m68k: Migrate exception table users off module.h and onto extable.h
[platform/kernel/linux-exynos.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION                                 \
73         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
76         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT              (5*HZ)
83
84 static char version[] =
85         "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90                    "BCM57710/57711/57711E/"
91                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92                    "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102                  " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111                                 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129         u32 xmac_addr;
130         u32 xmac_val;
131         u32 emac_addr;
132         u32 emac_val;
133         u32 umac_addr[2];
134         u32 umac_val[2];
135         u32 bmac_addr;
136         u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140         BCM57710 = 0,
141         BCM57711,
142         BCM57711E,
143         BCM57712,
144         BCM57712_MF,
145         BCM57712_VF,
146         BCM57800,
147         BCM57800_MF,
148         BCM57800_VF,
149         BCM57810,
150         BCM57810_MF,
151         BCM57810_VF,
152         BCM57840_4_10,
153         BCM57840_2_20,
154         BCM57840_MF,
155         BCM57840_VF,
156         BCM57811,
157         BCM57811_MF,
158         BCM57840_O,
159         BCM57840_MFO,
160         BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165         char *name;
166 } board_info[] = {
167         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
169         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
170         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
171         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
174         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
177         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
184         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279         { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301                                        u32 addr, dma_addr_t mapping)
302 {
303         REG_WR(bp,  addr, U64_LO(mapping));
304         REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308                                   dma_addr_t mapping, u16 abs_fid)
309 {
310         u32 addr = XSEM_REG_FAST_MEMORY +
311                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313         __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317                                   u16 pf_id)
318 {
319         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320                 pf_id);
321         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322                 pf_id);
323         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324                 pf_id);
325         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326                 pf_id);
327 }
328
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330                                  u8 enable)
331 {
332         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333                 enable);
334         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335                 enable);
336         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337                 enable);
338         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339                 enable);
340 }
341
342 static void storm_memset_eq_data(struct bnx2x *bp,
343                                  struct event_ring_data *eq_data,
344                                 u16 pfid)
345 {
346         size_t size = sizeof(struct event_ring_data);
347
348         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354                                  u16 pfid)
355 {
356         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357         REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368                                PCICFG_VENDOR_ID_OFFSET);
369 }
370
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373         u32 val;
374
375         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378                                PCICFG_VENDOR_ID_OFFSET);
379
380         return val;
381 }
382
383 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE        "dst_addr [none]"
388
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390                           struct dmae_command *dmae, int msglvl)
391 {
392         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393         int i;
394
395         switch (dmae->opcode & DMAE_COMMAND_DST) {
396         case DMAE_CMD_DST_PCI:
397                 if (src_type == DMAE_CMD_SRC_PCI)
398                         DP(msglvl, "DMAE: opcode 0x%08x\n"
399                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
401                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403                            dmae->comp_addr_hi, dmae->comp_addr_lo,
404                            dmae->comp_val);
405                 else
406                         DP(msglvl, "DMAE: opcode 0x%08x\n"
407                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
408                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
409                            dmae->opcode, dmae->src_addr_lo >> 2,
410                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411                            dmae->comp_addr_hi, dmae->comp_addr_lo,
412                            dmae->comp_val);
413                 break;
414         case DMAE_CMD_DST_GRC:
415                 if (src_type == DMAE_CMD_SRC_PCI)
416                         DP(msglvl, "DMAE: opcode 0x%08x\n"
417                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
419                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420                            dmae->len, dmae->dst_addr_lo >> 2,
421                            dmae->comp_addr_hi, dmae->comp_addr_lo,
422                            dmae->comp_val);
423                 else
424                         DP(msglvl, "DMAE: opcode 0x%08x\n"
425                            "src [%08x], len [%d*4], dst [%08x]\n"
426                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
427                            dmae->opcode, dmae->src_addr_lo >> 2,
428                            dmae->len, dmae->dst_addr_lo >> 2,
429                            dmae->comp_addr_hi, dmae->comp_addr_lo,
430                            dmae->comp_val);
431                 break;
432         default:
433                 if (src_type == DMAE_CMD_SRC_PCI)
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 else
441                         DP(msglvl, "DMAE: opcode 0x%08x\n"
442                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444                            dmae->opcode, dmae->src_addr_lo >> 2,
445                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446                            dmae->comp_val);
447                 break;
448         }
449
450         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452                    i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458         u32 cmd_offset;
459         int i;
460
461         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464         }
465         REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471                            DMAE_CMD_C_ENABLE);
472 }
473
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476         return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480                              bool with_comp, u8 comp_type)
481 {
482         u32 opcode = 0;
483
484         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485                    (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499         if (with_comp)
500                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501         return opcode;
502 }
503
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505                                       struct dmae_command *dmae,
506                                       u8 src_type, u8 dst_type)
507 {
508         memset(dmae, 0, sizeof(struct dmae_command));
509
510         /* set the opcode */
511         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512                                          true, DMAE_COMP_PCI);
513
514         /* fill in the completion parameters */
515         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517         dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522                                u32 *comp)
523 {
524         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525         int rc = 0;
526
527         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530          * as long as this code is called both from syscall context and
531          * from ndo_set_rx_mode() flow that may be called from BH.
532          */
533
534         spin_lock_bh(&bp->dmae_lock);
535
536         /* reset completion */
537         *comp = 0;
538
539         /* post the command on the channel used for initializations */
540         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542         /* wait for completion */
543         udelay(5);
544         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546                 if (!cnt ||
547                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549                         BNX2X_ERR("DMAE timeout!\n");
550                         rc = DMAE_TIMEOUT;
551                         goto unlock;
552                 }
553                 cnt--;
554                 udelay(50);
555         }
556         if (*comp & DMAE_PCI_ERR_FLAG) {
557                 BNX2X_ERR("DMAE PCI error!\n");
558                 rc = DMAE_PCI_ERROR;
559         }
560
561 unlock:
562
563         spin_unlock_bh(&bp->dmae_lock);
564
565         return rc;
566 }
567
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569                       u32 len32)
570 {
571         int rc;
572         struct dmae_command dmae;
573
574         if (!bp->dmae_ready) {
575                 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577                 if (CHIP_IS_E1(bp))
578                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579                 else
580                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
581                 return;
582         }
583
584         /* set opcode and fixed command fields */
585         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587         /* fill in addresses and len */
588         dmae.src_addr_lo = U64_LO(dma_addr);
589         dmae.src_addr_hi = U64_HI(dma_addr);
590         dmae.dst_addr_lo = dst_addr >> 2;
591         dmae.dst_addr_hi = 0;
592         dmae.len = len32;
593
594         /* issue the command and wait for completion */
595         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596         if (rc) {
597                 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599                 bnx2x_panic();
600 #endif
601         }
602 }
603
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606         int rc;
607         struct dmae_command dmae;
608
609         if (!bp->dmae_ready) {
610                 u32 *data = bnx2x_sp(bp, wb_data[0]);
611                 int i;
612
613                 if (CHIP_IS_E1(bp))
614                         for (i = 0; i < len32; i++)
615                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616                 else
617                         for (i = 0; i < len32; i++)
618                                 data[i] = REG_RD(bp, src_addr + i*4);
619
620                 return;
621         }
622
623         /* set opcode and fixed command fields */
624         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626         /* fill in addresses and len */
627         dmae.src_addr_lo = src_addr >> 2;
628         dmae.src_addr_hi = 0;
629         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631         dmae.len = len32;
632
633         /* issue the command and wait for completion */
634         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635         if (rc) {
636                 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638                 bnx2x_panic();
639 #endif
640         }
641 }
642
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644                                       u32 addr, u32 len)
645 {
646         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647         int offset = 0;
648
649         while (len > dmae_wr_max) {
650                 bnx2x_write_dmae(bp, phys_addr + offset,
651                                  addr + offset, dmae_wr_max);
652                 offset += dmae_wr_max * 4;
653                 len -= dmae_wr_max;
654         }
655
656         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660            XSTORM,
661            TSTORM,
662            CSTORM,
663            USTORM,
664            MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671                                               enum storms storm,
672                                               int entry)
673 {
674         switch (storm) {
675         case XSTORM:
676                 return XSTORM_ASSERT_LIST_OFFSET(entry);
677         case TSTORM:
678                 return TSTORM_ASSERT_LIST_OFFSET(entry);
679         case CSTORM:
680                 return CSTORM_ASSERT_LIST_OFFSET(entry);
681         case USTORM:
682                 return USTORM_ASSERT_LIST_OFFSET(entry);
683         case MAX_STORMS:
684         default:
685                 BNX2X_ERR("unknown storm\n");
686         }
687         return -EINVAL;
688 }
689
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692         char last_idx;
693         int i, j, rc = 0;
694         enum storms storm;
695         u32 regs[REGS_IN_ENTRY];
696         u32 bar_storm_intmem[STORMS_NUM] = {
697                 BAR_XSTRORM_INTMEM,
698                 BAR_TSTRORM_INTMEM,
699                 BAR_CSTRORM_INTMEM,
700                 BAR_USTRORM_INTMEM
701         };
702         u32 storm_assert_list_index[STORMS_NUM] = {
703                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 USTORM_ASSERT_LIST_INDEX_OFFSET
707         };
708         char *storms_string[STORMS_NUM] = {
709                 "XSTORM",
710                 "TSTORM",
711                 "CSTORM",
712                 "USTORM"
713         };
714
715         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717                                    storm_assert_list_index[storm]);
718                 if (last_idx)
719                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720                                   storms_string[storm], last_idx);
721
722                 /* print the asserts */
723                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724                         /* read a single assert entry */
725                         for (j = 0; j < REGS_IN_ENTRY; j++)
726                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727                                           bnx2x_get_assert_list_entry(bp,
728                                                                       storm,
729                                                                       i) +
730                                           sizeof(u32) * j);
731
732                         /* log entry if it contains a valid assert */
733                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735                                           storms_string[storm], i, regs[3],
736                                           regs[2], regs[1], regs[0]);
737                                 rc++;
738                         } else {
739                                 break;
740                         }
741                 }
742         }
743
744         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745                   CHIP_IS_E1(bp) ? "everest1" :
746                   CHIP_IS_E1H(bp) ? "everest1h" :
747                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
748                   BCM_5710_FW_MAJOR_VERSION,
749                   BCM_5710_FW_MINOR_VERSION,
750                   BCM_5710_FW_REVISION_VERSION);
751
752         return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761         u32 addr, val;
762         u32 mark, offset;
763         __be32 data[9];
764         int word;
765         u32 trace_shmem_base;
766         if (BP_NOMCP(bp)) {
767                 BNX2X_ERR("NO MCP - can not dump\n");
768                 return;
769         }
770         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771                 (bp->common.bc_ver & 0xff0000) >> 16,
772                 (bp->common.bc_ver & 0xff00) >> 8,
773                 (bp->common.bc_ver & 0xff));
774
775         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
776         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
777                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
778
779         if (BP_PATH(bp) == 0)
780                 trace_shmem_base = bp->common.shmem_base;
781         else
782                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
783
784         /* sanity */
785         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
786             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
787                                 SCRATCH_BUFFER_SIZE(bp)) {
788                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
789                           trace_shmem_base);
790                 return;
791         }
792
793         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
794
795         /* validate TRCB signature */
796         mark = REG_RD(bp, addr);
797         if (mark != MFW_TRACE_SIGNATURE) {
798                 BNX2X_ERR("Trace buffer signature is missing.");
799                 return ;
800         }
801
802         /* read cyclic buffer pointer */
803         addr += 4;
804         mark = REG_RD(bp, addr);
805         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
806         if (mark >= trace_shmem_base || mark < addr + 4) {
807                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
808                 return;
809         }
810         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
811
812         printk("%s", lvl);
813
814         /* dump buffer after the mark */
815         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
816                 for (word = 0; word < 8; word++)
817                         data[word] = htonl(REG_RD(bp, offset + 4*word));
818                 data[8] = 0x0;
819                 pr_cont("%s", (char *)data);
820         }
821
822         /* dump buffer before the mark */
823         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
824                 for (word = 0; word < 8; word++)
825                         data[word] = htonl(REG_RD(bp, offset + 4*word));
826                 data[8] = 0x0;
827                 pr_cont("%s", (char *)data);
828         }
829         printk("%s" "end of fw dump\n", lvl);
830 }
831
832 static void bnx2x_fw_dump(struct bnx2x *bp)
833 {
834         bnx2x_fw_dump_lvl(bp, KERN_ERR);
835 }
836
837 static void bnx2x_hc_int_disable(struct bnx2x *bp)
838 {
839         int port = BP_PORT(bp);
840         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
841         u32 val = REG_RD(bp, addr);
842
843         /* in E1 we must use only PCI configuration space to disable
844          * MSI/MSIX capability
845          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
846          */
847         if (CHIP_IS_E1(bp)) {
848                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
849                  * Use mask register to prevent from HC sending interrupts
850                  * after we exit the function
851                  */
852                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
853
854                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
855                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
856                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
857         } else
858                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
859                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
860                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
861                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862
863         DP(NETIF_MSG_IFDOWN,
864            "write %x to HC %d (addr 0x%x)\n",
865            val, port, addr);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, addr, val);
871         if (REG_RD(bp, addr) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_igu_int_disable(struct bnx2x *bp)
876 {
877         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
878
879         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
880                  IGU_PF_CONF_INT_LINE_EN |
881                  IGU_PF_CONF_ATTN_BIT_EN);
882
883         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
884
885         /* flush all outstanding writes */
886         mmiowb();
887
888         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
889         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
890                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
891 }
892
893 static void bnx2x_int_disable(struct bnx2x *bp)
894 {
895         if (bp->common.int_block == INT_BLOCK_HC)
896                 bnx2x_hc_int_disable(bp);
897         else
898                 bnx2x_igu_int_disable(bp);
899 }
900
901 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
902 {
903         int i;
904         u16 j;
905         struct hc_sp_status_block_data sp_sb_data;
906         int func = BP_FUNC(bp);
907 #ifdef BNX2X_STOP_ON_ERROR
908         u16 start = 0, end = 0;
909         u8 cos;
910 #endif
911         if (IS_PF(bp) && disable_int)
912                 bnx2x_int_disable(bp);
913
914         bp->stats_state = STATS_STATE_DISABLED;
915         bp->eth_stats.unrecoverable_error++;
916         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
917
918         BNX2X_ERR("begin crash dump -----------------\n");
919
920         /* Indices */
921         /* Common */
922         if (IS_PF(bp)) {
923                 struct host_sp_status_block *def_sb = bp->def_status_blk;
924                 int data_size, cstorm_offset;
925
926                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
927                           bp->def_idx, bp->def_att_idx, bp->attn_state,
928                           bp->spq_prod_idx, bp->stats_counter);
929                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
930                           def_sb->atten_status_block.attn_bits,
931                           def_sb->atten_status_block.attn_bits_ack,
932                           def_sb->atten_status_block.status_block_id,
933                           def_sb->atten_status_block.attn_bits_index);
934                 BNX2X_ERR("     def (");
935                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
936                         pr_cont("0x%x%s",
937                                 def_sb->sp_sb.index_values[i],
938                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
939
940                 data_size = sizeof(struct hc_sp_status_block_data) /
941                             sizeof(u32);
942                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
943                 for (i = 0; i < data_size; i++)
944                         *((u32 *)&sp_sb_data + i) =
945                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
946                                            i * sizeof(u32));
947
948                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
949                         sp_sb_data.igu_sb_id,
950                         sp_sb_data.igu_seg_id,
951                         sp_sb_data.p_func.pf_id,
952                         sp_sb_data.p_func.vnic_id,
953                         sp_sb_data.p_func.vf_id,
954                         sp_sb_data.p_func.vf_valid,
955                         sp_sb_data.state);
956         }
957
958         for_each_eth_queue(bp, i) {
959                 struct bnx2x_fastpath *fp = &bp->fp[i];
960                 int loop;
961                 struct hc_status_block_data_e2 sb_data_e2;
962                 struct hc_status_block_data_e1x sb_data_e1x;
963                 struct hc_status_block_sm  *hc_sm_p =
964                         CHIP_IS_E1x(bp) ?
965                         sb_data_e1x.common.state_machine :
966                         sb_data_e2.common.state_machine;
967                 struct hc_index_data *hc_index_p =
968                         CHIP_IS_E1x(bp) ?
969                         sb_data_e1x.index_data :
970                         sb_data_e2.index_data;
971                 u8 data_size, cos;
972                 u32 *sb_data_p;
973                 struct bnx2x_fp_txdata txdata;
974
975                 if (!bp->fp)
976                         break;
977
978                 if (!fp->rx_cons_sb)
979                         continue;
980
981                 /* Rx */
982                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
983                           i, fp->rx_bd_prod, fp->rx_bd_cons,
984                           fp->rx_comp_prod,
985                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
986                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
987                           fp->rx_sge_prod, fp->last_max_sge,
988                           le16_to_cpu(fp->fp_hc_idx));
989
990                 /* Tx */
991                 for_each_cos_in_tx_queue(fp, cos)
992                 {
993                         if (!fp->txdata_ptr[cos])
994                                 break;
995
996                         txdata = *fp->txdata_ptr[cos];
997
998                         if (!txdata.tx_cons_sb)
999                                 continue;
1000
1001                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1002                                   i, txdata.tx_pkt_prod,
1003                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1004                                   txdata.tx_bd_cons,
1005                                   le16_to_cpu(*txdata.tx_cons_sb));
1006                 }
1007
1008                 loop = CHIP_IS_E1x(bp) ?
1009                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1010
1011                 /* host sb data */
1012
1013                 if (IS_FCOE_FP(fp))
1014                         continue;
1015
1016                 BNX2X_ERR("     run indexes (");
1017                 for (j = 0; j < HC_SB_MAX_SM; j++)
1018                         pr_cont("0x%x%s",
1019                                fp->sb_running_index[j],
1020                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1021
1022                 BNX2X_ERR("     indexes (");
1023                 for (j = 0; j < loop; j++)
1024                         pr_cont("0x%x%s",
1025                                fp->sb_index_values[j],
1026                                (j == loop - 1) ? ")" : " ");
1027
1028                 /* VF cannot access FW refelection for status block */
1029                 if (IS_VF(bp))
1030                         continue;
1031
1032                 /* fw sb data */
1033                 data_size = CHIP_IS_E1x(bp) ?
1034                         sizeof(struct hc_status_block_data_e1x) :
1035                         sizeof(struct hc_status_block_data_e2);
1036                 data_size /= sizeof(u32);
1037                 sb_data_p = CHIP_IS_E1x(bp) ?
1038                         (u32 *)&sb_data_e1x :
1039                         (u32 *)&sb_data_e2;
1040                 /* copy sb data in here */
1041                 for (j = 0; j < data_size; j++)
1042                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1043                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1044                                 j * sizeof(u32));
1045
1046                 if (!CHIP_IS_E1x(bp)) {
1047                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1048                                 sb_data_e2.common.p_func.pf_id,
1049                                 sb_data_e2.common.p_func.vf_id,
1050                                 sb_data_e2.common.p_func.vf_valid,
1051                                 sb_data_e2.common.p_func.vnic_id,
1052                                 sb_data_e2.common.same_igu_sb_1b,
1053                                 sb_data_e2.common.state);
1054                 } else {
1055                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1056                                 sb_data_e1x.common.p_func.pf_id,
1057                                 sb_data_e1x.common.p_func.vf_id,
1058                                 sb_data_e1x.common.p_func.vf_valid,
1059                                 sb_data_e1x.common.p_func.vnic_id,
1060                                 sb_data_e1x.common.same_igu_sb_1b,
1061                                 sb_data_e1x.common.state);
1062                 }
1063
1064                 /* SB_SMs data */
1065                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1066                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1067                                 j, hc_sm_p[j].__flags,
1068                                 hc_sm_p[j].igu_sb_id,
1069                                 hc_sm_p[j].igu_seg_id,
1070                                 hc_sm_p[j].time_to_expire,
1071                                 hc_sm_p[j].timer_value);
1072                 }
1073
1074                 /* Indices data */
1075                 for (j = 0; j < loop; j++) {
1076                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1077                                hc_index_p[j].flags,
1078                                hc_index_p[j].timeout);
1079                 }
1080         }
1081
1082 #ifdef BNX2X_STOP_ON_ERROR
1083         if (IS_PF(bp)) {
1084                 /* event queue */
1085                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1086                 for (i = 0; i < NUM_EQ_DESC; i++) {
1087                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1088
1089                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1090                                   i, bp->eq_ring[i].message.opcode,
1091                                   bp->eq_ring[i].message.error);
1092                         BNX2X_ERR("data: %x %x %x\n",
1093                                   data[0], data[1], data[2]);
1094                 }
1095         }
1096
1097         /* Rings */
1098         /* Rx */
1099         for_each_valid_rx_queue(bp, i) {
1100                 struct bnx2x_fastpath *fp = &bp->fp[i];
1101
1102                 if (!bp->fp)
1103                         break;
1104
1105                 if (!fp->rx_cons_sb)
1106                         continue;
1107
1108                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1109                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1110                 for (j = start; j != end; j = RX_BD(j + 1)) {
1111                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1112                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1113
1114                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1115                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1116                 }
1117
1118                 start = RX_SGE(fp->rx_sge_prod);
1119                 end = RX_SGE(fp->last_max_sge);
1120                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1121                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1122                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1123
1124                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1125                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1126                 }
1127
1128                 start = RCQ_BD(fp->rx_comp_cons - 10);
1129                 end = RCQ_BD(fp->rx_comp_cons + 503);
1130                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1131                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1132
1133                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1134                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1135                 }
1136         }
1137
1138         /* Tx */
1139         for_each_valid_tx_queue(bp, i) {
1140                 struct bnx2x_fastpath *fp = &bp->fp[i];
1141
1142                 if (!bp->fp)
1143                         break;
1144
1145                 for_each_cos_in_tx_queue(fp, cos) {
1146                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1147
1148                         if (!fp->txdata_ptr[cos])
1149                                 break;
1150
1151                         if (!txdata->tx_cons_sb)
1152                                 continue;
1153
1154                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1155                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1156                         for (j = start; j != end; j = TX_BD(j + 1)) {
1157                                 struct sw_tx_bd *sw_bd =
1158                                         &txdata->tx_buf_ring[j];
1159
1160                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1161                                           i, cos, j, sw_bd->skb,
1162                                           sw_bd->first_bd);
1163                         }
1164
1165                         start = TX_BD(txdata->tx_bd_cons - 10);
1166                         end = TX_BD(txdata->tx_bd_cons + 254);
1167                         for (j = start; j != end; j = TX_BD(j + 1)) {
1168                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1169
1170                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1171                                           i, cos, j, tx_bd[0], tx_bd[1],
1172                                           tx_bd[2], tx_bd[3]);
1173                         }
1174                 }
1175         }
1176 #endif
1177         if (IS_PF(bp)) {
1178                 bnx2x_fw_dump(bp);
1179                 bnx2x_mc_assert(bp);
1180         }
1181         BNX2X_ERR("end crash dump -----------------\n");
1182 }
1183
1184 /*
1185  * FLR Support for E2
1186  *
1187  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1188  * initialization.
1189  */
1190 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1191 #define FLR_WAIT_INTERVAL       50      /* usec */
1192 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1193
1194 struct pbf_pN_buf_regs {
1195         int pN;
1196         u32 init_crd;
1197         u32 crd;
1198         u32 crd_freed;
1199 };
1200
1201 struct pbf_pN_cmd_regs {
1202         int pN;
1203         u32 lines_occup;
1204         u32 lines_freed;
1205 };
1206
1207 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1208                                      struct pbf_pN_buf_regs *regs,
1209                                      u32 poll_count)
1210 {
1211         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1212         u32 cur_cnt = poll_count;
1213
1214         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1215         crd = crd_start = REG_RD(bp, regs->crd);
1216         init_crd = REG_RD(bp, regs->init_crd);
1217
1218         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1219         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1220         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1221
1222         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1223                (init_crd - crd_start))) {
1224                 if (cur_cnt--) {
1225                         udelay(FLR_WAIT_INTERVAL);
1226                         crd = REG_RD(bp, regs->crd);
1227                         crd_freed = REG_RD(bp, regs->crd_freed);
1228                 } else {
1229                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1230                            regs->pN);
1231                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1232                            regs->pN, crd);
1233                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1234                            regs->pN, crd_freed);
1235                         break;
1236                 }
1237         }
1238         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1239            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1240 }
1241
1242 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1243                                      struct pbf_pN_cmd_regs *regs,
1244                                      u32 poll_count)
1245 {
1246         u32 occup, to_free, freed, freed_start;
1247         u32 cur_cnt = poll_count;
1248
1249         occup = to_free = REG_RD(bp, regs->lines_occup);
1250         freed = freed_start = REG_RD(bp, regs->lines_freed);
1251
1252         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1253         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1254
1255         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1256                 if (cur_cnt--) {
1257                         udelay(FLR_WAIT_INTERVAL);
1258                         occup = REG_RD(bp, regs->lines_occup);
1259                         freed = REG_RD(bp, regs->lines_freed);
1260                 } else {
1261                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1262                            regs->pN);
1263                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1264                            regs->pN, occup);
1265                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1266                            regs->pN, freed);
1267                         break;
1268                 }
1269         }
1270         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1271            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1272 }
1273
1274 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1275                                     u32 expected, u32 poll_count)
1276 {
1277         u32 cur_cnt = poll_count;
1278         u32 val;
1279
1280         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1281                 udelay(FLR_WAIT_INTERVAL);
1282
1283         return val;
1284 }
1285
1286 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1287                                     char *msg, u32 poll_cnt)
1288 {
1289         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1290         if (val != 0) {
1291                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1292                 return 1;
1293         }
1294         return 0;
1295 }
1296
1297 /* Common routines with VF FLR cleanup */
1298 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1299 {
1300         /* adjust polling timeout */
1301         if (CHIP_REV_IS_EMUL(bp))
1302                 return FLR_POLL_CNT * 2000;
1303
1304         if (CHIP_REV_IS_FPGA(bp))
1305                 return FLR_POLL_CNT * 120;
1306
1307         return FLR_POLL_CNT;
1308 }
1309
1310 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1311 {
1312         struct pbf_pN_cmd_regs cmd_regs[] = {
1313                 {0, (CHIP_IS_E3B0(bp)) ?
1314                         PBF_REG_TQ_OCCUPANCY_Q0 :
1315                         PBF_REG_P0_TQ_OCCUPANCY,
1316                     (CHIP_IS_E3B0(bp)) ?
1317                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1318                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1319                 {1, (CHIP_IS_E3B0(bp)) ?
1320                         PBF_REG_TQ_OCCUPANCY_Q1 :
1321                         PBF_REG_P1_TQ_OCCUPANCY,
1322                     (CHIP_IS_E3B0(bp)) ?
1323                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1324                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1325                 {4, (CHIP_IS_E3B0(bp)) ?
1326                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1327                         PBF_REG_P4_TQ_OCCUPANCY,
1328                     (CHIP_IS_E3B0(bp)) ?
1329                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1330                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1331         };
1332
1333         struct pbf_pN_buf_regs buf_regs[] = {
1334                 {0, (CHIP_IS_E3B0(bp)) ?
1335                         PBF_REG_INIT_CRD_Q0 :
1336                         PBF_REG_P0_INIT_CRD ,
1337                     (CHIP_IS_E3B0(bp)) ?
1338                         PBF_REG_CREDIT_Q0 :
1339                         PBF_REG_P0_CREDIT,
1340                     (CHIP_IS_E3B0(bp)) ?
1341                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1342                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1343                 {1, (CHIP_IS_E3B0(bp)) ?
1344                         PBF_REG_INIT_CRD_Q1 :
1345                         PBF_REG_P1_INIT_CRD,
1346                     (CHIP_IS_E3B0(bp)) ?
1347                         PBF_REG_CREDIT_Q1 :
1348                         PBF_REG_P1_CREDIT,
1349                     (CHIP_IS_E3B0(bp)) ?
1350                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1351                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1352                 {4, (CHIP_IS_E3B0(bp)) ?
1353                         PBF_REG_INIT_CRD_LB_Q :
1354                         PBF_REG_P4_INIT_CRD,
1355                     (CHIP_IS_E3B0(bp)) ?
1356                         PBF_REG_CREDIT_LB_Q :
1357                         PBF_REG_P4_CREDIT,
1358                     (CHIP_IS_E3B0(bp)) ?
1359                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1360                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1361         };
1362
1363         int i;
1364
1365         /* Verify the command queues are flushed P0, P1, P4 */
1366         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1367                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1368
1369         /* Verify the transmission buffers are flushed P0, P1, P4 */
1370         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1371                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1372 }
1373
1374 #define OP_GEN_PARAM(param) \
1375         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1376
1377 #define OP_GEN_TYPE(type) \
1378         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1379
1380 #define OP_GEN_AGG_VECT(index) \
1381         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1382
1383 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1384 {
1385         u32 op_gen_command = 0;
1386         u32 comp_addr = BAR_CSTRORM_INTMEM +
1387                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1388         int ret = 0;
1389
1390         if (REG_RD(bp, comp_addr)) {
1391                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1392                 return 1;
1393         }
1394
1395         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1396         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1397         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1398         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1399
1400         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1401         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1402
1403         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1404                 BNX2X_ERR("FW final cleanup did not succeed\n");
1405                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1406                    (REG_RD(bp, comp_addr)));
1407                 bnx2x_panic();
1408                 return 1;
1409         }
1410         /* Zero completion for next FLR */
1411         REG_WR(bp, comp_addr, 0);
1412
1413         return ret;
1414 }
1415
1416 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1417 {
1418         u16 status;
1419
1420         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1421         return status & PCI_EXP_DEVSTA_TRPND;
1422 }
1423
1424 /* PF FLR specific routines
1425 */
1426 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1427 {
1428         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1429         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1430                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1431                         "CFC PF usage counter timed out",
1432                         poll_cnt))
1433                 return 1;
1434
1435         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1436         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1437                         DORQ_REG_PF_USAGE_CNT,
1438                         "DQ PF usage counter timed out",
1439                         poll_cnt))
1440                 return 1;
1441
1442         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1443         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1444                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1445                         "QM PF usage counter timed out",
1446                         poll_cnt))
1447                 return 1;
1448
1449         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1450         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1451                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1452                         "Timers VNIC usage counter timed out",
1453                         poll_cnt))
1454                 return 1;
1455         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1457                         "Timers NUM_SCANS usage counter timed out",
1458                         poll_cnt))
1459                 return 1;
1460
1461         /* Wait DMAE PF usage counter to zero */
1462         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1463                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1464                         "DMAE command register timed out",
1465                         poll_cnt))
1466                 return 1;
1467
1468         return 0;
1469 }
1470
1471 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1472 {
1473         u32 val;
1474
1475         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1476         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1477
1478         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1479         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1480
1481         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1482         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1483
1484         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1485         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1486
1487         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1488         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1489
1490         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1491         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1492
1493         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1494         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1495
1496         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1497         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1498            val);
1499 }
1500
1501 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1502 {
1503         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1504
1505         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1506
1507         /* Re-enable PF target read access */
1508         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1509
1510         /* Poll HW usage counters */
1511         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1512         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1513                 return -EBUSY;
1514
1515         /* Zero the igu 'trailing edge' and 'leading edge' */
1516
1517         /* Send the FW cleanup command */
1518         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1519                 return -EBUSY;
1520
1521         /* ATC cleanup */
1522
1523         /* Verify TX hw is flushed */
1524         bnx2x_tx_hw_flushed(bp, poll_cnt);
1525
1526         /* Wait 100ms (not adjusted according to platform) */
1527         msleep(100);
1528
1529         /* Verify no pending pci transactions */
1530         if (bnx2x_is_pcie_pending(bp->pdev))
1531                 BNX2X_ERR("PCIE Transactions still pending\n");
1532
1533         /* Debug */
1534         bnx2x_hw_enable_status(bp);
1535
1536         /*
1537          * Master enable - Due to WB DMAE writes performed before this
1538          * register is re-initialized as part of the regular function init
1539          */
1540         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1541
1542         return 0;
1543 }
1544
1545 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1546 {
1547         int port = BP_PORT(bp);
1548         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1549         u32 val = REG_RD(bp, addr);
1550         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1551         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1552         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1553
1554         if (msix) {
1555                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1556                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1557                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1558                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1559                 if (single_msix)
1560                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1561         } else if (msi) {
1562                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1563                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1564                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1565                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1566         } else {
1567                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1568                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1569                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1570                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571
1572                 if (!CHIP_IS_E1(bp)) {
1573                         DP(NETIF_MSG_IFUP,
1574                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1575
1576                         REG_WR(bp, addr, val);
1577
1578                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1579                 }
1580         }
1581
1582         if (CHIP_IS_E1(bp))
1583                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1584
1585         DP(NETIF_MSG_IFUP,
1586            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1587            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1588
1589         REG_WR(bp, addr, val);
1590         /*
1591          * Ensure that HC_CONFIG is written before leading/trailing edge config
1592          */
1593         mmiowb();
1594         barrier();
1595
1596         if (!CHIP_IS_E1(bp)) {
1597                 /* init leading/trailing edge */
1598                 if (IS_MF(bp)) {
1599                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                         if (bp->port.pmf)
1601                                 /* enable nig and gpio3 attention */
1602                                 val |= 0x1100;
1603                 } else
1604                         val = 0xffff;
1605
1606                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1607                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1608         }
1609
1610         /* Make sure that interrupts are indeed enabled from here on */
1611         mmiowb();
1612 }
1613
1614 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1615 {
1616         u32 val;
1617         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1618         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1619         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1620
1621         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1622
1623         if (msix) {
1624                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1625                          IGU_PF_CONF_SINGLE_ISR_EN);
1626                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1627                         IGU_PF_CONF_ATTN_BIT_EN);
1628
1629                 if (single_msix)
1630                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1631         } else if (msi) {
1632                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1633                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1634                         IGU_PF_CONF_ATTN_BIT_EN |
1635                         IGU_PF_CONF_SINGLE_ISR_EN);
1636         } else {
1637                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1638                 val |= (IGU_PF_CONF_INT_LINE_EN |
1639                         IGU_PF_CONF_ATTN_BIT_EN |
1640                         IGU_PF_CONF_SINGLE_ISR_EN);
1641         }
1642
1643         /* Clean previous status - need to configure igu prior to ack*/
1644         if ((!msix) || single_msix) {
1645                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1646                 bnx2x_ack_int(bp);
1647         }
1648
1649         val |= IGU_PF_CONF_FUNC_EN;
1650
1651         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1652            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1653
1654         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1655
1656         if (val & IGU_PF_CONF_INT_LINE_EN)
1657                 pci_intx(bp->pdev, true);
1658
1659         barrier();
1660
1661         /* init leading/trailing edge */
1662         if (IS_MF(bp)) {
1663                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1664                 if (bp->port.pmf)
1665                         /* enable nig and gpio3 attention */
1666                         val |= 0x1100;
1667         } else
1668                 val = 0xffff;
1669
1670         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1671         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1672
1673         /* Make sure that interrupts are indeed enabled from here on */
1674         mmiowb();
1675 }
1676
1677 void bnx2x_int_enable(struct bnx2x *bp)
1678 {
1679         if (bp->common.int_block == INT_BLOCK_HC)
1680                 bnx2x_hc_int_enable(bp);
1681         else
1682                 bnx2x_igu_int_enable(bp);
1683 }
1684
1685 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1686 {
1687         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1688         int i, offset;
1689
1690         if (disable_hw)
1691                 /* prevent the HW from sending interrupts */
1692                 bnx2x_int_disable(bp);
1693
1694         /* make sure all ISRs are done */
1695         if (msix) {
1696                 synchronize_irq(bp->msix_table[0].vector);
1697                 offset = 1;
1698                 if (CNIC_SUPPORT(bp))
1699                         offset++;
1700                 for_each_eth_queue(bp, i)
1701                         synchronize_irq(bp->msix_table[offset++].vector);
1702         } else
1703                 synchronize_irq(bp->pdev->irq);
1704
1705         /* make sure sp_task is not running */
1706         cancel_delayed_work(&bp->sp_task);
1707         cancel_delayed_work(&bp->period_task);
1708         flush_workqueue(bnx2x_wq);
1709 }
1710
1711 /* fast path */
1712
1713 /*
1714  * General service functions
1715  */
1716
1717 /* Return true if succeeded to acquire the lock */
1718 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1719 {
1720         u32 lock_status;
1721         u32 resource_bit = (1 << resource);
1722         int func = BP_FUNC(bp);
1723         u32 hw_lock_control_reg;
1724
1725         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1726            "Trying to take a lock on resource %d\n", resource);
1727
1728         /* Validating that the resource is within range */
1729         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1730                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1732                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1733                 return false;
1734         }
1735
1736         if (func <= 5)
1737                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1738         else
1739                 hw_lock_control_reg =
1740                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1741
1742         /* Try to acquire the lock */
1743         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1744         lock_status = REG_RD(bp, hw_lock_control_reg);
1745         if (lock_status & resource_bit)
1746                 return true;
1747
1748         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1749            "Failed to get a lock on resource %d\n", resource);
1750         return false;
1751 }
1752
1753 /**
1754  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1755  *
1756  * @bp: driver handle
1757  *
1758  * Returns the recovery leader resource id according to the engine this function
1759  * belongs to. Currently only only 2 engines is supported.
1760  */
1761 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1762 {
1763         if (BP_PATH(bp))
1764                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1765         else
1766                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1767 }
1768
1769 /**
1770  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1771  *
1772  * @bp: driver handle
1773  *
1774  * Tries to acquire a leader lock for current engine.
1775  */
1776 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1777 {
1778         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1779 }
1780
1781 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1782
1783 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1784 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1785 {
1786         /* Set the interrupt occurred bit for the sp-task to recognize it
1787          * must ack the interrupt and transition according to the IGU
1788          * state machine.
1789          */
1790         atomic_set(&bp->interrupt_occurred, 1);
1791
1792         /* The sp_task must execute only after this bit
1793          * is set, otherwise we will get out of sync and miss all
1794          * further interrupts. Hence, the barrier.
1795          */
1796         smp_wmb();
1797
1798         /* schedule sp_task to workqueue */
1799         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1800 }
1801
1802 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1803 {
1804         struct bnx2x *bp = fp->bp;
1805         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1806         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1808         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1809
1810         DP(BNX2X_MSG_SP,
1811            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1812            fp->index, cid, command, bp->state,
1813            rr_cqe->ramrod_cqe.ramrod_type);
1814
1815         /* If cid is within VF range, replace the slowpath object with the
1816          * one corresponding to this VF
1817          */
1818         if (cid >= BNX2X_FIRST_VF_CID  &&
1819             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1820                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1821
1822         switch (command) {
1823         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1824                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1825                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1826                 break;
1827
1828         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1829                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1830                 drv_cmd = BNX2X_Q_CMD_SETUP;
1831                 break;
1832
1833         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1834                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1835                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1836                 break;
1837
1838         case (RAMROD_CMD_ID_ETH_HALT):
1839                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1840                 drv_cmd = BNX2X_Q_CMD_HALT;
1841                 break;
1842
1843         case (RAMROD_CMD_ID_ETH_TERMINATE):
1844                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1845                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1846                 break;
1847
1848         case (RAMROD_CMD_ID_ETH_EMPTY):
1849                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1850                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1851                 break;
1852
1853         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1854                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1855                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1856                 break;
1857
1858         default:
1859                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1860                           command, fp->index);
1861                 return;
1862         }
1863
1864         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1865             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1866                 /* q_obj->complete_cmd() failure means that this was
1867                  * an unexpected completion.
1868                  *
1869                  * In this case we don't want to increase the bp->spq_left
1870                  * because apparently we haven't sent this command the first
1871                  * place.
1872                  */
1873 #ifdef BNX2X_STOP_ON_ERROR
1874                 bnx2x_panic();
1875 #else
1876                 return;
1877 #endif
1878
1879         smp_mb__before_atomic();
1880         atomic_inc(&bp->cq_spq_left);
1881         /* push the change in bp->spq_left and towards the memory */
1882         smp_mb__after_atomic();
1883
1884         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1885
1886         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1887             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1888                 /* if Q update ramrod is completed for last Q in AFEX vif set
1889                  * flow, then ACK MCP at the end
1890                  *
1891                  * mark pending ACK to MCP bit.
1892                  * prevent case that both bits are cleared.
1893                  * At the end of load/unload driver checks that
1894                  * sp_state is cleared, and this order prevents
1895                  * races
1896                  */
1897                 smp_mb__before_atomic();
1898                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1899                 wmb();
1900                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1901                 smp_mb__after_atomic();
1902
1903                 /* schedule the sp task as mcp ack is required */
1904                 bnx2x_schedule_sp_task(bp);
1905         }
1906
1907         return;
1908 }
1909
1910 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1911 {
1912         struct bnx2x *bp = netdev_priv(dev_instance);
1913         u16 status = bnx2x_ack_int(bp);
1914         u16 mask;
1915         int i;
1916         u8 cos;
1917
1918         /* Return here if interrupt is shared and it's not for us */
1919         if (unlikely(status == 0)) {
1920                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1921                 return IRQ_NONE;
1922         }
1923         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1924
1925 #ifdef BNX2X_STOP_ON_ERROR
1926         if (unlikely(bp->panic))
1927                 return IRQ_HANDLED;
1928 #endif
1929
1930         for_each_eth_queue(bp, i) {
1931                 struct bnx2x_fastpath *fp = &bp->fp[i];
1932
1933                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1934                 if (status & mask) {
1935                         /* Handle Rx or Tx according to SB id */
1936                         for_each_cos_in_tx_queue(fp, cos)
1937                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1938                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1939                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1940                         status &= ~mask;
1941                 }
1942         }
1943
1944         if (CNIC_SUPPORT(bp)) {
1945                 mask = 0x2;
1946                 if (status & (mask | 0x1)) {
1947                         struct cnic_ops *c_ops = NULL;
1948
1949                         rcu_read_lock();
1950                         c_ops = rcu_dereference(bp->cnic_ops);
1951                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1952                                       CNIC_DRV_STATE_HANDLES_IRQ))
1953                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1954                         rcu_read_unlock();
1955
1956                         status &= ~mask;
1957                 }
1958         }
1959
1960         if (unlikely(status & 0x1)) {
1961
1962                 /* schedule sp task to perform default status block work, ack
1963                  * attentions and enable interrupts.
1964                  */
1965                 bnx2x_schedule_sp_task(bp);
1966
1967                 status &= ~0x1;
1968                 if (!status)
1969                         return IRQ_HANDLED;
1970         }
1971
1972         if (unlikely(status))
1973                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1974                    status);
1975
1976         return IRQ_HANDLED;
1977 }
1978
1979 /* Link */
1980
1981 /*
1982  * General service functions
1983  */
1984
1985 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1986 {
1987         u32 lock_status;
1988         u32 resource_bit = (1 << resource);
1989         int func = BP_FUNC(bp);
1990         u32 hw_lock_control_reg;
1991         int cnt;
1992
1993         /* Validating that the resource is within range */
1994         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1995                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1996                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1997                 return -EINVAL;
1998         }
1999
2000         if (func <= 5) {
2001                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2002         } else {
2003                 hw_lock_control_reg =
2004                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2005         }
2006
2007         /* Validating that the resource is not already taken */
2008         lock_status = REG_RD(bp, hw_lock_control_reg);
2009         if (lock_status & resource_bit) {
2010                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2011                    lock_status, resource_bit);
2012                 return -EEXIST;
2013         }
2014
2015         /* Try for 5 second every 5ms */
2016         for (cnt = 0; cnt < 1000; cnt++) {
2017                 /* Try to acquire the lock */
2018                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2019                 lock_status = REG_RD(bp, hw_lock_control_reg);
2020                 if (lock_status & resource_bit)
2021                         return 0;
2022
2023                 usleep_range(5000, 10000);
2024         }
2025         BNX2X_ERR("Timeout\n");
2026         return -EAGAIN;
2027 }
2028
2029 int bnx2x_release_leader_lock(struct bnx2x *bp)
2030 {
2031         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2032 }
2033
2034 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2035 {
2036         u32 lock_status;
2037         u32 resource_bit = (1 << resource);
2038         int func = BP_FUNC(bp);
2039         u32 hw_lock_control_reg;
2040
2041         /* Validating that the resource is within range */
2042         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2043                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2044                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2045                 return -EINVAL;
2046         }
2047
2048         if (func <= 5) {
2049                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2050         } else {
2051                 hw_lock_control_reg =
2052                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2053         }
2054
2055         /* Validating that the resource is currently taken */
2056         lock_status = REG_RD(bp, hw_lock_control_reg);
2057         if (!(lock_status & resource_bit)) {
2058                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2059                           lock_status, resource_bit);
2060                 return -EFAULT;
2061         }
2062
2063         REG_WR(bp, hw_lock_control_reg, resource_bit);
2064         return 0;
2065 }
2066
2067 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2068 {
2069         /* The GPIO should be swapped if swap register is set and active */
2070         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2071                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2072         int gpio_shift = gpio_num +
2073                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2074         u32 gpio_mask = (1 << gpio_shift);
2075         u32 gpio_reg;
2076         int value;
2077
2078         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2079                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2080                 return -EINVAL;
2081         }
2082
2083         /* read GPIO value */
2084         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2085
2086         /* get the requested pin value */
2087         if ((gpio_reg & gpio_mask) == gpio_mask)
2088                 value = 1;
2089         else
2090                 value = 0;
2091
2092         return value;
2093 }
2094
2095 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2096 {
2097         /* The GPIO should be swapped if swap register is set and active */
2098         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2099                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2100         int gpio_shift = gpio_num +
2101                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2102         u32 gpio_mask = (1 << gpio_shift);
2103         u32 gpio_reg;
2104
2105         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2106                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2107                 return -EINVAL;
2108         }
2109
2110         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2111         /* read GPIO and mask except the float bits */
2112         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2113
2114         switch (mode) {
2115         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2116                 DP(NETIF_MSG_LINK,
2117                    "Set GPIO %d (shift %d) -> output low\n",
2118                    gpio_num, gpio_shift);
2119                 /* clear FLOAT and set CLR */
2120                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2121                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2122                 break;
2123
2124         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2125                 DP(NETIF_MSG_LINK,
2126                    "Set GPIO %d (shift %d) -> output high\n",
2127                    gpio_num, gpio_shift);
2128                 /* clear FLOAT and set SET */
2129                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2130                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2131                 break;
2132
2133         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2134                 DP(NETIF_MSG_LINK,
2135                    "Set GPIO %d (shift %d) -> input\n",
2136                    gpio_num, gpio_shift);
2137                 /* set FLOAT */
2138                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2139                 break;
2140
2141         default:
2142                 break;
2143         }
2144
2145         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2146         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2147
2148         return 0;
2149 }
2150
2151 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2152 {
2153         u32 gpio_reg = 0;
2154         int rc = 0;
2155
2156         /* Any port swapping should be handled by caller. */
2157
2158         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2159         /* read GPIO and mask except the float bits */
2160         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2161         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2162         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2163         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2164
2165         switch (mode) {
2166         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2167                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2168                 /* set CLR */
2169                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2170                 break;
2171
2172         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2173                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2174                 /* set SET */
2175                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2176                 break;
2177
2178         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2179                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2180                 /* set FLOAT */
2181                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2182                 break;
2183
2184         default:
2185                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2186                 rc = -EINVAL;
2187                 break;
2188         }
2189
2190         if (rc == 0)
2191                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2192
2193         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2194
2195         return rc;
2196 }
2197
2198 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2199 {
2200         /* The GPIO should be swapped if swap register is set and active */
2201         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2202                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2203         int gpio_shift = gpio_num +
2204                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2205         u32 gpio_mask = (1 << gpio_shift);
2206         u32 gpio_reg;
2207
2208         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2209                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2210                 return -EINVAL;
2211         }
2212
2213         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2214         /* read GPIO int */
2215         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2216
2217         switch (mode) {
2218         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2219                 DP(NETIF_MSG_LINK,
2220                    "Clear GPIO INT %d (shift %d) -> output low\n",
2221                    gpio_num, gpio_shift);
2222                 /* clear SET and set CLR */
2223                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2224                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225                 break;
2226
2227         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2228                 DP(NETIF_MSG_LINK,
2229                    "Set GPIO INT %d (shift %d) -> output high\n",
2230                    gpio_num, gpio_shift);
2231                 /* clear CLR and set SET */
2232                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2233                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2234                 break;
2235
2236         default:
2237                 break;
2238         }
2239
2240         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2241         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2242
2243         return 0;
2244 }
2245
2246 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2247 {
2248         u32 spio_reg;
2249
2250         /* Only 2 SPIOs are configurable */
2251         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2252                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2253                 return -EINVAL;
2254         }
2255
2256         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2257         /* read SPIO and mask except the float bits */
2258         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2259
2260         switch (mode) {
2261         case MISC_SPIO_OUTPUT_LOW:
2262                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2263                 /* clear FLOAT and set CLR */
2264                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2265                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2266                 break;
2267
2268         case MISC_SPIO_OUTPUT_HIGH:
2269                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2270                 /* clear FLOAT and set SET */
2271                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2272                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2273                 break;
2274
2275         case MISC_SPIO_INPUT_HI_Z:
2276                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2277                 /* set FLOAT */
2278                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2279                 break;
2280
2281         default:
2282                 break;
2283         }
2284
2285         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2286         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2287
2288         return 0;
2289 }
2290
2291 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2292 {
2293         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2294
2295         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296                                            ADVERTISED_Pause);
2297         switch (bp->link_vars.ieee_fc &
2298                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2299         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2300                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2301                                                   ADVERTISED_Pause);
2302                 break;
2303
2304         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2305                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2306                 break;
2307
2308         default:
2309                 break;
2310         }
2311 }
2312
2313 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2314 {
2315         /* Initialize link parameters structure variables
2316          * It is recommended to turn off RX FC for jumbo frames
2317          *  for better performance
2318          */
2319         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2320                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2321         else
2322                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2323 }
2324
2325 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2326 {
2327         u32 pause_enabled = 0;
2328
2329         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2330                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2331                         pause_enabled = 1;
2332
2333                 REG_WR(bp, BAR_USTRORM_INTMEM +
2334                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2335                        pause_enabled);
2336         }
2337
2338         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2339            pause_enabled ? "enabled" : "disabled");
2340 }
2341
2342 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2343 {
2344         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2345         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2346
2347         if (!BP_NOMCP(bp)) {
2348                 bnx2x_set_requested_fc(bp);
2349                 bnx2x_acquire_phy_lock(bp);
2350
2351                 if (load_mode == LOAD_DIAG) {
2352                         struct link_params *lp = &bp->link_params;
2353                         lp->loopback_mode = LOOPBACK_XGXS;
2354                         /* Prefer doing PHY loopback at highest speed */
2355                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2356                                 if (lp->speed_cap_mask[cfx_idx] &
2357                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2358                                         lp->req_line_speed[cfx_idx] =
2359                                         SPEED_20000;
2360                                 else if (lp->speed_cap_mask[cfx_idx] &
2361                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2362                                                 lp->req_line_speed[cfx_idx] =
2363                                                 SPEED_10000;
2364                                 else
2365                                         lp->req_line_speed[cfx_idx] =
2366                                         SPEED_1000;
2367                         }
2368                 }
2369
2370                 if (load_mode == LOAD_LOOPBACK_EXT) {
2371                         struct link_params *lp = &bp->link_params;
2372                         lp->loopback_mode = LOOPBACK_EXT;
2373                 }
2374
2375                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2376
2377                 bnx2x_release_phy_lock(bp);
2378
2379                 bnx2x_init_dropless_fc(bp);
2380
2381                 bnx2x_calc_fc_adv(bp);
2382
2383                 if (bp->link_vars.link_up) {
2384                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2385                         bnx2x_link_report(bp);
2386                 }
2387                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2388                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2389                 return rc;
2390         }
2391         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2392         return -EINVAL;
2393 }
2394
2395 void bnx2x_link_set(struct bnx2x *bp)
2396 {
2397         if (!BP_NOMCP(bp)) {
2398                 bnx2x_acquire_phy_lock(bp);
2399                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2400                 bnx2x_release_phy_lock(bp);
2401
2402                 bnx2x_init_dropless_fc(bp);
2403
2404                 bnx2x_calc_fc_adv(bp);
2405         } else
2406                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2407 }
2408
2409 static void bnx2x__link_reset(struct bnx2x *bp)
2410 {
2411         if (!BP_NOMCP(bp)) {
2412                 bnx2x_acquire_phy_lock(bp);
2413                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2414                 bnx2x_release_phy_lock(bp);
2415         } else
2416                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2417 }
2418
2419 void bnx2x_force_link_reset(struct bnx2x *bp)
2420 {
2421         bnx2x_acquire_phy_lock(bp);
2422         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2423         bnx2x_release_phy_lock(bp);
2424 }
2425
2426 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2427 {
2428         u8 rc = 0;
2429
2430         if (!BP_NOMCP(bp)) {
2431                 bnx2x_acquire_phy_lock(bp);
2432                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2433                                      is_serdes);
2434                 bnx2x_release_phy_lock(bp);
2435         } else
2436                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2437
2438         return rc;
2439 }
2440
2441 /* Calculates the sum of vn_min_rates.
