                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3905                         hwrm_ring_free_send_msg(bp, ring,
3906                                                 RING_FREE_REQ_RING_TYPE_TX,
3907                                                 close_path ? cmpl_ring_id :
3908                                                 INVALID_HW_RING_ID);
3909                         ring->fw_ring_id = INVALID_HW_RING_ID;
3910                 }
3911         }
3912
3913         for (i = 0; i < bp->rx_nr_rings; i++) {
3914                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3915                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3916                 u32 grp_idx = rxr->bnapi->index;
3917                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3918
3919                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3920                         hwrm_ring_free_send_msg(bp, ring,
3921                                                 RING_FREE_REQ_RING_TYPE_RX,
3922                                                 close_path ? cmpl_ring_id :
3923                                                 INVALID_HW_RING_ID);
3924                         ring->fw_ring_id = INVALID_HW_RING_ID;
3925                         bp->grp_info[grp_idx].rx_fw_ring_id =
3926                                 INVALID_HW_RING_ID;
3927                 }
3928         }
3929
3930         for (i = 0; i < bp->rx_nr_rings; i++) {
3931                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3932                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3933                 u32 grp_idx = rxr->bnapi->index;
3934                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3935
3936                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3937                         hwrm_ring_free_send_msg(bp, ring,
3938                                                 RING_FREE_REQ_RING_TYPE_RX,
3939                                                 close_path ? cmpl_ring_id :
3940                                                 INVALID_HW_RING_ID);
3941                         ring->fw_ring_id = INVALID_HW_RING_ID;
3942                         bp->grp_info[grp_idx].agg_fw_ring_id =
3943                                 INVALID_HW_RING_ID;
3944                 }
3945         }
3946
3947         for (i = 0; i < bp->cp_nr_rings; i++) {
3948                 struct bnxt_napi *bnapi = bp->bnapi[i];
3949                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3950                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3951
3952                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3953                         hwrm_ring_free_send_msg(bp, ring,
3954                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3955                                                 INVALID_HW_RING_ID);
3956                         ring->fw_ring_id = INVALID_HW_RING_ID;
3957                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3958                 }
3959         }
3960 }
3961
3962 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3963         u32 buf_tmrs, u16 flags,
3964         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3965 {
3966         req->flags = cpu_to_le16(flags);
3967         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3968         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3969         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3970         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3971         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3972         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3973         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3974         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3975 }
3976
3977 int bnxt_hwrm_set_coal(struct bnxt *bp)
3978 {
3979         int i, rc = 0;
3980         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3981                                                            req_tx = {0}, *req;
3982         u16 max_buf, max_buf_irq;
3983         u16 buf_tmr, buf_tmr_irq;
3984         u32 flags;
3985
3986         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3987                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3988         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3989                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3990
3991         /* Each rx completion (2 records) should be DMAed immediately.
3992          * DMA 1/4 of the completion buffers at a time.
3993          */
3994         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3995         /* max_buf must not be zero */
3996         max_buf = clamp_t(u16, max_buf, 1, 63);
3997         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3998         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3999         /* buf timer set to 1/4 of interrupt timer */
4000         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4001         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4002         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4003
4004         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4005
4006         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
4007          * if coal_ticks is less than 25 us.
4008          */
4009         if (bp->rx_coal_ticks < 25)
4010                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4011
4012         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4013                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4014
4015         /* max_buf must not be zero */
4016         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4017         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4018         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4019         /* buf timer set to 1/4 of interrupt timer */
4020         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4021         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4022         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4023
4024         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4025         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4026                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4027
4028         mutex_lock(&bp->hwrm_cmd_lock);
4029         for (i = 0; i < bp->cp_nr_rings; i++) {
4030                 struct bnxt_napi *bnapi = bp->bnapi[i];
4031
4032                 req = &req_rx;
4033                 if (!bnapi->rx_ring)
4034                         req = &req_tx;
4035                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4036
4037                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4038                                         HWRM_CMD_TIMEOUT);
4039                 if (rc)
4040                         break;
4041         }
4042         mutex_unlock(&bp->hwrm_cmd_lock);
4043         return rc;
4044 }
4045
4046 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4047 {
4048         int rc = 0, i;
4049         struct hwrm_stat_ctx_free_input req = {0};
4050
4051         if (!bp->bnapi)
4052                 return 0;
4053
4054         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4055                 return 0;
4056
4057         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4058
4059         mutex_lock(&bp->hwrm_cmd_lock);
4060         for (i = 0; i < bp->cp_nr_rings; i++) {
4061                 struct bnxt_napi *bnapi = bp->bnapi[i];
4062                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4063
4064                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4065                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4066
4067                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4068                                                 HWRM_CMD_TIMEOUT);
4069                         if (rc)
4070                                 break;
4071
4072                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4073                 }
4074         }
4075         mutex_unlock(&bp->hwrm_cmd_lock);
4076         return rc;
4077 }
4078
4079 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4080 {
4081         int rc = 0, i;
4082         struct hwrm_stat_ctx_alloc_input req = {0};
4083         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4084
4085         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4086                 return 0;
4087
4088         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4089
4090         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4091
4092         mutex_lock(&bp->hwrm_cmd_lock);
4093         for (i = 0; i < bp->cp_nr_rings; i++) {
4094                 struct bnxt_napi *bnapi = bp->bnapi[i];
4095                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4096
4097                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4098
4099                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4100                                         HWRM_CMD_TIMEOUT);
4101                 if (rc)
4102                         break;
4103
4104                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4105
4106                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4107         }
4108         mutex_unlock(&bp->hwrm_cmd_lock);
4109         return 0;
4110 }
4111
4112 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4113 {
4114         struct hwrm_func_qcfg_input req = {0};
4115         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4116         int rc;
4117
4118         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4119         req.fid = cpu_to_le16(0xffff);
4120         mutex_lock(&bp->hwrm_cmd_lock);
4121         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4122         if (rc)
4123                 goto func_qcfg_exit;
4124
4125 #ifdef CONFIG_BNXT_SRIOV
4126         if (BNXT_VF(bp)) {
4127                 struct bnxt_vf_info *vf = &bp->vf;
4128
4129                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4130         }
4131 #endif
4132         switch (resp->port_partition_type) {
4133         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4134         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4135         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4136                 bp->port_partition_type = resp->port_partition_type;
4137                 break;
4138         }
4139
4140 func_qcfg_exit:
4141         mutex_unlock(&bp->hwrm_cmd_lock);
4142         return rc;
4143 }
4144
4145 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4146 {
4147         int rc = 0;
4148         struct hwrm_func_qcaps_input req = {0};
4149         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4150
4151         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4152         req.fid = cpu_to_le16(0xffff);
4153
4154         mutex_lock(&bp->hwrm_cmd_lock);
4155         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4156         if (rc)
4157                 goto hwrm_func_qcaps_exit;
4158
4159         if (BNXT_PF(bp)) {
4160                 struct bnxt_pf_info *pf = &bp->pf;
4161
4162                 pf->fw_fid = le16_to_cpu(resp->fid);
4163                 pf->port_id = le16_to_cpu(resp->port_id);
4164                 bp->dev->dev_port = pf->port_id;
4165                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4166                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4167                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4168                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4169                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4170                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4171                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4172                 if (!pf->max_hw_ring_grps)
4173                         pf->max_hw_ring_grps = pf->max_tx_rings;
4174                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4175                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4176                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4177                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4178                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4179                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4180                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4181                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4182                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4183                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4184                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4185         } else {
4186 #ifdef CONFIG_BNXT_SRIOV
4187                 struct bnxt_vf_info *vf = &bp->vf;
4188
4189                 vf->fw_fid = le16_to_cpu(resp->fid);
4190                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4191                 if (is_valid_ether_addr(vf->mac_addr))
4192                         /* overwrite netdev dev_adr with admin VF MAC */
4193                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4194                 else
4195                         random_ether_addr(bp->dev->dev_addr);
4196
4197                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4198                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4199                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4200                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4201                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4202                 if (!vf->max_hw_ring_grps)
4203                         vf->max_hw_ring_grps = vf->max_tx_rings;
4204                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4205                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4206                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4207 #endif
4208         }
4209
4210         bp->tx_push_thresh = 0;
4211         if (resp->flags &
4212             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4213                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4214
4215 hwrm_func_qcaps_exit:
4216         mutex_unlock(&bp->hwrm_cmd_lock);
4217         return rc;
4218 }
4219
4220 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4221 {
4222         struct hwrm_func_reset_input req = {0};
4223
4224         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4225         req.enables = 0;
4226
4227         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4228 }
4229
4230 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4231 {
4232         int rc = 0;
4233         struct hwrm_queue_qportcfg_input req = {0};
4234         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4235         u8 i, *qptr;
4236
4237         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4238
4239         mutex_lock(&bp->hwrm_cmd_lock);
4240         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4241         if (rc)
4242                 goto qportcfg_exit;
4243
4244         if (!resp->max_configurable_queues) {
4245                 rc = -EINVAL;
4246                 goto qportcfg_exit;
4247         }
4248         bp->max_tc = resp->max_configurable_queues;
4249         if (bp->max_tc > BNXT_MAX_QUEUE)
4250                 bp->max_tc = BNXT_MAX_QUEUE;
4251
4252         qptr = &resp->queue_id0;
4253         for (i = 0; i < bp->max_tc; i++) {
4254                 bp->q_info[i].queue_id = *qptr++;
4255                 bp->q_info[i].queue_profile = *qptr++;
4256         }
4257
4258 qportcfg_exit:
