bnx2x: Fix NULL pointer dereference in bnx2x_del_all_vlans() on some hw
[platform/kernel/linux-rpi.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION                                 \
73         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
76         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT              (5*HZ)
83
84 static char version[] =
85         "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90                    "BCM57710/57711/57711E/"
91                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92                    "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
101 MODULE_PARM_DESC(num_queues,
102                  " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, S_IRUGO);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, S_IRUGO);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111                                 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, S_IRUGO);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, S_IRUGO);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, S_IRUGO);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129         u32 xmac_addr;
130         u32 xmac_val;
131         u32 emac_addr;
132         u32 emac_val;
133         u32 umac_addr[2];
134         u32 umac_val[2];
135         u32 bmac_addr;
136         u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140         BCM57710 = 0,
141         BCM57711,
142         BCM57711E,
143         BCM57712,
144         BCM57712_MF,
145         BCM57712_VF,
146         BCM57800,
147         BCM57800_MF,
148         BCM57800_VF,
149         BCM57810,
150         BCM57810_MF,
151         BCM57810_VF,
152         BCM57840_4_10,
153         BCM57840_2_20,
154         BCM57840_MF,
155         BCM57840_VF,
156         BCM57811,
157         BCM57811_MF,
158         BCM57840_O,
159         BCM57840_MFO,
160         BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165         char *name;
166 } board_info[] = {
167         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
169         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
170         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
171         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
174         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
177         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
184         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279         { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301                                        u32 addr, dma_addr_t mapping)
302 {
303         REG_WR(bp,  addr, U64_LO(mapping));
304         REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308                                   dma_addr_t mapping, u16 abs_fid)
309 {
310         u32 addr = XSEM_REG_FAST_MEMORY +
311                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313         __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317                                   u16 pf_id)
318 {
319         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320                 pf_id);
321         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322                 pf_id);
323         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324                 pf_id);
325         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326                 pf_id);
327 }
328
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330                                  u8 enable)
331 {
332         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333                 enable);
334         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335                 enable);
336         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337                 enable);
338         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339                 enable);
340 }
341
342 static void storm_memset_eq_data(struct bnx2x *bp,
343                                  struct event_ring_data *eq_data,
344                                 u16 pfid)
345 {
346         size_t size = sizeof(struct event_ring_data);
347
348         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354                                  u16 pfid)
355 {
356         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357         REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368                                PCICFG_VENDOR_ID_OFFSET);
369 }
370
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373         u32 val;
374
375         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378                                PCICFG_VENDOR_ID_OFFSET);
379
380         return val;
381 }
382
383 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE        "dst_addr [none]"
388
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390                           struct dmae_command *dmae, int msglvl)
391 {
392         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393         int i;
394
395         switch (dmae->opcode & DMAE_COMMAND_DST) {
396         case DMAE_CMD_DST_PCI:
397                 if (src_type == DMAE_CMD_SRC_PCI)
398                         DP(msglvl, "DMAE: opcode 0x%08x\n"
399                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
401                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403                            dmae->comp_addr_hi, dmae->comp_addr_lo,
404                            dmae->comp_val);
405                 else
406                         DP(msglvl, "DMAE: opcode 0x%08x\n"
407                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
408                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
409                            dmae->opcode, dmae->src_addr_lo >> 2,
410                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411                            dmae->comp_addr_hi, dmae->comp_addr_lo,
412                            dmae->comp_val);
413                 break;
414         case DMAE_CMD_DST_GRC:
415                 if (src_type == DMAE_CMD_SRC_PCI)
416                         DP(msglvl, "DMAE: opcode 0x%08x\n"
417                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
419                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420                            dmae->len, dmae->dst_addr_lo >> 2,
421                            dmae->comp_addr_hi, dmae->comp_addr_lo,
422                            dmae->comp_val);
423                 else
424                         DP(msglvl, "DMAE: opcode 0x%08x\n"
425                            "src [%08x], len [%d*4], dst [%08x]\n"
426                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
427                            dmae->opcode, dmae->src_addr_lo >> 2,
428                            dmae->len, dmae->dst_addr_lo >> 2,
429                            dmae->comp_addr_hi, dmae->comp_addr_lo,
430                            dmae->comp_val);
431                 break;
432         default:
433                 if (src_type == DMAE_CMD_SRC_PCI)
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 else
441                         DP(msglvl, "DMAE: opcode 0x%08x\n"
442                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444                            dmae->opcode, dmae->src_addr_lo >> 2,
445                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446                            dmae->comp_val);
447                 break;
448         }
449
450         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452                    i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458         u32 cmd_offset;
459         int i;
460
461         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464         }
465         REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471                            DMAE_CMD_C_ENABLE);
472 }
473
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476         return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480                              bool with_comp, u8 comp_type)
481 {
482         u32 opcode = 0;
483
484         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485                    (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499         if (with_comp)
500                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501         return opcode;
502 }
503
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505                                       struct dmae_command *dmae,
506                                       u8 src_type, u8 dst_type)
507 {
508         memset(dmae, 0, sizeof(struct dmae_command));
509
510         /* set the opcode */
511         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512                                          true, DMAE_COMP_PCI);
513
514         /* fill in the completion parameters */
515         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517         dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522                                u32 *comp)
523 {
524         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525         int rc = 0;
526
527         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530          * as long as this code is called both from syscall context and
531          * from ndo_set_rx_mode() flow that may be called from BH.
532          */
533
534         spin_lock_bh(&bp->dmae_lock);
535
536         /* reset completion */
537         *comp = 0;
538
539         /* post the command on the channel used for initializations */
540         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542         /* wait for completion */
543         udelay(5);
544         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546                 if (!cnt ||
547                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549                         BNX2X_ERR("DMAE timeout!\n");
550                         rc = DMAE_TIMEOUT;
551                         goto unlock;
552                 }
553                 cnt--;
554                 udelay(50);
555         }
556         if (*comp & DMAE_PCI_ERR_FLAG) {
557                 BNX2X_ERR("DMAE PCI error!\n");
558                 rc = DMAE_PCI_ERROR;
559         }
560
561 unlock:
562
563         spin_unlock_bh(&bp->dmae_lock);
564
565         return rc;
566 }
567
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569                       u32 len32)
570 {
571         int rc;
572         struct dmae_command dmae;
573
574         if (!bp->dmae_ready) {
575                 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577                 if (CHIP_IS_E1(bp))
578                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579                 else
580                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
581                 return;
582         }
583
584         /* set opcode and fixed command fields */
585         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587         /* fill in addresses and len */
588         dmae.src_addr_lo = U64_LO(dma_addr);
589         dmae.src_addr_hi = U64_HI(dma_addr);
590         dmae.dst_addr_lo = dst_addr >> 2;
591         dmae.dst_addr_hi = 0;
592         dmae.len = len32;
593
594         /* issue the command and wait for completion */
595         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596         if (rc) {
597                 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599                 bnx2x_panic();
600 #endif
601         }
602 }
603
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606         int rc;
607         struct dmae_command dmae;
608
609         if (!bp->dmae_ready) {
610                 u32 *data = bnx2x_sp(bp, wb_data[0]);
611                 int i;
612
613                 if (CHIP_IS_E1(bp))
614                         for (i = 0; i < len32; i++)
615                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616                 else
617                         for (i = 0; i < len32; i++)
618                                 data[i] = REG_RD(bp, src_addr + i*4);
619
620                 return;
621         }
622
623         /* set opcode and fixed command fields */
624         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626         /* fill in addresses and len */
627         dmae.src_addr_lo = src_addr >> 2;
628         dmae.src_addr_hi = 0;
629         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631         dmae.len = len32;
632
633         /* issue the command and wait for completion */
634         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635         if (rc) {
636                 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638                 bnx2x_panic();
639 #endif
640         }
641 }
642
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644                                       u32 addr, u32 len)
645 {
646         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647         int offset = 0;
648
649         while (len > dmae_wr_max) {
650                 bnx2x_write_dmae(bp, phys_addr + offset,
651                                  addr + offset, dmae_wr_max);
652                 offset += dmae_wr_max * 4;
653                 len -= dmae_wr_max;
654         }
655
656         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660            XSTORM,
661            TSTORM,
662            CSTORM,
663            USTORM,
664            MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671                                               enum storms storm,
672                                               int entry)
673 {
674         switch (storm) {
675         case XSTORM:
676                 return XSTORM_ASSERT_LIST_OFFSET(entry);
677         case TSTORM:
678                 return TSTORM_ASSERT_LIST_OFFSET(entry);
679         case CSTORM:
680                 return CSTORM_ASSERT_LIST_OFFSET(entry);
681         case USTORM:
682                 return USTORM_ASSERT_LIST_OFFSET(entry);
683         case MAX_STORMS:
684         default:
685                 BNX2X_ERR("unknown storm\n");
686         }
687         return -EINVAL;
688 }
689
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692         char last_idx;
693         int i, j, rc = 0;
694         enum storms storm;
695         u32 regs[REGS_IN_ENTRY];
696         u32 bar_storm_intmem[STORMS_NUM] = {
697                 BAR_XSTRORM_INTMEM,
698                 BAR_TSTRORM_INTMEM,
699                 BAR_CSTRORM_INTMEM,
700                 BAR_USTRORM_INTMEM
701         };
702         u32 storm_assert_list_index[STORMS_NUM] = {
703                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 USTORM_ASSERT_LIST_INDEX_OFFSET
707         };
708         char *storms_string[STORMS_NUM] = {
709                 "XSTORM",
710                 "TSTORM",
711                 "CSTORM",
712                 "USTORM"
713         };
714
715         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717                                    storm_assert_list_index[storm]);
718                 if (last_idx)
719                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720                                   storms_string[storm], last_idx);
721
722                 /* print the asserts */
723                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724                         /* read a single assert entry */
725                         for (j = 0; j < REGS_IN_ENTRY; j++)
726                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727                                           bnx2x_get_assert_list_entry(bp,
728                                                                       storm,
729                                                                       i) +
730                                           sizeof(u32) * j);
731
732                         /* log entry if it contains a valid assert */
733                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735                                           storms_string[storm], i, regs[3],
736                                           regs[2], regs[1], regs[0]);
737                                 rc++;
738                         } else {
739                                 break;
740                         }
741                 }
742         }
743
744         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745                   CHIP_IS_E1(bp) ? "everest1" :
746                   CHIP_IS_E1H(bp) ? "everest1h" :
747                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
748                   BCM_5710_FW_MAJOR_VERSION,
749                   BCM_5710_FW_MINOR_VERSION,
750                   BCM_5710_FW_REVISION_VERSION);
751
752         return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761         u32 addr, val;
762         u32 mark, offset;
763         __be32 data[9];
764         int word;
765         u32 trace_shmem_base;
766         if (BP_NOMCP(bp)) {
767                 BNX2X_ERR("NO MCP - can not dump\n");
768                 return;
769         }
770         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771                 (bp->common.bc_ver & 0xff0000) >> 16,
772                 (bp->common.bc_ver & 0xff00) >> 8,
773                 (bp->common.bc_ver & 0xff));
774
775         if (pci_channel_offline(bp->pdev)) {
776                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777                 return;
778         }
779
780         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783
784         if (BP_PATH(bp) == 0)
785                 trace_shmem_base = bp->common.shmem_base;
786         else
787                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788
789         /* sanity */
790         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792                                 SCRATCH_BUFFER_SIZE(bp)) {
793                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794                           trace_shmem_base);
795                 return;
796         }
797
798         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799
800         /* validate TRCB signature */
801         mark = REG_RD(bp, addr);
802         if (mark != MFW_TRACE_SIGNATURE) {
803                 BNX2X_ERR("Trace buffer signature is missing.");
804                 return ;
805         }
806
807         /* read cyclic buffer pointer */
808         addr += 4;
809         mark = REG_RD(bp, addr);
810         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811         if (mark >= trace_shmem_base || mark < addr + 4) {
812                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813                 return;
814         }
815         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816
817         printk("%s", lvl);
818
819         /* dump buffer after the mark */
820         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821                 for (word = 0; word < 8; word++)
822                         data[word] = htonl(REG_RD(bp, offset + 4*word));
823                 data[8] = 0x0;
824                 pr_cont("%s", (char *)data);
825         }
826
827         /* dump buffer before the mark */
828         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829                 for (word = 0; word < 8; word++)
830                         data[word] = htonl(REG_RD(bp, offset + 4*word));
831                 data[8] = 0x0;
832                 pr_cont("%s", (char *)data);
833         }
834         printk("%s" "end of fw dump\n", lvl);
835 }
836
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839         bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844         int port = BP_PORT(bp);
845         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846         u32 val = REG_RD(bp, addr);
847
848         /* in E1 we must use only PCI configuration space to disable
849          * MSI/MSIX capability
850          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851          */
852         if (CHIP_IS_E1(bp)) {
853                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854                  * Use mask register to prevent from HC sending interrupts
855                  * after we exit the function
856                  */
857                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858
859                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
861                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862         } else
863                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
866                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867
868         DP(NETIF_MSG_IFDOWN,
869            "write %x to HC %d (addr 0x%x)\n",
870            val, port, addr);
871
872         /* flush all outstanding writes */
873         mmiowb();
874
875         REG_WR(bp, addr, val);
876         if (REG_RD(bp, addr) != val)
877                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883
884         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885                  IGU_PF_CONF_INT_LINE_EN |
886                  IGU_PF_CONF_ATTN_BIT_EN);
887
888         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889
890         /* flush all outstanding writes */
891         mmiowb();
892
893         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900         if (bp->common.int_block == INT_BLOCK_HC)
901                 bnx2x_hc_int_disable(bp);
902         else
903                 bnx2x_igu_int_disable(bp);
904 }
905
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908         int i;
909         u16 j;
910         struct hc_sp_status_block_data sp_sb_data;
911         int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913         u16 start = 0, end = 0;
914         u8 cos;
915 #endif
916         if (IS_PF(bp) && disable_int)
917                 bnx2x_int_disable(bp);
918
919         bp->stats_state = STATS_STATE_DISABLED;
920         bp->eth_stats.unrecoverable_error++;
921         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922
923         BNX2X_ERR("begin crash dump -----------------\n");
924
925         /* Indices */
926         /* Common */
927         if (IS_PF(bp)) {
928                 struct host_sp_status_block *def_sb = bp->def_status_blk;
929                 int data_size, cstorm_offset;
930
931                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932                           bp->def_idx, bp->def_att_idx, bp->attn_state,
933                           bp->spq_prod_idx, bp->stats_counter);
934                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
935                           def_sb->atten_status_block.attn_bits,
936                           def_sb->atten_status_block.attn_bits_ack,
937                           def_sb->atten_status_block.status_block_id,
938                           def_sb->atten_status_block.attn_bits_index);
939                 BNX2X_ERR("     def (");
940                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941                         pr_cont("0x%x%s",
942                                 def_sb->sp_sb.index_values[i],
943                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
944
945                 data_size = sizeof(struct hc_sp_status_block_data) /
946                             sizeof(u32);
947                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948                 for (i = 0; i < data_size; i++)
949                         *((u32 *)&sp_sb_data + i) =
950                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951                                            i * sizeof(u32));
952
953                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
954                         sp_sb_data.igu_sb_id,
955                         sp_sb_data.igu_seg_id,
956                         sp_sb_data.p_func.pf_id,
957                         sp_sb_data.p_func.vnic_id,
958                         sp_sb_data.p_func.vf_id,
959                         sp_sb_data.p_func.vf_valid,
960                         sp_sb_data.state);
961         }
962
963         for_each_eth_queue(bp, i) {
964                 struct bnx2x_fastpath *fp = &bp->fp[i];
965                 int loop;
966                 struct hc_status_block_data_e2 sb_data_e2;
967                 struct hc_status_block_data_e1x sb_data_e1x;
968                 struct hc_status_block_sm  *hc_sm_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.common.state_machine :
971                         sb_data_e2.common.state_machine;
972                 struct hc_index_data *hc_index_p =
973                         CHIP_IS_E1x(bp) ?
974                         sb_data_e1x.index_data :
975                         sb_data_e2.index_data;
976                 u8 data_size, cos;
977                 u32 *sb_data_p;
978                 struct bnx2x_fp_txdata txdata;
979
980                 if (!bp->fp)
981                         break;
982
983                 if (!fp->rx_cons_sb)
984                         continue;
985
986                 /* Rx */
987                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988                           i, fp->rx_bd_prod, fp->rx_bd_cons,
989                           fp->rx_comp_prod,
990                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992                           fp->rx_sge_prod, fp->last_max_sge,
993                           le16_to_cpu(fp->fp_hc_idx));
994
995                 /* Tx */
996                 for_each_cos_in_tx_queue(fp, cos)
997                 {
998                         if (!fp->txdata_ptr[cos])
999                                 break;
1000
1001                         txdata = *fp->txdata_ptr[cos];
1002
1003                         if (!txdata.tx_cons_sb)
1004                                 continue;
1005
1006                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1007                                   i, txdata.tx_pkt_prod,
1008                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009                                   txdata.tx_bd_cons,
1010                                   le16_to_cpu(*txdata.tx_cons_sb));
1011                 }
1012
1013                 loop = CHIP_IS_E1x(bp) ?
1014                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015
1016                 /* host sb data */
1017
1018                 if (IS_FCOE_FP(fp))
1019                         continue;
1020
1021                 BNX2X_ERR("     run indexes (");
1022                 for (j = 0; j < HC_SB_MAX_SM; j++)
1023                         pr_cont("0x%x%s",
1024                                fp->sb_running_index[j],
1025                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026
1027                 BNX2X_ERR("     indexes (");
1028                 for (j = 0; j < loop; j++)
1029                         pr_cont("0x%x%s",
1030                                fp->sb_index_values[j],
1031                                (j == loop - 1) ? ")" : " ");
1032
1033                 /* VF cannot access FW refelection for status block */
1034                 if (IS_VF(bp))
1035                         continue;
1036
1037                 /* fw sb data */
1038                 data_size = CHIP_IS_E1x(bp) ?
1039                         sizeof(struct hc_status_block_data_e1x) :
1040                         sizeof(struct hc_status_block_data_e2);
1041                 data_size /= sizeof(u32);
1042                 sb_data_p = CHIP_IS_E1x(bp) ?
1043                         (u32 *)&sb_data_e1x :
1044                         (u32 *)&sb_data_e2;
1045                 /* copy sb data in here */
1046                 for (j = 0; j < data_size; j++)
1047                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049                                 j * sizeof(u32));
1050
1051                 if (!CHIP_IS_E1x(bp)) {
1052                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1053                                 sb_data_e2.common.p_func.pf_id,
1054                                 sb_data_e2.common.p_func.vf_id,
1055                                 sb_data_e2.common.p_func.vf_valid,
1056                                 sb_data_e2.common.p_func.vnic_id,
1057                                 sb_data_e2.common.same_igu_sb_1b,
1058                                 sb_data_e2.common.state);
1059                 } else {
1060                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1061                                 sb_data_e1x.common.p_func.pf_id,
1062                                 sb_data_e1x.common.p_func.vf_id,
1063                                 sb_data_e1x.common.p_func.vf_valid,
1064                                 sb_data_e1x.common.p_func.vnic_id,
1065                                 sb_data_e1x.common.same_igu_sb_1b,
1066                                 sb_data_e1x.common.state);
1067                 }
1068
1069                 /* SB_SMs data */
1070                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1071                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072                                 j, hc_sm_p[j].__flags,
1073                                 hc_sm_p[j].igu_sb_id,
1074                                 hc_sm_p[j].igu_seg_id,
1075                                 hc_sm_p[j].time_to_expire,
1076                                 hc_sm_p[j].timer_value);
1077                 }
1078
1079                 /* Indices data */
1080                 for (j = 0; j < loop; j++) {
1081                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082                                hc_index_p[j].flags,
1083                                hc_index_p[j].timeout);
1084                 }
1085         }
1086
1087 #ifdef BNX2X_STOP_ON_ERROR
1088         if (IS_PF(bp)) {
1089                 /* event queue */
1090                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091                 for (i = 0; i < NUM_EQ_DESC; i++) {
1092                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093
1094                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095                                   i, bp->eq_ring[i].message.opcode,
1096                                   bp->eq_ring[i].message.error);
1097                         BNX2X_ERR("data: %x %x %x\n",
1098                                   data[0], data[1], data[2]);
1099                 }
1100         }
1101
1102         /* Rings */
1103         /* Rx */
1104         for_each_valid_rx_queue(bp, i) {
1105                 struct bnx2x_fastpath *fp = &bp->fp[i];
1106
1107                 if (!bp->fp)
1108                         break;
1109
1110                 if (!fp->rx_cons_sb)
1111                         continue;
1112
1113                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115                 for (j = start; j != end; j = RX_BD(j + 1)) {
1116                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118
1119                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1120                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121                 }
1122
1123                 start = RX_SGE(fp->rx_sge_prod);
1124                 end = RX_SGE(fp->last_max_sge);
1125                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1126                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128
1129                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1130                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131                 }
1132
1133                 start = RCQ_BD(fp->rx_comp_cons - 10);
1134                 end = RCQ_BD(fp->rx_comp_cons + 503);
1135                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137
1138                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140                 }
1141         }
1142
1143         /* Tx */
1144         for_each_valid_tx_queue(bp, i) {
1145                 struct bnx2x_fastpath *fp = &bp->fp[i];
1146
1147                 if (!bp->fp)
1148                         break;
1149
1150                 for_each_cos_in_tx_queue(fp, cos) {
1151                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152
1153                         if (!fp->txdata_ptr[cos])
1154                                 break;
1155
1156                         if (!txdata->tx_cons_sb)
1157                                 continue;
1158
1159                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161                         for (j = start; j != end; j = TX_BD(j + 1)) {
1162                                 struct sw_tx_bd *sw_bd =
1163                                         &txdata->tx_buf_ring[j];
1164
1165                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166                                           i, cos, j, sw_bd->skb,
1167                                           sw_bd->first_bd);
1168                         }
1169
1170                         start = TX_BD(txdata->tx_bd_cons - 10);
1171                         end = TX_BD(txdata->tx_bd_cons + 254);
1172                         for (j = start; j != end; j = TX_BD(j + 1)) {
1173                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174
1175                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176                                           i, cos, j, tx_bd[0], tx_bd[1],
1177                                           tx_bd[2], tx_bd[3]);
1178                         }
1179                 }
1180         }
1181 #endif
1182         if (IS_PF(bp)) {
1183                 bnx2x_fw_dump(bp);
1184                 bnx2x_mc_assert(bp);
1185         }
1186         BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188
1189 /*
1190  * FLR Support for E2
1191  *
1192  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193  * initialization.
1194  */
1195 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL       50      /* usec */
1197 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198
1199 struct pbf_pN_buf_regs {
1200         int pN;
1201         u32 init_crd;
1202         u32 crd;
1203         u32 crd_freed;
1204 };
1205
1206 struct pbf_pN_cmd_regs {
1207         int pN;
1208         u32 lines_occup;
1209         u32 lines_freed;
1210 };
1211
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213                                      struct pbf_pN_buf_regs *regs,
1214                                      u32 poll_count)
1215 {
1216         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217         u32 cur_cnt = poll_count;
1218
1219         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220         crd = crd_start = REG_RD(bp, regs->crd);
1221         init_crd = REG_RD(bp, regs->init_crd);
1222
1223         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1225         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226
1227         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228                (init_crd - crd_start))) {
1229                 if (cur_cnt--) {
1230                         udelay(FLR_WAIT_INTERVAL);
1231                         crd = REG_RD(bp, regs->crd);
1232                         crd_freed = REG_RD(bp, regs->crd_freed);
1233                 } else {
1234                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235                            regs->pN);
1236                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1237                            regs->pN, crd);
1238                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239                            regs->pN, crd_freed);
1240                         break;
1241                 }
1242         }
1243         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248                                      struct pbf_pN_cmd_regs *regs,
1249                                      u32 poll_count)
1250 {
1251         u32 occup, to_free, freed, freed_start;
1252         u32 cur_cnt = poll_count;
1253
1254         occup = to_free = REG_RD(bp, regs->lines_occup);
1255         freed = freed_start = REG_RD(bp, regs->lines_freed);
1256
1257         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1258         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259
1260         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261                 if (cur_cnt--) {
1262                         udelay(FLR_WAIT_INTERVAL);
1263                         occup = REG_RD(bp, regs->lines_occup);
1264                         freed = REG_RD(bp, regs->lines_freed);
1265                 } else {
1266                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267                            regs->pN);
1268                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1269                            regs->pN, occup);
1270                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271                            regs->pN, freed);
1272                         break;
1273                 }
1274         }
1275         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280                                     u32 expected, u32 poll_count)
1281 {
1282         u32 cur_cnt = poll_count;
1283         u32 val;
1284
1285         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286                 udelay(FLR_WAIT_INTERVAL);
1287
1288         return val;
1289 }
1290
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292                                     char *msg, u32 poll_cnt)
1293 {
1294         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295         if (val != 0) {
1296                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1297                 return 1;
1298         }
1299         return 0;
1300 }
1301
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305         /* adjust polling timeout */
1306         if (CHIP_REV_IS_EMUL(bp))
1307                 return FLR_POLL_CNT * 2000;
1308
1309         if (CHIP_REV_IS_FPGA(bp))
1310                 return FLR_POLL_CNT * 120;
1311
1312         return FLR_POLL_CNT;
1313 }
1314
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317         struct pbf_pN_cmd_regs cmd_regs[] = {
1318                 {0, (CHIP_IS_E3B0(bp)) ?
1319                         PBF_REG_TQ_OCCUPANCY_Q0 :
1320                         PBF_REG_P0_TQ_OCCUPANCY,
1321                     (CHIP_IS_E3B0(bp)) ?
1322                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1324                 {1, (CHIP_IS_E3B0(bp)) ?
1325                         PBF_REG_TQ_OCCUPANCY_Q1 :
1326                         PBF_REG_P1_TQ_OCCUPANCY,
1327                     (CHIP_IS_E3B0(bp)) ?
1328                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1330                 {4, (CHIP_IS_E3B0(bp)) ?
1331                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1332                         PBF_REG_P4_TQ_OCCUPANCY,
1333                     (CHIP_IS_E3B0(bp)) ?
1334                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1336         };
1337
1338         struct pbf_pN_buf_regs buf_regs[] = {
1339                 {0, (CHIP_IS_E3B0(bp)) ?
1340                         PBF_REG_INIT_CRD_Q0 :
1341                         PBF_REG_P0_INIT_CRD ,
1342                     (CHIP_IS_E3B0(bp)) ?
1343                         PBF_REG_CREDIT_Q0 :
1344                         PBF_REG_P0_CREDIT,
1345                     (CHIP_IS_E3B0(bp)) ?
1346                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348                 {1, (CHIP_IS_E3B0(bp)) ?
1349                         PBF_REG_INIT_CRD_Q1 :
1350                         PBF_REG_P1_INIT_CRD,
1351                     (CHIP_IS_E3B0(bp)) ?
1352                         PBF_REG_CREDIT_Q1 :
1353                         PBF_REG_P1_CREDIT,
1354                     (CHIP_IS_E3B0(bp)) ?
1355                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357                 {4, (CHIP_IS_E3B0(bp)) ?
1358                         PBF_REG_INIT_CRD_LB_Q :
1359                         PBF_REG_P4_INIT_CRD,
1360                     (CHIP_IS_E3B0(bp)) ?
1361                         PBF_REG_CREDIT_LB_Q :
1362                         PBF_REG_P4_CREDIT,
1363                     (CHIP_IS_E3B0(bp)) ?