2442    It's needed for further normalizing of the min_rates.
2443    Returns:
2444      sum of vn_min_rates.
2445        or
2446      0 - if all the min_rates are 0.
2447      In the later case fairness algorithm should be deactivated.
2448      If not all min_rates are zero then those that are zeroes will be set to 1.
2449  */
2450 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2451                                       struct cmng_init_input *input)
2452 {
2453         int all_zero = 1;
2454         int vn;
2455
2456         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2457                 u32 vn_cfg = bp->mf_config[vn];
2458                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2459                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2460
2461                 /* Skip hidden vns */
2462                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2463                         vn_min_rate = 0;
2464                 /* If min rate is zero - set it to 1 */
2465                 else if (!vn_min_rate)
2466                         vn_min_rate = DEF_MIN_RATE;
2467                 else
2468                         all_zero = 0;
2469
2470                 input->vnic_min_rate[vn] = vn_min_rate;
2471         }
2472
2473         /* if ETS or all min rates are zeros - disable fairness */
2474         if (BNX2X_IS_ETS_ENABLED(bp)) {
2475                 input->flags.cmng_enables &=
2476                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2477                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2478         } else if (all_zero) {
2479                 input->flags.cmng_enables &=
2480                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2481                 DP(NETIF_MSG_IFUP,
2482                    "All MIN values are zeroes fairness will be disabled\n");
2483         } else
2484                 input->flags.cmng_enables |=
2485                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 }
2487
2488 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2489                                     struct cmng_init_input *input)
2490 {
2491         u16 vn_max_rate;
2492         u32 vn_cfg = bp->mf_config[vn];
2493
2494         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2495                 vn_max_rate = 0;
2496         else {
2497                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2498
2499                 if (IS_MF_PERCENT_BW(bp)) {
2500                         /* maxCfg in percents of linkspeed */
2501                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2502                 } else /* SD modes */
2503                         /* maxCfg is absolute in 100Mb units */
2504                         vn_max_rate = maxCfg * 100;
2505         }
2506
2507         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2508
2509         input->vnic_max_rate[vn] = vn_max_rate;
2510 }
2511
2512 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2513 {
2514         if (CHIP_REV_IS_SLOW(bp))
2515                 return CMNG_FNS_NONE;
2516         if (IS_MF(bp))
2517                 return CMNG_FNS_MINMAX;
2518
2519         return CMNG_FNS_NONE;
2520 }
2521
2522 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2523 {
2524         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2525
2526         if (BP_NOMCP(bp))
2527                 return; /* what should be the default value in this case */
2528
2529         /* For 2 port configuration the absolute function number formula
2530          * is:
2531          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2532          *
2533          *      and there are 4 functions per port
2534          *
2535          * For 4 port configuration it is
2536          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2537          *
2538          *      and there are 2 functions per port
2539          */
2540         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2542
2543                 if (func >= E1H_FUNC_MAX)
2544                         break;
2545
2546                 bp->mf_config[vn] =
2547                         MF_CFG_RD(bp, func_mf_config[func].config);
2548         }
2549         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2550                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2551                 bp->flags |= MF_FUNC_DIS;
2552         } else {
2553                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2554                 bp->flags &= ~MF_FUNC_DIS;
2555         }
2556 }
2557
2558 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2559 {
2560         struct cmng_init_input input;
2561         memset(&input, 0, sizeof(struct cmng_init_input));
2562
2563         input.port_rate = bp->link_vars.line_speed;
2564
2565         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2566                 int vn;
2567
2568                 /* read mf conf from shmem */
2569                 if (read_cfg)
2570                         bnx2x_read_mf_cfg(bp);
2571
2572                 /* vn_weight_sum and enable fairness if not 0 */
2573                 bnx2x_calc_vn_min(bp, &input);
2574
2575                 /* calculate and set min-max rate for each vn */
2576                 if (bp->port.pmf)
2577                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2578                                 bnx2x_calc_vn_max(bp, vn, &input);
2579
2580                 /* always enable rate shaping and fairness */
2581                 input.flags.cmng_enables |=
2582                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2583
2584                 bnx2x_init_cmng(&input, &bp->cmng);
2585                 return;
2586         }
2587
2588         /* rate shaping and fairness are disabled */
2589         DP(NETIF_MSG_IFUP,
2590            "rate shaping and fairness are disabled\n");
2591 }
2592
2593 static void storm_memset_cmng(struct bnx2x *bp,
2594                               struct cmng_init *cmng,
2595                               u8 port)
2596 {
2597         int vn;
2598         size_t size = sizeof(struct cmng_struct_per_port);
2599
2600         u32 addr = BAR_XSTRORM_INTMEM +
2601                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2602
2603         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2604
2605         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2606                 int func = func_by_vn(bp, vn);
2607
2608                 addr = BAR_XSTRORM_INTMEM +
2609                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2610                 size = sizeof(struct rate_shaping_vars_per_vn);
2611                 __storm_memset_struct(bp, addr, size,
2612                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2613
2614                 addr = BAR_XSTRORM_INTMEM +
2615                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2616                 size = sizeof(struct fairness_vars_per_vn);
2617                 __storm_memset_struct(bp, addr, size,
2618                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2619         }
2620 }
2621
2622 /* init cmng mode in HW according to local configuration */
2623 void bnx2x_set_local_cmng(struct bnx2x *bp)
2624 {
2625         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2626
2627         if (cmng_fns != CMNG_FNS_NONE) {
2628                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2629                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2630         } else {
2631                 /* rate shaping and fairness are disabled */
2632                 DP(NETIF_MSG_IFUP,
2633                    "single function mode without fairness\n");
2634         }
2635 }
2636
2637 /* This function is called upon link interrupt */
2638 static void bnx2x_link_attn(struct bnx2x *bp)
2639 {
2640         /* Make sure that we are synced with the current statistics */
2641         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2642
2643         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2644
2645         bnx2x_init_dropless_fc(bp);
2646
2647         if (bp->link_vars.link_up) {
2648
2649                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2650                         struct host_port_stats *pstats;
2651
2652                         pstats = bnx2x_sp(bp, port_stats);
2653                         /* reset old mac stats */
2654                         memset(&(pstats->mac_stx[0]), 0,
2655                                sizeof(struct mac_stx));
2656                 }
2657                 if (bp->state == BNX2X_STATE_OPEN)
2658                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2659         }
2660
2661         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2662                 bnx2x_set_local_cmng(bp);
2663
2664         __bnx2x_link_report(bp);
2665
2666         if (IS_MF(bp))
2667                 bnx2x_link_sync_notify(bp);
2668 }
2669
2670 void bnx2x__link_status_update(struct bnx2x *bp)
2671 {
2672         if (bp->state != BNX2X_STATE_OPEN)
2673                 return;
2674
2675         /* read updated dcb configuration */
2676         if (IS_PF(bp)) {
2677                 bnx2x_dcbx_pmf_update(bp);
2678                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2679                 if (bp->link_vars.link_up)
2680                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2681                 else
2682                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2683                         /* indicate link status */
2684                 bnx2x_link_report(bp);
2685
2686         } else { /* VF */
2687                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2688                                           SUPPORTED_10baseT_Full |
2689                                           SUPPORTED_100baseT_Half |
2690                                           SUPPORTED_100baseT_Full |
2691                                           SUPPORTED_1000baseT_Full |
2692                                           SUPPORTED_2500baseX_Full |
2693                                           SUPPORTED_10000baseT_Full |
2694                                           SUPPORTED_TP |
2695                                           SUPPORTED_FIBRE |
2696                                           SUPPORTED_Autoneg |
2697                                           SUPPORTED_Pause |
2698                                           SUPPORTED_Asym_Pause);
2699                 bp->port.advertising[0] = bp->port.supported[0];
2700
2701                 bp->link_params.bp = bp;
2702                 bp->link_params.port = BP_PORT(bp);
2703                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2704                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2705                 bp->link_params.req_line_speed[0] = SPEED_10000;
2706                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2707                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2708                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2709                 bp->link_vars.line_speed = SPEED_10000;
2710                 bp->link_vars.link_status =
2711                         (LINK_STATUS_LINK_UP |
2712                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2713                 bp->link_vars.link_up = 1;
2714                 bp->link_vars.duplex = DUPLEX_FULL;
2715                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2716                 __bnx2x_link_report(bp);
2717
2718                 bnx2x_sample_bulletin(bp);
2719
2720                 /* if bulletin board did not have an update for link status
2721                  * __bnx2x_link_report will report current status
2722                  * but it will NOT duplicate report in case of already reported
2723                  * during sampling bulletin board.
2724                  */
2725                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2726         }
2727 }
2728
2729 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2730                                   u16 vlan_val, u8 allowed_prio)
2731 {
2732         struct bnx2x_func_state_params func_params = {NULL};
2733         struct bnx2x_func_afex_update_params *f_update_params =
2734                 &func_params.params.afex_update;
2735
2736         func_params.f_obj = &bp->func_obj;
2737         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2738
2739         /* no need to wait for RAMROD completion, so don't
2740          * set RAMROD_COMP_WAIT flag
2741          */
2742
2743         f_update_params->vif_id = vifid;
2744         f_update_params->afex_default_vlan = vlan_val;
2745         f_update_params->allowed_priorities = allowed_prio;
2746
2747         /* if ramrod can not be sent, response to MCP immediately */
2748         if (bnx2x_func_state_change(bp, &func_params) < 0)
2749                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2750
2751         return 0;
2752 }
2753
2754 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2755                                           u16 vif_index, u8 func_bit_map)
2756 {
2757         struct bnx2x_func_state_params func_params = {NULL};
2758         struct bnx2x_func_afex_viflists_params *update_params =
2759                 &func_params.params.afex_viflists;
2760         int rc;
2761         u32 drv_msg_code;
2762
2763         /* validate only LIST_SET and LIST_GET are received from switch */
2764         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2765                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2766                           cmd_type);
2767
2768         func_params.f_obj = &bp->func_obj;
2769         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2770
2771         /* set parameters according to cmd_type */
2772         update_params->afex_vif_list_command = cmd_type;
2773         update_params->vif_list_index = vif_index;
2774         update_params->func_bit_map =
2775                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2776         update_params->func_to_clear = 0;
2777         drv_msg_code =
2778                 (cmd_type == VIF_LIST_RULE_GET) ?
2779                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2780                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2781
2782         /* if ramrod can not be sent, respond to MCP immediately for
2783          * SET and GET requests (other are not triggered from MCP)
2784          */
2785         rc = bnx2x_func_state_change(bp, &func_params);
2786         if (rc < 0)
2787                 bnx2x_fw_command(bp, drv_msg_code, 0);
2788
2789         return 0;
2790 }
2791
2792 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2793 {
2794         struct afex_stats afex_stats;
2795         u32 func = BP_ABS_FUNC(bp);
2796         u32 mf_config;
2797         u16 vlan_val;
2798         u32 vlan_prio;
2799         u16 vif_id;
2800         u8 allowed_prio;
2801         u8 vlan_mode;
2802         u32 addr_to_write, vifid, addrs, stats_type, i;
2803
2804         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2805                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2806                 DP(BNX2X_MSG_MCP,
2807                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2808                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2809         }
2810
2811         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2812                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2813                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2814                 DP(BNX2X_MSG_MCP,
2815                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2816                    vifid, addrs);
2817                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2818                                                addrs);
2819         }
2820
2821         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2822                 addr_to_write = SHMEM2_RD(bp,
2823                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2824                 stats_type = SHMEM2_RD(bp,
2825                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826
2827                 DP(BNX2X_MSG_MCP,
2828                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2829                    addr_to_write);
2830
2831                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2832
2833                 /* write response to scratchpad, for MCP */
2834                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2835                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2836                                *(((u32 *)(&afex_stats))+i));
2837
2838                 /* send ack message to MCP */
2839                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2840         }
2841
2842         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2843                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2844                 bp->mf_config[BP_VN(bp)] = mf_config;
2845                 DP(BNX2X_MSG_MCP,
2846                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2847                    mf_config);
2848
2849                 /* if VIF_SET is "enabled" */
2850                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2851                         /* set rate limit directly to internal RAM */
2852                         struct cmng_init_input cmng_input;
2853                         struct rate_shaping_vars_per_vn m_rs_vn;
2854                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2855                         u32 addr = BAR_XSTRORM_INTMEM +
2856                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2857
2858                         bp->mf_config[BP_VN(bp)] = mf_config;
2859
2860                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2861                         m_rs_vn.vn_counter.rate =
2862                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2863                         m_rs_vn.vn_counter.quota =
2864                                 (m_rs_vn.vn_counter.rate *
2865                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2866
2867                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2868
2869                         /* read relevant values from mf_cfg struct in shmem */
2870                         vif_id =
2871                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2872                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2873                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2874                         vlan_val =
2875                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2876                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2877                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2878                         vlan_prio = (mf_config &
2879                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2880                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2881                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2882                         vlan_mode =
2883                                 (MF_CFG_RD(bp,
2884                                            func_mf_config[func].afex_config) &
2885                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2886                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2887                         allowed_prio =
2888                                 (MF_CFG_RD(bp,
2889                                            func_mf_config[func].afex_config) &
2890                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2891                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2892
2893                         /* send ramrod to FW, return in case of failure */
2894                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2895                                                    allowed_prio))
2896                                 return;
2897
2898                         bp->afex_def_vlan_tag = vlan_val;
2899                         bp->afex_vlan_mode = vlan_mode;
2900                 } else {
2901                         /* notify link down because BP->flags is disabled */
2902                         bnx2x_link_report(bp);
2903
2904                         /* send INVALID VIF ramrod to FW */
2905                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2906
2907                         /* Reset the default afex VLAN */
2908                         bp->afex_def_vlan_tag = -1;
2909                 }
2910         }
2911 }
2912
2913 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2914 {
2915         struct bnx2x_func_switch_update_params *switch_update_params;
2916         struct bnx2x_func_state_params func_params;
2917
2918         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2919         switch_update_params = &func_params.params.switch_update;
2920         func_params.f_obj = &bp->func_obj;
2921         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2922
2923         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2924                 int func = BP_ABS_FUNC(bp);
2925                 u32 val;
2926
2927                 /* Re-learn the S-tag from shmem */
2928                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2929                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2930                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2931                         bp->mf_ov = val;
2932                 } else {
2933                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2934                         goto fail;
2935                 }
2936
2937                 /* Configure new S-tag in LLH */
2938                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2939                        bp->mf_ov);
2940
2941                 /* Send Ramrod to update FW of change */
2942                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2943                           &switch_update_params->changes);
2944                 switch_update_params->vlan = bp->mf_ov;
2945
2946                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2947                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2948                                   bp->mf_ov);
2949                         goto fail;
2950                 } else {
2951                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2952                            bp->mf_ov);
2953                 }
2954         } else {
2955                 goto fail;
2956         }
2957
2958         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2959         return;
2960 fail:
2961         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2962 }
2963
2964 static void bnx2x_pmf_update(struct bnx2x *bp)
2965 {
2966         int port = BP_PORT(bp);
2967         u32 val;
2968
2969         bp->port.pmf = 1;
2970         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2971
2972         /*
2973          * We need the mb() to ensure the ordering between the writing to
2974          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2975          */
2976         smp_mb();
2977
2978         /* queue a periodic task */
2979         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2980
2981         bnx2x_dcbx_pmf_update(bp);
2982
2983         /* enable nig attention */
2984         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2985         if (bp->common.int_block == INT_BLOCK_HC) {
2986                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2987                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2988         } else if (!CHIP_IS_E1x(bp)) {
2989                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2990                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2991         }
2992
2993         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2994 }
2995
2996 /* end of Link */
2997
2998 /* slow path */
2999
3000 /*
3001  * General service functions
3002  */
3003
3004 /* send the MCP a request, block until there is a reply */
3005 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3006 {
3007         int mb_idx = BP_FW_MB_IDX(bp);
3008         u32 seq;
3009         u32 rc = 0;
3010         u32 cnt = 1;
3011         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3012
3013         mutex_lock(&bp->fw_mb_mutex);
3014         seq = ++bp->fw_seq;
3015         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3016         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3017
3018         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3019                         (command | seq), param);
3020
3021         do {
3022                 /* let the FW do it's magic ... */
3023                 msleep(delay);
3024
3025                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3026
3027                 /* Give the FW up to 5 second (500*10ms) */
3028         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3029
3030         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3031            cnt*delay, rc, seq);
3032
3033         /* is this a reply to our command? */
3034         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3035                 rc &= FW_MSG_CODE_MASK;
3036         else {
3037                 /* FW BUG! */
3038                 BNX2X_ERR("FW failed to respond!\n");
3039                 bnx2x_fw_dump(bp);
3040                 rc = 0;
3041         }
3042         mutex_unlock(&bp->fw_mb_mutex);
3043
3044         return rc;
3045 }
3046
3047 static void storm_memset_func_cfg(struct bnx2x *bp,
3048                                  struct tstorm_eth_function_common_config *tcfg,
3049                                  u16 abs_fid)
3050 {
3051         size_t size = sizeof(struct tstorm_eth_function_common_config);
3052
3053         u32 addr = BAR_TSTRORM_INTMEM +
3054                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3055
3056         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3057 }
3058
3059 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3060 {
3061         if (CHIP_IS_E1x(bp)) {
3062                 struct tstorm_eth_function_common_config tcfg = {0};
3063
3064                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3065         }
3066
3067         /* Enable the function in the FW */
3068         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3069         storm_memset_func_en(bp, p->func_id, 1);
3070
3071         /* spq */
3072         if (p->spq_active) {
3073                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3074                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3075                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3076         }
3077 }
3078
3079 /**
3080  * bnx2x_get_common_flags - Return common flags
3081  *
3082  * @bp          device handle
3083  * @fp          queue handle
3084  * @zero_stats  TRUE if statistics zeroing is needed
3085  *
3086  * Return the flags that are common for the Tx-only and not normal connections.
3087  */
3088 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3089                                             struct bnx2x_fastpath *fp,
3090                                             bool zero_stats)
3091 {
3092         unsigned long flags = 0;
3093
3094         /* PF driver will always initialize the Queue to an ACTIVE state */
3095         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3096
3097         /* tx only connections collect statistics (on the same index as the
3098          * parent connection). The statistics are zeroed when the parent
3099          * connection is initialized.
3100          */
3101
3102         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3103         if (zero_stats)
3104                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3105
3106         if (bp->flags & TX_SWITCHING)
3107                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3108
3109         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3110         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3111
3112 #ifdef BNX2X_STOP_ON_ERROR
3113         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3114 #endif
3115
3116         return flags;
3117 }
3118
3119 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3120                                        struct bnx2x_fastpath *fp,
3121                                        bool leading)
3122 {
3123         unsigned long flags = 0;
3124
3125         /* calculate other queue flags */
3126         if (IS_MF_SD(bp))
3127                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3128
3129         if (IS_FCOE_FP(fp)) {
3130                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3131                 /* For FCoE - force usage of default priority (for afex) */
3132                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3133         }
3134
3135         if (fp->mode != TPA_MODE_DISABLED) {
3136                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3137                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3138                 if (fp->mode == TPA_MODE_GRO)
3139                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3140         }
3141
3142         if (leading) {
3143                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3144                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3145         }
3146
3147         /* Always set HW VLAN stripping */
3148         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3149
3150         /* configure silent vlan removal */
3151         if (IS_MF_AFEX(bp))
3152                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3153
3154         return flags | bnx2x_get_common_flags(bp, fp, true);
3155 }
3156
3157 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3158         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3159         u8 cos)
3160 {
3161         gen_init->stat_id = bnx2x_stats_id(fp);
3162         gen_init->spcl_id = fp->cl_id;
3163
3164         /* Always use mini-jumbo MTU for FCoE L2 ring */
3165         if (IS_FCOE_FP(fp))
3166                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3167         else
3168                 gen_init->mtu = bp->dev->mtu;
3169
3170         gen_init->cos = cos;
3171
3172         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3173 }
3174
3175 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3176         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3177         struct bnx2x_rxq_setup_params *rxq_init)
3178 {
3179         u8 max_sge = 0;
3180         u16 sge_sz = 0;
3181         u16 tpa_agg_size = 0;
3182
3183         if (fp->mode != TPA_MODE_DISABLED) {
3184                 pause->sge_th_lo = SGE_TH_LO(bp);
3185                 pause->sge_th_hi = SGE_TH_HI(bp);
3186
3187                 /* validate SGE ring has enough to cross high threshold */
3188                 WARN_ON(bp->dropless_fc &&
3189                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3190                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3191
3192                 tpa_agg_size = TPA_AGG_SIZE;
3193                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3194                         SGE_PAGE_SHIFT;
3195                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3196                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3197                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3198         }
3199
3200         /* pause - not for e1 */
3201         if (!CHIP_IS_E1(bp)) {
3202                 pause->bd_th_lo = BD_TH_LO(bp);
3203                 pause->bd_th_hi = BD_TH_HI(bp);
3204
3205                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3206                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3207                 /*
3208                  * validate that rings have enough entries to cross
3209                  * high thresholds
3210                  */
3211                 WARN_ON(bp->dropless_fc &&
3212                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3213                                 bp->rx_ring_size);
3214                 WARN_ON(bp->dropless_fc &&
3215                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3216                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3217
3218                 pause->pri_map = 1;
3219         }
3220
3221         /* rxq setup */
3222         rxq_init->dscr_map = fp->rx_desc_mapping;
3223         rxq_init->sge_map = fp->rx_sge_mapping;
3224         rxq_init->rcq_map = fp->rx_comp_mapping;
3225         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3226
3227         /* This should be a maximum number of data bytes that may be
3228          * placed on the BD (not including paddings).
3229          */
3230         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3231                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3232
3233         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3234         rxq_init->tpa_agg_sz = tpa_agg_size;
3235         rxq_init->sge_buf_sz = sge_sz;
3236         rxq_init->max_sges_pkt = max_sge;
3237         rxq_init->rss_engine_id = BP_FUNC(bp);
3238         rxq_init->mcast_engine_id = BP_FUNC(bp);
3239
3240         /* Maximum number or simultaneous TPA aggregation for this Queue.
3241          *
3242          * For PF Clients it should be the maximum available number.
3243          * VF driver(s) may want to define it to a smaller value.
3244          */
3245         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3246
3247         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3248         rxq_init->fw_sb_id = fp->fw_sb_id;
3249
3250         if (IS_FCOE_FP(fp))
3251                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3252         else
3253                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3254         /* configure silent vlan removal
3255          * if multi function mode is afex, then mask default vlan
3256          */
3257         if (IS_MF_AFEX(bp)) {
3258                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3259                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3260         }
3261 }
3262
3263 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3264         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3265         u8 cos)
3266 {
3267         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3268         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3269         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3270         txq_init->fw_sb_id = fp->fw_sb_id;
3271
3272         /*
3273          * set the tss leading client id for TX classification ==
3274          * leading RSS client id
3275          */
3276         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3277
3278         if (IS_FCOE_FP(fp)) {
3279                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3280                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3281         }
3282 }
3283
3284 static void bnx2x_pf_init(struct bnx2x *bp)
3285 {
3286         struct bnx2x_func_init_params func_init = {0};
3287         struct event_ring_data eq_data = { {0} };
3288
3289         if (!CHIP_IS_E1x(bp)) {
3290                 /* reset IGU PF statistics: MSIX + ATTN */
3291                 /* PF */
3292                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3293                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3294                            (CHIP_MODE_IS_4_PORT(bp) ?
3295                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3296                 /* ATTN */
3297                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3298                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3299                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3300                            (CHIP_MODE_IS_4_PORT(bp) ?
3301                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3302         }
3303
3304         func_init.spq_active = true;
3305         func_init.pf_id = BP_FUNC(bp);
3306         func_init.func_id = BP_FUNC(bp);
3307         func_init.spq_map = bp->spq_mapping;
3308         func_init.spq_prod = bp->spq_prod_idx;
3309
3310         bnx2x_func_init(bp, &func_init);
3311
3312         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3313
3314         /*
3315          * Congestion management values depend on the link rate
3316          * There is no active link so initial link rate is set to 10 Gbps.
3317          * When the link comes up The congestion management values are
3318          * re-calculated according to the actual link rate.
3319          */
3320         bp->link_vars.line_speed = SPEED_10000;
3321         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3322
3323         /* Only the PMF sets the HW */
3324         if (bp->port.pmf)
3325                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3326
3327         /* init Event Queue - PCI bus guarantees correct endianity*/
3328         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3329         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3330         eq_data.producer = bp->eq_prod;
3331         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3332         eq_data.sb_id = DEF_SB_ID;
3333         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3334 }
3335
3336 static void bnx2x_e1h_disable(struct bnx2x *bp)
3337 {
3338         int port = BP_PORT(bp);
3339
3340         bnx2x_tx_disable(bp);
3341
3342         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3343 }
3344
3345 static void bnx2x_e1h_enable(struct bnx2x *bp)
3346 {
3347         int port = BP_PORT(bp);
3348
3349         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3350                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3351
3352         /* Tx queue should be only re-enabled */
3353         netif_tx_wake_all_queues(bp->dev);
3354
3355         /*
3356          * Should not call netif_carrier_on since it will be called if the link
3357          * is up when checking for link state
3358          */
3359 }
3360
3361 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3362
3363 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3364 {
3365         struct eth_stats_info *ether_stat =
3366                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3367         struct bnx2x_vlan_mac_obj *mac_obj =
3368                 &bp->sp_objs->mac_obj;
3369         int i;
3370
3371         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3372                 ETH_STAT_INFO_VERSION_LEN);
3373
3374         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3375          * mac_local field in ether_stat struct. The base address is offset by 2
3376          * bytes to account for the field being 8 bytes but a mac address is
3377          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3378          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3379          * allocated by the ether_stat struct, so the macs will land in their
3380          * proper positions.
3381          */
3382         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3383                 memset(ether_stat->mac_local + i, 0,
3384                        sizeof(ether_stat->mac_local[0]));
3385         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3386                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3387                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3388                                 ETH_ALEN);
3389         ether_stat->mtu_size = bp->dev->mtu;
3390         if (bp->dev->features & NETIF_F_RXCSUM)
3391                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3392         if (bp->dev->features & NETIF_F_TSO)
3393                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3394         ether_stat->feature_flags |= bp->common.boot_mode;
3395
3396         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3397
3398         ether_stat->txq_size = bp->tx_ring_size;
3399         ether_stat->rxq_size = bp->rx_ring_size;
3400
3401 #ifdef CONFIG_BNX2X_SRIOV
3402         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3403 #endif
3404 }
3405
3406 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3407 {
3408         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3409         struct fcoe_stats_info *fcoe_stat =
3410                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3411
3412         if (!CNIC_LOADED(bp))
3413                 return;
3414
3415         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3416
3417         fcoe_stat->qos_priority =
3418                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3419
3420         /* insert FCoE stats from ramrod response */
3421         if (!NO_FCOE(bp)) {
3422                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3423                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424                         tstorm_queue_statistics;
3425
3426                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3427                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3428                         xstorm_queue_statistics;
3429
3430                 struct fcoe_statistics_params *fw_fcoe_stat =
3431                         &bp->fw_stats_data->fcoe;
3432
3433                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3434                           fcoe_stat->rx_bytes_lo,
3435                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3436
3437                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3438                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3439                           fcoe_stat->rx_bytes_lo,
3440                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3441
3442                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3443                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3444                           fcoe_stat->rx_bytes_lo,
3445                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3446
3447                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3448                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3449                           fcoe_stat->rx_bytes_lo,
3450                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3451
3452                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453                           fcoe_stat->rx_frames_lo,
3454                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3455
3456                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457                           fcoe_stat->rx_frames_lo,
3458                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3459
3460                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461                           fcoe_stat->rx_frames_lo,
3462                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3463
3464                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3465                           fcoe_stat->rx_frames_lo,
3466                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3467
3468                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3469                           fcoe_stat->tx_bytes_lo,
3470                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3471
3472                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3473                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3474                           fcoe_stat->tx_bytes_lo,
3475                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3476
3477                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3478                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3479                           fcoe_stat->tx_bytes_lo,
3480                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3481
3482                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3483                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3484                           fcoe_stat->tx_bytes_lo,
3485                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3486
3487                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488                           fcoe_stat->tx_frames_lo,
3489                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3490
3491                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492                           fcoe_stat->tx_frames_lo,
3493                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3494
3495                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496                           fcoe_stat->tx_frames_lo,
3497                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3498
3499                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3500                           fcoe_stat->tx_frames_lo,
3501                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3502         }
3503
3504         /* ask L5 driver to add data to the struct */
3505         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3506 }
3507
3508 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3509 {
3510         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3511         struct iscsi_stats_info *iscsi_stat =
3512                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3513
3514         if (!CNIC_LOADED(bp))
3515                 return;
3516
3517         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3518                ETH_ALEN);
3519
3520         iscsi_stat->qos_priority =
3521                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3522
3523         /* ask L5 driver to add data to the struct */
3524         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3525 }
3526
3527 /* called due to MCP event (on pmf):
3528  *      reread new bandwidth configuration
3529  *      configure FW
3530  *      notify others function about the change
3531  */
3532 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3533 {
3534         if (bp->link_vars.link_up) {
3535                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3536                 bnx2x_link_sync_notify(bp);
3537         }
3538         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3539 }
3540
3541 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3542 {
3543         bnx2x_config_mf_bw(bp);
3544         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3545 }
3546
3547 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3548 {
3549         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3550         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3551 }
3552
3553 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3554 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3555
3556 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3557 {
3558         enum drv_info_opcode op_code;
3559         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3560         bool release = false;
3561         int wait;
3562
3563         /* if drv_info version supported by MFW doesn't match - send NACK */
3564         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3565                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3566                 return;
3567         }
3568
3569         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3570                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3571
3572         /* Must prevent other flows from accessing drv_info_to_mcp */
3573         mutex_lock(&bp->drv_info_mutex);
3574
3575         memset(&bp->slowpath->drv_info_to_mcp, 0,
3576                sizeof(union drv_info_to_mcp));
3577
3578         switch (op_code) {
3579         case ETH_STATS_OPCODE:
3580                 bnx2x_drv_info_ether_stat(bp);
3581                 break;
3582         case FCOE_STATS_OPCODE:
3583                 bnx2x_drv_info_fcoe_stat(bp);
3584                 break;
3585         case ISCSI_STATS_OPCODE:
3586                 bnx2x_drv_info_iscsi_stat(bp);
3587                 break;
3588         default:
3589                 /* if op code isn't supported - send NACK */
3590                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3591                 goto out;
3592         }
3593
3594         /* if we got drv_info attn from MFW then these fields are defined in
3595          * shmem2 for sure
3596          */
3597         SHMEM2_WR(bp, drv_info_host_addr_lo,
3598                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3599         SHMEM2_WR(bp, drv_info_host_addr_hi,
3600                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3601
3602         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3603
3604         /* Since possible management wants both this and get_driver_version
3605          * need to wait until management notifies us it finished utilizing
3606          * the buffer.
3607          */
3608         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3609                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3610         } else if (!bp->drv_info_mng_owner) {
3611                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3612
3613                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3614                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3615
3616                         /* Management is done; need to clear indication */
3617                         if (indication & bit) {
3618                                 SHMEM2_WR(bp, mfw_drv_indication,
3619                                           indication & ~bit);
3620                                 release = true;
3621                                 break;
3622                         }
3623
3624                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3625                 }
3626         }
3627         if (!release) {
3628                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3629                 bp->drv_info_mng_owner = true;
3630         }
3631
3632 out:
3633         mutex_unlock(&bp->drv_info_mutex);
3634 }
3635
3636 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3637 {
3638         u8 vals[4];
3639         int i = 0;
3640
3641         if (bnx2x_format) {
3642                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3643                            &vals[0], &vals[1], &vals[2], &vals[3]);
3644                 if (i > 0)
3645                         vals[0] -= '0';
3646         } else {
3647                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3648                            &vals[0], &vals[1], &vals[2], &vals[3]);
3649         }
3650
3651         while (i < 4)
3652                 vals[i++] = 0;
3653
3654         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3655 }
3656
3657 void bnx2x_update_mng_version(struct bnx2x *bp)
3658 {
3659         u32 iscsiver = DRV_VER_NOT_LOADED;
3660         u32 fcoever = DRV_VER_NOT_LOADED;
3661         u32 ethver = DRV_VER_NOT_LOADED;
3662         int idx = BP_FW_MB_IDX(bp);
3663         u8 *version;
3664
3665         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3666                 return;
3667
3668         mutex_lock(&bp->drv_info_mutex);
3669         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3670         if (bp->drv_info_mng_owner)
3671                 goto out;
3672
3673         if (bp->state != BNX2X_STATE_OPEN)
3674                 goto out;
3675
3676         /* Parse ethernet driver version */
3677         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3678         if (!CNIC_LOADED(bp))
3679                 goto out;
3680
3681         /* Try getting storage driver version via cnic */
3682         memset(&bp->slowpath->drv_info_to_mcp, 0,
3683                sizeof(union drv_info_to_mcp));
3684         bnx2x_drv_info_iscsi_stat(bp);
3685         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3686         iscsiver = bnx2x_update_mng_version_utility(version, false);
3687
3688         memset(&bp->slowpath->drv_info_to_mcp, 0,
3689                sizeof(union drv_info_to_mcp));
3690         bnx2x_drv_info_fcoe_stat(bp);
3691         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3692         fcoever = bnx2x_update_mng_version_utility(version, false);
3693
3694 out:
3695         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3696         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3697         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3698
3699         mutex_unlock(&bp->drv_info_mutex);
3700
3701         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3702            ethver, iscsiver, fcoever);
3703 }
3704
3705 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3706 {
3707         u32 drv_ver;
3708         u32 valid_dump;
3709
3710         if (!SHMEM2_HAS(bp, drv_info))
3711                 return;
3712
3713         /* Update Driver load time, possibly broken in y2038 */
3714         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3715
3716         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3717         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3718
3719         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3720
3721         /* Check & notify On-Chip dump. */
3722         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3723
3724         if (valid_dump & FIRST_DUMP_VALID)
3725                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3726
3727         if (valid_dump & SECOND_DUMP_VALID)
3728                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3729 }
3730
3731 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3732 {
3733         u32 cmd_ok, cmd_fail;
3734
3735         /* sanity */
3736         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3737             event & DRV_STATUS_OEM_EVENT_MASK) {
3738                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3739                 return;
3740         }
3741
3742         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3743                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3744                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3745         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3746                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3747                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3748         }
3749
3750         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3751
3752         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3753                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3754                 /* This is the only place besides the function initialization
3755                  * where the bp->flags can change so it is done without any
3756                  * locks
3757                  */
3758                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3759                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3760                         bp->flags |= MF_FUNC_DIS;
3761
3762                         bnx2x_e1h_disable(bp);
3763                 } else {
3764                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3765                         bp->flags &= ~MF_FUNC_DIS;
3766
3767                         bnx2x_e1h_enable(bp);
3768                 }
3769                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3771         }
3772
3773         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3774                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3775                 bnx2x_config_mf_bw(bp);
3776                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3778         }
3779
3780         /* Report results to MCP */
3781         if (event)
3782                 bnx2x_fw_command(bp, cmd_fail, 0);
3783         else
3784                 bnx2x_fw_command(bp, cmd_ok, 0);
3785 }
3786
3787 /* must be called under the spq lock */
3788 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3789 {
3790         struct eth_spe *next_spe = bp->spq_prod_bd;
3791
3792         if (bp->spq_prod_bd == bp->spq_last_bd) {
3793                 bp->spq_prod_bd = bp->spq;
3794                 bp->spq_prod_idx = 0;
3795                 DP(BNX2X_MSG_SP, "end of spq\n");
3796         } else {
3797                 bp->spq_prod_bd++;
3798                 bp->spq_prod_idx++;
3799         }
3800         return next_spe;
3801 }
3802
3803 /* must be called under the spq lock */
3804 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3805 {
3806         int func = BP_FUNC(bp);
3807
3808         /*
3809          * Make sure that BD data is updated before writing the producer:
3810          * BD data is written to the memory, the producer is read from the
3811          * memory, thus we need a full memory barrier to ensure the ordering.
3812          */
3813         mb();
3814
3815         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3816                  bp->spq_prod_idx);
3817         mmiowb();
3818 }
3819
3820 /**
3821  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3822  *
3823  * @cmd:        command to check
3824  * @cmd_type:   command type
3825  */
3826 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3827 {
3828         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3829             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3830             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3831             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3832             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3833             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3834             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3835                 return true;
3836         else
3837                 return false;
3838 }
3839
3840 /**
3841  * bnx2x_sp_post - place a single command on an SP ring
3842  *
3843  * @bp:         driver handle
3844  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3845  * @cid:        SW CID the command is related to
3846  * @data_hi:    command private data address (high 32 bits)
3847  * @data_lo:    command private data address (low 32 bits)
3848  * @cmd_type:   command type (e.g. NONE, ETH)
3849  *
3850  * SP data is handled as if it's always an address pair, thus data fields are
3851  * not swapped to little endian in upper functions. Instead this function swaps
3852  * data as if it's two u32 fields.
3853  */
3854 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3855                   u32 data_hi, u32 data_lo, int cmd_type)
3856 {
3857         struct eth_spe *spe;
3858         u16 type;
3859         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3860
3861 #ifdef BNX2X_STOP_ON_ERROR
3862         if (unlikely(bp->panic)) {
3863                 BNX2X_ERR("Can't post SP when there is panic\n");
3864                 return -EIO;
3865         }
3866 #endif
3867
3868         spin_lock_bh(&bp->spq_lock);
3869
3870         if (common) {
3871                 if (!atomic_read(&bp->eq_spq_left)) {
3872                         BNX2X_ERR("BUG! EQ ring full!\n");
3873                         spin_unlock_bh(&bp->spq_lock);
3874                         bnx2x_panic();
3875                         return -EBUSY;
3876                 }
3877         } else if (!atomic_read(&bp->cq_spq_left)) {
3878                         BNX2X_ERR("BUG! SPQ ring full!\n");
3879                         spin_unlock_bh(&bp->spq_lock);
3880                         bnx2x_panic();
3881                         return -EBUSY;
3882         }
3883
3884         spe = bnx2x_sp_get_next(bp);
3885
3886         /* CID needs port number to be encoded int it */
3887         spe->hdr.conn_and_cmd_data =
3888                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3889                                     HW_CID(bp, cid));
3890
3891         /* In some cases, type may already contain the func-id
3892          * mainly in SRIOV related use cases, so we add it here only
3893          * if it's not already set.
3894          */
3895         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3896                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3897                         SPE_HDR_CONN_TYPE;
3898                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3899                          SPE_HDR_FUNCTION_ID);
3900         } else {
3901                 type = cmd_type;
3902         }
3903
3904         spe->hdr.type = cpu_to_le16(type);
3905
3906         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3907         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3908
3909         /*
3910          * It's ok if the actual decrement is issued towards the memory
3911          * somewhere between the spin_lock and spin_unlock. Thus no
3912          * more explicit memory barrier is needed.
3913          */
3914         if (common)
3915                 atomic_dec(&bp->eq_spq_left);
3916         else
3917                 atomic_dec(&bp->cq_spq_left);
3918
3919         DP(BNX2X_MSG_SP,
3920            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3921            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3922            (u32)(U64_LO(bp->spq_mapping) +
3923            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3924            HW_CID(bp, cid), data_hi, data_lo, type,
3925            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3926
3927         bnx2x_sp_prod_update(bp);
3928         spin_unlock_bh(&bp->spq_lock);
3929         return 0;
3930 }
3931
3932 /* acquire split MCP access lock register */
3933 static int bnx2x_acquire_alr(struct bnx2x *bp)
3934 {
3935         u32 j, val;
3936         int rc = 0;
3937
3938         might_sleep();
3939         for (j = 0; j < 1000; j++) {
3940                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3941                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3942                 if (val & MCPR_ACCESS_LOCK_LOCK)
3943                         break;
3944
3945                 usleep_range(5000, 10000);
3946         }
3947         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3948                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3949                 rc = -EBUSY;
3950         }
3951
3952         return rc;
3953 }
3954
3955 /* release split MCP access lock register */
3956 static void bnx2x_release_alr(struct bnx2x *bp)
3957 {
3958         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3959 }
3960
3961 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3962 #define BNX2X_DEF_SB_IDX        0x0002
3963
3964 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3965 {
3966         struct host_sp_status_block *def_sb = bp->def_status_blk;
3967         u16 rc = 0;
3968
3969         barrier(); /* status block is written to by the chip */
3970         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3971                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3972                 rc |= BNX2X_DEF_SB_ATT_IDX;
3973         }
3974
3975         if (bp->def_idx != def_sb->sp_sb.running_index) {
3976                 bp->def_idx = def_sb->sp_sb.running_index;
3977                 rc |= BNX2X_DEF_SB_IDX;
3978         }
3979
3980         /* Do not reorder: indices reading should complete before handling */
3981         barrier();
3982         return rc;
3983 }
3984
3985 /*
3986  * slow path service functions
3987  */
3988
3989 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3990 {
3991         int port = BP_PORT(bp);
3992         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3993                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3994         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3995                                        NIG_REG_MASK_INTERRUPT_PORT0;
3996         u32 aeu_mask;
3997         u32 nig_mask = 0;
3998         u32 reg_addr;
3999
4000         if (bp->attn_state & asserted)
4001                 BNX2X_ERR("IGU ERROR\n");
4002
4003         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4004         aeu_mask = REG_RD(bp, aeu_addr);
4005
4006         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4007            aeu_mask, asserted);
4008         aeu_mask &= ~(asserted & 0x3ff);
4009         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4010
4011         REG_WR(bp, aeu_addr, aeu_mask);
4012         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4013
4014         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4015         bp->attn_state |= asserted;
4016         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4017
4018         if (asserted & ATTN_HARD_WIRED_MASK) {
4019                 if (asserted & ATTN_NIG_FOR_FUNC) {
4020
4021                         bnx2x_acquire_phy_lock(bp);
4022
4023                         /* save nig interrupt mask */
4024                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4025
4026                         /* If nig_mask is not set, no need to call the update
4027                          * function.
4028                          */
4029                         if (nig_mask) {
4030                                 REG_WR(bp, nig_int_mask_addr, 0);
4031
4032                                 bnx2x_link_attn(bp);
4033                         }
4034
4035                         /* handle unicore attn? */
4036                 }
4037                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4038                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4039
4040                 if (asserted & GPIO_2_FUNC)
4041                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4042
4043                 if (asserted & GPIO_3_FUNC)
4044                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4045
4046                 if (asserted & GPIO_4_FUNC)
4047                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4048
4049                 if (port == 0) {
4050                         if (asserted & ATTN_GENERAL_ATTN_1) {
4051                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4052                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4053                         }
4054                         if (asserted & ATTN_GENERAL_ATTN_2) {
4055                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4056                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4057                         }
4058                         if (asserted & ATTN_GENERAL_ATTN_3) {
4059                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4060                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4061                         }
4062                 } else {
4063                         if (asserted & ATTN_GENERAL_ATTN_4) {
4064                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4065                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4066                         }
4067                         if (asserted & ATTN_GENERAL_ATTN_5) {
4068                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4069                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4070                         }
4071                         if (asserted & ATTN_GENERAL_ATTN_6) {
4072                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4073                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4074                         }
4075                 }
4076
4077         } /* if hardwired */
4078
4079         if (bp->common.int_block == INT_BLOCK_HC)
4080                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4081                             COMMAND_REG_ATTN_BITS_SET);
4082         else
4083                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4084
4085         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4086            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4087         REG_WR(bp, reg_addr, asserted);
4088
4089         /* now set back the mask */
4090         if (asserted & ATTN_NIG_FOR_FUNC) {
4091                 /* Verify that IGU ack through BAR was written before restoring
4092                  * NIG mask. This loop should exit after 2-3 iterations max.
4093                  */
4094                 if (bp->common.int_block != INT_BLOCK_HC) {
4095                         u32 cnt = 0, igu_acked;
4096                         do {
4097                                 igu_acked = REG_RD(bp,
4098                                                    IGU_REG_ATTENTION_ACK_BITS);
4099                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4100                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4101                         if (!igu_acked)
4102                                 DP(NETIF_MSG_HW,
4103                                    "Failed to verify IGU ack on time\n");
4104                         barrier();
4105                 }
4106                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4107                 bnx2x_release_phy_lock(bp);
4108         }
4109 }
4110
4111 static void bnx2x_fan_failure(struct bnx2x *bp)
4112 {
4113         int port = BP_PORT(bp);
4114         u32 ext_phy_config;
4115         /* mark the failure */
4116         ext_phy_config =
4117                 SHMEM_RD(bp,
4118                          dev_info.port_hw_config[port].external_phy_config);
4119
4120         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4121         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4122         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4123                  ext_phy_config);
4124
4125         /* log the failure */
4126         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4127                             "Please contact OEM Support for assistance\n");
4128
4129         /* Schedule device reset (unload)
4130          * This is due to some boards consuming sufficient power when driver is
4131          * up to overheat if fan fails.
4132          */
4133         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4134 }
4135
4136 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4137 {
4138         int port = BP_PORT(bp);
4139         int reg_offset;
4140         u32 val;
4141
4142         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4143                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4144
4145         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4146
4147                 val = REG_RD(bp, reg_offset);
4148                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4149                 REG_WR(bp, reg_offset, val);
4150
4151                 BNX2X_ERR("SPIO5 hw attention\n");
4152
4153                 /* Fan failure attention */
4154                 bnx2x_hw_reset_phy(&bp->link_params);
4155                 bnx2x_fan_failure(bp);
4156         }
4157
4158         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4159                 bnx2x_acquire_phy_lock(bp);
4160                 bnx2x_handle_module_detect_int(&bp->link_params);
4161                 bnx2x_release_phy_lock(bp);
4162         }
4163
4164         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4165
4166                 val = REG_RD(bp, reg_offset);
4167                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4168                 REG_WR(bp, reg_offset, val);
4169
4170                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4171                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4172                 bnx2x_panic();
4173         }
4174 }
4175
4176 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4177 {
4178         u32 val;
4179
4180         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4181
4182                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4183                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4184                 /* DORQ discard attention */
4185                 if (val & 0x2)
4186                         BNX2X_ERR("FATAL error from DORQ\n");
4187         }
4188
4189         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4190
4191                 int port = BP_PORT(bp);
4192                 int reg_offset;
4193
4194                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4195                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4196
4197                 val = REG_RD(bp, reg_offset);
4198                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4199                 REG_WR(bp, reg_offset, val);
4200
4201                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4202                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4203                 bnx2x_panic();
4204         }
4205 }
4206
4207 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4208 {
4209         u32 val;
4210
4211         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4212
4213                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4214                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4215                 /* CFC error attention */
4216                 if (val & 0x2)
4217                         BNX2X_ERR("FATAL error from CFC\n");
4218         }
4219
4220         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4221                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4222                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4223                 /* RQ_USDMDP_FIFO_OVERFLOW */
4224                 if (val & 0x18000)
4225                         BNX2X_ERR("FATAL error from PXP\n");
4226
4227                 if (!CHIP_IS_E1x(bp)) {
4228                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4229                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4230                 }
4231         }
4232
4233         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4234
4235                 int port = BP_PORT(bp);
4236                 int reg_offset;
4237
4238                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4239                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4240
4241                 val = REG_RD(bp, reg_offset);
4242                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4243                 REG_WR(bp, reg_offset, val);
4244
4245                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4246                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4247                 bnx2x_panic();
4248         }
4249 }
4250
4251 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4252 {
4253         u32 val;
4254
4255         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4256
4257                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4258                         int func = BP_FUNC(bp);
4259
4260                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4261                         bnx2x_read_mf_cfg(bp);
4262                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4263                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4264                         val = SHMEM_RD(bp,
4265                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4266
4267                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4268                                    DRV_STATUS_OEM_EVENT_MASK))
4269                                 bnx2x_oem_event(bp,
4270                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4271                                                 DRV_STATUS_OEM_EVENT_MASK)));
4272
4273                         if (val & DRV_STATUS_SET_MF_BW)
4274                                 bnx2x_set_mf_bw(bp);
4275
4276                         if (val & DRV_STATUS_DRV_INFO_REQ)
4277                                 bnx2x_handle_drv_info_req(bp);
4278
4279                         if (val & DRV_STATUS_VF_DISABLED)
4280                                 bnx2x_schedule_iov_task(bp,
4281                                                         BNX2X_IOV_HANDLE_FLR);
4282
4283                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4284                                 bnx2x_pmf_update(bp);
4285
4286                         if (bp->port.pmf &&
4287                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4288                                 bp->dcbx_enabled > 0)
4289                                 /* start dcbx state machine */
4290                                 bnx2x_dcbx_set_params(bp,
4291                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4292                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4293                                 bnx2x_handle_afex_cmd(bp,
4294                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4295                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4296                                 bnx2x_handle_eee_event(bp);
4297
4298                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4299                                 bnx2x_handle_update_svid_cmd(bp);
4300
4301                         if (bp->link_vars.periodic_flags &
4302                             PERIODIC_FLAGS_LINK_EVENT) {
4303                                 /*  sync with link */
4304                                 bnx2x_acquire_phy_lock(bp);
4305                                 bp->link_vars.periodic_flags &=
4306                                         ~PERIODIC_FLAGS_LINK_EVENT;
4307                                 bnx2x_release_phy_lock(bp);
4308                                 if (IS_MF(bp))
4309                                         bnx2x_link_sync_notify(bp);
4310                                 bnx2x_link_report(bp);
4311                         }
4312                         /* Always call it here: bnx2x_link_report() will
4313                          * prevent the link indication duplication.