4259         mutex_unlock(&bp->hwrm_cmd_lock);
4260         return rc;
4261 }
4262
4263 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4264 {
4265         int rc;
4266         struct hwrm_ver_get_input req = {0};
4267         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4268
4269         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4270         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4271         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4272         req.hwrm_intf_min = HWRM_VERSION_MINOR;
4273         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4274         mutex_lock(&bp->hwrm_cmd_lock);
4275         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4276         if (rc)
4277                 goto hwrm_ver_get_exit;
4278
4279         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4280
4281         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4282                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4283         if (resp->hwrm_intf_maj < 1) {
4284                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4285                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
4286                             resp->hwrm_intf_upd);
4287                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4288         }
4289         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4290                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4291                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4292
4293         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4294         if (!bp->hwrm_cmd_timeout)
4295                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4296
4297         if (resp->hwrm_intf_maj >= 1)
4298                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4299
4300         bp->chip_num = le16_to_cpu(resp->chip_num);
4301         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4302             !resp->chip_metal)
4303                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4304
4305 hwrm_ver_get_exit:
4306         mutex_unlock(&bp->hwrm_cmd_lock);
4307         return rc;
4308 }
4309
4310 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4311 {
4312         int rc;
4313         struct bnxt_pf_info *pf = &bp->pf;
4314         struct hwrm_port_qstats_input req = {0};
4315
4316         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4317                 return 0;
4318
4319         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4320         req.port_id = cpu_to_le16(pf->port_id);
4321         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4322         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4323         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4324         return rc;
4325 }
4326
4327 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4328 {
4329         if (bp->vxlan_port_cnt) {
4330                 bnxt_hwrm_tunnel_dst_port_free(
4331                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4332         }
4333         bp->vxlan_port_cnt = 0;
4334         if (bp->nge_port_cnt) {
4335                 bnxt_hwrm_tunnel_dst_port_free(
4336                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4337         }
4338         bp->nge_port_cnt = 0;
4339 }
4340
4341 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4342 {
4343         int rc, i;
4344         u32 tpa_flags = 0;
4345
4346         if (set_tpa)
4347                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4348         for (i = 0; i < bp->nr_vnics; i++) {
4349                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4350                 if (rc) {
4351                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4352                                    rc, i);
4353                         return rc;
4354                 }
4355         }
4356         return 0;
4357 }
4358
4359 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4360 {
4361         int i;
4362
4363         for (i = 0; i < bp->nr_vnics; i++)
4364                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4365 }
4366
4367 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4368                                     bool irq_re_init)
4369 {
4370         if (bp->vnic_info) {
4371                 bnxt_hwrm_clear_vnic_filter(bp);
4372                 /* clear all RSS setting before free vnic ctx */
4373                 bnxt_hwrm_clear_vnic_rss(bp);
4374                 bnxt_hwrm_vnic_ctx_free(bp);
4375                 /* before free the vnic, undo the vnic tpa settings */
4376                 if (bp->flags & BNXT_FLAG_TPA)
4377                         bnxt_set_tpa(bp, false);
4378                 bnxt_hwrm_vnic_free(bp);
4379         }
4380         bnxt_hwrm_ring_free(bp, close_path);
4381         bnxt_hwrm_ring_grp_free(bp);
4382         if (irq_re_init) {
4383                 bnxt_hwrm_stat_ctx_free(bp);
4384                 bnxt_hwrm_free_tunnel_ports(bp);
4385         }
4386 }
4387
4388 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4389 {
4390         int rc;
4391
4392         /* allocate context for vnic */
4393         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4394         if (rc) {
4395                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4396                            vnic_id, rc);
4397                 goto vnic_setup_err;
4398         }
4399         bp->rsscos_nr_ctxs++;
4400
4401         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4402                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4403                 if (rc) {
4404                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4405                                    vnic_id, rc);
4406                         goto vnic_setup_err;
4407                 }
4408                 bp->rsscos_nr_ctxs++;
4409         }
4410
4411         /* configure default vnic, ring grp */
4412         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4413         if (rc) {
4414                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4415                            vnic_id, rc);
4416                 goto vnic_setup_err;
4417         }
4418
4419         /* Enable RSS hashing on vnic */
4420         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4421         if (rc) {
4422                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4423                            vnic_id, rc);
4424                 goto vnic_setup_err;
4425         }
4426
4427         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4428                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4429                 if (rc) {
4430                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4431                                    vnic_id, rc);
4432                 }
4433         }
4434
4435 vnic_setup_err:
4436         return rc;
4437 }
4438
4439 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4440 {
4441 #ifdef CONFIG_RFS_ACCEL
4442         int i, rc = 0;
4443
4444         for (i = 0; i < bp->rx_nr_rings; i++) {
4445                 u16 vnic_id = i + 1;
4446                 u16 ring_id = i;
4447
4448                 if (vnic_id >= bp->nr_vnics)
4449                         break;
4450
4451                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4452                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4453                 if (rc) {
4454                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4455                                    vnic_id, rc);
4456                         break;
4457                 }
4458                 rc = bnxt_setup_vnic(bp, vnic_id);
4459                 if (rc)
4460                         break;
4461         }
4462         return rc;
4463 #else
4464         return 0;
4465 #endif
4466 }
4467
4468 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4469 static bool bnxt_promisc_ok(struct bnxt *bp)
4470 {
4471 #ifdef CONFIG_BNXT_SRIOV
4472         if (BNXT_VF(bp) && !bp->vf.vlan)
4473                 return false;
4474 #endif
4475         return true;
4476 }
4477
4478 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4479 {
4480         unsigned int rc = 0;
4481
4482         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4483         if (rc) {
4484                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4485                            rc);
4486                 return rc;
4487         }
4488
4489         rc = bnxt_hwrm_vnic_cfg(bp, 1);
4490         if (rc) {
4491                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4492                            rc);
4493                 return rc;
4494         }
4495         return rc;
4496 }
4497
4498 static int bnxt_cfg_rx_mode(struct bnxt *);
4499 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4500
4501 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4502 {
4503         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4504         int rc = 0;
4505         unsigned int rx_nr_rings = bp->rx_nr_rings;
4506
4507         if (irq_re_init) {
4508                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4509                 if (rc) {
4510                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4511                                    rc);
4512                         goto err_out;
4513                 }
4514         }
4515
4516         rc = bnxt_hwrm_ring_alloc(bp);
4517         if (rc) {
4518                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4519                 goto err_out;
4520         }
4521
4522         rc = bnxt_hwrm_ring_grp_alloc(bp);
4523         if (rc) {
4524                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4525                 goto err_out;
4526         }
4527
4528         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4529                 rx_nr_rings--;
4530
4531         /* default vnic 0 */
4532         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4533         if (rc) {
4534                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4535                 goto err_out;
4536         }
4537
4538         rc = bnxt_setup_vnic(bp, 0);
4539         if (rc)
4540                 goto err_out;
4541
4542         if (bp->flags & BNXT_FLAG_RFS) {
4543                 rc = bnxt_alloc_rfs_vnics(bp);
4544                 if (rc)
4545                         goto err_out;
4546         }
4547
4548         if (bp->flags & BNXT_FLAG_TPA) {
4549                 rc = bnxt_set_tpa(bp, true);
4550                 if (rc)
4551                         goto err_out;
4552         }
4553
4554         if (BNXT_VF(bp))
4555                 bnxt_update_vf_mac(bp);
4556
4557         /* Filter for default vnic 0 */
4558         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4559         if (rc) {
4560                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4561                 goto err_out;
4562         }
4563         vnic->uc_filter_count = 1;
4564
4565         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4566
4567         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4568                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4569
4570         if (bp->dev->flags & IFF_ALLMULTI) {
4571                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4572                 vnic->mc_list_count = 0;
4573         } else {
4574                 u32 mask = 0;
4575
4576                 bnxt_mc_list_updated(bp, &mask);
4577                 vnic->rx_mask |= mask;
4578         }
4579
4580         rc = bnxt_cfg_rx_mode(bp);
4581         if (rc)
4582                 goto err_out;
4583
4584         rc = bnxt_hwrm_set_coal(bp);
4585         if (rc)
4586                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4587                                 rc);
4588
4589         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4590                 rc = bnxt_setup_nitroa0_vnic(bp);
4591                 if (rc)
4592                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4593                                    rc);
4594         }
4595
4596         if (BNXT_VF(bp)) {
4597                 bnxt_hwrm_func_qcfg(bp);
4598                 netdev_update_features(bp->dev);
4599         }
4600
4601         return 0;
4602
4603 err_out:
4604         bnxt_hwrm_resource_free(bp, 0, true);
4605
4606         return rc;
4607 }
4608
4609 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4610 {
4611         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4612         return 0;
4613 }
4614
4615 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4616 {
4617         bnxt_init_rx_rings(bp);
4618         bnxt_init_tx_rings(bp);
4619         bnxt_init_ring_grps(bp, irq_re_init);
4620         bnxt_init_vnics(bp);
4621
4622         return bnxt_init_chip(bp, irq_re_init);
4623 }
4624
4625 static void bnxt_disable_int(struct bnxt *bp)
4626 {
4627         int i;
4628
4629         if (!bp->bnapi)
4630                 return;
4631
4632         for (i = 0; i < bp->cp_nr_rings; i++) {
4633                 struct bnxt_napi *bnapi = bp->bnapi[i];
4634                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4635
4636                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4637         }
4638 }
4639
4640 static void bnxt_enable_int(struct bnxt *bp)
4641 {
4642         int i;
4643
4644         atomic_set(&bp->intr_sem, 0);
4645         for (i = 0; i < bp->cp_nr_rings; i++) {
4646                 struct bnxt_napi *bnapi = bp->bnapi[i];
4647                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4648
4649                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4650         }
4651 }
4652
4653 static int bnxt_set_real_num_queues(struct bnxt *bp)
4654 {
4655         int rc;
4656         struct net_device *dev = bp->dev;
4657
4658         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4659         if (rc)
4660                 return rc;
4661
4662         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4663         if (rc)
4664                 return rc;
4665
4666 #ifdef CONFIG_RFS_ACCEL
4667         if (bp->flags & BNXT_FLAG_RFS)
4668                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4669 #endif
4670
4671         return rc;
4672 }
4673
4674 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4675                            bool shared)
4676 {
4677         int _rx = *rx, _tx = *tx;
4678
4679         if (shared) {
4680                 *rx = min_t(int, _rx, max);
4681                 *tx = min_t(int, _tx, max);
4682         } else {
4683                 if (max < 2)
4684                         return -ENOMEM;
4685
4686                 while (_rx + _tx > max) {
4687                         if (_rx > _tx && _rx > 1)
4688                                 _rx--;
4689                         else if (_tx > 1)
4690                                 _tx--;
4691                 }
4692                 *rx = _rx;
4693                 *tx = _tx;
4694         }
4695         return 0;
4696 }
4697
4698 static int bnxt_setup_msix(struct bnxt *bp)
4699 {
4700         struct msix_entry *msix_ent;
4701         struct net_device *dev = bp->dev;
4702         int i, total_vecs, rc = 0, min = 1;
4703         const int len = sizeof(bp->irq_tbl[0].name);
4704
4705         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4706         total_vecs = bp->cp_nr_rings;
4707
4708         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4709         if (!msix_ent)
4710                 return -ENOMEM;
4711
4712         for (i = 0; i < total_vecs; i++) {
4713                 msix_ent[i].entry = i;
4714                 msix_ent[i].vector = 0;
4715         }