1364                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366         };
1367
1368         int i;
1369
1370         /* Verify the command queues are flushed P0, P1, P4 */
1371         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373
1374         /* Verify the transmission buffers are flushed P0, P1, P4 */
1375         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378
1379 #define OP_GEN_PARAM(param) \
1380         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381
1382 #define OP_GEN_TYPE(type) \
1383         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384
1385 #define OP_GEN_AGG_VECT(index) \
1386         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390         u32 op_gen_command = 0;
1391         u32 comp_addr = BAR_CSTRORM_INTMEM +
1392                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393         int ret = 0;
1394
1395         if (REG_RD(bp, comp_addr)) {
1396                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397                 return 1;
1398         }
1399
1400         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404
1405         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407
1408         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409                 BNX2X_ERR("FW final cleanup did not succeed\n");
1410                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411                    (REG_RD(bp, comp_addr)));
1412                 bnx2x_panic();
1413                 return 1;
1414         }
1415         /* Zero completion for next FLR */
1416         REG_WR(bp, comp_addr, 0);
1417
1418         return ret;
1419 }
1420
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423         u16 status;
1424
1425         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426         return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1436                         "CFC PF usage counter timed out",
1437                         poll_cnt))
1438                 return 1;
1439
1440         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442                         DORQ_REG_PF_USAGE_CNT,
1443                         "DQ PF usage counter timed out",
1444                         poll_cnt))
1445                 return 1;
1446
1447         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450                         "QM PF usage counter timed out",
1451                         poll_cnt))
1452                 return 1;
1453
1454         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457                         "Timers VNIC usage counter timed out",
1458                         poll_cnt))
1459                 return 1;
1460         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462                         "Timers NUM_SCANS usage counter timed out",
1463                         poll_cnt))
1464                 return 1;
1465
1466         /* Wait DMAE PF usage counter to zero */
1467         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1469                         "DMAE command register timed out",
1470                         poll_cnt))
1471                 return 1;
1472
1473         return 0;
1474 }
1475
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478         u32 val;
1479
1480         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482
1483         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485
1486         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488
1489         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491
1492         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494
1495         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497
1498         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500
1501         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503            val);
1504 }
1505
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509
1510         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511
1512         /* Re-enable PF target read access */
1513         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514
1515         /* Poll HW usage counters */
1516         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518                 return -EBUSY;
1519
1520         /* Zero the igu 'trailing edge' and 'leading edge' */
1521
1522         /* Send the FW cleanup command */
1523         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524                 return -EBUSY;
1525
1526         /* ATC cleanup */
1527
1528         /* Verify TX hw is flushed */
1529         bnx2x_tx_hw_flushed(bp, poll_cnt);
1530
1531         /* Wait 100ms (not adjusted according to platform) */
1532         msleep(100);
1533
1534         /* Verify no pending pci transactions */
1535         if (bnx2x_is_pcie_pending(bp->pdev))
1536                 BNX2X_ERR("PCIE Transactions still pending\n");
1537
1538         /* Debug */
1539         bnx2x_hw_enable_status(bp);
1540
1541         /*
1542          * Master enable - Due to WB DMAE writes performed before this
1543          * register is re-initialized as part of the regular function init
1544          */
1545         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546
1547         return 0;
1548 }
1549
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552         int port = BP_PORT(bp);
1553         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554         u32 val = REG_RD(bp, addr);
1555         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558
1559         if (msix) {
1560                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1562                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564                 if (single_msix)
1565                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566         } else if (msi) {
1567                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571         } else {
1572                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576
1577                 if (!CHIP_IS_E1(bp)) {
1578                         DP(NETIF_MSG_IFUP,
1579                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580
1581                         REG_WR(bp, addr, val);
1582
1583                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584                 }
1585         }
1586
1587         if (CHIP_IS_E1(bp))
1588                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589
1590         DP(NETIF_MSG_IFUP,
1591            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593
1594         REG_WR(bp, addr, val);
1595         /*
1596          * Ensure that HC_CONFIG is written before leading/trailing edge config
1597          */
1598         mmiowb();
1599         barrier();
1600
1601         if (!CHIP_IS_E1(bp)) {
1602                 /* init leading/trailing edge */
1603                 if (IS_MF(bp)) {
1604                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605                         if (bp->port.pmf)
1606                                 /* enable nig and gpio3 attention */
1607                                 val |= 0x1100;
1608                 } else
1609                         val = 0xffff;
1610
1611                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613         }
1614
1615         /* Make sure that interrupts are indeed enabled from here on */
1616         mmiowb();
1617 }
1618
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621         u32 val;
1622         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625
1626         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627
1628         if (msix) {
1629                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630                          IGU_PF_CONF_SINGLE_ISR_EN);
1631                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632                         IGU_PF_CONF_ATTN_BIT_EN);
1633
1634                 if (single_msix)
1635                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636         } else if (msi) {
1637                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1638                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639                         IGU_PF_CONF_ATTN_BIT_EN |
1640                         IGU_PF_CONF_SINGLE_ISR_EN);
1641         } else {
1642                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643                 val |= (IGU_PF_CONF_INT_LINE_EN |
1644                         IGU_PF_CONF_ATTN_BIT_EN |
1645                         IGU_PF_CONF_SINGLE_ISR_EN);
1646         }
1647
1648         /* Clean previous status - need to configure igu prior to ack*/
1649         if ((!msix) || single_msix) {
1650                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651                 bnx2x_ack_int(bp);
1652         }
1653
1654         val |= IGU_PF_CONF_FUNC_EN;
1655
1656         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658
1659         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660
1661         if (val & IGU_PF_CONF_INT_LINE_EN)
1662                 pci_intx(bp->pdev, true);
1663
1664         barrier();
1665
1666         /* init leading/trailing edge */
1667         if (IS_MF(bp)) {
1668                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669                 if (bp->port.pmf)
1670                         /* enable nig and gpio3 attention */
1671                         val |= 0x1100;
1672         } else
1673                 val = 0xffff;
1674
1675         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677
1678         /* Make sure that interrupts are indeed enabled from here on */
1679         mmiowb();
1680 }
1681
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684         if (bp->common.int_block == INT_BLOCK_HC)
1685                 bnx2x_hc_int_enable(bp);
1686         else
1687                 bnx2x_igu_int_enable(bp);
1688 }
1689
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693         int i, offset;
1694
1695         if (disable_hw)
1696                 /* prevent the HW from sending interrupts */
1697                 bnx2x_int_disable(bp);
1698
1699         /* make sure all ISRs are done */
1700         if (msix) {
1701                 synchronize_irq(bp->msix_table[0].vector);
1702                 offset = 1;
1703                 if (CNIC_SUPPORT(bp))
1704                         offset++;
1705                 for_each_eth_queue(bp, i)
1706                         synchronize_irq(bp->msix_table[offset++].vector);
1707         } else
1708                 synchronize_irq(bp->pdev->irq);
1709
1710         /* make sure sp_task is not running */
1711         cancel_delayed_work(&bp->sp_task);
1712         cancel_delayed_work(&bp->period_task);
1713         flush_workqueue(bnx2x_wq);
1714 }
1715
1716 /* fast path */
1717
1718 /*
1719  * General service functions
1720  */
1721
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725         u32 lock_status;
1726         u32 resource_bit = (1 << resource);
1727         int func = BP_FUNC(bp);
1728         u32 hw_lock_control_reg;
1729
1730         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731            "Trying to take a lock on resource %d\n", resource);
1732
1733         /* Validating that the resource is within range */
1734         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738                 return false;
1739         }
1740
1741         if (func <= 5)
1742                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743         else
1744                 hw_lock_control_reg =
1745                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746
1747         /* Try to acquire the lock */
1748         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749         lock_status = REG_RD(bp, hw_lock_control_reg);
1750         if (lock_status & resource_bit)
1751                 return true;
1752
1753         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754            "Failed to get a lock on resource %d\n", resource);
1755         return false;
1756 }
1757
1758 /**
1759  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760  *
1761  * @bp: driver handle
1762  *
1763  * Returns the recovery leader resource id according to the engine this function
1764  * belongs to. Currently only only 2 engines is supported.
1765  */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768         if (BP_PATH(bp))
1769                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770         else
1771                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773
1774 /**
1775  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776  *
1777  * @bp: driver handle
1778  *
1779  * Tries to acquire a leader lock for current engine.
1780  */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791         /* Set the interrupt occurred bit for the sp-task to recognize it
1792          * must ack the interrupt and transition according to the IGU
1793          * state machine.
1794          */
1795         atomic_set(&bp->interrupt_occurred, 1);
1796
1797         /* The sp_task must execute only after this bit
1798          * is set, otherwise we will get out of sync and miss all
1799          * further interrupts. Hence, the barrier.
1800          */
1801         smp_wmb();
1802
1803         /* schedule sp_task to workqueue */
1804         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809         struct bnx2x *bp = fp->bp;
1810         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814
1815         DP(BNX2X_MSG_SP,
1816            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1817            fp->index, cid, command, bp->state,
1818            rr_cqe->ramrod_cqe.ramrod_type);
1819
1820         /* If cid is within VF range, replace the slowpath object with the
1821          * one corresponding to this VF
1822          */
1823         if (cid >= BNX2X_FIRST_VF_CID  &&
1824             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826
1827         switch (command) {
1828         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1831                 break;
1832
1833         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835                 drv_cmd = BNX2X_Q_CMD_SETUP;
1836                 break;
1837
1838         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841                 break;
1842
1843         case (RAMROD_CMD_ID_ETH_HALT):
1844                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845                 drv_cmd = BNX2X_Q_CMD_HALT;
1846                 break;
1847
1848         case (RAMROD_CMD_ID_ETH_TERMINATE):
1849                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851                 break;
1852
1853         case (RAMROD_CMD_ID_ETH_EMPTY):
1854                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1856                 break;
1857
1858         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861                 break;
1862
1863         default:
1864                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865                           command, fp->index);
1866                 return;
1867         }
1868
1869         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871                 /* q_obj->complete_cmd() failure means that this was
1872                  * an unexpected completion.
1873                  *
1874                  * In this case we don't want to increase the bp->spq_left
1875                  * because apparently we haven't sent this command the first
1876                  * place.
1877                  */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879                 bnx2x_panic();
1880 #else
1881                 return;
1882 #endif
1883
1884         smp_mb__before_atomic();
1885         atomic_inc(&bp->cq_spq_left);
1886         /* push the change in bp->spq_left and towards the memory */
1887         smp_mb__after_atomic();
1888
1889         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890
1891         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893                 /* if Q update ramrod is completed for last Q in AFEX vif set
1894                  * flow, then ACK MCP at the end
1895                  *
1896                  * mark pending ACK to MCP bit.
1897                  * prevent case that both bits are cleared.
1898                  * At the end of load/unload driver checks that
1899                  * sp_state is cleared, and this order prevents
1900                  * races
1901                  */
1902                 smp_mb__before_atomic();
1903                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904                 wmb();
1905                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906                 smp_mb__after_atomic();
1907
1908                 /* schedule the sp task as mcp ack is required */
1909                 bnx2x_schedule_sp_task(bp);
1910         }
1911
1912         return;
1913 }
1914
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917         struct bnx2x *bp = netdev_priv(dev_instance);
1918         u16 status = bnx2x_ack_int(bp);
1919         u16 mask;
1920         int i;
1921         u8 cos;
1922
1923         /* Return here if interrupt is shared and it's not for us */
1924         if (unlikely(status == 0)) {
1925                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926                 return IRQ_NONE;
1927         }
1928         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1929
1930 #ifdef BNX2X_STOP_ON_ERROR
1931         if (unlikely(bp->panic))
1932                 return IRQ_HANDLED;
1933 #endif
1934
1935         for_each_eth_queue(bp, i) {
1936                 struct bnx2x_fastpath *fp = &bp->fp[i];
1937
1938                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939                 if (status & mask) {
1940                         /* Handle Rx or Tx according to SB id */
1941                         for_each_cos_in_tx_queue(fp, cos)
1942                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1944                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945                         status &= ~mask;
1946                 }
1947         }
1948
1949         if (CNIC_SUPPORT(bp)) {
1950                 mask = 0x2;
1951                 if (status & (mask | 0x1)) {
1952                         struct cnic_ops *c_ops = NULL;
1953
1954                         rcu_read_lock();
1955                         c_ops = rcu_dereference(bp->cnic_ops);
1956                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1957                                       CNIC_DRV_STATE_HANDLES_IRQ))
1958                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1959                         rcu_read_unlock();
1960
1961                         status &= ~mask;
1962                 }
1963         }
1964
1965         if (unlikely(status & 0x1)) {
1966
1967                 /* schedule sp task to perform default status block work, ack
1968                  * attentions and enable interrupts.
1969                  */
1970                 bnx2x_schedule_sp_task(bp);
1971
1972                 status &= ~0x1;
1973                 if (!status)
1974                         return IRQ_HANDLED;
1975         }
1976
1977         if (unlikely(status))
1978                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979                    status);
1980
1981         return IRQ_HANDLED;
1982 }
1983
1984 /* Link */
1985
1986 /*
1987  * General service functions
1988  */
1989
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992         u32 lock_status;
1993         u32 resource_bit = (1 << resource);
1994         int func = BP_FUNC(bp);
1995         u32 hw_lock_control_reg;
1996         int cnt;
1997
1998         /* Validating that the resource is within range */
1999         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002                 return -EINVAL;
2003         }
2004
2005         if (func <= 5) {
2006                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007         } else {
2008                 hw_lock_control_reg =
2009                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010         }
2011
2012         /* Validating that the resource is not already taken */
2013         lock_status = REG_RD(bp, hw_lock_control_reg);
2014         if (lock_status & resource_bit) {
2015                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2016                    lock_status, resource_bit);
2017                 return -EEXIST;
2018         }
2019
2020         /* Try for 5 second every 5ms */
2021         for (cnt = 0; cnt < 1000; cnt++) {
2022                 /* Try to acquire the lock */
2023                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024                 lock_status = REG_RD(bp, hw_lock_control_reg);
2025                 if (lock_status & resource_bit)
2026                         return 0;
2027
2028                 usleep_range(5000, 10000);
2029         }
2030         BNX2X_ERR("Timeout\n");
2031         return -EAGAIN;
2032 }
2033
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041         u32 lock_status;
2042         u32 resource_bit = (1 << resource);
2043         int func = BP_FUNC(bp);
2044         u32 hw_lock_control_reg;
2045
2046         /* Validating that the resource is within range */
2047         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050                 return -EINVAL;
2051         }
2052
2053         if (func <= 5) {
2054                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055         } else {
2056                 hw_lock_control_reg =
2057                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058         }
2059
2060         /* Validating that the resource is currently taken */
2061         lock_status = REG_RD(bp, hw_lock_control_reg);
2062         if (!(lock_status & resource_bit)) {
2063                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064                           lock_status, resource_bit);
2065                 return -EFAULT;
2066         }
2067
2068         REG_WR(bp, hw_lock_control_reg, resource_bit);
2069         return 0;
2070 }
2071
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074         /* The GPIO should be swapped if swap register is set and active */
2075         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077         int gpio_shift = gpio_num +
2078                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079         u32 gpio_mask = (1 << gpio_shift);
2080         u32 gpio_reg;
2081         int value;
2082
2083         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085                 return -EINVAL;
2086         }
2087
2088         /* read GPIO value */
2089         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090
2091         /* get the requested pin value */
2092         if ((gpio_reg & gpio_mask) == gpio_mask)
2093                 value = 1;
2094         else
2095                 value = 0;
2096
2097         return value;
2098 }
2099
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102         /* The GPIO should be swapped if swap register is set and active */
2103         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105         int gpio_shift = gpio_num +
2106                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107         u32 gpio_mask = (1 << gpio_shift);
2108         u32 gpio_reg;
2109
2110         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112                 return -EINVAL;
2113         }
2114
2115         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116         /* read GPIO and mask except the float bits */
2117         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118
2119         switch (mode) {
2120         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121                 DP(NETIF_MSG_LINK,
2122                    "Set GPIO %d (shift %d) -> output low\n",
2123                    gpio_num, gpio_shift);
2124                 /* clear FLOAT and set CLR */
2125                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127                 break;
2128
2129         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130                 DP(NETIF_MSG_LINK,
2131                    "Set GPIO %d (shift %d) -> output high\n",
2132                    gpio_num, gpio_shift);
2133                 /* clear FLOAT and set SET */
2134                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136                 break;
2137
2138         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139                 DP(NETIF_MSG_LINK,
2140                    "Set GPIO %d (shift %d) -> input\n",
2141                    gpio_num, gpio_shift);
2142                 /* set FLOAT */
2143                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144                 break;
2145
2146         default:
2147                 break;
2148         }
2149
2150         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152
2153         return 0;
2154 }
2155
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158         u32 gpio_reg = 0;
2159         int rc = 0;
2160
2161         /* Any port swapping should be handled by caller. */
2162
2163         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164         /* read GPIO and mask except the float bits */
2165         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169
2170         switch (mode) {
2171         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173                 /* set CLR */
2174                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175                 break;
2176
2177         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179                 /* set SET */
2180                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181                 break;
2182
2183         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185                 /* set FLOAT */
2186                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187                 break;
2188
2189         default:
2190                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191                 rc = -EINVAL;
2192                 break;
2193         }
2194
2195         if (rc == 0)
2196                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197
2198         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199
2200         return rc;
2201 }
2202
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205         /* The GPIO should be swapped if swap register is set and active */
2206         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208         int gpio_shift = gpio_num +
2209                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210         u32 gpio_mask = (1 << gpio_shift);
2211         u32 gpio_reg;
2212
2213         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215                 return -EINVAL;
2216         }
2217
2218         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219         /* read GPIO int */
2220         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221
2222         switch (mode) {
2223         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224                 DP(NETIF_MSG_LINK,
2225                    "Clear GPIO INT %d (shift %d) -> output low\n",
2226                    gpio_num, gpio_shift);
2227                 /* clear SET and set CLR */
2228                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230                 break;
2231
2232         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233                 DP(NETIF_MSG_LINK,
2234                    "Set GPIO INT %d (shift %d) -> output high\n",
2235                    gpio_num, gpio_shift);
2236                 /* clear CLR and set SET */
2237                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239                 break;
2240
2241         default:
2242                 break;
2243         }
2244
2245         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247
2248         return 0;
2249 }
2250
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253         u32 spio_reg;
2254
2255         /* Only 2 SPIOs are configurable */
2256         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258                 return -EINVAL;
2259         }
2260
2261         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262         /* read SPIO and mask except the float bits */
2263         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264
2265         switch (mode) {
2266         case MISC_SPIO_OUTPUT_LOW:
2267                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268                 /* clear FLOAT and set CLR */
2269                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2271                 break;
2272
2273         case MISC_SPIO_OUTPUT_HIGH:
2274                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275                 /* clear FLOAT and set SET */
2276                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2278                 break;
2279
2280         case MISC_SPIO_INPUT_HI_Z:
2281                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282                 /* set FLOAT */
2283                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284                 break;
2285
2286         default:
2287                 break;
2288         }
2289
2290         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292
2293         return 0;
2294 }
2295
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299
2300         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301                                            ADVERTISED_Pause);
2302         switch (bp->link_vars.ieee_fc &
2303                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306                                                   ADVERTISED_Pause);
2307                 break;
2308
2309         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311                 break;
2312
2313         default:
2314                 break;
2315         }
2316 }
2317
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320         /* Initialize link parameters structure variables
2321          * It is recommended to turn off RX FC for jumbo frames
2322          *  for better performance
2323          */
2324         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326         else
2327                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332         u32 pause_enabled = 0;
2333
2334         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336                         pause_enabled = 1;
2337
2338                 REG_WR(bp, BAR_USTRORM_INTMEM +
2339                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340                        pause_enabled);
2341         }
2342
2343         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344            pause_enabled ? "enabled" : "disabled");
2345 }
2346
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351
2352         if (!BP_NOMCP(bp)) {
2353                 bnx2x_set_requested_fc(bp);
2354                 bnx2x_acquire_phy_lock(bp);
2355
2356                 if (load_mode == LOAD_DIAG) {
2357                         struct link_params *lp = &bp->link_params;
2358                         lp->loopback_mode = LOOPBACK_XGXS;
2359                         /* Prefer doing PHY loopback at highest speed */
2360                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361                                 if (lp->speed_cap_mask[cfx_idx] &
2362                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363                                         lp->req_line_speed[cfx_idx] =
2364                                         SPEED_20000;
2365                                 else if (lp->speed_cap_mask[cfx_idx] &
2366                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367                                                 lp->req_line_speed[cfx_idx] =
2368                                                 SPEED_10000;
2369                                 else
2370                                         lp->req_line_speed[cfx_idx] =
2371                                         SPEED_1000;
2372                         }
2373                 }
2374
2375                 if (load_mode == LOAD_LOOPBACK_EXT) {
2376                         struct link_params *lp = &bp->link_params;
2377                         lp->loopback_mode = LOOPBACK_EXT;
2378                 }
2379
2380                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381
2382                 bnx2x_release_phy_lock(bp);
2383
2384                 bnx2x_init_dropless_fc(bp);
2385
2386                 bnx2x_calc_fc_adv(bp);
2387
2388                 if (bp->link_vars.link_up) {
2389                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390                         bnx2x_link_report(bp);
2391                 }
2392                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394                 return rc;
2395         }
2396         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397         return -EINVAL;
2398 }
2399
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402         if (!BP_NOMCP(bp)) {
2403                 bnx2x_acquire_phy_lock(bp);
2404                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405                 bnx2x_release_phy_lock(bp);
2406
2407                 bnx2x_init_dropless_fc(bp);
2408
2409                 bnx2x_calc_fc_adv(bp);
2410         } else
2411                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416         if (!BP_NOMCP(bp)) {
2417                 bnx2x_acquire_phy_lock(bp);
2418                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419                 bnx2x_release_phy_lock(bp);
2420         } else
2421                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426         bnx2x_acquire_phy_lock(bp);
2427         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428         bnx2x_release_phy_lock(bp);
2429 }
2430
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433         u8 rc = 0;
2434
2435         if (!BP_NOMCP(bp)) {
2436                 bnx2x_acquire_phy_lock(bp);
2437                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438                                      is_serdes);
2439                 bnx2x_release_phy_lock(bp);
2440         } else
2441                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2442
2443         return rc;
2444 }
2445
2446 /* Calculates the sum of vn_min_rates.
2447    It's needed for further normalizing of the min_rates.
2448    Returns:
2449      sum of vn_min_rates.
2450        or
2451      0 - if all the min_rates are 0.
2452      In the later case fairness algorithm should be deactivated.
2453      If not all min_rates are zero then those that are zeroes will be set to 1.
2454  */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456                                       struct cmng_init_input *input)
2457 {
2458         int all_zero = 1;
2459         int vn;
2460
2461         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462                 u32 vn_cfg = bp->mf_config[vn];
2463                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465
2466                 /* Skip hidden vns */
2467                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468                         vn_min_rate = 0;
2469                 /* If min rate is zero - set it to 1 */
2470                 else if (!vn_min_rate)
2471                         vn_min_rate = DEF_MIN_RATE;
2472                 else
2473                         all_zero = 0;
2474
2475                 input->vnic_min_rate[vn] = vn_min_rate;
2476         }
2477
2478         /* if ETS or all min rates are zeros - disable fairness */
2479         if (BNX2X_IS_ETS_ENABLED(bp)) {
2480                 input->flags.cmng_enables &=
2481                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483         } else if (all_zero) {
2484                 input->flags.cmng_enables &=
2485                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486                 DP(NETIF_MSG_IFUP,
2487                    "All MIN values are zeroes fairness will be disabled\n");
2488         } else
2489                 input->flags.cmng_enables |=
2490                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494                                     struct cmng_init_input *input)
2495 {
2496         u16 vn_max_rate;
2497         u32 vn_cfg = bp->mf_config[vn];
2498
2499         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500                 vn_max_rate = 0;
2501         else {
2502                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503
2504                 if (IS_MF_PERCENT_BW(bp)) {
2505                         /* maxCfg in percents of linkspeed */
2506                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507                 } else /* SD modes */
2508                         /* maxCfg is absolute in 100Mb units */
2509                         vn_max_rate = maxCfg * 100;
2510         }
2511
2512         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513
2514         input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519         if (CHIP_REV_IS_SLOW(bp))
2520                 return CMNG_FNS_NONE;
2521         if (IS_MF(bp))
2522                 return CMNG_FNS_MINMAX;
2523
2524         return CMNG_FNS_NONE;
2525 }
2526
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530
2531         if (BP_NOMCP(bp))
2532                 return; /* what should be the default value in this case */
2533
2534         /* For 2 port configuration the absolute function number formula
2535          * is:
2536          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2537          *
2538          *      and there are 4 functions per port
2539          *
2540          * For 4 port configuration it is
2541          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542          *
2543          *      and there are 2 functions per port
2544          */
2545         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547
2548                 if (func >= E1H_FUNC_MAX)
2549                         break;
2550
2551                 bp->mf_config[vn] =
2552                         MF_CFG_RD(bp, func_mf_config[func].config);
2553         }
2554         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556                 bp->flags |= MF_FUNC_DIS;
2557         } else {
2558                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559                 bp->flags &= ~MF_FUNC_DIS;
2560         }
2561 }
2562
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565         struct cmng_init_input input;
2566         memset(&input, 0, sizeof(struct cmng_init_input));
2567
2568         input.port_rate = bp->link_vars.line_speed;
2569
2570         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571                 int vn;
2572
2573                 /* read mf conf from shmem */
2574                 if (read_cfg)
2575                         bnx2x_read_mf_cfg(bp);
2576
2577                 /* vn_weight_sum and enable fairness if not 0 */
2578                 bnx2x_calc_vn_min(bp, &input);
2579
2580                 /* calculate and set min-max rate for each vn */
2581                 if (bp->port.pmf)
2582                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583                                 bnx2x_calc_vn_max(bp, vn, &input);
2584
2585                 /* always enable rate shaping and fairness */
2586                 input.flags.cmng_enables |=
2587                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588
2589                 bnx2x_init_cmng(&input, &bp->cmng);
2590                 return;
2591         }
2592
2593         /* rate shaping and fairness are disabled */
2594         DP(NETIF_MSG_IFUP,
2595            "rate shaping and fairness are disabled\n");
2596 }
2597
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599                               struct cmng_init *cmng,
2600                               u8 port)
2601 {
2602         int vn;
2603         size_t size = sizeof(struct cmng_struct_per_port);
2604
2605         u32 addr = BAR_XSTRORM_INTMEM +
2606                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607
2608         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609
2610         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611                 int func = func_by_vn(bp, vn);
2612
2613                 addr = BAR_XSTRORM_INTMEM +
2614                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615                 size = sizeof(struct rate_shaping_vars_per_vn);
2616                 __storm_memset_struct(bp, addr, size,
2617                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618
2619                 addr = BAR_XSTRORM_INTMEM +
2620                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621                 size = sizeof(struct fairness_vars_per_vn);
2622                 __storm_memset_struct(bp, addr, size,
2623                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624         }
2625 }
2626
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631
2632         if (cmng_fns != CMNG_FNS_NONE) {
2633                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635         } else {
2636                 /* rate shaping and fairness are disabled */
2637                 DP(NETIF_MSG_IFUP,
2638                    "single function mode without fairness\n");
2639         }
2640 }
2641
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645         /* Make sure that we are synced with the current statistics */
2646         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647
2648         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649
2650         bnx2x_init_dropless_fc(bp);
2651
2652         if (bp->link_vars.link_up) {
2653
2654                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655                         struct host_port_stats *pstats;
2656
2657                         pstats = bnx2x_sp(bp, port_stats);
2658                         /* reset old mac stats */
2659                         memset(&(pstats->mac_stx[0]), 0,
2660                                sizeof(struct mac_stx));
2661                 }
2662                 if (bp->state == BNX2X_STATE_OPEN)
2663                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664         }
2665
2666         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667                 bnx2x_set_local_cmng(bp);
2668
2669         __bnx2x_link_report(bp);
2670
2671         if (IS_MF(bp))
2672                 bnx2x_link_sync_notify(bp);
2673 }
2674
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677         if (bp->state != BNX2X_STATE_OPEN)
2678                 return;
2679
2680         /* read updated dcb configuration */
2681         if (IS_PF(bp)) {
2682                 bnx2x_dcbx_pmf_update(bp);
2683                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684                 if (bp->link_vars.link_up)
2685                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686                 else
2687                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688                         /* indicate link status */
2689                 bnx2x_link_report(bp);
2690
2691         } else { /* VF */
2692                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693                                           SUPPORTED_10baseT_Full |
2694                                           SUPPORTED_100baseT_Half |
2695                                           SUPPORTED_100baseT_Full |
2696                                           SUPPORTED_1000baseT_Full |
2697                                           SUPPORTED_2500baseX_Full |
2698                                           SUPPORTED_10000baseT_Full |
2699                                           SUPPORTED_TP |
2700                                           SUPPORTED_FIBRE |
2701                                           SUPPORTED_Autoneg |
2702                                           SUPPORTED_Pause |
2703                                           SUPPORTED_Asym_Pause);
2704                 bp->port.advertising[0] = bp->port.supported[0];
2705
2706                 bp->link_params.bp = bp;
2707                 bp->link_params.port = BP_PORT(bp);
2708                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710                 bp->link_params.req_line_speed[0] = SPEED_10000;
2711                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714                 bp->link_vars.line_speed = SPEED_10000;
2715                 bp->link_vars.link_status =
2716                         (LINK_STATUS_LINK_UP |
2717                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718                 bp->link_vars.link_up = 1;
2719                 bp->link_vars.duplex = DUPLEX_FULL;
2720                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721                 __bnx2x_link_report(bp);
2722
2723                 bnx2x_sample_bulletin(bp);
2724
2725                 /* if bulletin board did not have an update for link status
2726                  * __bnx2x_link_report will report current status
2727                  * but it will NOT duplicate report in case of already reported
2728                  * during sampling bulletin board.