4314                          */
4315                         bnx2x__link_status_update(bp);
4316                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4317
4318                         BNX2X_ERR("MC assert!\n");
4319                         bnx2x_mc_assert(bp);
4320                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4321                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4322                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4323                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4324                         bnx2x_panic();
4325
4326                 } else if (attn & BNX2X_MCP_ASSERT) {
4327
4328                         BNX2X_ERR("MCP assert!\n");
4329                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4330                         bnx2x_fw_dump(bp);
4331
4332                 } else
4333                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4334         }
4335
4336         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4337                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4338                 if (attn & BNX2X_GRC_TIMEOUT) {
4339                         val = CHIP_IS_E1(bp) ? 0 :
4340                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4341                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4342                 }
4343                 if (attn & BNX2X_GRC_RSV) {
4344                         val = CHIP_IS_E1(bp) ? 0 :
4345                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4346                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4347                 }
4348                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4349         }
4350 }
4351
4352 /*
4353  * Bits map:
4354  * 0-7   - Engine0 load counter.
4355  * 8-15  - Engine1 load counter.
4356  * 16    - Engine0 RESET_IN_PROGRESS bit.
4357  * 17    - Engine1 RESET_IN_PROGRESS bit.
4358  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4359  *         on the engine
4360  * 19    - Engine1 ONE_IS_LOADED.
4361  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4362  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4363  *         just the one belonging to its engine).
4364  *
4365  */
4366 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4367
4368 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4369 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4370 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4371 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4372 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4373 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4374 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4375
4376 /*
4377  * Set the GLOBAL_RESET bit.
4378  *
4379  * Should be run under rtnl lock
4380  */
4381 void bnx2x_set_reset_global(struct bnx2x *bp)
4382 {
4383         u32 val;
4384         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4385         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4386         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4387         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389
4390 /*
4391  * Clear the GLOBAL_RESET bit.
4392  *
4393  * Should be run under rtnl lock
4394  */
4395 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4396 {
4397         u32 val;
4398         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4399         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4400         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4401         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 }
4403
4404 /*
4405  * Checks the GLOBAL_RESET bit.
4406  *
4407  * should be run under rtnl lock
4408  */
4409 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4410 {
4411         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4412
4413         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4414         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4415 }
4416
4417 /*
4418  * Clear RESET_IN_PROGRESS bit for the current engine.
4419  *
4420  * Should be run under rtnl lock
4421  */
4422 static void bnx2x_set_reset_done(struct bnx2x *bp)
4423 {
4424         u32 val;
4425         u32 bit = BP_PATH(bp) ?
4426                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4427         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4428         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4429
4430         /* Clear the bit */
4431         val &= ~bit;
4432         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4433
4434         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4435 }
4436
4437 /*
4438  * Set RESET_IN_PROGRESS for the current engine.
4439  *
4440  * should be run under rtnl lock
4441  */
4442 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4443 {
4444         u32 val;
4445         u32 bit = BP_PATH(bp) ?
4446                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4447         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4448         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4449
4450         /* Set the bit */
4451         val |= bit;
4452         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4453         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 }
4455
4456 /*
4457  * Checks the RESET_IN_PROGRESS bit for the given engine.
4458  * should be run under rtnl lock
4459  */
4460 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4461 {
4462         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4463         u32 bit = engine ?
4464                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4465
4466         /* return false if bit is set */
4467         return (val & bit) ? false : true;
4468 }
4469
4470 /*
4471  * set pf load for the current pf.
4472  *
4473  * should be run under rtnl lock
4474  */
4475 void bnx2x_set_pf_load(struct bnx2x *bp)
4476 {
4477         u32 val1, val;
4478         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4479                              BNX2X_PATH0_LOAD_CNT_MASK;
4480         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4481                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4482
4483         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4484         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4485
4486         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4487
4488         /* get the current counter value */
4489         val1 = (val & mask) >> shift;
4490
4491         /* set bit of that PF */
4492         val1 |= (1 << bp->pf_num);
4493
4494         /* clear the old value */
4495         val &= ~mask;
4496
4497         /* set the new one */
4498         val |= ((val1 << shift) & mask);
4499
4500         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4501         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4502 }
4503
4504 /**
4505  * bnx2x_clear_pf_load - clear pf load mark
4506  *
4507  * @bp:         driver handle
4508  *
4509  * Should be run under rtnl lock.
4510  * Decrements the load counter for the current engine. Returns
4511  * whether other functions are still loaded
4512  */
4513 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4514 {
4515         u32 val1, val;
4516         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4517                              BNX2X_PATH0_LOAD_CNT_MASK;
4518         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4519                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4520
4521         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4523         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4524
4525         /* get the current counter value */
4526         val1 = (val & mask) >> shift;
4527
4528         /* clear bit of that PF */
4529         val1 &= ~(1 << bp->pf_num);
4530
4531         /* clear the old value */
4532         val &= ~mask;
4533
4534         /* set the new one */
4535         val |= ((val1 << shift) & mask);
4536
4537         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4538         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539         return val1 != 0;
4540 }
4541
4542 /*
4543  * Read the load status for the current engine.
4544  *
4545  * should be run under rtnl lock
4546  */
4547 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4548 {
4549         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4550                              BNX2X_PATH0_LOAD_CNT_MASK);
4551         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4552                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4553         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4554
4555         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4556
4557         val = (val & mask) >> shift;
4558
4559         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4560            engine, val);
4561
4562         return val != 0;
4563 }
4564
4565 static void _print_parity(struct bnx2x *bp, u32 reg)
4566 {
4567         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4568 }
4569
4570 static void _print_next_block(int idx, const char *blk)
4571 {
4572         pr_cont("%s%s", idx ? ", " : "", blk);
4573 }
4574
4575 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4576                                             int *par_num, bool print)
4577 {
4578         u32 cur_bit;
4579         bool res;
4580         int i;
4581
4582         res = false;
4583
4584         for (i = 0; sig; i++) {
4585                 cur_bit = (0x1UL << i);
4586                 if (sig & cur_bit) {
4587                         res |= true; /* Each bit is real error! */
4588
4589                         if (print) {
4590                                 switch (cur_bit) {
4591                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4592                                         _print_next_block((*par_num)++, "BRB");
4593                                         _print_parity(bp,
4594                                                       BRB1_REG_BRB1_PRTY_STS);
4595                                         break;
4596                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4597                                         _print_next_block((*par_num)++,
4598                                                           "PARSER");
4599                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4600                                         break;
4601                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4602                                         _print_next_block((*par_num)++, "TSDM");
4603                                         _print_parity(bp,
4604                                                       TSDM_REG_TSDM_PRTY_STS);
4605                                         break;
4606                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4607                                         _print_next_block((*par_num)++,
4608                                                           "SEARCHER");
4609                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4610                                         break;
4611                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4612                                         _print_next_block((*par_num)++, "TCM");
4613                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4614                                         break;
4615                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4616                                         _print_next_block((*par_num)++,
4617                                                           "TSEMI");
4618                                         _print_parity(bp,
4619                                                       TSEM_REG_TSEM_PRTY_STS_0);
4620                                         _print_parity(bp,
4621                                                       TSEM_REG_TSEM_PRTY_STS_1);
4622                                         break;
4623                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4624                                         _print_next_block((*par_num)++, "XPB");
4625                                         _print_parity(bp, GRCBASE_XPB +
4626                                                           PB_REG_PB_PRTY_STS);
4627                                         break;
4628                                 }
4629                         }
4630
4631                         /* Clear the bit */
4632                         sig &= ~cur_bit;
4633                 }
4634         }
4635
4636         return res;
4637 }
4638
4639 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4640                                             int *par_num, bool *global,
4641                                             bool print)
4642 {
4643         u32 cur_bit;
4644         bool res;
4645         int i;
4646
4647         res = false;
4648
4649         for (i = 0; sig; i++) {
4650                 cur_bit = (0x1UL << i);
4651                 if (sig & cur_bit) {
4652                         res |= true; /* Each bit is real error! */
4653                         switch (cur_bit) {
4654                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4655                                 if (print) {
4656                                         _print_next_block((*par_num)++, "PBF");
4657                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4658                                 }
4659                                 break;
4660                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4661                                 if (print) {
4662                                         _print_next_block((*par_num)++, "QM");
4663                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4664                                 }
4665                                 break;
4666                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4667                                 if (print) {
4668                                         _print_next_block((*par_num)++, "TM");
4669                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4670                                 }
4671                                 break;
4672                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4673                                 if (print) {
4674                                         _print_next_block((*par_num)++, "XSDM");
4675                                         _print_parity(bp,
4676                                                       XSDM_REG_XSDM_PRTY_STS);
4677                                 }
4678                                 break;
4679                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4680                                 if (print) {
4681                                         _print_next_block((*par_num)++, "XCM");
4682                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4683                                 }
4684                                 break;
4685                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4686                                 if (print) {
4687                                         _print_next_block((*par_num)++,
4688                                                           "XSEMI");
4689                                         _print_parity(bp,
4690                                                       XSEM_REG_XSEM_PRTY_STS_0);
4691                                         _print_parity(bp,
4692                                                       XSEM_REG_XSEM_PRTY_STS_1);
4693                                 }
4694                                 break;
4695                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4696                                 if (print) {
4697                                         _print_next_block((*par_num)++,
4698                                                           "DOORBELLQ");
4699                                         _print_parity(bp,
4700                                                       DORQ_REG_DORQ_PRTY_STS);
4701                                 }
4702                                 break;
4703                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4704                                 if (print) {
4705                                         _print_next_block((*par_num)++, "NIG");
4706                                         if (CHIP_IS_E1x(bp)) {
4707                                                 _print_parity(bp,
4708                                                         NIG_REG_NIG_PRTY_STS);
4709                                         } else {
4710                                                 _print_parity(bp,
4711                                                         NIG_REG_NIG_PRTY_STS_0);
4712                                                 _print_parity(bp,
4713                                                         NIG_REG_NIG_PRTY_STS_1);
4714                                         }
4715                                 }
4716                                 break;
4717                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4718                                 if (print)
4719                                         _print_next_block((*par_num)++,
4720                                                           "VAUX PCI CORE");
4721                                 *global = true;
4722                                 break;
4723                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4724                                 if (print) {
4725                                         _print_next_block((*par_num)++,
4726                                                           "DEBUG");
4727                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4728                                 }
4729                                 break;
4730                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4731                                 if (print) {
4732                                         _print_next_block((*par_num)++, "USDM");
4733                                         _print_parity(bp,
4734                                                       USDM_REG_USDM_PRTY_STS);
4735                                 }
4736                                 break;
4737                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4738                                 if (print) {
4739                                         _print_next_block((*par_num)++, "UCM");
4740                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4741                                 }
4742                                 break;
4743                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4744                                 if (print) {
4745                                         _print_next_block((*par_num)++,
4746                                                           "USEMI");
4747                                         _print_parity(bp,
4748                                                       USEM_REG_USEM_PRTY_STS_0);
4749                                         _print_parity(bp,
4750                                                       USEM_REG_USEM_PRTY_STS_1);
4751                                 }
4752                                 break;
4753                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4754                                 if (print) {
4755                                         _print_next_block((*par_num)++, "UPB");
4756                                         _print_parity(bp, GRCBASE_UPB +
4757                                                           PB_REG_PB_PRTY_STS);
4758                                 }
4759                                 break;
4760                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4761                                 if (print) {
4762                                         _print_next_block((*par_num)++, "CSDM");
4763                                         _print_parity(bp,
4764                                                       CSDM_REG_CSDM_PRTY_STS);
4765                                 }
4766                                 break;
4767                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4768                                 if (print) {
4769                                         _print_next_block((*par_num)++, "CCM");
4770                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4771                                 }
4772                                 break;
4773                         }
4774
4775                         /* Clear the bit */
4776                         sig &= ~cur_bit;
4777                 }
4778         }
4779
4780         return res;
4781 }
4782
4783 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4784                                             int *par_num, bool print)
4785 {
4786         u32 cur_bit;
4787         bool res;
4788         int i;
4789
4790         res = false;
4791
4792         for (i = 0; sig; i++) {
4793                 cur_bit = (0x1UL << i);
4794                 if (sig & cur_bit) {
4795                         res = true; /* Each bit is real error! */
4796                         if (print) {
4797                                 switch (cur_bit) {
4798                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4799                                         _print_next_block((*par_num)++,
4800                                                           "CSEMI");
4801                                         _print_parity(bp,
4802                                                       CSEM_REG_CSEM_PRTY_STS_0);
4803                                         _print_parity(bp,
4804                                                       CSEM_REG_CSEM_PRTY_STS_1);
4805                                         break;
4806                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4807                                         _print_next_block((*par_num)++, "PXP");
4808                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4809                                         _print_parity(bp,
4810                                                       PXP2_REG_PXP2_PRTY_STS_0);
4811                                         _print_parity(bp,
4812                                                       PXP2_REG_PXP2_PRTY_STS_1);
4813                                         break;
4814                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4815                                         _print_next_block((*par_num)++,
4816                                                           "PXPPCICLOCKCLIENT");
4817                                         break;
4818                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4819                                         _print_next_block((*par_num)++, "CFC");
4820                                         _print_parity(bp,
4821                                                       CFC_REG_CFC_PRTY_STS);
4822                                         break;
4823                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4824                                         _print_next_block((*par_num)++, "CDU");
4825                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4826                                         break;
4827                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4828                                         _print_next_block((*par_num)++, "DMAE");
4829                                         _print_parity(bp,
4830                                                       DMAE_REG_DMAE_PRTY_STS);
4831                                         break;
4832                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4833                                         _print_next_block((*par_num)++, "IGU");
4834                                         if (CHIP_IS_E1x(bp))
4835                                                 _print_parity(bp,
4836                                                         HC_REG_HC_PRTY_STS);
4837                                         else
4838                                                 _print_parity(bp,
4839                                                         IGU_REG_IGU_PRTY_STS);
4840                                         break;
4841                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4842                                         _print_next_block((*par_num)++, "MISC");
4843                                         _print_parity(bp,
4844                                                       MISC_REG_MISC_PRTY_STS);
4845                                         break;
4846                                 }
4847                         }
4848
4849                         /* Clear the bit */
4850                         sig &= ~cur_bit;
4851                 }
4852         }
4853
4854         return res;
4855 }
4856
4857 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4858                                             int *par_num, bool *global,
4859                                             bool print)
4860 {
4861         bool res = false;
4862         u32 cur_bit;
4863         int i;
4864
4865         for (i = 0; sig; i++) {
4866                 cur_bit = (0x1UL << i);
4867                 if (sig & cur_bit) {
4868                         switch (cur_bit) {
4869                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4870                                 if (print)
4871                                         _print_next_block((*par_num)++,
4872                                                           "MCP ROM");
4873                                 *global = true;
4874                                 res = true;
4875                                 break;
4876                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4877                                 if (print)
4878                                         _print_next_block((*par_num)++,
4879                                                           "MCP UMP RX");
4880                                 *global = true;
4881                                 res = true;
4882                                 break;
4883                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4884                                 if (print)
4885                                         _print_next_block((*par_num)++,
4886                                                           "MCP UMP TX");
4887                                 *global = true;
4888                                 res = true;
4889                                 break;
4890                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4891                                 (*par_num)++;
4892                                 /* clear latched SCPAD PATIRY from MCP */
4893                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4894                                        1UL << 10);
4895                                 break;
4896                         }
4897
4898                         /* Clear the bit */
4899                         sig &= ~cur_bit;
4900                 }
4901         }
4902
4903         return res;
4904 }
4905
4906 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4907                                             int *par_num, bool print)
4908 {
4909         u32 cur_bit;
4910         bool res;
4911         int i;
4912
4913         res = false;
4914
4915         for (i = 0; sig; i++) {
4916                 cur_bit = (0x1UL << i);
4917                 if (sig & cur_bit) {
4918                         res = true; /* Each bit is real error! */
4919                         if (print) {
4920                                 switch (cur_bit) {
4921                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4922                                         _print_next_block((*par_num)++,
4923                                                           "PGLUE_B");
4924                                         _print_parity(bp,
4925                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4926                                         break;
4927                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4928                                         _print_next_block((*par_num)++, "ATC");
4929                                         _print_parity(bp,
4930                                                       ATC_REG_ATC_PRTY_STS);
4931                                         break;
4932                                 }
4933                         }
4934                         /* Clear the bit */
4935                         sig &= ~cur_bit;
4936                 }
4937         }
4938
4939         return res;
4940 }
4941
4942 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4943                               u32 *sig)
4944 {
4945         bool res = false;
4946
4947         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4948             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4949             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4950             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4951             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4952                 int par_num = 0;
4953
4954                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4955                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4956                           sig[0] & HW_PRTY_ASSERT_SET_0,
4957                           sig[1] & HW_PRTY_ASSERT_SET_1,
4958                           sig[2] & HW_PRTY_ASSERT_SET_2,
4959                           sig[3] & HW_PRTY_ASSERT_SET_3,
4960                           sig[4] & HW_PRTY_ASSERT_SET_4);
4961                 if (print) {
4962                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4963                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4964                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4965                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4966                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4967                                 netdev_err(bp->dev,
4968                                            "Parity errors detected in blocks: ");
4969                         } else {
4970                                 print = false;
4971                         }
4972                 }
4973                 res |= bnx2x_check_blocks_with_parity0(bp,
4974                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4975                 res |= bnx2x_check_blocks_with_parity1(bp,
4976                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4977                 res |= bnx2x_check_blocks_with_parity2(bp,
4978                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4979                 res |= bnx2x_check_blocks_with_parity3(bp,
4980                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4981                 res |= bnx2x_check_blocks_with_parity4(bp,
4982                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4983
4984                 if (print)
4985                         pr_cont("\n");
4986         }
4987
4988         return res;
4989 }
4990
4991 /**
4992  * bnx2x_chk_parity_attn - checks for parity attentions.
4993  *
4994  * @bp:         driver handle
4995  * @global:     true if there was a global attention
4996  * @print:      show parity attention in syslog
4997  */
4998 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4999 {
5000         struct attn_route attn = { {0} };
5001         int port = BP_PORT(bp);
5002
5003         attn.sig[0] = REG_RD(bp,
5004                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5005                              port*4);
5006         attn.sig[1] = REG_RD(bp,
5007                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5008                              port*4);
5009         attn.sig[2] = REG_RD(bp,
5010                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5011                              port*4);
5012         attn.sig[3] = REG_RD(bp,
5013                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5014                              port*4);
5015         /* Since MCP attentions can't be disabled inside the block, we need to
5016          * read AEU registers to see whether they're currently disabled
5017          */
5018         attn.sig[3] &= ((REG_RD(bp,
5019                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5020                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5021                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5022                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5023
5024         if (!CHIP_IS_E1x(bp))
5025                 attn.sig[4] = REG_RD(bp,
5026                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5027                                      port*4);
5028
5029         return bnx2x_parity_attn(bp, global, print, attn.sig);
5030 }
5031
5032 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5033 {
5034         u32 val;
5035         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5036
5037                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5038                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5039                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5040                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5041                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5042                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5043                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5044                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5045                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5046                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5047                 if (val &
5048                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5049                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5050                 if (val &
5051                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5052                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5053                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5054                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5055                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5056                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5057                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5058                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5059         }
5060         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5061                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5062                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5063                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5064                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5065                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5066                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5067                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5068                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5069                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5070                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5071                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5072                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5073                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5074                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5075         }
5076
5077         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5078                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5079                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5080                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5082         }
5083 }
5084
5085 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5086 {
5087         struct attn_route attn, *group_mask;
5088         int port = BP_PORT(bp);
5089         int index;
5090         u32 reg_addr;
5091         u32 val;
5092         u32 aeu_mask;
5093         bool global = false;
5094
5095         /* need to take HW lock because MCP or other port might also
5096            try to handle this event */
5097         bnx2x_acquire_alr(bp);
5098
5099         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5100 #ifndef BNX2X_STOP_ON_ERROR
5101                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5102                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5103                 /* Disable HW interrupts */
5104                 bnx2x_int_disable(bp);
5105                 /* In case of parity errors don't handle attentions so that
5106                  * other function would "see" parity errors.
5107                  */
5108 #else
5109                 bnx2x_panic();
5110 #endif
5111                 bnx2x_release_alr(bp);
5112                 return;
5113         }
5114
5115         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5116         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5117         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5118         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5119         if (!CHIP_IS_E1x(bp))
5120                 attn.sig[4] =
5121                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5122         else
5123                 attn.sig[4] = 0;
5124
5125         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5126            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5127
5128         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5129                 if (deasserted & (1 << index)) {
5130                         group_mask = &bp->attn_group[index];
5131
5132                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5133                            index,
5134                            group_mask->sig[0], group_mask->sig[1],
5135                            group_mask->sig[2], group_mask->sig[3],
5136                            group_mask->sig[4]);
5137
5138                         bnx2x_attn_int_deasserted4(bp,
5139                                         attn.sig[4] & group_mask->sig[4]);
5140                         bnx2x_attn_int_deasserted3(bp,
5141                                         attn.sig[3] & group_mask->sig[3]);
5142                         bnx2x_attn_int_deasserted1(bp,
5143                                         attn.sig[1] & group_mask->sig[1]);
5144                         bnx2x_attn_int_deasserted2(bp,
5145                                         attn.sig[2] & group_mask->sig[2]);
5146                         bnx2x_attn_int_deasserted0(bp,
5147                                         attn.sig[0] & group_mask->sig[0]);
5148                 }
5149         }
5150
5151         bnx2x_release_alr(bp);
5152
5153         if (bp->common.int_block == INT_BLOCK_HC)
5154                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5155                             COMMAND_REG_ATTN_BITS_CLR);
5156         else
5157                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5158
5159         val = ~deasserted;
5160         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5161            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5162         REG_WR(bp, reg_addr, val);
5163
5164         if (~bp->attn_state & deasserted)
5165                 BNX2X_ERR("IGU ERROR\n");
5166
5167         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5168                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5169
5170         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5171         aeu_mask = REG_RD(bp, reg_addr);
5172
5173         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5174            aeu_mask, deasserted);
5175         aeu_mask |= (deasserted & 0x3ff);
5176         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5177
5178         REG_WR(bp, reg_addr, aeu_mask);
5179         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5180
5181         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5182         bp->attn_state &= ~deasserted;
5183         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5184 }
5185
5186 static void bnx2x_attn_int(struct bnx2x *bp)
5187 {
5188         /* read local copy of bits */
5189         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5190                                                                 attn_bits);
5191         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5192                                                                 attn_bits_ack);
5193         u32 attn_state = bp->attn_state;
5194
5195         /* look for changed bits */
5196         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5197         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5198
5199         DP(NETIF_MSG_HW,
5200            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5201            attn_bits, attn_ack, asserted, deasserted);
5202
5203         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5204                 BNX2X_ERR("BAD attention state\n");
5205
5206         /* handle bits that were raised */
5207         if (asserted)
5208                 bnx2x_attn_int_asserted(bp, asserted);
5209
5210         if (deasserted)
5211                 bnx2x_attn_int_deasserted(bp, deasserted);
5212 }
5213
5214 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5215                       u16 index, u8 op, u8 update)
5216 {
5217         u32 igu_addr = bp->igu_base_addr;
5218         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5219         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5220                              igu_addr);
5221 }
5222
5223 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5224 {
5225         /* No memory barriers */
5226         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5227         mmiowb(); /* keep prod updates ordered */
5228 }
5229
5230 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5231                                       union event_ring_elem *elem)
5232 {
5233         u8 err = elem->message.error;
5234
5235         if (!bp->cnic_eth_dev.starting_cid  ||
5236             (cid < bp->cnic_eth_dev.starting_cid &&
5237             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5238                 return 1;
5239
5240         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5241
5242         if (unlikely(err)) {
5243
5244                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5245                           cid);
5246                 bnx2x_panic_dump(bp, false);
5247         }
5248         bnx2x_cnic_cfc_comp(bp, cid, err);
5249         return 0;
5250 }
5251
5252 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5253 {
5254         struct bnx2x_mcast_ramrod_params rparam;
5255         int rc;
5256
5257         memset(&rparam, 0, sizeof(rparam));
5258
5259         rparam.mcast_obj = &bp->mcast_obj;
5260
5261         netif_addr_lock_bh(bp->dev);
5262
5263         /* Clear pending state for the last command */
5264         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5265
5266         /* If there are pending mcast commands - send them */
5267         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5268                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5269                 if (rc < 0)
5270                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5271                                   rc);
5272         }
5273
5274         netif_addr_unlock_bh(bp->dev);
5275 }
5276
5277 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5278                                             union event_ring_elem *elem)
5279 {
5280         unsigned long ramrod_flags = 0;
5281         int rc = 0;
5282         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5283         u32 cid = echo & BNX2X_SWCID_MASK;
5284         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285
5286         /* Always push next commands out, don't wait here */
5287         __set_bit(RAMROD_CONT, &ramrod_flags);
5288
5289         switch (echo >> BNX2X_SWCID_SHIFT) {
5290         case BNX2X_FILTER_MAC_PENDING:
5291                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5292                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5293                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5294                 else
5295                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5296
5297                 break;
5298         case BNX2X_FILTER_VLAN_PENDING:
5299                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5300                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5301                 break;
5302         case BNX2X_FILTER_MCAST_PENDING:
5303                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5304                 /* This is only relevant for 57710 where multicast MACs are
5305                  * configured as unicast MACs using the same ramrod.
5306                  */
5307                 bnx2x_handle_mcast_eqe(bp);
5308                 return;
5309         default:
5310                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5311                 return;
5312         }
5313
5314         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5315
5316         if (rc < 0)
5317                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5318         else if (rc > 0)
5319                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5320 }
5321
5322 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5323
5324 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5325 {
5326         netif_addr_lock_bh(bp->dev);
5327
5328         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5329
5330         /* Send rx_mode command again if was requested */
5331         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5332                 bnx2x_set_storm_rx_mode(bp);
5333         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5334                                     &bp->sp_state))
5335                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5336         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5337                                     &bp->sp_state))
5338                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5339
5340         netif_addr_unlock_bh(bp->dev);
5341 }
5342
5343 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5344                                               union event_ring_elem *elem)
5345 {
5346         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5347                 DP(BNX2X_MSG_SP,
5348                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5349                    elem->message.data.vif_list_event.func_bit_map);
5350                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5351                         elem->message.data.vif_list_event.func_bit_map);
5352         } else if (elem->message.data.vif_list_event.echo ==
5353                    VIF_LIST_RULE_SET) {
5354                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5355                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5356         }
5357 }
5358
5359 /* called with rtnl_lock */
5360 static void bnx2x_after_function_update(struct bnx2x *bp)
5361 {
5362         int q, rc;
5363         struct bnx2x_fastpath *fp;
5364         struct bnx2x_queue_state_params queue_params = {NULL};
5365         struct bnx2x_queue_update_params *q_update_params =
5366                 &queue_params.params.update;
5367
5368         /* Send Q update command with afex vlan removal values for all Qs */
5369         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5370
5371         /* set silent vlan removal values according to vlan mode */
5372         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5373                   &q_update_params->update_flags);
5374         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5375                   &q_update_params->update_flags);
5376         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5377
5378         /* in access mode mark mask and value are 0 to strip all vlans */
5379         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5380                 q_update_params->silent_removal_value = 0;
5381                 q_update_params->silent_removal_mask = 0;
5382         } else {
5383                 q_update_params->silent_removal_value =
5384                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5385                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5386         }
5387
5388         for_each_eth_queue(bp, q) {
5389                 /* Set the appropriate Queue object */
5390                 fp = &bp->fp[q];
5391                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5392
5393                 /* send the ramrod */
5394                 rc = bnx2x_queue_state_change(bp, &queue_params);
5395                 if (rc < 0)
5396                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5397                                   q);
5398         }
5399
5400         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5401                 fp = &bp->fp[FCOE_IDX(bp)];
5402                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5403
5404                 /* clear pending completion bit */
5405                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5406
5407                 /* mark latest Q bit */
5408                 smp_mb__before_atomic();
5409                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5410                 smp_mb__after_atomic();
5411
5412                 /* send Q update ramrod for FCoE Q */
5413                 rc = bnx2x_queue_state_change(bp, &queue_params);
5414                 if (rc < 0)
5415                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5416                                   q);
5417         } else {
5418                 /* If no FCoE ring - ACK MCP now */
5419                 bnx2x_link_report(bp);
5420                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5421         }
5422 }
5423
5424 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5425         struct bnx2x *bp, u32 cid)
5426 {
5427         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5428
5429         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5430                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5431         else
5432                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5433 }
5434
5435 static void bnx2x_eq_int(struct bnx2x *bp)
5436 {
5437         u16 hw_cons, sw_cons, sw_prod;
5438         union event_ring_elem *elem;
5439         u8 echo;
5440         u32 cid;
5441         u8 opcode;
5442         int rc, spqe_cnt = 0;
5443         struct bnx2x_queue_sp_obj *q_obj;
5444         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5445         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5446
5447         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5448
5449         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5450          * when we get the next-page we need to adjust so the loop
5451          * condition below will be met. The next element is the size of a
5452          * regular element and hence incrementing by 1
5453          */
5454         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5455                 hw_cons++;
5456
5457         /* This function may never run in parallel with itself for a
5458          * specific bp, thus there is no need in "paired" read memory
5459          * barrier here.
5460          */
5461         sw_cons = bp->eq_cons;
5462         sw_prod = bp->eq_prod;
5463
5464         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5465                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5466
5467         for (; sw_cons != hw_cons;
5468               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5469
5470                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5471
5472                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5473                 if (!rc) {
5474                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5475                            rc);
5476                         goto next_spqe;
5477                 }
5478
5479                 opcode = elem->message.opcode;
5480
5481                 /* handle eq element */
5482                 switch (opcode) {
5483                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5484                         bnx2x_vf_mbx_schedule(bp,
5485                                               &elem->message.data.vf_pf_event);
5486                         continue;
5487
5488                 case EVENT_RING_OPCODE_STAT_QUERY:
5489                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5490                                "got statistics comp event %d\n",
5491                                bp->stats_comp++);
5492                         /* nothing to do with stats comp */
5493                         goto next_spqe;
5494
5495                 case EVENT_RING_OPCODE_CFC_DEL:
5496                         /* handle according to cid range */
5497                         /*
5498                          * we may want to verify here that the bp state is
5499                          * HALTING
5500                          */
5501
5502                         /* elem CID originates from FW; actually LE */
5503                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5504
5505                         DP(BNX2X_MSG_SP,
5506                            "got delete ramrod for MULTI[%d]\n", cid);
5507
5508                         if (CNIC_LOADED(bp) &&
5509                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5510                                 goto next_spqe;
5511
5512                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5513
5514                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5515                                 break;
5516
5517                         goto next_spqe;
5518
5519                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5520                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5521                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5522                         if (f_obj->complete_cmd(bp, f_obj,
5523                                                 BNX2X_F_CMD_TX_STOP))
5524                                 break;
5525                         goto next_spqe;
5526
5527                 case EVENT_RING_OPCODE_START_TRAFFIC:
5528                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5529                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5530                         if (f_obj->complete_cmd(bp, f_obj,
5531                                                 BNX2X_F_CMD_TX_START))
5532                                 break;
5533                         goto next_spqe;
5534
5535                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5536                         echo = elem->message.data.function_update_event.echo;
5537                         if (echo == SWITCH_UPDATE) {
5538                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5539                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5540                                 if (f_obj->complete_cmd(
5541                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5542                                         break;
5543
5544                         } else {
5545                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5546
5547                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5548                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5549                                 f_obj->complete_cmd(bp, f_obj,
5550                                                     BNX2X_F_CMD_AFEX_UPDATE);
5551
5552                                 /* We will perform the Queues update from
5553                                  * sp_rtnl task as all Queue SP operations
5554                                  * should run under rtnl_lock.
5555                                  */
5556                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5557                         }
5558
5559                         goto next_spqe;
5560
5561                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5562                         f_obj->complete_cmd(bp, f_obj,
5563                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5564                         bnx2x_after_afex_vif_lists(bp, elem);
5565                         goto next_spqe;
5566                 case EVENT_RING_OPCODE_FUNCTION_START:
5567                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5568                            "got FUNC_START ramrod\n");
5569                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5570                                 break;
5571
5572                         goto next_spqe;
5573
5574                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5575                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5576                            "got FUNC_STOP ramrod\n");
5577                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5578                                 break;
5579
5580                         goto next_spqe;
5581
5582                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5583                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5584                            "got set_timesync ramrod completion\n");
5585                         if (f_obj->complete_cmd(bp, f_obj,
5586                                                 BNX2X_F_CMD_SET_TIMESYNC))
5587                                 break;
5588                         goto next_spqe;
5589                 }
5590
5591                 switch (opcode | bp->state) {
5592                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5593                       BNX2X_STATE_OPEN):
5594                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5595                       BNX2X_STATE_OPENING_WAIT4_PORT):
5596                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5597                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5598                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5599                            SW_CID(elem->message.data.eth_event.echo));
5600                         rss_raw->clear_pending(rss_raw);
5601                         break;
5602
5603                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5604                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5605                 case (EVENT_RING_OPCODE_SET_MAC |
5606                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5607                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5608                       BNX2X_STATE_OPEN):
5609                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5610                       BNX2X_STATE_DIAG):
5611                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5612                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5613                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5614                         bnx2x_handle_classification_eqe(bp, elem);
5615                         break;
5616
5617                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5618                       BNX2X_STATE_OPEN):
5619                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5620                       BNX2X_STATE_DIAG):
5621                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5622                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5623                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5624                         bnx2x_handle_mcast_eqe(bp);
5625                         break;
5626
5627                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5628                       BNX2X_STATE_OPEN):
5629                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5630                       BNX2X_STATE_DIAG):
5631                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5632                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5633                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5634                         bnx2x_handle_rx_mode_eqe(bp);
5635                         break;
5636                 default:
5637                         /* unknown event log error and continue */
5638                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5639                                   elem->message.opcode, bp->state);
5640                 }
5641 next_spqe:
5642                 spqe_cnt++;
5643         } /* for */
5644
5645         smp_mb__before_atomic();
5646         atomic_add(spqe_cnt, &bp->eq_spq_left);
5647
5648         bp->eq_cons = sw_cons;
5649         bp->eq_prod = sw_prod;
5650         /* Make sure that above mem writes were issued towards the memory */
5651         smp_wmb();
5652
5653         /* update producer */
5654         bnx2x_update_eq_prod(bp, bp->eq_prod);
5655 }
5656
5657 static void bnx2x_sp_task(struct work_struct *work)
5658 {
5659         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5660
5661         DP(BNX2X_MSG_SP, "sp task invoked\n");
5662
5663         /* make sure the atomic interrupt_occurred has been written */
5664         smp_rmb();
5665         if (atomic_read(&bp->interrupt_occurred)) {
5666
5667                 /* what work needs to be performed? */
5668                 u16 status = bnx2x_update_dsb_idx(bp);
5669
5670                 DP(BNX2X_MSG_SP, "status %x\n", status);
5671                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5672                 atomic_set(&bp->interrupt_occurred, 0);
5673
5674                 /* HW attentions */
5675                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5676                         bnx2x_attn_int(bp);
5677                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5678                 }
5679
5680                 /* SP events: STAT_QUERY and others */
5681                 if (status & BNX2X_DEF_SB_IDX) {
5682                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5683
5684                         if (FCOE_INIT(bp) &&
5685                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5686                                 /* Prevent local bottom-halves from running as
5687                                  * we are going to change the local NAPI list.
5688                                  */
5689                                 local_bh_disable();
5690                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5691                                 local_bh_enable();
5692                         }
5693
5694                         /* Handle EQ completions */
5695                         bnx2x_eq_int(bp);
5696                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5697                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5698
5699                         status &= ~BNX2X_DEF_SB_IDX;
5700                 }
5701
5702                 /* if status is non zero then perhaps something went wrong */
5703                 if (unlikely(status))
5704                         DP(BNX2X_MSG_SP,
5705                            "got an unknown interrupt! (status 0x%x)\n", status);
5706
5707                 /* ack status block only if something was actually handled */
5708                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5709                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5710         }
5711
5712         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5713         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5714                                &bp->sp_state)) {
5715                 bnx2x_link_report(bp);
5716                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5717         }
5718 }
5719
5720 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5721 {
5722         struct net_device *dev = dev_instance;
5723         struct bnx2x *bp = netdev_priv(dev);
5724
5725         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5726                      IGU_INT_DISABLE, 0);
5727
5728 #ifdef BNX2X_STOP_ON_ERROR
5729         if (unlikely(bp->panic))
5730                 return IRQ_HANDLED;
5731 #endif
5732
5733         if (CNIC_LOADED(bp)) {
5734                 struct cnic_ops *c_ops;
5735
5736                 rcu_read_lock();
5737                 c_ops = rcu_dereference(bp->cnic_ops);
5738                 if (c_ops)
5739                         c_ops->cnic_handler(bp->cnic_data, NULL);
5740                 rcu_read_unlock();
5741         }
5742
5743         /* schedule sp task to perform default status block work, ack
5744          * attentions and enable interrupts.
5745          */
5746         bnx2x_schedule_sp_task(bp);
5747
5748         return IRQ_HANDLED;
5749 }
5750
5751 /* end of slow path */
5752
5753 void bnx2x_drv_pulse(struct bnx2x *bp)
5754 {
5755         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5756                  bp->fw_drv_pulse_wr_seq);
5757 }
5758
5759 static void bnx2x_timer(unsigned long data)
5760 {
5761         struct bnx2x *bp = (struct bnx2x *) data;
5762
5763         if (!netif_running(bp->dev))
5764                 return;
5765
5766         if (IS_PF(bp) &&
5767             !BP_NOMCP(bp)) {
5768                 int mb_idx = BP_FW_MB_IDX(bp);
5769                 u16 drv_pulse;
5770                 u16 mcp_pulse;
5771
5772                 ++bp->fw_drv_pulse_wr_seq;
5773                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5774                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5775                 bnx2x_drv_pulse(bp);
5776
5777                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5778                              MCP_PULSE_SEQ_MASK);
5779                 /* The delta between driver pulse and mcp response
5780                  * should not get too big. If the MFW is more than 5 pulses
5781                  * behind, we should worry about it enough to generate an error
5782                  * log.
5783                  */
5784                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5785                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5786                                   drv_pulse, mcp_pulse);
5787         }
5788
5789         if (bp->state == BNX2X_STATE_OPEN)
5790                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5791
5792         /* sample pf vf bulletin board for new posts from pf */
5793         if (IS_VF(bp))
5794                 bnx2x_timer_sriov(bp);
5795
5796         mod_timer(&bp->timer, jiffies + bp->current_interval);
5797 }
5798
5799 /* end of Statistics */
5800
5801 /* nic init */
5802
5803 /*
5804  * nic init service functions
5805  */
5806
5807 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5808 {
5809         u32 i;
5810         if (!(len%4) && !(addr%4))
5811                 for (i = 0; i < len; i += 4)
5812                         REG_WR(bp, addr + i, fill);
5813         else
5814                 for (i = 0; i < len; i++)
5815                         REG_WR8(bp, addr + i, fill);
5816 }
5817
5818 /* helper: writes FP SP data to FW - data_size in dwords */
5819 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5820                                 int fw_sb_id,
5821                                 u32 *sb_data_p,
5822                                 u32 data_size)
5823 {
5824         int index;
5825         for (index = 0; index < data_size; index++)
5826                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5827                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5828                         sizeof(u32)*index,
5829                         *(sb_data_p + index));
5830 }
5831
5832 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5833 {
5834         u32 *sb_data_p;
5835         u32 data_size = 0;
5836         struct hc_status_block_data_e2 sb_data_e2;
5837         struct hc_status_block_data_e1x sb_data_e1x;
5838
5839         /* disable the function first */
5840         if (!CHIP_IS_E1x(bp)) {
5841                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5842                 sb_data_e2.common.state = SB_DISABLED;
5843                 sb_data_e2.common.p_func.vf_valid = false;
5844                 sb_data_p = (u32 *)&sb_data_e2;
5845                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5846         } else {
5847                 memset(&sb_data_e1x, 0,
5848                        sizeof(struct hc_status_block_data_e1x));
5849                 sb_data_e1x.common.state = SB_DISABLED;
5850                 sb_data_e1x.common.p_func.vf_valid = false;
5851                 sb_data_p = (u32 *)&sb_data_e1x;
5852                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5853         }
5854         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5855
5856         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5857                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5858                         CSTORM_STATUS_BLOCK_SIZE);
5859         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5861                         CSTORM_SYNC_BLOCK_SIZE);
5862 }
5863
5864 /* helper:  writes SP SB data to FW */
5865 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5866                 struct hc_sp_status_block_data *sp_sb_data)
5867 {
5868         int func = BP_FUNC(bp);
5869         int i;
5870         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5871                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5872                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5873                         i*sizeof(u32),
5874                         *((u32 *)sp_sb_data + i));
5875 }
5876
5877 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5878 {
5879         int func = BP_FUNC(bp);
5880         struct hc_sp_status_block_data sp_sb_data;
5881         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5882
5883         sp_sb_data.state = SB_DISABLED;
5884         sp_sb_data.p_func.vf_valid = false;
5885
5886         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5887
5888         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5889                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5890                         CSTORM_SP_STATUS_BLOCK_SIZE);
5891         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5893                         CSTORM_SP_SYNC_BLOCK_SIZE);
5894 }
5895
5896 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5897                                            int igu_sb_id, int igu_seg_id)
5898 {
5899         hc_sm->igu_sb_id = igu_sb_id;
5900         hc_sm->igu_seg_id = igu_seg_id;
5901         hc_sm->timer_value = 0xFF;
5902         hc_sm->time_to_expire = 0xFFFFFFFF;
5903 }
5904
5905 /* allocates state machine ids. */
5906 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5907 {
5908         /* zero out state machine indices */
5909         /* rx indices */
5910         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5911
5912         /* tx indices */
5913         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5915         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5916         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5917
5918         /* map indices */
5919         /* rx indices */
5920         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5921                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5922
5923         /* tx indices */
5924         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5925                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5926         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5927                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5928         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5929                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5930         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5931                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5932 }
5933
5934 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5935                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5936 {
5937         int igu_seg_id;
5938
5939         struct hc_status_block_data_e2 sb_data_e2;
5940         struct hc_status_block_data_e1x sb_data_e1x;
5941         struct hc_status_block_sm  *hc_sm_p;
5942         int data_size;
5943         u32 *sb_data_p;
5944
5945         if (CHIP_INT_MODE_IS_BC(bp))
5946                 igu_seg_id = HC_SEG_ACCESS_NORM;
5947         else
5948                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5949
5950         bnx2x_zero_fp_sb(bp, fw_sb_id);
5951
5952         if (!CHIP_IS_E1x(bp)) {
5953                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5954                 sb_data_e2.common.state = SB_ENABLED;
5955                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5956                 sb_data_e2.common.p_func.vf_id = vfid;
5957                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5958                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5959                 sb_data_e2.common.same_igu_sb_1b = true;
5960                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5961                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5962                 hc_sm_p = sb_data_e2.common.state_machine;
5963                 sb_data_p = (u32 *)&sb_data_e2;
5964                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5965                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5966         } else {
5967                 memset(&sb_data_e1x, 0,
5968                        sizeof(struct hc_status_block_data_e1x));
5969                 sb_data_e1x.common.state = SB_ENABLED;
5970                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5971                 sb_data_e1x.common.p_func.vf_id = 0xff;
5972                 sb_data_e1x.common.p_func.vf_valid = false;
5973                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5974                 sb_data_e1x.common.same_igu_sb_1b = true;
5975                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5976                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5977                 hc_sm_p = sb_data_e1x.common.state_machine;
5978                 sb_data_p = (u32 *)&sb_data_e1x;
5979                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5980                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5981         }
5982
5983         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5984                                        igu_sb_id, igu_seg_id);
5985         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5986                                        igu_sb_id, igu_seg_id);
5987
5988         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5989
5990         /* write indices to HW - PCI guarantees endianity of regpairs */
5991         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5992 }
5993
5994 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5995                                      u16 tx_usec, u16 rx_usec)
5996 {
5997         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5998                                     false, rx_usec);
5999         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6000                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6001                                        tx_usec);
6002         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6004                                        tx_usec);
6005         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6007                                        tx_usec);
6008 }
6009
6010 static void bnx2x_init_def_sb(struct bnx2x *bp)
6011 {
6012         struct host_sp_status_block *def_sb = bp->def_status_blk;
6013         dma_addr_t mapping = bp->def_status_blk_mapping;
6014         int igu_sp_sb_index;
6015         int igu_seg_id;
6016         int port = BP_PORT(bp);
6017         int func = BP_FUNC(bp);
6018         int reg_offset, reg_offset_en5;
6019         u64 section;
6020         int index;
6021         struct hc_sp_status_block_data sp_sb_data;
6022         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6023
6024         if (CHIP_INT_MODE_IS_BC(bp)) {
6025                 igu_sp_sb_index = DEF_SB_IGU_ID;
6026                 igu_seg_id = HC_SEG_ACCESS_DEF;
6027         } else {
6028                 igu_sp_sb_index = bp->igu_dsb_id;
6029                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6030         }
6031
6032         /* ATTN */
6033         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6034                                             atten_status_block);
6035         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6036
6037         bp->attn_state = 0;
6038
6039         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6040                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6041         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6042                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6043         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6044                 int sindex;
6045                 /* take care of sig[0]..sig[4] */
6046                 for (sindex = 0; sindex < 4; sindex++)
6047                         bp->attn_group[index].sig[sindex] =
6048                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6049
6050                 if (!CHIP_IS_E1x(bp))
6051                         /*
6052                          * enable5 is separate from the rest of the registers,
6053                          * and therefore the address skip is 4
6054                          * and not 16 between the different groups
6055                          */
6056                         bp->attn_group[index].sig[4] = REG_RD(bp,
6057                                         reg_offset_en5 + 0x4*index);
6058                 else
6059                         bp->attn_group[index].sig[4] = 0;
6060         }
6061
6062         if (bp->common.int_block == INT_BLOCK_HC) {
6063                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6064                                      HC_REG_ATTN_MSG0_ADDR_L);
6065
6066                 REG_WR(bp, reg_offset, U64_LO(section));
6067                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6068         } else if (!CHIP_IS_E1x(bp)) {
6069                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6070                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6071         }
6072
6073         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6074                                             sp_sb);
6075
6076         bnx2x_zero_sp_sb(bp);
6077
6078         /* PCI guarantees endianity of regpairs */
6079         sp_sb_data.state                = SB_ENABLED;
6080         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6081         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6082         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6083         sp_sb_data.igu_seg_id           = igu_seg_id;
6084         sp_sb_data.p_func.pf_id         = func;
6085         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6086         sp_sb_data.p_func.vf_id         = 0xff;
6087
6088         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6089
6090         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6091 }
6092
6093 void bnx2x_update_coalesce(struct bnx2x *bp)
6094 {
6095         int i;
6096
6097         for_each_eth_queue(bp, i)
6098                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6099                                          bp->tx_ticks, bp->rx_ticks);
6100 }
6101
6102 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6103 {
6104         spin_lock_init(&bp->spq_lock);
6105         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6106
6107         bp->spq_prod_idx = 0;
6108         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6109         bp->spq_prod_bd = bp->spq;
6110         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6111 }
6112
6113 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6114 {
6115         int i;
6116         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6117                 union event_ring_elem *elem =
6118                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6119
6120                 elem->next_page.addr.hi =
6121                         cpu_to_le32(U64_HI(bp->eq_mapping +
6122                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6123                 elem->next_page.addr.lo =
6124                         cpu_to_le32(U64_LO(bp->eq_mapping +
6125                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6126         }
6127         bp->eq_cons = 0;
6128         bp->eq_prod = NUM_EQ_DESC;
6129         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6130         /* we want a warning message before it gets wrought... */
6131         atomic_set(&bp->eq_spq_left,
6132                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6133 }
6134
6135 /* called with netif_addr_lock_bh() */
6136 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6137                                unsigned long rx_mode_flags,
6138                                unsigned long rx_accept_flags,
6139                                unsigned long tx_accept_flags,
6140                                unsigned long ramrod_flags)
6141 {
6142         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6143         int rc;
6144
6145         memset(&ramrod_param, 0, sizeof(ramrod_param));
6146
6147         /* Prepare ramrod parameters */
6148         ramrod_param.cid = 0;
6149         ramrod_param.cl_id = cl_id;
6150         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6151         ramrod_param.func_id = BP_FUNC(bp);
6152
6153         ramrod_param.pstate = &bp->sp_state;
6154         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6155
6156         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6157         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6158
6159         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6160
6161         ramrod_param.ramrod_flags = ramrod_flags;
6162         ramrod_param.rx_mode_flags = rx_mode_flags;
6163
6164         ramrod_param.rx_accept_flags = rx_accept_flags;
6165         ramrod_param.tx_accept_flags = tx_accept_flags;
6166
6167         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6168         if (rc < 0) {
6169                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6170                 return rc;
6171         }
6172
6173         return 0;
6174 }
6175
6176 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6177                                    unsigned long *rx_accept_flags,
6178                                    unsigned long *tx_accept_flags)
6179 {
6180         /* Clear the flags first */
6181         *rx_accept_flags = 0;
6182         *tx_accept_flags = 0;
6183
6184         switch (rx_mode) {
6185         case BNX2X_RX_MODE_NONE:
6186                 /*
6187                  * 'drop all' supersedes any accept flags that may have been
6188                  * passed to the function.