4716
4717         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4718                 min = 2;
4719
4720         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4721         if (total_vecs < 0) {
4722                 rc = -ENODEV;
4723                 goto msix_setup_exit;
4724         }
4725
4726         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4727         if (bp->irq_tbl) {
4728                 int tcs;
4729
4730                 /* Trim rings based upon num of vectors allocated */
4731                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4732                                      total_vecs, min == 1);
4733                 if (rc)
4734                         goto msix_setup_exit;
4735
4736                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4737                 tcs = netdev_get_num_tc(dev);
4738                 if (tcs > 1) {
4739                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4740                         if (bp->tx_nr_rings_per_tc == 0) {
4741                                 netdev_reset_tc(dev);
4742                                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4743                         } else {
4744                                 int i, off, count;
4745
4746                                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4747                                 for (i = 0; i < tcs; i++) {
4748                                         count = bp->tx_nr_rings_per_tc;
4749                                         off = i * count;
4750                                         netdev_set_tc_queue(dev, i, count, off);
4751                                 }
4752                         }
4753                 }
4754                 bp->cp_nr_rings = total_vecs;
4755
4756                 for (i = 0; i < bp->cp_nr_rings; i++) {
4757                         char *attr;
4758
4759                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4760                         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4761                                 attr = "TxRx";
4762                         else if (i < bp->rx_nr_rings)
4763                                 attr = "rx";
4764                         else
4765                                 attr = "tx";
4766
4767                         snprintf(bp->irq_tbl[i].name, len,
4768                                  "%s-%s-%d", dev->name, attr, i);
4769                         bp->irq_tbl[i].handler = bnxt_msix;
4770                 }
4771                 rc = bnxt_set_real_num_queues(bp);
4772                 if (rc)
4773                         goto msix_setup_exit;
4774         } else {
4775                 rc = -ENOMEM;
4776                 goto msix_setup_exit;
4777         }
4778         bp->flags |= BNXT_FLAG_USING_MSIX;
4779         kfree(msix_ent);
4780         return 0;
4781
4782 msix_setup_exit:
4783         netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4784         pci_disable_msix(bp->pdev);
4785         kfree(msix_ent);
4786         return rc;
4787 }
4788
4789 static int bnxt_setup_inta(struct bnxt *bp)
4790 {
4791         int rc;
4792         const int len = sizeof(bp->irq_tbl[0].name);
4793
4794         if (netdev_get_num_tc(bp->dev))
4795                 netdev_reset_tc(bp->dev);
4796
4797         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4798         if (!bp->irq_tbl) {
4799                 rc = -ENOMEM;
4800                 return rc;
4801         }
4802         bp->rx_nr_rings = 1;
4803         bp->tx_nr_rings = 1;
4804         bp->cp_nr_rings = 1;
4805         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4806         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4807         bp->irq_tbl[0].vector = bp->pdev->irq;
4808         snprintf(bp->irq_tbl[0].name, len,
4809                  "%s-%s-%d", bp->dev->name, "TxRx", 0);
4810         bp->irq_tbl[0].handler = bnxt_inta;
4811         rc = bnxt_set_real_num_queues(bp);
4812         return rc;
4813 }
4814
4815 static int bnxt_setup_int_mode(struct bnxt *bp)
4816 {
4817         int rc = 0;
4818
4819         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4820                 rc = bnxt_setup_msix(bp);
4821
4822         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4823                 /* fallback to INTA */
4824                 rc = bnxt_setup_inta(bp);
4825         }
4826         return rc;
4827 }
4828
4829 static void bnxt_free_irq(struct bnxt *bp)
4830 {
4831         struct bnxt_irq *irq;
4832         int i;
4833
4834 #ifdef CONFIG_RFS_ACCEL
4835         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4836         bp->dev->rx_cpu_rmap = NULL;
4837 #endif
4838         if (!bp->irq_tbl)
4839                 return;
4840
4841         for (i = 0; i < bp->cp_nr_rings; i++) {
4842                 irq = &bp->irq_tbl[i];
4843                 if (irq->requested)
4844                         free_irq(irq->vector, bp->bnapi[i]);
4845                 irq->requested = 0;
4846         }
4847         if (bp->flags & BNXT_FLAG_USING_MSIX)
4848                 pci_disable_msix(bp->pdev);
4849         kfree(bp->irq_tbl);
4850         bp->irq_tbl = NULL;
4851 }
4852
4853 static int bnxt_request_irq(struct bnxt *bp)
4854 {
4855         int i, j, rc = 0;
4856         unsigned long flags = 0;
4857 #ifdef CONFIG_RFS_ACCEL
4858         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4859 #endif
4860
4861         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4862                 flags = IRQF_SHARED;
4863
4864         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4865                 struct bnxt_irq *irq = &bp->irq_tbl[i];
4866 #ifdef CONFIG_RFS_ACCEL
4867                 if (rmap && bp->bnapi[i]->rx_ring) {
4868                         rc = irq_cpu_rmap_add(rmap, irq->vector);
4869                         if (rc)
4870                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4871                                             j);
4872                         j++;
4873                 }
4874 #endif
4875                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4876                                  bp->bnapi[i]);
4877                 if (rc)
4878                         break;
4879
4880                 irq->requested = 1;
4881         }
4882         return rc;
4883 }
4884
4885 static void bnxt_del_napi(struct bnxt *bp)
4886 {
4887         int i;
4888
4889         if (!bp->bnapi)
4890                 return;
4891
4892         for (i = 0; i < bp->cp_nr_rings; i++) {
4893                 struct bnxt_napi *bnapi = bp->bnapi[i];
4894
4895                 napi_hash_del(&bnapi->napi);
4896                 netif_napi_del(&bnapi->napi);
4897         }
4898 }
4899
4900 static void bnxt_init_napi(struct bnxt *bp)
4901 {
4902         int i;
4903         unsigned int cp_nr_rings = bp->cp_nr_rings;
4904         struct bnxt_napi *bnapi;
4905
4906         if (bp->flags & BNXT_FLAG_USING_MSIX) {
4907                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4908                         cp_nr_rings--;
4909                 for (i = 0; i < cp_nr_rings; i++) {
4910                         bnapi = bp->bnapi[i];
4911                         netif_napi_add(bp->dev, &bnapi->napi,
4912                                        bnxt_poll, 64);
4913                 }
4914                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4915                         bnapi = bp->bnapi[cp_nr_rings];
4916                         netif_napi_add(bp->dev, &bnapi->napi,
4917                                        bnxt_poll_nitroa0, 64);
4918                         napi_hash_add(&bnapi->napi);
4919                 }
4920         } else {
4921                 bnapi = bp->bnapi[0];
4922                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4923         }
4924 }
4925
4926 static void bnxt_disable_napi(struct bnxt *bp)
4927 {
4928         int i;
4929
4930         if (!bp->bnapi)
4931                 return;
4932
4933         for (i = 0; i < bp->cp_nr_rings; i++) {
4934                 napi_disable(&bp->bnapi[i]->napi);
4935                 bnxt_disable_poll(bp->bnapi[i]);
4936         }
4937 }
4938
4939 static void bnxt_enable_napi(struct bnxt *bp)
4940 {
4941         int i;
4942
4943         for (i = 0; i < bp->cp_nr_rings; i++) {
4944                 bp->bnapi[i]->in_reset = false;
4945                 bnxt_enable_poll(bp->bnapi[i]);
4946                 napi_enable(&bp->bnapi[i]->napi);
4947         }
4948 }
4949
4950 static void bnxt_tx_disable(struct bnxt *bp)
4951 {
4952         int i;
4953         struct bnxt_tx_ring_info *txr;
4954         struct netdev_queue *txq;
4955
4956         if (bp->tx_ring) {
4957                 for (i = 0; i < bp->tx_nr_rings; i++) {
4958                         txr = &bp->tx_ring[i];
4959                         txq = netdev_get_tx_queue(bp->dev, i);
4960                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
4961                 }
4962         }
4963         /* Stop all TX queues */
4964         netif_tx_disable(bp->dev);
4965         netif_carrier_off(bp->dev);
4966 }
4967
4968 static void bnxt_tx_enable(struct bnxt *bp)
4969 {
4970         int i;
4971         struct bnxt_tx_ring_info *txr;
4972         struct netdev_queue *txq;
4973
4974         for (i = 0; i < bp->tx_nr_rings; i++) {
4975                 txr = &bp->tx_ring[i];
4976                 txq = netdev_get_tx_queue(bp->dev, i);
4977                 txr->dev_state = 0;
4978         }
4979         netif_tx_wake_all_queues(bp->dev);
4980         if (bp->link_info.link_up)
4981                 netif_carrier_on(bp->dev);
4982 }
4983
4984 static void bnxt_report_link(struct bnxt *bp)
4985 {
4986         if (bp->link_info.link_up) {
4987                 const char *duplex;
4988                 const char *flow_ctrl;
4989                 u16 speed;
4990
4991                 netif_carrier_on(bp->dev);
4992                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4993                         duplex = "full";
4994                 else
4995                         duplex = "half";
4996                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4997                         flow_ctrl = "ON - receive & transmit";
4998                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4999                         flow_ctrl = "ON - transmit";
5000                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5001                         flow_ctrl = "ON - receive";
5002                 else
5003                         flow_ctrl = "none";
5004                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5005                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5006                             speed, duplex, flow_ctrl);
5007                 if (bp->flags & BNXT_FLAG_EEE_CAP)
5008                         netdev_info(bp->dev, "EEE is %s\n",
5009                                     bp->eee.eee_active ? "active" :
5010                                                          "not active");
5011         } else {
5012                 netif_carrier_off(bp->dev);
5013                 netdev_err(bp->dev, "NIC Link is Down\n");
5014         }
5015 }
5016
5017 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5018 {
5019         int rc = 0;
5020         struct hwrm_port_phy_qcaps_input req = {0};
5021         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5022         struct bnxt_link_info *link_info = &bp->link_info;
5023
5024         if (bp->hwrm_spec_code < 0x10201)
5025                 return 0;
5026
5027         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5028
5029         mutex_lock(&bp->hwrm_cmd_lock);
5030         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5031         if (rc)
5032                 goto hwrm_phy_qcaps_exit;
5033
5034         if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5035                 struct ethtool_eee *eee = &bp->eee;
5036                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5037
5038                 bp->flags |= BNXT_FLAG_EEE_CAP;
5039                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5040                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5041                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5042                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5043                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5044         }
5045         link_info->support_auto_speeds =
5046                 le16_to_cpu(resp->supported_speeds_auto_mode);
5047
5048 hwrm_phy_qcaps_exit:
5049         mutex_unlock(&bp->hwrm_cmd_lock);
5050         return rc;
5051 }
5052
5053 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5054 {
5055         int rc = 0;
5056         struct bnxt_link_info *link_info = &bp->link_info;
5057         struct hwrm_port_phy_qcfg_input req = {0};
5058         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5059         u8 link_up = link_info->link_up;
5060
5061         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5062
5063         mutex_lock(&bp->hwrm_cmd_lock);
5064         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5065         if (rc) {
5066                 mutex_unlock(&bp->hwrm_cmd_lock);
5067                 return rc;
5068         }
5069
5070         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5071         link_info->phy_link_status = resp->link;
5072         link_info->duplex =  resp->duplex;
5073         link_info->pause = resp->pause;
5074         link_info->auto_mode = resp->auto_mode;
5075         link_info->auto_pause_setting = resp->auto_pause;
5076         link_info->lp_pause = resp->link_partner_adv_pause;
5077         link_info->force_pause_setting = resp->force_pause;
5078         link_info->duplex_setting = resp->duplex;
5079         if (link_info->phy_link_status == BNXT_LINK_LINK)
5080                 link_info->link_speed = le16_to_cpu(resp->link_speed);
5081         else
5082                 link_info->link_speed = 0;
5083         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5084         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5085         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5086         link_info->lp_auto_link_speeds =
5087                 le16_to_cpu(resp->link_partner_adv_speeds);
5088         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5089         link_info->phy_ver[0] = resp->phy_maj;
5090         link_info->phy_ver[1] = resp->phy_min;
5091         link_info->phy_ver[2] = resp->phy_bld;
5092         link_info->media_type = resp->media_type;
5093         link_info->phy_type = resp->phy_type;
5094         link_info->transceiver = resp->xcvr_pkg_type;
5095         link_info->phy_addr = resp->eee_config_phy_addr &
5096                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5097         link_info->module_status = resp->module_status;
5098
5099         if (bp->flags & BNXT_FLAG_EEE_CAP) {
5100                 struct ethtool_eee *eee = &bp->eee;
5101                 u16 fw_speeds;
5102
5103                 eee->eee_active = 0;
5104                 if (resp->eee_config_phy_addr &
5105                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5106                         eee->eee_active = 1;
5107                         fw_speeds = le16_to_cpu(
5108                                 resp->link_partner_adv_eee_link_speed_mask);
5109                         eee->lp_advertised =
5110                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5111                 }
5112
5113                 /* Pull initial EEE config */
5114                 if (!chng_link_state) {
5115                         if (resp->eee_config_phy_addr &