2729                  */
2730                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731         }
2732 }
2733
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735                                   u16 vlan_val, u8 allowed_prio)
2736 {
2737         struct bnx2x_func_state_params func_params = {NULL};
2738         struct bnx2x_func_afex_update_params *f_update_params =
2739                 &func_params.params.afex_update;
2740
2741         func_params.f_obj = &bp->func_obj;
2742         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743
2744         /* no need to wait for RAMROD completion, so don't
2745          * set RAMROD_COMP_WAIT flag
2746          */
2747
2748         f_update_params->vif_id = vifid;
2749         f_update_params->afex_default_vlan = vlan_val;
2750         f_update_params->allowed_priorities = allowed_prio;
2751
2752         /* if ramrod can not be sent, response to MCP immediately */
2753         if (bnx2x_func_state_change(bp, &func_params) < 0)
2754                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755
2756         return 0;
2757 }
2758
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760                                           u16 vif_index, u8 func_bit_map)
2761 {
2762         struct bnx2x_func_state_params func_params = {NULL};
2763         struct bnx2x_func_afex_viflists_params *update_params =
2764                 &func_params.params.afex_viflists;
2765         int rc;
2766         u32 drv_msg_code;
2767
2768         /* validate only LIST_SET and LIST_GET are received from switch */
2769         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771                           cmd_type);
2772
2773         func_params.f_obj = &bp->func_obj;
2774         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775
2776         /* set parameters according to cmd_type */
2777         update_params->afex_vif_list_command = cmd_type;
2778         update_params->vif_list_index = vif_index;
2779         update_params->func_bit_map =
2780                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781         update_params->func_to_clear = 0;
2782         drv_msg_code =
2783                 (cmd_type == VIF_LIST_RULE_GET) ?
2784                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786
2787         /* if ramrod can not be sent, respond to MCP immediately for
2788          * SET and GET requests (other are not triggered from MCP)
2789          */
2790         rc = bnx2x_func_state_change(bp, &func_params);
2791         if (rc < 0)
2792                 bnx2x_fw_command(bp, drv_msg_code, 0);
2793
2794         return 0;
2795 }
2796
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799         struct afex_stats afex_stats;
2800         u32 func = BP_ABS_FUNC(bp);
2801         u32 mf_config;
2802         u16 vlan_val;
2803         u32 vlan_prio;
2804         u16 vif_id;
2805         u8 allowed_prio;
2806         u8 vlan_mode;
2807         u32 addr_to_write, vifid, addrs, stats_type, i;
2808
2809         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811                 DP(BNX2X_MSG_MCP,
2812                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814         }
2815
2816         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819                 DP(BNX2X_MSG_MCP,
2820                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821                    vifid, addrs);
2822                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823                                                addrs);
2824         }
2825
2826         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827                 addr_to_write = SHMEM2_RD(bp,
2828                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829                 stats_type = SHMEM2_RD(bp,
2830                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831
2832                 DP(BNX2X_MSG_MCP,
2833                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834                    addr_to_write);
2835
2836                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837
2838                 /* write response to scratchpad, for MCP */
2839                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2841                                *(((u32 *)(&afex_stats))+i));
2842
2843                 /* send ack message to MCP */
2844                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845         }
2846
2847         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849                 bp->mf_config[BP_VN(bp)] = mf_config;
2850                 DP(BNX2X_MSG_MCP,
2851                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852                    mf_config);
2853
2854                 /* if VIF_SET is "enabled" */
2855                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856                         /* set rate limit directly to internal RAM */
2857                         struct cmng_init_input cmng_input;
2858                         struct rate_shaping_vars_per_vn m_rs_vn;
2859                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860                         u32 addr = BAR_XSTRORM_INTMEM +
2861                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862
2863                         bp->mf_config[BP_VN(bp)] = mf_config;
2864
2865                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866                         m_rs_vn.vn_counter.rate =
2867                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2868                         m_rs_vn.vn_counter.quota =
2869                                 (m_rs_vn.vn_counter.rate *
2870                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2871
2872                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873
2874                         /* read relevant values from mf_cfg struct in shmem */
2875                         vif_id =
2876                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879                         vlan_val =
2880                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883                         vlan_prio = (mf_config &
2884                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887                         vlan_mode =
2888                                 (MF_CFG_RD(bp,
2889                                            func_mf_config[func].afex_config) &
2890                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892                         allowed_prio =
2893                                 (MF_CFG_RD(bp,
2894                                            func_mf_config[func].afex_config) &
2895                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897
2898                         /* send ramrod to FW, return in case of failure */
2899                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900                                                    allowed_prio))
2901                                 return;
2902
2903                         bp->afex_def_vlan_tag = vlan_val;
2904                         bp->afex_vlan_mode = vlan_mode;
2905                 } else {
2906                         /* notify link down because BP->flags is disabled */
2907                         bnx2x_link_report(bp);
2908
2909                         /* send INVALID VIF ramrod to FW */
2910                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911
2912                         /* Reset the default afex VLAN */
2913                         bp->afex_def_vlan_tag = -1;
2914                 }
2915         }
2916 }
2917
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920         struct bnx2x_func_switch_update_params *switch_update_params;
2921         struct bnx2x_func_state_params func_params;
2922
2923         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924         switch_update_params = &func_params.params.switch_update;
2925         func_params.f_obj = &bp->func_obj;
2926         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927
2928         /* Prepare parameters for function state transitions */
2929         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2930         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2931
2932         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2933                 int func = BP_ABS_FUNC(bp);
2934                 u32 val;
2935
2936                 /* Re-learn the S-tag from shmem */
2937                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2938                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2939                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2940                         bp->mf_ov = val;
2941                 } else {
2942                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2943                         goto fail;
2944                 }
2945
2946                 /* Configure new S-tag in LLH */
2947                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2948                        bp->mf_ov);
2949
2950                 /* Send Ramrod to update FW of change */
2951                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2952                           &switch_update_params->changes);
2953                 switch_update_params->vlan = bp->mf_ov;
2954
2955                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2956                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2957                                   bp->mf_ov);
2958                         goto fail;
2959                 } else {
2960                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2961                            bp->mf_ov);
2962                 }
2963         } else {
2964                 goto fail;
2965         }
2966
2967         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2968         return;
2969 fail:
2970         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2971 }
2972
2973 static void bnx2x_pmf_update(struct bnx2x *bp)
2974 {
2975         int port = BP_PORT(bp);
2976         u32 val;
2977
2978         bp->port.pmf = 1;
2979         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2980
2981         /*
2982          * We need the mb() to ensure the ordering between the writing to
2983          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2984          */
2985         smp_mb();
2986
2987         /* queue a periodic task */
2988         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2989
2990         bnx2x_dcbx_pmf_update(bp);
2991
2992         /* enable nig attention */
2993         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2994         if (bp->common.int_block == INT_BLOCK_HC) {
2995                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2996                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2997         } else if (!CHIP_IS_E1x(bp)) {
2998                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2999                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3000         }
3001
3002         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3003 }
3004
3005 /* end of Link */
3006
3007 /* slow path */
3008
3009 /*
3010  * General service functions
3011  */
3012
3013 /* send the MCP a request, block until there is a reply */
3014 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3015 {
3016         int mb_idx = BP_FW_MB_IDX(bp);
3017         u32 seq;
3018         u32 rc = 0;
3019         u32 cnt = 1;
3020         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3021
3022         mutex_lock(&bp->fw_mb_mutex);
3023         seq = ++bp->fw_seq;
3024         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3025         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3026
3027         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3028                         (command | seq), param);
3029
3030         do {
3031                 /* let the FW do it's magic ... */
3032                 msleep(delay);
3033
3034                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3035
3036                 /* Give the FW up to 5 second (500*10ms) */
3037         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3038
3039         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3040            cnt*delay, rc, seq);
3041
3042         /* is this a reply to our command? */
3043         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3044                 rc &= FW_MSG_CODE_MASK;
3045         else {
3046                 /* FW BUG! */
3047                 BNX2X_ERR("FW failed to respond!\n");
3048                 bnx2x_fw_dump(bp);
3049                 rc = 0;
3050         }
3051         mutex_unlock(&bp->fw_mb_mutex);
3052
3053         return rc;
3054 }
3055
3056 static void storm_memset_func_cfg(struct bnx2x *bp,
3057                                  struct tstorm_eth_function_common_config *tcfg,
3058                                  u16 abs_fid)
3059 {
3060         size_t size = sizeof(struct tstorm_eth_function_common_config);
3061
3062         u32 addr = BAR_TSTRORM_INTMEM +
3063                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3064
3065         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3066 }
3067
3068 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3069 {
3070         if (CHIP_IS_E1x(bp)) {
3071                 struct tstorm_eth_function_common_config tcfg = {0};
3072
3073                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3074         }
3075
3076         /* Enable the function in the FW */
3077         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3078         storm_memset_func_en(bp, p->func_id, 1);
3079
3080         /* spq */
3081         if (p->spq_active) {
3082                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3083                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3084                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3085         }
3086 }
3087
3088 /**
3089  * bnx2x_get_common_flags - Return common flags
3090  *
3091  * @bp          device handle
3092  * @fp          queue handle
3093  * @zero_stats  TRUE if statistics zeroing is needed
3094  *
3095  * Return the flags that are common for the Tx-only and not normal connections.
3096  */
3097 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3098                                             struct bnx2x_fastpath *fp,
3099                                             bool zero_stats)
3100 {
3101         unsigned long flags = 0;
3102
3103         /* PF driver will always initialize the Queue to an ACTIVE state */
3104         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3105
3106         /* tx only connections collect statistics (on the same index as the
3107          * parent connection). The statistics are zeroed when the parent
3108          * connection is initialized.
3109          */
3110
3111         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3112         if (zero_stats)
3113                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3114
3115         if (bp->flags & TX_SWITCHING)
3116                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3117
3118         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3119         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3120
3121 #ifdef BNX2X_STOP_ON_ERROR
3122         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3123 #endif
3124
3125         return flags;
3126 }
3127
3128 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3129                                        struct bnx2x_fastpath *fp,
3130                                        bool leading)
3131 {
3132         unsigned long flags = 0;
3133
3134         /* calculate other queue flags */
3135         if (IS_MF_SD(bp))
3136                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3137
3138         if (IS_FCOE_FP(fp)) {
3139                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3140                 /* For FCoE - force usage of default priority (for afex) */
3141                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3142         }
3143
3144         if (fp->mode != TPA_MODE_DISABLED) {
3145                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3146                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3147                 if (fp->mode == TPA_MODE_GRO)
3148                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3149         }
3150
3151         if (leading) {
3152                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3153                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3154         }
3155
3156         /* Always set HW VLAN stripping */
3157         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3158
3159         /* configure silent vlan removal */
3160         if (IS_MF_AFEX(bp))
3161                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3162
3163         return flags | bnx2x_get_common_flags(bp, fp, true);
3164 }
3165
3166 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3167         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3168         u8 cos)
3169 {
3170         gen_init->stat_id = bnx2x_stats_id(fp);
3171         gen_init->spcl_id = fp->cl_id;
3172
3173         /* Always use mini-jumbo MTU for FCoE L2 ring */
3174         if (IS_FCOE_FP(fp))
3175                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3176         else
3177                 gen_init->mtu = bp->dev->mtu;
3178
3179         gen_init->cos = cos;
3180
3181         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3182 }
3183
3184 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3185         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3186         struct bnx2x_rxq_setup_params *rxq_init)
3187 {
3188         u8 max_sge = 0;
3189         u16 sge_sz = 0;
3190         u16 tpa_agg_size = 0;
3191
3192         if (fp->mode != TPA_MODE_DISABLED) {
3193                 pause->sge_th_lo = SGE_TH_LO(bp);
3194                 pause->sge_th_hi = SGE_TH_HI(bp);
3195
3196                 /* validate SGE ring has enough to cross high threshold */
3197                 WARN_ON(bp->dropless_fc &&
3198                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3199                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3200
3201                 tpa_agg_size = TPA_AGG_SIZE;
3202                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3203                         SGE_PAGE_SHIFT;
3204                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3205                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3206                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3207         }
3208
3209         /* pause - not for e1 */
3210         if (!CHIP_IS_E1(bp)) {
3211                 pause->bd_th_lo = BD_TH_LO(bp);
3212                 pause->bd_th_hi = BD_TH_HI(bp);
3213
3214                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3215                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3216                 /*
3217                  * validate that rings have enough entries to cross
3218                  * high thresholds
3219                  */
3220                 WARN_ON(bp->dropless_fc &&
3221                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3222                                 bp->rx_ring_size);
3223                 WARN_ON(bp->dropless_fc &&
3224                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3225                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3226
3227                 pause->pri_map = 1;
3228         }
3229
3230         /* rxq setup */
3231         rxq_init->dscr_map = fp->rx_desc_mapping;
3232         rxq_init->sge_map = fp->rx_sge_mapping;
3233         rxq_init->rcq_map = fp->rx_comp_mapping;
3234         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3235
3236         /* This should be a maximum number of data bytes that may be
3237          * placed on the BD (not including paddings).
3238          */
3239         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3240                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3241
3242         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3243         rxq_init->tpa_agg_sz = tpa_agg_size;
3244         rxq_init->sge_buf_sz = sge_sz;
3245         rxq_init->max_sges_pkt = max_sge;
3246         rxq_init->rss_engine_id = BP_FUNC(bp);
3247         rxq_init->mcast_engine_id = BP_FUNC(bp);
3248
3249         /* Maximum number or simultaneous TPA aggregation for this Queue.
3250          *
3251          * For PF Clients it should be the maximum available number.
3252          * VF driver(s) may want to define it to a smaller value.
3253          */
3254         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3255
3256         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3257         rxq_init->fw_sb_id = fp->fw_sb_id;
3258
3259         if (IS_FCOE_FP(fp))
3260                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3261         else
3262                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3263         /* configure silent vlan removal
3264          * if multi function mode is afex, then mask default vlan
3265          */
3266         if (IS_MF_AFEX(bp)) {
3267                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3268                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3269         }
3270 }
3271
3272 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3273         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3274         u8 cos)
3275 {
3276         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3277         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3278         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3279         txq_init->fw_sb_id = fp->fw_sb_id;
3280
3281         /*
3282          * set the tss leading client id for TX classification ==
3283          * leading RSS client id
3284          */
3285         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3286
3287         if (IS_FCOE_FP(fp)) {
3288                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3289                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3290         }
3291 }
3292
3293 static void bnx2x_pf_init(struct bnx2x *bp)
3294 {
3295         struct bnx2x_func_init_params func_init = {0};
3296         struct event_ring_data eq_data = { {0} };
3297
3298         if (!CHIP_IS_E1x(bp)) {
3299                 /* reset IGU PF statistics: MSIX + ATTN */
3300                 /* PF */
3301                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3302                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3303                            (CHIP_MODE_IS_4_PORT(bp) ?
3304                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3305                 /* ATTN */
3306                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3307                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3308                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3309                            (CHIP_MODE_IS_4_PORT(bp) ?
3310                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311         }
3312
3313         func_init.spq_active = true;
3314         func_init.pf_id = BP_FUNC(bp);
3315         func_init.func_id = BP_FUNC(bp);
3316         func_init.spq_map = bp->spq_mapping;
3317         func_init.spq_prod = bp->spq_prod_idx;
3318
3319         bnx2x_func_init(bp, &func_init);
3320
3321         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3322
3323         /*
3324          * Congestion management values depend on the link rate
3325          * There is no active link so initial link rate is set to 10 Gbps.
3326          * When the link comes up The congestion management values are
3327          * re-calculated according to the actual link rate.
3328          */
3329         bp->link_vars.line_speed = SPEED_10000;
3330         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3331
3332         /* Only the PMF sets the HW */
3333         if (bp->port.pmf)
3334                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3335
3336         /* init Event Queue - PCI bus guarantees correct endianity*/
3337         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3338         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3339         eq_data.producer = bp->eq_prod;
3340         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3341         eq_data.sb_id = DEF_SB_ID;
3342         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3343 }
3344
3345 static void bnx2x_e1h_disable(struct bnx2x *bp)
3346 {
3347         int port = BP_PORT(bp);
3348
3349         bnx2x_tx_disable(bp);
3350
3351         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3352 }
3353
3354 static void bnx2x_e1h_enable(struct bnx2x *bp)
3355 {
3356         int port = BP_PORT(bp);
3357
3358         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3359                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3360
3361         /* Tx queue should be only re-enabled */
3362         netif_tx_wake_all_queues(bp->dev);
3363
3364         /*
3365          * Should not call netif_carrier_on since it will be called if the link
3366          * is up when checking for link state
3367          */
3368 }
3369
3370 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3371
3372 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3373 {
3374         struct eth_stats_info *ether_stat =
3375                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3376         struct bnx2x_vlan_mac_obj *mac_obj =
3377                 &bp->sp_objs->mac_obj;
3378         int i;
3379
3380         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3381                 ETH_STAT_INFO_VERSION_LEN);
3382
3383         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3384          * mac_local field in ether_stat struct. The base address is offset by 2
3385          * bytes to account for the field being 8 bytes but a mac address is
3386          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3387          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3388          * allocated by the ether_stat struct, so the macs will land in their
3389          * proper positions.
3390          */
3391         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3392                 memset(ether_stat->mac_local + i, 0,
3393                        sizeof(ether_stat->mac_local[0]));
3394         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3395                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3396                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3397                                 ETH_ALEN);
3398         ether_stat->mtu_size = bp->dev->mtu;
3399         if (bp->dev->features & NETIF_F_RXCSUM)
3400                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3401         if (bp->dev->features & NETIF_F_TSO)
3402                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3403         ether_stat->feature_flags |= bp->common.boot_mode;
3404
3405         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3406
3407         ether_stat->txq_size = bp->tx_ring_size;
3408         ether_stat->rxq_size = bp->rx_ring_size;
3409
3410 #ifdef CONFIG_BNX2X_SRIOV
3411         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3412 #endif
3413 }
3414
3415 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3416 {
3417         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3418         struct fcoe_stats_info *fcoe_stat =
3419                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3420
3421         if (!CNIC_LOADED(bp))
3422                 return;
3423
3424         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3425
3426         fcoe_stat->qos_priority =
3427                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3428
3429         /* insert FCoE stats from ramrod response */
3430         if (!NO_FCOE(bp)) {
3431                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3432                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433                         tstorm_queue_statistics;
3434
3435                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3436                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3437                         xstorm_queue_statistics;
3438
3439                 struct fcoe_statistics_params *fw_fcoe_stat =
3440                         &bp->fw_stats_data->fcoe;
3441
3442                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3443                           fcoe_stat->rx_bytes_lo,
3444                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3445
3446                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3447                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3448                           fcoe_stat->rx_bytes_lo,
3449                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3450
3451                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3452                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3453                           fcoe_stat->rx_bytes_lo,
3454                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3455
3456                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3457                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3458                           fcoe_stat->rx_bytes_lo,
3459                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3460
3461                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                           fcoe_stat->rx_frames_lo,
3463                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3464
3465                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                           fcoe_stat->rx_frames_lo,
3467                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3468
3469                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                           fcoe_stat->rx_frames_lo,
3471                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3472
3473                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474                           fcoe_stat->rx_frames_lo,
3475                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3476
3477                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3478                           fcoe_stat->tx_bytes_lo,
3479                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3480
3481                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3482                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3483                           fcoe_stat->tx_bytes_lo,
3484                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3485
3486                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3487                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3488                           fcoe_stat->tx_bytes_lo,
3489                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3490
3491                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3492                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3493                           fcoe_stat->tx_bytes_lo,
3494                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3495
3496                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                           fcoe_stat->tx_frames_lo,
3498                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3499
3500                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                           fcoe_stat->tx_frames_lo,
3502                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3503
3504                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                           fcoe_stat->tx_frames_lo,
3506                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3507
3508                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509                           fcoe_stat->tx_frames_lo,
3510                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3511         }
3512
3513         /* ask L5 driver to add data to the struct */
3514         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3515 }
3516
3517 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3518 {
3519         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3520         struct iscsi_stats_info *iscsi_stat =
3521                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3522
3523         if (!CNIC_LOADED(bp))
3524                 return;
3525
3526         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3527                ETH_ALEN);
3528
3529         iscsi_stat->qos_priority =
3530                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3531
3532         /* ask L5 driver to add data to the struct */
3533         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3534 }
3535
3536 /* called due to MCP event (on pmf):
3537  *      reread new bandwidth configuration
3538  *      configure FW
3539  *      notify others function about the change
3540  */
3541 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3542 {
3543         if (bp->link_vars.link_up) {
3544                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3545                 bnx2x_link_sync_notify(bp);
3546         }
3547         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3548 }
3549
3550 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3551 {
3552         bnx2x_config_mf_bw(bp);
3553         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3554 }
3555
3556 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3557 {
3558         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3559         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3560 }
3561
3562 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3563 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3564
3565 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3566 {
3567         enum drv_info_opcode op_code;
3568         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3569         bool release = false;
3570         int wait;
3571
3572         /* if drv_info version supported by MFW doesn't match - send NACK */
3573         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3574                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3575                 return;
3576         }
3577
3578         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3579                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3580
3581         /* Must prevent other flows from accessing drv_info_to_mcp */
3582         mutex_lock(&bp->drv_info_mutex);
3583
3584         memset(&bp->slowpath->drv_info_to_mcp, 0,
3585                sizeof(union drv_info_to_mcp));
3586
3587         switch (op_code) {
3588         case ETH_STATS_OPCODE:
3589                 bnx2x_drv_info_ether_stat(bp);
3590                 break;
3591         case FCOE_STATS_OPCODE:
3592                 bnx2x_drv_info_fcoe_stat(bp);
3593                 break;
3594         case ISCSI_STATS_OPCODE:
3595                 bnx2x_drv_info_iscsi_stat(bp);
3596                 break;
3597         default:
3598                 /* if op code isn't supported - send NACK */
3599                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3600                 goto out;
3601         }
3602
3603         /* if we got drv_info attn from MFW then these fields are defined in
3604          * shmem2 for sure
3605          */
3606         SHMEM2_WR(bp, drv_info_host_addr_lo,
3607                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3608         SHMEM2_WR(bp, drv_info_host_addr_hi,
3609                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3610
3611         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3612
3613         /* Since possible management wants both this and get_driver_version
3614          * need to wait until management notifies us it finished utilizing
3615          * the buffer.
3616          */
3617         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3618                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3619         } else if (!bp->drv_info_mng_owner) {
3620                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3621
3622                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3623                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3624
3625                         /* Management is done; need to clear indication */
3626                         if (indication & bit) {
3627                                 SHMEM2_WR(bp, mfw_drv_indication,
3628                                           indication & ~bit);
3629                                 release = true;
3630                                 break;
3631                         }
3632
3633                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3634                 }
3635         }
3636         if (!release) {
3637                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3638                 bp->drv_info_mng_owner = true;
3639         }
3640
3641 out:
3642         mutex_unlock(&bp->drv_info_mutex);
3643 }
3644
3645 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3646 {
3647         u8 vals[4];
3648         int i = 0;
3649
3650         if (bnx2x_format) {
3651                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3652                            &vals[0], &vals[1], &vals[2], &vals[3]);
3653                 if (i > 0)
3654                         vals[0] -= '0';
3655         } else {
3656                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3657                            &vals[0], &vals[1], &vals[2], &vals[3]);
3658         }
3659
3660         while (i < 4)
3661                 vals[i++] = 0;
3662
3663         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3664 }
3665
3666 void bnx2x_update_mng_version(struct bnx2x *bp)
3667 {
3668         u32 iscsiver = DRV_VER_NOT_LOADED;
3669         u32 fcoever = DRV_VER_NOT_LOADED;
3670         u32 ethver = DRV_VER_NOT_LOADED;
3671         int idx = BP_FW_MB_IDX(bp);
3672         u8 *version;
3673
3674         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3675                 return;
3676
3677         mutex_lock(&bp->drv_info_mutex);
3678         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3679         if (bp->drv_info_mng_owner)
3680                 goto out;
3681
3682         if (bp->state != BNX2X_STATE_OPEN)
3683                 goto out;
3684
3685         /* Parse ethernet driver version */
3686         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3687         if (!CNIC_LOADED(bp))
3688                 goto out;
3689
3690         /* Try getting storage driver version via cnic */
3691         memset(&bp->slowpath->drv_info_to_mcp, 0,
3692                sizeof(union drv_info_to_mcp));
3693         bnx2x_drv_info_iscsi_stat(bp);
3694         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3695         iscsiver = bnx2x_update_mng_version_utility(version, false);
3696
3697         memset(&bp->slowpath->drv_info_to_mcp, 0,
3698                sizeof(union drv_info_to_mcp));
3699         bnx2x_drv_info_fcoe_stat(bp);
3700         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3701         fcoever = bnx2x_update_mng_version_utility(version, false);
3702
3703 out:
3704         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3705         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3706         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3707
3708         mutex_unlock(&bp->drv_info_mutex);
3709
3710         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3711            ethver, iscsiver, fcoever);
3712 }
3713
3714 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3715 {
3716         u32 drv_ver;
3717         u32 valid_dump;
3718
3719         if (!SHMEM2_HAS(bp, drv_info))
3720                 return;
3721
3722         /* Update Driver load time, possibly broken in y2038 */
3723         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3724
3725         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3726         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3727
3728         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3729
3730         /* Check & notify On-Chip dump. */
3731         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3732
3733         if (valid_dump & FIRST_DUMP_VALID)
3734                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3735
3736         if (valid_dump & SECOND_DUMP_VALID)
3737                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3738 }
3739
3740 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3741 {
3742         u32 cmd_ok, cmd_fail;
3743
3744         /* sanity */
3745         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3746             event & DRV_STATUS_OEM_EVENT_MASK) {
3747                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3748                 return;
3749         }
3750
3751         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3752                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3753                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3754         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3755                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3756                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3757         }
3758
3759         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3760
3761         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3762                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3763                 /* This is the only place besides the function initialization
3764                  * where the bp->flags can change so it is done without any
3765                  * locks
3766                  */
3767                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3768                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3769                         bp->flags |= MF_FUNC_DIS;
3770
3771                         bnx2x_e1h_disable(bp);
3772                 } else {
3773                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3774                         bp->flags &= ~MF_FUNC_DIS;
3775
3776                         bnx2x_e1h_enable(bp);
3777                 }
3778                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3779                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3780         }
3781
3782         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3783                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3784                 bnx2x_config_mf_bw(bp);
3785                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3786                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3787         }
3788
3789         /* Report results to MCP */
3790         if (event)
3791                 bnx2x_fw_command(bp, cmd_fail, 0);
3792         else
3793                 bnx2x_fw_command(bp, cmd_ok, 0);
3794 }
3795
3796 /* must be called under the spq lock */
3797 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3798 {
3799         struct eth_spe *next_spe = bp->spq_prod_bd;
3800
3801         if (bp->spq_prod_bd == bp->spq_last_bd) {
3802                 bp->spq_prod_bd = bp->spq;
3803                 bp->spq_prod_idx = 0;
3804                 DP(BNX2X_MSG_SP, "end of spq\n");
3805         } else {
3806                 bp->spq_prod_bd++;
3807                 bp->spq_prod_idx++;
3808         }
3809         return next_spe;
3810 }
3811
3812 /* must be called under the spq lock */
3813 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3814 {
3815         int func = BP_FUNC(bp);
3816
3817         /*
3818          * Make sure that BD data is updated before writing the producer:
3819          * BD data is written to the memory, the producer is read from the
3820          * memory, thus we need a full memory barrier to ensure the ordering.
3821          */
3822         mb();
3823
3824         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3825                  bp->spq_prod_idx);
3826         mmiowb();
3827 }
3828
3829 /**
3830  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3831  *
3832  * @cmd:        command to check
3833  * @cmd_type:   command type
3834  */
3835 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3836 {
3837         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3838             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3839             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3840             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3841             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3842             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3843             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3844                 return true;
3845         else
3846                 return false;
3847 }
3848
3849 /**
3850  * bnx2x_sp_post - place a single command on an SP ring
3851  *
3852  * @bp:         driver handle
3853  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3854  * @cid:        SW CID the command is related to
3855  * @data_hi:    command private data address (high 32 bits)
3856  * @data_lo:    command private data address (low 32 bits)
3857  * @cmd_type:   command type (e.g. NONE, ETH)
3858  *
3859  * SP data is handled as if it's always an address pair, thus data fields are
3860  * not swapped to little endian in upper functions. Instead this function swaps
3861  * data as if it's two u32 fields.
3862  */
3863 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3864                   u32 data_hi, u32 data_lo, int cmd_type)
3865 {
3866         struct eth_spe *spe;
3867         u16 type;
3868         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3869
3870 #ifdef BNX2X_STOP_ON_ERROR
3871         if (unlikely(bp->panic)) {
3872                 BNX2X_ERR("Can't post SP when there is panic\n");
3873                 return -EIO;
3874         }
3875 #endif
3876
3877         spin_lock_bh(&bp->spq_lock);
3878
3879         if (common) {
3880                 if (!atomic_read(&bp->eq_spq_left)) {
3881                         BNX2X_ERR("BUG! EQ ring full!\n");
3882                         spin_unlock_bh(&bp->spq_lock);
3883                         bnx2x_panic();
3884                         return -EBUSY;
3885                 }
3886         } else if (!atomic_read(&bp->cq_spq_left)) {
3887                         BNX2X_ERR("BUG! SPQ ring full!\n");
3888                         spin_unlock_bh(&bp->spq_lock);
3889                         bnx2x_panic();
3890                         return -EBUSY;
3891         }
3892
3893         spe = bnx2x_sp_get_next(bp);
3894
3895         /* CID needs port number to be encoded int it */
3896         spe->hdr.conn_and_cmd_data =
3897                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3898                                     HW_CID(bp, cid));
3899
3900         /* In some cases, type may already contain the func-id
3901          * mainly in SRIOV related use cases, so we add it here only
3902          * if it's not already set.