6189                  */
6190                 break;
6191         case BNX2X_RX_MODE_NORMAL:
6192                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6193                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6194                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6195
6196                 /* internal switching mode */
6197                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6198                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6199                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6200
6201                 if (bp->accept_any_vlan) {
6202                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6203                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6204                 }
6205
6206                 break;
6207         case BNX2X_RX_MODE_ALLMULTI:
6208                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6210                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6211
6212                 /* internal switching mode */
6213                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6215                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6216
6217                 if (bp->accept_any_vlan) {
6218                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6220                 }
6221
6222                 break;
6223         case BNX2X_RX_MODE_PROMISC:
6224                 /* According to definition of SI mode, iface in promisc mode
6225                  * should receive matched and unmatched (in resolution of port)
6226                  * unicast packets.
6227                  */
6228                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6229                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6230                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6231                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6232
6233                 /* internal switching mode */
6234                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6235                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6236
6237                 if (IS_MF_SI(bp))
6238                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6239                 else
6240                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6241
6242                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6243                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6244
6245                 break;
6246         default:
6247                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6248                 return -EINVAL;
6249         }
6250
6251         return 0;
6252 }
6253
6254 /* called with netif_addr_lock_bh() */
6255 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6256 {
6257         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6258         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6259         int rc;
6260
6261         if (!NO_FCOE(bp))
6262                 /* Configure rx_mode of FCoE Queue */
6263                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6264
6265         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6266                                      &tx_accept_flags);
6267         if (rc)
6268                 return rc;
6269
6270         __set_bit(RAMROD_RX, &ramrod_flags);
6271         __set_bit(RAMROD_TX, &ramrod_flags);
6272
6273         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6274                                    rx_accept_flags, tx_accept_flags,
6275                                    ramrod_flags);
6276 }
6277
6278 static void bnx2x_init_internal_common(struct bnx2x *bp)
6279 {
6280         int i;
6281
6282         /* Zero this manually as its initialization is
6283            currently missing in the initTool */
6284         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6285                 REG_WR(bp, BAR_USTRORM_INTMEM +
6286                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6287         if (!CHIP_IS_E1x(bp)) {
6288                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6289                         CHIP_INT_MODE_IS_BC(bp) ?
6290                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6291         }
6292 }
6293
6294 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6295 {
6296         switch (load_code) {
6297         case FW_MSG_CODE_DRV_LOAD_COMMON:
6298         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6299                 bnx2x_init_internal_common(bp);
6300                 /* no break */
6301
6302         case FW_MSG_CODE_DRV_LOAD_PORT:
6303                 /* nothing to do */
6304                 /* no break */
6305
6306         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6307                 /* internal memory per function is
6308                    initialized inside bnx2x_pf_init */
6309                 break;
6310
6311         default:
6312                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6313                 break;
6314         }
6315 }
6316
6317 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6318 {
6319         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6320 }
6321
6322 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
6327 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6328 {
6329         if (CHIP_IS_E1x(fp->bp))
6330                 return BP_L_ID(fp->bp) + fp->index;
6331         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6332                 return bnx2x_fp_igu_sb_id(fp);
6333 }
6334
6335 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6336 {
6337         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6338         u8 cos;
6339         unsigned long q_type = 0;
6340         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6341         fp->rx_queue = fp_idx;
6342         fp->cid = fp_idx;
6343         fp->cl_id = bnx2x_fp_cl_id(fp);
6344         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6345         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6346         /* qZone id equals to FW (per path) client id */
6347         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6348
6349         /* init shortcut */
6350         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6351
6352         /* Setup SB indices */
6353         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6354
6355         /* Configure Queue State object */
6356         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6357         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6358
6359         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6360
6361         /* init tx data */
6362         for_each_cos_in_tx_queue(fp, cos) {
6363                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6364                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6365                                   FP_COS_TO_TXQ(fp, cos, bp),
6366                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6367                 cids[cos] = fp->txdata_ptr[cos]->cid;
6368         }
6369
6370         /* nothing more for vf to do here */
6371         if (IS_VF(bp))
6372                 return;
6373
6374         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6375                       fp->fw_sb_id, fp->igu_sb_id);
6376         bnx2x_update_fpsb_idx(fp);
6377         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6378                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6379                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6380
6381         /**
6382          * Configure classification DBs: Always enable Tx switching
6383          */
6384         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6385
6386         DP(NETIF_MSG_IFUP,
6387            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6388            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6389            fp->igu_sb_id);
6390 }
6391
6392 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6393 {
6394         int i;
6395
6396         for (i = 1; i <= NUM_TX_RINGS; i++) {
6397                 struct eth_tx_next_bd *tx_next_bd =
6398                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6399
6400                 tx_next_bd->addr_hi =
6401                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6402                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6403                 tx_next_bd->addr_lo =
6404                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6405                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406         }
6407
6408         *txdata->tx_cons_sb = cpu_to_le16(0);
6409
6410         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6411         txdata->tx_db.data.zero_fill1 = 0;
6412         txdata->tx_db.data.prod = 0;
6413
6414         txdata->tx_pkt_prod = 0;
6415         txdata->tx_pkt_cons = 0;
6416         txdata->tx_bd_prod = 0;
6417         txdata->tx_bd_cons = 0;
6418         txdata->tx_pkt = 0;
6419 }
6420
6421 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6422 {
6423         int i;
6424
6425         for_each_tx_queue_cnic(bp, i)
6426                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6427 }
6428
6429 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6430 {
6431         int i;
6432         u8 cos;
6433
6434         for_each_eth_queue(bp, i)
6435                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6436                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6437 }
6438
6439 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6440 {
6441         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6442         unsigned long q_type = 0;
6443
6444         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6445         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6446                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6447         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6448         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6449         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6450         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6451         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6452                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6453                           fp);
6454
6455         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6456
6457         /* qZone id equals to FW (per path) client id */
6458         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6459         /* init shortcut */
6460         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6461                 bnx2x_rx_ustorm_prods_offset(fp);
6462
6463         /* Configure Queue State object */
6464         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6465         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6466
6467         /* No multi-CoS for FCoE L2 client */
6468         BUG_ON(fp->max_cos != 1);
6469
6470         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6471                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6472                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6473
6474         DP(NETIF_MSG_IFUP,
6475            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6476            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6477            fp->igu_sb_id);
6478 }
6479
6480 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6481 {
6482         if (!NO_FCOE(bp))
6483                 bnx2x_init_fcoe_fp(bp);
6484
6485         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6486                       BNX2X_VF_ID_INVALID, false,
6487                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6488
6489         /* ensure status block indices were read */
6490         rmb();
6491         bnx2x_init_rx_rings_cnic(bp);
6492         bnx2x_init_tx_rings_cnic(bp);
6493
6494         /* flush all */
6495         mb();
6496         mmiowb();
6497 }
6498
6499 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6500 {
6501         int i;
6502
6503         /* Setup NIC internals and enable interrupts */
6504         for_each_eth_queue(bp, i)
6505                 bnx2x_init_eth_fp(bp, i);
6506
6507         /* ensure status block indices were read */
6508         rmb();
6509         bnx2x_init_rx_rings(bp);
6510         bnx2x_init_tx_rings(bp);
6511
6512         if (IS_PF(bp)) {
6513                 /* Initialize MOD_ABS interrupts */
6514                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6515                                        bp->common.shmem_base,
6516                                        bp->common.shmem2_base, BP_PORT(bp));
6517
6518                 /* initialize the default status block and sp ring */
6519                 bnx2x_init_def_sb(bp);
6520                 bnx2x_update_dsb_idx(bp);
6521                 bnx2x_init_sp_ring(bp);
6522         } else {
6523                 bnx2x_memset_stats(bp);
6524         }
6525 }
6526
6527 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6528 {
6529         bnx2x_init_eq_ring(bp);
6530         bnx2x_init_internal(bp, load_code);
6531         bnx2x_pf_init(bp);
6532         bnx2x_stats_init(bp);
6533
6534         /* flush all before enabling interrupts */
6535         mb();
6536         mmiowb();
6537
6538         bnx2x_int_enable(bp);
6539
6540         /* Check for SPIO5 */
6541         bnx2x_attn_int_deasserted0(bp,
6542                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6543                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6544 }
6545
6546 /* gzip service functions */
6547 static int bnx2x_gunzip_init(struct bnx2x *bp)
6548 {
6549         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6550                                             &bp->gunzip_mapping, GFP_KERNEL);
6551         if (bp->gunzip_buf  == NULL)
6552                 goto gunzip_nomem1;
6553
6554         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6555         if (bp->strm  == NULL)
6556                 goto gunzip_nomem2;
6557
6558         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6559         if (bp->strm->workspace == NULL)
6560                 goto gunzip_nomem3;
6561
6562         return 0;
6563
6564 gunzip_nomem3:
6565         kfree(bp->strm);
6566         bp->strm = NULL;
6567
6568 gunzip_nomem2:
6569         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6570                           bp->gunzip_mapping);
6571         bp->gunzip_buf = NULL;
6572
6573 gunzip_nomem1:
6574         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6575         return -ENOMEM;
6576 }
6577
6578 static void bnx2x_gunzip_end(struct bnx2x *bp)
6579 {
6580         if (bp->strm) {
6581                 vfree(bp->strm->workspace);
6582                 kfree(bp->strm);
6583                 bp->strm = NULL;
6584         }
6585
6586         if (bp->gunzip_buf) {
6587                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6588                                   bp->gunzip_mapping);
6589                 bp->gunzip_buf = NULL;
6590         }
6591 }
6592
6593 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6594 {
6595         int n, rc;
6596
6597         /* check gzip header */
6598         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6599                 BNX2X_ERR("Bad gzip header\n");
6600                 return -EINVAL;
6601         }
6602
6603         n = 10;
6604
6605 #define FNAME                           0x8
6606
6607         if (zbuf[3] & FNAME)
6608                 while ((zbuf[n++] != 0) && (n < len));
6609
6610         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6611         bp->strm->avail_in = len - n;
6612         bp->strm->next_out = bp->gunzip_buf;
6613         bp->strm->avail_out = FW_BUF_SIZE;
6614
6615         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6616         if (rc != Z_OK)
6617                 return rc;
6618
6619         rc = zlib_inflate(bp->strm, Z_FINISH);
6620         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6621                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6622                            bp->strm->msg);
6623
6624         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6625         if (bp->gunzip_outlen & 0x3)
6626                 netdev_err(bp->dev,
6627                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6628                                 bp->gunzip_outlen);
6629         bp->gunzip_outlen >>= 2;
6630
6631         zlib_inflateEnd(bp->strm);
6632
6633         if (rc == Z_STREAM_END)
6634                 return 0;
6635
6636         return rc;
6637 }
6638
6639 /* nic load/unload */
6640
6641 /*
6642  * General service functions
6643  */
6644
6645 /* send a NIG loopback debug packet */
6646 static void bnx2x_lb_pckt(struct bnx2x *bp)
6647 {
6648         u32 wb_write[3];
6649
6650         /* Ethernet source and destination addresses */
6651         wb_write[0] = 0x55555555;
6652         wb_write[1] = 0x55555555;
6653         wb_write[2] = 0x20;             /* SOP */
6654         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6655
6656         /* NON-IP protocol */
6657         wb_write[0] = 0x09000000;
6658         wb_write[1] = 0x55555555;
6659         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6660         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6661 }
6662
6663 /* some of the internal memories
6664  * are not directly readable from the driver
6665  * to test them we send debug packets
6666  */
6667 static int bnx2x_int_mem_test(struct bnx2x *bp)
6668 {
6669         int factor;
6670         int count, i;
6671         u32 val = 0;
6672
6673         if (CHIP_REV_IS_FPGA(bp))
6674                 factor = 120;
6675         else if (CHIP_REV_IS_EMUL(bp))
6676                 factor = 200;
6677         else
6678                 factor = 1;
6679
6680         /* Disable inputs of parser neighbor blocks */
6681         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6682         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6683         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6684         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6685
6686         /*  Write 0 to parser credits for CFC search request */
6687         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6688
6689         /* send Ethernet packet */
6690         bnx2x_lb_pckt(bp);
6691
6692         /* TODO do i reset NIG statistic? */
6693         /* Wait until NIG register shows 1 packet of size 0x10 */
6694         count = 1000 * factor;
6695         while (count) {
6696
6697                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6698                 val = *bnx2x_sp(bp, wb_data[0]);
6699                 if (val == 0x10)
6700                         break;
6701
6702                 usleep_range(10000, 20000);
6703                 count--;
6704         }
6705         if (val != 0x10) {
6706                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6707                 return -1;
6708         }
6709
6710         /* Wait until PRS register shows 1 packet */
6711         count = 1000 * factor;
6712         while (count) {
6713                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6714                 if (val == 1)
6715                         break;
6716
6717                 usleep_range(10000, 20000);
6718                 count--;
6719         }
6720         if (val != 0x1) {
6721                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6722                 return -2;
6723         }
6724
6725         /* Reset and init BRB, PRS */
6726         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6727         msleep(50);
6728         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6729         msleep(50);
6730         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6731         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6732
6733         DP(NETIF_MSG_HW, "part2\n");
6734
6735         /* Disable inputs of parser neighbor blocks */
6736         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6737         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6738         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6739         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6740
6741         /* Write 0 to parser credits for CFC search request */
6742         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6743
6744         /* send 10 Ethernet packets */
6745         for (i = 0; i < 10; i++)
6746                 bnx2x_lb_pckt(bp);
6747
6748         /* Wait until NIG register shows 10 + 1
6749            packets of size 11*0x10 = 0xb0 */
6750         count = 1000 * factor;
6751         while (count) {
6752
6753                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6754                 val = *bnx2x_sp(bp, wb_data[0]);
6755                 if (val == 0xb0)
6756                         break;
6757
6758                 usleep_range(10000, 20000);
6759                 count--;
6760         }
6761         if (val != 0xb0) {
6762                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6763                 return -3;
6764         }
6765
6766         /* Wait until PRS register shows 2 packets */
6767         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6768         if (val != 2)
6769                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6770
6771         /* Write 1 to parser credits for CFC search request */
6772         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6773
6774         /* Wait until PRS register shows 3 packets */
6775         msleep(10 * factor);
6776         /* Wait until NIG register shows 1 packet of size 0x10 */
6777         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6778         if (val != 3)
6779                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6780
6781         /* clear NIG EOP FIFO */
6782         for (i = 0; i < 11; i++)
6783                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6784         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6785         if (val != 1) {
6786                 BNX2X_ERR("clear of NIG failed\n");
6787                 return -4;
6788         }
6789
6790         /* Reset and init BRB, PRS, NIG */
6791         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6792         msleep(50);
6793         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6794         msleep(50);
6795         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6796         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6797         if (!CNIC_SUPPORT(bp))
6798                 /* set NIC mode */
6799                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6800
6801         /* Enable inputs of parser neighbor blocks */
6802         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6803         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6804         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6805         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6806
6807         DP(NETIF_MSG_HW, "done\n");
6808
6809         return 0; /* OK */
6810 }
6811
6812 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6813 {
6814         u32 val;
6815
6816         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6817         if (!CHIP_IS_E1x(bp))
6818                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6819         else
6820                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6821         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6822         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6823         /*
6824          * mask read length error interrupts in brb for parser
6825          * (parsing unit and 'checksum and crc' unit)
6826          * these errors are legal (PU reads fixed length and CAC can cause
6827          * read length error on truncated packets)
6828          */
6829         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6830         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6831         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6832         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6833         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6834         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6835 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6836 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6837         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6838         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6839         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6840 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6841 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6842         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6843         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6844         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6845         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6846 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6847 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6848
6849         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6850                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6851                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6852         if (!CHIP_IS_E1x(bp))
6853                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6854                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6855         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6856
6857         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6858         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6859         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6860 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6861
6862         if (!CHIP_IS_E1x(bp))
6863                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6864                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6865
6866         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6867         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6868 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6869         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6870 }
6871
6872 static void bnx2x_reset_common(struct bnx2x *bp)
6873 {
6874         u32 val = 0x1400;
6875
6876         /* reset_common */
6877         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6878                0xd3ffff7f);
6879
6880         if (CHIP_IS_E3(bp)) {
6881                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6882                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6883         }
6884
6885         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6886 }
6887
6888 static void bnx2x_setup_dmae(struct bnx2x *bp)
6889 {
6890         bp->dmae_ready = 0;
6891         spin_lock_init(&bp->dmae_lock);
6892 }
6893
6894 static void bnx2x_init_pxp(struct bnx2x *bp)
6895 {
6896         u16 devctl;
6897         int r_order, w_order;
6898
6899         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6900         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6901         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6902         if (bp->mrrs == -1)
6903                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6904         else {
6905                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6906                 r_order = bp->mrrs;
6907         }
6908
6909         bnx2x_init_pxp_arb(bp, r_order, w_order);
6910 }
6911
6912 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6913 {
6914         int is_required;
6915         u32 val;
6916         int port;
6917
6918         if (BP_NOMCP(bp))
6919                 return;
6920
6921         is_required = 0;
6922         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6923               SHARED_HW_CFG_FAN_FAILURE_MASK;
6924
6925         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6926                 is_required = 1;
6927
6928         /*
6929          * The fan failure mechanism is usually related to the PHY type since
6930          * the power consumption of the board is affected by the PHY. Currently,
6931          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6932          */
6933         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6934                 for (port = PORT_0; port < PORT_MAX; port++) {
6935                         is_required |=
6936                                 bnx2x_fan_failure_det_req(
6937                                         bp,
6938                                         bp->common.shmem_base,
6939                                         bp->common.shmem2_base,
6940                                         port);
6941                 }
6942
6943         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6944
6945         if (is_required == 0)
6946                 return;
6947
6948         /* Fan failure is indicated by SPIO 5 */
6949         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6950
6951         /* set to active low mode */
6952         val = REG_RD(bp, MISC_REG_SPIO_INT);
6953         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6954         REG_WR(bp, MISC_REG_SPIO_INT, val);
6955
6956         /* enable interrupt to signal the IGU */
6957         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6958         val |= MISC_SPIO_SPIO5;
6959         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6960 }
6961
6962 void bnx2x_pf_disable(struct bnx2x *bp)
6963 {
6964         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6965         val &= ~IGU_PF_CONF_FUNC_EN;
6966
6967         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6968         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6969         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6970 }
6971
6972 static void bnx2x__common_init_phy(struct bnx2x *bp)
6973 {
6974         u32 shmem_base[2], shmem2_base[2];
6975         /* Avoid common init in case MFW supports LFA */
6976         if (SHMEM2_RD(bp, size) >
6977             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6978                 return;
6979         shmem_base[0] =  bp->common.shmem_base;
6980         shmem2_base[0] = bp->common.shmem2_base;
6981         if (!CHIP_IS_E1x(bp)) {
6982                 shmem_base[1] =
6983                         SHMEM2_RD(bp, other_shmem_base_addr);
6984                 shmem2_base[1] =
6985                         SHMEM2_RD(bp, other_shmem2_base_addr);
6986         }
6987         bnx2x_acquire_phy_lock(bp);
6988         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6989                               bp->common.chip_id);
6990         bnx2x_release_phy_lock(bp);
6991 }
6992
6993 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6994 {
6995         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6996         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
6997         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
6998         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
6999         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7000
7001         /* make sure this value is 0 */
7002         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7003
7004         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7005         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7006         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7007         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7008 }
7009
7010 static void bnx2x_set_endianity(struct bnx2x *bp)
7011 {
7012 #ifdef __BIG_ENDIAN
7013         bnx2x_config_endianity(bp, 1);
7014 #else
7015         bnx2x_config_endianity(bp, 0);
7016 #endif
7017 }
7018
7019 static void bnx2x_reset_endianity(struct bnx2x *bp)
7020 {
7021         bnx2x_config_endianity(bp, 0);
7022 }
7023
7024 /**
7025  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7026  *
7027  * @bp:         driver handle
7028  */
7029 static int bnx2x_init_hw_common(struct bnx2x *bp)
7030 {
7031         u32 val;
7032
7033         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7034
7035         /*
7036          * take the RESET lock to protect undi_unload flow from accessing
7037          * registers while we're resetting the chip
7038          */
7039         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7040
7041         bnx2x_reset_common(bp);
7042         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7043
7044         val = 0xfffc;
7045         if (CHIP_IS_E3(bp)) {
7046                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7047                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7048         }
7049         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7050
7051         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7052
7053         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7054
7055         if (!CHIP_IS_E1x(bp)) {
7056                 u8 abs_func_id;
7057
7058                 /**
7059                  * 4-port mode or 2-port mode we need to turn of master-enable
7060                  * for everyone, after that, turn it back on for self.
7061                  * so, we disregard multi-function or not, and always disable
7062                  * for all functions on the given path, this means 0,2,4,6 for
7063                  * path 0 and 1,3,5,7 for path 1
7064                  */
7065                 for (abs_func_id = BP_PATH(bp);
7066                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7067                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7068                                 REG_WR(bp,
7069                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7070                                     1);
7071                                 continue;
7072                         }
7073
7074                         bnx2x_pretend_func(bp, abs_func_id);
7075                         /* clear pf enable */
7076                         bnx2x_pf_disable(bp);
7077                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7078                 }
7079         }
7080
7081         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7082         if (CHIP_IS_E1(bp)) {
7083                 /* enable HW interrupt from PXP on USDM overflow
7084                    bit 16 on INT_MASK_0 */
7085                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7086         }
7087
7088         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7089         bnx2x_init_pxp(bp);
7090         bnx2x_set_endianity(bp);
7091         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7092
7093         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7094                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7095
7096         /* let the HW do it's magic ... */
7097         msleep(100);
7098         /* finish PXP init */
7099         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7100         if (val != 1) {
7101                 BNX2X_ERR("PXP2 CFG failed\n");
7102                 return -EBUSY;
7103         }
7104         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7105         if (val != 1) {
7106                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7107                 return -EBUSY;
7108         }
7109
7110         /* Timers bug workaround E2 only. We need to set the entire ILT to
7111          * have entries with value "0" and valid bit on.
7112          * This needs to be done by the first PF that is loaded in a path
7113          * (i.e. common phase)
7114          */
7115         if (!CHIP_IS_E1x(bp)) {
7116 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7117  * (i.e. vnic3) to start even if it is marked as "scan-off".
7118  * This occurs when a different function (func2,3) is being marked
7119  * as "scan-off". Real-life scenario for example: if a driver is being
7120  * load-unloaded while func6,7 are down. This will cause the timer to access
7121  * the ilt, translate to a logical address and send a request to read/write.
7122  * Since the ilt for the function that is down is not valid, this will cause
7123  * a translation error which is unrecoverable.
7124  * The Workaround is intended to make sure that when this happens nothing fatal
7125  * will occur. The workaround:
7126  *      1.  First PF driver which loads on a path will:
7127  *              a.  After taking the chip out of reset, by using pretend,
7128  *                  it will write "0" to the following registers of
7129  *                  the other vnics.
7130  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7131  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7132  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7133  *                  And for itself it will write '1' to
7134  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7135  *                  dmae-operations (writing to pram for example.)
7136  *                  note: can be done for only function 6,7 but cleaner this
7137  *                        way.
7138  *              b.  Write zero+valid to the entire ILT.
7139  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7140  *                  VNIC3 (of that port). The range allocated will be the
7141  *                  entire ILT. This is needed to prevent  ILT range error.
7142  *      2.  Any PF driver load flow:
7143  *              a.  ILT update with the physical addresses of the allocated
7144  *                  logical pages.
7145  *              b.  Wait 20msec. - note that this timeout is needed to make
7146  *                  sure there are no requests in one of the PXP internal
7147  *                  queues with "old" ILT addresses.
7148  *              c.  PF enable in the PGLC.
7149  *              d.  Clear the was_error of the PF in the PGLC. (could have
7150  *                  occurred while driver was down)
7151  *              e.  PF enable in the CFC (WEAK + STRONG)
7152  *              f.  Timers scan enable
7153  *      3.  PF driver unload flow:
7154  *              a.  Clear the Timers scan_en.
7155  *              b.  Polling for scan_on=0 for that PF.
7156  *              c.  Clear the PF enable bit in the PXP.
7157  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7158  *              e.  Write zero+valid to all ILT entries (The valid bit must
7159  *                  stay set)
7160  *              f.  If this is VNIC 3 of a port then also init
7161  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7162  *                  to the last entry in the ILT.
7163  *
7164  *      Notes:
7165  *      Currently the PF error in the PGLC is non recoverable.
7166  *      In the future the there will be a recovery routine for this error.
7167  *      Currently attention is masked.
7168  *      Having an MCP lock on the load/unload process does not guarantee that
7169  *      there is no Timer disable during Func6/7 enable. This is because the
7170  *      Timers scan is currently being cleared by the MCP on FLR.
7171  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7172  *      there is error before clearing it. But the flow above is simpler and
7173  *      more general.
7174  *      All ILT entries are written by zero+valid and not just PF6/7
7175  *      ILT entries since in the future the ILT entries allocation for
7176  *      PF-s might be dynamic.
7177  */
7178                 struct ilt_client_info ilt_cli;
7179                 struct bnx2x_ilt ilt;
7180                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7181                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7182
7183                 /* initialize dummy TM client */
7184                 ilt_cli.start = 0;
7185                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7186                 ilt_cli.client_num = ILT_CLIENT_TM;
7187
7188                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7189                  * Step 2: set the timers first/last ilt entry to point
7190                  * to the entire range to prevent ILT range error for 3rd/4th
7191                  * vnic (this code assumes existence of the vnic)
7192                  *
7193                  * both steps performed by call to bnx2x_ilt_client_init_op()
7194                  * with dummy TM client
7195                  *
7196                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7197                  * and his brother are split registers
7198                  */
7199                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7200                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7201                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7202
7203                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7204                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7205                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7206         }
7207
7208         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7209         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7210
7211         if (!CHIP_IS_E1x(bp)) {
7212                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7213                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7214                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7215
7216                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7217
7218                 /* let the HW do it's magic ... */
7219                 do {
7220                         msleep(200);
7221                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7222                 } while (factor-- && (val != 1));
7223
7224                 if (val != 1) {
7225                         BNX2X_ERR("ATC_INIT failed\n");
7226                         return -EBUSY;
7227                 }
7228         }
7229
7230         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7231
7232         bnx2x_iov_init_dmae(bp);
7233
7234         /* clean the DMAE memory */
7235         bp->dmae_ready = 1;
7236         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7237
7238         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7239
7240         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7241
7242         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7243
7244         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7245
7246         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7247         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7248         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7249         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7250
7251         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7252
7253         /* QM queues pointers table */
7254         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7255
7256         /* soft reset pulse */
7257         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7258         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7259
7260         if (CNIC_SUPPORT(bp))
7261                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7262
7263         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7264
7265         if (!CHIP_REV_IS_SLOW(bp))
7266                 /* enable hw interrupt from doorbell Q */
7267                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7268
7269         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7270
7271         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7272         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7273
7274         if (!CHIP_IS_E1(bp))
7275                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7276
7277         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7278                 if (IS_MF_AFEX(bp)) {
7279                         /* configure that VNTag and VLAN headers must be
7280                          * received in afex mode
7281                          */
7282                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7283                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7284                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7285                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7286                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7287                 } else {
7288                         /* Bit-map indicating which L2 hdrs may appear
7289                          * after the basic Ethernet header
7290                          */
7291                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7292                                bp->path_has_ovlan ? 7 : 6);
7293                 }
7294         }
7295
7296         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7297         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7298         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7299         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7300
7301         if (!CHIP_IS_E1x(bp)) {
7302                 /* reset VFC memories */
7303                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7304                            VFC_MEMORIES_RST_REG_CAM_RST |
7305                            VFC_MEMORIES_RST_REG_RAM_RST);
7306                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307                            VFC_MEMORIES_RST_REG_CAM_RST |
7308                            VFC_MEMORIES_RST_REG_RAM_RST);
7309
7310                 msleep(20);
7311         }
7312
7313         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7314         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7315         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7316         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7317
7318         /* sync semi rtc */
7319         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7320                0x80000000);
7321         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7322                0x80000000);
7323
7324         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7325         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7326         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7327
7328         if (!CHIP_IS_E1x(bp)) {
7329                 if (IS_MF_AFEX(bp)) {
7330                         /* configure that VNTag and VLAN headers must be
7331                          * sent in afex mode
7332                          */
7333                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7334                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7335                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7336                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7337                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7338                 } else {
7339                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7340                                bp->path_has_ovlan ? 7 : 6);
7341                 }
7342         }
7343
7344         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7345
7346         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7347
7348         if (CNIC_SUPPORT(bp)) {
7349                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7350                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7351                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7352                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7353                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7354                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7355                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7356                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7357                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7358                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7359         }
7360         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7361
7362         if (sizeof(union cdu_context) != 1024)
7363                 /* we currently assume that a context is 1024 bytes */
7364                 dev_alert(&bp->pdev->dev,
7365                           "please adjust the size of cdu_context(%ld)\n",
7366                           (long)sizeof(union cdu_context));
7367
7368         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7369         val = (4 << 24) + (0 << 12) + 1024;
7370         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7371
7372         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7373         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7374         /* enable context validation interrupt from CFC */
7375         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7376
7377         /* set the thresholds to prevent CFC/CDU race */
7378         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7379
7380         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7381
7382         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7383                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7384
7385         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7386         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7387
7388         /* Reset PCIE errors for debug */
7389         REG_WR(bp, 0x2814, 0xffffffff);
7390         REG_WR(bp, 0x3820, 0xffffffff);
7391
7392         if (!CHIP_IS_E1x(bp)) {
7393                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7394                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7395                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7396                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7397                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7398                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7399                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7400                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7401                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7402                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7403                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7404         }
7405
7406         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7407         if (!CHIP_IS_E1(bp)) {
7408                 /* in E3 this done in per-port section */
7409                 if (!CHIP_IS_E3(bp))
7410                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7411         }
7412         if (CHIP_IS_E1H(bp))
7413                 /* not applicable for E2 (and above ...) */
7414                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7415
7416         if (CHIP_REV_IS_SLOW(bp))
7417                 msleep(200);
7418
7419         /* finish CFC init */
7420         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7421         if (val != 1) {
7422                 BNX2X_ERR("CFC LL_INIT failed\n");
7423                 return -EBUSY;
7424         }
7425         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7426         if (val != 1) {
7427                 BNX2X_ERR("CFC AC_INIT failed\n");
7428                 return -EBUSY;
7429         }
7430         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7431         if (val != 1) {
7432                 BNX2X_ERR("CFC CAM_INIT failed\n");
7433                 return -EBUSY;
7434         }
7435         REG_WR(bp, CFC_REG_DEBUG0, 0);
7436
7437         if (CHIP_IS_E1(bp)) {
7438                 /* read NIG statistic
7439                    to see if this is our first up since powerup */
7440                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7441                 val = *bnx2x_sp(bp, wb_data[0]);
7442
7443                 /* do internal memory self test */
7444                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7445                         BNX2X_ERR("internal mem self test failed\n");
7446                         return -EBUSY;
7447                 }
7448         }
7449
7450         bnx2x_setup_fan_failure_detection(bp);
7451
7452         /* clear PXP2 attentions */
7453         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7454
7455         bnx2x_enable_blocks_attention(bp);
7456         bnx2x_enable_blocks_parity(bp);
7457
7458         if (!BP_NOMCP(bp)) {
7459                 if (CHIP_IS_E1x(bp))
7460                         bnx2x__common_init_phy(bp);
7461         } else
7462                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7463
7464         if (SHMEM2_HAS(bp, netproc_fw_ver))
7465                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7466
7467         return 0;
7468 }
7469
7470 /**
7471  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7472  *
7473  * @bp:         driver handle
7474  */
7475 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7476 {
7477         int rc = bnx2x_init_hw_common(bp);
7478
7479         if (rc)
7480                 return rc;
7481
7482         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7483         if (!BP_NOMCP(bp))
7484                 bnx2x__common_init_phy(bp);
7485
7486         return 0;
7487 }
7488
7489 static int bnx2x_init_hw_port(struct bnx2x *bp)
7490 {
7491         int port = BP_PORT(bp);
7492         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7493         u32 low, high;
7494         u32 val, reg;
7495
7496         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7497
7498         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7499
7500         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7501         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7502         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7503
7504         /* Timers bug workaround: disables the pf_master bit in pglue at
7505          * common phase, we need to enable it here before any dmae access are
7506          * attempted. Therefore we manually added the enable-master to the
7507          * port phase (it also happens in the function phase)
7508          */
7509         if (!CHIP_IS_E1x(bp))
7510                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7511
7512         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7513         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7514         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7515         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7516
7517         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7518         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7519         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7520         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7521
7522         /* QM cid (connection) count */
7523         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7524
7525         if (CNIC_SUPPORT(bp)) {
7526                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7527                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7528                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7529         }
7530
7531         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7532
7533         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7534
7535         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7536
7537                 if (IS_MF(bp))
7538                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7539                 else if (bp->dev->mtu > 4096) {
7540                         if (bp->flags & ONE_PORT_FLAG)
7541                                 low = 160;
7542                         else {
7543                                 val = bp->dev->mtu;
7544                                 /* (24*1024 + val*4)/256 */
7545                                 low = 96 + (val/64) +
7546                                                 ((val % 64) ? 1 : 0);
7547                         }
7548                 } else
7549                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7550                 high = low + 56;        /* 14*1024/256 */
7551                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7552                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7553         }
7554
7555         if (CHIP_MODE_IS_4_PORT(bp))
7556                 REG_WR(bp, (BP_PORT(bp) ?
7557                             BRB1_REG_MAC_GUARANTIED_1 :
7558                             BRB1_REG_MAC_GUARANTIED_0), 40);
7559
7560         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7561         if (CHIP_IS_E3B0(bp)) {
7562                 if (IS_MF_AFEX(bp)) {
7563                         /* configure headers for AFEX mode */
7564                         REG_WR(bp, BP_PORT(bp) ?
7565                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7566                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7567                         REG_WR(bp, BP_PORT(bp) ?
7568                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7569                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7570                         REG_WR(bp, BP_PORT(bp) ?
7571                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7572                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7573                 } else {
7574                         /* Ovlan exists only if we are in multi-function +
7575                          * switch-dependent mode, in switch-independent there
7576                          * is no ovlan headers
7577                          */
7578                         REG_WR(bp, BP_PORT(bp) ?
7579                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7581                                (bp->path_has_ovlan ? 7 : 6));
7582                 }
7583         }
7584
7585         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7586         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7587         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7588         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7589
7590         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7591         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7592         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7593         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7594
7595         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7596         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7597
7598         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7599
7600         if (CHIP_IS_E1x(bp)) {
7601                 /* configure PBF to work without PAUSE mtu 9000 */
7602                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7603
7604                 /* update threshold */
7605                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7606                 /* update init credit */
7607                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7608
7609                 /* probe changes */
7610                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7611                 udelay(50);
7612                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7613         }
7614
7615         if (CNIC_SUPPORT(bp))
7616                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7617
7618         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7619         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7620
7621         if (CHIP_IS_E1(bp)) {
7622                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7623                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7624         }
7625         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7626
7627         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7628
7629         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7630         /* init aeu_mask_attn_func_0/1:
7631          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7632          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7633          *             bits 4-7 are used for "per vn group attention" */
7634         val = IS_MF(bp) ? 0xF7 : 0x7;
7635         /* Enable DCBX attention for all but E1 */
7636         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7637         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7638
7639         /* SCPAD_PARITY should NOT trigger close the gates */
7640         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7641         REG_WR(bp, reg,
7642                REG_RD(bp, reg) &
7643                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7644
7645         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7646         REG_WR(bp, reg,
7647                REG_RD(bp, reg) &
7648                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7649
7650         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7651
7652         if (!CHIP_IS_E1x(bp)) {
7653                 /* Bit-map indicating which L2 hdrs may appear after the
7654                  * basic Ethernet header
7655                  */
7656                 if (IS_MF_AFEX(bp))
7657                         REG_WR(bp, BP_PORT(bp) ?
7658                                NIG_REG_P1_HDRS_AFTER_BASIC :
7659                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7660                 else
7661                         REG_WR(bp, BP_PORT(bp) ?
7662                                NIG_REG_P1_HDRS_AFTER_BASIC :
7663                                NIG_REG_P0_HDRS_AFTER_BASIC,
7664                                IS_MF_SD(bp) ? 7 : 6);
7665
7666                 if (CHIP_IS_E3(bp))
7667                         REG_WR(bp, BP_PORT(bp) ?
7668                                    NIG_REG_LLH1_MF_MODE :
7669                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7670         }
7671         if (!CHIP_IS_E3(bp))
7672                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7673
7674         if (!CHIP_IS_E1(bp)) {
7675                 /* 0x2 disable mf_ov, 0x1 enable */
7676                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7677                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7678
7679                 if (!CHIP_IS_E1x(bp)) {
7680                         val = 0;
7681                         switch (bp->mf_mode) {
7682                         case MULTI_FUNCTION_SD:
7683                                 val = 1;
7684                                 break;
7685                         case MULTI_FUNCTION_SI:
7686                         case MULTI_FUNCTION_AFEX:
7687                                 val = 2;
7688                                 break;
7689                         }
7690
7691                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7692                                                   NIG_REG_LLH0_CLS_TYPE), val);
7693                 }
7694                 {
7695                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7696                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7697                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7698                 }
7699         }
7700
7701         /* If SPIO5 is set to generate interrupts, enable it for this port */
7702         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7703         if (val & MISC_SPIO_SPIO5) {
7704                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7705                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7706                 val = REG_RD(bp, reg_addr);
7707                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7708                 REG_WR(bp, reg_addr, val);
7709         }
7710
7711         return 0;
7712 }
7713
7714 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7715 {
7716         int reg;
7717         u32 wb_write[2];
7718
7719         if (CHIP_IS_E1(bp))
7720                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7721         else
7722                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7723
7724         wb_write[0] = ONCHIP_ADDR1(addr);
7725         wb_write[1] = ONCHIP_ADDR2(addr);
7726         REG_WR_DMAE(bp, reg, wb_write, 2);
7727 }
7728
7729 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7730 {
7731         u32 data, ctl, cnt = 100;
7732         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7733         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7734         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7735         u32 sb_bit =  1 << (idu_sb_id%32);
7736         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7737         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7738
7739         /* Not supported in BC mode */
7740         if (CHIP_INT_MODE_IS_BC(bp))
7741                 return;
7742
7743         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7744                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7745                 IGU_REGULAR_CLEANUP_SET                         |
7746                 IGU_REGULAR_BCLEANUP;
7747
7748         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7749               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7750               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7751
7752         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7753                          data, igu_addr_data);
7754         REG_WR(bp, igu_addr_data, data);
7755         mmiowb();
7756         barrier();
7757         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7758                           ctl, igu_addr_ctl);
7759         REG_WR(bp, igu_addr_ctl, ctl);
7760         mmiowb();
7761         barrier();
7762
7763         /* wait for clean up to finish */
7764         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7765                 msleep(20);
7766
7767         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7768                 DP(NETIF_MSG_HW,
7769                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7770                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7771         }
7772 }
7773
7774 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7775 {
7776         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7777 }
7778
7779 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7780 {
7781         u32 i, base = FUNC_ILT_BASE(func);
7782         for (i = base; i < base + ILT_PER_FUNC; i++)
7783                 bnx2x_ilt_wr(bp, i, 0);
7784 }
7785
7786 static void bnx2x_init_searcher(struct bnx2x *bp)
7787 {
7788         int port = BP_PORT(bp);
7789         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7790         /* T1 hash bits value determines the T1 number of entries */
7791         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7792 }
7793
7794 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7795 {
7796         int rc;
7797         struct bnx2x_func_state_params func_params = {NULL};
7798         struct bnx2x_func_switch_update_params *switch_update_params =
7799                 &func_params.params.switch_update;
7800
7801         /* Prepare parameters for function state transitions */
7802         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7803         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7804
7805         func_params.f_obj = &bp->func_obj;
7806         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7807
7808         /* Function parameters */
7809         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7810                   &switch_update_params->changes);
7811         if (suspend)
7812                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7813                           &switch_update_params->changes);
7814
7815         rc = bnx2x_func_state_change(bp, &func_params);
7816
7817         return rc;
7818 }
7819
7820 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7821 {
7822         int rc, i, port = BP_PORT(bp);
7823         int vlan_en = 0, mac_en[NUM_MACS];
7824
7825         /* Close input from network */
7826         if (bp->mf_mode == SINGLE_FUNCTION) {
7827                 bnx2x_set_rx_filter(&bp->link_params, 0);
7828         } else {
7829                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7830                                    NIG_REG_LLH0_FUNC_EN);
7831                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7832                           NIG_REG_LLH0_FUNC_EN, 0);
7833                 for (i = 0; i < NUM_MACS; i++) {
7834                         mac_en[i] = REG_RD(bp, port ?
7835                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7836                                               4 * i) :
7837                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7838                                               4 * i));
7839                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840                                               4 * i) :
7841                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7842                 }
7843         }
7844
7845         /* Close BMC to host */
7846         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7847                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7848
7849         /* Suspend Tx switching to the PF. Completion of this ramrod
7850          * further guarantees that all the packets of that PF / child
7851          * VFs in BRB were processed by the Parser, so it is safe to
7852          * change the NIC_MODE register.
7853          */
7854         rc = bnx2x_func_switch_update(bp, 1);
7855         if (rc) {
7856                 BNX2X_ERR("Can't suspend tx-switching!\n");
7857                 return rc;
7858         }
7859
7860         /* Change NIC_MODE register */
7861         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7862
7863         /* Open input from network */
7864         if (bp->mf_mode == SINGLE_FUNCTION) {
7865                 bnx2x_set_rx_filter(&bp->link_params, 1);
7866         } else {
7867                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7868                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7869                 for (i = 0; i < NUM_MACS; i++) {
7870                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7871                                               4 * i) :
7872                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7873                                   mac_en[i]);
7874                 }
7875         }
7876
7877         /* Enable BMC to host */
7878         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7879                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7880
7881         /* Resume Tx switching to the PF */
7882         rc = bnx2x_func_switch_update(bp, 0);
7883         if (rc) {
7884                 BNX2X_ERR("Can't resume tx-switching!\n");
7885                 return rc;
7886         }
7887
7888         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7889         return 0;
7890 }
7891
7892 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7893 {
7894         int rc;
7895
7896         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7897
7898         if (CONFIGURE_NIC_MODE(bp)) {
7899                 /* Configure searcher as part of function hw init */
7900                 bnx2x_init_searcher(bp);
7901
7902                 /* Reset NIC mode */
7903                 rc = bnx2x_reset_nic_mode(bp);
7904                 if (rc)
7905                         BNX2X_ERR("Can't change NIC mode!\n");
7906                 return rc;
7907         }
7908
7909         return 0;
7910 }
7911
7912 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7913  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7914  * the addresses of the transaction, resulting in was-error bit set in the pci
7915  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7916  * to clear the interrupt which detected this from the pglueb and the was done
7917  * bit
7918  */
7919 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7920 {
7921         if (!CHIP_IS_E1x(bp))
7922                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7923                        1 << BP_ABS_FUNC(bp));
7924 }
7925
7926 static int bnx2x_init_hw_func(struct bnx2x *bp)
7927 {
7928         int port = BP_PORT(bp);
7929         int func = BP_FUNC(bp);
7930         int init_phase = PHASE_PF0 + func;
7931         struct bnx2x_ilt *ilt = BP_ILT(bp);
7932         u16 cdu_ilt_start;
7933         u32 addr, val;
7934         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7935         int i, main_mem_width, rc;
7936
7937         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7938
7939         /* FLR cleanup - hmmm */
7940         if (!CHIP_IS_E1x(bp)) {
7941                 rc = bnx2x_pf_flr_clnup(bp);
7942                 if (rc) {
7943                         bnx2x_fw_dump(bp);
7944                         return rc;
7945                 }
7946         }
7947
7948         /* set MSI reconfigure capability */
7949         if (bp->common.int_block == INT_BLOCK_HC) {
7950                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7951                 val = REG_RD(bp, addr);
7952                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7953                 REG_WR(bp, addr, val);
7954         }
7955
7956         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7957         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7958
7959         ilt = BP_ILT(bp);
7960         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7961
7962         if (IS_SRIOV(bp))
7963                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7964         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7965
7966         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7967          * those of the VFs, so start line should be reset
7968          */
7969         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7970         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7971                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7972                 ilt->lines[cdu_ilt_start + i].page_mapping =
7973                         bp->context[i].cxt_mapping;
7974                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7975         }
7976
7977         bnx2x_ilt_init_op(bp, INITOP_SET);
7978
7979         if (!CONFIGURE_NIC_MODE(bp)) {
7980                 bnx2x_init_searcher(bp);
7981                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7982                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7983         } else {
7984                 /* Set NIC mode */
7985                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7986                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7987         }
7988
7989         if (!CHIP_IS_E1x(bp)) {
7990                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7991
7992                 /* Turn on a single ISR mode in IGU if driver is going to use
7993                  * INT#x or MSI
7994                  */
7995                 if (!(bp->flags & USING_MSIX_FLAG))
7996                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7997                 /*
7998                  * Timers workaround bug: function init part.
7999                  * Need to wait 20msec after initializing ILT,
8000                  * needed to make sure there are no requests in
8001                  * one of the PXP internal queues with "old" ILT addresses
8002                  */
8003                 msleep(20);
8004                 /*
8005                  * Master enable - Due to WB DMAE writes performed before this
8006                  * register is re-initialized as part of the regular function
8007                  * init
8008                  */
8009                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8010                 /* Enable the function in IGU */
8011                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8012         }
8013
8014         bp->dmae_ready = 1;
8015
8016         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8017
8018         bnx2x_clean_pglue_errors(bp);
8019
8020         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8021         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8022         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8023         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8024         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8025         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8026         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8027         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8028         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8029         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8030         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8031         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8032         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8033
8034         if (!CHIP_IS_E1x(bp))
8035                 REG_WR(bp, QM_REG_PF_EN, 1);
8036
8037         if (!CHIP_IS_E1x(bp)) {
8038                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8039                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8040                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8041                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042         }
8043         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8044
8045         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8046         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8047         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8048
8049         bnx2x_iov_init_dq(bp);
8050
8051         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8052         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8053         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8054         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8055         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8056         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8057         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8058         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8059         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8060         if (!CHIP_IS_E1x(bp))
8061                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8062
8063         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8064
8065         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8066
8067         if (!CHIP_IS_E1x(bp))
8068                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8069
8070         if (IS_MF(bp)) {
8071                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8072                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8073                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8074                                bp->mf_ov);
8075                 }
8076         }
8077
8078         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8079
8080         /* HC init per function */
8081         if (bp->common.int_block == INT_BLOCK_HC) {
8082                 if (CHIP_IS_E1H(bp)) {
8083                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8084
8085                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8086                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8087                 }
8088                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8089
8090         } else {
8091                 int num_segs, sb_idx, prod_offset;
8092
8093                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8094
8095                 if (!CHIP_IS_E1x(bp)) {
8096                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8097                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8098                 }
8099
8100                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8101
8102                 if (!CHIP_IS_E1x(bp)) {
8103                         int dsb_idx = 0;
8104                         /**
8105                          * Producer memory:
8106                          * E2 mode: address 0-135 match to the mapping memory;
8107                          * 136 - PF0 default prod; 137 - PF1 default prod;
8108                          * 138 - PF2 default prod; 139 - PF3 default prod;
8109                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8110                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8111                          * 144-147 reserved.
8112                          *
8113                          * E1.5 mode - In backward compatible mode;
8114                          * for non default SB; each even line in the memory
8115                          * holds the U producer and each odd line hold
8116                          * the C producer. The first 128 producers are for
8117                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8118                          * producers are for the DSB for each PF.