5116                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5117                                 eee->eee_enabled = 1;
5118
5119                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5120                         eee->advertised =
5121                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5122
5123                         if (resp->eee_config_phy_addr &
5124                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5125                                 __le32 tmr;
5126
5127                                 eee->tx_lpi_enabled = 1;
5128                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5129                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5130                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5131                         }
5132                 }
5133         }
5134         /* TODO: need to add more logic to report VF link */
5135         if (chng_link_state) {
5136                 if (link_info->phy_link_status == BNXT_LINK_LINK)
5137                         link_info->link_up = 1;
5138                 else
5139                         link_info->link_up = 0;
5140                 if (link_up != link_info->link_up)
5141                         bnxt_report_link(bp);
5142         } else {
5143                 /* alwasy link down if not require to update link state */
5144                 link_info->link_up = 0;
5145         }
5146         mutex_unlock(&bp->hwrm_cmd_lock);
5147         return 0;
5148 }
5149
5150 static void bnxt_get_port_module_status(struct bnxt *bp)
5151 {
5152         struct bnxt_link_info *link_info = &bp->link_info;
5153         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5154         u8 module_status;
5155
5156         if (bnxt_update_link(bp, true))
5157                 return;
5158
5159         module_status = link_info->module_status;
5160         switch (module_status) {
5161         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5162         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5163         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5164                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5165                             bp->pf.port_id);
5166                 if (bp->hwrm_spec_code >= 0x10201) {
5167                         netdev_warn(bp->dev, "Module part number %s\n",
5168                                     resp->phy_vendor_partnumber);
5169                 }
5170                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5171                         netdev_warn(bp->dev, "TX is disabled\n");
5172                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5173                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5174         }
5175 }
5176
5177 static void
5178 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5179 {
5180         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5181                 if (bp->hwrm_spec_code >= 0x10201)
5182                         req->auto_pause =
5183                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5184                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5185                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5186                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5187                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5188                 req->enables |=
5189                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5190         } else {
5191                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5192                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5193                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5194                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5195                 req->enables |=
5196                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5197                 if (bp->hwrm_spec_code >= 0x10201) {
5198                         req->auto_pause = req->force_pause;
5199                         req->enables |= cpu_to_le32(
5200                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5201                 }
5202         }
5203 }
5204
5205 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5206                                       struct hwrm_port_phy_cfg_input *req)
5207 {
5208         u8 autoneg = bp->link_info.autoneg;
5209         u16 fw_link_speed = bp->link_info.req_link_speed;
5210         u32 advertising = bp->link_info.advertising;
5211
5212         if (autoneg & BNXT_AUTONEG_SPEED) {
5213                 req->auto_mode |=
5214                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5215
5216                 req->enables |= cpu_to_le32(
5217                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5218                 req->auto_link_speed_mask = cpu_to_le16(advertising);
5219
5220                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5221                 req->flags |=
5222                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5223         } else {
5224                 req->force_link_speed = cpu_to_le16(fw_link_speed);
5225                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5226         }
5227
5228         /* tell chimp that the setting takes effect immediately */
5229         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5230 }
5231
5232 int bnxt_hwrm_set_pause(struct bnxt *bp)
5233 {
5234         struct hwrm_port_phy_cfg_input req = {0};
5235         int rc;
5236
5237         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5238         bnxt_hwrm_set_pause_common(bp, &req);
5239
5240         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5241             bp->link_info.force_link_chng)
5242                 bnxt_hwrm_set_link_common(bp, &req);
5243
5244         mutex_lock(&bp->hwrm_cmd_lock);
5245         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5246         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5247                 /* since changing of pause setting doesn't trigger any link
5248                  * change event, the driver needs to update the current pause
5249                  * result upon successfully return of the phy_cfg command
5250                  */
5251                 bp->link_info.pause =
5252                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5253                 bp->link_info.auto_pause_setting = 0;
5254                 if (!bp->link_info.force_link_chng)
5255                         bnxt_report_link(bp);
5256         }
5257         bp->link_info.force_link_chng = false;
5258         mutex_unlock(&bp->hwrm_cmd_lock);
5259         return rc;
5260 }
5261
5262 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5263                               struct hwrm_port_phy_cfg_input *req)
5264 {
5265         struct ethtool_eee *eee = &bp->eee;
5266
5267         if (eee->eee_enabled) {
5268                 u16 eee_speeds;
5269                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5270
5271                 if (eee->tx_lpi_enabled)
5272                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5273                 else
5274                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5275
5276                 req->flags |= cpu_to_le32(flags);
5277                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5278                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5279                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5280         } else {
5281                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5282         }
5283 }
5284
5285 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5286 {
5287         struct hwrm_port_phy_cfg_input req = {0};
5288
5289         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5290         if (set_pause)
5291                 bnxt_hwrm_set_pause_common(bp, &req);
5292
5293         bnxt_hwrm_set_link_common(bp, &req);
5294
5295         if (set_eee)
5296                 bnxt_hwrm_set_eee(bp, &req);
5297         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5298 }
5299
5300 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5301 {
5302         struct hwrm_port_phy_cfg_input req = {0};
5303
5304         if (!BNXT_SINGLE_PF(bp))
5305                 return 0;
5306
5307         if (pci_num_vf(bp->pdev))
5308                 return 0;
5309
5310         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5311         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
5312         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5313 }
5314
5315 static bool bnxt_eee_config_ok(struct bnxt *bp)
5316 {
5317         struct ethtool_eee *eee = &bp->eee;
5318         struct bnxt_link_info *link_info = &bp->link_info;
5319
5320         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5321                 return true;
5322
5323         if (eee->eee_enabled) {
5324                 u32 advertising =
5325                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5326
5327                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5328                         eee->eee_enabled = 0;
5329                         return false;
5330                 }
5331                 if (eee->advertised & ~advertising) {
5332                         eee->advertised = advertising & eee->supported;
5333                         return false;
5334                 }
5335         }
5336         return true;
5337 }
5338
5339 static int bnxt_update_phy_setting(struct bnxt *bp)
5340 {
5341         int rc;
5342         bool update_link = false;
5343         bool update_pause = false;
5344         bool update_eee = false;
5345         struct bnxt_link_info *link_info = &bp->link_info;
5346
5347         rc = bnxt_update_link(bp, true);
5348         if (rc) {
5349                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5350                            rc);
5351                 return rc;
5352         }
5353         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5354             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5355             link_info->req_flow_ctrl)
5356                 update_pause = true;
5357         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5358             link_info->force_pause_setting != link_info->req_flow_ctrl)
5359                 update_pause = true;
5360         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5361                 if (BNXT_AUTO_MODE(link_info->auto_mode))
5362                         update_link = true;
5363                 if (link_info->req_link_speed != link_info->force_link_speed)
5364                         update_link = true;
5365                 if (link_info->req_duplex != link_info->duplex_setting)
5366                         update_link = true;
5367         } else {
5368                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5369                         update_link = true;
5370                 if (link_info->advertising != link_info->auto_link_speeds)
5371                         update_link = true;
5372         }
5373
5374         if (!bnxt_eee_config_ok(bp))
5375                 update_eee = true;
5376
5377         if (update_link)
5378                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5379         else if (update_pause)
5380                 rc = bnxt_hwrm_set_pause(bp);
5381         if (rc) {
5382                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5383                            rc);
5384                 return rc;
5385         }
5386
5387         return rc;
5388 }
5389
5390 /* Common routine to pre-map certain register block to different GRC window.
5391  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5392  * in PF and 3 windows in VF that can be customized to map in different
5393  * register blocks.
5394  */
5395 static void bnxt_preset_reg_win(struct bnxt *bp)
5396 {
5397         if (BNXT_PF(bp)) {
5398                 /* CAG registers map to GRC window #4 */
5399                 writel(BNXT_CAG_REG_BASE,
5400                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5401         }
5402 }
5403
5404 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5405 {
5406         int rc = 0;
5407
5408         bnxt_preset_reg_win(bp);
5409         netif_carrier_off(bp->dev);
5410         if (irq_re_init) {
5411                 rc = bnxt_setup_int_mode(bp);
5412                 if (rc) {
5413                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5414                                    rc);
5415                         return rc;
5416                 }
5417         }
5418         if ((bp->flags & BNXT_FLAG_RFS) &&
5419             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5420                 /* disable RFS if falling back to INTA */
5421                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5422                 bp->flags &= ~BNXT_FLAG_RFS;
5423         }
5424
5425         rc = bnxt_alloc_mem(bp, irq_re_init);
5426         if (rc) {
5427                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5428                 goto open_err_free_mem;
5429         }
5430
5431         if (irq_re_init) {
5432                 bnxt_init_napi(bp);
5433                 rc = bnxt_request_irq(bp);
5434                 if (rc) {
5435                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5436                         goto open_err;
5437                 }
5438         }
5439
5440         bnxt_enable_napi(bp);
5441
5442         rc = bnxt_init_nic(bp, irq_re_init);
5443         if (rc) {
5444                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5445                 goto open_err;
5446         }
5447
5448         if (link_re_init) {
5449                 rc = bnxt_update_phy_setting(bp);
5450                 if (rc)
5451                         netdev_warn(bp->dev, "failed to update phy settings\n");
5452         }
5453
5454         if (irq_re_init)
5455                 udp_tunnel_get_rx_info(bp->dev);
5456
5457         set_bit(BNXT_STATE_OPEN, &bp->state);
5458         bnxt_enable_int(bp);
5459         /* Enable TX queues */
5460         bnxt_tx_enable(bp);
5461         mod_timer(&bp->timer, jiffies + bp->current_interval);
5462         /* Poll link status and check for SFP+ module status */
5463         bnxt_get_port_module_status(bp);
5464
5465         return 0;
5466
5467 open_err:
5468         bnxt_disable_napi(bp);
5469         bnxt_del_napi(bp);
5470
5471 open_err_free_mem:
5472         bnxt_free_skbs(bp);
5473         bnxt_free_irq(bp);
5474         bnxt_free_mem(bp, true);
5475         return rc;
5476 }
5477
5478 /* rtnl_lock held */
5479 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5480 {
5481         int rc = 0;
5482
5483         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5484         if (rc) {
5485                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5486                 dev_close(bp->dev);
5487         }
5488         return rc;
5489 }
5490
5491 static int bnxt_open(struct net_device *dev)
5492 {
5493         struct bnxt *bp = netdev_priv(dev);
5494         int rc = 0;
5495
5496         if (!test_bit(BNXT_STATE_FN_RST_DONE, &bp->state)) {
5497                 rc = bnxt_hwrm_func_reset(bp);
5498                 if (rc) {
5499                         netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5500                                    rc);
5501                         rc = -EBUSY;
5502                         return rc;
5503                 }
5504                 /* Do func_reset during the 1st PF open only to prevent killing
5505                  * the VFs when the PF is brought down and up.