3903          */
3904         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3905                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3906                         SPE_HDR_CONN_TYPE;
3907                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3908                          SPE_HDR_FUNCTION_ID);
3909         } else {
3910                 type = cmd_type;
3911         }
3912
3913         spe->hdr.type = cpu_to_le16(type);
3914
3915         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3916         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3917
3918         /*
3919          * It's ok if the actual decrement is issued towards the memory
3920          * somewhere between the spin_lock and spin_unlock. Thus no
3921          * more explicit memory barrier is needed.
3922          */
3923         if (common)
3924                 atomic_dec(&bp->eq_spq_left);
3925         else
3926                 atomic_dec(&bp->cq_spq_left);
3927
3928         DP(BNX2X_MSG_SP,
3929            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3930            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3931            (u32)(U64_LO(bp->spq_mapping) +
3932            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3933            HW_CID(bp, cid), data_hi, data_lo, type,
3934            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3935
3936         bnx2x_sp_prod_update(bp);
3937         spin_unlock_bh(&bp->spq_lock);
3938         return 0;
3939 }
3940
3941 /* acquire split MCP access lock register */
3942 static int bnx2x_acquire_alr(struct bnx2x *bp)
3943 {
3944         u32 j, val;
3945         int rc = 0;
3946
3947         might_sleep();
3948         for (j = 0; j < 1000; j++) {
3949                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3950                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3951                 if (val & MCPR_ACCESS_LOCK_LOCK)
3952                         break;
3953
3954                 usleep_range(5000, 10000);
3955         }
3956         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3957                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3958                 rc = -EBUSY;
3959         }
3960
3961         return rc;
3962 }
3963
3964 /* release split MCP access lock register */
3965 static void bnx2x_release_alr(struct bnx2x *bp)
3966 {
3967         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3968 }
3969
3970 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3971 #define BNX2X_DEF_SB_IDX        0x0002
3972
3973 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3974 {
3975         struct host_sp_status_block *def_sb = bp->def_status_blk;
3976         u16 rc = 0;
3977
3978         barrier(); /* status block is written to by the chip */
3979         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3980                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3981                 rc |= BNX2X_DEF_SB_ATT_IDX;
3982         }
3983
3984         if (bp->def_idx != def_sb->sp_sb.running_index) {
3985                 bp->def_idx = def_sb->sp_sb.running_index;
3986                 rc |= BNX2X_DEF_SB_IDX;
3987         }
3988
3989         /* Do not reorder: indices reading should complete before handling */
3990         barrier();
3991         return rc;
3992 }
3993
3994 /*
3995  * slow path service functions
3996  */
3997
3998 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3999 {
4000         int port = BP_PORT(bp);
4001         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4002                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4003         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4004                                        NIG_REG_MASK_INTERRUPT_PORT0;
4005         u32 aeu_mask;
4006         u32 nig_mask = 0;
4007         u32 reg_addr;
4008
4009         if (bp->attn_state & asserted)
4010                 BNX2X_ERR("IGU ERROR\n");
4011
4012         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4013         aeu_mask = REG_RD(bp, aeu_addr);
4014
4015         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4016            aeu_mask, asserted);
4017         aeu_mask &= ~(asserted & 0x3ff);
4018         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4019
4020         REG_WR(bp, aeu_addr, aeu_mask);
4021         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4022
4023         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4024         bp->attn_state |= asserted;
4025         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4026
4027         if (asserted & ATTN_HARD_WIRED_MASK) {
4028                 if (asserted & ATTN_NIG_FOR_FUNC) {
4029
4030                         bnx2x_acquire_phy_lock(bp);
4031
4032                         /* save nig interrupt mask */
4033                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4034
4035                         /* If nig_mask is not set, no need to call the update
4036                          * function.
4037                          */
4038                         if (nig_mask) {
4039                                 REG_WR(bp, nig_int_mask_addr, 0);
4040
4041                                 bnx2x_link_attn(bp);
4042                         }
4043
4044                         /* handle unicore attn? */
4045                 }
4046                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4047                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4048
4049                 if (asserted & GPIO_2_FUNC)
4050                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4051
4052                 if (asserted & GPIO_3_FUNC)
4053                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4054
4055                 if (asserted & GPIO_4_FUNC)
4056                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4057
4058                 if (port == 0) {
4059                         if (asserted & ATTN_GENERAL_ATTN_1) {
4060                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4061                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4062                         }
4063                         if (asserted & ATTN_GENERAL_ATTN_2) {
4064                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4065                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4066                         }
4067                         if (asserted & ATTN_GENERAL_ATTN_3) {
4068                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4069                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4070                         }
4071                 } else {
4072                         if (asserted & ATTN_GENERAL_ATTN_4) {
4073                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4074                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4075                         }
4076                         if (asserted & ATTN_GENERAL_ATTN_5) {
4077                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4078                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4079                         }
4080                         if (asserted & ATTN_GENERAL_ATTN_6) {
4081                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4082                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4083                         }
4084                 }
4085
4086         } /* if hardwired */
4087
4088         if (bp->common.int_block == INT_BLOCK_HC)
4089                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4090                             COMMAND_REG_ATTN_BITS_SET);
4091         else
4092                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4093
4094         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4095            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4096         REG_WR(bp, reg_addr, asserted);
4097
4098         /* now set back the mask */
4099         if (asserted & ATTN_NIG_FOR_FUNC) {
4100                 /* Verify that IGU ack through BAR was written before restoring
4101                  * NIG mask. This loop should exit after 2-3 iterations max.
4102                  */
4103                 if (bp->common.int_block != INT_BLOCK_HC) {
4104                         u32 cnt = 0, igu_acked;
4105                         do {
4106                                 igu_acked = REG_RD(bp,
4107                                                    IGU_REG_ATTENTION_ACK_BITS);
4108                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4109                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4110                         if (!igu_acked)
4111                                 DP(NETIF_MSG_HW,
4112                                    "Failed to verify IGU ack on time\n");
4113                         barrier();
4114                 }
4115                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4116                 bnx2x_release_phy_lock(bp);
4117         }
4118 }
4119
4120 static void bnx2x_fan_failure(struct bnx2x *bp)
4121 {
4122         int port = BP_PORT(bp);
4123         u32 ext_phy_config;
4124         /* mark the failure */
4125         ext_phy_config =
4126                 SHMEM_RD(bp,
4127                          dev_info.port_hw_config[port].external_phy_config);
4128
4129         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4130         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4131         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4132                  ext_phy_config);
4133
4134         /* log the failure */
4135         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4136                             "Please contact OEM Support for assistance\n");
4137
4138         /* Schedule device reset (unload)
4139          * This is due to some boards consuming sufficient power when driver is
4140          * up to overheat if fan fails.
4141          */
4142         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4143 }
4144
4145 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4146 {
4147         int port = BP_PORT(bp);
4148         int reg_offset;
4149         u32 val;
4150
4151         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4152                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4153
4154         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4155
4156                 val = REG_RD(bp, reg_offset);
4157                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4158                 REG_WR(bp, reg_offset, val);
4159
4160                 BNX2X_ERR("SPIO5 hw attention\n");
4161
4162                 /* Fan failure attention */
4163                 bnx2x_hw_reset_phy(&bp->link_params);
4164                 bnx2x_fan_failure(bp);
4165         }
4166
4167         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4168                 bnx2x_acquire_phy_lock(bp);
4169                 bnx2x_handle_module_detect_int(&bp->link_params);
4170                 bnx2x_release_phy_lock(bp);
4171         }
4172
4173         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4174
4175                 val = REG_RD(bp, reg_offset);
4176                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4177                 REG_WR(bp, reg_offset, val);
4178
4179                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4180                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4181                 bnx2x_panic();
4182         }
4183 }
4184
4185 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4186 {
4187         u32 val;
4188
4189         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4190
4191                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4192                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4193                 /* DORQ discard attention */
4194                 if (val & 0x2)
4195                         BNX2X_ERR("FATAL error from DORQ\n");
4196         }
4197
4198         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4199
4200                 int port = BP_PORT(bp);
4201                 int reg_offset;
4202
4203                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4204                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4205
4206                 val = REG_RD(bp, reg_offset);
4207                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4208                 REG_WR(bp, reg_offset, val);
4209
4210                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4211                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4212                 bnx2x_panic();
4213         }
4214 }
4215
4216 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4217 {
4218         u32 val;
4219
4220         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4221
4222                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4223                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4224                 /* CFC error attention */
4225                 if (val & 0x2)
4226                         BNX2X_ERR("FATAL error from CFC\n");
4227         }
4228
4229         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4230                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4231                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4232                 /* RQ_USDMDP_FIFO_OVERFLOW */
4233                 if (val & 0x18000)
4234                         BNX2X_ERR("FATAL error from PXP\n");
4235
4236                 if (!CHIP_IS_E1x(bp)) {
4237                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4238                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4239                 }
4240         }
4241
4242         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4243
4244                 int port = BP_PORT(bp);
4245                 int reg_offset;
4246
4247                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4248                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4249
4250                 val = REG_RD(bp, reg_offset);
4251                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4252                 REG_WR(bp, reg_offset, val);
4253
4254                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4255                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4256                 bnx2x_panic();
4257         }
4258 }
4259
4260 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4261 {
4262         u32 val;
4263
4264         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4265
4266                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4267                         int func = BP_FUNC(bp);
4268
4269                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4270                         bnx2x_read_mf_cfg(bp);
4271                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4272                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4273                         val = SHMEM_RD(bp,
4274                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4275
4276                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4277                                    DRV_STATUS_OEM_EVENT_MASK))
4278                                 bnx2x_oem_event(bp,
4279                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4280                                                 DRV_STATUS_OEM_EVENT_MASK)));
4281
4282                         if (val & DRV_STATUS_SET_MF_BW)
4283                                 bnx2x_set_mf_bw(bp);
4284
4285                         if (val & DRV_STATUS_DRV_INFO_REQ)
4286                                 bnx2x_handle_drv_info_req(bp);
4287
4288                         if (val & DRV_STATUS_VF_DISABLED)
4289                                 bnx2x_schedule_iov_task(bp,
4290                                                         BNX2X_IOV_HANDLE_FLR);
4291
4292                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4293                                 bnx2x_pmf_update(bp);
4294
4295                         if (bp->port.pmf &&
4296                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4297                                 bp->dcbx_enabled > 0)
4298                                 /* start dcbx state machine */
4299                                 bnx2x_dcbx_set_params(bp,
4300                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4301                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4302                                 bnx2x_handle_afex_cmd(bp,
4303                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4304                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4305                                 bnx2x_handle_eee_event(bp);
4306
4307                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4308                                 bnx2x_schedule_sp_rtnl(bp,
4309                                         BNX2X_SP_RTNL_UPDATE_SVID, 0);
4310
4311                         if (bp->link_vars.periodic_flags &
4312                             PERIODIC_FLAGS_LINK_EVENT) {
4313                                 /*  sync with link */
4314                                 bnx2x_acquire_phy_lock(bp);
4315                                 bp->link_vars.periodic_flags &=
4316                                         ~PERIODIC_FLAGS_LINK_EVENT;
4317                                 bnx2x_release_phy_lock(bp);
4318                                 if (IS_MF(bp))
4319                                         bnx2x_link_sync_notify(bp);
4320                                 bnx2x_link_report(bp);
4321                         }
4322                         /* Always call it here: bnx2x_link_report() will
4323                          * prevent the link indication duplication.
4324                          */
4325                         bnx2x__link_status_update(bp);
4326                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4327
4328                         BNX2X_ERR("MC assert!\n");
4329                         bnx2x_mc_assert(bp);
4330                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4331                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4332                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4333                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4334                         bnx2x_panic();
4335
4336                 } else if (attn & BNX2X_MCP_ASSERT) {
4337
4338                         BNX2X_ERR("MCP assert!\n");
4339                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4340                         bnx2x_fw_dump(bp);
4341
4342                 } else
4343                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4344         }
4345
4346         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4347                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4348                 if (attn & BNX2X_GRC_TIMEOUT) {
4349                         val = CHIP_IS_E1(bp) ? 0 :
4350                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4351                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4352                 }
4353                 if (attn & BNX2X_GRC_RSV) {
4354                         val = CHIP_IS_E1(bp) ? 0 :
4355                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4356                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4357                 }
4358                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4359         }
4360 }
4361
4362 /*
4363  * Bits map:
4364  * 0-7   - Engine0 load counter.
4365  * 8-15  - Engine1 load counter.
4366  * 16    - Engine0 RESET_IN_PROGRESS bit.
4367  * 17    - Engine1 RESET_IN_PROGRESS bit.
4368  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4369  *         on the engine
4370  * 19    - Engine1 ONE_IS_LOADED.
4371  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4372  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4373  *         just the one belonging to its engine).
4374  *
4375  */
4376 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4377
4378 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4379 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4380 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4381 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4382 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4383 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4384 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4385
4386 /*
4387  * Set the GLOBAL_RESET bit.
4388  *
4389  * Should be run under rtnl lock
4390  */
4391 void bnx2x_set_reset_global(struct bnx2x *bp)
4392 {
4393         u32 val;
4394         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4395         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4396         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4397         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4398 }
4399
4400 /*
4401  * Clear the GLOBAL_RESET bit.
4402  *
4403  * Should be run under rtnl lock
4404  */
4405 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4406 {
4407         u32 val;
4408         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4409         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4410         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4411         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4412 }
4413
4414 /*
4415  * Checks the GLOBAL_RESET bit.
4416  *
4417  * should be run under rtnl lock
4418  */
4419 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4420 {
4421         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4422
4423         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4424         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4425 }
4426
4427 /*
4428  * Clear RESET_IN_PROGRESS bit for the current engine.
4429  *
4430  * Should be run under rtnl lock
4431  */
4432 static void bnx2x_set_reset_done(struct bnx2x *bp)
4433 {
4434         u32 val;
4435         u32 bit = BP_PATH(bp) ?
4436                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4437         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4438         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439
4440         /* Clear the bit */
4441         val &= ~bit;
4442         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4443
4444         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4445 }
4446
4447 /*
4448  * Set RESET_IN_PROGRESS for the current engine.
4449  *
4450  * should be run under rtnl lock
4451  */
4452 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4453 {
4454         u32 val;
4455         u32 bit = BP_PATH(bp) ?
4456                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4457         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4458         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4459
4460         /* Set the bit */
4461         val |= bit;
4462         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4463         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4464 }
4465
4466 /*
4467  * Checks the RESET_IN_PROGRESS bit for the given engine.
4468  * should be run under rtnl lock
4469  */
4470 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4471 {
4472         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4473         u32 bit = engine ?
4474                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4475
4476         /* return false if bit is set */
4477         return (val & bit) ? false : true;
4478 }
4479
4480 /*
4481  * set pf load for the current pf.
4482  *
4483  * should be run under rtnl lock
4484  */
4485 void bnx2x_set_pf_load(struct bnx2x *bp)
4486 {
4487         u32 val1, val;
4488         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4489                              BNX2X_PATH0_LOAD_CNT_MASK;
4490         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4491                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4492
4493         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4494         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4495
4496         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4497
4498         /* get the current counter value */
4499         val1 = (val & mask) >> shift;
4500
4501         /* set bit of that PF */
4502         val1 |= (1 << bp->pf_num);
4503
4504         /* clear the old value */
4505         val &= ~mask;
4506
4507         /* set the new one */
4508         val |= ((val1 << shift) & mask);
4509
4510         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4511         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4512 }
4513
4514 /**
4515  * bnx2x_clear_pf_load - clear pf load mark
4516  *
4517  * @bp:         driver handle
4518  *
4519  * Should be run under rtnl lock.
4520  * Decrements the load counter for the current engine. Returns
4521  * whether other functions are still loaded
4522  */
4523 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4524 {
4525         u32 val1, val;
4526         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4527                              BNX2X_PATH0_LOAD_CNT_MASK;
4528         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4529                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4530
4531         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4532         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4533         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4534
4535         /* get the current counter value */
4536         val1 = (val & mask) >> shift;
4537
4538         /* clear bit of that PF */
4539         val1 &= ~(1 << bp->pf_num);
4540
4541         /* clear the old value */
4542         val &= ~mask;
4543
4544         /* set the new one */
4545         val |= ((val1 << shift) & mask);
4546
4547         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4548         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4549         return val1 != 0;
4550 }
4551
4552 /*
4553  * Read the load status for the current engine.
4554  *
4555  * should be run under rtnl lock
4556  */
4557 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4558 {
4559         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4560                              BNX2X_PATH0_LOAD_CNT_MASK);
4561         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4562                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4563         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4564
4565         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4566
4567         val = (val & mask) >> shift;
4568
4569         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4570            engine, val);
4571
4572         return val != 0;
4573 }
4574
4575 static void _print_parity(struct bnx2x *bp, u32 reg)
4576 {
4577         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4578 }
4579
4580 static void _print_next_block(int idx, const char *blk)
4581 {
4582         pr_cont("%s%s", idx ? ", " : "", blk);
4583 }
4584
4585 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4586                                             int *par_num, bool print)
4587 {
4588         u32 cur_bit;
4589         bool res;
4590         int i;
4591
4592         res = false;
4593
4594         for (i = 0; sig; i++) {
4595                 cur_bit = (0x1UL << i);
4596                 if (sig & cur_bit) {
4597                         res |= true; /* Each bit is real error! */
4598
4599                         if (print) {
4600                                 switch (cur_bit) {
4601                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4602                                         _print_next_block((*par_num)++, "BRB");
4603                                         _print_parity(bp,
4604                                                       BRB1_REG_BRB1_PRTY_STS);
4605                                         break;
4606                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4607                                         _print_next_block((*par_num)++,
4608                                                           "PARSER");
4609                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4610                                         break;
4611                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4612                                         _print_next_block((*par_num)++, "TSDM");
4613                                         _print_parity(bp,
4614                                                       TSDM_REG_TSDM_PRTY_STS);
4615                                         break;
4616                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4617                                         _print_next_block((*par_num)++,
4618                                                           "SEARCHER");
4619                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4620                                         break;
4621                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4622                                         _print_next_block((*par_num)++, "TCM");
4623                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4624                                         break;
4625                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4626                                         _print_next_block((*par_num)++,
4627                                                           "TSEMI");
4628                                         _print_parity(bp,
4629                                                       TSEM_REG_TSEM_PRTY_STS_0);
4630                                         _print_parity(bp,
4631                                                       TSEM_REG_TSEM_PRTY_STS_1);
4632                                         break;
4633                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4634                                         _print_next_block((*par_num)++, "XPB");
4635                                         _print_parity(bp, GRCBASE_XPB +
4636                                                           PB_REG_PB_PRTY_STS);
4637                                         break;
4638                                 }
4639                         }
4640
4641                         /* Clear the bit */
4642                         sig &= ~cur_bit;
4643                 }
4644         }
4645
4646         return res;
4647 }
4648
4649 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4650                                             int *par_num, bool *global,
4651                                             bool print)
4652 {
4653         u32 cur_bit;
4654         bool res;
4655         int i;
4656
4657         res = false;
4658
4659         for (i = 0; sig; i++) {
4660                 cur_bit = (0x1UL << i);
4661                 if (sig & cur_bit) {
4662                         res |= true; /* Each bit is real error! */
4663                         switch (cur_bit) {
4664                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4665                                 if (print) {
4666                                         _print_next_block((*par_num)++, "PBF");
4667                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4668                                 }
4669                                 break;
4670                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4671                                 if (print) {
4672                                         _print_next_block((*par_num)++, "QM");
4673                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4674                                 }
4675                                 break;
4676                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4677                                 if (print) {
4678                                         _print_next_block((*par_num)++, "TM");
4679                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4680                                 }
4681                                 break;
4682                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4683                                 if (print) {
4684                                         _print_next_block((*par_num)++, "XSDM");
4685                                         _print_parity(bp,
4686                                                       XSDM_REG_XSDM_PRTY_STS);
4687                                 }
4688                                 break;
4689                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4690                                 if (print) {
4691                                         _print_next_block((*par_num)++, "XCM");
4692                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4693                                 }
4694                                 break;
4695                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4696                                 if (print) {
4697                                         _print_next_block((*par_num)++,
4698                                                           "XSEMI");
4699                                         _print_parity(bp,
4700                                                       XSEM_REG_XSEM_PRTY_STS_0);
4701                                         _print_parity(bp,
4702                                                       XSEM_REG_XSEM_PRTY_STS_1);
4703                                 }
4704                                 break;
4705                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4706                                 if (print) {
4707                                         _print_next_block((*par_num)++,
4708                                                           "DOORBELLQ");
4709                                         _print_parity(bp,
4710                                                       DORQ_REG_DORQ_PRTY_STS);
4711                                 }
4712                                 break;
4713                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4714                                 if (print) {
4715                                         _print_next_block((*par_num)++, "NIG");
4716                                         if (CHIP_IS_E1x(bp)) {
4717                                                 _print_parity(bp,
4718                                                         NIG_REG_NIG_PRTY_STS);
4719                                         } else {
4720                                                 _print_parity(bp,
4721                                                         NIG_REG_NIG_PRTY_STS_0);
4722                                                 _print_parity(bp,
4723                                                         NIG_REG_NIG_PRTY_STS_1);
4724                                         }
4725                                 }
4726                                 break;
4727                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4728                                 if (print)
4729                                         _print_next_block((*par_num)++,
4730                                                           "VAUX PCI CORE");
4731                                 *global = true;
4732                                 break;
4733                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4734                                 if (print) {
4735                                         _print_next_block((*par_num)++,
4736                                                           "DEBUG");
4737                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4738                                 }
4739                                 break;
4740                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4741                                 if (print) {
4742                                         _print_next_block((*par_num)++, "USDM");
4743                                         _print_parity(bp,
4744                                                       USDM_REG_USDM_PRTY_STS);
4745                                 }
4746                                 break;
4747                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4748                                 if (print) {
4749                                         _print_next_block((*par_num)++, "UCM");
4750                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4751                                 }
4752                                 break;
4753                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4754                                 if (print) {
4755                                         _print_next_block((*par_num)++,
4756                                                           "USEMI");
4757                                         _print_parity(bp,
4758                                                       USEM_REG_USEM_PRTY_STS_0);
4759                                         _print_parity(bp,
4760                                                       USEM_REG_USEM_PRTY_STS_1);
4761                                 }
4762                                 break;
4763                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4764                                 if (print) {
4765                                         _print_next_block((*par_num)++, "UPB");
4766                                         _print_parity(bp, GRCBASE_UPB +
4767                                                           PB_REG_PB_PRTY_STS);
4768                                 }
4769                                 break;
4770                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4771                                 if (print) {
4772                                         _print_next_block((*par_num)++, "CSDM");
4773                                         _print_parity(bp,
4774                                                       CSDM_REG_CSDM_PRTY_STS);
4775                                 }
4776                                 break;
4777                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4778                                 if (print) {
4779                                         _print_next_block((*par_num)++, "CCM");
4780                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4781                                 }
4782                                 break;
4783                         }
4784
4785                         /* Clear the bit */
4786                         sig &= ~cur_bit;
4787                 }
4788         }
4789
4790         return res;
4791 }
4792
4793 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4794                                             int *par_num, bool print)
4795 {
4796         u32 cur_bit;
4797         bool res;
4798         int i;
4799
4800         res = false;
4801
4802         for (i = 0; sig; i++) {
4803                 cur_bit = (0x1UL << i);
4804                 if (sig & cur_bit) {
4805                         res = true; /* Each bit is real error! */
4806                         if (print) {
4807                                 switch (cur_bit) {
4808                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4809                                         _print_next_block((*par_num)++,
4810                                                           "CSEMI");
4811                                         _print_parity(bp,
4812                                                       CSEM_REG_CSEM_PRTY_STS_0);
4813                                         _print_parity(bp,
4814                                                       CSEM_REG_CSEM_PRTY_STS_1);
4815                                         break;
4816                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4817                                         _print_next_block((*par_num)++, "PXP");
4818                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4819                                         _print_parity(bp,
4820                                                       PXP2_REG_PXP2_PRTY_STS_0);
4821                                         _print_parity(bp,
4822                                                       PXP2_REG_PXP2_PRTY_STS_1);
4823                                         break;
4824                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4825                                         _print_next_block((*par_num)++,
4826                                                           "PXPPCICLOCKCLIENT");
4827                                         break;
4828                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4829                                         _print_next_block((*par_num)++, "CFC");
4830                                         _print_parity(bp,
4831                                                       CFC_REG_CFC_PRTY_STS);
4832                                         break;
4833                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4834                                         _print_next_block((*par_num)++, "CDU");
4835                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4836                                         break;
4837                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4838                                         _print_next_block((*par_num)++, "DMAE");
4839                                         _print_parity(bp,
4840                                                       DMAE_REG_DMAE_PRTY_STS);
4841                                         break;
4842                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4843                                         _print_next_block((*par_num)++, "IGU");
4844                                         if (CHIP_IS_E1x(bp))
4845                                                 _print_parity(bp,
4846                                                         HC_REG_HC_PRTY_STS);
4847                                         else
4848                                                 _print_parity(bp,
4849                                                         IGU_REG_IGU_PRTY_STS);
4850                                         break;
4851                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4852                                         _print_next_block((*par_num)++, "MISC");
4853                                         _print_parity(bp,
4854                                                       MISC_REG_MISC_PRTY_STS);
4855                                         break;
4856                                 }
4857                         }
4858
4859                         /* Clear the bit */
4860                         sig &= ~cur_bit;
4861                 }
4862         }
4863
4864         return res;
4865 }
4866
4867 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4868                                             int *par_num, bool *global,
4869                                             bool print)
4870 {
4871         bool res = false;
4872         u32 cur_bit;
4873         int i;
4874
4875         for (i = 0; sig; i++) {
4876                 cur_bit = (0x1UL << i);
4877                 if (sig & cur_bit) {
4878                         switch (cur_bit) {
4879                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4880                                 if (print)
4881                                         _print_next_block((*par_num)++,
4882                                                           "MCP ROM");
4883                                 *global = true;
4884                                 res = true;
4885                                 break;
4886                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4887                                 if (print)
4888                                         _print_next_block((*par_num)++,
4889                                                           "MCP UMP RX");
4890                                 *global = true;
4891                                 res = true;
4892                                 break;
4893                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4894                                 if (print)
4895                                         _print_next_block((*par_num)++,
4896                                                           "MCP UMP TX");
4897                                 *global = true;
4898                                 res = true;
4899                                 break;
4900                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4901                                 (*par_num)++;
4902                                 /* clear latched SCPAD PATIRY from MCP */
4903                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4904                                        1UL << 10);
4905                                 break;
4906                         }
4907
4908                         /* Clear the bit */
4909                         sig &= ~cur_bit;
4910                 }
4911         }
4912
4913         return res;
4914 }
4915
4916 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4917                                             int *par_num, bool print)
4918 {
4919         u32 cur_bit;
4920         bool res;
4921         int i;
4922
4923         res = false;
4924
4925         for (i = 0; sig; i++) {
4926                 cur_bit = (0x1UL << i);
4927                 if (sig & cur_bit) {
4928                         res = true; /* Each bit is real error! */
4929                         if (print) {
4930                                 switch (cur_bit) {
4931                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4932                                         _print_next_block((*par_num)++,
4933                                                           "PGLUE_B");
4934                                         _print_parity(bp,
4935                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4936                                         break;
4937                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4938                                         _print_next_block((*par_num)++, "ATC");
4939                                         _print_parity(bp,
4940                                                       ATC_REG_ATC_PRTY_STS);
4941                                         break;
4942                                 }
4943                         }
4944                         /* Clear the bit */
4945                         sig &= ~cur_bit;
4946                 }
4947         }
4948
4949         return res;
4950 }
4951
4952 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4953                               u32 *sig)
4954 {
4955         bool res = false;
4956
4957         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4958             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4959             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4960             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4961             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4962                 int par_num = 0;
4963
4964                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4965                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4966                           sig[0] & HW_PRTY_ASSERT_SET_0,
4967                           sig[1] & HW_PRTY_ASSERT_SET_1,
4968                           sig[2] & HW_PRTY_ASSERT_SET_2,
4969                           sig[3] & HW_PRTY_ASSERT_SET_3,
4970                           sig[4] & HW_PRTY_ASSERT_SET_4);
4971                 if (print) {
4972                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4973                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4974                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4975                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4976                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4977                                 netdev_err(bp->dev,
4978                                            "Parity errors detected in blocks: ");
4979                         } else {
4980                                 print = false;
4981                         }
4982                 }
4983                 res |= bnx2x_check_blocks_with_parity0(bp,
4984                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4985                 res |= bnx2x_check_blocks_with_parity1(bp,
4986                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4987                 res |= bnx2x_check_blocks_with_parity2(bp,
4988                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4989                 res |= bnx2x_check_blocks_with_parity3(bp,
4990                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4991                 res |= bnx2x_check_blocks_with_parity4(bp,
4992                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4993
4994                 if (print)
4995                         pr_cont("\n");
4996         }
4997
4998         return res;
4999 }
5000
5001 /**
5002  * bnx2x_chk_parity_attn - checks for parity attentions.