8119                          * Each PF has five segments: (the order inside each
8120                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8121                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8122                          * 144-147 attn prods;
8123                          */
8124                         /* non-default-status-blocks */
8125                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8126                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8127                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8128                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8129                                         num_segs;
8130
8131                                 for (i = 0; i < num_segs; i++) {
8132                                         addr = IGU_REG_PROD_CONS_MEMORY +
8133                                                         (prod_offset + i) * 4;
8134                                         REG_WR(bp, addr, 0);
8135                                 }
8136                                 /* send consumer update with value 0 */
8137                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8138                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8139                                 bnx2x_igu_clear_sb(bp,
8140                                                    bp->igu_base_sb + sb_idx);
8141                         }
8142
8143                         /* default-status-blocks */
8144                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8145                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8146
8147                         if (CHIP_MODE_IS_4_PORT(bp))
8148                                 dsb_idx = BP_FUNC(bp);
8149                         else
8150                                 dsb_idx = BP_VN(bp);
8151
8152                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8153                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8154                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8155
8156                         /*
8157                          * igu prods come in chunks of E1HVN_MAX (4) -
8158                          * does not matters what is the current chip mode
8159                          */
8160                         for (i = 0; i < (num_segs * E1HVN_MAX);
8161                              i += E1HVN_MAX) {
8162                                 addr = IGU_REG_PROD_CONS_MEMORY +
8163                                                         (prod_offset + i)*4;
8164                                 REG_WR(bp, addr, 0);
8165                         }
8166                         /* send consumer update with 0 */
8167                         if (CHIP_INT_MODE_IS_BC(bp)) {
8168                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8169                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8170                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8171                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8172                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8174                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8176                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8178                         } else {
8179                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8181                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8182                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8183                         }
8184                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8185
8186                         /* !!! These should become driver const once
8187                            rf-tool supports split-68 const */
8188                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8189                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8190                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8191                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8192                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8193                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8194                 }
8195         }
8196
8197         /* Reset PCIE errors for debug */
8198         REG_WR(bp, 0x2114, 0xffffffff);
8199         REG_WR(bp, 0x2120, 0xffffffff);
8200
8201         if (CHIP_IS_E1x(bp)) {
8202                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8203                 main_mem_base = HC_REG_MAIN_MEMORY +
8204                                 BP_PORT(bp) * (main_mem_size * 4);
8205                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8206                 main_mem_width = 8;
8207
8208                 val = REG_RD(bp, main_mem_prty_clr);
8209                 if (val)
8210                         DP(NETIF_MSG_HW,
8211                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8212                            val);
8213
8214                 /* Clear "false" parity errors in MSI-X table */
8215                 for (i = main_mem_base;
8216                      i < main_mem_base + main_mem_size * 4;
8217                      i += main_mem_width) {
8218                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8219                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8220                                          i, main_mem_width / 4);
8221                 }
8222                 /* Clear HC parity attention */
8223                 REG_RD(bp, main_mem_prty_clr);
8224         }
8225
8226 #ifdef BNX2X_STOP_ON_ERROR
8227         /* Enable STORMs SP logging */
8228         REG_WR8(bp, BAR_USTRORM_INTMEM +
8229                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8230         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8231                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8232         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8233                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8235                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236 #endif
8237
8238         bnx2x_phy_probe(&bp->link_params);
8239
8240         return 0;
8241 }
8242
8243 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8244 {
8245         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8246
8247         if (!CHIP_IS_E1x(bp))
8248                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8249                                sizeof(struct host_hc_status_block_e2));
8250         else
8251                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8252                                sizeof(struct host_hc_status_block_e1x));
8253
8254         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8255 }
8256
8257 void bnx2x_free_mem(struct bnx2x *bp)
8258 {
8259         int i;
8260
8261         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8262                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8263
8264         if (IS_VF(bp))
8265                 return;
8266
8267         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8268                        sizeof(struct host_sp_status_block));
8269
8270         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8271                        sizeof(struct bnx2x_slowpath));
8272
8273         for (i = 0; i < L2_ILT_LINES(bp); i++)
8274                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8275                                bp->context[i].size);
8276         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8277
8278         BNX2X_FREE(bp->ilt->lines);
8279
8280         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8281
8282         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8283                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8284
8285         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8286
8287         bnx2x_iov_free_mem(bp);
8288 }
8289
8290 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8291 {
8292         if (!CHIP_IS_E1x(bp)) {
8293                 /* size = the status block + ramrod buffers */
8294                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8295                                                     sizeof(struct host_hc_status_block_e2));
8296                 if (!bp->cnic_sb.e2_sb)
8297                         goto alloc_mem_err;
8298         } else {
8299                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8300                                                      sizeof(struct host_hc_status_block_e1x));
8301                 if (!bp->cnic_sb.e1x_sb)
8302                         goto alloc_mem_err;
8303         }
8304
8305         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8306                 /* allocate searcher T2 table, as it wasn't allocated before */
8307                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8308                 if (!bp->t2)
8309                         goto alloc_mem_err;
8310         }
8311
8312         /* write address to which L5 should insert its values */
8313         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8314                 &bp->slowpath->drv_info_to_mcp;
8315
8316         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8317                 goto alloc_mem_err;
8318
8319         return 0;
8320
8321 alloc_mem_err:
8322         bnx2x_free_mem_cnic(bp);
8323         BNX2X_ERR("Can't allocate memory\n");
8324         return -ENOMEM;
8325 }
8326
8327 int bnx2x_alloc_mem(struct bnx2x *bp)
8328 {
8329         int i, allocated, context_size;
8330
8331         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8332                 /* allocate searcher T2 table */
8333                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8334                 if (!bp->t2)
8335                         goto alloc_mem_err;
8336         }
8337
8338         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8339                                              sizeof(struct host_sp_status_block));
8340         if (!bp->def_status_blk)
8341                 goto alloc_mem_err;
8342
8343         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8344                                        sizeof(struct bnx2x_slowpath));
8345         if (!bp->slowpath)
8346                 goto alloc_mem_err;
8347
8348         /* Allocate memory for CDU context:
8349          * This memory is allocated separately and not in the generic ILT
8350          * functions because CDU differs in few aspects:
8351          * 1. There are multiple entities allocating memory for context -
8352          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8353          * its own ILT lines.
8354          * 2. Since CDU page-size is not a single 4KB page (which is the case
8355          * for the other ILT clients), to be efficient we want to support
8356          * allocation of sub-page-size in the last entry.
8357          * 3. Context pointers are used by the driver to pass to FW / update
8358          * the context (for the other ILT clients the pointers are used just to
8359          * free the memory during unload).
8360          */
8361         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8362
8363         for (i = 0, allocated = 0; allocated < context_size; i++) {
8364                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8365                                           (context_size - allocated));
8366                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8367                                                       bp->context[i].size);
8368                 if (!bp->context[i].vcxt)
8369                         goto alloc_mem_err;
8370                 allocated += bp->context[i].size;
8371         }
8372         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8373                                  GFP_KERNEL);
8374         if (!bp->ilt->lines)
8375                 goto alloc_mem_err;
8376
8377         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8378                 goto alloc_mem_err;
8379
8380         if (bnx2x_iov_alloc_mem(bp))
8381                 goto alloc_mem_err;
8382
8383         /* Slow path ring */
8384         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8385         if (!bp->spq)
8386                 goto alloc_mem_err;
8387
8388         /* EQ */
8389         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8390                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8391         if (!bp->eq_ring)
8392                 goto alloc_mem_err;
8393
8394         return 0;
8395
8396 alloc_mem_err:
8397         bnx2x_free_mem(bp);
8398         BNX2X_ERR("Can't allocate memory\n");
8399         return -ENOMEM;
8400 }
8401
8402 /*
8403  * Init service functions
8404  */
8405
8406 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8407                       struct bnx2x_vlan_mac_obj *obj, bool set,
8408                       int mac_type, unsigned long *ramrod_flags)
8409 {
8410         int rc;
8411         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8412
8413         memset(&ramrod_param, 0, sizeof(ramrod_param));
8414
8415         /* Fill general parameters */
8416         ramrod_param.vlan_mac_obj = obj;
8417         ramrod_param.ramrod_flags = *ramrod_flags;
8418
8419         /* Fill a user request section if needed */
8420         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8421                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8422
8423                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8424
8425                 /* Set the command: ADD or DEL */
8426                 if (set)
8427                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8428                 else
8429                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8430         }
8431
8432         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8433
8434         if (rc == -EEXIST) {
8435                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8436                 /* do not treat adding same MAC as error */
8437                 rc = 0;
8438         } else if (rc < 0)
8439                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8440
8441         return rc;
8442 }
8443
8444 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8445                        struct bnx2x_vlan_mac_obj *obj, bool set,
8446                        unsigned long *ramrod_flags)
8447 {
8448         int rc;
8449         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8450
8451         memset(&ramrod_param, 0, sizeof(ramrod_param));
8452
8453         /* Fill general parameters */
8454         ramrod_param.vlan_mac_obj = obj;
8455         ramrod_param.ramrod_flags = *ramrod_flags;
8456
8457         /* Fill a user request section if needed */
8458         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8459                 ramrod_param.user_req.u.vlan.vlan = vlan;
8460                 /* Set the command: ADD or DEL */
8461                 if (set)
8462                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8463                 else
8464                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8465         }
8466
8467         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8468
8469         if (rc == -EEXIST) {
8470                 /* Do not treat adding same vlan as error. */
8471                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8472                 rc = 0;
8473         } else if (rc < 0) {
8474                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8475         }
8476
8477         return rc;
8478 }
8479
8480 int bnx2x_del_all_macs(struct bnx2x *bp,
8481                        struct bnx2x_vlan_mac_obj *mac_obj,
8482                        int mac_type, bool wait_for_comp)
8483 {
8484         int rc;
8485         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8486
8487         /* Wait for completion of requested */
8488         if (wait_for_comp)
8489                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8490
8491         /* Set the mac type of addresses we want to clear */
8492         __set_bit(mac_type, &vlan_mac_flags);
8493
8494         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8495         if (rc < 0)
8496                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8497
8498         return rc;
8499 }
8500
8501 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8502 {
8503         if (IS_PF(bp)) {
8504                 unsigned long ramrod_flags = 0;
8505
8506                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8507                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8508                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8509                                          &bp->sp_objs->mac_obj, set,
8510                                          BNX2X_ETH_MAC, &ramrod_flags);
8511         } else { /* vf */
8512                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8513                                              bp->fp->index, set);
8514         }
8515 }
8516
8517 int bnx2x_setup_leading(struct bnx2x *bp)
8518 {
8519         if (IS_PF(bp))
8520                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8521         else /* VF */
8522                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8523 }
8524
8525 /**
8526  * bnx2x_set_int_mode - configure interrupt mode
8527  *
8528  * @bp:         driver handle
8529  *
8530  * In case of MSI-X it will also try to enable MSI-X.
8531  */
8532 int bnx2x_set_int_mode(struct bnx2x *bp)
8533 {
8534         int rc = 0;
8535
8536         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8537                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8538                 return -EINVAL;
8539         }
8540
8541         switch (int_mode) {
8542         case BNX2X_INT_MODE_MSIX:
8543                 /* attempt to enable msix */
8544                 rc = bnx2x_enable_msix(bp);
8545
8546                 /* msix attained */
8547                 if (!rc)
8548                         return 0;
8549
8550                 /* vfs use only msix */
8551                 if (rc && IS_VF(bp))
8552                         return rc;
8553
8554                 /* failed to enable multiple MSI-X */
8555                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8556                                bp->num_queues,
8557                                1 + bp->num_cnic_queues);
8558
8559                 /* falling through... */
8560         case BNX2X_INT_MODE_MSI:
8561                 bnx2x_enable_msi(bp);
8562
8563                 /* falling through... */
8564         case BNX2X_INT_MODE_INTX:
8565                 bp->num_ethernet_queues = 1;
8566                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8567                 BNX2X_DEV_INFO("set number of queues to 1\n");
8568                 break;
8569         default:
8570                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8571                 return -EINVAL;
8572         }
8573         return 0;
8574 }
8575
8576 /* must be called prior to any HW initializations */
8577 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8578 {
8579         if (IS_SRIOV(bp))
8580                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8581         return L2_ILT_LINES(bp);
8582 }
8583
8584 void bnx2x_ilt_set_info(struct bnx2x *bp)
8585 {
8586         struct ilt_client_info *ilt_client;
8587         struct bnx2x_ilt *ilt = BP_ILT(bp);
8588         u16 line = 0;
8589
8590         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8591         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8592
8593         /* CDU */
8594         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8595         ilt_client->client_num = ILT_CLIENT_CDU;
8596         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8597         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8598         ilt_client->start = line;
8599         line += bnx2x_cid_ilt_lines(bp);
8600
8601         if (CNIC_SUPPORT(bp))
8602                 line += CNIC_ILT_LINES;
8603         ilt_client->end = line - 1;
8604
8605         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8606            ilt_client->start,
8607            ilt_client->end,
8608            ilt_client->page_size,
8609            ilt_client->flags,
8610            ilog2(ilt_client->page_size >> 12));
8611
8612         /* QM */
8613         if (QM_INIT(bp->qm_cid_count)) {
8614                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8615                 ilt_client->client_num = ILT_CLIENT_QM;
8616                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8617                 ilt_client->flags = 0;
8618                 ilt_client->start = line;
8619
8620                 /* 4 bytes for each cid */
8621                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8622                                                          QM_ILT_PAGE_SZ);
8623
8624                 ilt_client->end = line - 1;
8625
8626                 DP(NETIF_MSG_IFUP,
8627                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8628                    ilt_client->start,
8629                    ilt_client->end,
8630                    ilt_client->page_size,
8631                    ilt_client->flags,
8632                    ilog2(ilt_client->page_size >> 12));
8633         }
8634
8635         if (CNIC_SUPPORT(bp)) {
8636                 /* SRC */
8637                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8638                 ilt_client->client_num = ILT_CLIENT_SRC;
8639                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8640                 ilt_client->flags = 0;
8641                 ilt_client->start = line;
8642                 line += SRC_ILT_LINES;
8643                 ilt_client->end = line - 1;
8644
8645                 DP(NETIF_MSG_IFUP,
8646                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8647                    ilt_client->start,
8648                    ilt_client->end,
8649                    ilt_client->page_size,
8650                    ilt_client->flags,
8651                    ilog2(ilt_client->page_size >> 12));
8652
8653                 /* TM */
8654                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8655                 ilt_client->client_num = ILT_CLIENT_TM;
8656                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8657                 ilt_client->flags = 0;
8658                 ilt_client->start = line;
8659                 line += TM_ILT_LINES;
8660                 ilt_client->end = line - 1;
8661
8662                 DP(NETIF_MSG_IFUP,
8663                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8664                    ilt_client->start,
8665                    ilt_client->end,
8666                    ilt_client->page_size,
8667                    ilt_client->flags,
8668                    ilog2(ilt_client->page_size >> 12));
8669         }
8670
8671         BUG_ON(line > ILT_MAX_LINES);
8672 }
8673
8674 /**
8675  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8676  *
8677  * @bp:                 driver handle
8678  * @fp:                 pointer to fastpath
8679  * @init_params:        pointer to parameters structure
8680  *
8681  * parameters configured:
8682  *      - HC configuration
8683  *      - Queue's CDU context
8684  */
8685 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8686         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8687 {
8688         u8 cos;
8689         int cxt_index, cxt_offset;
8690
8691         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8692         if (!IS_FCOE_FP(fp)) {
8693                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8694                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8695
8696                 /* If HC is supported, enable host coalescing in the transition
8697                  * to INIT state.
8698                  */
8699                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8700                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8701
8702                 /* HC rate */
8703                 init_params->rx.hc_rate = bp->rx_ticks ?
8704                         (1000000 / bp->rx_ticks) : 0;
8705                 init_params->tx.hc_rate = bp->tx_ticks ?
8706                         (1000000 / bp->tx_ticks) : 0;
8707
8708                 /* FW SB ID */
8709                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8710                         fp->fw_sb_id;
8711
8712                 /*
8713                  * CQ index among the SB indices: FCoE clients uses the default
8714                  * SB, therefore it's different.
8715                  */
8716                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8717                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8718         }
8719
8720         /* set maximum number of COSs supported by this queue */
8721         init_params->max_cos = fp->max_cos;
8722
8723         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8724             fp->index, init_params->max_cos);
8725
8726         /* set the context pointers queue object */
8727         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8728                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8729                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8730                                 ILT_PAGE_CIDS);
8731                 init_params->cxts[cos] =
8732                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8733         }
8734 }
8735
8736 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8737                         struct bnx2x_queue_state_params *q_params,
8738                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8739                         int tx_index, bool leading)
8740 {
8741         memset(tx_only_params, 0, sizeof(*tx_only_params));
8742
8743         /* Set the command */
8744         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8745
8746         /* Set tx-only QUEUE flags: don't zero statistics */
8747         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8748
8749         /* choose the index of the cid to send the slow path on */
8750         tx_only_params->cid_index = tx_index;
8751
8752         /* Set general TX_ONLY_SETUP parameters */
8753         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8754
8755         /* Set Tx TX_ONLY_SETUP parameters */
8756         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8757
8758         DP(NETIF_MSG_IFUP,
8759            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8760            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8761            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8762            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8763
8764         /* send the ramrod */
8765         return bnx2x_queue_state_change(bp, q_params);
8766 }
8767
8768 /**
8769  * bnx2x_setup_queue - setup queue
8770  *
8771  * @bp:         driver handle
8772  * @fp:         pointer to fastpath
8773  * @leading:    is leading
8774  *
8775  * This function performs 2 steps in a Queue state machine
8776  *      actually: 1) RESET->INIT 2) INIT->SETUP
8777  */
8778
8779 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8780                        bool leading)
8781 {
8782         struct bnx2x_queue_state_params q_params = {NULL};
8783         struct bnx2x_queue_setup_params *setup_params =
8784                                                 &q_params.params.setup;
8785         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8786                                                 &q_params.params.tx_only;
8787         int rc;
8788         u8 tx_index;
8789
8790         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8791
8792         /* reset IGU state skip FCoE L2 queue */
8793         if (!IS_FCOE_FP(fp))
8794                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8795                              IGU_INT_ENABLE, 0);
8796
8797         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8798         /* We want to wait for completion in this context */
8799         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8800
8801         /* Prepare the INIT parameters */
8802         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8803
8804         /* Set the command */
8805         q_params.cmd = BNX2X_Q_CMD_INIT;
8806
8807         /* Change the state to INIT */
8808         rc = bnx2x_queue_state_change(bp, &q_params);
8809         if (rc) {
8810                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8811                 return rc;
8812         }
8813
8814         DP(NETIF_MSG_IFUP, "init complete\n");
8815
8816         /* Now move the Queue to the SETUP state... */
8817         memset(setup_params, 0, sizeof(*setup_params));
8818
8819         /* Set QUEUE flags */
8820         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8821
8822         /* Set general SETUP parameters */
8823         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8824                                 FIRST_TX_COS_INDEX);
8825
8826         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8827                             &setup_params->rxq_params);
8828
8829         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8830                            FIRST_TX_COS_INDEX);
8831
8832         /* Set the command */
8833         q_params.cmd = BNX2X_Q_CMD_SETUP;
8834
8835         if (IS_FCOE_FP(fp))
8836                 bp->fcoe_init = true;
8837
8838         /* Change the state to SETUP */
8839         rc = bnx2x_queue_state_change(bp, &q_params);
8840         if (rc) {
8841                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8842                 return rc;
8843         }
8844
8845         /* loop through the relevant tx-only indices */
8846         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8847               tx_index < fp->max_cos;
8848               tx_index++) {
8849
8850                 /* prepare and send tx-only ramrod*/
8851                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8852                                           tx_only_params, tx_index, leading);
8853                 if (rc) {
8854                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8855                                   fp->index, tx_index);
8856                         return rc;
8857                 }
8858         }
8859
8860         return rc;
8861 }
8862
8863 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8864 {
8865         struct bnx2x_fastpath *fp = &bp->fp[index];
8866         struct bnx2x_fp_txdata *txdata;
8867         struct bnx2x_queue_state_params q_params = {NULL};
8868         int rc, tx_index;
8869
8870         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8871
8872         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8873         /* We want to wait for completion in this context */
8874         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8875
8876         /* close tx-only connections */
8877         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8878              tx_index < fp->max_cos;
8879              tx_index++){
8880
8881                 /* ascertain this is a normal queue*/
8882                 txdata = fp->txdata_ptr[tx_index];
8883
8884                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8885                                                         txdata->txq_index);
8886
8887                 /* send halt terminate on tx-only connection */
8888                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8889                 memset(&q_params.params.terminate, 0,
8890                        sizeof(q_params.params.terminate));
8891                 q_params.params.terminate.cid_index = tx_index;
8892
8893                 rc = bnx2x_queue_state_change(bp, &q_params);
8894                 if (rc)
8895                         return rc;
8896
8897                 /* send halt terminate on tx-only connection */
8898                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8899                 memset(&q_params.params.cfc_del, 0,
8900                        sizeof(q_params.params.cfc_del));
8901                 q_params.params.cfc_del.cid_index = tx_index;
8902                 rc = bnx2x_queue_state_change(bp, &q_params);
8903                 if (rc)
8904                         return rc;
8905         }
8906         /* Stop the primary connection: */
8907         /* ...halt the connection */
8908         q_params.cmd = BNX2X_Q_CMD_HALT;
8909         rc = bnx2x_queue_state_change(bp, &q_params);
8910         if (rc)
8911                 return rc;
8912
8913         /* ...terminate the connection */
8914         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8915         memset(&q_params.params.terminate, 0,
8916                sizeof(q_params.params.terminate));
8917         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8918         rc = bnx2x_queue_state_change(bp, &q_params);
8919         if (rc)
8920                 return rc;
8921         /* ...delete cfc entry */
8922         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8923         memset(&q_params.params.cfc_del, 0,
8924                sizeof(q_params.params.cfc_del));
8925         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8926         return bnx2x_queue_state_change(bp, &q_params);
8927 }
8928
8929 static void bnx2x_reset_func(struct bnx2x *bp)
8930 {
8931         int port = BP_PORT(bp);
8932         int func = BP_FUNC(bp);
8933         int i;
8934
8935         /* Disable the function in the FW */
8936         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8937         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8938         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8939         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8940
8941         /* FP SBs */
8942         for_each_eth_queue(bp, i) {
8943                 struct bnx2x_fastpath *fp = &bp->fp[i];
8944                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8945                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8946                            SB_DISABLED);
8947         }
8948
8949         if (CNIC_LOADED(bp))
8950                 /* CNIC SB */
8951                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8952                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8953                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8954
8955         /* SP SB */
8956         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8957                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8958                 SB_DISABLED);
8959
8960         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8961                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8962                        0);
8963
8964         /* Configure IGU */
8965         if (bp->common.int_block == INT_BLOCK_HC) {
8966                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8967                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8968         } else {
8969                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8970                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8971         }
8972
8973         if (CNIC_LOADED(bp)) {
8974                 /* Disable Timer scan */
8975                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8976                 /*
8977                  * Wait for at least 10ms and up to 2 second for the timers
8978                  * scan to complete
8979                  */
8980                 for (i = 0; i < 200; i++) {
8981                         usleep_range(10000, 20000);
8982                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8983                                 break;
8984                 }
8985         }
8986         /* Clear ILT */
8987         bnx2x_clear_func_ilt(bp, func);
8988
8989         /* Timers workaround bug for E2: if this is vnic-3,
8990          * we need to set the entire ilt range for this timers.
8991          */
8992         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8993                 struct ilt_client_info ilt_cli;
8994                 /* use dummy TM client */
8995                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8996                 ilt_cli.start = 0;
8997                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8998                 ilt_cli.client_num = ILT_CLIENT_TM;
8999
9000                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9001         }
9002
9003         /* this assumes that reset_port() called before reset_func()*/
9004         if (!CHIP_IS_E1x(bp))
9005                 bnx2x_pf_disable(bp);
9006
9007         bp->dmae_ready = 0;
9008 }
9009
9010 static void bnx2x_reset_port(struct bnx2x *bp)
9011 {
9012         int port = BP_PORT(bp);
9013         u32 val;
9014
9015         /* Reset physical Link */
9016         bnx2x__link_reset(bp);
9017
9018         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9019
9020         /* Do not rcv packets to BRB */
9021         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9022         /* Do not direct rcv packets that are not for MCP to the BRB */
9023         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9024                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9025
9026         /* Configure AEU */
9027         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9028
9029         msleep(100);
9030         /* Check for BRB port occupancy */
9031         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9032         if (val)
9033                 DP(NETIF_MSG_IFDOWN,
9034                    "BRB1 is not empty  %d blocks are occupied\n", val);
9035
9036         /* TODO: Close Doorbell port? */
9037 }
9038
9039 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9040 {
9041         struct bnx2x_func_state_params func_params = {NULL};
9042
9043         /* Prepare parameters for function state transitions */
9044         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9045
9046         func_params.f_obj = &bp->func_obj;
9047         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9048
9049         func_params.params.hw_init.load_phase = load_code;
9050
9051         return bnx2x_func_state_change(bp, &func_params);
9052 }
9053
9054 static int bnx2x_func_stop(struct bnx2x *bp)
9055 {
9056         struct bnx2x_func_state_params func_params = {NULL};
9057         int rc;
9058
9059         /* Prepare parameters for function state transitions */
9060         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9061         func_params.f_obj = &bp->func_obj;
9062         func_params.cmd = BNX2X_F_CMD_STOP;
9063
9064         /*
9065          * Try to stop the function the 'good way'. If fails (in case
9066          * of a parity error during bnx2x_chip_cleanup()) and we are
9067          * not in a debug mode, perform a state transaction in order to
9068          * enable further HW_RESET transaction.
9069          */
9070         rc = bnx2x_func_state_change(bp, &func_params);
9071         if (rc) {
9072 #ifdef BNX2X_STOP_ON_ERROR
9073                 return rc;
9074 #else
9075                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9076                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9077                 return bnx2x_func_state_change(bp, &func_params);
9078 #endif
9079         }
9080
9081         return 0;
9082 }
9083
9084 /**
9085  * bnx2x_send_unload_req - request unload mode from the MCP.
9086  *
9087  * @bp:                 driver handle
9088  * @unload_mode:        requested function's unload mode
9089  *
9090  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9091  */
9092 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9093 {
9094         u32 reset_code = 0;
9095         int port = BP_PORT(bp);
9096
9097         /* Select the UNLOAD request mode */
9098         if (unload_mode == UNLOAD_NORMAL)
9099                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9100
9101         else if (bp->flags & NO_WOL_FLAG)
9102                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9103
9104         else if (bp->wol) {
9105                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9106                 u8 *mac_addr = bp->dev->dev_addr;
9107                 struct pci_dev *pdev = bp->pdev;
9108                 u32 val;
9109                 u16 pmc;
9110
9111                 /* The mac address is written to entries 1-4 to
9112                  * preserve entry 0 which is used by the PMF
9113                  */
9114                 u8 entry = (BP_VN(bp) + 1)*8;
9115
9116                 val = (mac_addr[0] << 8) | mac_addr[1];
9117                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9118
9119                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9120                       (mac_addr[4] << 8) | mac_addr[5];
9121                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9122
9123                 /* Enable the PME and clear the status */
9124                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9125                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9126                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9127
9128                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9129
9130         } else
9131                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9132
9133         /* Send the request to the MCP */
9134         if (!BP_NOMCP(bp))
9135                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9136         else {
9137                 int path = BP_PATH(bp);
9138
9139                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9140                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9141                    bnx2x_load_count[path][2]);
9142                 bnx2x_load_count[path][0]--;
9143                 bnx2x_load_count[path][1 + port]--;
9144                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9145                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9146                    bnx2x_load_count[path][2]);
9147                 if (bnx2x_load_count[path][0] == 0)
9148                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9149                 else if (bnx2x_load_count[path][1 + port] == 0)
9150                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9151                 else
9152                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9153         }
9154
9155         return reset_code;
9156 }
9157
9158 /**
9159  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9160  *
9161  * @bp:         driver handle
9162  * @keep_link:          true iff link should be kept up
9163  */
9164 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9165 {
9166         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9167
9168         /* Report UNLOAD_DONE to MCP */
9169         if (!BP_NOMCP(bp))
9170                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9171 }
9172
9173 static int bnx2x_func_wait_started(struct bnx2x *bp)
9174 {
9175         int tout = 50;
9176         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9177
9178         if (!bp->port.pmf)
9179                 return 0;
9180
9181         /*
9182          * (assumption: No Attention from MCP at this stage)
9183          * PMF probably in the middle of TX disable/enable transaction
9184          * 1. Sync IRS for default SB
9185          * 2. Sync SP queue - this guarantees us that attention handling started
9186          * 3. Wait, that TX disable/enable transaction completes
9187          *
9188          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9189          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9190          * received completion for the transaction the state is TX_STOPPED.
9191          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9192          * transaction.
9193          */
9194
9195         /* make sure default SB ISR is done */
9196         if (msix)
9197                 synchronize_irq(bp->msix_table[0].vector);
9198         else
9199                 synchronize_irq(bp->pdev->irq);
9200
9201         flush_workqueue(bnx2x_wq);
9202         flush_workqueue(bnx2x_iov_wq);
9203
9204         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9205                                 BNX2X_F_STATE_STARTED && tout--)
9206                 msleep(20);
9207
9208         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9209                                                 BNX2X_F_STATE_STARTED) {
9210 #ifdef BNX2X_STOP_ON_ERROR
9211                 BNX2X_ERR("Wrong function state\n");
9212                 return -EBUSY;
9213 #else
9214                 /*
9215                  * Failed to complete the transaction in a "good way"
9216                  * Force both transactions with CLR bit
9217                  */
9218                 struct bnx2x_func_state_params func_params = {NULL};
9219
9220                 DP(NETIF_MSG_IFDOWN,
9221                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9222
9223                 func_params.f_obj = &bp->func_obj;
9224                 __set_bit(RAMROD_DRV_CLR_ONLY,
9225                                         &func_params.ramrod_flags);
9226
9227                 /* STARTED-->TX_ST0PPED */
9228                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9229                 bnx2x_func_state_change(bp, &func_params);
9230
9231                 /* TX_ST0PPED-->STARTED */
9232                 func_params.cmd = BNX2X_F_CMD_TX_START;
9233                 return bnx2x_func_state_change(bp, &func_params);
9234 #endif
9235         }
9236
9237         return 0;
9238 }
9239
9240 static void bnx2x_disable_ptp(struct bnx2x *bp)
9241 {
9242         int port = BP_PORT(bp);
9243
9244         /* Disable sending PTP packets to host */
9245         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9246                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9247
9248         /* Reset PTP event detection rules */
9249         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9250                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9251         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9252                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9253         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9254                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9255         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9256                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9257
9258         /* Disable the PTP feature */
9259         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9260                NIG_REG_P0_PTP_EN, 0x0);
9261 }
9262
9263 /* Called during unload, to stop PTP-related stuff */
9264 static void bnx2x_stop_ptp(struct bnx2x *bp)
9265 {
9266         /* Cancel PTP work queue. Should be done after the Tx queues are
9267          * drained to prevent additional scheduling.
9268          */
9269         cancel_work_sync(&bp->ptp_task);
9270
9271         if (bp->ptp_tx_skb) {
9272                 dev_kfree_skb_any(bp->ptp_tx_skb);
9273                 bp->ptp_tx_skb = NULL;
9274         }
9275
9276         /* Disable PTP in HW */
9277         bnx2x_disable_ptp(bp);
9278
9279         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9280 }
9281
9282 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9283 {
9284         int port = BP_PORT(bp);
9285         int i, rc = 0;
9286         u8 cos;
9287         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9288         u32 reset_code;
9289
9290         /* Wait until tx fastpath tasks complete */
9291         for_each_tx_queue(bp, i) {
9292                 struct bnx2x_fastpath *fp = &bp->fp[i];
9293
9294                 for_each_cos_in_tx_queue(fp, cos)
9295                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9296 #ifdef BNX2X_STOP_ON_ERROR
9297                 if (rc)
9298                         return;
9299 #endif
9300         }
9301
9302         /* Give HW time to discard old tx messages */
9303         usleep_range(1000, 2000);
9304
9305         /* Clean all ETH MACs */
9306         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9307                                 false);
9308         if (rc < 0)
9309                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9310
9311         /* Clean up UC list  */
9312         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9313                                 true);
9314         if (rc < 0)
9315                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9316                           rc);
9317
9318         /* Disable LLH */
9319         if (!CHIP_IS_E1(bp))
9320                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9321
9322         /* Set "drop all" (stop Rx).
9323          * We need to take a netif_addr_lock() here in order to prevent
9324          * a race between the completion code and this code.
9325          */
9326         netif_addr_lock_bh(bp->dev);
9327         /* Schedule the rx_mode command */
9328         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9329                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9330         else
9331                 bnx2x_set_storm_rx_mode(bp);
9332
9333         /* Cleanup multicast configuration */
9334         rparam.mcast_obj = &bp->mcast_obj;
9335         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9336         if (rc < 0)
9337                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9338
9339         netif_addr_unlock_bh(bp->dev);
9340
9341         bnx2x_iov_chip_cleanup(bp);
9342
9343         /*
9344          * Send the UNLOAD_REQUEST to the MCP. This will return if
9345          * this function should perform FUNC, PORT or COMMON HW
9346          * reset.
9347          */
9348         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9349
9350         /*
9351          * (assumption: No Attention from MCP at this stage)
9352          * PMF probably in the middle of TX disable/enable transaction
9353          */
9354         rc = bnx2x_func_wait_started(bp);
9355         if (rc) {
9356                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9357 #ifdef BNX2X_STOP_ON_ERROR
9358                 return;
9359 #endif
9360         }
9361
9362         /* Close multi and leading connections
9363          * Completions for ramrods are collected in a synchronous way
9364          */
9365         for_each_eth_queue(bp, i)
9366                 if (bnx2x_stop_queue(bp, i))
9367 #ifdef BNX2X_STOP_ON_ERROR
9368                         return;
9369 #else
9370                         goto unload_error;
9371 #endif
9372
9373         if (CNIC_LOADED(bp)) {
9374                 for_each_cnic_queue(bp, i)
9375                         if (bnx2x_stop_queue(bp, i))
9376 #ifdef BNX2X_STOP_ON_ERROR
9377                                 return;
9378 #else
9379                                 goto unload_error;
9380 #endif
9381         }
9382
9383         /* If SP settings didn't get completed so far - something
9384          * very wrong has happen.
9385          */
9386         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9387                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9388
9389 #ifndef BNX2X_STOP_ON_ERROR
9390 unload_error:
9391 #endif
9392         rc = bnx2x_func_stop(bp);
9393         if (rc) {
9394                 BNX2X_ERR("Function stop failed!\n");
9395 #ifdef BNX2X_STOP_ON_ERROR
9396                 return;
9397 #endif
9398         }
9399
9400         /* stop_ptp should be after the Tx queues are drained to prevent
9401          * scheduling to the cancelled PTP work queue. It should also be after
9402          * function stop ramrod is sent, since as part of this ramrod FW access
9403          * PTP registers.
9404          */
9405         if (bp->flags & PTP_SUPPORTED)
9406                 bnx2x_stop_ptp(bp);
9407
9408         /* Disable HW interrupts, NAPI */
9409         bnx2x_netif_stop(bp, 1);
9410         /* Delete all NAPI objects */
9411         bnx2x_del_all_napi(bp);
9412         if (CNIC_LOADED(bp))
9413                 bnx2x_del_all_napi_cnic(bp);
9414
9415         /* Release IRQs */
9416         bnx2x_free_irq(bp);
9417
9418         /* Reset the chip */
9419         rc = bnx2x_reset_hw(bp, reset_code);
9420         if (rc)
9421                 BNX2X_ERR("HW_RESET failed\n");
9422
9423         /* Report UNLOAD_DONE to MCP */
9424         bnx2x_send_unload_done(bp, keep_link);
9425 }
9426
9427 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9428 {
9429         u32 val;
9430
9431         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9432
9433         if (CHIP_IS_E1(bp)) {
9434                 int port = BP_PORT(bp);
9435                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9436                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9437
9438                 val = REG_RD(bp, addr);
9439                 val &= ~(0x300);
9440                 REG_WR(bp, addr, val);
9441         } else {
9442                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9443                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9444                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9445                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9446         }
9447 }
9448
9449 /* Close gates #2, #3 and #4: */
9450 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9451 {
9452         u32 val;
9453
9454         /* Gates #2 and #4a are closed/opened for "not E1" only */
9455         if (!CHIP_IS_E1(bp)) {
9456                 /* #4 */
9457                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9458                 /* #2 */
9459                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9460         }
9461
9462         /* #3 */
9463         if (CHIP_IS_E1x(bp)) {
9464                 /* Prevent interrupts from HC on both ports */
9465                 val = REG_RD(bp, HC_REG_CONFIG_1);
9466                 REG_WR(bp, HC_REG_CONFIG_1,
9467                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9468                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9469
9470                 val = REG_RD(bp, HC_REG_CONFIG_0);
9471                 REG_WR(bp, HC_REG_CONFIG_0,
9472                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9473                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9474         } else {
9475                 /* Prevent incoming interrupts in IGU */
9476                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9477
9478                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9479                        (!close) ?
9480                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9481                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9482         }
9483
9484         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9485                 close ? "closing" : "opening");
9486         mmiowb();
9487 }
9488
9489 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9490
9491 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9492 {
9493         /* Do some magic... */
9494         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9495         *magic_val = val & SHARED_MF_CLP_MAGIC;
9496         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9497 }
9498
9499 /**
9500  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9501  *
9502  * @bp:         driver handle
9503  * @magic_val:  old value of the `magic' bit.
9504  */
9505 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9506 {
9507         /* Restore the `magic' bit value... */
9508         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9509         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9510                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9511 }
9512
9513 /**
9514  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9515  *
9516  * @bp:         driver handle
9517  * @magic_val:  old value of 'magic' bit.
9518  *
9519  * Takes care of CLP configurations.
9520  */
9521 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9522 {
9523         u32 shmem;
9524         u32 validity_offset;
9525
9526         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9527
9528         /* Set `magic' bit in order to save MF config */
9529         if (!CHIP_IS_E1(bp))
9530                 bnx2x_clp_reset_prep(bp, magic_val);
9531
9532         /* Get shmem offset */
9533         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9534         validity_offset =
9535                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9536
9537         /* Clear validity map flags */
9538         if (shmem > 0)
9539                 REG_WR(bp, shmem + validity_offset, 0);
9540 }
9541
9542 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9543 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9544
9545 /**
9546  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9547  *
9548  * @bp: driver handle
9549  */
9550 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9551 {
9552         /* special handling for emulation and FPGA,
9553            wait 10 times longer */
9554         if (CHIP_REV_IS_SLOW(bp))
9555                 msleep(MCP_ONE_TIMEOUT*10);
9556         else
9557                 msleep(MCP_ONE_TIMEOUT);
9558 }
9559
9560 /*
9561  * initializes bp->common.shmem_base and waits for validity signature to appear
9562  */
9563 static int bnx2x_init_shmem(struct bnx2x *bp)
9564 {
9565         int cnt = 0;
9566         u32 val = 0;
9567
9568         do {
9569                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9570                 if (bp->common.shmem_base) {
9571                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9572                         if (val & SHR_MEM_VALIDITY_MB)
9573                                 return 0;
9574                 }
9575
9576                 bnx2x_mcp_wait_one(bp);
9577
9578         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9579
9580         BNX2X_ERR("BAD MCP validity signature\n");
9581
9582         return -ENODEV;
9583 }
9584
9585 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9586 {
9587         int rc = bnx2x_init_shmem(bp);
9588
9589         /* Restore the `magic' bit value */
9590         if (!CHIP_IS_E1(bp))
9591                 bnx2x_clp_reset_done(bp, magic_val);
9592
9593         return rc;
9594 }
9595
9596 static void bnx2x_pxp_prep(struct bnx2x *bp)
9597 {
9598         if (!CHIP_IS_E1(bp)) {
9599                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9600                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9601                 mmiowb();
9602         }
9603 }
9604
9605 /*
9606  * Reset the whole chip except for:
9607  *      - PCIE core
9608  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9609  *              one reset bit)
9610  *      - IGU
9611  *      - MISC (including AEU)
9612  *      - GRC
9613  *      - RBCN, RBCP
9614  */
9615 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9616 {
9617         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9618         u32 global_bits2, stay_reset2;
9619
9620         /*
9621          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9622          * (per chip) blocks.
9623          */
9624         global_bits2 =
9625                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9626                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9627
9628         /* Don't reset the following blocks.
9629          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9630          *            reset, as in 4 port device they might still be owned
9631          *            by the MCP (there is only one leader per path).
9632          */
9633         not_reset_mask1 =
9634                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9635                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9636                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9637
9638         not_reset_mask2 =
9639                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9640                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9641                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9642                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9643                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9644                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9645                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9646                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9647                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9648                 MISC_REGISTERS_RESET_REG_2_PGLC |
9649                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9650                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9651                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9652                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9653                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9654                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9655
9656         /*
9657          * Keep the following blocks in reset:
9658          *  - all xxMACs are handled by the bnx2x_link code.
9659          */
9660         stay_reset2 =
9661                 MISC_REGISTERS_RESET_REG_2_XMAC |
9662                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9663
9664         /* Full reset masks according to the chip */
9665         reset_mask1 = 0xffffffff;
9666
9667         if (CHIP_IS_E1(bp))
9668                 reset_mask2 = 0xffff;
9669         else if (CHIP_IS_E1H(bp))
9670                 reset_mask2 = 0x1ffff;
9671         else if (CHIP_IS_E2(bp))
9672                 reset_mask2 = 0xfffff;
9673         else /* CHIP_IS_E3 */
9674                 reset_mask2 = 0x3ffffff;
9675
9676         /* Don't reset global blocks unless we need to */
9677         if (!global)
9678                 reset_mask2 &= ~global_bits2;
9679
9680         /*
9681          * In case of attention in the QM, we need to reset PXP
9682          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9683          * because otherwise QM reset would release 'close the gates' shortly
9684          * before resetting the PXP, then the PSWRQ would send a write
9685          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9686          * read the payload data from PSWWR, but PSWWR would not
9687          * respond. The write queue in PGLUE would stuck, dmae commands
9688          * would not return. Therefore it's important to reset the second
9689          * reset register (containing the
9690          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9691          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9692          * bit).
9693          */
9694         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9695                reset_mask2 & (~not_reset_mask2));
9696
9697         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9698                reset_mask1 & (~not_reset_mask1));
9699
9700         barrier();
9701         mmiowb();
9702
9703         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9704                reset_mask2 & (~stay_reset2));
9705
9706         barrier();
9707         mmiowb();
9708
9709         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9710         mmiowb();
9711 }
9712
9713 /**
9714  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9715  * It should get cleared in no more than 1s.
9716  *
9717  * @bp: driver handle
9718  *
9719  * It should get cleared in no more than 1s. Returns 0 if
9720  * pending writes bit gets cleared.
9721  */
9722 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9723 {
9724         u32 cnt = 1000;
9725         u32 pend_bits = 0;
9726
9727         do {
9728                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9729
9730                 if (pend_bits == 0)
9731                         break;
9732
9733                 usleep_range(1000, 2000);
9734         } while (cnt-- > 0);
9735
9736         if (cnt <= 0) {
9737                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9738                           pend_bits);
9739                 return -EBUSY;
9740         }
9741
9742         return 0;
9743 }
9744
9745 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9746 {
9747         int cnt = 1000;
9748         u32 val = 0;
9749         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9750         u32 tags_63_32 = 0;
9751
9752         /* Empty the Tetris buffer, wait for 1s */
9753         do {
9754                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9755                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9756                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9757                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9758                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9759                 if (CHIP_IS_E3(bp))
9760                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9761
9762                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9763                     ((port_is_idle_0 & 0x1) == 0x1) &&
9764                     ((port_is_idle_1 & 0x1) == 0x1) &&
9765                     (pgl_exp_rom2 == 0xffffffff) &&
9766                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9767                         break;
9768                 usleep_range(1000, 2000);
9769         } while (cnt-- > 0);
9770
9771         if (cnt <= 0) {
9772                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9773                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9774                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9775                           pgl_exp_rom2);
9776                 return -EAGAIN;
9777         }
9778
9779         barrier();
9780
9781         /* Close gates #2, #3 and #4 */
9782         bnx2x_set_234_gates(bp, true);
9783
9784         /* Poll for IGU VQs for 57712 and newer chips */
9785         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9786                 return -EAGAIN;
9787
9788         /* TBD: Indicate that "process kill" is in progress to MCP */
9789
9790         /* Clear "unprepared" bit */
9791         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9792         barrier();
9793
9794         /* Make sure all is written to the chip before the reset */
9795         mmiowb();
9796
9797         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9798          * PSWHST, GRC and PSWRD Tetris buffer.
9799          */
9800         usleep_range(1000, 2000);
9801
9802         /* Prepare to chip reset: */
9803         /* MCP */
9804         if (global)
9805                 bnx2x_reset_mcp_prep(bp, &val);
9806
9807         /* PXP */
9808         bnx2x_pxp_prep(bp);
9809         barrier();
9810
9811         /* reset the chip */
9812         bnx2x_process_kill_chip_reset(bp, global);
9813         barrier();
9814
9815         /* clear errors in PGB */
9816         if (!CHIP_IS_E1x(bp))
9817                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9818
9819         /* Recover after reset: */
9820         /* MCP */
9821         if (global && bnx2x_reset_mcp_comp(bp, val))
9822                 return -EAGAIN;
9823
9824         /* TBD: Add resetting the NO_MCP mode DB here */
9825
9826         /* Open the gates #2, #3 and #4 */
9827         bnx2x_set_234_gates(bp, false);
9828
9829         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9830          * reset state, re-enable attentions. */
9831
9832         return 0;
9833 }
9834
9835 static int bnx2x_leader_reset(struct bnx2x *bp)
9836 {
9837         int rc = 0;
9838         bool global = bnx2x_reset_is_global(bp);
9839         u32 load_code;
9840
9841         /* if not going to reset MCP - load "fake" driver to reset HW while
9842          * driver is owner of the HW
9843          */
9844         if (!global && !BP_NOMCP(bp)) {
9845                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9846                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9847                 if (!load_code) {
9848                         BNX2X_ERR("MCP response failure, aborting\n");
9849                         rc = -EAGAIN;
9850                         goto exit_leader_reset;
9851                 }
9852                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9853                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9854                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9855                         rc = -EAGAIN;
9856                         goto exit_leader_reset2;
9857                 }
9858                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9859                 if (!load_code) {
9860                         BNX2X_ERR("MCP response failure, aborting\n");
9861                         rc = -EAGAIN;
9862                         goto exit_leader_reset2;
9863                 }
9864         }
9865
9866         /* Try to recover after the failure */
9867         if (bnx2x_process_kill(bp, global)) {
9868                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9869                           BP_PATH(bp));
9870                 rc = -EAGAIN;
9871                 goto exit_leader_reset2;
9872         }
9873
9874         /*
9875          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9876          * state.
9877          */
9878         bnx2x_set_reset_done(bp);
9879         if (global)
9880                 bnx2x_clear_reset_global(bp);
9881
9882 exit_leader_reset2:
9883         /* unload "fake driver" if it was loaded */
9884         if (!global && !BP_NOMCP(bp)) {
9885                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9886                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9887         }
9888 exit_leader_reset:
9889         bp->is_leader = 0;
9890         bnx2x_release_leader_lock(bp);
9891         smp_mb();
9892         return rc;
9893 }
9894
9895 static void bnx2x_recovery_failed(struct bnx2x *bp)
9896 {
9897         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9898
9899         /* Disconnect this device */
9900         netif_device_detach(bp->dev);
9901
9902         /*
9903          * Block ifup for all function on this engine until "process kill"
9904          * or power cycle.
9905          */
9906         bnx2x_set_reset_in_progress(bp);
9907
9908         /* Shut down the power */
9909         bnx2x_set_power_state(bp, PCI_D3hot);
9910
9911         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9912
9913         smp_mb();
9914 }
9915
9916 /*
9917  * Assumption: runs under rtnl lock. This together with the fact
9918  * that it's called only from bnx2x_sp_rtnl() ensure that it
9919  * will never be called when netif_running(bp->dev) is false.
9920  */
9921 static void bnx2x_parity_recover(struct bnx2x *bp)
9922 {
9923         bool global = false;
9924         u32 error_recovered, error_unrecovered;
9925         bool is_parity;
9926
9927         DP(NETIF_MSG_HW, "Handling parity\n");
9928         while (1) {
9929                 switch (bp->recovery_state) {
9930                 case BNX2X_RECOVERY_INIT:
9931                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9932                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9933                         WARN_ON(!is_parity);
9934
9935                         /* Try to get a LEADER_LOCK HW lock */
9936                         if (bnx2x_trylock_leader_lock(bp)) {
9937                                 bnx2x_set_reset_in_progress(bp);
9938                                 /*
9939                                  * Check if there is a global attention and if
9940                                  * there was a global attention, set the global
9941                                  * reset bit.
9942                                  */
9943
9944                                 if (global)
9945                                         bnx2x_set_reset_global(bp);
9946
9947                                 bp->is_leader = 1;
9948                         }
9949
9950                         /* Stop the driver */
9951                         /* If interface has been removed - break */
9952                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9953                                 return;
9954
9955                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9956
9957                         /* Ensure "is_leader", MCP command sequence and
9958                          * "recovery_state" update values are seen on other
9959                          * CPUs.
9960                          */
9961                         smp_mb();
9962                         break;
9963
9964                 case BNX2X_RECOVERY_WAIT:
9965                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9966                         if (bp->is_leader) {
9967                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9968                                 bool other_load_status =
9969                                         bnx2x_get_load_status(bp, other_engine);
9970                                 bool load_status =
9971                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9972                                 global = bnx2x_reset_is_global(bp);
9973
9974                                 /*
9975                                  * In case of a parity in a global block, let
9976                                  * the first leader that performs a
9977                                  * leader_reset() reset the global blocks in
9978                                  * order to clear global attentions. Otherwise
9979                                  * the gates will remain closed for that
9980                                  * engine.
9981                                  */
9982                                 if (load_status ||
9983                                     (global && other_load_status)) {
9984                                         /* Wait until all other functions get
9985                                          * down.
9986                                          */
9987                                         schedule_delayed_work(&bp->sp_rtnl_task,
9988                                                                 HZ/10);
9989                                         return;
9990                                 } else {
9991                                         /* If all other functions got down -
9992                                          * try to bring the chip back to
9993                                          * normal. In any case it's an exit
9994                                          * point for a leader.
9995                                          */
9996                                         if (bnx2x_leader_reset(bp)) {
9997                                                 bnx2x_recovery_failed(bp);
9998                                                 return;
9999                                         }
10000
10001                                         /* If we are here, means that the
10002                                          * leader has succeeded and doesn't
10003                                          * want to be a leader any more. Try
10004                                          * to continue as a none-leader.
10005                                          */
10006                                         break;
10007                                 }
10008                         } else { /* non-leader */
10009                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10010                                         /* Try to get a LEADER_LOCK HW lock as
10011                                          * long as a former leader may have
10012                                          * been unloaded by the user or
10013                                          * released a leadership by another
10014                                          * reason.
10015                                          */
10016                                         if (bnx2x_trylock_leader_lock(bp)) {
10017                                                 /* I'm a leader now! Restart a
10018                                                  * switch case.