5506                  */
5507                 if (BNXT_PF(bp))
5508                         set_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
5509         }
5510         return __bnxt_open_nic(bp, true, true);
5511 }
5512
5513 static void bnxt_disable_int_sync(struct bnxt *bp)
5514 {
5515         int i;
5516
5517         atomic_inc(&bp->intr_sem);
5518         if (!netif_running(bp->dev))
5519                 return;
5520
5521         bnxt_disable_int(bp);
5522         for (i = 0; i < bp->cp_nr_rings; i++)
5523                 synchronize_irq(bp->irq_tbl[i].vector);
5524 }
5525
5526 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5527 {
5528         int rc = 0;
5529
5530 #ifdef CONFIG_BNXT_SRIOV
5531         if (bp->sriov_cfg) {
5532                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5533                                                       !bp->sriov_cfg,
5534                                                       BNXT_SRIOV_CFG_WAIT_TMO);
5535                 if (rc)
5536                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5537         }
5538 #endif
5539         /* Change device state to avoid TX queue wake up's */
5540         bnxt_tx_disable(bp);
5541
5542         clear_bit(BNXT_STATE_OPEN, &bp->state);
5543         smp_mb__after_atomic();
5544         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5545                 msleep(20);
5546
5547         /* Flush rings before disabling interrupts */
5548         bnxt_shutdown_nic(bp, irq_re_init);
5549
5550         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5551
5552         bnxt_disable_napi(bp);
5553         bnxt_disable_int_sync(bp);
5554         del_timer_sync(&bp->timer);
5555         bnxt_free_skbs(bp);
5556
5557         if (irq_re_init) {
5558                 bnxt_free_irq(bp);
5559                 bnxt_del_napi(bp);
5560         }
5561         bnxt_free_mem(bp, irq_re_init);
5562         return rc;
5563 }
5564
5565 static int bnxt_close(struct net_device *dev)
5566 {
5567         struct bnxt *bp = netdev_priv(dev);
5568
5569         bnxt_close_nic(bp, true, true);
5570         bnxt_hwrm_shutdown_link(bp);
5571         return 0;
5572 }
5573
5574 /* rtnl_lock held */
5575 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5576 {
5577         switch (cmd) {
5578         case SIOCGMIIPHY:
5579                 /* fallthru */
5580         case SIOCGMIIREG: {
5581                 if (!netif_running(dev))
5582                         return -EAGAIN;
5583
5584                 return 0;
5585         }
5586
5587         case SIOCSMIIREG:
5588                 if (!netif_running(dev))
5589                         return -EAGAIN;
5590
5591                 return 0;
5592
5593         default:
5594                 /* do nothing */
5595                 break;
5596         }
5597         return -EOPNOTSUPP;
5598 }
5599
5600 static struct rtnl_link_stats64 *
5601 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5602 {
5603         u32 i;
5604         struct bnxt *bp = netdev_priv(dev);
5605
5606         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5607
5608         if (!bp->bnapi)
5609                 return stats;
5610
5611         /* TODO check if we need to synchronize with bnxt_close path */
5612         for (i = 0; i < bp->cp_nr_rings; i++) {
5613                 struct bnxt_napi *bnapi = bp->bnapi[i];
5614                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5615                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5616
5617                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5618                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5619                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5620
5621                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5622                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5623                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5624
5625                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5626                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5627                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5628
5629                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5630                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5631                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5632
5633                 stats->rx_missed_errors +=
5634                         le64_to_cpu(hw_stats->rx_discard_pkts);
5635
5636                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5637
5638                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5639         }
5640
5641         if (bp->flags & BNXT_FLAG_PORT_STATS) {
5642                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5643                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5644
5645                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5646                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5647                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5648                                           le64_to_cpu(rx->rx_ovrsz_frames) +
5649                                           le64_to_cpu(rx->rx_runt_frames);
5650                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5651                                    le64_to_cpu(rx->rx_jbr_frames);
5652                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5653                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5654                 stats->tx_errors = le64_to_cpu(tx->tx_err);
5655         }
5656
5657         return stats;
5658 }
5659
5660 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5661 {
5662         struct net_device *dev = bp->dev;
5663         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5664         struct netdev_hw_addr *ha;
5665         u8 *haddr;
5666         int mc_count = 0;
5667         bool update = false;
5668         int off = 0;
5669
5670         netdev_for_each_mc_addr(ha, dev) {
5671                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5672                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5673                         vnic->mc_list_count = 0;
5674                         return false;
5675                 }
5676                 haddr = ha->addr;
5677                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5678                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5679                         update = true;
5680                 }
5681                 off += ETH_ALEN;
5682                 mc_count++;
5683         }
5684         if (mc_count)
5685                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5686
5687         if (mc_count != vnic->mc_list_count) {
5688                 vnic->mc_list_count = mc_count;
5689                 update = true;
5690         }
5691         return update;
5692 }
5693
5694 static bool bnxt_uc_list_updated(struct bnxt *bp)
5695 {
5696         struct net_device *dev = bp->dev;
5697         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5698         struct netdev_hw_addr *ha;
5699         int off = 0;
5700
5701         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5702                 return true;
5703
5704         netdev_for_each_uc_addr(ha, dev) {
5705                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5706                         return true;
5707
5708                 off += ETH_ALEN;
5709         }
5710         return false;
5711 }
5712
5713 static void bnxt_set_rx_mode(struct net_device *dev)
5714 {
5715         struct bnxt *bp = netdev_priv(dev);
5716         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5717         u32 mask = vnic->rx_mask;
5718         bool mc_update = false;
5719         bool uc_update;
5720
5721         if (!netif_running(dev))
5722                 return;
5723
5724         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5725                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5726                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5727
5728         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5729                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5730
5731         uc_update = bnxt_uc_list_updated(bp);
5732
5733         if (dev->flags & IFF_ALLMULTI) {
5734                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5735                 vnic->mc_list_count = 0;
5736         } else {
5737                 mc_update = bnxt_mc_list_updated(bp, &mask);
5738         }
5739
5740         if (mask != vnic->rx_mask || uc_update || mc_update) {
5741                 vnic->rx_mask = mask;
5742
5743                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5744                 schedule_work(&bp->sp_task);
5745         }
5746 }
5747
5748 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5749 {
5750         struct net_device *dev = bp->dev;
5751         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5752         struct netdev_hw_addr *ha;
5753         int i, off = 0, rc;
5754         bool uc_update;
5755
5756         netif_addr_lock_bh(dev);
5757         uc_update = bnxt_uc_list_updated(bp);
5758         netif_addr_unlock_bh(dev);
5759
5760         if (!uc_update)
5761                 goto skip_uc;
5762
5763         mutex_lock(&bp->hwrm_cmd_lock);
5764         for (i = 1; i < vnic->uc_filter_count; i++) {
5765                 struct hwrm_cfa_l2_filter_free_input req = {0};
5766
5767                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5768                                        -1);
5769
5770                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5771
5772                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5773                                         HWRM_CMD_TIMEOUT);
5774         }
5775         mutex_unlock(&bp->hwrm_cmd_lock);
5776
5777         vnic->uc_filter_count = 1;
5778
5779         netif_addr_lock_bh(dev);
5780         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5781                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5782         } else {
5783                 netdev_for_each_uc_addr(ha, dev) {
5784                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5785                         off += ETH_ALEN;
5786                         vnic->uc_filter_count++;
5787                 }
5788         }
5789         netif_addr_unlock_bh(dev);
5790
5791         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5792                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5793                 if (rc) {
5794                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5795                                    rc);
5796                         vnic->uc_filter_count = i;
5797                         return rc;
5798                 }
5799         }
5800
5801 skip_uc:
5802         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5803         if (rc)
5804                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5805                            rc);
5806
5807         return rc;
5808 }
5809
5810 static bool bnxt_rfs_capable(struct bnxt *bp)
5811 {
5812 #ifdef CONFIG_RFS_ACCEL
5813         struct bnxt_pf_info *pf = &bp->pf;
5814         int vnics;
5815
5816         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5817                 return false;
5818
5819         vnics = 1 + bp->rx_nr_rings;
5820         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) {
5821                 netdev_warn(bp->dev,
5822                             "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
5823                             min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1));
5824                 return false;
5825         }
5826
5827         return true;
5828 #else
5829         return false;
5830 #endif
5831 }
5832
5833 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5834                                            netdev_features_t features)
5835 {
5836         struct bnxt *bp = netdev_priv(dev);
5837
5838         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
5839                 features &= ~NETIF_F_NTUPLE;
5840
5841         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
5842          * turned on or off together.
5843          */
5844         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
5845             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
5846                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
5847                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5848                                       NETIF_F_HW_VLAN_STAG_RX);
5849                 else
5850                         features |= NETIF_F_HW_VLAN_CTAG_RX |
5851                                     NETIF_F_HW_VLAN_STAG_RX;
5852         }
5853 #ifdef CONFIG_BNXT_SRIOV
5854         if (BNXT_VF(bp)) {
5855                 if (bp->vf.vlan) {
5856                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
5857                                       NETIF_F_HW_VLAN_STAG_RX);
5858                 }
5859         }
5860 #endif
5861         return features;
5862 }
5863
5864 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5865 {
5866         struct bnxt *bp = netdev_priv(dev);
5867         u32 flags = bp->flags;
5868         u32 changes;
5869         int rc = 0;
5870         bool re_init = false;
5871         bool update_tpa = false;
5872
5873         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5874         if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
5875                 flags |= BNXT_FLAG_GRO;
5876         if (features & NETIF_F_LRO)
5877                 flags |= BNXT_FLAG_LRO;
5878
5879         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5880                 flags |= BNXT_FLAG_STRIP_VLAN;
5881
5882         if (features & NETIF_F_NTUPLE)
5883                 flags |= BNXT_FLAG_RFS;
5884
5885         changes = flags ^ bp->flags;
5886         if (changes & BNXT_FLAG_TPA) {
5887                 update_tpa = true;
5888                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5889                     (flags & BNXT_FLAG_TPA) == 0)
5890                         re_init = true;
5891         }
5892
5893         if (changes & ~BNXT_FLAG_TPA)
5894                 re_init = true;
5895
5896         if (flags != bp->flags) {
5897                 u32 old_flags = bp->flags;
5898
5899                 bp->flags = flags;
5900
5901                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5902                         if (update_tpa)
5903                                 bnxt_set_ring_params(bp);
5904                         return rc;
5905                 }
5906
5907                 if (re_init) {
5908                         bnxt_close_nic(bp, false, false);
5909                         if (update_tpa)
5910                                 bnxt_set_ring_params(bp);
5911
5912                         return bnxt_open_nic(bp, false, false);
5913                 }
5914                 if (update_tpa) {
5915                         rc = bnxt_set_tpa(bp,
5916                                           (flags & BNXT_FLAG_TPA) ?