5003  *
5004  * @bp:         driver handle
5005  * @global:     true if there was a global attention
5006  * @print:      show parity attention in syslog
5007  */
5008 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5009 {
5010         struct attn_route attn = { {0} };
5011         int port = BP_PORT(bp);
5012
5013         attn.sig[0] = REG_RD(bp,
5014                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5015                              port*4);
5016         attn.sig[1] = REG_RD(bp,
5017                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5018                              port*4);
5019         attn.sig[2] = REG_RD(bp,
5020                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5021                              port*4);
5022         attn.sig[3] = REG_RD(bp,
5023                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5024                              port*4);
5025         /* Since MCP attentions can't be disabled inside the block, we need to
5026          * read AEU registers to see whether they're currently disabled
5027          */
5028         attn.sig[3] &= ((REG_RD(bp,
5029                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5030                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5031                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5032                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5033
5034         if (!CHIP_IS_E1x(bp))
5035                 attn.sig[4] = REG_RD(bp,
5036                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5037                                      port*4);
5038
5039         return bnx2x_parity_attn(bp, global, print, attn.sig);
5040 }
5041
5042 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5043 {
5044         u32 val;
5045         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5046
5047                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5048                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5049                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5050                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5051                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5052                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5053                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5054                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5055                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5056                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5057                 if (val &
5058                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5059                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5060                 if (val &
5061                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5062                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5063                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5064                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5065                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5066                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5067                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5068                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5069         }
5070         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5071                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5072                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5073                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5074                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5075                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5076                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5077                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5078                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5079                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5080                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5081                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5082                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5083                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5084                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5085         }
5086
5087         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5088                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5089                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5090                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5091                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5092         }
5093 }
5094
5095 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5096 {
5097         struct attn_route attn, *group_mask;
5098         int port = BP_PORT(bp);
5099         int index;
5100         u32 reg_addr;
5101         u32 val;
5102         u32 aeu_mask;
5103         bool global = false;
5104
5105         /* need to take HW lock because MCP or other port might also
5106            try to handle this event */
5107         bnx2x_acquire_alr(bp);
5108
5109         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5110 #ifndef BNX2X_STOP_ON_ERROR
5111                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5112                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5113                 /* Disable HW interrupts */
5114                 bnx2x_int_disable(bp);
5115                 /* In case of parity errors don't handle attentions so that
5116                  * other function would "see" parity errors.
5117                  */
5118 #else
5119                 bnx2x_panic();
5120 #endif
5121                 bnx2x_release_alr(bp);
5122                 return;
5123         }
5124
5125         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5126         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5127         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5128         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5129         if (!CHIP_IS_E1x(bp))
5130                 attn.sig[4] =
5131                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5132         else
5133                 attn.sig[4] = 0;
5134
5135         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5136            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5137
5138         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5139                 if (deasserted & (1 << index)) {
5140                         group_mask = &bp->attn_group[index];
5141
5142                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5143                            index,
5144                            group_mask->sig[0], group_mask->sig[1],
5145                            group_mask->sig[2], group_mask->sig[3],
5146                            group_mask->sig[4]);
5147
5148                         bnx2x_attn_int_deasserted4(bp,
5149                                         attn.sig[4] & group_mask->sig[4]);
5150                         bnx2x_attn_int_deasserted3(bp,
5151                                         attn.sig[3] & group_mask->sig[3]);
5152                         bnx2x_attn_int_deasserted1(bp,
5153                                         attn.sig[1] & group_mask->sig[1]);
5154                         bnx2x_attn_int_deasserted2(bp,
5155                                         attn.sig[2] & group_mask->sig[2]);
5156                         bnx2x_attn_int_deasserted0(bp,
5157                                         attn.sig[0] & group_mask->sig[0]);
5158                 }
5159         }
5160
5161         bnx2x_release_alr(bp);
5162
5163         if (bp->common.int_block == INT_BLOCK_HC)
5164                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5165                             COMMAND_REG_ATTN_BITS_CLR);
5166         else
5167                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5168
5169         val = ~deasserted;
5170         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5171            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5172         REG_WR(bp, reg_addr, val);
5173
5174         if (~bp->attn_state & deasserted)
5175                 BNX2X_ERR("IGU ERROR\n");
5176
5177         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5178                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5179
5180         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5181         aeu_mask = REG_RD(bp, reg_addr);
5182
5183         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5184            aeu_mask, deasserted);
5185         aeu_mask |= (deasserted & 0x3ff);
5186         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5187
5188         REG_WR(bp, reg_addr, aeu_mask);
5189         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5190
5191         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5192         bp->attn_state &= ~deasserted;
5193         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5194 }
5195
5196 static void bnx2x_attn_int(struct bnx2x *bp)
5197 {
5198         /* read local copy of bits */
5199         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5200                                                                 attn_bits);
5201         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5202                                                                 attn_bits_ack);
5203         u32 attn_state = bp->attn_state;
5204
5205         /* look for changed bits */
5206         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5207         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5208
5209         DP(NETIF_MSG_HW,
5210            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5211            attn_bits, attn_ack, asserted, deasserted);
5212
5213         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5214                 BNX2X_ERR("BAD attention state\n");
5215
5216         /* handle bits that were raised */
5217         if (asserted)
5218                 bnx2x_attn_int_asserted(bp, asserted);
5219
5220         if (deasserted)
5221                 bnx2x_attn_int_deasserted(bp, deasserted);
5222 }
5223
5224 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5225                       u16 index, u8 op, u8 update)
5226 {
5227         u32 igu_addr = bp->igu_base_addr;
5228         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5229         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5230                              igu_addr);
5231 }
5232
5233 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5234 {
5235         /* No memory barriers */
5236         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5237         mmiowb(); /* keep prod updates ordered */
5238 }
5239
5240 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5241                                       union event_ring_elem *elem)
5242 {
5243         u8 err = elem->message.error;
5244
5245         if (!bp->cnic_eth_dev.starting_cid  ||
5246             (cid < bp->cnic_eth_dev.starting_cid &&
5247             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5248                 return 1;
5249
5250         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5251
5252         if (unlikely(err)) {
5253
5254                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5255                           cid);
5256                 bnx2x_panic_dump(bp, false);
5257         }
5258         bnx2x_cnic_cfc_comp(bp, cid, err);
5259         return 0;
5260 }
5261
5262 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5263 {
5264         struct bnx2x_mcast_ramrod_params rparam;
5265         int rc;
5266
5267         memset(&rparam, 0, sizeof(rparam));
5268
5269         rparam.mcast_obj = &bp->mcast_obj;
5270
5271         netif_addr_lock_bh(bp->dev);
5272
5273         /* Clear pending state for the last command */
5274         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5275
5276         /* If there are pending mcast commands - send them */
5277         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5278                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5279                 if (rc < 0)
5280                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5281                                   rc);
5282         }
5283
5284         netif_addr_unlock_bh(bp->dev);
5285 }
5286
5287 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5288                                             union event_ring_elem *elem)
5289 {
5290         unsigned long ramrod_flags = 0;
5291         int rc = 0;
5292         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5293         u32 cid = echo & BNX2X_SWCID_MASK;
5294         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5295
5296         /* Always push next commands out, don't wait here */
5297         __set_bit(RAMROD_CONT, &ramrod_flags);
5298
5299         switch (echo >> BNX2X_SWCID_SHIFT) {
5300         case BNX2X_FILTER_MAC_PENDING:
5301                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5302                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5303                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5304                 else
5305                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5306
5307                 break;
5308         case BNX2X_FILTER_VLAN_PENDING:
5309                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5310                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5311                 break;
5312         case BNX2X_FILTER_MCAST_PENDING:
5313                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5314                 /* This is only relevant for 57710 where multicast MACs are
5315                  * configured as unicast MACs using the same ramrod.
5316                  */
5317                 bnx2x_handle_mcast_eqe(bp);
5318                 return;
5319         default:
5320                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5321                 return;
5322         }
5323
5324         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5325
5326         if (rc < 0)
5327                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5328         else if (rc > 0)
5329                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5330 }
5331
5332 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5333
5334 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5335 {
5336         netif_addr_lock_bh(bp->dev);
5337
5338         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5339
5340         /* Send rx_mode command again if was requested */
5341         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5342                 bnx2x_set_storm_rx_mode(bp);
5343         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5344                                     &bp->sp_state))
5345                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5346         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5347                                     &bp->sp_state))
5348                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5349
5350         netif_addr_unlock_bh(bp->dev);
5351 }
5352
5353 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5354                                               union event_ring_elem *elem)
5355 {
5356         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5357                 DP(BNX2X_MSG_SP,
5358                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5359                    elem->message.data.vif_list_event.func_bit_map);
5360                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5361                         elem->message.data.vif_list_event.func_bit_map);
5362         } else if (elem->message.data.vif_list_event.echo ==
5363                    VIF_LIST_RULE_SET) {
5364                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5365                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5366         }
5367 }
5368
5369 /* called with rtnl_lock */
5370 static void bnx2x_after_function_update(struct bnx2x *bp)
5371 {
5372         int q, rc;
5373         struct bnx2x_fastpath *fp;
5374         struct bnx2x_queue_state_params queue_params = {NULL};
5375         struct bnx2x_queue_update_params *q_update_params =
5376                 &queue_params.params.update;
5377
5378         /* Send Q update command with afex vlan removal values for all Qs */
5379         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5380
5381         /* set silent vlan removal values according to vlan mode */
5382         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5383                   &q_update_params->update_flags);
5384         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5385                   &q_update_params->update_flags);
5386         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5387
5388         /* in access mode mark mask and value are 0 to strip all vlans */
5389         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5390                 q_update_params->silent_removal_value = 0;
5391                 q_update_params->silent_removal_mask = 0;
5392         } else {
5393                 q_update_params->silent_removal_value =
5394                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5395                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5396         }
5397
5398         for_each_eth_queue(bp, q) {
5399                 /* Set the appropriate Queue object */
5400                 fp = &bp->fp[q];
5401                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5402
5403                 /* send the ramrod */
5404                 rc = bnx2x_queue_state_change(bp, &queue_params);
5405                 if (rc < 0)
5406                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5407                                   q);
5408         }
5409
5410         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5411                 fp = &bp->fp[FCOE_IDX(bp)];
5412                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5413
5414                 /* clear pending completion bit */
5415                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5416
5417                 /* mark latest Q bit */
5418                 smp_mb__before_atomic();
5419                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5420                 smp_mb__after_atomic();
5421
5422                 /* send Q update ramrod for FCoE Q */
5423                 rc = bnx2x_queue_state_change(bp, &queue_params);
5424                 if (rc < 0)
5425                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5426                                   q);
5427         } else {
5428                 /* If no FCoE ring - ACK MCP now */
5429                 bnx2x_link_report(bp);
5430                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5431         }
5432 }
5433
5434 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5435         struct bnx2x *bp, u32 cid)
5436 {
5437         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5438
5439         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5440                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5441         else
5442                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5443 }
5444
5445 static void bnx2x_eq_int(struct bnx2x *bp)
5446 {
5447         u16 hw_cons, sw_cons, sw_prod;
5448         union event_ring_elem *elem;
5449         u8 echo;
5450         u32 cid;
5451         u8 opcode;
5452         int rc, spqe_cnt = 0;
5453         struct bnx2x_queue_sp_obj *q_obj;
5454         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5455         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5456
5457         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5458
5459         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5460          * when we get the next-page we need to adjust so the loop
5461          * condition below will be met. The next element is the size of a
5462          * regular element and hence incrementing by 1
5463          */
5464         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5465                 hw_cons++;
5466
5467         /* This function may never run in parallel with itself for a
5468          * specific bp, thus there is no need in "paired" read memory
5469          * barrier here.
5470          */
5471         sw_cons = bp->eq_cons;
5472         sw_prod = bp->eq_prod;
5473
5474         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5475                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5476
5477         for (; sw_cons != hw_cons;
5478               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5479
5480                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5481
5482                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5483                 if (!rc) {
5484                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5485                            rc);
5486                         goto next_spqe;
5487                 }
5488
5489                 opcode = elem->message.opcode;
5490
5491                 /* handle eq element */
5492                 switch (opcode) {
5493                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5494                         bnx2x_vf_mbx_schedule(bp,
5495                                               &elem->message.data.vf_pf_event);
5496                         continue;
5497
5498                 case EVENT_RING_OPCODE_STAT_QUERY:
5499                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5500                                "got statistics comp event %d\n",
5501                                bp->stats_comp++);
5502                         /* nothing to do with stats comp */
5503                         goto next_spqe;
5504
5505                 case EVENT_RING_OPCODE_CFC_DEL:
5506                         /* handle according to cid range */
5507                         /*
5508                          * we may want to verify here that the bp state is
5509                          * HALTING
5510                          */
5511
5512                         /* elem CID originates from FW; actually LE */
5513                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5514
5515                         DP(BNX2X_MSG_SP,
5516                            "got delete ramrod for MULTI[%d]\n", cid);
5517
5518                         if (CNIC_LOADED(bp) &&
5519                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5520                                 goto next_spqe;
5521
5522                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5523
5524                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5525                                 break;
5526
5527                         goto next_spqe;
5528
5529                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5530                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5531                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5532                         if (f_obj->complete_cmd(bp, f_obj,
5533                                                 BNX2X_F_CMD_TX_STOP))
5534                                 break;
5535                         goto next_spqe;
5536
5537                 case EVENT_RING_OPCODE_START_TRAFFIC:
5538                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5539                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5540                         if (f_obj->complete_cmd(bp, f_obj,
5541                                                 BNX2X_F_CMD_TX_START))
5542                                 break;
5543                         goto next_spqe;
5544
5545                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5546                         echo = elem->message.data.function_update_event.echo;
5547                         if (echo == SWITCH_UPDATE) {
5548                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5549                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5550                                 if (f_obj->complete_cmd(
5551                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5552                                         break;
5553
5554                         } else {
5555                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5556
5557                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5558                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5559                                 f_obj->complete_cmd(bp, f_obj,
5560                                                     BNX2X_F_CMD_AFEX_UPDATE);
5561
5562                                 /* We will perform the Queues update from
5563                                  * sp_rtnl task as all Queue SP operations
5564                                  * should run under rtnl_lock.
5565                                  */
5566                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5567                         }
5568
5569                         goto next_spqe;
5570
5571                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5572                         f_obj->complete_cmd(bp, f_obj,
5573                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5574                         bnx2x_after_afex_vif_lists(bp, elem);
5575                         goto next_spqe;
5576                 case EVENT_RING_OPCODE_FUNCTION_START:
5577                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5578                            "got FUNC_START ramrod\n");
5579                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5580                                 break;
5581
5582                         goto next_spqe;
5583
5584                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5585                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5586                            "got FUNC_STOP ramrod\n");
5587                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5588                                 break;
5589
5590                         goto next_spqe;
5591
5592                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5593                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5594                            "got set_timesync ramrod completion\n");
5595                         if (f_obj->complete_cmd(bp, f_obj,
5596                                                 BNX2X_F_CMD_SET_TIMESYNC))
5597                                 break;
5598                         goto next_spqe;
5599                 }
5600
5601                 switch (opcode | bp->state) {
5602                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5603                       BNX2X_STATE_OPEN):
5604                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5605                       BNX2X_STATE_OPENING_WAIT4_PORT):
5606                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5607                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5608                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5609                            SW_CID(elem->message.data.eth_event.echo));
5610                         rss_raw->clear_pending(rss_raw);
5611                         break;
5612
5613                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5614                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5615                 case (EVENT_RING_OPCODE_SET_MAC |
5616                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5617                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5618                       BNX2X_STATE_OPEN):
5619                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5620                       BNX2X_STATE_DIAG):
5621                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5622                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5623                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5624                         bnx2x_handle_classification_eqe(bp, elem);
5625                         break;
5626
5627                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5628                       BNX2X_STATE_OPEN):
5629                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5630                       BNX2X_STATE_DIAG):
5631                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5632                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5633                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5634                         bnx2x_handle_mcast_eqe(bp);
5635                         break;
5636
5637                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5638                       BNX2X_STATE_OPEN):
5639                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5640                       BNX2X_STATE_DIAG):
5641                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5642                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5643                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5644                         bnx2x_handle_rx_mode_eqe(bp);
5645                         break;
5646                 default:
5647                         /* unknown event log error and continue */
5648                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5649                                   elem->message.opcode, bp->state);
5650                 }
5651 next_spqe:
5652                 spqe_cnt++;
5653         } /* for */
5654
5655         smp_mb__before_atomic();
5656         atomic_add(spqe_cnt, &bp->eq_spq_left);
5657
5658         bp->eq_cons = sw_cons;
5659         bp->eq_prod = sw_prod;
5660         /* Make sure that above mem writes were issued towards the memory */
5661         smp_wmb();
5662
5663         /* update producer */
5664         bnx2x_update_eq_prod(bp, bp->eq_prod);
5665 }
5666
5667 static void bnx2x_sp_task(struct work_struct *work)
5668 {
5669         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5670
5671         DP(BNX2X_MSG_SP, "sp task invoked\n");
5672
5673         /* make sure the atomic interrupt_occurred has been written */
5674         smp_rmb();
5675         if (atomic_read(&bp->interrupt_occurred)) {
5676
5677                 /* what work needs to be performed? */
5678                 u16 status = bnx2x_update_dsb_idx(bp);
5679
5680                 DP(BNX2X_MSG_SP, "status %x\n", status);
5681                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5682                 atomic_set(&bp->interrupt_occurred, 0);
5683
5684                 /* HW attentions */
5685                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5686                         bnx2x_attn_int(bp);
5687                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5688                 }
5689
5690                 /* SP events: STAT_QUERY and others */
5691                 if (status & BNX2X_DEF_SB_IDX) {
5692                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5693
5694                         if (FCOE_INIT(bp) &&
5695                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5696                                 /* Prevent local bottom-halves from running as
5697                                  * we are going to change the local NAPI list.
5698                                  */
5699                                 local_bh_disable();
5700                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5701                                 local_bh_enable();
5702                         }
5703
5704                         /* Handle EQ completions */
5705                         bnx2x_eq_int(bp);
5706                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5707                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5708
5709                         status &= ~BNX2X_DEF_SB_IDX;
5710                 }
5711
5712                 /* if status is non zero then perhaps something went wrong */
5713                 if (unlikely(status))
5714                         DP(BNX2X_MSG_SP,
5715                            "got an unknown interrupt! (status 0x%x)\n", status);
5716
5717                 /* ack status block only if something was actually handled */
5718                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5719                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5720         }
5721
5722         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5723         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5724                                &bp->sp_state)) {
5725                 bnx2x_link_report(bp);
5726                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5727         }
5728 }
5729
5730 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5731 {
5732         struct net_device *dev = dev_instance;
5733         struct bnx2x *bp = netdev_priv(dev);
5734
5735         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5736                      IGU_INT_DISABLE, 0);
5737
5738 #ifdef BNX2X_STOP_ON_ERROR
5739         if (unlikely(bp->panic))
5740                 return IRQ_HANDLED;
5741 #endif
5742
5743         if (CNIC_LOADED(bp)) {
5744                 struct cnic_ops *c_ops;
5745
5746                 rcu_read_lock();
5747                 c_ops = rcu_dereference(bp->cnic_ops);
5748                 if (c_ops)
5749                         c_ops->cnic_handler(bp->cnic_data, NULL);
5750                 rcu_read_unlock();
5751         }
5752
5753         /* schedule sp task to perform default status block work, ack
5754          * attentions and enable interrupts.
5755          */
5756         bnx2x_schedule_sp_task(bp);
5757
5758         return IRQ_HANDLED;
5759 }
5760
5761 /* end of slow path */
5762
5763 void bnx2x_drv_pulse(struct bnx2x *bp)
5764 {
5765         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5766                  bp->fw_drv_pulse_wr_seq);
5767 }
5768
5769 static void bnx2x_timer(unsigned long data)
5770 {
5771         struct bnx2x *bp = (struct bnx2x *) data;
5772
5773         if (!netif_running(bp->dev))
5774                 return;
5775
5776         if (IS_PF(bp) &&
5777             !BP_NOMCP(bp)) {
5778                 int mb_idx = BP_FW_MB_IDX(bp);
5779                 u16 drv_pulse;
5780                 u16 mcp_pulse;
5781
5782                 ++bp->fw_drv_pulse_wr_seq;
5783                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5784                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5785                 bnx2x_drv_pulse(bp);
5786
5787                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5788                              MCP_PULSE_SEQ_MASK);
5789                 /* The delta between driver pulse and mcp response
5790                  * should not get too big. If the MFW is more than 5 pulses
5791                  * behind, we should worry about it enough to generate an error
5792                  * log.
5793                  */
5794                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5795                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5796                                   drv_pulse, mcp_pulse);
5797         }
5798
5799         if (bp->state == BNX2X_STATE_OPEN)
5800                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5801
5802         /* sample pf vf bulletin board for new posts from pf */
5803         if (IS_VF(bp))
5804                 bnx2x_timer_sriov(bp);
5805
5806         mod_timer(&bp->timer, jiffies + bp->current_interval);
5807 }
5808
5809 /* end of Statistics */
5810
5811 /* nic init */
5812
5813 /*
5814  * nic init service functions
5815  */
5816
5817 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5818 {
5819         u32 i;
5820         if (!(len%4) && !(addr%4))
5821                 for (i = 0; i < len; i += 4)
5822                         REG_WR(bp, addr + i, fill);
5823         else
5824                 for (i = 0; i < len; i++)
5825                         REG_WR8(bp, addr + i, fill);
5826 }
5827
5828 /* helper: writes FP SP data to FW - data_size in dwords */
5829 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5830                                 int fw_sb_id,
5831                                 u32 *sb_data_p,
5832                                 u32 data_size)
5833 {
5834         int index;
5835         for (index = 0; index < data_size; index++)
5836                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5837                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5838                         sizeof(u32)*index,
5839                         *(sb_data_p + index));
5840 }
5841
5842 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5843 {
5844         u32 *sb_data_p;
5845         u32 data_size = 0;
5846         struct hc_status_block_data_e2 sb_data_e2;
5847         struct hc_status_block_data_e1x sb_data_e1x;
5848
5849         /* disable the function first */
5850         if (!CHIP_IS_E1x(bp)) {
5851                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5852                 sb_data_e2.common.state = SB_DISABLED;
5853                 sb_data_e2.common.p_func.vf_valid = false;
5854                 sb_data_p = (u32 *)&sb_data_e2;
5855                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5856         } else {
5857                 memset(&sb_data_e1x, 0,
5858                        sizeof(struct hc_status_block_data_e1x));
5859                 sb_data_e1x.common.state = SB_DISABLED;
5860                 sb_data_e1x.common.p_func.vf_valid = false;
5861                 sb_data_p = (u32 *)&sb_data_e1x;
5862                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5863         }
5864         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5865
5866         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5867                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5868                         CSTORM_STATUS_BLOCK_SIZE);
5869         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5870                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5871                         CSTORM_SYNC_BLOCK_SIZE);
5872 }
5873
5874 /* helper:  writes SP SB data to FW */
5875 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5876                 struct hc_sp_status_block_data *sp_sb_data)
5877 {
5878         int func = BP_FUNC(bp);
5879         int i;
5880         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5881                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5882                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5883                         i*sizeof(u32),
5884                         *((u32 *)sp_sb_data + i));
5885 }
5886
5887 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5888 {
5889         int func = BP_FUNC(bp);
5890         struct hc_sp_status_block_data sp_sb_data;
5891         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5892
5893         sp_sb_data.state = SB_DISABLED;
5894         sp_sb_data.p_func.vf_valid = false;
5895
5896         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5897
5898         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5899                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5900                         CSTORM_SP_STATUS_BLOCK_SIZE);
5901         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5902                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5903                         CSTORM_SP_SYNC_BLOCK_SIZE);
5904 }
5905
5906 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5907                                            int igu_sb_id, int igu_seg_id)
5908 {
5909         hc_sm->igu_sb_id = igu_sb_id;
5910         hc_sm->igu_seg_id = igu_seg_id;
5911         hc_sm->timer_value = 0xFF;
5912         hc_sm->time_to_expire = 0xFFFFFFFF;
5913 }
5914
5915 /* allocates state machine ids. */
5916 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5917 {
5918         /* zero out state machine indices */
5919         /* rx indices */
5920         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5921
5922         /* tx indices */
5923         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5924         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5925         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5926         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5927
5928         /* map indices */
5929         /* rx indices */
5930         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5931                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5932
5933         /* tx indices */
5934         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5935                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5936         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5937                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5938         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5939                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5940         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5941                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942 }
5943
5944 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5945                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5946 {
5947         int igu_seg_id;
5948
5949         struct hc_status_block_data_e2 sb_data_e2;
5950         struct hc_status_block_data_e1x sb_data_e1x;
5951         struct hc_status_block_sm  *hc_sm_p;
5952         int data_size;
5953         u32 *sb_data_p;
5954
5955         if (CHIP_INT_MODE_IS_BC(bp))
5956                 igu_seg_id = HC_SEG_ACCESS_NORM;
5957         else
5958                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5959
5960         bnx2x_zero_fp_sb(bp, fw_sb_id);
5961
5962         if (!CHIP_IS_E1x(bp)) {
5963                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5964                 sb_data_e2.common.state = SB_ENABLED;
5965                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5966                 sb_data_e2.common.p_func.vf_id = vfid;
5967                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5968                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5969                 sb_data_e2.common.same_igu_sb_1b = true;
5970                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5971                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5972                 hc_sm_p = sb_data_e2.common.state_machine;
5973                 sb_data_p = (u32 *)&sb_data_e2;
5974                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5975                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5976         } else {
5977                 memset(&sb_data_e1x, 0,
5978                        sizeof(struct hc_status_block_data_e1x));
5979                 sb_data_e1x.common.state = SB_ENABLED;
5980                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5981                 sb_data_e1x.common.p_func.vf_id = 0xff;
5982                 sb_data_e1x.common.p_func.vf_valid = false;
5983                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5984                 sb_data_e1x.common.same_igu_sb_1b = true;
5985                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5986                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5987                 hc_sm_p = sb_data_e1x.common.state_machine;
5988                 sb_data_p = (u32 *)&sb_data_e1x;
5989                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5990                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5991         }
5992
5993         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5994                                        igu_sb_id, igu_seg_id);
5995         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5996                                        igu_sb_id, igu_seg_id);
5997
5998         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5999
6000         /* write indices to HW - PCI guarantees endianity of regpairs */
6001         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6002 }
6003
6004 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6005                                      u16 tx_usec, u16 rx_usec)
6006 {
6007         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6008                                     false, rx_usec);
6009         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6010                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6011                                        tx_usec);
6012         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6013                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6014                                        tx_usec);
6015         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6016                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6017                                        tx_usec);
6018 }
6019
6020 static void bnx2x_init_def_sb(struct bnx2x *bp)
6021 {
6022         struct host_sp_status_block *def_sb = bp->def_status_blk;
6023         dma_addr_t mapping = bp->def_status_blk_mapping;
6024         int igu_sp_sb_index;
6025         int igu_seg_id;
6026         int port = BP_PORT(bp);
6027         int func = BP_FUNC(bp);
6028         int reg_offset, reg_offset_en5;
6029         u64 section;
6030         int index;
6031         struct hc_sp_status_block_data sp_sb_data;
6032         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6033
6034         if (CHIP_INT_MODE_IS_BC(bp)) {
6035                 igu_sp_sb_index = DEF_SB_IGU_ID;
6036                 igu_seg_id = HC_SEG_ACCESS_DEF;
6037         } else {
6038                 igu_sp_sb_index = bp->igu_dsb_id;
6039                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6040         }
6041
6042         /* ATTN */
6043         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6044                                             atten_status_block);
6045         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6046
6047         bp->attn_state = 0;
6048
6049         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6050                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6051         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6052                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6053         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6054                 int sindex;
6055                 /* take care of sig[0]..sig[4] */
6056                 for (sindex = 0; sindex < 4; sindex++)
6057                         bp->attn_group[index].sig[sindex] =
6058                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6059
6060                 if (!CHIP_IS_E1x(bp))
6061                         /*
6062                          * enable5 is separate from the rest of the registers,
6063                          * and therefore the address skip is 4
6064                          * and not 16 between the different groups
6065                          */
6066                         bp->attn_group[index].sig[4] = REG_RD(bp,
6067                                         reg_offset_en5 + 0x4*index);
6068                 else
6069                         bp->attn_group[index].sig[4] = 0;
6070         }
6071
6072         if (bp->common.int_block == INT_BLOCK_HC) {
6073                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6074                                      HC_REG_ATTN_MSG0_ADDR_L);
6075
6076                 REG_WR(bp, reg_offset, U64_LO(section));
6077                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6078         } else if (!CHIP_IS_E1x(bp)) {
6079                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6080                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6081         }
6082
6083         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6084                                             sp_sb);
6085
6086         bnx2x_zero_sp_sb(bp);
6087
6088         /* PCI guarantees endianity of regpairs */
6089         sp_sb_data.state                = SB_ENABLED;
6090         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6091         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6092         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6093         sp_sb_data.igu_seg_id           = igu_seg_id;
6094         sp_sb_data.p_func.pf_id         = func;
6095         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6096         sp_sb_data.p_func.vf_id         = 0xff;
6097
6098         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6099
6100         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6101 }
6102
6103 void bnx2x_update_coalesce(struct bnx2x *bp)
6104 {
6105         int i;
6106
6107         for_each_eth_queue(bp, i)
6108                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6109                                          bp->tx_ticks, bp->rx_ticks);
6110 }
6111
6112 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6113 {
6114         spin_lock_init(&bp->spq_lock);
6115         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6116
6117         bp->spq_prod_idx = 0;
6118         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6119         bp->spq_prod_bd = bp->spq;
6120         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6121 }
6122
6123 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6124 {
6125         int i;
6126         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6127                 union event_ring_elem *elem =
6128                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6129
6130                 elem->next_page.addr.hi =
6131                         cpu_to_le32(U64_HI(bp->eq_mapping +
6132                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6133                 elem->next_page.addr.lo =
6134                         cpu_to_le32(U64_LO(bp->eq_mapping +
6135                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6136         }
6137         bp->eq_cons = 0;
6138         bp->eq_prod = NUM_EQ_DESC;
6139         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6140         /* we want a warning message before it gets wrought... */
6141         atomic_set(&bp->eq_spq_left,
6142                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6143 }
6144
6145 /* called with netif_addr_lock_bh() */
6146 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6147                                unsigned long rx_mode_flags,
6148                                unsigned long rx_accept_flags,
6149                                unsigned long tx_accept_flags,
6150                                unsigned long ramrod_flags)
6151 {
6152         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6153         int rc;
6154
6155         memset(&ramrod_param, 0, sizeof(ramrod_param));
6156
6157         /* Prepare ramrod parameters */
6158         ramrod_param.cid = 0;
6159         ramrod_param.cl_id = cl_id;
6160         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6161         ramrod_param.func_id = BP_FUNC(bp);
6162
6163         ramrod_param.pstate = &bp->sp_state;
6164         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6165
6166         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6167         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6168
6169         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6170
6171         ramrod_param.ramrod_flags = ramrod_flags;
6172         ramrod_param.rx_mode_flags = rx_mode_flags;
6173
6174         ramrod_param.rx_accept_flags = rx_accept_flags;
6175         ramrod_param.tx_accept_flags = tx_accept_flags;
6176
6177         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6178         if (rc < 0) {
6179                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6180                 return rc;
6181         }
6182
6183         return 0;
6184 }
6185
6186 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6187                                    unsigned long *rx_accept_flags,
6188                                    unsigned long *tx_accept_flags)
6189 {
6190         /* Clear the flags first */
6191         *rx_accept_flags = 0;
6192         *tx_accept_flags = 0;
6193
6194         switch (rx_mode) {
6195         case BNX2X_RX_MODE_NONE:
6196                 /*
6197                  * 'drop all' supersedes any accept flags that may have been
6198                  * passed to the function.