10019                                                  */
10020                                                 bp->is_leader = 1;
10021                                                 break;
10022                                         }
10023
10024                                         schedule_delayed_work(&bp->sp_rtnl_task,
10025                                                                 HZ/10);
10026                                         return;
10027
10028                                 } else {
10029                                         /*
10030                                          * If there was a global attention, wait
10031                                          * for it to be cleared.
10032                                          */
10033                                         if (bnx2x_reset_is_global(bp)) {
10034                                                 schedule_delayed_work(
10035                                                         &bp->sp_rtnl_task,
10036                                                         HZ/10);
10037                                                 return;
10038                                         }
10039
10040                                         error_recovered =
10041                                           bp->eth_stats.recoverable_error;
10042                                         error_unrecovered =
10043                                           bp->eth_stats.unrecoverable_error;
10044                                         bp->recovery_state =
10045                                                 BNX2X_RECOVERY_NIC_LOADING;
10046                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10047                                                 error_unrecovered++;
10048                                                 netdev_err(bp->dev,
10049                                                            "Recovery failed. Power cycle needed\n");
10050                                                 /* Disconnect this device */
10051                                                 netif_device_detach(bp->dev);
10052                                                 /* Shut down the power */
10053                                                 bnx2x_set_power_state(
10054                                                         bp, PCI_D3hot);
10055                                                 smp_mb();
10056                                         } else {
10057                                                 bp->recovery_state =
10058                                                         BNX2X_RECOVERY_DONE;
10059                                                 error_recovered++;
10060                                                 smp_mb();
10061                                         }
10062                                         bp->eth_stats.recoverable_error =
10063                                                 error_recovered;
10064                                         bp->eth_stats.unrecoverable_error =
10065                                                 error_unrecovered;
10066
10067                                         return;
10068                                 }
10069                         }
10070                 default:
10071                         return;
10072                 }
10073         }
10074 }
10075
10076 static int bnx2x_udp_port_update(struct bnx2x *bp)
10077 {
10078         struct bnx2x_func_switch_update_params *switch_update_params;
10079         struct bnx2x_func_state_params func_params = {NULL};
10080         struct bnx2x_udp_tunnel *udp_tunnel;
10081         u16 vxlan_port = 0, geneve_port = 0;
10082         int rc;
10083
10084         switch_update_params = &func_params.params.switch_update;
10085
10086         /* Prepare parameters for function state transitions */
10087         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10088         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10089
10090         func_params.f_obj = &bp->func_obj;
10091         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10092
10093         /* Function parameters */
10094         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10095                   &switch_update_params->changes);
10096
10097         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10098                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10099                 geneve_port = udp_tunnel->dst_port;
10100                 switch_update_params->geneve_dst_port = geneve_port;
10101         }
10102
10103         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10104                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10105                 vxlan_port = udp_tunnel->dst_port;
10106                 switch_update_params->vxlan_dst_port = vxlan_port;
10107         }
10108
10109         /* Re-enable inner-rss for the offloaded UDP tunnels */
10110         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10111                   &switch_update_params->changes);
10112
10113         rc = bnx2x_func_state_change(bp, &func_params);
10114         if (rc)
10115                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10116                           vxlan_port, geneve_port, rc);
10117         else
10118                 DP(BNX2X_MSG_SP,
10119                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10120                    vxlan_port, geneve_port);
10121
10122         return rc;
10123 }
10124
10125 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10126                                  enum bnx2x_udp_port_type type)
10127 {
10128         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10129
10130         if (!netif_running(bp->dev) || !IS_PF(bp))
10131                 return;
10132
10133         if (udp_port->count && udp_port->dst_port == port) {
10134                 udp_port->count++;
10135                 return;
10136         }
10137
10138         if (udp_port->count) {
10139                 DP(BNX2X_MSG_SP,
10140                    "UDP tunnel [%d] -  destination port limit reached\n",
10141                    type);
10142                 return;
10143         }
10144
10145         udp_port->dst_port = port;
10146         udp_port->count = 1;
10147         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10148 }
10149
10150 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10151                                  enum bnx2x_udp_port_type type)
10152 {
10153         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10154
10155         if (!IS_PF(bp))
10156                 return;
10157
10158         if (!udp_port->count || udp_port->dst_port != port) {
10159                 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10160                    type);
10161                 return;
10162         }
10163
10164         /* Remove reference, and make certain it's no longer in use */
10165         udp_port->count--;
10166         if (udp_port->count)
10167                 return;
10168         udp_port->dst_port = 0;
10169
10170         if (netif_running(bp->dev))
10171                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10172         else
10173                 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10174                    type, port);
10175 }
10176
10177 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10178                                  struct udp_tunnel_info *ti)
10179 {
10180         struct bnx2x *bp = netdev_priv(netdev);
10181         u16 t_port = ntohs(ti->port);
10182
10183         switch (ti->type) {
10184         case UDP_TUNNEL_TYPE_VXLAN:
10185                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10186                 break;
10187         case UDP_TUNNEL_TYPE_GENEVE:
10188                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10189                 break;
10190         default:
10191                 break;
10192         }
10193 }
10194
10195 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10196                                  struct udp_tunnel_info *ti)
10197 {
10198         struct bnx2x *bp = netdev_priv(netdev);
10199         u16 t_port = ntohs(ti->port);
10200
10201         switch (ti->type) {
10202         case UDP_TUNNEL_TYPE_VXLAN:
10203                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10204                 break;
10205         case UDP_TUNNEL_TYPE_GENEVE:
10206                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10207                 break;
10208         default:
10209                 break;
10210         }
10211 }
10212
10213 static int bnx2x_close(struct net_device *dev);
10214
10215 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10216  * scheduled on a general queue in order to prevent a dead lock.
10217  */
10218 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10219 {
10220         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10221
10222         rtnl_lock();
10223
10224         if (!netif_running(bp->dev)) {
10225                 rtnl_unlock();
10226                 return;
10227         }
10228
10229         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10230 #ifdef BNX2X_STOP_ON_ERROR
10231                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10232                           "you will need to reboot when done\n");
10233                 goto sp_rtnl_not_reset;
10234 #endif
10235                 /*
10236                  * Clear all pending SP commands as we are going to reset the
10237                  * function anyway.
10238                  */
10239                 bp->sp_rtnl_state = 0;
10240                 smp_mb();
10241
10242                 bnx2x_parity_recover(bp);
10243
10244                 rtnl_unlock();
10245                 return;
10246         }
10247
10248         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10249 #ifdef BNX2X_STOP_ON_ERROR
10250                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10251                           "you will need to reboot when done\n");
10252                 goto sp_rtnl_not_reset;
10253 #endif
10254
10255                 /*
10256                  * Clear all pending SP commands as we are going to reset the
10257                  * function anyway.
10258                  */
10259                 bp->sp_rtnl_state = 0;
10260                 smp_mb();
10261
10262                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10263                 bnx2x_nic_load(bp, LOAD_NORMAL);
10264
10265                 rtnl_unlock();
10266                 return;
10267         }
10268 #ifdef BNX2X_STOP_ON_ERROR
10269 sp_rtnl_not_reset:
10270 #endif
10271         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10272                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10273         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10274                 bnx2x_after_function_update(bp);
10275         /*
10276          * in case of fan failure we need to reset id if the "stop on error"
10277          * debug flag is set, since we trying to prevent permanent overheating
10278          * damage
10279          */
10280         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10281                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10282                 netif_device_detach(bp->dev);
10283                 bnx2x_close(bp->dev);
10284                 rtnl_unlock();
10285                 return;
10286         }
10287
10288         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10289                 DP(BNX2X_MSG_SP,
10290                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10291                 bnx2x_vfpf_set_mcast(bp->dev);
10292         }
10293         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10294                                &bp->sp_rtnl_state)){
10295                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10296                         bnx2x_tx_disable(bp);
10297                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10298                 }
10299         }
10300
10301         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10302                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10303                 bnx2x_set_rx_mode_inner(bp);
10304         }
10305
10306         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10307                                &bp->sp_rtnl_state))
10308                 bnx2x_pf_set_vfs_vlan(bp);
10309
10310         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10311                 bnx2x_dcbx_stop_hw_tx(bp);
10312                 bnx2x_dcbx_resume_hw_tx(bp);
10313         }
10314
10315         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10316                                &bp->sp_rtnl_state))
10317                 bnx2x_update_mng_version(bp);
10318
10319         if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10320                                &bp->sp_rtnl_state)) {
10321                 if (bnx2x_udp_port_update(bp)) {
10322                         /* On error, forget configuration */
10323                         memset(bp->udp_tunnel_ports, 0,
10324                                sizeof(struct bnx2x_udp_tunnel) *
10325                                BNX2X_UDP_PORT_MAX);
10326                 } else {
10327                         /* Since we don't store additional port information,
10328                          * if no ports are configured for any feature ask for
10329                          * information about currently configured ports.
10330                          */
10331                         if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10332                             !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10333                                 udp_tunnel_get_rx_info(bp->dev);
10334                 }
10335         }
10336
10337         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10338          * can be called from other contexts as well)
10339          */
10340         rtnl_unlock();
10341
10342         /* enable SR-IOV if applicable */
10343         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10344                                                &bp->sp_rtnl_state)) {
10345                 bnx2x_disable_sriov(bp);
10346                 bnx2x_enable_sriov(bp);
10347         }
10348 }
10349
10350 static void bnx2x_period_task(struct work_struct *work)
10351 {
10352         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10353
10354         if (!netif_running(bp->dev))
10355                 goto period_task_exit;
10356
10357         if (CHIP_REV_IS_SLOW(bp)) {
10358                 BNX2X_ERR("period task called on emulation, ignoring\n");
10359                 goto period_task_exit;
10360         }
10361
10362         bnx2x_acquire_phy_lock(bp);
10363         /*
10364          * The barrier is needed to ensure the ordering between the writing to
10365          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10366          * the reading here.
10367          */
10368         smp_mb();
10369         if (bp->port.pmf) {
10370                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10371
10372                 /* Re-queue task in 1 sec */
10373                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10374         }
10375
10376         bnx2x_release_phy_lock(bp);
10377 period_task_exit:
10378         return;
10379 }
10380
10381 /*
10382  * Init service functions
10383  */
10384
10385 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10386 {
10387         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10388         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10389         return base + (BP_ABS_FUNC(bp)) * stride;
10390 }
10391
10392 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10393                                          u8 port, u32 reset_reg,
10394                                          struct bnx2x_mac_vals *vals)
10395 {
10396         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10397         u32 base_addr;
10398
10399         if (!(mask & reset_reg))
10400                 return false;
10401
10402         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10403         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10404         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10405         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10406         REG_WR(bp, vals->umac_addr[port], 0);
10407
10408         return true;
10409 }
10410
10411 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10412                                         struct bnx2x_mac_vals *vals)
10413 {
10414         u32 val, base_addr, offset, mask, reset_reg;
10415         bool mac_stopped = false;
10416         u8 port = BP_PORT(bp);
10417
10418         /* reset addresses as they also mark which values were changed */
10419         memset(vals, 0, sizeof(*vals));
10420
10421         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10422
10423         if (!CHIP_IS_E3(bp)) {
10424                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10425                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10426                 if ((mask & reset_reg) && val) {
10427                         u32 wb_data[2];
10428                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10429                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10430                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10431                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10432                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10433
10434                         /*
10435                          * use rd/wr since we cannot use dmae. This is safe
10436                          * since MCP won't access the bus due to the request
10437                          * to unload, and no function on the path can be
10438                          * loaded at this time.
10439                          */
10440                         wb_data[0] = REG_RD(bp, base_addr + offset);
10441                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10442                         vals->bmac_addr = base_addr + offset;
10443                         vals->bmac_val[0] = wb_data[0];
10444                         vals->bmac_val[1] = wb_data[1];
10445                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10446                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10447                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10448                 }
10449                 BNX2X_DEV_INFO("Disable emac Rx\n");
10450                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10451                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10452                 REG_WR(bp, vals->emac_addr, 0);
10453                 mac_stopped = true;
10454         } else {
10455                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10456                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10457                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10458                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10459                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10460                                val & ~(1 << 1));
10461                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10462                                val | (1 << 1));
10463                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10464                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10465                         REG_WR(bp, vals->xmac_addr, 0);
10466                         mac_stopped = true;
10467                 }
10468
10469                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10470                                                             reset_reg, vals);
10471                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10472                                                             reset_reg, vals);
10473         }
10474
10475         if (mac_stopped)
10476                 msleep(20);
10477 }
10478
10479 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10480 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10481                                         0x1848 + ((f) << 4))
10482 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10483 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10484 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10485
10486 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10487 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10488 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10489
10490 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10491 {
10492         /* UNDI marks its presence in DORQ -
10493          * it initializes CID offset for normal bell to 0x7
10494          */
10495         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10496             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10497                 return false;
10498
10499         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10500                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10501                 return true;
10502         }
10503
10504         return false;
10505 }
10506
10507 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10508 {
10509         u16 rcq, bd;
10510         u32 addr, tmp_reg;
10511
10512         if (BP_FUNC(bp) < 2)
10513                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10514         else
10515                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10516
10517         tmp_reg = REG_RD(bp, addr);
10518         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10519         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10520
10521         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10522         REG_WR(bp, addr, tmp_reg);
10523
10524         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10525                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10526 }
10527
10528 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10529 {
10530         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10531                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10532         if (!rc) {
10533                 BNX2X_ERR("MCP response failure, aborting\n");
10534                 return -EBUSY;
10535         }
10536
10537         return 0;
10538 }
10539
10540 static struct bnx2x_prev_path_list *
10541                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10542 {
10543         struct bnx2x_prev_path_list *tmp_list;
10544
10545         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10546                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10547                     bp->pdev->bus->number == tmp_list->bus &&
10548                     BP_PATH(bp) == tmp_list->path)
10549                         return tmp_list;
10550
10551         return NULL;
10552 }
10553
10554 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10555 {
10556         struct bnx2x_prev_path_list *tmp_list;
10557         int rc;
10558
10559         rc = down_interruptible(&bnx2x_prev_sem);
10560         if (rc) {
10561                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10562                 return rc;
10563         }
10564
10565         tmp_list = bnx2x_prev_path_get_entry(bp);
10566         if (tmp_list) {
10567                 tmp_list->aer = 1;
10568                 rc = 0;
10569         } else {
10570                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10571                           BP_PATH(bp));
10572         }
10573
10574         up(&bnx2x_prev_sem);
10575
10576         return rc;
10577 }
10578
10579 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10580 {
10581         struct bnx2x_prev_path_list *tmp_list;
10582         bool rc = false;
10583
10584         if (down_trylock(&bnx2x_prev_sem))
10585                 return false;
10586
10587         tmp_list = bnx2x_prev_path_get_entry(bp);
10588         if (tmp_list) {
10589                 if (tmp_list->aer) {
10590                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10591                            BP_PATH(bp));
10592                 } else {
10593                         rc = true;
10594                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10595                                        BP_PATH(bp));
10596                 }
10597         }
10598
10599         up(&bnx2x_prev_sem);
10600
10601         return rc;
10602 }
10603
10604 bool bnx2x_port_after_undi(struct bnx2x *bp)
10605 {
10606         struct bnx2x_prev_path_list *entry;
10607         bool val;
10608
10609         down(&bnx2x_prev_sem);
10610
10611         entry = bnx2x_prev_path_get_entry(bp);
10612         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10613
10614         up(&bnx2x_prev_sem);
10615
10616         return val;
10617 }
10618
10619 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10620 {
10621         struct bnx2x_prev_path_list *tmp_list;
10622         int rc;
10623
10624         rc = down_interruptible(&bnx2x_prev_sem);
10625         if (rc) {
10626                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10627                 return rc;
10628         }
10629
10630         /* Check whether the entry for this path already exists */
10631         tmp_list = bnx2x_prev_path_get_entry(bp);
10632         if (tmp_list) {
10633                 if (!tmp_list->aer) {
10634                         BNX2X_ERR("Re-Marking the path.\n");
10635                 } else {
10636                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10637                            BP_PATH(bp));
10638                         tmp_list->aer = 0;
10639                 }
10640                 up(&bnx2x_prev_sem);
10641                 return 0;
10642         }
10643         up(&bnx2x_prev_sem);
10644
10645         /* Create an entry for this path and add it */
10646         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10647         if (!tmp_list) {
10648                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10649                 return -ENOMEM;
10650         }
10651
10652         tmp_list->bus = bp->pdev->bus->number;
10653         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10654         tmp_list->path = BP_PATH(bp);
10655         tmp_list->aer = 0;
10656         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10657
10658         rc = down_interruptible(&bnx2x_prev_sem);
10659         if (rc) {
10660                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10661                 kfree(tmp_list);
10662         } else {
10663                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10664                    BP_PATH(bp));
10665                 list_add(&tmp_list->list, &bnx2x_prev_list);
10666                 up(&bnx2x_prev_sem);
10667         }
10668
10669         return rc;
10670 }
10671
10672 static int bnx2x_do_flr(struct bnx2x *bp)
10673 {
10674         struct pci_dev *dev = bp->pdev;
10675
10676         if (CHIP_IS_E1x(bp)) {
10677                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10678                 return -EINVAL;
10679         }
10680
10681         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10682         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10683                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10684                           bp->common.bc_ver);
10685                 return -EINVAL;
10686         }
10687
10688         if (!pci_wait_for_pending_transaction(dev))
10689                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10690
10691         BNX2X_DEV_INFO("Initiating FLR\n");
10692         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10693
10694         return 0;
10695 }
10696
10697 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10698 {
10699         int rc;
10700
10701         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10702
10703         /* Test if previous unload process was already finished for this path */
10704         if (bnx2x_prev_is_path_marked(bp))
10705                 return bnx2x_prev_mcp_done(bp);
10706
10707         BNX2X_DEV_INFO("Path is unmarked\n");
10708
10709         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10710         if (bnx2x_prev_is_after_undi(bp))
10711                 goto out;
10712
10713         /* If function has FLR capabilities, and existing FW version matches
10714          * the one required, then FLR will be sufficient to clean any residue
10715          * left by previous driver
10716          */
10717         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10718
10719         if (!rc) {
10720                 /* fw version is good */
10721                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10722                 rc = bnx2x_do_flr(bp);
10723         }
10724
10725         if (!rc) {
10726                 /* FLR was performed */
10727                 BNX2X_DEV_INFO("FLR successful\n");
10728                 return 0;
10729         }
10730
10731         BNX2X_DEV_INFO("Could not FLR\n");
10732
10733 out:
10734         /* Close the MCP request, return failure*/
10735         rc = bnx2x_prev_mcp_done(bp);
10736         if (!rc)
10737                 rc = BNX2X_PREV_WAIT_NEEDED;
10738
10739         return rc;
10740 }
10741
10742 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10743 {
10744         u32 reset_reg, tmp_reg = 0, rc;
10745         bool prev_undi = false;
10746         struct bnx2x_mac_vals mac_vals;
10747
10748         /* It is possible a previous function received 'common' answer,
10749          * but hasn't loaded yet, therefore creating a scenario of
10750          * multiple functions receiving 'common' on the same path.
10751          */
10752         BNX2X_DEV_INFO("Common unload Flow\n");
10753
10754         memset(&mac_vals, 0, sizeof(mac_vals));
10755
10756         if (bnx2x_prev_is_path_marked(bp))
10757                 return bnx2x_prev_mcp_done(bp);
10758
10759         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10760
10761         /* Reset should be performed after BRB is emptied */
10762         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10763                 u32 timer_count = 1000;
10764
10765                 /* Close the MAC Rx to prevent BRB from filling up */
10766                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10767
10768                 /* close LLH filters for both ports towards the BRB */
10769                 bnx2x_set_rx_filter(&bp->link_params, 0);
10770                 bp->link_params.port ^= 1;
10771                 bnx2x_set_rx_filter(&bp->link_params, 0);
10772                 bp->link_params.port ^= 1;
10773
10774                 /* Check if the UNDI driver was previously loaded */
10775                 if (bnx2x_prev_is_after_undi(bp)) {
10776                         prev_undi = true;
10777                         /* clear the UNDI indication */
10778                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10779                         /* clear possible idle check errors */
10780                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10781                 }
10782                 if (!CHIP_IS_E1x(bp))
10783                         /* block FW from writing to host */
10784                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10785
10786                 /* wait until BRB is empty */
10787                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10788                 while (timer_count) {
10789                         u32 prev_brb = tmp_reg;
10790
10791                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10792                         if (!tmp_reg)
10793                                 break;
10794
10795                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10796
10797                         /* reset timer as long as BRB actually gets emptied */
10798                         if (prev_brb > tmp_reg)
10799                                 timer_count = 1000;
10800                         else
10801                                 timer_count--;
10802
10803                         /* If UNDI resides in memory, manually increment it */
10804                         if (prev_undi)
10805                                 bnx2x_prev_unload_undi_inc(bp, 1);
10806
10807                         udelay(10);
10808                 }
10809
10810                 if (!timer_count)
10811                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10812         }
10813
10814         /* No packets are in the pipeline, path is ready for reset */
10815         bnx2x_reset_common(bp);
10816
10817         if (mac_vals.xmac_addr)
10818                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10819         if (mac_vals.umac_addr[0])
10820                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10821         if (mac_vals.umac_addr[1])
10822                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10823         if (mac_vals.emac_addr)
10824                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10825         if (mac_vals.bmac_addr) {
10826                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10827                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10828         }
10829
10830         rc = bnx2x_prev_mark_path(bp, prev_undi);
10831         if (rc) {
10832                 bnx2x_prev_mcp_done(bp);
10833                 return rc;
10834         }
10835
10836         return bnx2x_prev_mcp_done(bp);
10837 }
10838
10839 static int bnx2x_prev_unload(struct bnx2x *bp)
10840 {
10841         int time_counter = 10;
10842         u32 rc, fw, hw_lock_reg, hw_lock_val;
10843         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10844
10845         /* clear hw from errors which may have resulted from an interrupted
10846          * dmae transaction.
10847          */
10848         bnx2x_clean_pglue_errors(bp);
10849
10850         /* Release previously held locks */
10851         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10852                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10853                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10854
10855         hw_lock_val = REG_RD(bp, hw_lock_reg);
10856         if (hw_lock_val) {
10857                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10858                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10859                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10860                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10861                 }
10862
10863                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10864                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10865         } else
10866                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10867
10868         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10869                 BNX2X_DEV_INFO("Release previously held alr\n");
10870                 bnx2x_release_alr(bp);
10871         }
10872
10873         do {
10874                 int aer = 0;
10875                 /* Lock MCP using an unload request */
10876                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10877                 if (!fw) {
10878                         BNX2X_ERR("MCP response failure, aborting\n");
10879                         rc = -EBUSY;
10880                         break;
10881                 }
10882
10883                 rc = down_interruptible(&bnx2x_prev_sem);
10884                 if (rc) {
10885                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10886                                   rc);
10887                 } else {
10888                         /* If Path is marked by EEH, ignore unload status */
10889                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10890                                  bnx2x_prev_path_get_entry(bp)->aer);
10891                         up(&bnx2x_prev_sem);
10892                 }
10893
10894                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10895                         rc = bnx2x_prev_unload_common(bp);
10896                         break;
10897                 }
10898
10899                 /* non-common reply from MCP might require looping */
10900                 rc = bnx2x_prev_unload_uncommon(bp);
10901                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10902                         break;
10903
10904                 msleep(20);
10905         } while (--time_counter);
10906
10907         if (!time_counter || rc) {
10908                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10909                 rc = -EPROBE_DEFER;
10910         }
10911
10912         /* Mark function if its port was used to boot from SAN */
10913         if (bnx2x_port_after_undi(bp))
10914                 bp->link_params.feature_config_flags |=
10915                         FEATURE_CONFIG_BOOT_FROM_SAN;
10916
10917         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10918
10919         return rc;
10920 }
10921
10922 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10923 {
10924         u32 val, val2, val3, val4, id, boot_mode;
10925         u16 pmc;
10926
10927         /* Get the chip revision id and number. */
10928         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10929         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10930         id = ((val & 0xffff) << 16);
10931         val = REG_RD(bp, MISC_REG_CHIP_REV);
10932         id |= ((val & 0xf) << 12);
10933
10934         /* Metal is read from PCI regs, but we can't access >=0x400 from
10935          * the configuration space (so we need to reg_rd)
10936          */
10937         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10938         id |= (((val >> 24) & 0xf) << 4);
10939         val = REG_RD(bp, MISC_REG_BOND_ID);
10940         id |= (val & 0xf);
10941         bp->common.chip_id = id;
10942
10943         /* force 57811 according to MISC register */
10944         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10945                 if (CHIP_IS_57810(bp))
10946                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10947                                 (bp->common.chip_id & 0x0000FFFF);
10948                 else if (CHIP_IS_57810_MF(bp))
10949                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10950                                 (bp->common.chip_id & 0x0000FFFF);
10951                 bp->common.chip_id |= 0x1;
10952         }
10953
10954         /* Set doorbell size */
10955         bp->db_size = (1 << BNX2X_DB_SHIFT);
10956
10957         if (!CHIP_IS_E1x(bp)) {
10958                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10959                 if ((val & 1) == 0)
10960                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10961                 else
10962                         val = (val >> 1) & 1;
10963                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10964                                                        "2_PORT_MODE");
10965                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10966                                                  CHIP_2_PORT_MODE;
10967
10968                 if (CHIP_MODE_IS_4_PORT(bp))
10969                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10970                 else
10971                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10972         } else {
10973                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10974                 bp->pfid = bp->pf_num;                  /* 0..7 */
10975         }
10976
10977         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10978
10979         bp->link_params.chip_id = bp->common.chip_id;
10980         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10981
10982         val = (REG_RD(bp, 0x2874) & 0x55);
10983         if ((bp->common.chip_id & 0x1) ||
10984             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10985                 bp->flags |= ONE_PORT_FLAG;
10986                 BNX2X_DEV_INFO("single port device\n");
10987         }
10988
10989         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10990         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10991                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10992         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10993                        bp->common.flash_size, bp->common.flash_size);
10994
10995         bnx2x_init_shmem(bp);
10996
10997         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10998                                         MISC_REG_GENERIC_CR_1 :
10999                                         MISC_REG_GENERIC_CR_0));
11000
11001         bp->link_params.shmem_base = bp->common.shmem_base;
11002         bp->link_params.shmem2_base = bp->common.shmem2_base;
11003         if (SHMEM2_RD(bp, size) >
11004             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11005                 bp->link_params.lfa_base =
11006                 REG_RD(bp, bp->common.shmem2_base +
11007                        (u32)offsetof(struct shmem2_region,
11008                                      lfa_host_addr[BP_PORT(bp)]));
11009         else
11010                 bp->link_params.lfa_base = 0;
11011         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11012                        bp->common.shmem_base, bp->common.shmem2_base);
11013
11014         if (!bp->common.shmem_base) {
11015                 BNX2X_DEV_INFO("MCP not active\n");
11016                 bp->flags |= NO_MCP_FLAG;
11017                 return;
11018         }
11019
11020         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11021         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11022
11023         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11024                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11025                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11026
11027         bp->link_params.feature_config_flags = 0;
11028         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11029         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11030                 bp->link_params.feature_config_flags |=
11031                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11032         else
11033                 bp->link_params.feature_config_flags &=
11034                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035
11036         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11037         bp->common.bc_ver = val;
11038         BNX2X_DEV_INFO("bc_ver %X\n", val);
11039         if (val < BNX2X_BC_VER) {
11040                 /* for now only warn
11041                  * later we might need to enforce this */
11042                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11043                           BNX2X_BC_VER, val);
11044         }
11045         bp->link_params.feature_config_flags |=
11046                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11047                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11048
11049         bp->link_params.feature_config_flags |=
11050                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11051                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11052         bp->link_params.feature_config_flags |=
11053                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11054                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11055         bp->link_params.feature_config_flags |=
11056                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11057                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11058
11059         bp->link_params.feature_config_flags |=
11060                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11061                 FEATURE_CONFIG_MT_SUPPORT : 0;
11062
11063         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11064                         BC_SUPPORTS_PFC_STATS : 0;
11065
11066         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11067                         BC_SUPPORTS_FCOE_FEATURES : 0;
11068
11069         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11070                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11071
11072         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11073                         BC_SUPPORTS_RMMOD_CMD : 0;
11074
11075         boot_mode = SHMEM_RD(bp,
11076                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11077                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11078         switch (boot_mode) {
11079         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11080                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11081                 break;
11082         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11083                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11084                 break;
11085         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11086                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11087                 break;
11088         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11089                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11090                 break;
11091         }
11092
11093         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11094         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11095
11096         BNX2X_DEV_INFO("%sWoL capable\n",
11097                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11098
11099         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11100         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11101         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11102         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11103
11104         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11105                  val, val2, val3, val4);
11106 }
11107
11108 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11109 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11110
11111 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11112 {
11113         int pfid = BP_FUNC(bp);
11114         int igu_sb_id;
11115         u32 val;
11116         u8 fid, igu_sb_cnt = 0;
11117
11118         bp->igu_base_sb = 0xff;
11119         if (CHIP_INT_MODE_IS_BC(bp)) {
11120                 int vn = BP_VN(bp);
11121                 igu_sb_cnt = bp->igu_sb_cnt;
11122                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11123                         FP_SB_MAX_E1x;
11124
11125                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11126                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11127
11128                 return 0;
11129         }
11130
11131         /* IGU in normal mode - read CAM */
11132         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11133              igu_sb_id++) {
11134                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11135                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11136                         continue;
11137                 fid = IGU_FID(val);
11138                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11139                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11140                                 continue;
11141                         if (IGU_VEC(val) == 0)
11142                                 /* default status block */
11143                                 bp->igu_dsb_id = igu_sb_id;
11144                         else {
11145                                 if (bp->igu_base_sb == 0xff)
11146                                         bp->igu_base_sb = igu_sb_id;
11147                                 igu_sb_cnt++;
11148                         }
11149                 }
11150         }
11151
11152 #ifdef CONFIG_PCI_MSI
11153         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11154          * optional that number of CAM entries will not be equal to the value
11155          * advertised in PCI.
11156          * Driver should use the minimal value of both as the actual status
11157          * block count
11158          */
11159         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11160 #endif
11161
11162         if (igu_sb_cnt == 0) {
11163                 BNX2X_ERR("CAM configuration error\n");
11164                 return -EINVAL;
11165         }
11166
11167         return 0;
11168 }
11169
11170 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11171 {
11172         int cfg_size = 0, idx, port = BP_PORT(bp);
11173
11174         /* Aggregation of supported attributes of all external phys */
11175         bp->port.supported[0] = 0;
11176         bp->port.supported[1] = 0;
11177         switch (bp->link_params.num_phys) {
11178         case 1:
11179                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11180                 cfg_size = 1;
11181                 break;
11182         case 2:
11183                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11184                 cfg_size = 1;
11185                 break;
11186         case 3:
11187                 if (bp->link_params.multi_phy_config &
11188                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11189                         bp->port.supported[1] =
11190                                 bp->link_params.phy[EXT_PHY1].supported;
11191                         bp->port.supported[0] =
11192                                 bp->link_params.phy[EXT_PHY2].supported;
11193                 } else {
11194                         bp->port.supported[0] =
11195                                 bp->link_params.phy[EXT_PHY1].supported;
11196                         bp->port.supported[1] =
11197                                 bp->link_params.phy[EXT_PHY2].supported;
11198                 }
11199                 cfg_size = 2;
11200                 break;
11201         }
11202
11203         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11204                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11205                            SHMEM_RD(bp,
11206                            dev_info.port_hw_config[port].external_phy_config),
11207                            SHMEM_RD(bp,
11208                            dev_info.port_hw_config[port].external_phy_config2));
11209                         return;
11210         }
11211
11212         if (CHIP_IS_E3(bp))
11213                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11214         else {
11215                 switch (switch_cfg) {
11216                 case SWITCH_CFG_1G:
11217                         bp->port.phy_addr = REG_RD(
11218                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11219                         break;
11220                 case SWITCH_CFG_10G:
11221                         bp->port.phy_addr = REG_RD(
11222                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11223                         break;
11224                 default:
11225                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11226                                   bp->port.link_config[0]);
11227                         return;
11228                 }
11229         }
11230         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11231         /* mask what we support according to speed_cap_mask per configuration */
11232         for (idx = 0; idx < cfg_size; idx++) {
11233                 if (!(bp->link_params.speed_cap_mask[idx] &
11234                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11235                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11236
11237                 if (!(bp->link_params.speed_cap_mask[idx] &
11238                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11239                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11240
11241                 if (!(bp->link_params.speed_cap_mask[idx] &
11242                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11243                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11244
11245                 if (!(bp->link_params.speed_cap_mask[idx] &
11246                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11247                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11248
11249                 if (!(bp->link_params.speed_cap_mask[idx] &
11250                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11251                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11252                                                      SUPPORTED_1000baseT_Full);
11253
11254                 if (!(bp->link_params.speed_cap_mask[idx] &
11255                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11256                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11257
11258                 if (!(bp->link_params.speed_cap_mask[idx] &
11259                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11260                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11261
11262                 if (!(bp->link_params.speed_cap_mask[idx] &
11263                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11264                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11265         }
11266
11267         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11268                        bp->port.supported[1]);
11269 }
11270
11271 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11272 {
11273         u32 link_config, idx, cfg_size = 0;
11274         bp->port.advertising[0] = 0;
11275         bp->port.advertising[1] = 0;
11276         switch (bp->link_params.num_phys) {
11277         case 1:
11278         case 2:
11279                 cfg_size = 1;
11280                 break;
11281         case 3:
11282                 cfg_size = 2;
11283                 break;
11284         }
11285         for (idx = 0; idx < cfg_size; idx++) {
11286                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11287                 link_config = bp->port.link_config[idx];
11288                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11289                 case PORT_FEATURE_LINK_SPEED_AUTO:
11290                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11291                                 bp->link_params.req_line_speed[idx] =
11292                                         SPEED_AUTO_NEG;
11293                                 bp->port.advertising[idx] |=
11294                                         bp->port.supported[idx];
11295                                 if (bp->link_params.phy[EXT_PHY1].type ==
11296                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11297                                         bp->port.advertising[idx] |=
11298                                         (SUPPORTED_100baseT_Half |
11299                                          SUPPORTED_100baseT_Full);
11300                         } else {
11301                                 /* force 10G, no AN */
11302                                 bp->link_params.req_line_speed[idx] =
11303                                         SPEED_10000;
11304                                 bp->port.advertising[idx] |=
11305                                         (ADVERTISED_10000baseT_Full |
11306                                          ADVERTISED_FIBRE);
11307                                 continue;
11308                         }
11309                         break;
11310
11311                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11312                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11313                                 bp->link_params.req_line_speed[idx] =
11314                                         SPEED_10;
11315                                 bp->port.advertising[idx] |=
11316                                         (ADVERTISED_10baseT_Full |
11317                                          ADVERTISED_TP);
11318                         } else {
11319                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11320                                             link_config,
11321                                     bp->link_params.speed_cap_mask[idx]);
11322                                 return;
11323                         }
11324                         break;
11325
11326                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11327                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11328                                 bp->link_params.req_line_speed[idx] =
11329                                         SPEED_10;
11330                                 bp->link_params.req_duplex[idx] =
11331                                         DUPLEX_HALF;
11332                                 bp->port.advertising[idx] |=
11333                                         (ADVERTISED_10baseT_Half |
11334                                          ADVERTISED_TP);
11335                         } else {
11336                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11337                                             link_config,
11338                                           bp->link_params.speed_cap_mask[idx]);
11339                                 return;
11340                         }
11341                         break;
11342
11343                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11344                         if (bp->port.supported[idx] &
11345                             SUPPORTED_100baseT_Full) {
11346                                 bp->link_params.req_line_speed[idx] =
11347                                         SPEED_100;
11348                                 bp->port.advertising[idx] |=
11349                                         (ADVERTISED_100baseT_Full |
11350                                          ADVERTISED_TP);
11351                         } else {
11352                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11353                                             link_config,
11354                                           bp->link_params.speed_cap_mask[idx]);
11355                                 return;
11356                         }
11357                         break;
11358
11359                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11360                         if (bp->port.supported[idx] &
11361                             SUPPORTED_100baseT_Half) {
11362                                 bp->link_params.req_line_speed[idx] =
11363                                                                 SPEED_100;
11364                                 bp->link_params.req_duplex[idx] =
11365                                                                 DUPLEX_HALF;
11366                                 bp->port.advertising[idx] |=
11367                                         (ADVERTISED_100baseT_Half |
11368                                          ADVERTISED_TP);
11369                         } else {
11370                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11371                                     link_config,
11372                                     bp->link_params.speed_cap_mask[idx]);
11373                                 return;
11374                         }
11375                         break;
11376
11377                 case PORT_FEATURE_LINK_SPEED_1G:
11378                         if (bp->port.supported[idx] &
11379                             SUPPORTED_1000baseT_Full) {
11380                                 bp->link_params.req_line_speed[idx] =
11381                                         SPEED_1000;
11382                                 bp->port.advertising[idx] |=
11383                                         (ADVERTISED_1000baseT_Full |
11384                                          ADVERTISED_TP);
11385                         } else if (bp->port.supported[idx] &
11386                                    SUPPORTED_1000baseKX_Full) {
11387                                 bp->link_params.req_line_speed[idx] =
11388                                         SPEED_1000;
11389                                 bp->port.advertising[idx] |=
11390                                         ADVERTISED_1000baseKX_Full;
11391                         } else {
11392                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11393                                     link_config,
11394                                     bp->link_params.speed_cap_mask[idx]);
11395                                 return;
11396                         }
11397                         break;
11398
11399                 case PORT_FEATURE_LINK_SPEED_2_5G:
11400                         if (bp->port.supported[idx] &
11401                             SUPPORTED_2500baseX_Full) {
11402                                 bp->link_params.req_line_speed[idx] =
11403                                         SPEED_2500;
11404                                 bp->port.advertising[idx] |=
11405                                         (ADVERTISED_2500baseX_Full |
11406                                                 ADVERTISED_TP);
11407                         } else {
11408                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11409                                     link_config,
11410                                     bp->link_params.speed_cap_mask[idx]);
11411                                 return;
11412                         }
11413                         break;
11414
11415                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11416                         if (bp->port.supported[idx] &
11417                             SUPPORTED_10000baseT_Full) {
11418                                 bp->link_params.req_line_speed[idx] =
11419                                         SPEED_10000;
11420                                 bp->port.advertising[idx] |=
11421                                         (ADVERTISED_10000baseT_Full |
11422                                                 ADVERTISED_FIBRE);
11423                         } else if (bp->port.supported[idx] &
11424                                    SUPPORTED_10000baseKR_Full) {
11425                                 bp->link_params.req_line_speed[idx] =
11426                                         SPEED_10000;
11427                                 bp->port.advertising[idx] |=
11428                                         (ADVERTISED_10000baseKR_Full |
11429                                                 ADVERTISED_FIBRE);
11430                         } else {
11431                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11432                                     link_config,
11433                                     bp->link_params.speed_cap_mask[idx]);
11434                                 return;
11435                         }
11436                         break;
11437                 case PORT_FEATURE_LINK_SPEED_20G:
11438                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11439
11440                         break;
11441                 default:
11442                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11443                                   link_config);
11444                                 bp->link_params.req_line_speed[idx] =
11445                                                         SPEED_AUTO_NEG;
11446                                 bp->port.advertising[idx] =
11447                                                 bp->port.supported[idx];
11448                         break;
11449                 }
11450
11451                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11452                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11453                 if (bp->link_params.req_flow_ctrl[idx] ==
11454                     BNX2X_FLOW_CTRL_AUTO) {
11455                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11456                                 bp->link_params.req_flow_ctrl[idx] =
11457                                                         BNX2X_FLOW_CTRL_NONE;
11458                         else
11459                                 bnx2x_set_requested_fc(bp);
11460                 }
11461
11462                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11463                                bp->link_params.req_line_speed[idx],
11464                                bp->link_params.req_duplex[idx],
11465                                bp->link_params.req_flow_ctrl[idx],
11466                                bp->port.advertising[idx]);
11467         }
11468 }
11469
11470 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11471 {
11472         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11473         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11474         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11475         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11476 }
11477
11478 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11479 {
11480         int port = BP_PORT(bp);
11481         u32 config;
11482         u32 ext_phy_type, ext_phy_config, eee_mode;
11483
11484         bp->link_params.bp = bp;
11485         bp->link_params.port = port;
11486
11487         bp->link_params.lane_config =
11488                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11489
11490         bp->link_params.speed_cap_mask[0] =
11491                 SHMEM_RD(bp,
11492                          dev_info.port_hw_config[port].speed_capability_mask) &
11493                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11494         bp->link_params.speed_cap_mask[1] =
11495                 SHMEM_RD(bp,
11496                          dev_info.port_hw_config[port].speed_capability_mask2) &
11497                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11498         bp->port.link_config[0] =
11499                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11500
11501         bp->port.link_config[1] =
11502                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11503
11504         bp->link_params.multi_phy_config =
11505                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11506         /* If the device is capable of WoL, set the default state according
11507          * to the HW
11508          */
11509         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11510         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11511                    (config & PORT_FEATURE_WOL_ENABLED));
11512
11513         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11514             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11515                 bp->flags |= NO_ISCSI_FLAG;
11516         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11518                 bp->flags |= NO_FCOE_FLAG;
11519
11520         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11521                        bp->link_params.lane_config,
11522                        bp->link_params.speed_cap_mask[0],
11523                        bp->port.link_config[0]);
11524
11525         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11526                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11527         bnx2x_phy_probe(&bp->link_params);
11528         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11529
11530         bnx2x_link_settings_requested(bp);
11531
11532         /*
11533          * If connected directly, work with the internal PHY, otherwise, work
11534          * with the external PHY
11535          */
11536         ext_phy_config =
11537                 SHMEM_RD(bp,
11538                          dev_info.port_hw_config[port].external_phy_config);
11539         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11540         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11541                 bp->mdio.prtad = bp->port.phy_addr;
11542
11543         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11544                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11545                 bp->mdio.prtad =
11546                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11547
11548         /* Configure link feature according to nvram value */
11549         eee_mode = (((SHMEM_RD(bp, dev_info.
11550                       port_feature_config[port].eee_power_mode)) &
11551                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11552                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11553         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11554                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11555                                            EEE_MODE_ENABLE_LPI |
11556                                            EEE_MODE_OUTPUT_TIME;
11557         } else {
11558                 bp->link_params.eee_mode = 0;
11559         }
11560 }
11561
11562 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11563 {
11564         u32 no_flags = NO_ISCSI_FLAG;
11565         int port = BP_PORT(bp);
11566         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11567                                 drv_lic_key[port].max_iscsi_conn);
11568
11569         if (!CNIC_SUPPORT(bp)) {
11570                 bp->flags |= no_flags;
11571                 return;
11572         }
11573
11574         /* Get the number of maximum allowed iSCSI connections */
11575         bp->cnic_eth_dev.max_iscsi_conn =
11576                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11577                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11578
11579         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11580                        bp->cnic_eth_dev.max_iscsi_conn);
11581
11582         /*
11583          * If maximum allowed number of connections is zero -
11584          * disable the feature.
11585          */
11586         if (!bp->cnic_eth_dev.max_iscsi_conn)
11587                 bp->flags |= no_flags;
11588 }
11589
11590 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11591 {
11592         /* Port info */
11593         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11594                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11595         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11596                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11597
11598         /* Node info */
11599         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11600                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11601         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11602                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11603 }
11604
11605 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11606 {
11607         u8 count = 0;
11608
11609         if (IS_MF(bp)) {
11610                 u8 fid;
11611
11612                 /* iterate over absolute function ids for this path: */
11613                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11614                         if (IS_MF_SD(bp)) {
11615                                 u32 cfg = MF_CFG_RD(bp,
11616                                                     func_mf_config[fid].config);
11617
11618                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11619                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11620                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11621                                         count++;
11622                         } else {
11623                                 u32 cfg = MF_CFG_RD(bp,
11624                                                     func_ext_config[fid].
11625                                                                       func_cfg);
11626
11627                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11628                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11629                                         count++;
11630                         }
11631                 }
11632         } else { /* SF */
11633                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11634
11635                 for (port = 0; port < port_cnt; port++) {
11636                         u32 lic = SHMEM_RD(bp,
11637                                            drv_lic_key[port].max_fcoe_conn) ^
11638                                   FW_ENCODE_32BIT_PATTERN;
11639                         if (lic)
11640                                 count++;
11641                 }
11642         }
11643
11644         return count;
11645 }
11646
11647 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11648 {
11649         int port = BP_PORT(bp);
11650         int func = BP_ABS_FUNC(bp);
11651         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11652                                 drv_lic_key[port].max_fcoe_conn);
11653         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11654
11655         if (!CNIC_SUPPORT(bp)) {
11656                 bp->flags |= NO_FCOE_FLAG;
11657                 return;
11658         }
11659
11660         /* Get the number of maximum allowed FCoE connections */
11661         bp->cnic_eth_dev.max_fcoe_conn =
11662                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11663                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11664
11665         /* Calculate the number of maximum allowed FCoE tasks */
11666         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11667
11668         /* check if FCoE resources must be shared between different functions */
11669         if (num_fcoe_func)
11670                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11671
11672         /* Read the WWN: */
11673         if (!IS_MF(bp)) {
11674                 /* Port info */
11675                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11676                         SHMEM_RD(bp,
11677                                  dev_info.port_hw_config[port].
11678                                  fcoe_wwn_port_name_upper);
11679                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11680                         SHMEM_RD(bp,
11681                                  dev_info.port_hw_config[port].
11682                                  fcoe_wwn_port_name_lower);
11683
11684                 /* Node info */
11685                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11686                         SHMEM_RD(bp,
11687                                  dev_info.port_hw_config[port].
11688                                  fcoe_wwn_node_name_upper);
11689                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11690                         SHMEM_RD(bp,
11691                                  dev_info.port_hw_config[port].
11692                                  fcoe_wwn_node_name_lower);
11693         } else if (!IS_MF_SD(bp)) {
11694                 /* Read the WWN info only if the FCoE feature is enabled for
11695                  * this function.
11696                  */
11697                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11698                         bnx2x_get_ext_wwn_info(bp, func);
11699         } else {
11700                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11701                         bnx2x_get_ext_wwn_info(bp, func);
11702         }
11703
11704         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11705
11706         /*
11707          * If maximum allowed number of connections is zero -
11708          * disable the feature.
11709          */
11710         if (!bp->cnic_eth_dev.max_fcoe_conn)
11711                 bp->flags |= NO_FCOE_FLAG;
11712 }
11713
11714 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11715 {
11716         /*
11717          * iSCSI may be dynamically disabled but reading
11718          * info here we will decrease memory usage by driver
11719          * if the feature is disabled for good
11720          */
11721         bnx2x_get_iscsi_info(bp);
11722         bnx2x_get_fcoe_info(bp);
11723 }
11724
11725 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11726 {
11727         u32 val, val2;
11728         int func = BP_ABS_FUNC(bp);
11729         int port = BP_PORT(bp);
11730         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11731         u8 *fip_mac = bp->fip_mac;
11732
11733         if (IS_MF(bp)) {
11734                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11735                  * FCoE MAC then the appropriate feature should be disabled.
11736                  * In non SD mode features configuration comes from struct
11737                  * func_ext_config.
11738                  */
11739                 if (!IS_MF_SD(bp)) {
11740                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11741                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11742                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11743                                                  iscsi_mac_addr_upper);
11744                                 val = MF_CFG_RD(bp, func_ext_config[func].
11745                                                 iscsi_mac_addr_lower);
11746                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11747                                 BNX2X_DEV_INFO
11748                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11749                         } else {
11750                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11751                         }
11752
11753                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11754                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11755                                                  fcoe_mac_addr_upper);
11756                                 val = MF_CFG_RD(bp, func_ext_config[func].
11757                                                 fcoe_mac_addr_lower);
11758                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11759                                 BNX2X_DEV_INFO
11760                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11761                         } else {
11762                                 bp->flags |= NO_FCOE_FLAG;
11763                         }
11764
11765                         bp->mf_ext_config = cfg;
11766
11767                 } else { /* SD MODE */
11768                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11769                                 /* use primary mac as iscsi mac */
11770                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11771
11772                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11773                                 BNX2X_DEV_INFO
11774                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11775                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11776                                 /* use primary mac as fip mac */
11777                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11778                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11779                                 BNX2X_DEV_INFO
11780                                         ("Read FIP MAC: %pM\n", fip_mac);
11781                         }
11782                 }
11783
11784                 /* If this is a storage-only interface, use SAN mac as
11785                  * primary MAC. Notice that for SD this is already the case,
11786                  * as the SAN mac was copied from the primary MAC.