5917                                           true : false);
5918                         if (rc)
5919                                 bp->flags = old_flags;
5920                 }
5921         }
5922         return rc;
5923 }
5924
5925 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5926 {
5927         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5928         int i = bnapi->index;
5929
5930         if (!txr)
5931                 return;
5932
5933         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5934                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5935                     txr->tx_cons);
5936 }
5937
5938 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5939 {
5940         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5941         int i = bnapi->index;
5942
5943         if (!rxr)
5944                 return;
5945
5946         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5947                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5948                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5949                     rxr->rx_sw_agg_prod);
5950 }
5951
5952 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5953 {
5954         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5955         int i = bnapi->index;
5956
5957         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5958                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5959 }
5960
5961 static void bnxt_dbg_dump_states(struct bnxt *bp)
5962 {
5963         int i;
5964         struct bnxt_napi *bnapi;
5965
5966         for (i = 0; i < bp->cp_nr_rings; i++) {
5967                 bnapi = bp->bnapi[i];
5968                 if (netif_msg_drv(bp)) {
5969                         bnxt_dump_tx_sw_state(bnapi);
5970                         bnxt_dump_rx_sw_state(bnapi);
5971                         bnxt_dump_cp_sw_state(bnapi);
5972                 }
5973         }
5974 }
5975
5976 static void bnxt_reset_task(struct bnxt *bp, bool silent)
5977 {
5978         if (!silent)
5979                 bnxt_dbg_dump_states(bp);
5980         if (netif_running(bp->dev)) {
5981                 bnxt_close_nic(bp, false, false);
5982                 bnxt_open_nic(bp, false, false);
5983         }
5984 }
5985
5986 static void bnxt_tx_timeout(struct net_device *dev)
5987 {
5988         struct bnxt *bp = netdev_priv(dev);
5989
5990         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5991         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5992         schedule_work(&bp->sp_task);
5993 }
5994
5995 #ifdef CONFIG_NET_POLL_CONTROLLER
5996 static void bnxt_poll_controller(struct net_device *dev)
5997 {
5998         struct bnxt *bp = netdev_priv(dev);
5999         int i;
6000
6001         for (i = 0; i < bp->cp_nr_rings; i++) {
6002                 struct bnxt_irq *irq = &bp->irq_tbl[i];
6003
6004                 disable_irq(irq->vector);
6005                 irq->handler(irq->vector, bp->bnapi[i]);
6006                 enable_irq(irq->vector);
6007         }
6008 }
6009 #endif
6010
6011 static void bnxt_timer(unsigned long data)
6012 {
6013         struct bnxt *bp = (struct bnxt *)data;
6014         struct net_device *dev = bp->dev;
6015
6016         if (!netif_running(dev))
6017                 return;
6018
6019         if (atomic_read(&bp->intr_sem) != 0)
6020                 goto bnxt_restart_timer;
6021
6022         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6023                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6024                 schedule_work(&bp->sp_task);
6025         }
6026 bnxt_restart_timer:
6027         mod_timer(&bp->timer, jiffies + bp->current_interval);
6028 }
6029
6030 /* Only called from bnxt_sp_task() */
6031 static void bnxt_reset(struct bnxt *bp, bool silent)
6032 {
6033         /* bnxt_reset_task() calls bnxt_close_nic() which waits
6034          * for BNXT_STATE_IN_SP_TASK to clear.
6035          * If there is a parallel dev_close(), bnxt_close() may be holding
6036          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6037          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6038          */
6039         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6040         rtnl_lock();
6041         if (test_bit(BNXT_STATE_OPEN, &bp->state))
6042                 bnxt_reset_task(bp, silent);
6043         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6044         rtnl_unlock();
6045 }
6046
6047 static void bnxt_cfg_ntp_filters(struct bnxt *);
6048
6049 static void bnxt_sp_task(struct work_struct *work)
6050 {
6051         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6052         int rc;
6053
6054         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6055         smp_mb__after_atomic();
6056         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6057                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6058                 return;
6059         }
6060
6061         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6062                 bnxt_cfg_rx_mode(bp);
6063
6064         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6065                 bnxt_cfg_ntp_filters(bp);
6066         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6067                 rc = bnxt_update_link(bp, true);
6068                 if (rc)
6069                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6070                                    rc);
6071         }
6072         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6073                 bnxt_hwrm_exec_fwd_req(bp);
6074         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6075                 bnxt_hwrm_tunnel_dst_port_alloc(
6076                         bp, bp->vxlan_port,
6077                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6078         }
6079         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6080                 bnxt_hwrm_tunnel_dst_port_free(
6081                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6082         }
6083         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6084                 bnxt_hwrm_tunnel_dst_port_alloc(
6085                         bp, bp->nge_port,
6086                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6087         }
6088         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6089                 bnxt_hwrm_tunnel_dst_port_free(
6090                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6091         }
6092         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6093                 bnxt_reset(bp, false);
6094
6095         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6096                 bnxt_reset(bp, true);
6097
6098         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
6099                 bnxt_get_port_module_status(bp);
6100
6101         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6102                 bnxt_hwrm_port_qstats(bp);
6103
6104         smp_mb__before_atomic();
6105         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6106 }
6107
6108 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6109 {
6110         int rc;
6111         struct bnxt *bp = netdev_priv(dev);
6112
6113         SET_NETDEV_DEV(dev, &pdev->dev);
6114
6115         /* enable device (incl. PCI PM wakeup), and bus-mastering */
6116         rc = pci_enable_device(pdev);
6117         if (rc) {
6118                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6119                 goto init_err;
6120         }
6121
6122         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6123                 dev_err(&pdev->dev,
6124                         "Cannot find PCI device base address, aborting\n");
6125                 rc = -ENODEV;
6126                 goto init_err_disable;
6127         }
6128
6129         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6130         if (rc) {
6131                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6132                 goto init_err_disable;
6133         }
6134
6135         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6136             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6137                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6138                 goto init_err_disable;
6139         }
6140
6141         pci_set_master(pdev);
6142
6143         bp->dev = dev;
6144         bp->pdev = pdev;
6145
6146         bp->bar0 = pci_ioremap_bar(pdev, 0);
6147         if (!bp->bar0) {
6148                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6149                 rc = -ENOMEM;
6150                 goto init_err_release;
6151         }
6152
6153         bp->bar1 = pci_ioremap_bar(pdev, 2);
6154         if (!bp->bar1) {
6155                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6156                 rc = -ENOMEM;
6157                 goto init_err_release;
6158         }
6159
6160         bp->bar2 = pci_ioremap_bar(pdev, 4);
6161         if (!bp->bar2) {
6162                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6163                 rc = -ENOMEM;
6164                 goto init_err_release;
6165         }
6166
6167         pci_enable_pcie_error_reporting(pdev);
6168
6169         INIT_WORK(&bp->sp_task, bnxt_sp_task);
6170
6171         spin_lock_init(&bp->ntp_fltr_lock);
6172
6173         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6174         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6175
6176         /* tick values in micro seconds */
6177         bp->rx_coal_ticks = 12;
6178         bp->rx_coal_bufs = 30;
6179         bp->rx_coal_ticks_irq = 1;
6180         bp->rx_coal_bufs_irq = 2;
6181
6182         bp->tx_coal_ticks = 25;
6183         bp->tx_coal_bufs = 30;
6184         bp->tx_coal_ticks_irq = 2;
6185         bp->tx_coal_bufs_irq = 2;
6186
6187         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6188
6189         init_timer(&bp->timer);
6190         bp->timer.data = (unsigned long)bp;
6191         bp->timer.function = bnxt_timer;
6192         bp->current_interval = BNXT_TIMER_INTERVAL;
6193
6194         clear_bit(BNXT_STATE_OPEN, &bp->state);
6195
6196         return 0;
6197
6198 init_err_release:
6199         if (bp->bar2) {
6200                 pci_iounmap(pdev, bp->bar2);
6201                 bp->bar2 = NULL;
6202         }
6203
6204         if (bp->bar1) {
6205                 pci_iounmap(pdev, bp->bar1);
6206                 bp->bar1 = NULL;
6207         }
6208
6209         if (bp->bar0) {
6210                 pci_iounmap(pdev, bp->bar0);
6211                 bp->bar0 = NULL;
6212         }
6213
6214         pci_release_regions(pdev);
6215
6216 init_err_disable:
6217         pci_disable_device(pdev);
6218
6219 init_err:
6220         return rc;
6221 }
6222
6223 /* rtnl_lock held */
6224 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6225 {
6226         struct sockaddr *addr = p;
6227         struct bnxt *bp = netdev_priv(dev);
6228         int rc = 0;
6229
6230         if (!is_valid_ether_addr(addr->sa_data))
6231                 return -EADDRNOTAVAIL;
6232
6233         rc = bnxt_approve_mac(bp, addr->sa_data);
6234         if (rc)
6235                 return rc;
6236
6237         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6238                 return 0;
6239
6240         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6241         if (netif_running(dev)) {
6242                 bnxt_close_nic(bp, false, false);
6243                 rc = bnxt_open_nic(bp, false, false);
6244         }
6245
6246         return rc;
6247 }
6248
6249 /* rtnl_lock held */
6250 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6251 {
6252         struct bnxt *bp = netdev_priv(dev);
6253
6254         if (new_mtu < 60 || new_mtu > 9500)
6255                 return -EINVAL;
6256
6257         if (netif_running(dev))
6258                 bnxt_close_nic(bp, false, false);
6259
6260         dev->mtu = new_mtu;
6261         bnxt_set_ring_params(bp);
6262
6263         if (netif_running(dev))
6264                 return bnxt_open_nic(bp, false, false);
6265
6266         return 0;
6267 }
6268
6269 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6270                          struct tc_to_netdev *ntc)
6271 {
6272         struct bnxt *bp = netdev_priv(dev);
6273         u8 tc;
6274
6275         if (ntc->type != TC_SETUP_MQPRIO)
6276                 return -EINVAL;
6277
6278         tc = ntc->tc;
6279
6280         if (tc > bp->max_tc) {
6281                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
6282                            tc, bp->max_tc);
6283                 return -EINVAL;
6284         }
6285
6286         if (netdev_get_num_tc(dev) == tc)
6287                 return 0;
6288
6289         if (tc) {
6290                 int max_rx_rings, max_tx_rings, rc;
6291                 bool sh = false;
6292
6293                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6294                         sh = true;
6295
6296                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6297                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
6298                         return -ENOMEM;
6299         }