6199                  */
6200                 break;
6201         case BNX2X_RX_MODE_NORMAL:
6202                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6203                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6204                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6205
6206                 /* internal switching mode */
6207                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6208                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6209                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6210
6211                 if (bp->accept_any_vlan) {
6212                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6213                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6214                 }
6215
6216                 break;
6217         case BNX2X_RX_MODE_ALLMULTI:
6218                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6219                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6220                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221
6222                 /* internal switching mode */
6223                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6224                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6225                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226
6227                 if (bp->accept_any_vlan) {
6228                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6229                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6230                 }
6231
6232                 break;
6233         case BNX2X_RX_MODE_PROMISC:
6234                 /* According to definition of SI mode, iface in promisc mode
6235                  * should receive matched and unmatched (in resolution of port)
6236                  * unicast packets.
6237                  */
6238                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6239                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6240                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6241                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6242
6243                 /* internal switching mode */
6244                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6245                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6246
6247                 if (IS_MF_SI(bp))
6248                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6249                 else
6250                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6251
6252                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6253                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6254
6255                 break;
6256         default:
6257                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6258                 return -EINVAL;
6259         }
6260
6261         return 0;
6262 }
6263
6264 /* called with netif_addr_lock_bh() */
6265 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6266 {
6267         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6268         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6269         int rc;
6270
6271         if (!NO_FCOE(bp))
6272                 /* Configure rx_mode of FCoE Queue */
6273                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6274
6275         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6276                                      &tx_accept_flags);
6277         if (rc)
6278                 return rc;
6279
6280         __set_bit(RAMROD_RX, &ramrod_flags);
6281         __set_bit(RAMROD_TX, &ramrod_flags);
6282
6283         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6284                                    rx_accept_flags, tx_accept_flags,
6285                                    ramrod_flags);
6286 }
6287
6288 static void bnx2x_init_internal_common(struct bnx2x *bp)
6289 {
6290         int i;
6291
6292         /* Zero this manually as its initialization is
6293            currently missing in the initTool */
6294         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6295                 REG_WR(bp, BAR_USTRORM_INTMEM +
6296                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6297         if (!CHIP_IS_E1x(bp)) {
6298                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6299                         CHIP_INT_MODE_IS_BC(bp) ?
6300                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6301         }
6302 }
6303
6304 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6305 {
6306         switch (load_code) {
6307         case FW_MSG_CODE_DRV_LOAD_COMMON:
6308         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6309                 bnx2x_init_internal_common(bp);
6310                 /* no break */
6311
6312         case FW_MSG_CODE_DRV_LOAD_PORT:
6313                 /* nothing to do */
6314                 /* no break */
6315
6316         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6317                 /* internal memory per function is
6318                    initialized inside bnx2x_pf_init */
6319                 break;
6320
6321         default:
6322                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6323                 break;
6324         }
6325 }
6326
6327 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331
6332 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6333 {
6334         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6335 }
6336
6337 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6338 {
6339         if (CHIP_IS_E1x(fp->bp))
6340                 return BP_L_ID(fp->bp) + fp->index;
6341         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6342                 return bnx2x_fp_igu_sb_id(fp);
6343 }
6344
6345 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6346 {
6347         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6348         u8 cos;
6349         unsigned long q_type = 0;
6350         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6351         fp->rx_queue = fp_idx;
6352         fp->cid = fp_idx;
6353         fp->cl_id = bnx2x_fp_cl_id(fp);
6354         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6355         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6356         /* qZone id equals to FW (per path) client id */
6357         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6358
6359         /* init shortcut */
6360         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6361
6362         /* Setup SB indices */
6363         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6364
6365         /* Configure Queue State object */
6366         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6367         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6368
6369         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6370
6371         /* init tx data */
6372         for_each_cos_in_tx_queue(fp, cos) {
6373                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6374                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6375                                   FP_COS_TO_TXQ(fp, cos, bp),
6376                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6377                 cids[cos] = fp->txdata_ptr[cos]->cid;
6378         }
6379
6380         /* nothing more for vf to do here */
6381         if (IS_VF(bp))
6382                 return;
6383
6384         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6385                       fp->fw_sb_id, fp->igu_sb_id);
6386         bnx2x_update_fpsb_idx(fp);
6387         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6388                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6389                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6390
6391         /**
6392          * Configure classification DBs: Always enable Tx switching
6393          */
6394         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6395
6396         DP(NETIF_MSG_IFUP,
6397            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6398            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6399            fp->igu_sb_id);
6400 }
6401
6402 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6403 {
6404         int i;
6405
6406         for (i = 1; i <= NUM_TX_RINGS; i++) {
6407                 struct eth_tx_next_bd *tx_next_bd =
6408                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6409
6410                 tx_next_bd->addr_hi =
6411                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6412                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6413                 tx_next_bd->addr_lo =
6414                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6415                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6416         }
6417
6418         *txdata->tx_cons_sb = cpu_to_le16(0);
6419
6420         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6421         txdata->tx_db.data.zero_fill1 = 0;
6422         txdata->tx_db.data.prod = 0;
6423
6424         txdata->tx_pkt_prod = 0;
6425         txdata->tx_pkt_cons = 0;
6426         txdata->tx_bd_prod = 0;
6427         txdata->tx_bd_cons = 0;
6428         txdata->tx_pkt = 0;
6429 }
6430
6431 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6432 {
6433         int i;
6434
6435         for_each_tx_queue_cnic(bp, i)
6436                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6437 }
6438
6439 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6440 {
6441         int i;
6442         u8 cos;
6443
6444         for_each_eth_queue(bp, i)
6445                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6446                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6447 }
6448
6449 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6450 {
6451         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6452         unsigned long q_type = 0;
6453
6454         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6455         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6456                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6457         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6458         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6459         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6460         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6461         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6462                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6463                           fp);
6464
6465         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6466
6467         /* qZone id equals to FW (per path) client id */
6468         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6469         /* init shortcut */
6470         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6471                 bnx2x_rx_ustorm_prods_offset(fp);
6472
6473         /* Configure Queue State object */
6474         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6475         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6476
6477         /* No multi-CoS for FCoE L2 client */
6478         BUG_ON(fp->max_cos != 1);
6479
6480         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6481                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6482                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6483
6484         DP(NETIF_MSG_IFUP,
6485            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6486            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6487            fp->igu_sb_id);
6488 }
6489
6490 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6491 {
6492         if (!NO_FCOE(bp))
6493                 bnx2x_init_fcoe_fp(bp);
6494
6495         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6496                       BNX2X_VF_ID_INVALID, false,
6497                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6498
6499         /* ensure status block indices were read */
6500         rmb();
6501         bnx2x_init_rx_rings_cnic(bp);
6502         bnx2x_init_tx_rings_cnic(bp);
6503
6504         /* flush all */
6505         mb();
6506         mmiowb();
6507 }
6508
6509 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6510 {
6511         int i;
6512
6513         /* Setup NIC internals and enable interrupts */
6514         for_each_eth_queue(bp, i)
6515                 bnx2x_init_eth_fp(bp, i);
6516
6517         /* ensure status block indices were read */
6518         rmb();
6519         bnx2x_init_rx_rings(bp);
6520         bnx2x_init_tx_rings(bp);
6521
6522         if (IS_PF(bp)) {
6523                 /* Initialize MOD_ABS interrupts */
6524                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6525                                        bp->common.shmem_base,
6526                                        bp->common.shmem2_base, BP_PORT(bp));
6527
6528                 /* initialize the default status block and sp ring */
6529                 bnx2x_init_def_sb(bp);
6530                 bnx2x_update_dsb_idx(bp);
6531                 bnx2x_init_sp_ring(bp);
6532         } else {
6533                 bnx2x_memset_stats(bp);
6534         }
6535 }
6536
6537 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6538 {
6539         bnx2x_init_eq_ring(bp);
6540         bnx2x_init_internal(bp, load_code);
6541         bnx2x_pf_init(bp);
6542         bnx2x_stats_init(bp);
6543
6544         /* flush all before enabling interrupts */
6545         mb();
6546         mmiowb();
6547
6548         bnx2x_int_enable(bp);
6549
6550         /* Check for SPIO5 */
6551         bnx2x_attn_int_deasserted0(bp,
6552                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6553                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6554 }
6555
6556 /* gzip service functions */
6557 static int bnx2x_gunzip_init(struct bnx2x *bp)
6558 {
6559         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6560                                             &bp->gunzip_mapping, GFP_KERNEL);
6561         if (bp->gunzip_buf  == NULL)
6562                 goto gunzip_nomem1;
6563
6564         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6565         if (bp->strm  == NULL)
6566                 goto gunzip_nomem2;
6567
6568         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6569         if (bp->strm->workspace == NULL)
6570                 goto gunzip_nomem3;
6571
6572         return 0;
6573
6574 gunzip_nomem3:
6575         kfree(bp->strm);
6576         bp->strm = NULL;
6577
6578 gunzip_nomem2:
6579         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6580                           bp->gunzip_mapping);
6581         bp->gunzip_buf = NULL;
6582
6583 gunzip_nomem1:
6584         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6585         return -ENOMEM;
6586 }
6587
6588 static void bnx2x_gunzip_end(struct bnx2x *bp)
6589 {
6590         if (bp->strm) {
6591                 vfree(bp->strm->workspace);
6592                 kfree(bp->strm);
6593                 bp->strm = NULL;
6594         }
6595
6596         if (bp->gunzip_buf) {
6597                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6598                                   bp->gunzip_mapping);
6599                 bp->gunzip_buf = NULL;
6600         }
6601 }
6602
6603 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6604 {
6605         int n, rc;
6606
6607         /* check gzip header */
6608         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6609                 BNX2X_ERR("Bad gzip header\n");
6610                 return -EINVAL;
6611         }
6612
6613         n = 10;
6614
6615 #define FNAME                           0x8
6616
6617         if (zbuf[3] & FNAME)
6618                 while ((zbuf[n++] != 0) && (n < len));
6619
6620         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6621         bp->strm->avail_in = len - n;
6622         bp->strm->next_out = bp->gunzip_buf;
6623         bp->strm->avail_out = FW_BUF_SIZE;
6624
6625         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6626         if (rc != Z_OK)
6627                 return rc;
6628
6629         rc = zlib_inflate(bp->strm, Z_FINISH);
6630         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6631                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6632                            bp->strm->msg);
6633
6634         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6635         if (bp->gunzip_outlen & 0x3)
6636                 netdev_err(bp->dev,
6637                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6638                                 bp->gunzip_outlen);
6639         bp->gunzip_outlen >>= 2;
6640
6641         zlib_inflateEnd(bp->strm);
6642
6643         if (rc == Z_STREAM_END)
6644                 return 0;
6645
6646         return rc;
6647 }
6648
6649 /* nic load/unload */
6650
6651 /*
6652  * General service functions
6653  */
6654
6655 /* send a NIG loopback debug packet */
6656 static void bnx2x_lb_pckt(struct bnx2x *bp)
6657 {
6658         u32 wb_write[3];
6659
6660         /* Ethernet source and destination addresses */
6661         wb_write[0] = 0x55555555;
6662         wb_write[1] = 0x55555555;
6663         wb_write[2] = 0x20;             /* SOP */
6664         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6665
6666         /* NON-IP protocol */
6667         wb_write[0] = 0x09000000;
6668         wb_write[1] = 0x55555555;
6669         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6670         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6671 }
6672
6673 /* some of the internal memories
6674  * are not directly readable from the driver
6675  * to test them we send debug packets
6676  */
6677 static int bnx2x_int_mem_test(struct bnx2x *bp)
6678 {
6679         int factor;
6680         int count, i;
6681         u32 val = 0;
6682
6683         if (CHIP_REV_IS_FPGA(bp))
6684                 factor = 120;
6685         else if (CHIP_REV_IS_EMUL(bp))
6686                 factor = 200;
6687         else
6688                 factor = 1;
6689
6690         /* Disable inputs of parser neighbor blocks */
6691         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6692         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6693         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6694         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6695
6696         /*  Write 0 to parser credits for CFC search request */
6697         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6698
6699         /* send Ethernet packet */
6700         bnx2x_lb_pckt(bp);
6701
6702         /* TODO do i reset NIG statistic? */
6703         /* Wait until NIG register shows 1 packet of size 0x10 */
6704         count = 1000 * factor;
6705         while (count) {
6706
6707                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6708                 val = *bnx2x_sp(bp, wb_data[0]);
6709                 if (val == 0x10)
6710                         break;
6711
6712                 usleep_range(10000, 20000);
6713                 count--;
6714         }
6715         if (val != 0x10) {
6716                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6717                 return -1;
6718         }
6719
6720         /* Wait until PRS register shows 1 packet */
6721         count = 1000 * factor;
6722         while (count) {
6723                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6724                 if (val == 1)
6725                         break;
6726
6727                 usleep_range(10000, 20000);
6728                 count--;
6729         }
6730         if (val != 0x1) {
6731                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6732                 return -2;
6733         }
6734
6735         /* Reset and init BRB, PRS */
6736         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6737         msleep(50);
6738         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6739         msleep(50);
6740         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6741         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6742
6743         DP(NETIF_MSG_HW, "part2\n");
6744
6745         /* Disable inputs of parser neighbor blocks */
6746         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6747         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6748         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6749         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6750
6751         /* Write 0 to parser credits for CFC search request */
6752         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6753
6754         /* send 10 Ethernet packets */
6755         for (i = 0; i < 10; i++)
6756                 bnx2x_lb_pckt(bp);
6757
6758         /* Wait until NIG register shows 10 + 1
6759            packets of size 11*0x10 = 0xb0 */
6760         count = 1000 * factor;
6761         while (count) {
6762
6763                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6764                 val = *bnx2x_sp(bp, wb_data[0]);
6765                 if (val == 0xb0)
6766                         break;
6767
6768                 usleep_range(10000, 20000);
6769                 count--;
6770         }
6771         if (val != 0xb0) {
6772                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6773                 return -3;
6774         }
6775
6776         /* Wait until PRS register shows 2 packets */
6777         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6778         if (val != 2)
6779                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6780
6781         /* Write 1 to parser credits for CFC search request */
6782         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6783
6784         /* Wait until PRS register shows 3 packets */
6785         msleep(10 * factor);
6786         /* Wait until NIG register shows 1 packet of size 0x10 */
6787         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6788         if (val != 3)
6789                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6790
6791         /* clear NIG EOP FIFO */
6792         for (i = 0; i < 11; i++)
6793                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6794         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6795         if (val != 1) {
6796                 BNX2X_ERR("clear of NIG failed\n");
6797                 return -4;
6798         }
6799
6800         /* Reset and init BRB, PRS, NIG */
6801         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6802         msleep(50);
6803         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6804         msleep(50);
6805         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6806         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6807         if (!CNIC_SUPPORT(bp))
6808                 /* set NIC mode */
6809                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6810
6811         /* Enable inputs of parser neighbor blocks */
6812         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6813         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6814         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6815         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6816
6817         DP(NETIF_MSG_HW, "done\n");
6818
6819         return 0; /* OK */
6820 }
6821
6822 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6823 {
6824         u32 val;
6825
6826         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6827         if (!CHIP_IS_E1x(bp))
6828                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6829         else
6830                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6831         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6832         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6833         /*
6834          * mask read length error interrupts in brb for parser
6835          * (parsing unit and 'checksum and crc' unit)
6836          * these errors are legal (PU reads fixed length and CAC can cause
6837          * read length error on truncated packets)
6838          */
6839         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6840         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6841         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6842         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6843         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6844         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6845 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6846 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6847         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6848         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6849         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6850 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6851 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6852         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6853         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6854         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6855         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6856 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6857 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6858
6859         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6860                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6861                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6862         if (!CHIP_IS_E1x(bp))
6863                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6864                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6865         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6866
6867         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6868         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6869         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6870 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6871
6872         if (!CHIP_IS_E1x(bp))
6873                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6874                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6875
6876         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6877         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6878 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6879         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6880 }
6881
6882 static void bnx2x_reset_common(struct bnx2x *bp)
6883 {
6884         u32 val = 0x1400;
6885
6886         /* reset_common */
6887         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6888                0xd3ffff7f);
6889
6890         if (CHIP_IS_E3(bp)) {
6891                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6892                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6893         }
6894
6895         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6896 }
6897
6898 static void bnx2x_setup_dmae(struct bnx2x *bp)
6899 {
6900         bp->dmae_ready = 0;
6901         spin_lock_init(&bp->dmae_lock);
6902 }
6903
6904 static void bnx2x_init_pxp(struct bnx2x *bp)
6905 {
6906         u16 devctl;
6907         int r_order, w_order;
6908
6909         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6910         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6911         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6912         if (bp->mrrs == -1)
6913                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6914         else {
6915                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6916                 r_order = bp->mrrs;
6917         }
6918
6919         bnx2x_init_pxp_arb(bp, r_order, w_order);
6920 }
6921
6922 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6923 {
6924         int is_required;
6925         u32 val;
6926         int port;
6927
6928         if (BP_NOMCP(bp))
6929                 return;
6930
6931         is_required = 0;
6932         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6933               SHARED_HW_CFG_FAN_FAILURE_MASK;
6934
6935         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6936                 is_required = 1;
6937
6938         /*
6939          * The fan failure mechanism is usually related to the PHY type since
6940          * the power consumption of the board is affected by the PHY. Currently,
6941          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6942          */
6943         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6944                 for (port = PORT_0; port < PORT_MAX; port++) {
6945                         is_required |=
6946                                 bnx2x_fan_failure_det_req(
6947                                         bp,
6948                                         bp->common.shmem_base,
6949                                         bp->common.shmem2_base,
6950                                         port);
6951                 }
6952
6953         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6954
6955         if (is_required == 0)
6956                 return;
6957
6958         /* Fan failure is indicated by SPIO 5 */
6959         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6960
6961         /* set to active low mode */
6962         val = REG_RD(bp, MISC_REG_SPIO_INT);
6963         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6964         REG_WR(bp, MISC_REG_SPIO_INT, val);
6965
6966         /* enable interrupt to signal the IGU */
6967         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6968         val |= MISC_SPIO_SPIO5;
6969         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6970 }
6971
6972 void bnx2x_pf_disable(struct bnx2x *bp)
6973 {
6974         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6975         val &= ~IGU_PF_CONF_FUNC_EN;
6976
6977         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6978         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6979         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6980 }
6981
6982 static void bnx2x__common_init_phy(struct bnx2x *bp)
6983 {
6984         u32 shmem_base[2], shmem2_base[2];
6985         /* Avoid common init in case MFW supports LFA */
6986         if (SHMEM2_RD(bp, size) >
6987             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6988                 return;
6989         shmem_base[0] =  bp->common.shmem_base;
6990         shmem2_base[0] = bp->common.shmem2_base;
6991         if (!CHIP_IS_E1x(bp)) {
6992                 shmem_base[1] =
6993                         SHMEM2_RD(bp, other_shmem_base_addr);
6994                 shmem2_base[1] =
6995                         SHMEM2_RD(bp, other_shmem2_base_addr);
6996         }
6997         bnx2x_acquire_phy_lock(bp);
6998         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6999                               bp->common.chip_id);
7000         bnx2x_release_phy_lock(bp);
7001 }
7002
7003 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7004 {
7005         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7006         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7007         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7008         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7009         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7010
7011         /* make sure this value is 0 */
7012         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7013
7014         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7015         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7016         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7017         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7018 }
7019
7020 static void bnx2x_set_endianity(struct bnx2x *bp)
7021 {
7022 #ifdef __BIG_ENDIAN
7023         bnx2x_config_endianity(bp, 1);
7024 #else
7025         bnx2x_config_endianity(bp, 0);
7026 #endif
7027 }
7028
7029 static void bnx2x_reset_endianity(struct bnx2x *bp)
7030 {
7031         bnx2x_config_endianity(bp, 0);
7032 }
7033
7034 /**
7035  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7036  *
7037  * @bp:         driver handle
7038  */
7039 static int bnx2x_init_hw_common(struct bnx2x *bp)
7040 {
7041         u32 val;
7042
7043         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7044
7045         /*
7046          * take the RESET lock to protect undi_unload flow from accessing
7047          * registers while we're resetting the chip
7048          */
7049         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7050
7051         bnx2x_reset_common(bp);
7052         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7053
7054         val = 0xfffc;
7055         if (CHIP_IS_E3(bp)) {
7056                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7057                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7058         }
7059         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7060
7061         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7062
7063         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7064
7065         if (!CHIP_IS_E1x(bp)) {
7066                 u8 abs_func_id;
7067
7068                 /**
7069                  * 4-port mode or 2-port mode we need to turn of master-enable
7070                  * for everyone, after that, turn it back on for self.
7071                  * so, we disregard multi-function or not, and always disable
7072                  * for all functions on the given path, this means 0,2,4,6 for
7073                  * path 0 and 1,3,5,7 for path 1
7074                  */
7075                 for (abs_func_id = BP_PATH(bp);
7076                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7077                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7078                                 REG_WR(bp,
7079                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7080                                     1);
7081                                 continue;
7082                         }
7083
7084                         bnx2x_pretend_func(bp, abs_func_id);
7085                         /* clear pf enable */
7086                         bnx2x_pf_disable(bp);
7087                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7088                 }
7089         }
7090
7091         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7092         if (CHIP_IS_E1(bp)) {
7093                 /* enable HW interrupt from PXP on USDM overflow
7094                    bit 16 on INT_MASK_0 */
7095                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7096         }
7097
7098         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7099         bnx2x_init_pxp(bp);
7100         bnx2x_set_endianity(bp);
7101         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7102
7103         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7104                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7105
7106         /* let the HW do it's magic ... */
7107         msleep(100);
7108         /* finish PXP init */
7109         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7110         if (val != 1) {
7111                 BNX2X_ERR("PXP2 CFG failed\n");
7112                 return -EBUSY;
7113         }
7114         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7115         if (val != 1) {
7116                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7117                 return -EBUSY;
7118         }
7119
7120         /* Timers bug workaround E2 only. We need to set the entire ILT to
7121          * have entries with value "0" and valid bit on.
7122          * This needs to be done by the first PF that is loaded in a path
7123          * (i.e. common phase)
7124          */
7125         if (!CHIP_IS_E1x(bp)) {
7126 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7127  * (i.e. vnic3) to start even if it is marked as "scan-off".
7128  * This occurs when a different function (func2,3) is being marked
7129  * as "scan-off". Real-life scenario for example: if a driver is being
7130  * load-unloaded while func6,7 are down. This will cause the timer to access
7131  * the ilt, translate to a logical address and send a request to read/write.
7132  * Since the ilt for the function that is down is not valid, this will cause
7133  * a translation error which is unrecoverable.
7134  * The Workaround is intended to make sure that when this happens nothing fatal
7135  * will occur. The workaround:
7136  *      1.  First PF driver which loads on a path will:
7137  *              a.  After taking the chip out of reset, by using pretend,
7138  *                  it will write "0" to the following registers of
7139  *                  the other vnics.
7140  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7141  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7142  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7143  *                  And for itself it will write '1' to
7144  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7145  *                  dmae-operations (writing to pram for example.)
7146  *                  note: can be done for only function 6,7 but cleaner this
7147  *                        way.
7148  *              b.  Write zero+valid to the entire ILT.
7149  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7150  *                  VNIC3 (of that port). The range allocated will be the
7151  *                  entire ILT. This is needed to prevent  ILT range error.
7152  *      2.  Any PF driver load flow:
7153  *              a.  ILT update with the physical addresses of the allocated
7154  *                  logical pages.
7155  *              b.  Wait 20msec. - note that this timeout is needed to make
7156  *                  sure there are no requests in one of the PXP internal
7157  *                  queues with "old" ILT addresses.
7158  *              c.  PF enable in the PGLC.
7159  *              d.  Clear the was_error of the PF in the PGLC. (could have
7160  *                  occurred while driver was down)
7161  *              e.  PF enable in the CFC (WEAK + STRONG)
7162  *              f.  Timers scan enable
7163  *      3.  PF driver unload flow:
7164  *              a.  Clear the Timers scan_en.
7165  *              b.  Polling for scan_on=0 for that PF.
7166  *              c.  Clear the PF enable bit in the PXP.
7167  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7168  *              e.  Write zero+valid to all ILT entries (The valid bit must
7169  *                  stay set)
7170  *              f.  If this is VNIC 3 of a port then also init
7171  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7172  *                  to the last entry in the ILT.
7173  *
7174  *      Notes:
7175  *      Currently the PF error in the PGLC is non recoverable.
7176  *      In the future the there will be a recovery routine for this error.
7177  *      Currently attention is masked.
7178  *      Having an MCP lock on the load/unload process does not guarantee that
7179  *      there is no Timer disable during Func6/7 enable. This is because the
7180  *      Timers scan is currently being cleared by the MCP on FLR.
7181  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7182  *      there is error before clearing it. But the flow above is simpler and
7183  *      more general.
7184  *      All ILT entries are written by zero+valid and not just PF6/7
7185  *      ILT entries since in the future the ILT entries allocation for
7186  *      PF-s might be dynamic.