11787                  */
11788                 if (IS_MF_FCOE_AFEX(bp))
11789                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11790         } else {
11791                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11792                                 iscsi_mac_upper);
11793                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11794                                iscsi_mac_lower);
11795                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11796
11797                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11798                                 fcoe_fip_mac_upper);
11799                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11800                                fcoe_fip_mac_lower);
11801                 bnx2x_set_mac_buf(fip_mac, val, val2);
11802         }
11803
11804         /* Disable iSCSI OOO if MAC configuration is invalid. */
11805         if (!is_valid_ether_addr(iscsi_mac)) {
11806                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11807                 eth_zero_addr(iscsi_mac);
11808         }
11809
11810         /* Disable FCoE if MAC configuration is invalid. */
11811         if (!is_valid_ether_addr(fip_mac)) {
11812                 bp->flags |= NO_FCOE_FLAG;
11813                 eth_zero_addr(bp->fip_mac);
11814         }
11815 }
11816
11817 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11818 {
11819         u32 val, val2;
11820         int func = BP_ABS_FUNC(bp);
11821         int port = BP_PORT(bp);
11822
11823         /* Zero primary MAC configuration */
11824         eth_zero_addr(bp->dev->dev_addr);
11825
11826         if (BP_NOMCP(bp)) {
11827                 BNX2X_ERROR("warning: random MAC workaround active\n");
11828                 eth_hw_addr_random(bp->dev);
11829         } else if (IS_MF(bp)) {
11830                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11831                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11832                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11833                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11834                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11835
11836                 if (CNIC_SUPPORT(bp))
11837                         bnx2x_get_cnic_mac_hwinfo(bp);
11838         } else {
11839                 /* in SF read MACs from port configuration */
11840                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11841                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11842                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11843
11844                 if (CNIC_SUPPORT(bp))
11845                         bnx2x_get_cnic_mac_hwinfo(bp);
11846         }
11847
11848         if (!BP_NOMCP(bp)) {
11849                 /* Read physical port identifier from shmem */
11850                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11851                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11852                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11853                 bp->flags |= HAS_PHYS_PORT_ID;
11854         }
11855
11856         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11857
11858         if (!is_valid_ether_addr(bp->dev->dev_addr))
11859                 dev_err(&bp->pdev->dev,
11860                         "bad Ethernet MAC address configuration: %pM\n"
11861                         "change it manually before bringing up the appropriate network interface\n",
11862                         bp->dev->dev_addr);
11863 }
11864
11865 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11866 {
11867         int tmp;
11868         u32 cfg;
11869
11870         if (IS_VF(bp))
11871                 return false;
11872
11873         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11874                 /* Take function: tmp = func */
11875                 tmp = BP_ABS_FUNC(bp);
11876                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11877                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11878         } else {
11879                 /* Take port: tmp = port */
11880                 tmp = BP_PORT(bp);
11881                 cfg = SHMEM_RD(bp,
11882                                dev_info.port_hw_config[tmp].generic_features);
11883                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11884         }
11885         return cfg;
11886 }
11887
11888 static void validate_set_si_mode(struct bnx2x *bp)
11889 {
11890         u8 func = BP_ABS_FUNC(bp);
11891         u32 val;
11892
11893         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11894
11895         /* check for legal mac (upper bytes) */
11896         if (val != 0xffff) {
11897                 bp->mf_mode = MULTI_FUNCTION_SI;
11898                 bp->mf_config[BP_VN(bp)] =
11899                         MF_CFG_RD(bp, func_mf_config[func].config);
11900         } else
11901                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11902 }
11903
11904 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11905 {
11906         int /*abs*/func = BP_ABS_FUNC(bp);
11907         int vn, mfw_vn;
11908         u32 val = 0, val2 = 0;
11909         int rc = 0;
11910
11911         /* Validate that chip access is feasible */
11912         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11913                 dev_err(&bp->pdev->dev,
11914                         "Chip read returns all Fs. Preventing probe from continuing\n");
11915                 return -EINVAL;
11916         }
11917
11918         bnx2x_get_common_hwinfo(bp);
11919
11920         /*
11921          * initialize IGU parameters
11922          */
11923         if (CHIP_IS_E1x(bp)) {
11924                 bp->common.int_block = INT_BLOCK_HC;
11925
11926                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11927                 bp->igu_base_sb = 0;
11928         } else {
11929                 bp->common.int_block = INT_BLOCK_IGU;
11930
11931                 /* do not allow device reset during IGU info processing */
11932                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11933
11934                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11935
11936                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11937                         int tout = 5000;
11938
11939                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11940
11941                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11942                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11943                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11944
11945                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11946                                 tout--;
11947                                 usleep_range(1000, 2000);
11948                         }
11949
11950                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951                                 dev_err(&bp->pdev->dev,
11952                                         "FORCING Normal Mode failed!!!\n");
11953                                 bnx2x_release_hw_lock(bp,
11954                                                       HW_LOCK_RESOURCE_RESET);
11955                                 return -EPERM;
11956                         }
11957                 }
11958
11959                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11960                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11961                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11962                 } else
11963                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11964
11965                 rc = bnx2x_get_igu_cam_info(bp);
11966                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11967                 if (rc)
11968                         return rc;
11969         }
11970
11971         /*
11972          * set base FW non-default (fast path) status block id, this value is
11973          * used to initialize the fw_sb_id saved on the fp/queue structure to
11974          * determine the id used by the FW.
11975          */
11976         if (CHIP_IS_E1x(bp))
11977                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11978         else /*
11979               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11980               * the same queue are indicated on the same IGU SB). So we prefer
11981               * FW and IGU SBs to be the same value.
11982               */
11983                 bp->base_fw_ndsb = bp->igu_base_sb;
11984
11985         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11986                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11987                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11988
11989         /*
11990          * Initialize MF configuration
11991          */
11992
11993         bp->mf_ov = 0;
11994         bp->mf_mode = 0;
11995         bp->mf_sub_mode = 0;
11996         vn = BP_VN(bp);
11997         mfw_vn = BP_FW_MB_IDX(bp);
11998
11999         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12000                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12001                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12002                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12003
12004                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12005                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12006                 else
12007                         bp->common.mf_cfg_base = bp->common.shmem_base +
12008                                 offsetof(struct shmem_region, func_mb) +
12009                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12010                 /*
12011                  * get mf configuration:
12012                  * 1. Existence of MF configuration
12013                  * 2. MAC address must be legal (check only upper bytes)
12014                  *    for  Switch-Independent mode;
12015                  *    OVLAN must be legal for Switch-Dependent mode
12016                  * 3. SF_MODE configures specific MF mode
12017                  */
12018                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12019                         /* get mf configuration */
12020                         val = SHMEM_RD(bp,
12021                                        dev_info.shared_feature_config.config);
12022                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12023
12024                         switch (val) {
12025                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12026                                 validate_set_si_mode(bp);
12027                                 break;
12028                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12029                                 if ((!CHIP_IS_E1x(bp)) &&
12030                                     (MF_CFG_RD(bp, func_mf_config[func].
12031                                                mac_upper) != 0xffff) &&
12032                                     (SHMEM2_HAS(bp,
12033                                                 afex_driver_support))) {
12034                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12035                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12036                                                 func_mf_config[func].config);
12037                                 } else {
12038                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12039                                 }
12040                                 break;
12041                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12042                                 /* get OV configuration */
12043                                 val = MF_CFG_RD(bp,
12044                                         func_mf_config[FUNC_0].e1hov_tag);
12045                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12046
12047                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12048                                         bp->mf_mode = MULTI_FUNCTION_SD;
12049                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12050                                                 func_mf_config[func].config);
12051                                 } else
12052                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12053                                 break;
12054                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12055                                 bp->mf_mode = MULTI_FUNCTION_SD;
12056                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12057                                 bp->mf_config[vn] =
12058                                         MF_CFG_RD(bp,
12059                                                   func_mf_config[func].config);
12060
12061                                 if (SHMEM2_HAS(bp, mtu_size)) {
12062                                         int mtu_idx = BP_FW_MB_IDX(bp);
12063                                         u16 mtu_size;
12064                                         u32 mtu;
12065
12066                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12067                                         mtu_size = (u16)mtu;
12068                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12069                                            mtu_size, mtu);
12070
12071                                         /* if valid: update device mtu */
12072                                         if (((mtu_size + ETH_HLEN) >=
12073                                              ETH_MIN_PACKET_SIZE) &&
12074                                             (mtu_size <=
12075                                              ETH_MAX_JUMBO_PACKET_SIZE))
12076                                                 bp->dev->mtu = mtu_size;
12077                                 }
12078                                 break;
12079                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12080                                 bp->mf_mode = MULTI_FUNCTION_SD;
12081                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12082                                 bp->mf_config[vn] =
12083                                         MF_CFG_RD(bp,
12084                                                   func_mf_config[func].config);
12085                                 break;
12086                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12087                                 bp->mf_config[vn] = 0;
12088                                 break;
12089                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12090                                 val2 = SHMEM_RD(bp,
12091                                         dev_info.shared_hw_config.config_3);
12092                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12093                                 switch (val2) {
12094                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12095                                         validate_set_si_mode(bp);
12096                                         bp->mf_sub_mode =
12097                                                         SUB_MF_MODE_NPAR1_DOT_5;
12098                                         break;
12099                                 default:
12100                                         /* Unknown configuration */
12101                                         bp->mf_config[vn] = 0;
12102                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12103                                                        val);
12104                                 }
12105                                 break;
12106                         default:
12107                                 /* Unknown configuration: reset mf_config */
12108                                 bp->mf_config[vn] = 0;
12109                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12110                         }
12111                 }
12112
12113                 BNX2X_DEV_INFO("%s function mode\n",
12114                                IS_MF(bp) ? "multi" : "single");
12115
12116                 switch (bp->mf_mode) {
12117                 case MULTI_FUNCTION_SD:
12118                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12119                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12120                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12121                                 bp->mf_ov = val;
12122                                 bp->path_has_ovlan = true;
12123
12124                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12125                                                func, bp->mf_ov, bp->mf_ov);
12126                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12127                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12128                                 dev_err(&bp->pdev->dev,
12129                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12130                                         func);
12131                                 bp->path_has_ovlan = true;
12132                         } else {
12133                                 dev_err(&bp->pdev->dev,
12134                                         "No valid MF OV for func %d, aborting\n",
12135                                         func);
12136                                 return -EPERM;
12137                         }
12138                         break;
12139                 case MULTI_FUNCTION_AFEX:
12140                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12141                         break;
12142                 case MULTI_FUNCTION_SI:
12143                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12144                                        func);
12145                         break;
12146                 default:
12147                         if (vn) {
12148                                 dev_err(&bp->pdev->dev,
12149                                         "VN %d is in a single function mode, aborting\n",
12150                                         vn);
12151                                 return -EPERM;
12152                         }
12153                         break;
12154                 }
12155
12156                 /* check if other port on the path needs ovlan:
12157                  * Since MF configuration is shared between ports
12158                  * Possible mixed modes are only
12159                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12160                  */
12161                 if (CHIP_MODE_IS_4_PORT(bp) &&
12162                     !bp->path_has_ovlan &&
12163                     !IS_MF(bp) &&
12164                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12165                         u8 other_port = !BP_PORT(bp);
12166                         u8 other_func = BP_PATH(bp) + 2*other_port;
12167                         val = MF_CFG_RD(bp,
12168                                         func_mf_config[other_func].e1hov_tag);
12169                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12170                                 bp->path_has_ovlan = true;
12171                 }
12172         }
12173
12174         /* adjust igu_sb_cnt to MF for E1H */
12175         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12176                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12177
12178         /* port info */
12179         bnx2x_get_port_hwinfo(bp);
12180
12181         /* Get MAC addresses */
12182         bnx2x_get_mac_hwinfo(bp);
12183
12184         bnx2x_get_cnic_info(bp);
12185
12186         return rc;
12187 }
12188
12189 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12190 {
12191         int cnt, i, block_end, rodi;
12192         char vpd_start[BNX2X_VPD_LEN+1];
12193         char str_id_reg[VENDOR_ID_LEN+1];
12194         char str_id_cap[VENDOR_ID_LEN+1];
12195         char *vpd_data;
12196         char *vpd_extended_data = NULL;
12197         u8 len;
12198
12199         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12200         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12201
12202         if (cnt < BNX2X_VPD_LEN)
12203                 goto out_not_found;
12204
12205         /* VPD RO tag should be first tag after identifier string, hence
12206          * we should be able to find it in first BNX2X_VPD_LEN chars
12207          */
12208         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12209                              PCI_VPD_LRDT_RO_DATA);
12210         if (i < 0)
12211                 goto out_not_found;
12212
12213         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12214                     pci_vpd_lrdt_size(&vpd_start[i]);
12215
12216         i += PCI_VPD_LRDT_TAG_SIZE;
12217
12218         if (block_end > BNX2X_VPD_LEN) {
12219                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12220                 if (vpd_extended_data  == NULL)
12221                         goto out_not_found;
12222
12223                 /* read rest of vpd image into vpd_extended_data */
12224                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12225                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12226                                    block_end - BNX2X_VPD_LEN,
12227                                    vpd_extended_data + BNX2X_VPD_LEN);
12228                 if (cnt < (block_end - BNX2X_VPD_LEN))
12229                         goto out_not_found;
12230                 vpd_data = vpd_extended_data;
12231         } else
12232                 vpd_data = vpd_start;
12233
12234         /* now vpd_data holds full vpd content in both cases */
12235
12236         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12237                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12238         if (rodi < 0)
12239                 goto out_not_found;
12240
12241         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12242
12243         if (len != VENDOR_ID_LEN)
12244                 goto out_not_found;
12245
12246         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12247
12248         /* vendor specific info */
12249         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12250         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12251         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12252             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12253
12254                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12255                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12256                 if (rodi >= 0) {
12257                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258
12259                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12260
12261                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12262                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12263                                 bp->fw_ver[len] = ' ';
12264                         }
12265                 }
12266                 kfree(vpd_extended_data);
12267                 return;
12268         }
12269 out_not_found:
12270         kfree(vpd_extended_data);
12271         return;
12272 }
12273
12274 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12275 {
12276         u32 flags = 0;
12277
12278         if (CHIP_REV_IS_FPGA(bp))
12279                 SET_FLAGS(flags, MODE_FPGA);
12280         else if (CHIP_REV_IS_EMUL(bp))
12281                 SET_FLAGS(flags, MODE_EMUL);
12282         else
12283                 SET_FLAGS(flags, MODE_ASIC);
12284
12285         if (CHIP_MODE_IS_4_PORT(bp))
12286                 SET_FLAGS(flags, MODE_PORT4);
12287         else
12288                 SET_FLAGS(flags, MODE_PORT2);
12289
12290         if (CHIP_IS_E2(bp))
12291                 SET_FLAGS(flags, MODE_E2);
12292         else if (CHIP_IS_E3(bp)) {
12293                 SET_FLAGS(flags, MODE_E3);
12294                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12295                         SET_FLAGS(flags, MODE_E3_A0);
12296                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12297                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12298         }
12299
12300         if (IS_MF(bp)) {
12301                 SET_FLAGS(flags, MODE_MF);
12302                 switch (bp->mf_mode) {
12303                 case MULTI_FUNCTION_SD:
12304                         SET_FLAGS(flags, MODE_MF_SD);
12305                         break;
12306                 case MULTI_FUNCTION_SI:
12307                         SET_FLAGS(flags, MODE_MF_SI);
12308                         break;
12309                 case MULTI_FUNCTION_AFEX:
12310                         SET_FLAGS(flags, MODE_MF_AFEX);
12311                         break;
12312                 }
12313         } else
12314                 SET_FLAGS(flags, MODE_SF);
12315
12316 #if defined(__LITTLE_ENDIAN)
12317         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12318 #else /*(__BIG_ENDIAN)*/
12319         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12320 #endif
12321         INIT_MODE_FLAGS(bp) = flags;
12322 }
12323
12324 static int bnx2x_init_bp(struct bnx2x *bp)
12325 {
12326         int func;
12327         int rc;
12328
12329         mutex_init(&bp->port.phy_mutex);
12330         mutex_init(&bp->fw_mb_mutex);
12331         mutex_init(&bp->drv_info_mutex);
12332         sema_init(&bp->stats_lock, 1);
12333         bp->drv_info_mng_owner = false;
12334         INIT_LIST_HEAD(&bp->vlan_reg);
12335
12336         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12337         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12338         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12339         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12340         if (IS_PF(bp)) {
12341                 rc = bnx2x_get_hwinfo(bp);
12342                 if (rc)
12343                         return rc;
12344         } else {
12345                 eth_zero_addr(bp->dev->dev_addr);
12346         }
12347
12348         bnx2x_set_modes_bitmap(bp);
12349
12350         rc = bnx2x_alloc_mem_bp(bp);
12351         if (rc)
12352                 return rc;
12353
12354         bnx2x_read_fwinfo(bp);
12355
12356         func = BP_FUNC(bp);
12357
12358         /* need to reset chip if undi was active */
12359         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12360                 /* init fw_seq */
12361                 bp->fw_seq =
12362                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12363                                                         DRV_MSG_SEQ_NUMBER_MASK;
12364                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12365
12366                 rc = bnx2x_prev_unload(bp);
12367                 if (rc) {
12368                         bnx2x_free_mem_bp(bp);
12369                         return rc;
12370                 }
12371         }
12372
12373         if (CHIP_REV_IS_FPGA(bp))
12374                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12375
12376         if (BP_NOMCP(bp) && (func == 0))
12377                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12378
12379         bp->disable_tpa = disable_tpa;
12380         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12381         /* Reduce memory usage in kdump environment by disabling TPA */
12382         bp->disable_tpa |= is_kdump_kernel();
12383
12384         /* Set TPA flags */
12385         if (bp->disable_tpa) {
12386                 bp->dev->hw_features &= ~NETIF_F_LRO;
12387                 bp->dev->features &= ~NETIF_F_LRO;
12388         }
12389
12390         if (CHIP_IS_E1(bp))
12391                 bp->dropless_fc = 0;
12392         else
12393                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12394
12395         bp->mrrs = mrrs;
12396
12397         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12398         if (IS_VF(bp))
12399                 bp->rx_ring_size = MAX_RX_AVAIL;
12400
12401         /* make sure that the numbers are in the right granularity */
12402         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12403         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12404
12405         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12406
12407         init_timer(&bp->timer);
12408         bp->timer.expires = jiffies + bp->current_interval;
12409         bp->timer.data = (unsigned long) bp;
12410         bp->timer.function = bnx2x_timer;
12411
12412         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414             SHMEM2_HAS(bp, dcbx_en) &&
12415             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419                 bnx2x_dcbx_init_params(bp);
12420         } else {
12421                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12422         }
12423
12424         if (CHIP_IS_E1x(bp))
12425                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426         else
12427                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12428
12429         /* multiple tx priority */
12430         if (IS_VF(bp))
12431                 bp->max_cos = 1;
12432         else if (CHIP_IS_E1x(bp))
12433                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436         else if (CHIP_IS_E3B0(bp))
12437                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438         else
12439                 BNX2X_ERR("unknown chip %x revision %x\n",
12440                           CHIP_NUM(bp), CHIP_REV(bp));
12441         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12442
12443         /* We need at least one default status block for slow-path events,
12444          * second status block for the L2 queue, and a third status block for
12445          * CNIC if supported.
12446          */
12447         if (IS_VF(bp))
12448                 bp->min_msix_vec_cnt = 1;
12449         else if (CNIC_SUPPORT(bp))
12450                 bp->min_msix_vec_cnt = 3;
12451         else /* PF w/o cnic */
12452                 bp->min_msix_vec_cnt = 2;
12453         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12454
12455         bp->dump_preset_idx = 1;
12456
12457         if (CHIP_IS_E3B0(bp))
12458                 bp->flags |= PTP_SUPPORTED;
12459
12460         return rc;
12461 }
12462
12463 /****************************************************************************
12464 * General service functions
12465 ****************************************************************************/
12466
12467 /*
12468  * net_device service functions
12469  */
12470
12471 /* called with rtnl_lock */
12472 static int bnx2x_open(struct net_device *dev)
12473 {
12474         struct bnx2x *bp = netdev_priv(dev);
12475         int rc;
12476
12477         bp->stats_init = true;
12478
12479         netif_carrier_off(dev);
12480
12481         bnx2x_set_power_state(bp, PCI_D0);
12482
12483         /* If parity had happen during the unload, then attentions
12484          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12485          * want the first function loaded on the current engine to
12486          * complete the recovery.
12487          * Parity recovery is only relevant for PF driver.
12488          */
12489         if (IS_PF(bp)) {
12490                 int other_engine = BP_PATH(bp) ? 0 : 1;
12491                 bool other_load_status, load_status;
12492                 bool global = false;
12493
12494                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12495                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12496                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12497                     bnx2x_chk_parity_attn(bp, &global, true)) {
12498                         do {
12499                                 /* If there are attentions and they are in a
12500                                  * global blocks, set the GLOBAL_RESET bit
12501                                  * regardless whether it will be this function
12502                                  * that will complete the recovery or not.
12503                                  */
12504                                 if (global)
12505                                         bnx2x_set_reset_global(bp);
12506
12507                                 /* Only the first function on the current
12508                                  * engine should try to recover in open. In case
12509                                  * of attentions in global blocks only the first
12510                                  * in the chip should try to recover.
12511                                  */
12512                                 if ((!load_status &&
12513                                      (!global || !other_load_status)) &&
12514                                       bnx2x_trylock_leader_lock(bp) &&
12515                                       !bnx2x_leader_reset(bp)) {
12516                                         netdev_info(bp->dev,
12517                                                     "Recovered in open\n");
12518                                         break;
12519                                 }
12520
12521                                 /* recovery has failed... */
12522                                 bnx2x_set_power_state(bp, PCI_D3hot);
12523                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12524
12525                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12526                                           "If you still see this message after a few retries then power cycle is required.\n");
12527
12528                                 return -EAGAIN;
12529                         } while (0);
12530                 }
12531         }
12532
12533         bp->recovery_state = BNX2X_RECOVERY_DONE;
12534         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12535         if (rc)
12536                 return rc;
12537
12538         if (IS_PF(bp))
12539                 udp_tunnel_get_rx_info(dev);
12540
12541         return 0;
12542 }
12543
12544 /* called with rtnl_lock */
12545 static int bnx2x_close(struct net_device *dev)
12546 {
12547         struct bnx2x *bp = netdev_priv(dev);
12548
12549         /* Unload the driver, release IRQs */
12550         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12551
12552         return 0;
12553 }
12554
12555 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12556                                       struct bnx2x_mcast_ramrod_params *p)
12557 {
12558         int mc_count = netdev_mc_count(bp->dev);
12559         struct bnx2x_mcast_list_elem *mc_mac =
12560                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12561         struct netdev_hw_addr *ha;
12562
12563         if (!mc_mac)
12564                 return -ENOMEM;
12565
12566         INIT_LIST_HEAD(&p->mcast_list);
12567
12568         netdev_for_each_mc_addr(ha, bp->dev) {
12569                 mc_mac->mac = bnx2x_mc_addr(ha);
12570                 list_add_tail(&mc_mac->link, &p->mcast_list);
12571                 mc_mac++;
12572         }
12573
12574         p->mcast_list_len = mc_count;
12575
12576         return 0;
12577 }
12578
12579 static void bnx2x_free_mcast_macs_list(
12580         struct bnx2x_mcast_ramrod_params *p)
12581 {
12582         struct bnx2x_mcast_list_elem *mc_mac =
12583                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12584                                  link);
12585
12586         WARN_ON(!mc_mac);
12587         kfree(mc_mac);
12588 }
12589
12590 /**
12591  * bnx2x_set_uc_list - configure a new unicast MACs list.
12592  *
12593  * @bp: driver handle
12594  *
12595  * We will use zero (0) as a MAC type for these MACs.
12596  */
12597 static int bnx2x_set_uc_list(struct bnx2x *bp)
12598 {
12599         int rc;
12600         struct net_device *dev = bp->dev;
12601         struct netdev_hw_addr *ha;
12602         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12603         unsigned long ramrod_flags = 0;
12604
12605         /* First schedule a cleanup up of old configuration */
12606         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12607         if (rc < 0) {
12608                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12609                 return rc;
12610         }
12611
12612         netdev_for_each_uc_addr(ha, dev) {
12613                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12614                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12615                 if (rc == -EEXIST) {
12616                         DP(BNX2X_MSG_SP,
12617                            "Failed to schedule ADD operations: %d\n", rc);
12618                         /* do not treat adding same MAC as error */
12619                         rc = 0;
12620
12621                 } else if (rc < 0) {
12622
12623                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12624                                   rc);
12625                         return rc;
12626                 }
12627         }
12628
12629         /* Execute the pending commands */
12630         __set_bit(RAMROD_CONT, &ramrod_flags);
12631         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12632                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12633 }
12634
12635 static int bnx2x_set_mc_list(struct bnx2x *bp)
12636 {
12637         struct net_device *dev = bp->dev;
12638         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12639         int rc = 0;
12640
12641         rparam.mcast_obj = &bp->mcast_obj;
12642
12643         /* first, clear all configured multicast MACs */
12644         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12645         if (rc < 0) {
12646                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12647                 return rc;
12648         }
12649
12650         /* then, configure a new MACs list */
12651         if (netdev_mc_count(dev)) {
12652                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12653                 if (rc) {
12654                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12655                                   rc);
12656                         return rc;
12657                 }
12658
12659                 /* Now add the new MACs */
12660                 rc = bnx2x_config_mcast(bp, &rparam,
12661                                         BNX2X_MCAST_CMD_ADD);
12662                 if (rc < 0)
12663                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12664                                   rc);
12665
12666                 bnx2x_free_mcast_macs_list(&rparam);
12667         }
12668
12669         return rc;
12670 }
12671
12672 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12673 static void bnx2x_set_rx_mode(struct net_device *dev)
12674 {
12675         struct bnx2x *bp = netdev_priv(dev);
12676
12677         if (bp->state != BNX2X_STATE_OPEN) {
12678                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12679                 return;
12680         } else {
12681                 /* Schedule an SP task to handle rest of change */
12682                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12683                                        NETIF_MSG_IFUP);
12684         }
12685 }
12686
12687 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12688 {
12689         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12690
12691         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12692
12693         netif_addr_lock_bh(bp->dev);
12694
12695         if (bp->dev->flags & IFF_PROMISC) {
12696                 rx_mode = BNX2X_RX_MODE_PROMISC;
12697         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12698                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12699                     CHIP_IS_E1(bp))) {
12700                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12701         } else {
12702                 if (IS_PF(bp)) {
12703                         /* some multicasts */
12704                         if (bnx2x_set_mc_list(bp) < 0)
12705                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12706
12707                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12708                         netif_addr_unlock_bh(bp->dev);
12709                         if (bnx2x_set_uc_list(bp) < 0)
12710                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12711                         netif_addr_lock_bh(bp->dev);
12712                 } else {
12713                         /* configuring mcast to a vf involves sleeping (when we
12714                          * wait for the pf's response).
12715                          */
12716                         bnx2x_schedule_sp_rtnl(bp,
12717                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12718                 }
12719         }
12720
12721         bp->rx_mode = rx_mode;
12722         /* handle ISCSI SD mode */
12723         if (IS_MF_ISCSI_ONLY(bp))
12724                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12725
12726         /* Schedule the rx_mode command */
12727         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12728                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12729                 netif_addr_unlock_bh(bp->dev);
12730                 return;
12731         }
12732
12733         if (IS_PF(bp)) {
12734                 bnx2x_set_storm_rx_mode(bp);
12735                 netif_addr_unlock_bh(bp->dev);
12736         } else {
12737                 /* VF will need to request the PF to make this change, and so
12738                  * the VF needs to release the bottom-half lock prior to the
12739                  * request (as it will likely require sleep on the VF side)
12740                  */
12741                 netif_addr_unlock_bh(bp->dev);
12742                 bnx2x_vfpf_storm_rx_mode(bp);
12743         }
12744 }
12745
12746 /* called with rtnl_lock */
12747 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12748                            int devad, u16 addr)
12749 {
12750         struct bnx2x *bp = netdev_priv(netdev);
12751         u16 value;
12752         int rc;
12753
12754         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12755            prtad, devad, addr);
12756
12757         /* The HW expects different devad if CL22 is used */
12758         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12759
12760         bnx2x_acquire_phy_lock(bp);
12761         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12762         bnx2x_release_phy_lock(bp);
12763         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12764
12765         if (!rc)
12766                 rc = value;
12767         return rc;
12768 }
12769
12770 /* called with rtnl_lock */
12771 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12772                             u16 addr, u16 value)
12773 {
12774         struct bnx2x *bp = netdev_priv(netdev);
12775         int rc;
12776
12777         DP(NETIF_MSG_LINK,
12778            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12779            prtad, devad, addr, value);
12780
12781         /* The HW expects different devad if CL22 is used */
12782         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12783
12784         bnx2x_acquire_phy_lock(bp);
12785         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12786         bnx2x_release_phy_lock(bp);
12787         return rc;
12788 }
12789
12790 /* called with rtnl_lock */
12791 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12792 {
12793         struct bnx2x *bp = netdev_priv(dev);
12794         struct mii_ioctl_data *mdio = if_mii(ifr);
12795
12796         if (!netif_running(dev))
12797                 return -EAGAIN;
12798
12799         switch (cmd) {
12800         case SIOCSHWTSTAMP:
12801                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12802         default:
12803                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12804                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12805                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12806         }
12807 }
12808
12809 #ifdef CONFIG_NET_POLL_CONTROLLER
12810 static void poll_bnx2x(struct net_device *dev)
12811 {
12812         struct bnx2x *bp = netdev_priv(dev);
12813         int i;
12814
12815         for_each_eth_queue(bp, i) {
12816                 struct bnx2x_fastpath *fp = &bp->fp[i];
12817                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12818         }
12819 }
12820 #endif
12821
12822 static int bnx2x_validate_addr(struct net_device *dev)
12823 {
12824         struct bnx2x *bp = netdev_priv(dev);
12825
12826         /* query the bulletin board for mac address configured by the PF */
12827         if (IS_VF(bp))
12828                 bnx2x_sample_bulletin(bp);
12829
12830         if (!is_valid_ether_addr(dev->dev_addr)) {
12831                 BNX2X_ERR("Non-valid Ethernet address\n");
12832                 return -EADDRNOTAVAIL;
12833         }
12834         return 0;
12835 }
12836
12837 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12838                                   struct netdev_phys_item_id *ppid)
12839 {
12840         struct bnx2x *bp = netdev_priv(netdev);
12841
12842         if (!(bp->flags & HAS_PHYS_PORT_ID))
12843                 return -EOPNOTSUPP;
12844
12845         ppid->id_len = sizeof(bp->phys_port_id);
12846         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12847
12848         return 0;
12849 }
12850
12851 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12852                                               struct net_device *dev,
12853                                               netdev_features_t features)
12854 {
12855         features = vlan_features_check(skb, features);
12856         return vxlan_features_check(skb, features);
12857 }
12858
12859 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12860 {
12861         int rc;
12862
12863         if (IS_PF(bp)) {
12864                 unsigned long ramrod_flags = 0;
12865
12866                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12867                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12868                                         add, &ramrod_flags);
12869         } else {
12870                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12871         }
12872
12873         return rc;
12874 }
12875
12876 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12877 {
12878         struct bnx2x_vlan_entry *vlan;
12879         int rc = 0;
12880
12881         /* Configure all non-configured entries */
12882         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12883                 if (vlan->hw)
12884                         continue;
12885
12886                 if (bp->vlan_cnt >= bp->vlan_credit)
12887                         return -ENOBUFS;
12888
12889                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12890                 if (rc) {
12891                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12892                         return rc;
12893                 }
12894
12895                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12896                 vlan->hw = true;
12897                 bp->vlan_cnt++;
12898         }
12899
12900         return 0;
12901 }
12902
12903 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12904 {
12905         bool need_accept_any_vlan;
12906
12907         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12908
12909         if (bp->accept_any_vlan != need_accept_any_vlan) {
12910                 bp->accept_any_vlan = need_accept_any_vlan;
12911                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12912                    bp->accept_any_vlan ? "raised" : "cleared");
12913                 if (set_rx_mode) {
12914                         if (IS_PF(bp))
12915                                 bnx2x_set_rx_mode_inner(bp);
12916                         else
12917                                 bnx2x_vfpf_storm_rx_mode(bp);
12918                 }
12919         }
12920 }
12921
12922 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12923 {
12924         struct bnx2x_vlan_entry *vlan;
12925
12926         /* The hw forgot all entries after reload */
12927         list_for_each_entry(vlan, &bp->vlan_reg, link)
12928                 vlan->hw = false;
12929         bp->vlan_cnt = 0;
12930
12931         /* Don't set rx mode here. Our caller will do it. */
12932         bnx2x_vlan_configure(bp, false);
12933
12934         return 0;
12935 }
12936
12937 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12938 {
12939         struct bnx2x *bp = netdev_priv(dev);
12940         struct bnx2x_vlan_entry *vlan;
12941
12942         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12943
12944         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12945         if (!vlan)
12946                 return -ENOMEM;
12947
12948         vlan->vid = vid;
12949         vlan->hw = false;
12950         list_add_tail(&vlan->link, &bp->vlan_reg);
12951
12952         if (netif_running(dev))
12953                 bnx2x_vlan_configure(bp, true);
12954
12955         return 0;
12956 }
12957
12958 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12959 {
12960         struct bnx2x *bp = netdev_priv(dev);
12961         struct bnx2x_vlan_entry *vlan;
12962         bool found = false;
12963         int rc = 0;
12964
12965         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12966
12967         list_for_each_entry(vlan, &bp->vlan_reg, link)
12968                 if (vlan->vid == vid) {
12969                         found = true;
12970                         break;
12971                 }
12972
12973         if (!found) {
12974                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12975                 return -EINVAL;
12976         }
12977
12978         if (netif_running(dev) && vlan->hw) {
12979                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12980                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12981                 bp->vlan_cnt--;
12982         }
12983
12984         list_del(&vlan->link);
12985         kfree(vlan);
12986
12987         if (netif_running(dev))
12988                 bnx2x_vlan_configure(bp, true);
12989
12990         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12991
12992         return rc;
12993 }
12994
12995 static const struct net_device_ops bnx2x_netdev_ops = {
12996         .ndo_open               = bnx2x_open,
12997         .ndo_stop               = bnx2x_close,
12998         .ndo_start_xmit         = bnx2x_start_xmit,
12999         .ndo_select_queue       = bnx2x_select_queue,
13000         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13001         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13002         .ndo_validate_addr      = bnx2x_validate_addr,
13003         .ndo_do_ioctl           = bnx2x_ioctl,
13004         .ndo_change_mtu         = bnx2x_change_mtu,
13005         .ndo_fix_features       = bnx2x_fix_features,
13006         .ndo_set_features       = bnx2x_set_features,
13007         .ndo_tx_timeout         = bnx2x_tx_timeout,
13008         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13009         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13010 #ifdef CONFIG_NET_POLL_CONTROLLER
13011         .ndo_poll_controller    = poll_bnx2x,
13012 #endif
13013         .ndo_setup_tc           = __bnx2x_setup_tc,
13014 #ifdef CONFIG_BNX2X_SRIOV
13015         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13016         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13017         .ndo_get_vf_config      = bnx2x_get_vf_config,
13018 #endif
13019 #ifdef NETDEV_FCOE_WWNN
13020         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13021 #endif
13022
13023         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13024         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13025         .ndo_features_check     = bnx2x_features_check,
13026         .ndo_udp_tunnel_add     = bnx2x_udp_tunnel_add,
13027         .ndo_udp_tunnel_del     = bnx2x_udp_tunnel_del,
13028 };
13029
13030 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13031 {
13032         struct device *dev = &bp->pdev->dev;
13033
13034         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13035             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13036                 dev_err(dev, "System does not support DMA, aborting\n");
13037                 return -EIO;
13038         }
13039
13040         return 0;
13041 }
13042
13043 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13044 {
13045         if (bp->flags & AER_ENABLED) {
13046                 pci_disable_pcie_error_reporting(bp->pdev);
13047                 bp->flags &= ~AER_ENABLED;
13048         }
13049 }
13050
13051 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13052                           struct net_device *dev, unsigned long board_type)
13053 {
13054         int rc;
13055         u32 pci_cfg_dword;
13056         bool chip_is_e1x = (board_type == BCM57710 ||
13057                             board_type == BCM57711 ||
13058                             board_type == BCM57711E);
13059
13060         SET_NETDEV_DEV(dev, &pdev->dev);
13061
13062         bp->dev = dev;
13063         bp->pdev = pdev;
13064
13065         rc = pci_enable_device(pdev);
13066         if (rc) {
13067                 dev_err(&bp->pdev->dev,
13068                         "Cannot enable PCI device, aborting\n");
13069                 goto err_out;
13070         }
13071
13072         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13073                 dev_err(&bp->pdev->dev,
13074                         "Cannot find PCI device base address, aborting\n");
13075                 rc = -ENODEV;
13076                 goto err_out_disable;
13077         }
13078
13079         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13080                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13081                 rc = -ENODEV;
13082                 goto err_out_disable;
13083         }
13084
13085         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13086         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13087             PCICFG_REVESION_ID_ERROR_VAL) {
13088                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13089                 rc = -ENODEV;
13090                 goto err_out_disable;
13091         }
13092
13093         if (atomic_read(&pdev->enable_cnt) == 1) {
13094                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13095                 if (rc) {
13096                         dev_err(&bp->pdev->dev,
13097                                 "Cannot obtain PCI resources, aborting\n");
13098                         goto err_out_disable;
13099                 }
13100
13101                 pci_set_master(pdev);
13102                 pci_save_state(pdev);
13103         }
13104
13105         if (IS_PF(bp)) {
13106                 if (!pdev->pm_cap) {
13107                         dev_err(&bp->pdev->dev,
13108                                 "Cannot find power management capability, aborting\n");
13109                         rc = -EIO;
13110                         goto err_out_release;
13111                 }
13112         }
13113
13114         if (!pci_is_pcie(pdev)) {
13115                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13116                 rc = -EIO;
13117                 goto err_out_release;
13118         }
13119
13120         rc = bnx2x_set_coherency_mask(bp);
13121         if (rc)
13122                 goto err_out_release;
13123
13124         dev->mem_start = pci_resource_start(pdev, 0);
13125         dev->base_addr = dev->mem_start;
13126         dev->mem_end = pci_resource_end(pdev, 0);
13127
13128         dev->irq = pdev->irq;
13129
13130         bp->regview = pci_ioremap_bar(pdev, 0);
13131         if (!bp->regview) {
13132                 dev_err(&bp->pdev->dev,
13133                         "Cannot map register space, aborting\n");
13134                 rc = -ENOMEM;
13135                 goto err_out_release;
13136         }
13137
13138         /* In E1/E1H use pci device function given by kernel.
13139          * In E2/E3 read physical function from ME register since these chips
13140          * support Physical Device Assignment where kernel BDF maybe arbitrary
13141          * (depending on hypervisor).
13142          */
13143         if (chip_is_e1x) {
13144                 bp->pf_num = PCI_FUNC(pdev->devfn);
13145         } else {
13146                 /* chip is E2/3*/
13147                 pci_read_config_dword(bp->pdev,
13148                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13149                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13150                                   ME_REG_ABS_PF_NUM_SHIFT);
13151         }
13152         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13153
13154         /* clean indirect addresses */
13155         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13156                                PCICFG_VENDOR_ID_OFFSET);
13157
13158         /* Set PCIe reset type to fundamental for EEH recovery */
13159         pdev->needs_freset = 1;
13160
13161         /* AER (Advanced Error reporting) configuration */
13162         rc = pci_enable_pcie_error_reporting(pdev);
13163         if (!rc)
13164                 bp->flags |= AER_ENABLED;
13165         else
13166                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13167
13168         /*
13169          * Clean the following indirect addresses for all functions since it
13170          * is not used by the driver.
13171          */
13172         if (IS_PF(bp)) {
13173                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13174                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13175                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13176                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13177
13178                 if (chip_is_e1x) {
13179                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13180                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13181                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13182                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13183                 }
13184
13185                 /* Enable internal target-read (in case we are probed after PF
13186                  * FLR). Must be done prior to any BAR read access. Only for
13187                  * 57712 and up
13188                  */
13189                 if (!chip_is_e1x)
13190                         REG_WR(bp,
13191                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13192         }
13193
13194         dev->watchdog_timeo = TX_TIMEOUT;
13195
13196         dev->netdev_ops = &bnx2x_netdev_ops;
13197         bnx2x_set_ethtool_ops(bp, dev);
13198
13199         dev->priv_flags |= IFF_UNICAST_FLT;
13200
13201         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13202                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13203                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13204                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13205         if (!chip_is_e1x) {
13206                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13207                                     NETIF_F_GSO_IPXIP4;
13208                 dev->hw_enc_features =
13209                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13210                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13211                         NETIF_F_GSO_IPXIP4 |
13212                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13213         }
13214
13215         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13216                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13217
13218         /* VF with OLD Hypervisor or old PF do not support filtering */
13219         if (IS_PF(bp)) {
13220                 if (chip_is_e1x)
13221                         bp->accept_any_vlan = true;
13222                 else
13223                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13224 #ifdef CONFIG_BNX2X_SRIOV
13225         } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13226                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13227 #endif
13228         }
13229
13230         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13231         dev->features |= NETIF_F_HIGHDMA;
13232
13233         /* Add Loopback capability to the device */
13234         dev->hw_features |= NETIF_F_LOOPBACK;
13235
13236 #ifdef BCM_DCBNL
13237         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13238 #endif
13239
13240         /* get_port_hwinfo() will set prtad and mmds properly */
13241         bp->mdio.prtad = MDIO_PRTAD_NONE;
13242         bp->mdio.mmds = 0;
13243         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13244         bp->mdio.dev = dev;
13245         bp->mdio.mdio_read = bnx2x_mdio_read;
13246         bp->mdio.mdio_write = bnx2x_mdio_write;
13247
13248         return 0;
13249
13250 err_out_release:
13251         if (atomic_read(&pdev->enable_cnt) == 1)
13252                 pci_release_regions(pdev);
13253
13254 err_out_disable:
13255         pci_disable_device(pdev);
13256
13257 err_out:
13258         return rc;
13259 }
13260
13261 static int bnx2x_check_firmware(struct bnx2x *bp)
13262 {
13263         const struct firmware *firmware = bp->firmware;
13264         struct bnx2x_fw_file_hdr *fw_hdr;
13265         struct bnx2x_fw_file_section *sections;
13266         u32 offset, len, num_ops;
13267         __be16 *ops_offsets;
13268         int i;
13269         const u8 *fw_ver;
13270
13271         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13272                 BNX2X_ERR("Wrong FW size\n");
13273                 return -EINVAL;
13274         }
13275
13276         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13277         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13278
13279         /* Make sure none of the offsets and sizes make us read beyond
13280          * the end of the firmware data */
13281         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13282                 offset = be32_to_cpu(sections[i].offset);
13283                 len = be32_to_cpu(sections[i].len);
13284                 if (offset + len > firmware->size) {
13285                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13286                         return -EINVAL;
13287                 }
13288         }
13289
13290         /* Likewise for the init_ops offsets */
13291         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13292         ops_offsets = (__force __be16 *)(firmware->data + offset);
13293         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13294
13295         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13296                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13297                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13298                         return -EINVAL;
13299                 }
13300         }
13301
13302         /* Check FW version */
13303         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13304         fw_ver = firmware->data + offset;
13305         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13306             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13307             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13308             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13309                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13310                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13311                        BCM_5710_FW_MAJOR_VERSION,
13312                        BCM_5710_FW_MINOR_VERSION,
13313                        BCM_5710_FW_REVISION_VERSION,
13314                        BCM_5710_FW_ENGINEERING_VERSION);
13315                 return -EINVAL;
13316         }
13317
13318         return 0;
13319 }
13320
13321 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13322 {
13323         const __be32 *source = (const __be32 *)_source;
13324         u32 *target = (u32 *)_target;
13325         u32 i;
13326
13327         for (i = 0; i < n/4; i++)
13328                 target[i] = be32_to_cpu(source[i]);
13329 }
13330
13331 /*
13332    Ops array is stored in the following format:
13333    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13334  */
13335 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13336 {
13337         const __be32 *source = (const __be32 *)_source;
13338         struct raw_op *target = (struct raw_op *)_target;
13339         u32 i, j, tmp;
13340
13341         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13342                 tmp = be32_to_cpu(source[j]);
13343                 target[i].op = (tmp >> 24) & 0xff;
13344                 target[i].offset = tmp & 0xffffff;
13345                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13346         }
13347 }
13348
13349 /* IRO array is stored in the following format:
13350  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13351  */
13352 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13353 {
13354         const __be32 *source = (const __be32 *)_source;
13355         struct iro *target = (struct iro *)_target;
13356         u32 i, j, tmp;
13357
13358         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13359                 target[i].base = be32_to_cpu(source[j]);
13360                 j++;
13361                 tmp = be32_to_cpu(source[j]);
13362                 target[i].m1 = (tmp >> 16) & 0xffff;
13363                 target[i].m2 = tmp & 0xffff;
13364                 j++;
13365                 tmp = be32_to_cpu(source[j]);
13366                 target[i].m3 = (tmp >> 16) & 0xffff;
13367                 target[i].size = tmp & 0xffff;
13368                 j++;
13369         }
13370 }
13371
13372 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13373 {
13374         const __be16 *source = (const __be16 *)_source;
13375         u16 *target = (u16 *)_target;
13376         u32 i;
13377
13378         for (i = 0; i < n/2; i++)
13379                 target[i] = be16_to_cpu(source[i]);
13380 }
13381
13382 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13383 do {                                                                    \
13384         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13385         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13386         if (!bp->arr)                                                   \
13387                 goto lbl;                                               \
13388         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13389              (u8 *)bp->arr, len);                                       \
13390 } while (0)
13391
13392 static int bnx2x_init_firmware(struct bnx2x *bp)
13393 {
13394         const char *fw_file_name;
13395         struct bnx2x_fw_file_hdr *fw_hdr;
13396         int rc;
13397
13398         if (bp->firmware)
13399                 return 0;
13400
13401         if (CHIP_IS_E1(bp))
13402                 fw_file_name = FW_FILE_NAME_E1;
13403         else if (CHIP_IS_E1H(bp))
13404                 fw_file_name = FW_FILE_NAME_E1H;
13405         else if (!CHIP_IS_E1x(bp))
13406                 fw_file_name = FW_FILE_NAME_E2;
13407         else {
13408                 BNX2X_ERR("Unsupported chip revision\n");
13409                 return -EINVAL;
13410         }
13411         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13412
13413         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13414         if (rc) {
13415                 BNX2X_ERR("Can't load firmware file %s\n",
13416                           fw_file_name);
13417                 goto request_firmware_exit;
13418         }
13419
13420         rc = bnx2x_check_firmware(bp);
13421         if (rc) {
13422                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13423                 goto request_firmware_exit;
13424         }
13425
13426         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13427
13428         /* Initialize the pointers to the init arrays */
13429         /* Blob */
13430         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13431
13432         /* Opcodes */
13433         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13434
13435         /* Offsets */
13436         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13437                             be16_to_cpu_n);
13438
13439         /* STORMs firmware */
13440         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13441                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13442         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13443                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13444         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13445                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13446         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13447                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13448         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13449                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13450         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13451                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13452         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13453                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13454         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13455                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13456         /* IRO */
13457         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13458
13459         return 0;
13460
13461 iro_alloc_err:
13462         kfree(bp->init_ops_offsets);
13463 init_offsets_alloc_err:
13464         kfree(bp->init_ops);
13465 init_ops_alloc_err:
13466         kfree(bp->init_data);
13467 request_firmware_exit:
13468         release_firmware(bp->firmware);
13469         bp->firmware = NULL;
13470
13471         return rc;
13472 }
13473
13474 static void bnx2x_release_firmware(struct bnx2x *bp)
13475 {
13476         kfree(bp->init_ops_offsets);
13477         kfree(bp->init_ops);
13478         kfree(bp->init_data);
13479         release_firmware(bp->firmware);
13480         bp->firmware = NULL;
13481 }
13482
13483 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13484         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13485         .init_hw_cmn      = bnx2x_init_hw_common,
13486         .init_hw_port     = bnx2x_init_hw_port,
13487         .init_hw_func     = bnx2x_init_hw_func,
13488
13489         .reset_hw_cmn     = bnx2x_reset_common,
13490         .reset_hw_port    = bnx2x_reset_port,
13491         .reset_hw_func    = bnx2x_reset_func,
13492
13493         .gunzip_init      = bnx2x_gunzip_init,
13494         .gunzip_end       = bnx2x_gunzip_end,
13495
13496         .init_fw          = bnx2x_init_firmware,
13497         .release_fw       = bnx2x_release_firmware,
13498 };
13499
13500 void bnx2x__init_func_obj(struct bnx2x *bp)
13501 {
13502         /* Prepare DMAE related driver resources */
13503         bnx2x_setup_dmae(bp);
13504
13505         bnx2x_init_func_obj(bp, &bp->func_obj,
13506                             bnx2x_sp(bp, func_rdata),
13507                             bnx2x_sp_mapping(bp, func_rdata),
13508                             bnx2x_sp(bp, func_afex_rdata),
13509                             bnx2x_sp_mapping(bp, func_afex_rdata),
13510                             &bnx2x_func_sp_drv);
13511 }
13512
13513 /* must be called after sriov-enable */
13514 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13515 {
13516         int cid_count = BNX2X_L2_MAX_CID(bp);
13517
13518         if (IS_SRIOV(bp))
13519                 cid_count += BNX2X_VF_CIDS;
13520
13521         if (CNIC_SUPPORT(bp))
13522                 cid_count += CNIC_CID_MAX;
13523
13524         return roundup(cid_count, QM_CID_ROUND);
13525 }
13526
13527 /**
13528  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13529  *
13530  * @dev:        pci device
13531  *
13532  */
13533 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13534 {
13535         int index;
13536         u16 control = 0;
13537
13538         /*
13539          * If MSI-X is not supported - return number of SBs needed to support
13540          * one fast path queue: one FP queue + SB for CNIC
13541          */
13542         if (!pdev->msix_cap) {
13543                 dev_info(&pdev->dev, "no msix capability found\n");
13544                 return 1 + cnic_cnt;
13545         }
13546         dev_info(&pdev->dev, "msix capability found\n");
13547
13548         /*
13549          * The value in the PCI configuration space is the index of the last
13550          * entry, namely one less than the actual size of the table, which is
13551          * exactly what we want to return from this function: number of all SBs
13552          * without the default SB.
13553          * For VFs there is no default SB, then we return (index+1).