6300
6301         /* Needs to close the device and do hw resource re-allocations */
6302         if (netif_running(bp->dev))
6303                 bnxt_close_nic(bp, true, false);
6304
6305         if (tc) {
6306                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6307                 netdev_set_num_tc(dev, tc);
6308         } else {
6309                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6310                 netdev_reset_tc(dev);
6311         }
6312         bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
6313         bp->num_stat_ctxs = bp->cp_nr_rings;
6314
6315         if (netif_running(bp->dev))
6316                 return bnxt_open_nic(bp, true, false);
6317
6318         return 0;
6319 }
6320
6321 #ifdef CONFIG_RFS_ACCEL
6322 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6323                             struct bnxt_ntuple_filter *f2)
6324 {
6325         struct flow_keys *keys1 = &f1->fkeys;
6326         struct flow_keys *keys2 = &f2->fkeys;
6327
6328         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6329             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6330             keys1->ports.ports == keys2->ports.ports &&
6331             keys1->basic.ip_proto == keys2->basic.ip_proto &&
6332             keys1->basic.n_proto == keys2->basic.n_proto &&
6333             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6334             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6335                 return true;
6336
6337         return false;
6338 }
6339
6340 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6341                               u16 rxq_index, u32 flow_id)
6342 {
6343         struct bnxt *bp = netdev_priv(dev);
6344         struct bnxt_ntuple_filter *fltr, *new_fltr;
6345         struct flow_keys *fkeys;
6346         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6347         int rc = 0, idx, bit_id, l2_idx = 0;
6348         struct hlist_head *head;
6349
6350         if (skb->encapsulation)
6351                 return -EPROTONOSUPPORT;
6352
6353         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6354                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6355                 int off = 0, j;
6356
6357                 netif_addr_lock_bh(dev);
6358                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6359                         if (ether_addr_equal(eth->h_dest,
6360                                              vnic->uc_list + off)) {
6361                                 l2_idx = j + 1;
6362                                 break;
6363                         }
6364                 }
6365                 netif_addr_unlock_bh(dev);
6366                 if (!l2_idx)
6367                         return -EINVAL;
6368         }
6369         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6370         if (!new_fltr)
6371                 return -ENOMEM;
6372
6373         fkeys = &new_fltr->fkeys;
6374         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6375                 rc = -EPROTONOSUPPORT;
6376                 goto err_free;
6377         }
6378
6379         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
6380             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6381              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6382                 rc = -EPROTONOSUPPORT;
6383                 goto err_free;
6384         }
6385
6386         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6387         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6388
6389         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6390         head = &bp->ntp_fltr_hash_tbl[idx];
6391         rcu_read_lock();
6392         hlist_for_each_entry_rcu(fltr, head, hash) {
6393                 if (bnxt_fltr_match(fltr, new_fltr)) {
6394                         rcu_read_unlock();
6395                         rc = 0;
6396                         goto err_free;
6397                 }
6398         }
6399         rcu_read_unlock();
6400
6401         spin_lock_bh(&bp->ntp_fltr_lock);
6402         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6403                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
6404         if (bit_id < 0) {
6405                 spin_unlock_bh(&bp->ntp_fltr_lock);
6406                 rc = -ENOMEM;
6407                 goto err_free;
6408         }
6409
6410         new_fltr->sw_id = (u16)bit_id;
6411         new_fltr->flow_id = flow_id;
6412         new_fltr->l2_fltr_idx = l2_idx;
6413         new_fltr->rxq = rxq_index;
6414         hlist_add_head_rcu(&new_fltr->hash, head);
6415         bp->ntp_fltr_count++;
6416         spin_unlock_bh(&bp->ntp_fltr_lock);
6417
6418         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
6419         schedule_work(&bp->sp_task);
6420
6421         return new_fltr->sw_id;
6422
6423 err_free:
6424         kfree(new_fltr);
6425         return rc;
6426 }
6427
6428 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6429 {
6430         int i;
6431
6432         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6433                 struct hlist_head *head;
6434                 struct hlist_node *tmp;
6435                 struct bnxt_ntuple_filter *fltr;
6436                 int rc;
6437
6438                 head = &bp->ntp_fltr_hash_tbl[i];
6439                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6440                         bool del = false;
6441
6442                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6443                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6444                                                         fltr->flow_id,
6445                                                         fltr->sw_id)) {
6446                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
6447                                                                          fltr);
6448                                         del = true;
6449                                 }
6450                         } else {
6451                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6452                                                                        fltr);
6453                                 if (rc)
6454                                         del = true;
6455                                 else
6456                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
6457                         }
6458
6459                         if (del) {
6460                                 spin_lock_bh(&bp->ntp_fltr_lock);
6461                                 hlist_del_rcu(&fltr->hash);
6462                                 bp->ntp_fltr_count--;
6463                                 spin_unlock_bh(&bp->ntp_fltr_lock);
6464                                 synchronize_rcu();
6465                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6466                                 kfree(fltr);
6467                         }
6468                 }
6469         }
6470         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6471                 netdev_info(bp->dev, "Receive PF driver unload event!");
6472 }
6473
6474 #else
6475
6476 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6477 {
6478 }
6479
6480 #endif /* CONFIG_RFS_ACCEL */
6481
6482 static void bnxt_udp_tunnel_add(struct net_device *dev,
6483                                 struct udp_tunnel_info *ti)
6484 {
6485         struct bnxt *bp = netdev_priv(dev);
6486
6487         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6488                 return;
6489
6490         if (!netif_running(dev))
6491                 return;
6492
6493         switch (ti->type) {
6494         case UDP_TUNNEL_TYPE_VXLAN:
6495                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
6496                         return;
6497
6498                 bp->vxlan_port_cnt++;
6499                 if (bp->vxlan_port_cnt == 1) {
6500                         bp->vxlan_port = ti->port;
6501                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6502                         schedule_work(&bp->sp_task);
6503                 }
6504                 break;
6505         case UDP_TUNNEL_TYPE_GENEVE:
6506                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
6507                         return;
6508
6509                 bp->nge_port_cnt++;
6510                 if (bp->nge_port_cnt == 1) {
6511                         bp->nge_port = ti->port;
6512                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
6513                 }
6514                 break;
6515         default:
6516                 return;
6517         }
6518
6519         schedule_work(&bp->sp_task);
6520 }
6521
6522 static void bnxt_udp_tunnel_del(struct net_device *dev,
6523                                 struct udp_tunnel_info *ti)
6524 {
6525         struct bnxt *bp = netdev_priv(dev);
6526
6527         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6528                 return;
6529
6530         if (!netif_running(dev))
6531                 return;
6532
6533         switch (ti->type) {
6534         case UDP_TUNNEL_TYPE_VXLAN:
6535                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
6536                         return;
6537                 bp->vxlan_port_cnt--;
6538
6539                 if (bp->vxlan_port_cnt != 0)
6540                         return;
6541
6542                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6543                 break;
6544         case UDP_TUNNEL_TYPE_GENEVE:
6545                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
6546                         return;
6547                 bp->nge_port_cnt--;
6548
6549                 if (bp->nge_port_cnt != 0)
6550                         return;
6551
6552                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
6553                 break;
6554         default:
6555                 return;
6556         }
6557
6558         schedule_work(&bp->sp_task);
6559 }
6560
6561 static const struct net_device_ops bnxt_netdev_ops = {
6562         .ndo_open               = bnxt_open,
6563         .ndo_start_xmit         = bnxt_start_xmit,
6564         .ndo_stop               = bnxt_close,
6565         .ndo_get_stats64        = bnxt_get_stats64,
6566         .ndo_set_rx_mode        = bnxt_set_rx_mode,
6567         .ndo_do_ioctl           = bnxt_ioctl,
6568         .ndo_validate_addr      = eth_validate_addr,
6569         .ndo_set_mac_address    = bnxt_change_mac_addr,
6570         .ndo_change_mtu         = bnxt_change_mtu,
6571         .ndo_fix_features       = bnxt_fix_features,
6572         .ndo_set_features       = bnxt_set_features,
6573         .ndo_tx_timeout         = bnxt_tx_timeout,
6574 #ifdef CONFIG_BNXT_SRIOV
6575         .ndo_get_vf_config      = bnxt_get_vf_config,
6576         .ndo_set_vf_mac         = bnxt_set_vf_mac,
6577         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
6578         .ndo_set_vf_rate        = bnxt_set_vf_bw,
6579         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
6580         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
6581 #endif
6582 #ifdef CONFIG_NET_POLL_CONTROLLER
6583         .ndo_poll_controller    = bnxt_poll_controller,
6584 #endif
6585         .ndo_setup_tc           = bnxt_setup_tc,
6586 #ifdef CONFIG_RFS_ACCEL
6587         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
6588 #endif
6589         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
6590         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
6591 #ifdef CONFIG_NET_RX_BUSY_POLL
6592         .ndo_busy_poll          = bnxt_busy_poll,
6593 #endif
6594 };
6595
6596 static void bnxt_remove_one(struct pci_dev *pdev)
6597 {
6598         struct net_device *dev = pci_get_drvdata(pdev);
6599         struct bnxt *bp = netdev_priv(dev);
6600
6601         if (BNXT_PF(bp))
6602                 bnxt_sriov_disable(bp);
6603
6604         pci_disable_pcie_error_reporting(pdev);
6605         unregister_netdev(dev);
6606         cancel_work_sync(&bp->sp_task);
6607         bp->sp_event = 0;
6608
6609         bnxt_hwrm_func_drv_unrgtr(bp);
6610         bnxt_free_hwrm_resources(bp);
6611         pci_iounmap(pdev, bp->bar2);
6612         pci_iounmap(pdev, bp->bar1);
6613         pci_iounmap(pdev, bp->bar0);
6614         free_netdev(dev);
6615
6616         pci_release_regions(pdev);
6617         pci_disable_device(pdev);
6618 }
6619
6620 static int bnxt_probe_phy(struct bnxt *bp)
6621 {
6622         int rc = 0;
6623         struct bnxt_link_info *link_info = &bp->link_info;
6624
6625         rc = bnxt_hwrm_phy_qcaps(bp);
6626         if (rc) {
6627                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6628                            rc);
6629                 return rc;
6630         }
6631
6632         rc = bnxt_update_link(bp, false);
6633         if (rc) {
6634                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6635                            rc);
6636                 return rc;
6637         }
6638
6639         /* Older firmware does not have supported_auto_speeds, so assume
6640          * that all supported speeds can be autonegotiated.