7187  */
7188                 struct ilt_client_info ilt_cli;
7189                 struct bnx2x_ilt ilt;
7190                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7191                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7192
7193                 /* initialize dummy TM client */
7194                 ilt_cli.start = 0;
7195                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7196                 ilt_cli.client_num = ILT_CLIENT_TM;
7197
7198                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7199                  * Step 2: set the timers first/last ilt entry to point
7200                  * to the entire range to prevent ILT range error for 3rd/4th
7201                  * vnic (this code assumes existence of the vnic)
7202                  *
7203                  * both steps performed by call to bnx2x_ilt_client_init_op()
7204                  * with dummy TM client
7205                  *
7206                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7207                  * and his brother are split registers
7208                  */
7209                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7210                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7211                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7212
7213                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7214                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7215                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7216         }
7217
7218         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7219         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7220
7221         if (!CHIP_IS_E1x(bp)) {
7222                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7223                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7224                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7225
7226                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7227
7228                 /* let the HW do it's magic ... */
7229                 do {
7230                         msleep(200);
7231                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7232                 } while (factor-- && (val != 1));
7233
7234                 if (val != 1) {
7235                         BNX2X_ERR("ATC_INIT failed\n");
7236                         return -EBUSY;
7237                 }
7238         }
7239
7240         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7241
7242         bnx2x_iov_init_dmae(bp);
7243
7244         /* clean the DMAE memory */
7245         bp->dmae_ready = 1;
7246         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7247
7248         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7249
7250         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7251
7252         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7253
7254         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7255
7256         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7257         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7258         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7259         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7260
7261         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7262
7263         /* QM queues pointers table */
7264         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7265
7266         /* soft reset pulse */
7267         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7268         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7269
7270         if (CNIC_SUPPORT(bp))
7271                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7272
7273         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7274
7275         if (!CHIP_REV_IS_SLOW(bp))
7276                 /* enable hw interrupt from doorbell Q */
7277                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7278
7279         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7280
7281         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7282         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7283
7284         if (!CHIP_IS_E1(bp))
7285                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7286
7287         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7288                 if (IS_MF_AFEX(bp)) {
7289                         /* configure that VNTag and VLAN headers must be
7290                          * received in afex mode
7291                          */
7292                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7293                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7294                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7295                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7296                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7297                 } else {
7298                         /* Bit-map indicating which L2 hdrs may appear
7299                          * after the basic Ethernet header
7300                          */
7301                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7302                                bp->path_has_ovlan ? 7 : 6);
7303                 }
7304         }
7305
7306         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7307         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7308         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7309         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7310
7311         if (!CHIP_IS_E1x(bp)) {
7312                 /* reset VFC memories */
7313                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7314                            VFC_MEMORIES_RST_REG_CAM_RST |
7315                            VFC_MEMORIES_RST_REG_RAM_RST);
7316                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7317                            VFC_MEMORIES_RST_REG_CAM_RST |
7318                            VFC_MEMORIES_RST_REG_RAM_RST);
7319
7320                 msleep(20);
7321         }
7322
7323         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7324         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7325         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7326         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7327
7328         /* sync semi rtc */
7329         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7330                0x80000000);
7331         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7332                0x80000000);
7333
7334         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7335         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7336         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7337
7338         if (!CHIP_IS_E1x(bp)) {
7339                 if (IS_MF_AFEX(bp)) {
7340                         /* configure that VNTag and VLAN headers must be
7341                          * sent in afex mode
7342                          */
7343                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7344                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7345                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7346                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7347                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7348                 } else {
7349                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7350                                bp->path_has_ovlan ? 7 : 6);
7351                 }
7352         }
7353
7354         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7355
7356         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7357
7358         if (CNIC_SUPPORT(bp)) {
7359                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7360                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7361                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7362                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7363                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7364                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7365                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7366                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7367                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7368                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7369         }
7370         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7371
7372         if (sizeof(union cdu_context) != 1024)
7373                 /* we currently assume that a context is 1024 bytes */
7374                 dev_alert(&bp->pdev->dev,
7375                           "please adjust the size of cdu_context(%ld)\n",
7376                           (long)sizeof(union cdu_context));
7377
7378         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7379         val = (4 << 24) + (0 << 12) + 1024;
7380         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7381
7382         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7383         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7384         /* enable context validation interrupt from CFC */
7385         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7386
7387         /* set the thresholds to prevent CFC/CDU race */
7388         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7389
7390         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7391
7392         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7393                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7394
7395         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7396         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7397
7398         /* Reset PCIE errors for debug */
7399         REG_WR(bp, 0x2814, 0xffffffff);
7400         REG_WR(bp, 0x3820, 0xffffffff);
7401
7402         if (!CHIP_IS_E1x(bp)) {
7403                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7404                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7405                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7406                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7407                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7408                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7409                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7410                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7411                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7412                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7413                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7414         }
7415
7416         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7417         if (!CHIP_IS_E1(bp)) {
7418                 /* in E3 this done in per-port section */
7419                 if (!CHIP_IS_E3(bp))
7420                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7421         }
7422         if (CHIP_IS_E1H(bp))
7423                 /* not applicable for E2 (and above ...) */
7424                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7425
7426         if (CHIP_REV_IS_SLOW(bp))
7427                 msleep(200);
7428
7429         /* finish CFC init */
7430         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7431         if (val != 1) {
7432                 BNX2X_ERR("CFC LL_INIT failed\n");
7433                 return -EBUSY;
7434         }
7435         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7436         if (val != 1) {
7437                 BNX2X_ERR("CFC AC_INIT failed\n");
7438                 return -EBUSY;
7439         }
7440         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7441         if (val != 1) {
7442                 BNX2X_ERR("CFC CAM_INIT failed\n");
7443                 return -EBUSY;
7444         }
7445         REG_WR(bp, CFC_REG_DEBUG0, 0);
7446
7447         if (CHIP_IS_E1(bp)) {
7448                 /* read NIG statistic
7449                    to see if this is our first up since powerup */
7450                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7451                 val = *bnx2x_sp(bp, wb_data[0]);
7452
7453                 /* do internal memory self test */
7454                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7455                         BNX2X_ERR("internal mem self test failed\n");
7456                         return -EBUSY;
7457                 }
7458         }
7459
7460         bnx2x_setup_fan_failure_detection(bp);
7461
7462         /* clear PXP2 attentions */
7463         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7464
7465         bnx2x_enable_blocks_attention(bp);
7466         bnx2x_enable_blocks_parity(bp);
7467
7468         if (!BP_NOMCP(bp)) {
7469                 if (CHIP_IS_E1x(bp))
7470                         bnx2x__common_init_phy(bp);
7471         } else
7472                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7473
7474         if (SHMEM2_HAS(bp, netproc_fw_ver))
7475                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7476
7477         return 0;
7478 }
7479
7480 /**
7481  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7482  *
7483  * @bp:         driver handle
7484  */
7485 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7486 {
7487         int rc = bnx2x_init_hw_common(bp);
7488
7489         if (rc)
7490                 return rc;
7491
7492         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7493         if (!BP_NOMCP(bp))
7494                 bnx2x__common_init_phy(bp);
7495
7496         return 0;
7497 }
7498
7499 static int bnx2x_init_hw_port(struct bnx2x *bp)
7500 {
7501         int port = BP_PORT(bp);
7502         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7503         u32 low, high;
7504         u32 val, reg;
7505
7506         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7507
7508         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7509
7510         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7511         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7512         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7513
7514         /* Timers bug workaround: disables the pf_master bit in pglue at
7515          * common phase, we need to enable it here before any dmae access are
7516          * attempted. Therefore we manually added the enable-master to the
7517          * port phase (it also happens in the function phase)
7518          */
7519         if (!CHIP_IS_E1x(bp))
7520                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7521
7522         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7523         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7524         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7525         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7526
7527         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7528         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7529         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7530         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7531
7532         /* QM cid (connection) count */
7533         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7534
7535         if (CNIC_SUPPORT(bp)) {
7536                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7537                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7538                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7539         }
7540
7541         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7542
7543         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7544
7545         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7546
7547                 if (IS_MF(bp))
7548                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7549                 else if (bp->dev->mtu > 4096) {
7550                         if (bp->flags & ONE_PORT_FLAG)
7551                                 low = 160;
7552                         else {
7553                                 val = bp->dev->mtu;
7554                                 /* (24*1024 + val*4)/256 */
7555                                 low = 96 + (val/64) +
7556                                                 ((val % 64) ? 1 : 0);
7557                         }
7558                 } else
7559                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7560                 high = low + 56;        /* 14*1024/256 */
7561                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7562                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7563         }
7564
7565         if (CHIP_MODE_IS_4_PORT(bp))
7566                 REG_WR(bp, (BP_PORT(bp) ?
7567                             BRB1_REG_MAC_GUARANTIED_1 :
7568                             BRB1_REG_MAC_GUARANTIED_0), 40);
7569
7570         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7571         if (CHIP_IS_E3B0(bp)) {
7572                 if (IS_MF_AFEX(bp)) {
7573                         /* configure headers for AFEX mode */
7574                         REG_WR(bp, BP_PORT(bp) ?
7575                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7576                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7577                         REG_WR(bp, BP_PORT(bp) ?
7578                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7579                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7580                         REG_WR(bp, BP_PORT(bp) ?
7581                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7582                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7583                 } else {
7584                         /* Ovlan exists only if we are in multi-function +
7585                          * switch-dependent mode, in switch-independent there
7586                          * is no ovlan headers
7587                          */
7588                         REG_WR(bp, BP_PORT(bp) ?
7589                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7590                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7591                                (bp->path_has_ovlan ? 7 : 6));
7592                 }
7593         }
7594
7595         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7596         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7597         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7598         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7599
7600         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7601         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7602         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7603         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7604
7605         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7606         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7607
7608         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7609
7610         if (CHIP_IS_E1x(bp)) {
7611                 /* configure PBF to work without PAUSE mtu 9000 */
7612                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7613
7614                 /* update threshold */
7615                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7616                 /* update init credit */
7617                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7618
7619                 /* probe changes */
7620                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7621                 udelay(50);
7622                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7623         }
7624
7625         if (CNIC_SUPPORT(bp))
7626                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7627
7628         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7629         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7630
7631         if (CHIP_IS_E1(bp)) {
7632                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7633                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7634         }
7635         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7636
7637         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7638
7639         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7640         /* init aeu_mask_attn_func_0/1:
7641          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7642          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7643          *             bits 4-7 are used for "per vn group attention" */
7644         val = IS_MF(bp) ? 0xF7 : 0x7;
7645         /* Enable DCBX attention for all but E1 */
7646         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7647         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7648
7649         /* SCPAD_PARITY should NOT trigger close the gates */
7650         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7651         REG_WR(bp, reg,
7652                REG_RD(bp, reg) &
7653                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7654
7655         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7656         REG_WR(bp, reg,
7657                REG_RD(bp, reg) &
7658                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7659
7660         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7661
7662         if (!CHIP_IS_E1x(bp)) {
7663                 /* Bit-map indicating which L2 hdrs may appear after the
7664                  * basic Ethernet header
7665                  */
7666                 if (IS_MF_AFEX(bp))
7667                         REG_WR(bp, BP_PORT(bp) ?
7668                                NIG_REG_P1_HDRS_AFTER_BASIC :
7669                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7670                 else
7671                         REG_WR(bp, BP_PORT(bp) ?
7672                                NIG_REG_P1_HDRS_AFTER_BASIC :
7673                                NIG_REG_P0_HDRS_AFTER_BASIC,
7674                                IS_MF_SD(bp) ? 7 : 6);
7675
7676                 if (CHIP_IS_E3(bp))
7677                         REG_WR(bp, BP_PORT(bp) ?
7678                                    NIG_REG_LLH1_MF_MODE :
7679                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7680         }
7681         if (!CHIP_IS_E3(bp))
7682                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7683
7684         if (!CHIP_IS_E1(bp)) {
7685                 /* 0x2 disable mf_ov, 0x1 enable */
7686                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7687                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7688
7689                 if (!CHIP_IS_E1x(bp)) {
7690                         val = 0;
7691                         switch (bp->mf_mode) {
7692                         case MULTI_FUNCTION_SD:
7693                                 val = 1;
7694                                 break;
7695                         case MULTI_FUNCTION_SI:
7696                         case MULTI_FUNCTION_AFEX:
7697                                 val = 2;
7698                                 break;
7699                         }
7700
7701                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7702                                                   NIG_REG_LLH0_CLS_TYPE), val);
7703                 }
7704                 {
7705                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7706                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7707                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7708                 }
7709         }
7710
7711         /* If SPIO5 is set to generate interrupts, enable it for this port */
7712         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7713         if (val & MISC_SPIO_SPIO5) {
7714                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7715                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7716                 val = REG_RD(bp, reg_addr);
7717                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7718                 REG_WR(bp, reg_addr, val);
7719         }
7720
7721         return 0;
7722 }
7723
7724 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7725 {
7726         int reg;
7727         u32 wb_write[2];
7728
7729         if (CHIP_IS_E1(bp))
7730                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7731         else
7732                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7733
7734         wb_write[0] = ONCHIP_ADDR1(addr);
7735         wb_write[1] = ONCHIP_ADDR2(addr);
7736         REG_WR_DMAE(bp, reg, wb_write, 2);
7737 }
7738
7739 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7740 {
7741         u32 data, ctl, cnt = 100;
7742         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7743         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7744         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7745         u32 sb_bit =  1 << (idu_sb_id%32);
7746         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7747         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7748
7749         /* Not supported in BC mode */
7750         if (CHIP_INT_MODE_IS_BC(bp))
7751                 return;
7752
7753         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7754                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7755                 IGU_REGULAR_CLEANUP_SET                         |
7756                 IGU_REGULAR_BCLEANUP;
7757
7758         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7759               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7760               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7761
7762         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763                          data, igu_addr_data);
7764         REG_WR(bp, igu_addr_data, data);
7765         mmiowb();
7766         barrier();
7767         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7768                           ctl, igu_addr_ctl);
7769         REG_WR(bp, igu_addr_ctl, ctl);
7770         mmiowb();
7771         barrier();
7772
7773         /* wait for clean up to finish */
7774         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7775                 msleep(20);
7776
7777         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7778                 DP(NETIF_MSG_HW,
7779                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7780                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7781         }
7782 }
7783
7784 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7785 {
7786         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7787 }
7788
7789 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7790 {
7791         u32 i, base = FUNC_ILT_BASE(func);
7792         for (i = base; i < base + ILT_PER_FUNC; i++)
7793                 bnx2x_ilt_wr(bp, i, 0);
7794 }
7795
7796 static void bnx2x_init_searcher(struct bnx2x *bp)
7797 {
7798         int port = BP_PORT(bp);
7799         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7800         /* T1 hash bits value determines the T1 number of entries */
7801         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7802 }
7803
7804 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7805 {
7806         int rc;
7807         struct bnx2x_func_state_params func_params = {NULL};
7808         struct bnx2x_func_switch_update_params *switch_update_params =
7809                 &func_params.params.switch_update;
7810
7811         /* Prepare parameters for function state transitions */
7812         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7813         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7814
7815         func_params.f_obj = &bp->func_obj;
7816         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7817
7818         /* Function parameters */
7819         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7820                   &switch_update_params->changes);
7821         if (suspend)
7822                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7823                           &switch_update_params->changes);
7824
7825         rc = bnx2x_func_state_change(bp, &func_params);
7826
7827         return rc;
7828 }
7829
7830 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7831 {
7832         int rc, i, port = BP_PORT(bp);
7833         int vlan_en = 0, mac_en[NUM_MACS];
7834
7835         /* Close input from network */
7836         if (bp->mf_mode == SINGLE_FUNCTION) {
7837                 bnx2x_set_rx_filter(&bp->link_params, 0);
7838         } else {
7839                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7840                                    NIG_REG_LLH0_FUNC_EN);
7841                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7842                           NIG_REG_LLH0_FUNC_EN, 0);
7843                 for (i = 0; i < NUM_MACS; i++) {
7844                         mac_en[i] = REG_RD(bp, port ?
7845                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7846                                               4 * i) :
7847                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7848                                               4 * i));
7849                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7850                                               4 * i) :
7851                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7852                 }
7853         }
7854
7855         /* Close BMC to host */
7856         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7857                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7858
7859         /* Suspend Tx switching to the PF. Completion of this ramrod
7860          * further guarantees that all the packets of that PF / child
7861          * VFs in BRB were processed by the Parser, so it is safe to
7862          * change the NIC_MODE register.
7863          */
7864         rc = bnx2x_func_switch_update(bp, 1);
7865         if (rc) {
7866                 BNX2X_ERR("Can't suspend tx-switching!\n");
7867                 return rc;
7868         }
7869
7870         /* Change NIC_MODE register */
7871         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7872
7873         /* Open input from network */
7874         if (bp->mf_mode == SINGLE_FUNCTION) {
7875                 bnx2x_set_rx_filter(&bp->link_params, 1);
7876         } else {
7877                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7878                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7879                 for (i = 0; i < NUM_MACS; i++) {
7880                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7881                                               4 * i) :
7882                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7883                                   mac_en[i]);
7884                 }
7885         }
7886
7887         /* Enable BMC to host */
7888         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7889                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7890
7891         /* Resume Tx switching to the PF */
7892         rc = bnx2x_func_switch_update(bp, 0);
7893         if (rc) {
7894                 BNX2X_ERR("Can't resume tx-switching!\n");
7895                 return rc;
7896         }
7897
7898         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7899         return 0;
7900 }
7901
7902 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7903 {
7904         int rc;
7905
7906         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7907
7908         if (CONFIGURE_NIC_MODE(bp)) {
7909                 /* Configure searcher as part of function hw init */
7910                 bnx2x_init_searcher(bp);
7911
7912                 /* Reset NIC mode */
7913                 rc = bnx2x_reset_nic_mode(bp);
7914                 if (rc)
7915                         BNX2X_ERR("Can't change NIC mode!\n");
7916                 return rc;
7917         }
7918
7919         return 0;
7920 }
7921
7922 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7923  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7924  * the addresses of the transaction, resulting in was-error bit set in the pci
7925  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7926  * to clear the interrupt which detected this from the pglueb and the was done
7927  * bit
7928  */
7929 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7930 {
7931         if (!CHIP_IS_E1x(bp))
7932                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7933                        1 << BP_ABS_FUNC(bp));
7934 }
7935
7936 static int bnx2x_init_hw_func(struct bnx2x *bp)
7937 {
7938         int port = BP_PORT(bp);
7939         int func = BP_FUNC(bp);
7940         int init_phase = PHASE_PF0 + func;
7941         struct bnx2x_ilt *ilt = BP_ILT(bp);
7942         u16 cdu_ilt_start;
7943         u32 addr, val;
7944         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7945         int i, main_mem_width, rc;
7946
7947         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7948
7949         /* FLR cleanup - hmmm */
7950         if (!CHIP_IS_E1x(bp)) {
7951                 rc = bnx2x_pf_flr_clnup(bp);
7952                 if (rc) {
7953                         bnx2x_fw_dump(bp);
7954                         return rc;
7955                 }
7956         }
7957
7958         /* set MSI reconfigure capability */
7959         if (bp->common.int_block == INT_BLOCK_HC) {
7960                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7961                 val = REG_RD(bp, addr);
7962                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7963                 REG_WR(bp, addr, val);
7964         }
7965
7966         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7967         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7968
7969         ilt = BP_ILT(bp);
7970         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7971
7972         if (IS_SRIOV(bp))
7973                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7974         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7975
7976         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7977          * those of the VFs, so start line should be reset
7978          */
7979         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7980         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7981                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7982                 ilt->lines[cdu_ilt_start + i].page_mapping =
7983                         bp->context[i].cxt_mapping;
7984                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7985         }
7986
7987         bnx2x_ilt_init_op(bp, INITOP_SET);
7988
7989         if (!CONFIGURE_NIC_MODE(bp)) {
7990                 bnx2x_init_searcher(bp);
7991                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7992                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7993         } else {
7994                 /* Set NIC mode */
7995                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7996                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7997         }
7998
7999         if (!CHIP_IS_E1x(bp)) {
8000                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8001
8002                 /* Turn on a single ISR mode in IGU if driver is going to use
8003                  * INT#x or MSI
8004                  */
8005                 if (!(bp->flags & USING_MSIX_FLAG))
8006                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8007                 /*
8008                  * Timers workaround bug: function init part.
8009                  * Need to wait 20msec after initializing ILT,
8010                  * needed to make sure there are no requests in
8011                  * one of the PXP internal queues with "old" ILT addresses
8012                  */
8013                 msleep(20);
8014                 /*
8015                  * Master enable - Due to WB DMAE writes performed before this
8016                  * register is re-initialized as part of the regular function
8017                  * init
8018                  */
8019                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8020                 /* Enable the function in IGU */
8021                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8022         }
8023
8024         bp->dmae_ready = 1;
8025
8026         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8027
8028         bnx2x_clean_pglue_errors(bp);
8029
8030         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8031         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8032         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8033         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8034         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8035         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8036         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8037         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8038         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8039         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8040         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8041         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8042         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8043
8044         if (!CHIP_IS_E1x(bp))
8045                 REG_WR(bp, QM_REG_PF_EN, 1);
8046
8047         if (!CHIP_IS_E1x(bp)) {
8048                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8049                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8050                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8051                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8052         }
8053         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8054
8055         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8056         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8057         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8058
8059         bnx2x_iov_init_dq(bp);
8060
8061         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8062         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8063         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8064         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8065         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8066         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8067         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8068         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8069         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8070         if (!CHIP_IS_E1x(bp))
8071                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8072
8073         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8074
8075         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8076
8077         if (!CHIP_IS_E1x(bp))
8078                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8079
8080         if (IS_MF(bp)) {
8081                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8082                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8083                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8084                                bp->mf_ov);
8085                 }
8086         }
8087
8088         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8089
8090         /* HC init per function */
8091         if (bp->common.int_block == INT_BLOCK_HC) {
8092                 if (CHIP_IS_E1H(bp)) {
8093                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8094
8095                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8096                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8097                 }
8098                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8099
8100         } else {
8101                 int num_segs, sb_idx, prod_offset;
8102
8103                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8104
8105                 if (!CHIP_IS_E1x(bp)) {
8106                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8107                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8108                 }
8109
8110                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8111
8112                 if (!CHIP_IS_E1x(bp)) {
8113                         int dsb_idx = 0;
8114                         /**
8115                          * Producer memory:
8116                          * E2 mode: address 0-135 match to the mapping memory;
8117                          * 136 - PF0 default prod; 137 - PF1 default prod;
8118                          * 138 - PF2 default prod; 139 - PF3 default prod;
8119                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8120                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8121                          * 144-147 reserved.
8122                          *
8123                          * E1.5 mode - In backward compatible mode;
8124                          * for non default SB; each even line in the memory
8125                          * holds the U producer and each odd line hold
8126                          * the C producer. The first 128 producers are for
8127                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8128                          * producers are for the DSB for each PF.
8129                          * Each PF has five segments: (the order inside each
8130                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8131                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8132                          * 144-147 attn prods;
8133                          */
8134                         /* non-default-status-blocks */
8135                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8136                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8137                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8138                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8139                                         num_segs;
8140
8141                                 for (i = 0; i < num_segs; i++) {
8142                                         addr = IGU_REG_PROD_CONS_MEMORY +
8143                                                         (prod_offset + i) * 4;
8144                                         REG_WR(bp, addr, 0);
8145                                 }
8146                                 /* send consumer update with value 0 */
8147                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8148                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8149                                 bnx2x_igu_clear_sb(bp,
8150                                                    bp->igu_base_sb + sb_idx);
8151                         }
8152
8153                         /* default-status-blocks */
8154                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8155                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8156
8157                         if (CHIP_MODE_IS_4_PORT(bp))
8158                                 dsb_idx = BP_FUNC(bp);
8159                         else
8160                                 dsb_idx = BP_VN(bp);
8161
8162                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8163                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8164                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8165
8166                         /*
8167                          * igu prods come in chunks of E1HVN_MAX (4) -
8168                          * does not matters what is the current chip mode
8169                          */
8170                         for (i = 0; i < (num_segs * E1HVN_MAX);
8171                              i += E1HVN_MAX) {
8172                                 addr = IGU_REG_PROD_CONS_MEMORY +
8173                                                         (prod_offset + i)*4;
8174                                 REG_WR(bp, addr, 0);
8175                         }
8176                         /* send consumer update with 0 */
8177                         if (CHIP_INT_MODE_IS_BC(bp)) {
8178                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8179                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8180                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8181                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8182                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8184                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8186                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8187                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8188                         } else {
8189                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8191                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193                         }
8194                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8195
8196                         /* !!! These should become driver const once
8197                            rf-tool supports split-68 const */
8198                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8199                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8200                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8201                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8202                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8203                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8204                 }
8205         }
8206
8207         /* Reset PCIE errors for debug */
8208         REG_WR(bp, 0x2114, 0xffffffff);
8209         REG_WR(bp, 0x2120, 0xffffffff);
8210
8211         if (CHIP_IS_E1x(bp)) {
8212                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8213                 main_mem_base = HC_REG_MAIN_MEMORY +
8214                                 BP_PORT(bp) * (main_mem_size * 4);
8215                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8216                 main_mem_width = 8;
8217
8218                 val = REG_RD(bp, main_mem_prty_clr);
8219                 if (val)
8220                         DP(NETIF_MSG_HW,
8221                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8222                            val);
8223
8224                 /* Clear "false" parity errors in MSI-X table */
8225                 for (i = main_mem_base;
8226                      i < main_mem_base + main_mem_size * 4;
8227                      i += main_mem_width) {
8228                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8229                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8230                                          i, main_mem_width / 4);
8231                 }
8232                 /* Clear HC parity attention */
8233                 REG_RD(bp, main_mem_prty_clr);
8234         }
8235
8236 #ifdef BNX2X_STOP_ON_ERROR
8237         /* Enable STORMs SP logging */
8238         REG_WR8(bp, BAR_USTRORM_INTMEM +
8239                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8240         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8241                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8242         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8243                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8244         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8245                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8246 #endif
8247
8248         bnx2x_phy_probe(&bp->link_params);
8249
8250         return 0;
8251 }
8252
8253 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8254 {
8255         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8256
8257         if (!CHIP_IS_E1x(bp))
8258                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8259                                sizeof(struct host_hc_status_block_e2));
8260         else
8261                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8262                                sizeof(struct host_hc_status_block_e1x));
8263
8264         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8265 }
8266
8267 void bnx2x_free_mem(struct bnx2x *bp)
8268 {
8269         int i;
8270
8271         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8272                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8273
8274         if (IS_VF(bp))
8275                 return;
8276
8277         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8278                        sizeof(struct host_sp_status_block));
8279
8280         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8281                        sizeof(struct bnx2x_slowpath));
8282
8283         for (i = 0; i < L2_ILT_LINES(bp); i++)
8284                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8285                                bp->context[i].size);
8286         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8287
8288         BNX2X_FREE(bp->ilt->lines);
8289
8290         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8291
8292         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8293                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8294
8295         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8296
8297         bnx2x_iov_free_mem(bp);
8298 }
8299
8300 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8301 {
8302         if (!CHIP_IS_E1x(bp)) {
8303                 /* size = the status block + ramrod buffers */
8304                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8305                                                     sizeof(struct host_hc_status_block_e2));
8306                 if (!bp->cnic_sb.e2_sb)
8307                         goto alloc_mem_err;
8308         } else {
8309                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310                                                      sizeof(struct host_hc_status_block_e1x));
8311                 if (!bp->cnic_sb.e1x_sb)
8312                         goto alloc_mem_err;
8313         }
8314
8315         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8316                 /* allocate searcher T2 table, as it wasn't allocated before */
8317                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8318                 if (!bp->t2)
8319                         goto alloc_mem_err;
8320         }
8321
8322         /* write address to which L5 should insert its values */
8323         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8324                 &bp->slowpath->drv_info_to_mcp;
8325
8326         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8327                 goto alloc_mem_err;
8328
8329         return 0;
8330
8331 alloc_mem_err:
8332         bnx2x_free_mem_cnic(bp);
8333         BNX2X_ERR("Can't allocate memory\n");
8334         return -ENOMEM;
8335 }
8336
8337 int bnx2x_alloc_mem(struct bnx2x *bp)
8338 {
8339         int i, allocated, context_size;
8340
8341         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8342                 /* allocate searcher T2 table */
8343                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8344                 if (!bp->t2)
8345                         goto alloc_mem_err;
8346         }
8347
8348         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8349                                              sizeof(struct host_sp_status_block));
8350         if (!bp->def_status_blk)
8351                 goto alloc_mem_err;
8352
8353         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8354                                        sizeof(struct bnx2x_slowpath));
8355         if (!bp->slowpath)
8356                 goto alloc_mem_err;
8357
8358         /* Allocate memory for CDU context:
8359          * This memory is allocated separately and not in the generic ILT
8360          * functions because CDU differs in few aspects:
8361          * 1. There are multiple entities allocating memory for context -
8362          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8363          * its own ILT lines.
8364          * 2. Since CDU page-size is not a single 4KB page (which is the case
8365          * for the other ILT clients), to be efficient we want to support
8366          * allocation of sub-page-size in the last entry.
8367          * 3. Context pointers are used by the driver to pass to FW / update
8368          * the context (for the other ILT clients the pointers are used just to
8369          * free the memory during unload).