13554          */
13555         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13556
13557         index = control & PCI_MSIX_FLAGS_QSIZE;
13558
13559         return index;
13560 }
13561
13562 static int set_max_cos_est(int chip_id)
13563 {
13564         switch (chip_id) {
13565         case BCM57710:
13566         case BCM57711:
13567         case BCM57711E:
13568                 return BNX2X_MULTI_TX_COS_E1X;
13569         case BCM57712:
13570         case BCM57712_MF:
13571                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13572         case BCM57800:
13573         case BCM57800_MF:
13574         case BCM57810:
13575         case BCM57810_MF:
13576         case BCM57840_4_10:
13577         case BCM57840_2_20:
13578         case BCM57840_O:
13579         case BCM57840_MFO:
13580         case BCM57840_MF:
13581         case BCM57811:
13582         case BCM57811_MF:
13583                 return BNX2X_MULTI_TX_COS_E3B0;
13584         case BCM57712_VF:
13585         case BCM57800_VF:
13586         case BCM57810_VF:
13587         case BCM57840_VF:
13588         case BCM57811_VF:
13589                 return 1;
13590         default:
13591                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13592                 return -ENODEV;
13593         }
13594 }
13595
13596 static int set_is_vf(int chip_id)
13597 {
13598         switch (chip_id) {
13599         case BCM57712_VF:
13600         case BCM57800_VF:
13601         case BCM57810_VF:
13602         case BCM57840_VF:
13603         case BCM57811_VF:
13604                 return true;
13605         default:
13606                 return false;
13607         }
13608 }
13609
13610 /* nig_tsgen registers relative address */
13611 #define tsgen_ctrl 0x0
13612 #define tsgen_freecount 0x10
13613 #define tsgen_synctime_t0 0x20
13614 #define tsgen_offset_t0 0x28
13615 #define tsgen_drift_t0 0x30
13616 #define tsgen_synctime_t1 0x58
13617 #define tsgen_offset_t1 0x60
13618 #define tsgen_drift_t1 0x68
13619
13620 /* FW workaround for setting drift */
13621 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13622                                           int best_val, int best_period)
13623 {
13624         struct bnx2x_func_state_params func_params = {NULL};
13625         struct bnx2x_func_set_timesync_params *set_timesync_params =
13626                 &func_params.params.set_timesync;
13627
13628         /* Prepare parameters for function state transitions */
13629         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13630         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13631
13632         func_params.f_obj = &bp->func_obj;
13633         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13634
13635         /* Function parameters */
13636         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13637         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13638         set_timesync_params->add_sub_drift_adjust_value =
13639                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13640         set_timesync_params->drift_adjust_value = best_val;
13641         set_timesync_params->drift_adjust_period = best_period;
13642
13643         return bnx2x_func_state_change(bp, &func_params);
13644 }
13645
13646 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13647 {
13648         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13649         int rc;
13650         int drift_dir = 1;
13651         int val, period, period1, period2, dif, dif1, dif2;
13652         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13653
13654         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13655
13656         if (!netif_running(bp->dev)) {
13657                 DP(BNX2X_MSG_PTP,
13658                    "PTP adjfreq called while the interface is down\n");
13659                 return -EFAULT;
13660         }
13661
13662         if (ppb < 0) {
13663                 ppb = -ppb;
13664                 drift_dir = 0;
13665         }
13666
13667         if (ppb == 0) {
13668                 best_val = 1;
13669                 best_period = 0x1FFFFFF;
13670         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13671                 best_val = 31;
13672                 best_period = 1;
13673         } else {
13674                 /* Changed not to allow val = 8, 16, 24 as these values
13675                  * are not supported in workaround.
13676                  */
13677                 for (val = 0; val <= 31; val++) {
13678                         if ((val & 0x7) == 0)
13679                                 continue;
13680                         period1 = val * 1000000 / ppb;
13681                         period2 = period1 + 1;
13682                         if (period1 != 0)
13683                                 dif1 = ppb - (val * 1000000 / period1);
13684                         else
13685                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13686                         if (dif1 < 0)
13687                                 dif1 = -dif1;
13688                         dif2 = ppb - (val * 1000000 / period2);
13689                         if (dif2 < 0)
13690                                 dif2 = -dif2;
13691                         dif = (dif1 < dif2) ? dif1 : dif2;
13692                         period = (dif1 < dif2) ? period1 : period2;
13693                         if (dif < best_dif) {
13694                                 best_dif = dif;
13695                                 best_val = val;
13696                                 best_period = period;
13697                         }
13698                 }
13699         }
13700
13701         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13702                                             best_period);
13703         if (rc) {
13704                 BNX2X_ERR("Failed to set drift\n");
13705                 return -EFAULT;
13706         }
13707
13708         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13709            best_period);
13710
13711         return 0;
13712 }
13713
13714 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13715 {
13716         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13717
13718         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13719
13720         timecounter_adjtime(&bp->timecounter, delta);
13721
13722         return 0;
13723 }
13724
13725 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13726 {
13727         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13728         u64 ns;
13729
13730         ns = timecounter_read(&bp->timecounter);
13731
13732         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13733
13734         *ts = ns_to_timespec64(ns);
13735
13736         return 0;
13737 }
13738
13739 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13740                              const struct timespec64 *ts)
13741 {
13742         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13743         u64 ns;
13744
13745         ns = timespec64_to_ns(ts);
13746
13747         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13748
13749         /* Re-init the timecounter */
13750         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13751
13752         return 0;
13753 }
13754
13755 /* Enable (or disable) ancillary features of the phc subsystem */
13756 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13757                             struct ptp_clock_request *rq, int on)
13758 {
13759         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13760
13761         BNX2X_ERR("PHC ancillary features are not supported\n");
13762         return -ENOTSUPP;
13763 }
13764
13765 static void bnx2x_register_phc(struct bnx2x *bp)
13766 {
13767         /* Fill the ptp_clock_info struct and register PTP clock*/
13768         bp->ptp_clock_info.owner = THIS_MODULE;
13769         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13770         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13771         bp->ptp_clock_info.n_alarm = 0;
13772         bp->ptp_clock_info.n_ext_ts = 0;
13773         bp->ptp_clock_info.n_per_out = 0;
13774         bp->ptp_clock_info.pps = 0;
13775         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13776         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13777         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13778         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13779         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13780
13781         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13782         if (IS_ERR(bp->ptp_clock)) {
13783                 bp->ptp_clock = NULL;
13784                 BNX2X_ERR("PTP clock registeration failed\n");
13785         }
13786 }
13787
13788 static int bnx2x_init_one(struct pci_dev *pdev,
13789                                     const struct pci_device_id *ent)
13790 {
13791         struct net_device *dev = NULL;
13792         struct bnx2x *bp;
13793         enum pcie_link_width pcie_width;
13794         enum pci_bus_speed pcie_speed;
13795         int rc, max_non_def_sbs;
13796         int rx_count, tx_count, rss_count, doorbell_size;
13797         int max_cos_est;
13798         bool is_vf;
13799         int cnic_cnt;
13800
13801         /* Management FW 'remembers' living interfaces. Allow it some time
13802          * to forget previously living interfaces, allowing a proper re-load.
13803          */
13804         if (is_kdump_kernel()) {
13805                 ktime_t now = ktime_get_boottime();
13806                 ktime_t fw_ready_time = ktime_set(5, 0);
13807
13808                 if (ktime_before(now, fw_ready_time))
13809                         msleep(ktime_ms_delta(fw_ready_time, now));
13810         }
13811
13812         /* An estimated maximum supported CoS number according to the chip
13813          * version.
13814          * We will try to roughly estimate the maximum number of CoSes this chip
13815          * may support in order to minimize the memory allocated for Tx
13816          * netdev_queue's. This number will be accurately calculated during the
13817          * initialization of bp->max_cos based on the chip versions AND chip
13818          * revision in the bnx2x_init_bp().
13819          */
13820         max_cos_est = set_max_cos_est(ent->driver_data);
13821         if (max_cos_est < 0)
13822                 return max_cos_est;
13823         is_vf = set_is_vf(ent->driver_data);
13824         cnic_cnt = is_vf ? 0 : 1;
13825
13826         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13827
13828         /* add another SB for VF as it has no default SB */
13829         max_non_def_sbs += is_vf ? 1 : 0;
13830
13831         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13832         rss_count = max_non_def_sbs - cnic_cnt;
13833
13834         if (rss_count < 1)
13835                 return -EINVAL;
13836
13837         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13838         rx_count = rss_count + cnic_cnt;
13839
13840         /* Maximum number of netdev Tx queues:
13841          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13842          */
13843         tx_count = rss_count * max_cos_est + cnic_cnt;
13844
13845         /* dev zeroed in init_etherdev */
13846         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13847         if (!dev)
13848                 return -ENOMEM;
13849
13850         bp = netdev_priv(dev);
13851
13852         bp->flags = 0;
13853         if (is_vf)
13854                 bp->flags |= IS_VF_FLAG;
13855
13856         bp->igu_sb_cnt = max_non_def_sbs;
13857         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13858         bp->msg_enable = debug;
13859         bp->cnic_support = cnic_cnt;
13860         bp->cnic_probe = bnx2x_cnic_probe;
13861
13862         pci_set_drvdata(pdev, dev);
13863
13864         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13865         if (rc < 0) {
13866                 free_netdev(dev);
13867                 return rc;
13868         }
13869
13870         BNX2X_DEV_INFO("This is a %s function\n",
13871                        IS_PF(bp) ? "physical" : "virtual");
13872         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13873         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13874         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13875                        tx_count, rx_count);
13876
13877         rc = bnx2x_init_bp(bp);
13878         if (rc)
13879                 goto init_one_exit;
13880
13881         /* Map doorbells here as we need the real value of bp->max_cos which
13882          * is initialized in bnx2x_init_bp() to determine the number of
13883          * l2 connections.
13884          */
13885         if (IS_VF(bp)) {
13886                 bp->doorbells = bnx2x_vf_doorbells(bp);
13887                 rc = bnx2x_vf_pci_alloc(bp);
13888                 if (rc)
13889                         goto init_one_freemem;
13890         } else {
13891                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13892                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13893                         dev_err(&bp->pdev->dev,
13894                                 "Cannot map doorbells, bar size too small, aborting\n");
13895                         rc = -ENOMEM;
13896                         goto init_one_freemem;
13897                 }
13898                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13899                                                 doorbell_size);
13900         }
13901         if (!bp->doorbells) {
13902                 dev_err(&bp->pdev->dev,
13903                         "Cannot map doorbell space, aborting\n");
13904                 rc = -ENOMEM;
13905                 goto init_one_freemem;
13906         }
13907
13908         if (IS_VF(bp)) {
13909                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13910                 if (rc)
13911                         goto init_one_freemem;
13912         }
13913
13914         /* Enable SRIOV if capability found in configuration space */
13915         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13916         if (rc)
13917                 goto init_one_freemem;
13918
13919         /* calc qm_cid_count */
13920         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13921         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13922
13923         /* disable FCOE L2 queue for E1x*/
13924         if (CHIP_IS_E1x(bp))
13925                 bp->flags |= NO_FCOE_FLAG;
13926
13927         /* Set bp->num_queues for MSI-X mode*/
13928         bnx2x_set_num_queues(bp);
13929
13930         /* Configure interrupt mode: try to enable MSI-X/MSI if
13931          * needed.
13932          */
13933         rc = bnx2x_set_int_mode(bp);
13934         if (rc) {
13935                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13936                 goto init_one_freemem;
13937         }
13938         BNX2X_DEV_INFO("set interrupts successfully\n");
13939
13940         /* register the net device */
13941         rc = register_netdev(dev);
13942         if (rc) {
13943                 dev_err(&pdev->dev, "Cannot register net device\n");
13944                 goto init_one_freemem;
13945         }
13946         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13947
13948         if (!NO_FCOE(bp)) {
13949                 /* Add storage MAC address */
13950                 rtnl_lock();
13951                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13952                 rtnl_unlock();
13953         }
13954         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13955             pcie_speed == PCI_SPEED_UNKNOWN ||
13956             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13957                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13958         else
13959                 BNX2X_DEV_INFO(
13960                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13961                        board_info[ent->driver_data].name,
13962                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13963                        pcie_width,
13964                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13965                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13966                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13967                        "Unknown",
13968                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13969
13970         bnx2x_register_phc(bp);
13971
13972         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13973                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13974
13975         return 0;
13976
13977 init_one_freemem:
13978         bnx2x_free_mem_bp(bp);
13979
13980 init_one_exit:
13981         bnx2x_disable_pcie_error_reporting(bp);
13982
13983         if (bp->regview)
13984                 iounmap(bp->regview);
13985
13986         if (IS_PF(bp) && bp->doorbells)
13987                 iounmap(bp->doorbells);
13988
13989         free_netdev(dev);
13990
13991         if (atomic_read(&pdev->enable_cnt) == 1)
13992                 pci_release_regions(pdev);
13993
13994         pci_disable_device(pdev);
13995
13996         return rc;
13997 }
13998
13999 static void __bnx2x_remove(struct pci_dev *pdev,
14000                            struct net_device *dev,
14001                            struct bnx2x *bp,
14002                            bool remove_netdev)
14003 {
14004         if (bp->ptp_clock) {
14005                 ptp_clock_unregister(bp->ptp_clock);
14006                 bp->ptp_clock = NULL;
14007         }
14008
14009         /* Delete storage MAC address */
14010         if (!NO_FCOE(bp)) {
14011                 rtnl_lock();
14012                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14013                 rtnl_unlock();
14014         }
14015
14016 #ifdef BCM_DCBNL
14017         /* Delete app tlvs from dcbnl */
14018         bnx2x_dcbnl_update_applist(bp, true);
14019 #endif
14020
14021         if (IS_PF(bp) &&
14022             !BP_NOMCP(bp) &&
14023             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14024                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14025
14026         /* Close the interface - either directly or implicitly */
14027         if (remove_netdev) {
14028                 unregister_netdev(dev);
14029         } else {
14030                 rtnl_lock();
14031                 dev_close(dev);
14032                 rtnl_unlock();
14033         }
14034
14035         bnx2x_iov_remove_one(bp);
14036
14037         /* Power on: we can't let PCI layer write to us while we are in D3 */
14038         if (IS_PF(bp)) {
14039                 bnx2x_set_power_state(bp, PCI_D0);
14040                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14041
14042                 /* Set endianity registers to reset values in case next driver
14043                  * boots in different endianty environment.
14044                  */
14045                 bnx2x_reset_endianity(bp);
14046         }
14047
14048         /* Disable MSI/MSI-X */
14049         bnx2x_disable_msi(bp);
14050
14051         /* Power off */
14052         if (IS_PF(bp))
14053                 bnx2x_set_power_state(bp, PCI_D3hot);
14054
14055         /* Make sure RESET task is not scheduled before continuing */
14056         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14057
14058         /* send message via vfpf channel to release the resources of this vf */
14059         if (IS_VF(bp))
14060                 bnx2x_vfpf_release(bp);
14061
14062         /* Assumes no further PCIe PM changes will occur */
14063         if (system_state == SYSTEM_POWER_OFF) {
14064                 pci_wake_from_d3(pdev, bp->wol);
14065                 pci_set_power_state(pdev, PCI_D3hot);
14066         }
14067
14068         bnx2x_disable_pcie_error_reporting(bp);
14069         if (remove_netdev) {
14070                 if (bp->regview)
14071                         iounmap(bp->regview);
14072
14073                 /* For vfs, doorbells are part of the regview and were unmapped
14074                  * along with it. FW is only loaded by PF.
14075                  */
14076                 if (IS_PF(bp)) {
14077                         if (bp->doorbells)
14078                                 iounmap(bp->doorbells);
14079
14080                         bnx2x_release_firmware(bp);
14081                 } else {
14082                         bnx2x_vf_pci_dealloc(bp);
14083                 }
14084                 bnx2x_free_mem_bp(bp);
14085
14086                 free_netdev(dev);
14087
14088                 if (atomic_read(&pdev->enable_cnt) == 1)
14089                         pci_release_regions(pdev);
14090
14091                 pci_disable_device(pdev);
14092         }
14093 }
14094
14095 static void bnx2x_remove_one(struct pci_dev *pdev)
14096 {
14097         struct net_device *dev = pci_get_drvdata(pdev);
14098         struct bnx2x *bp;
14099
14100         if (!dev) {
14101                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14102                 return;
14103         }
14104         bp = netdev_priv(dev);
14105
14106         __bnx2x_remove(pdev, dev, bp, true);
14107 }
14108
14109 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14110 {
14111         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14112
14113         bp->rx_mode = BNX2X_RX_MODE_NONE;
14114
14115         if (CNIC_LOADED(bp))
14116                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14117
14118         /* Stop Tx */
14119         bnx2x_tx_disable(bp);
14120         /* Delete all NAPI objects */
14121         bnx2x_del_all_napi(bp);
14122         if (CNIC_LOADED(bp))
14123                 bnx2x_del_all_napi_cnic(bp);
14124         netdev_reset_tc(bp->dev);
14125
14126         del_timer_sync(&bp->timer);
14127         cancel_delayed_work_sync(&bp->sp_task);
14128         cancel_delayed_work_sync(&bp->period_task);
14129
14130         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14131                 bp->stats_state = STATS_STATE_DISABLED;
14132                 up(&bp->stats_lock);
14133         }
14134
14135         bnx2x_save_statistics(bp);
14136
14137         netif_carrier_off(bp->dev);
14138
14139         return 0;
14140 }
14141
14142 /**
14143  * bnx2x_io_error_detected - called when PCI error is detected
14144  * @pdev: Pointer to PCI device
14145  * @state: The current pci connection state
14146  *
14147  * This function is called after a PCI bus error affecting
14148  * this device has been detected.
14149  */
14150 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14151                                                 pci_channel_state_t state)
14152 {
14153         struct net_device *dev = pci_get_drvdata(pdev);
14154         struct bnx2x *bp = netdev_priv(dev);
14155
14156         rtnl_lock();
14157
14158         BNX2X_ERR("IO error detected\n");
14159
14160         netif_device_detach(dev);
14161
14162         if (state == pci_channel_io_perm_failure) {
14163                 rtnl_unlock();
14164                 return PCI_ERS_RESULT_DISCONNECT;
14165         }
14166
14167         if (netif_running(dev))
14168                 bnx2x_eeh_nic_unload(bp);
14169
14170         bnx2x_prev_path_mark_eeh(bp);
14171
14172         pci_disable_device(pdev);
14173
14174         rtnl_unlock();
14175
14176         /* Request a slot reset */
14177         return PCI_ERS_RESULT_NEED_RESET;
14178 }
14179
14180 /**
14181  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14182  * @pdev: Pointer to PCI device
14183  *
14184  * Restart the card from scratch, as if from a cold-boot.
14185  */
14186 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14187 {
14188         struct net_device *dev = pci_get_drvdata(pdev);
14189         struct bnx2x *bp = netdev_priv(dev);
14190         int i;
14191
14192         rtnl_lock();
14193         BNX2X_ERR("IO slot reset initializing...\n");
14194         if (pci_enable_device(pdev)) {
14195                 dev_err(&pdev->dev,
14196                         "Cannot re-enable PCI device after reset\n");
14197                 rtnl_unlock();
14198                 return PCI_ERS_RESULT_DISCONNECT;
14199         }
14200
14201         pci_set_master(pdev);
14202         pci_restore_state(pdev);
14203         pci_save_state(pdev);
14204
14205         if (netif_running(dev))
14206                 bnx2x_set_power_state(bp, PCI_D0);
14207
14208         if (netif_running(dev)) {
14209                 BNX2X_ERR("IO slot reset --> driver unload\n");
14210
14211                 /* MCP should have been reset; Need to wait for validity */
14212                 bnx2x_init_shmem(bp);
14213
14214                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14215                         u32 v;
14216
14217                         v = SHMEM2_RD(bp,
14218                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14219                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14220                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14221                 }
14222                 bnx2x_drain_tx_queues(bp);
14223                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14224                 bnx2x_netif_stop(bp, 1);
14225                 bnx2x_free_irq(bp);
14226
14227                 /* Report UNLOAD_DONE to MCP */
14228                 bnx2x_send_unload_done(bp, true);
14229
14230                 bp->sp_state = 0;
14231                 bp->port.pmf = 0;
14232
14233                 bnx2x_prev_unload(bp);
14234
14235                 /* We should have reseted the engine, so It's fair to
14236                  * assume the FW will no longer write to the bnx2x driver.
14237                  */
14238                 bnx2x_squeeze_objects(bp);
14239                 bnx2x_free_skbs(bp);
14240                 for_each_rx_queue(bp, i)
14241                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14242                 bnx2x_free_fp_mem(bp);
14243                 bnx2x_free_mem(bp);
14244
14245                 bp->state = BNX2X_STATE_CLOSED;
14246         }
14247
14248         rtnl_unlock();
14249
14250         /* If AER, perform cleanup of the PCIe registers */
14251         if (bp->flags & AER_ENABLED) {
14252                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14253                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14254                 else
14255                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14256         }
14257
14258         return PCI_ERS_RESULT_RECOVERED;
14259 }
14260
14261 /**
14262  * bnx2x_io_resume - called when traffic can start flowing again
14263  * @pdev: Pointer to PCI device
14264  *
14265  * This callback is called when the error recovery driver tells us that
14266  * its OK to resume normal operation.
14267  */
14268 static void bnx2x_io_resume(struct pci_dev *pdev)
14269 {
14270         struct net_device *dev = pci_get_drvdata(pdev);
14271         struct bnx2x *bp = netdev_priv(dev);
14272
14273         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14274                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14275                 return;
14276         }
14277
14278         rtnl_lock();
14279
14280         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14281                                                         DRV_MSG_SEQ_NUMBER_MASK;
14282
14283         if (netif_running(dev))
14284                 bnx2x_nic_load(bp, LOAD_NORMAL);
14285
14286         netif_device_attach(dev);
14287
14288         rtnl_unlock();
14289 }
14290
14291 static const struct pci_error_handlers bnx2x_err_handler = {
14292         .error_detected = bnx2x_io_error_detected,
14293         .slot_reset     = bnx2x_io_slot_reset,
14294         .resume         = bnx2x_io_resume,
14295 };
14296
14297 static void bnx2x_shutdown(struct pci_dev *pdev)
14298 {
14299         struct net_device *dev = pci_get_drvdata(pdev);
14300         struct bnx2x *bp;
14301
14302         if (!dev)
14303                 return;
14304
14305         bp = netdev_priv(dev);
14306         if (!bp)
14307                 return;
14308
14309         rtnl_lock();
14310         netif_device_detach(dev);
14311         rtnl_unlock();
14312
14313         /* Don't remove the netdevice, as there are scenarios which will cause
14314          * the kernel to hang, e.g., when trying to remove bnx2i while the
14315          * rootfs is mounted from SAN.
14316          */
14317         __bnx2x_remove(pdev, dev, bp, false);
14318 }
14319
14320 static struct pci_driver bnx2x_pci_driver = {
14321         .name        = DRV_MODULE_NAME,
14322         .id_table    = bnx2x_pci_tbl,
14323         .probe       = bnx2x_init_one,
14324         .remove      = bnx2x_remove_one,
14325         .suspend     = bnx2x_suspend,
14326         .resume      = bnx2x_resume,
14327         .err_handler = &bnx2x_err_handler,
14328 #ifdef CONFIG_BNX2X_SRIOV
14329         .sriov_configure = bnx2x_sriov_configure,
14330 #endif
14331         .shutdown    = bnx2x_shutdown,
14332 };
14333
14334 static int __init bnx2x_init(void)
14335 {
14336         int ret;
14337
14338         pr_info("%s", version);
14339
14340         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14341         if (bnx2x_wq == NULL) {
14342                 pr_err("Cannot create workqueue\n");
14343                 return -ENOMEM;
14344         }
14345         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14346         if (!bnx2x_iov_wq) {
14347                 pr_err("Cannot create iov workqueue\n");
14348                 destroy_workqueue(bnx2x_wq);
14349                 return -ENOMEM;
14350         }
14351
14352         ret = pci_register_driver(&bnx2x_pci_driver);
14353         if (ret) {
14354                 pr_err("Cannot register driver\n");
14355                 destroy_workqueue(bnx2x_wq);
14356                 destroy_workqueue(bnx2x_iov_wq);
14357         }
14358         return ret;
14359 }
14360
14361 static void __exit bnx2x_cleanup(void)
14362 {
14363         struct list_head *pos, *q;
14364
14365         pci_unregister_driver(&bnx2x_pci_driver);
14366
14367         destroy_workqueue(bnx2x_wq);
14368         destroy_workqueue(bnx2x_iov_wq);
14369
14370         /* Free globally allocated resources */
14371         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14372                 struct bnx2x_prev_path_list *tmp =
14373                         list_entry(pos, struct bnx2x_prev_path_list, list);
14374                 list_del(pos);
14375                 kfree(tmp);
14376         }
14377 }
14378
14379 void bnx2x_notify_link_changed(struct bnx2x *bp)
14380 {
14381         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14382 }
14383
14384 module_init(bnx2x_init);
14385 module_exit(bnx2x_cleanup);
14386
14387 /**
14388  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14389  *
14390  * @bp:         driver handle
14391  * @set:        set or clear the CAM entry
14392  *
14393  * This function will wait until the ramrod completion returns.
14394  * Return 0 if success, -ENODEV if ramrod doesn't return.
14395  */
14396 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14397 {
14398         unsigned long ramrod_flags = 0;
14399
14400         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14401         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14402                                  &bp->iscsi_l2_mac_obj, true,
14403                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14404 }
14405
14406 /* count denotes the number of new completions we have seen */
14407 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14408 {
14409         struct eth_spe *spe;
14410         int cxt_index, cxt_offset;
14411
14412 #ifdef BNX2X_STOP_ON_ERROR
14413         if (unlikely(bp->panic))
14414                 return;
14415 #endif
14416
14417         spin_lock_bh(&bp->spq_lock);
14418         BUG_ON(bp->cnic_spq_pending < count);
14419         bp->cnic_spq_pending -= count;
14420
14421         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14422                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14423                                 & SPE_HDR_CONN_TYPE) >>
14424                                 SPE_HDR_CONN_TYPE_SHIFT;
14425                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14426                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14427
14428                 /* Set validation for iSCSI L2 client before sending SETUP
14429                  *  ramrod
14430                  */
14431                 if (type == ETH_CONNECTION_TYPE) {
14432                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14433                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14434                                         ILT_PAGE_CIDS;
14435                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14436                                         (cxt_index * ILT_PAGE_CIDS);
14437                                 bnx2x_set_ctx_validation(bp,
14438                                         &bp->context[cxt_index].
14439                                                          vcxt[cxt_offset].eth,
14440                                         BNX2X_ISCSI_ETH_CID(bp));
14441                         }
14442                 }
14443
14444                 /*
14445                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14446                  * and in the air. We also check that number of outstanding
14447                  * COMMON ramrods is not more than the EQ and SPQ can
14448                  * accommodate.
14449                  */
14450                 if (type == ETH_CONNECTION_TYPE) {
14451                         if (!atomic_read(&bp->cq_spq_left))
14452                                 break;
14453                         else
14454                                 atomic_dec(&bp->cq_spq_left);
14455                 } else if (type == NONE_CONNECTION_TYPE) {
14456                         if (!atomic_read(&bp->eq_spq_left))
14457                                 break;
14458                         else
14459                                 atomic_dec(&bp->eq_spq_left);
14460                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14461                            (type == FCOE_CONNECTION_TYPE)) {
14462                         if (bp->cnic_spq_pending >=
14463                             bp->cnic_eth_dev.max_kwqe_pending)
14464                                 break;
14465                         else
14466                                 bp->cnic_spq_pending++;
14467                 } else {
14468                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14469                         bnx2x_panic();
14470                         break;
14471                 }
14472
14473                 spe = bnx2x_sp_get_next(bp);
14474                 *spe = *bp->cnic_kwq_cons;
14475
14476                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14477                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14478
14479                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14480                         bp->cnic_kwq_cons = bp->cnic_kwq;
14481                 else
14482                         bp->cnic_kwq_cons++;
14483         }
14484         bnx2x_sp_prod_update(bp);
14485         spin_unlock_bh(&bp->spq_lock);
14486 }
14487
14488 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14489                                struct kwqe_16 *kwqes[], u32 count)
14490 {
14491         struct bnx2x *bp = netdev_priv(dev);
14492         int i;
14493
14494 #ifdef BNX2X_STOP_ON_ERROR
14495         if (unlikely(bp->panic)) {
14496                 BNX2X_ERR("Can't post to SP queue while panic\n");
14497                 return -EIO;
14498         }
14499 #endif
14500
14501         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14502             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14503                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14504                 return -EAGAIN;
14505         }
14506
14507         spin_lock_bh(&bp->spq_lock);
14508
14509         for (i = 0; i < count; i++) {
14510                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14511
14512                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14513                         break;
14514
14515                 *bp->cnic_kwq_prod = *spe;
14516
14517                 bp->cnic_kwq_pending++;
14518
14519                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14520                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14521                    spe->data.update_data_addr.hi,
14522                    spe->data.update_data_addr.lo,
14523                    bp->cnic_kwq_pending);
14524
14525                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14526                         bp->cnic_kwq_prod = bp->cnic_kwq;
14527                 else
14528                         bp->cnic_kwq_prod++;
14529         }
14530
14531         spin_unlock_bh(&bp->spq_lock);
14532
14533         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14534                 bnx2x_cnic_sp_post(bp, 0);
14535
14536         return i;
14537 }
14538
14539 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14540 {
14541         struct cnic_ops *c_ops;
14542         int rc = 0;
14543
14544         mutex_lock(&bp->cnic_mutex);
14545         c_ops = rcu_dereference_protected(bp->cnic_ops,
14546                                           lockdep_is_held(&bp->cnic_mutex));
14547         if (c_ops)
14548                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14549         mutex_unlock(&bp->cnic_mutex);
14550
14551         return rc;
14552 }
14553
14554 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14555 {
14556         struct cnic_ops *c_ops;
14557         int rc = 0;
14558
14559         rcu_read_lock();
14560         c_ops = rcu_dereference(bp->cnic_ops);
14561         if (c_ops)
14562                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14563         rcu_read_unlock();
14564
14565         return rc;
14566 }
14567
14568 /*
14569  * for commands that have no data
14570  */
14571 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14572 {
14573         struct cnic_ctl_info ctl = {0};
14574
14575         ctl.cmd = cmd;
14576
14577         return bnx2x_cnic_ctl_send(bp, &ctl);
14578 }
14579
14580 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14581 {
14582         struct cnic_ctl_info ctl = {0};
14583
14584         /* first we tell CNIC and only then we count this as a completion */
14585         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14586         ctl.data.comp.cid = cid;
14587         ctl.data.comp.error = err;
14588
14589         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14590         bnx2x_cnic_sp_post(bp, 0);
14591 }
14592
14593 /* Called with netif_addr_lock_bh() taken.
14594  * Sets an rx_mode config for an iSCSI ETH client.
14595  * Doesn't block.
14596  * Completion should be checked outside.
14597  */
14598 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14599 {
14600         unsigned long accept_flags = 0, ramrod_flags = 0;
14601         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14602         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14603
14604         if (start) {
14605                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14606                  * because it's the only way for UIO Queue to accept
14607                  * multicasts (in non-promiscuous mode only one Queue per
14608                  * function will receive multicast packets (leading in our
14609                  * case).
14610                  */
14611                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14612                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14613                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14614                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14615
14616                 /* Clear STOP_PENDING bit if START is requested */
14617                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14618
14619                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14620         } else
14621                 /* Clear START_PENDING bit if STOP is requested */
14622                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14623
14624         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14625                 set_bit(sched_state, &bp->sp_state);
14626         else {
14627                 __set_bit(RAMROD_RX, &ramrod_flags);
14628                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14629                                     ramrod_flags);
14630         }
14631 }
14632
14633 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14634 {
14635         struct bnx2x *bp = netdev_priv(dev);
14636         int rc = 0;
14637
14638         switch (ctl->cmd) {
14639         case DRV_CTL_CTXTBL_WR_CMD: {
14640                 u32 index = ctl->data.io.offset;
14641                 dma_addr_t addr = ctl->data.io.dma_addr;
14642
14643                 bnx2x_ilt_wr(bp, index, addr);
14644                 break;
14645         }
14646
14647         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14648                 int count = ctl->data.credit.credit_count;
14649
14650                 bnx2x_cnic_sp_post(bp, count);
14651                 break;
14652         }
14653
14654         /* rtnl_lock is held.  */
14655         case DRV_CTL_START_L2_CMD: {
14656                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14657                 unsigned long sp_bits = 0;
14658
14659                 /* Configure the iSCSI classification object */
14660                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14661                                    cp->iscsi_l2_client_id,
14662                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14663                                    bnx2x_sp(bp, mac_rdata),
14664                                    bnx2x_sp_mapping(bp, mac_rdata),
14665                                    BNX2X_FILTER_MAC_PENDING,
14666                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14667                                    &bp->macs_pool);
14668
14669                 /* Set iSCSI MAC address */
14670                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14671                 if (rc)
14672                         break;
14673
14674                 mmiowb();
14675                 barrier();
14676
14677                 /* Start accepting on iSCSI L2 ring */
14678
14679                 netif_addr_lock_bh(dev);
14680                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14681                 netif_addr_unlock_bh(dev);
14682
14683                 /* bits to wait on */
14684                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14685                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14686
14687                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14688                         BNX2X_ERR("rx_mode completion timed out!\n");
14689
14690                 break;
14691         }
14692
14693         /* rtnl_lock is held.  */
14694         case DRV_CTL_STOP_L2_CMD: {
14695                 unsigned long sp_bits = 0;
14696
14697                 /* Stop accepting on iSCSI L2 ring */
14698                 netif_addr_lock_bh(dev);
14699                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14700                 netif_addr_unlock_bh(dev);
14701
14702                 /* bits to wait on */
14703                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14704                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14705
14706                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14707                         BNX2X_ERR("rx_mode completion timed out!\n");
14708
14709                 mmiowb();
14710                 barrier();
14711
14712                 /* Unset iSCSI L2 MAC */
14713                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14714                                         BNX2X_ISCSI_ETH_MAC, true);
14715                 break;
14716         }
14717         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14718                 int count = ctl->data.credit.credit_count;
14719
14720                 smp_mb__before_atomic();
14721                 atomic_add(count, &bp->cq_spq_left);
14722                 smp_mb__after_atomic();
14723                 break;
14724         }
14725         case DRV_CTL_ULP_REGISTER_CMD: {
14726                 int ulp_type = ctl->data.register_data.ulp_type;
14727
14728                 if (CHIP_IS_E3(bp)) {
14729                         int idx = BP_FW_MB_IDX(bp);
14730                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14731                         int path = BP_PATH(bp);
14732                         int port = BP_PORT(bp);
14733                         int i;
14734                         u32 scratch_offset;
14735                         u32 *host_addr;
14736
14737                         /* first write capability to shmem2 */
14738                         if (ulp_type == CNIC_ULP_ISCSI)
14739                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14740                         else if (ulp_type == CNIC_ULP_FCOE)
14741                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14742                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14743
14744                         if ((ulp_type != CNIC_ULP_FCOE) ||
14745                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14746                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14747                                 break;
14748
14749                         /* if reached here - should write fcoe capabilities */
14750                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14751                         if (!scratch_offset)
14752                                 break;
14753                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14754                                                    fcoe_features[path][port]);
14755                         host_addr = (u32 *) &(ctl->data.register_data.
14756                                               fcoe_features);
14757                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14758                              i += 4)
14759                                 REG_WR(bp, scratch_offset + i,
14760                                        *(host_addr + i/4));
14761                 }
14762                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14763                 break;
14764         }
14765
14766         case DRV_CTL_ULP_UNREGISTER_CMD: {
14767                 int ulp_type = ctl->data.ulp_type;
14768
14769                 if (CHIP_IS_E3(bp)) {
14770                         int idx = BP_FW_MB_IDX(bp);
14771                         u32 cap;
14772
14773                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14774                         if (ulp_type == CNIC_ULP_ISCSI)
14775                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14776                         else if (ulp_type == CNIC_ULP_FCOE)
14777                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14778                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14779                 }
14780                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14781                 break;
14782         }
14783
14784         default:
14785                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14786                 rc = -EINVAL;
14787         }
14788
14789         /* For storage-only interfaces, change driver state */
14790         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14791                 switch (ctl->drv_state) {
14792                 case DRV_NOP:
14793                         break;
14794                 case DRV_ACTIVE:
14795                         bnx2x_set_os_driver_state(bp,
14796                                                   OS_DRIVER_STATE_ACTIVE);
14797                         break;
14798                 case DRV_INACTIVE:
14799                         bnx2x_set_os_driver_state(bp,
14800                                                   OS_DRIVER_STATE_DISABLED);
14801                         break;
14802                 case DRV_UNLOADED:
14803                         bnx2x_set_os_driver_state(bp,
14804                                                   OS_DRIVER_STATE_NOT_LOADED);
14805                         break;
14806                 default:
14807                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14808                 }
14809         }
14810
14811         return rc;
14812 }
14813
14814 static int bnx2x_get_fc_npiv(struct net_device *dev,
14815                              struct cnic_fc_npiv_tbl *cnic_tbl)
14816 {
14817         struct bnx2x *bp = netdev_priv(dev);
14818         struct bdn_fc_npiv_tbl *tbl = NULL;
14819         u32 offset, entries;
14820         int rc = -EINVAL;
14821         int i;
14822
14823         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14824                 goto out;
14825
14826         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14827
14828         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14829         if (!tbl) {
14830                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14831                 goto out;
14832         }
14833
14834         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14835         if (!offset) {
14836                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14837                 goto out;
14838         }
14839         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14840
14841         /* Read the table contents from nvram */
14842         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14843                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14844                 goto out;
14845         }
14846
14847         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14848          * the number of entries back to cpu endianness.
14849          */
14850         entries = tbl->fc_npiv_cfg.num_of_npiv;
14851         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14852         tbl->fc_npiv_cfg.num_of_npiv = entries;
14853
14854         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14855                 DP(BNX2X_MSG_MCP,
14856                    "No FC-NPIV table [valid, simply not present]\n");
14857                 goto out;
14858         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14859                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14860                           tbl->fc_npiv_cfg.num_of_npiv);
14861                 goto out;
14862         } else {
14863                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14864                    tbl->fc_npiv_cfg.num_of_npiv);
14865         }
14866
14867         /* Copy the data into cnic-provided struct */
14868         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14869         for (i = 0; i < cnic_tbl->count; i++) {
14870                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14871                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14872         }
14873
14874         rc = 0;
14875 out:
14876         kfree(tbl);
14877         return rc;
14878 }
14879
14880 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14881 {
14882         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14883
14884         if (bp->flags & USING_MSIX_FLAG) {
14885                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14886                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14887                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14888         } else {
14889                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14890                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14891         }
14892         if (!CHIP_IS_E1x(bp))
14893                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14894         else
14895                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14896
14897         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14898         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14899         cp->irq_arr[1].status_blk = bp->def_status_blk;
14900         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14901         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14902
14903         cp->num_irq = 2;
14904 }
14905
14906 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14907 {
14908         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14909
14910         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14911                              bnx2x_cid_ilt_lines(bp);
14912         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14913         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14914         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14915
14916         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14917            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14918            cp->iscsi_l2_cid);
14919
14920         if (NO_ISCSI_OOO(bp))
14921                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14922 }
14923
14924 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14925                                void *data)
14926 {
14927         struct bnx2x *bp = netdev_priv(dev);
14928         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14929         int rc;
14930
14931         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14932
14933         if (ops == NULL) {
14934                 BNX2X_ERR("NULL ops received\n");
14935                 return -EINVAL;
14936         }
14937
14938         if (!CNIC_SUPPORT(bp)) {
14939                 BNX2X_ERR("Can't register CNIC when not supported\n");
14940                 return -EOPNOTSUPP;
14941         }
14942
14943         if (!CNIC_LOADED(bp)) {
14944                 rc = bnx2x_load_cnic(bp);
14945                 if (rc) {
14946                         BNX2X_ERR("CNIC-related load failed\n");
14947                         return rc;
14948                 }
14949         }
14950
14951         bp->cnic_enabled = true;
14952
14953         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14954         if (!bp->cnic_kwq)
14955                 return -ENOMEM;
14956
14957         bp->cnic_kwq_cons = bp->cnic_kwq;
14958         bp->cnic_kwq_prod = bp->cnic_kwq;
14959         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14960
14961         bp->cnic_spq_pending = 0;
14962         bp->cnic_kwq_pending = 0;
14963
14964         bp->cnic_data = data;
14965
14966         cp->num_irq = 0;
14967         cp->drv_state |= CNIC_DRV_STATE_REGD;
14968         cp->iro_arr = bp->iro_arr;
14969
14970         bnx2x_setup_cnic_irq_info(bp);
14971
14972         rcu_assign_pointer(bp->cnic_ops, ops);
14973
14974         /* Schedule driver to read CNIC driver versions */
14975         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14976
14977         return 0;
14978 }
14979
14980 static int bnx2x_unregister_cnic(struct net_device *dev)
14981 {
14982         struct bnx2x *bp = netdev_priv(dev);
14983         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14984
14985         mutex_lock(&bp->cnic_mutex);
14986         cp->drv_state = 0;
14987         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14988         mutex_unlock(&bp->cnic_mutex);
14989         synchronize_rcu();
14990         bp->cnic_enabled = false;
14991         kfree(bp->cnic_kwq);
14992         bp->cnic_kwq = NULL;
14993
14994         return 0;
14995 }
14996
14997 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14998 {
14999         struct bnx2x *bp = netdev_priv(dev);
15000         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15001
15002         /* If both iSCSI and FCoE are disabled - return NULL in
15003          * order to indicate CNIC that it should not try to work
15004          * with this device.
15005          */
15006         if (NO_ISCSI(bp) && NO_FCOE(bp))
15007                 return NULL;
15008
15009         cp->drv_owner = THIS_MODULE;
15010         cp->chip_id = CHIP_ID(bp);
15011         cp->pdev = bp->pdev;
15012         cp->io_base = bp->regview;
15013         cp->io_base2 = bp->doorbells;
15014         cp->max_kwqe_pending = 8;
15015         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15016         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15017                              bnx2x_cid_ilt_lines(bp);
15018         cp->ctx_tbl_len = CNIC_ILT_LINES;
15019         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15020         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15021         cp->drv_ctl = bnx2x_drv_ctl;
15022         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15023         cp->drv_register_cnic = bnx2x_register_cnic;
15024         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15025         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15026         cp->iscsi_l2_client_id =
15027                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15028         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15029
15030         if (NO_ISCSI_OOO(bp))
15031                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15032
15033         if (NO_ISCSI(bp))
15034                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15035
15036         if (NO_FCOE(bp))
15037                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15038
15039         BNX2X_DEV_INFO(
15040                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15041            cp->ctx_blk_size,
15042            cp->ctx_tbl_offset,
15043            cp->ctx_tbl_len,
15044            cp->starting_cid);
15045         return cp;
15046 }
15047
15048 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15049 {
15050         struct bnx2x *bp = fp->bp;
15051         u32 offset = BAR_USTRORM_INTMEM;
15052
15053         if (IS_VF(bp))
15054                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15055         else if (!CHIP_IS_E1x(bp))
15056                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15057         else
15058                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15059
15060         return offset;
15061 }
15062
15063 /* called only on E1H or E2.
15064  * When pretending to be PF, the pretend value is the function number 0...7
15065  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15066  * combination
15067  */
15068 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15069 {
15070         u32 pretend_reg;
15071
15072         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15073                 return -1;
15074
15075         /* get my own pretend register */
15076         pretend_reg = bnx2x_get_pretend_reg(bp);
15077         REG_WR(bp, pretend_reg, pretend_func_val);
15078         REG_RD(bp, pretend_reg);
15079         return 0;
15080 }
15081
15082 static void bnx2x_ptp_task(struct work_struct *work)
15083 {
15084         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15085         int port = BP_PORT(bp);
15086         u32 val_seq;
15087         u64 timestamp, ns;
15088         struct skb_shared_hwtstamps shhwtstamps;
15089
15090         /* Read Tx timestamp registers */
15091         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15092                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15093         if (val_seq & 0x10000) {
15094                 /* There is a valid timestamp value */
15095                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15096                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15097                 timestamp <<= 32;
15098                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15099                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15100                 /* Reset timestamp register to allow new timestamp */
15101                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15102                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15103                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15104
15105                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15106                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15107                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15108                 dev_kfree_skb_any(bp->ptp_tx_skb);
15109                 bp->ptp_tx_skb = NULL;
15110
15111                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15112                    timestamp, ns);
15113         } else {
15114                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15115                 /* Reschedule to keep checking for a valid timestamp value */
15116                 schedule_work(&bp->ptp_task);
15117         }
15118 }
15119
15120 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15121 {
15122         int port = BP_PORT(bp);
15123         u64 timestamp, ns;
15124
15125         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15126                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15127         timestamp <<= 32;
15128         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15129                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15130
15131         /* Reset timestamp register to allow new timestamp */
15132         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15133                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15134
15135         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15136
15137         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15138
15139         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15140            timestamp, ns);
15141 }
15142
15143 /* Read the PHC */
15144 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15145 {
15146         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15147         int port = BP_PORT(bp);
15148         u32 wb_data[2];
15149         u64 phc_cycles;
15150
15151         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15152                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15153         phc_cycles = wb_data[1];
15154         phc_cycles = (phc_cycles << 32) + wb_data[0];
15155
15156         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15157
15158         return phc_cycles;
15159 }
15160
15161 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15162 {
15163         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15164         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15165         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15166         bp->cyclecounter.shift = 1;
15167         bp->cyclecounter.mult = 1;
15168 }
15169
15170 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15171 {
15172         struct bnx2x_func_state_params func_params = {NULL};
15173         struct bnx2x_func_set_timesync_params *set_timesync_params =
15174                 &func_params.params.set_timesync;
15175
15176         /* Prepare parameters for function state transitions */
15177         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15178         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15179
15180         func_params.f_obj = &bp->func_obj;
15181         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15182
15183         /* Function parameters */
15184         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15185         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15186
15187         return bnx2x_func_state_change(bp, &func_params);
15188 }
15189
15190 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15191 {
15192         struct bnx2x_queue_state_params q_params;
15193         int rc, i;
15194
15195         /* send queue update ramrod to enable PTP packets */
15196         memset(&q_params, 0, sizeof(q_params));
15197         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15198         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15199         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15200                   &q_params.params.update.update_flags);
15201         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15202                   &q_params.params.update.update_flags);
15203
15204         /* send the ramrod on all the queues of the PF */
15205         for_each_eth_queue(bp, i) {
15206                 struct bnx2x_fastpath *fp = &bp->fp[i];
15207
15208                 /* Set the appropriate Queue object */
15209                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15210
15211                 /* Update the Queue state */
15212                 rc = bnx2x_queue_state_change(bp, &q_params);
15213                 if (rc) {
15214                         BNX2X_ERR("Failed to enable PTP packets\n");
15215                         return rc;
15216                 }
15217         }
15218
15219         return 0;
15220 }
15221
15222 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15223 {
15224         int port = BP_PORT(bp);
15225         int rc;
15226
15227         if (!bp->hwtstamp_ioctl_called)
15228                 return 0;
15229
15230         switch (bp->tx_type) {
15231         case HWTSTAMP_TX_ON:
15232                 bp->flags |= TX_TIMESTAMPING_EN;
15233                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15234                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15235                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15236                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15237                 break;
15238         case HWTSTAMP_TX_ONESTEP_SYNC:
15239                 BNX2X_ERR("One-step timestamping is not supported\n");
15240                 return -ERANGE;
15241         }
15242
15243         switch (bp->rx_filter) {
15244         case HWTSTAMP_FILTER_NONE:
15245                 break;
15246         case HWTSTAMP_FILTER_ALL:
15247         case HWTSTAMP_FILTER_SOME:
15248                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15249                 break;
15250         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15251         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15252         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15253                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15254                 /* Initialize PTP detection for UDP/IPv4 events */
15255                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15256                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15257                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15258                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15259                 break;
15260         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15261         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15262         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15263                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15264                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15265                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15266                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15267                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15268                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15269                 break;
15270         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15271         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15272         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15273                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15274                 /* Initialize PTP detection L2 events */
15275                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15276                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15277                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15278                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15279
15280                 break;
15281         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15282         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15283         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15284                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15285                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15286                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15287                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15288                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15289                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15290                 break;
15291         }
15292
15293         /* Indicate to FW that this PF expects recorded PTP packets */
15294         rc = bnx2x_enable_ptp_packets(bp);
15295         if (rc)
15296                 return rc;
15297
15298         /* Enable sending PTP packets to host */
15299         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15300                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15301
15302         return 0;
15303 }
15304
15305 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15306 {
15307         struct hwtstamp_config config;
15308         int rc;
15309
15310         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15311
15312         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15313                 return -EFAULT;
15314
15315         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15316            config.tx_type, config.rx_filter);
15317
15318         if (config.flags) {
15319                 BNX2X_ERR("config.flags is reserved for future use\n");
15320                 return -EINVAL;
15321         }
15322
15323         bp->hwtstamp_ioctl_called = 1;
15324         bp->tx_type = config.tx_type;
15325         bp->rx_filter = config.rx_filter;
15326
15327         rc = bnx2x_configure_ptp_filters(bp);
15328         if (rc)
15329                 return rc;
15330
15331         config.rx_filter = bp->rx_filter;
15332
15333         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15334                 -EFAULT : 0;
15335 }
15336
15337 /* Configures HW for PTP */
15338 static int bnx2x_configure_ptp(struct bnx2x *bp)
15339 {
15340         int rc, port = BP_PORT(bp);
15341         u32 wb_data[2];
15342
15343         /* Reset PTP event detection rules - will be configured in the IOCTL */
15344         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15345                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15346         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15347                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15348         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15349                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15350         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15351                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15352
15353         /* Disable PTP packets to host - will be configured in the IOCTL*/
15354         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15355                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15356
15357         /* Enable the PTP feature */
15358         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15359                NIG_REG_P0_PTP_EN, 0x3F);
15360
15361         /* Enable the free-running counter */
15362         wb_data[0] = 0;
15363         wb_data[1] = 0;
15364         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15365
15366         /* Reset drift register (offset register is not reset) */
15367         rc = bnx2x_send_reset_timesync_ramrod(bp);
15368         if (rc) {
15369                 BNX2X_ERR("Failed to reset PHC drift register\n");
15370                 return -EFAULT;
15371         }
15372
15373         /* Reset possibly old timestamps */
15374         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15375                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15376         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15377                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15378
15379         return 0;
15380 }
15381
15382 /* Called during load, to initialize PTP-related stuff */
15383 void bnx2x_init_ptp(struct bnx2x *bp)
15384 {
15385         int rc;
15386
15387         /* Configure PTP in HW */
15388         rc = bnx2x_configure_ptp(bp);
15389         if (rc) {
15390                 BNX2X_ERR("Stopping PTP initialization\n");
15391                 return;
15392         }
15393
15394         /* Init work queue for Tx timestamping */
15395         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15396
15397         /* Init cyclecounter and timecounter. This is done only in the first
15398          * load. If done in every load, PTP application will fail when doing
15399          * unload / load (e.g. MTU change) while it is running.
15400          */
15401         if (!bp->timecounter_init_done) {
15402                 bnx2x_init_cyclecounter(bp);
15403                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15404                                  ktime_to_ns(ktime_get_real()));
15405                 bp->timecounter_init_done = 1;
15406         }
15407
15408         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15409 }