6641          */
6642         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
6643                 link_info->support_auto_speeds = link_info->support_speeds;
6644
6645         /*initialize the ethool setting copy with NVM settings */
6646         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6647                 link_info->autoneg = BNXT_AUTONEG_SPEED;
6648                 if (bp->hwrm_spec_code >= 0x10201) {
6649                         if (link_info->auto_pause_setting &
6650                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6651                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6652                 } else {
6653                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6654                 }
6655                 link_info->advertising = link_info->auto_link_speeds;
6656         } else {
6657                 link_info->req_link_speed = link_info->force_link_speed;
6658                 link_info->req_duplex = link_info->duplex_setting;
6659         }
6660         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6661                 link_info->req_flow_ctrl =
6662                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6663         else
6664                 link_info->req_flow_ctrl = link_info->force_pause_setting;
6665         return rc;
6666 }
6667
6668 static int bnxt_get_max_irq(struct pci_dev *pdev)
6669 {
6670         u16 ctrl;
6671
6672         if (!pdev->msix_cap)
6673                 return 1;
6674
6675         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6676         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6677 }
6678
6679 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6680                                 int *max_cp)
6681 {
6682         int max_ring_grps = 0;
6683
6684 #ifdef CONFIG_BNXT_SRIOV
6685         if (!BNXT_PF(bp)) {
6686                 *max_tx = bp->vf.max_tx_rings;
6687                 *max_rx = bp->vf.max_rx_rings;
6688                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6689                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6690                 max_ring_grps = bp->vf.max_hw_ring_grps;
6691         } else
6692 #endif
6693         {
6694                 *max_tx = bp->pf.max_tx_rings;
6695                 *max_rx = bp->pf.max_rx_rings;
6696                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6697                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6698                 max_ring_grps = bp->pf.max_hw_ring_grps;
6699         }
6700         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
6701                 *max_cp -= 1;
6702                 *max_rx -= 2;
6703         }
6704         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6705                 *max_rx >>= 1;
6706         *max_rx = min_t(int, *max_rx, max_ring_grps);
6707 }
6708
6709 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6710 {
6711         int rx, tx, cp;
6712
6713         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6714         if (!rx || !tx || !cp)
6715                 return -ENOMEM;
6716
6717         *max_rx = rx;
6718         *max_tx = tx;
6719         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6720 }
6721
6722 static int bnxt_set_dflt_rings(struct bnxt *bp)
6723 {
6724         int dflt_rings, max_rx_rings, max_tx_rings, rc;
6725         bool sh = true;
6726
6727         if (sh)
6728                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6729         dflt_rings = netif_get_num_default_rss_queues();
6730         rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6731         if (rc)
6732                 return rc;
6733         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6734         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6735         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6736         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6737                                bp->tx_nr_rings + bp->rx_nr_rings;
6738         bp->num_stat_ctxs = bp->cp_nr_rings;
6739         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6740                 bp->rx_nr_rings++;
6741                 bp->cp_nr_rings++;
6742         }
6743         return rc;
6744 }
6745
6746 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6747 {
6748         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6749         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6750
6751         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6752             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6753                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6754         else
6755                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6756                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6757                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6758                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6759                             "Unknown", width);
6760 }
6761
6762 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6763 {
6764         static int version_printed;
6765         struct net_device *dev;
6766         struct bnxt *bp;
6767         int rc, max_irqs;
6768
6769         if (pdev->device == 0x16cd && pci_is_bridge(pdev))
6770                 return -ENODEV;
6771
6772         if (version_printed++ == 0)
6773                 pr_info("%s", version);
6774
6775         max_irqs = bnxt_get_max_irq(pdev);
6776         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6777         if (!dev)
6778                 return -ENOMEM;
6779
6780         bp = netdev_priv(dev);
6781
6782         if (bnxt_vf_pciid(ent->driver_data))
6783                 bp->flags |= BNXT_FLAG_VF;
6784
6785         if (pdev->msix_cap)
6786                 bp->flags |= BNXT_FLAG_MSIX_CAP;
6787
6788         rc = bnxt_init_board(pdev, dev);
6789         if (rc < 0)
6790                 goto init_err_free;
6791
6792         dev->netdev_ops = &bnxt_netdev_ops;
6793         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6794         dev->ethtool_ops = &bnxt_ethtool_ops;
6795
6796         pci_set_drvdata(pdev, dev);
6797
6798         rc = bnxt_alloc_hwrm_resources(bp);
6799         if (rc)
6800                 goto init_err;
6801
6802         mutex_init(&bp->hwrm_cmd_lock);
6803         rc = bnxt_hwrm_ver_get(bp);
6804         if (rc)
6805                 goto init_err;
6806
6807         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6808                            NETIF_F_TSO | NETIF_F_TSO6 |
6809                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6810                            NETIF_F_GSO_IPXIP4 |
6811                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6812                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6813                            NETIF_F_RXCSUM | NETIF_F_GRO;
6814
6815         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
6816                 dev->hw_features |= NETIF_F_LRO;
6817
6818         dev->hw_enc_features =
6819                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6820                         NETIF_F_TSO | NETIF_F_TSO6 |
6821                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6822                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6823                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6824         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6825                                     NETIF_F_GSO_GRE_CSUM;
6826         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6827         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6828                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6829         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6830         dev->priv_flags |= IFF_UNICAST_FLT;
6831
6832 #ifdef CONFIG_BNXT_SRIOV
6833         init_waitqueue_head(&bp->sriov_cfg_wait);
6834 #endif
6835         bp->gro_func = bnxt_gro_func_5730x;
6836         if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
6837                 bp->gro_func = bnxt_gro_func_5731x;
6838
6839         rc = bnxt_hwrm_func_drv_rgtr(bp);
6840         if (rc)
6841                 goto init_err;
6842
6843         /* Get the MAX capabilities for this function */
6844         rc = bnxt_hwrm_func_qcaps(bp);
6845         if (rc) {
6846                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6847                            rc);
6848                 rc = -1;
6849                 goto init_err;
6850         }
6851
6852         rc = bnxt_hwrm_queue_qportcfg(bp);
6853         if (rc) {
6854                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6855                            rc);
6856                 rc = -1;
6857                 goto init_err;
6858         }
6859
6860         bnxt_hwrm_func_qcfg(bp);
6861
6862         bnxt_set_tpa_flags(bp);
6863         bnxt_set_ring_params(bp);
6864         if (BNXT_PF(bp))
6865                 bp->pf.max_irqs = max_irqs;
6866 #if defined(CONFIG_BNXT_SRIOV)
6867         else
6868                 bp->vf.max_irqs = max_irqs;
6869 #endif
6870         bnxt_set_dflt_rings(bp);
6871
6872         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6873                 dev->hw_features |= NETIF_F_NTUPLE;
6874                 if (bnxt_rfs_capable(bp)) {
6875                         bp->flags |= BNXT_FLAG_RFS;
6876                         dev->features |= NETIF_F_NTUPLE;
6877                 }
6878         }
6879
6880         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6881                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6882
6883         rc = bnxt_probe_phy(bp);
6884         if (rc)
6885                 goto init_err;
6886
6887         rc = register_netdev(dev);
6888         if (rc)
6889                 goto init_err;
6890
6891         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6892                     board_info[ent->driver_data].name,
6893                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
6894
6895         bnxt_parse_log_pcie_link(bp);
6896
6897         return 0;
6898
6899 init_err:
6900         pci_iounmap(pdev, bp->bar0);
6901         pci_release_regions(pdev);
6902         pci_disable_device(pdev);
6903
6904 init_err_free:
6905         free_netdev(dev);
6906         return rc;
6907 }
6908
6909 /**
6910  * bnxt_io_error_detected - called when PCI error is detected
6911  * @pdev: Pointer to PCI device
6912  * @state: The current pci connection state
6913  *
6914  * This function is called after a PCI bus error affecting
6915  * this device has been detected.
6916  */
6917 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6918                                                pci_channel_state_t state)
6919 {
6920         struct net_device *netdev = pci_get_drvdata(pdev);
6921         struct bnxt *bp = netdev_priv(netdev);
6922
6923         netdev_info(netdev, "PCI I/O error detected\n");
6924
6925         rtnl_lock();
6926         netif_device_detach(netdev);
6927
6928         if (state == pci_channel_io_perm_failure) {
6929                 rtnl_unlock();
6930                 return PCI_ERS_RESULT_DISCONNECT;
6931         }
6932
6933         if (netif_running(netdev))
6934                 bnxt_close(netdev);
6935
6936         /* So that func_reset will be done during slot_reset */
6937         clear_bit(BNXT_STATE_FN_RST_DONE, &bp->state);
6938         pci_disable_device(pdev);
6939         rtnl_unlock();
6940
6941         /* Request a slot slot reset. */
6942         return PCI_ERS_RESULT_NEED_RESET;
6943 }
6944
6945 /**
6946  * bnxt_io_slot_reset - called after the pci bus has been reset.
6947  * @pdev: Pointer to PCI device
6948  *
6949  * Restart the card from scratch, as if from a cold-boot.
6950  * At this point, the card has exprienced a hard reset,
6951  * followed by fixups by BIOS, and has its config space
6952  * set up identically to what it was at cold boot.
6953  */
6954 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6955 {
6956         struct net_device *netdev = pci_get_drvdata(pdev);
6957         struct bnxt *bp = netdev_priv(netdev);
6958         int err = 0;
6959         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6960
6961         netdev_info(bp->dev, "PCI Slot Reset\n");
6962
6963         rtnl_lock();
6964
6965         if (pci_enable_device(pdev)) {
6966                 dev_err(&pdev->dev,
6967                         "Cannot re-enable PCI device after reset.\n");
6968         } else {
6969                 pci_set_master(pdev);
6970
6971                 if (netif_running(netdev))
6972                         err = bnxt_open(netdev);
6973
6974                 if (!err)
6975                         result = PCI_ERS_RESULT_RECOVERED;
6976         }
6977
6978         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6979                 dev_close(netdev);
6980
6981         rtnl_unlock();
6982
6983         err = pci_cleanup_aer_uncorrect_error_status(pdev);
6984         if (err) {
6985                 dev_err(&pdev->dev,
6986                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6987                          err); /* non-fatal, continue */
6988         }
6989
6990         return PCI_ERS_RESULT_RECOVERED;
6991 }
6992
6993 /**
6994  * bnxt_io_resume - called when traffic can start flowing again.
6995  * @pdev: Pointer to PCI device
6996  *
6997  * This callback is called when the error recovery driver tells
6998  * us that its OK to resume normal operation.
6999  */
7000 static void bnxt_io_resume(struct pci_dev *pdev)
7001 {
7002         struct net_device *netdev = pci_get_drvdata(pdev);
7003
7004         rtnl_lock();
7005
7006         netif_device_attach(netdev);
7007
7008         rtnl_unlock();
7009 }
7010
7011 static const struct pci_error_handlers bnxt_err_handler = {
7012         .error_detected = bnxt_io_error_detected,
7013         .slot_reset     = bnxt_io_slot_reset,
7014         .resume         = bnxt_io_resume
7015 };
7016
7017 static struct pci_driver bnxt_pci_driver = {
7018         .name           = DRV_MODULE_NAME,
7019         .id_table       = bnxt_pci_tbl,
7020         .probe          = bnxt_init_one,
7021         .remove         = bnxt_remove_one,
7022         .err_handler    = &bnxt_err_handler,
7023 #if defined(CONFIG_BNXT_SRIOV)
7024         .sriov_configure = bnxt_sriov_configure,
7025 #endif
7026 };
7027
7028 module_pci_driver(bnxt_pci_driver);