8370          */
8371         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8372
8373         for (i = 0, allocated = 0; allocated < context_size; i++) {
8374                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8375                                           (context_size - allocated));
8376                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8377                                                       bp->context[i].size);
8378                 if (!bp->context[i].vcxt)
8379                         goto alloc_mem_err;
8380                 allocated += bp->context[i].size;
8381         }
8382         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8383                                  GFP_KERNEL);
8384         if (!bp->ilt->lines)
8385                 goto alloc_mem_err;
8386
8387         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8388                 goto alloc_mem_err;
8389
8390         if (bnx2x_iov_alloc_mem(bp))
8391                 goto alloc_mem_err;
8392
8393         /* Slow path ring */
8394         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8395         if (!bp->spq)
8396                 goto alloc_mem_err;
8397
8398         /* EQ */
8399         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8400                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8401         if (!bp->eq_ring)
8402                 goto alloc_mem_err;
8403
8404         return 0;
8405
8406 alloc_mem_err:
8407         bnx2x_free_mem(bp);
8408         BNX2X_ERR("Can't allocate memory\n");
8409         return -ENOMEM;
8410 }
8411
8412 /*
8413  * Init service functions
8414  */
8415
8416 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8417                       struct bnx2x_vlan_mac_obj *obj, bool set,
8418                       int mac_type, unsigned long *ramrod_flags)
8419 {
8420         int rc;
8421         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8422
8423         memset(&ramrod_param, 0, sizeof(ramrod_param));
8424
8425         /* Fill general parameters */
8426         ramrod_param.vlan_mac_obj = obj;
8427         ramrod_param.ramrod_flags = *ramrod_flags;
8428
8429         /* Fill a user request section if needed */
8430         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8431                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8432
8433                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8434
8435                 /* Set the command: ADD or DEL */
8436                 if (set)
8437                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8438                 else
8439                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8440         }
8441
8442         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8443
8444         if (rc == -EEXIST) {
8445                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8446                 /* do not treat adding same MAC as error */
8447                 rc = 0;
8448         } else if (rc < 0)
8449                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8450
8451         return rc;
8452 }
8453
8454 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8455                        struct bnx2x_vlan_mac_obj *obj, bool set,
8456                        unsigned long *ramrod_flags)
8457 {
8458         int rc;
8459         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8460
8461         memset(&ramrod_param, 0, sizeof(ramrod_param));
8462
8463         /* Fill general parameters */
8464         ramrod_param.vlan_mac_obj = obj;
8465         ramrod_param.ramrod_flags = *ramrod_flags;
8466
8467         /* Fill a user request section if needed */
8468         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8469                 ramrod_param.user_req.u.vlan.vlan = vlan;
8470                 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8471                 /* Set the command: ADD or DEL */
8472                 if (set)
8473                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8474                 else
8475                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8476         }
8477
8478         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8479
8480         if (rc == -EEXIST) {
8481                 /* Do not treat adding same vlan as error. */
8482                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8483                 rc = 0;
8484         } else if (rc < 0) {
8485                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8486         }
8487
8488         return rc;
8489 }
8490
8491 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8492 {
8493         struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8494         unsigned long ramrod_flags = 0, vlan_flags = 0;
8495         struct bnx2x_vlan_entry *vlan;
8496         int rc;
8497
8498         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8499         __set_bit(BNX2X_VLAN, &vlan_flags);
8500         rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8501         if (rc)
8502                 return rc;
8503
8504         /* Mark that hw forgot all entries */
8505         list_for_each_entry(vlan, &bp->vlan_reg, link)
8506                 vlan->hw = false;
8507         bp->vlan_cnt = 0;
8508
8509         return 0;
8510 }
8511
8512 int bnx2x_del_all_macs(struct bnx2x *bp,
8513                        struct bnx2x_vlan_mac_obj *mac_obj,
8514                        int mac_type, bool wait_for_comp)
8515 {
8516         int rc;
8517         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8518
8519         /* Wait for completion of requested */
8520         if (wait_for_comp)
8521                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8522
8523         /* Set the mac type of addresses we want to clear */
8524         __set_bit(mac_type, &vlan_mac_flags);
8525
8526         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8527         if (rc < 0)
8528                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8529
8530         return rc;
8531 }
8532
8533 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8534 {
8535         if (IS_PF(bp)) {
8536                 unsigned long ramrod_flags = 0;
8537
8538                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8539                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8540                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8541                                          &bp->sp_objs->mac_obj, set,
8542                                          BNX2X_ETH_MAC, &ramrod_flags);
8543         } else { /* vf */
8544                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8545                                              bp->fp->index, set);
8546         }
8547 }
8548
8549 int bnx2x_setup_leading(struct bnx2x *bp)
8550 {
8551         if (IS_PF(bp))
8552                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8553         else /* VF */
8554                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8555 }
8556
8557 /**
8558  * bnx2x_set_int_mode - configure interrupt mode
8559  *
8560  * @bp:         driver handle
8561  *
8562  * In case of MSI-X it will also try to enable MSI-X.
8563  */
8564 int bnx2x_set_int_mode(struct bnx2x *bp)
8565 {
8566         int rc = 0;
8567
8568         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8569                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8570                 return -EINVAL;
8571         }
8572
8573         switch (int_mode) {
8574         case BNX2X_INT_MODE_MSIX:
8575                 /* attempt to enable msix */
8576                 rc = bnx2x_enable_msix(bp);
8577
8578                 /* msix attained */
8579                 if (!rc)
8580                         return 0;
8581
8582                 /* vfs use only msix */
8583                 if (rc && IS_VF(bp))
8584                         return rc;
8585
8586                 /* failed to enable multiple MSI-X */
8587                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8588                                bp->num_queues,
8589                                1 + bp->num_cnic_queues);
8590
8591                 /* falling through... */
8592         case BNX2X_INT_MODE_MSI:
8593                 bnx2x_enable_msi(bp);
8594
8595                 /* falling through... */
8596         case BNX2X_INT_MODE_INTX:
8597                 bp->num_ethernet_queues = 1;
8598                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8599                 BNX2X_DEV_INFO("set number of queues to 1\n");
8600                 break;
8601         default:
8602                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8603                 return -EINVAL;
8604         }
8605         return 0;
8606 }
8607
8608 /* must be called prior to any HW initializations */
8609 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8610 {
8611         if (IS_SRIOV(bp))
8612                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8613         return L2_ILT_LINES(bp);
8614 }
8615
8616 void bnx2x_ilt_set_info(struct bnx2x *bp)
8617 {
8618         struct ilt_client_info *ilt_client;
8619         struct bnx2x_ilt *ilt = BP_ILT(bp);
8620         u16 line = 0;
8621
8622         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8623         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8624
8625         /* CDU */
8626         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8627         ilt_client->client_num = ILT_CLIENT_CDU;
8628         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8629         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8630         ilt_client->start = line;
8631         line += bnx2x_cid_ilt_lines(bp);
8632
8633         if (CNIC_SUPPORT(bp))
8634                 line += CNIC_ILT_LINES;
8635         ilt_client->end = line - 1;
8636
8637         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8638            ilt_client->start,
8639            ilt_client->end,
8640            ilt_client->page_size,
8641            ilt_client->flags,
8642            ilog2(ilt_client->page_size >> 12));
8643
8644         /* QM */
8645         if (QM_INIT(bp->qm_cid_count)) {
8646                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8647                 ilt_client->client_num = ILT_CLIENT_QM;
8648                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8649                 ilt_client->flags = 0;
8650                 ilt_client->start = line;
8651
8652                 /* 4 bytes for each cid */
8653                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8654                                                          QM_ILT_PAGE_SZ);
8655
8656                 ilt_client->end = line - 1;
8657
8658                 DP(NETIF_MSG_IFUP,
8659                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8660                    ilt_client->start,
8661                    ilt_client->end,
8662                    ilt_client->page_size,
8663                    ilt_client->flags,
8664                    ilog2(ilt_client->page_size >> 12));
8665         }
8666
8667         if (CNIC_SUPPORT(bp)) {
8668                 /* SRC */
8669                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8670                 ilt_client->client_num = ILT_CLIENT_SRC;
8671                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8672                 ilt_client->flags = 0;
8673                 ilt_client->start = line;
8674                 line += SRC_ILT_LINES;
8675                 ilt_client->end = line - 1;
8676
8677                 DP(NETIF_MSG_IFUP,
8678                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8679                    ilt_client->start,
8680                    ilt_client->end,
8681                    ilt_client->page_size,
8682                    ilt_client->flags,
8683                    ilog2(ilt_client->page_size >> 12));
8684
8685                 /* TM */
8686                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8687                 ilt_client->client_num = ILT_CLIENT_TM;
8688                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8689                 ilt_client->flags = 0;
8690                 ilt_client->start = line;
8691                 line += TM_ILT_LINES;
8692                 ilt_client->end = line - 1;
8693
8694                 DP(NETIF_MSG_IFUP,
8695                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8696                    ilt_client->start,
8697                    ilt_client->end,
8698                    ilt_client->page_size,
8699                    ilt_client->flags,
8700                    ilog2(ilt_client->page_size >> 12));
8701         }
8702
8703         BUG_ON(line > ILT_MAX_LINES);
8704 }
8705
8706 /**
8707  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8708  *
8709  * @bp:                 driver handle
8710  * @fp:                 pointer to fastpath
8711  * @init_params:        pointer to parameters structure
8712  *
8713  * parameters configured:
8714  *      - HC configuration
8715  *      - Queue's CDU context
8716  */
8717 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8718         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8719 {
8720         u8 cos;
8721         int cxt_index, cxt_offset;
8722
8723         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8724         if (!IS_FCOE_FP(fp)) {
8725                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8726                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8727
8728                 /* If HC is supported, enable host coalescing in the transition
8729                  * to INIT state.
8730                  */
8731                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8732                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8733
8734                 /* HC rate */
8735                 init_params->rx.hc_rate = bp->rx_ticks ?
8736                         (1000000 / bp->rx_ticks) : 0;
8737                 init_params->tx.hc_rate = bp->tx_ticks ?
8738                         (1000000 / bp->tx_ticks) : 0;
8739
8740                 /* FW SB ID */
8741                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8742                         fp->fw_sb_id;
8743
8744                 /*
8745                  * CQ index among the SB indices: FCoE clients uses the default
8746                  * SB, therefore it's different.
8747                  */
8748                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8749                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8750         }
8751
8752         /* set maximum number of COSs supported by this queue */
8753         init_params->max_cos = fp->max_cos;
8754
8755         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8756             fp->index, init_params->max_cos);
8757
8758         /* set the context pointers queue object */
8759         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8760                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8761                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8762                                 ILT_PAGE_CIDS);
8763                 init_params->cxts[cos] =
8764                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8765         }
8766 }
8767
8768 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8769                         struct bnx2x_queue_state_params *q_params,
8770                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8771                         int tx_index, bool leading)
8772 {
8773         memset(tx_only_params, 0, sizeof(*tx_only_params));
8774
8775         /* Set the command */
8776         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8777
8778         /* Set tx-only QUEUE flags: don't zero statistics */
8779         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8780
8781         /* choose the index of the cid to send the slow path on */
8782         tx_only_params->cid_index = tx_index;
8783
8784         /* Set general TX_ONLY_SETUP parameters */
8785         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8786
8787         /* Set Tx TX_ONLY_SETUP parameters */
8788         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8789
8790         DP(NETIF_MSG_IFUP,
8791            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8792            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8793            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8794            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8795
8796         /* send the ramrod */
8797         return bnx2x_queue_state_change(bp, q_params);
8798 }
8799
8800 /**
8801  * bnx2x_setup_queue - setup queue
8802  *
8803  * @bp:         driver handle
8804  * @fp:         pointer to fastpath
8805  * @leading:    is leading
8806  *
8807  * This function performs 2 steps in a Queue state machine
8808  *      actually: 1) RESET->INIT 2) INIT->SETUP
8809  */
8810
8811 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8812                        bool leading)
8813 {
8814         struct bnx2x_queue_state_params q_params = {NULL};
8815         struct bnx2x_queue_setup_params *setup_params =
8816                                                 &q_params.params.setup;
8817         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8818                                                 &q_params.params.tx_only;
8819         int rc;
8820         u8 tx_index;
8821
8822         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8823
8824         /* reset IGU state skip FCoE L2 queue */
8825         if (!IS_FCOE_FP(fp))
8826                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8827                              IGU_INT_ENABLE, 0);
8828
8829         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8830         /* We want to wait for completion in this context */
8831         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8832
8833         /* Prepare the INIT parameters */
8834         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8835
8836         /* Set the command */
8837         q_params.cmd = BNX2X_Q_CMD_INIT;
8838
8839         /* Change the state to INIT */
8840         rc = bnx2x_queue_state_change(bp, &q_params);
8841         if (rc) {
8842                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8843                 return rc;
8844         }
8845
8846         DP(NETIF_MSG_IFUP, "init complete\n");
8847
8848         /* Now move the Queue to the SETUP state... */
8849         memset(setup_params, 0, sizeof(*setup_params));
8850
8851         /* Set QUEUE flags */
8852         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8853
8854         /* Set general SETUP parameters */
8855         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8856                                 FIRST_TX_COS_INDEX);
8857
8858         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8859                             &setup_params->rxq_params);
8860
8861         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8862                            FIRST_TX_COS_INDEX);
8863
8864         /* Set the command */
8865         q_params.cmd = BNX2X_Q_CMD_SETUP;
8866
8867         if (IS_FCOE_FP(fp))
8868                 bp->fcoe_init = true;
8869
8870         /* Change the state to SETUP */
8871         rc = bnx2x_queue_state_change(bp, &q_params);
8872         if (rc) {
8873                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8874                 return rc;
8875         }
8876
8877         /* loop through the relevant tx-only indices */
8878         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8879               tx_index < fp->max_cos;
8880               tx_index++) {
8881
8882                 /* prepare and send tx-only ramrod*/
8883                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8884                                           tx_only_params, tx_index, leading);
8885                 if (rc) {
8886                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8887                                   fp->index, tx_index);
8888                         return rc;
8889                 }
8890         }
8891
8892         return rc;
8893 }
8894
8895 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8896 {
8897         struct bnx2x_fastpath *fp = &bp->fp[index];
8898         struct bnx2x_fp_txdata *txdata;
8899         struct bnx2x_queue_state_params q_params = {NULL};
8900         int rc, tx_index;
8901
8902         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8903
8904         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8905         /* We want to wait for completion in this context */
8906         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8907
8908         /* close tx-only connections */
8909         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8910              tx_index < fp->max_cos;
8911              tx_index++){
8912
8913                 /* ascertain this is a normal queue*/
8914                 txdata = fp->txdata_ptr[tx_index];
8915
8916                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8917                                                         txdata->txq_index);
8918
8919                 /* send halt terminate on tx-only connection */
8920                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8921                 memset(&q_params.params.terminate, 0,
8922                        sizeof(q_params.params.terminate));
8923                 q_params.params.terminate.cid_index = tx_index;
8924
8925                 rc = bnx2x_queue_state_change(bp, &q_params);
8926                 if (rc)
8927                         return rc;
8928
8929                 /* send halt terminate on tx-only connection */
8930                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8931                 memset(&q_params.params.cfc_del, 0,
8932                        sizeof(q_params.params.cfc_del));
8933                 q_params.params.cfc_del.cid_index = tx_index;
8934                 rc = bnx2x_queue_state_change(bp, &q_params);
8935                 if (rc)
8936                         return rc;
8937         }
8938         /* Stop the primary connection: */
8939         /* ...halt the connection */
8940         q_params.cmd = BNX2X_Q_CMD_HALT;
8941         rc = bnx2x_queue_state_change(bp, &q_params);
8942         if (rc)
8943                 return rc;
8944
8945         /* ...terminate the connection */
8946         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8947         memset(&q_params.params.terminate, 0,
8948                sizeof(q_params.params.terminate));
8949         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8950         rc = bnx2x_queue_state_change(bp, &q_params);
8951         if (rc)
8952                 return rc;
8953         /* ...delete cfc entry */
8954         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8955         memset(&q_params.params.cfc_del, 0,
8956                sizeof(q_params.params.cfc_del));
8957         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8958         return bnx2x_queue_state_change(bp, &q_params);
8959 }
8960
8961 static void bnx2x_reset_func(struct bnx2x *bp)
8962 {
8963         int port = BP_PORT(bp);
8964         int func = BP_FUNC(bp);
8965         int i;
8966
8967         /* Disable the function in the FW */
8968         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8969         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8970         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8971         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8972
8973         /* FP SBs */
8974         for_each_eth_queue(bp, i) {
8975                 struct bnx2x_fastpath *fp = &bp->fp[i];
8976                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8977                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8978                            SB_DISABLED);
8979         }
8980
8981         if (CNIC_LOADED(bp))
8982                 /* CNIC SB */
8983                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8984                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8985                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8986
8987         /* SP SB */
8988         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8989                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8990                 SB_DISABLED);
8991
8992         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8993                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8994                        0);
8995
8996         /* Configure IGU */
8997         if (bp->common.int_block == INT_BLOCK_HC) {
8998                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8999                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9000         } else {
9001                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9002                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9003         }
9004
9005         if (CNIC_LOADED(bp)) {
9006                 /* Disable Timer scan */
9007                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9008                 /*
9009                  * Wait for at least 10ms and up to 2 second for the timers
9010                  * scan to complete
9011                  */
9012                 for (i = 0; i < 200; i++) {
9013                         usleep_range(10000, 20000);
9014                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9015                                 break;
9016                 }
9017         }
9018         /* Clear ILT */
9019         bnx2x_clear_func_ilt(bp, func);
9020
9021         /* Timers workaround bug for E2: if this is vnic-3,
9022          * we need to set the entire ilt range for this timers.
9023          */
9024         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9025                 struct ilt_client_info ilt_cli;
9026                 /* use dummy TM client */
9027                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9028                 ilt_cli.start = 0;
9029                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9030                 ilt_cli.client_num = ILT_CLIENT_TM;
9031
9032                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9033         }
9034
9035         /* this assumes that reset_port() called before reset_func()*/
9036         if (!CHIP_IS_E1x(bp))
9037                 bnx2x_pf_disable(bp);
9038
9039         bp->dmae_ready = 0;
9040 }
9041
9042 static void bnx2x_reset_port(struct bnx2x *bp)
9043 {
9044         int port = BP_PORT(bp);
9045         u32 val;
9046
9047         /* Reset physical Link */
9048         bnx2x__link_reset(bp);
9049
9050         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9051
9052         /* Do not rcv packets to BRB */
9053         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9054         /* Do not direct rcv packets that are not for MCP to the BRB */
9055         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9056                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9057
9058         /* Configure AEU */
9059         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9060
9061         msleep(100);
9062         /* Check for BRB port occupancy */
9063         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9064         if (val)
9065                 DP(NETIF_MSG_IFDOWN,
9066                    "BRB1 is not empty  %d blocks are occupied\n", val);
9067
9068         /* TODO: Close Doorbell port? */
9069 }
9070
9071 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9072 {
9073         struct bnx2x_func_state_params func_params = {NULL};
9074
9075         /* Prepare parameters for function state transitions */
9076         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9077
9078         func_params.f_obj = &bp->func_obj;
9079         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9080
9081         func_params.params.hw_init.load_phase = load_code;
9082
9083         return bnx2x_func_state_change(bp, &func_params);
9084 }
9085
9086 static int bnx2x_func_stop(struct bnx2x *bp)
9087 {
9088         struct bnx2x_func_state_params func_params = {NULL};
9089         int rc;
9090
9091         /* Prepare parameters for function state transitions */
9092         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9093         func_params.f_obj = &bp->func_obj;
9094         func_params.cmd = BNX2X_F_CMD_STOP;
9095
9096         /*
9097          * Try to stop the function the 'good way'. If fails (in case
9098          * of a parity error during bnx2x_chip_cleanup()) and we are
9099          * not in a debug mode, perform a state transaction in order to
9100          * enable further HW_RESET transaction.
9101          */
9102         rc = bnx2x_func_state_change(bp, &func_params);
9103         if (rc) {
9104 #ifdef BNX2X_STOP_ON_ERROR
9105                 return rc;
9106 #else
9107                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9108                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9109                 return bnx2x_func_state_change(bp, &func_params);
9110 #endif
9111         }
9112
9113         return 0;
9114 }
9115
9116 /**
9117  * bnx2x_send_unload_req - request unload mode from the MCP.
9118  *
9119  * @bp:                 driver handle
9120  * @unload_mode:        requested function's unload mode
9121  *
9122  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9123  */
9124 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9125 {
9126         u32 reset_code = 0;
9127         int port = BP_PORT(bp);
9128
9129         /* Select the UNLOAD request mode */
9130         if (unload_mode == UNLOAD_NORMAL)
9131                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9132
9133         else if (bp->flags & NO_WOL_FLAG)
9134                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9135
9136         else if (bp->wol) {
9137                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9138                 u8 *mac_addr = bp->dev->dev_addr;
9139                 struct pci_dev *pdev = bp->pdev;
9140                 u32 val;
9141                 u16 pmc;
9142
9143                 /* The mac address is written to entries 1-4 to
9144                  * preserve entry 0 which is used by the PMF
9145                  */
9146                 u8 entry = (BP_VN(bp) + 1)*8;
9147
9148                 val = (mac_addr[0] << 8) | mac_addr[1];
9149                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9150
9151                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9152                       (mac_addr[4] << 8) | mac_addr[5];
9153                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9154
9155                 /* Enable the PME and clear the status */
9156                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9157                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9158                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9159
9160                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9161
9162         } else
9163                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9164
9165         /* Send the request to the MCP */
9166         if (!BP_NOMCP(bp))
9167                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9168         else {
9169                 int path = BP_PATH(bp);
9170
9171                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9172                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9173                    bnx2x_load_count[path][2]);
9174                 bnx2x_load_count[path][0]--;
9175                 bnx2x_load_count[path][1 + port]--;
9176                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9177                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9178                    bnx2x_load_count[path][2]);
9179                 if (bnx2x_load_count[path][0] == 0)
9180                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9181                 else if (bnx2x_load_count[path][1 + port] == 0)
9182                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9183                 else
9184                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9185         }
9186
9187         return reset_code;
9188 }
9189
9190 /**
9191  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9192  *
9193  * @bp:         driver handle
9194  * @keep_link:          true iff link should be kept up
9195  */
9196 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9197 {
9198         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9199
9200         /* Report UNLOAD_DONE to MCP */
9201         if (!BP_NOMCP(bp))
9202                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9203 }
9204
9205 static int bnx2x_func_wait_started(struct bnx2x *bp)
9206 {
9207         int tout = 50;
9208         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9209
9210         if (!bp->port.pmf)
9211                 return 0;
9212
9213         /*
9214          * (assumption: No Attention from MCP at this stage)
9215          * PMF probably in the middle of TX disable/enable transaction
9216          * 1. Sync IRS for default SB
9217          * 2. Sync SP queue - this guarantees us that attention handling started
9218          * 3. Wait, that TX disable/enable transaction completes
9219          *
9220          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9221          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9222          * received completion for the transaction the state is TX_STOPPED.
9223          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9224          * transaction.
9225          */
9226
9227         /* make sure default SB ISR is done */
9228         if (msix)
9229                 synchronize_irq(bp->msix_table[0].vector);
9230         else
9231                 synchronize_irq(bp->pdev->irq);
9232
9233         flush_workqueue(bnx2x_wq);
9234         flush_workqueue(bnx2x_iov_wq);
9235
9236         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9237                                 BNX2X_F_STATE_STARTED && tout--)
9238                 msleep(20);
9239
9240         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9241                                                 BNX2X_F_STATE_STARTED) {
9242 #ifdef BNX2X_STOP_ON_ERROR
9243                 BNX2X_ERR("Wrong function state\n");
9244                 return -EBUSY;
9245 #else
9246                 /*
9247                  * Failed to complete the transaction in a "good way"
9248                  * Force both transactions with CLR bit
9249                  */
9250                 struct bnx2x_func_state_params func_params = {NULL};
9251
9252                 DP(NETIF_MSG_IFDOWN,
9253                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9254
9255                 func_params.f_obj = &bp->func_obj;
9256                 __set_bit(RAMROD_DRV_CLR_ONLY,
9257                                         &func_params.ramrod_flags);
9258
9259                 /* STARTED-->TX_ST0PPED */
9260                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9261                 bnx2x_func_state_change(bp, &func_params);
9262
9263                 /* TX_ST0PPED-->STARTED */
9264                 func_params.cmd = BNX2X_F_CMD_TX_START;
9265                 return bnx2x_func_state_change(bp, &func_params);
9266 #endif
9267         }
9268
9269         return 0;
9270 }
9271
9272 static void bnx2x_disable_ptp(struct bnx2x *bp)
9273 {
9274         int port = BP_PORT(bp);
9275
9276         /* Disable sending PTP packets to host */
9277         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9278                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9279
9280         /* Reset PTP event detection rules */
9281         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9282                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9283         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9284                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9285         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9286                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9287         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9288                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9289
9290         /* Disable the PTP feature */
9291         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9292                NIG_REG_P0_PTP_EN, 0x0);
9293 }
9294
9295 /* Called during unload, to stop PTP-related stuff */
9296 static void bnx2x_stop_ptp(struct bnx2x *bp)
9297 {
9298         /* Cancel PTP work queue. Should be done after the Tx queues are
9299          * drained to prevent additional scheduling.
9300          */
9301         cancel_work_sync(&bp->ptp_task);
9302
9303         if (bp->ptp_tx_skb) {
9304                 dev_kfree_skb_any(bp->ptp_tx_skb);
9305                 bp->ptp_tx_skb = NULL;
9306         }
9307
9308         /* Disable PTP in HW */
9309         bnx2x_disable_ptp(bp);
9310
9311         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9312 }
9313
9314 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9315 {
9316         int port = BP_PORT(bp);
9317         int i, rc = 0;
9318         u8 cos;
9319         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9320         u32 reset_code;
9321
9322         /* Wait until tx fastpath tasks complete */
9323         for_each_tx_queue(bp, i) {
9324                 struct bnx2x_fastpath *fp = &bp->fp[i];
9325
9326                 for_each_cos_in_tx_queue(fp, cos)
9327                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9328 #ifdef BNX2X_STOP_ON_ERROR
9329                 if (rc)
9330                         return;
9331 #endif
9332         }
9333
9334         /* Give HW time to discard old tx messages */
9335         usleep_range(1000, 2000);
9336
9337         /* Clean all ETH MACs */
9338         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9339                                 false);
9340         if (rc < 0)
9341                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9342
9343         /* Clean up UC list  */
9344         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9345                                 true);
9346         if (rc < 0)
9347                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9348                           rc);
9349
9350         /* The whole *vlan_obj structure may be not initialized if VLAN
9351          * filtering offload is not supported by hardware. Currently this is
9352          * true for all hardware covered by CHIP_IS_E1x().
9353          */
9354         if (!CHIP_IS_E1x(bp)) {
9355                 /* Remove all currently configured VLANs */
9356                 rc = bnx2x_del_all_vlans(bp);
9357                 if (rc < 0)
9358                         BNX2X_ERR("Failed to delete all VLANs\n");
9359         }
9360
9361         /* Disable LLH */
9362         if (!CHIP_IS_E1(bp))
9363                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9364
9365         /* Set "drop all" (stop Rx).
9366          * We need to take a netif_addr_lock() here in order to prevent
9367          * a race between the completion code and this code.
9368          */
9369         netif_addr_lock_bh(bp->dev);
9370         /* Schedule the rx_mode command */
9371         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9372                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9373         else
9374                 bnx2x_set_storm_rx_mode(bp);
9375
9376         /* Cleanup multicast configuration */
9377         rparam.mcast_obj = &bp->mcast_obj;
9378         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9379         if (rc < 0)
9380                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9381
9382         netif_addr_unlock_bh(bp->dev);
9383
9384         bnx2x_iov_chip_cleanup(bp);
9385
9386         /*
9387          * Send the UNLOAD_REQUEST to the MCP. This will return if
9388          * this function should perform FUNC, PORT or COMMON HW
9389          * reset.
9390          */
9391         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9392
9393         /*
9394          * (assumption: No Attention from MCP at this stage)
9395          * PMF probably in the middle of TX disable/enable transaction
9396          */
9397         rc = bnx2x_func_wait_started(bp);
9398         if (rc) {
9399                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9400 #ifdef BNX2X_STOP_ON_ERROR
9401                 return;
9402 #endif
9403         }
9404
9405         /* Close multi and leading connections
9406          * Completions for ramrods are collected in a synchronous way
9407          */
9408         for_each_eth_queue(bp, i)
9409                 if (bnx2x_stop_queue(bp, i))
9410 #ifdef BNX2X_STOP_ON_ERROR
9411                         return;
9412 #else
9413                         goto unload_error;
9414 #endif
9415
9416         if (CNIC_LOADED(bp)) {
9417                 for_each_cnic_queue(bp, i)
9418                         if (bnx2x_stop_queue(bp, i))
9419 #ifdef BNX2X_STOP_ON_ERROR
9420                                 return;
9421 #else
9422                                 goto unload_error;
9423 #endif
9424         }
9425
9426         /* If SP settings didn't get completed so far - something
9427          * very wrong has happen.
9428          */
9429         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9430                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9431
9432 #ifndef BNX2X_STOP_ON_ERROR
9433 unload_error:
9434 #endif
9435         rc = bnx2x_func_stop(bp);
9436         if (rc) {
9437                 BNX2X_ERR("Function stop failed!\n");
9438 #ifdef BNX2X_STOP_ON_ERROR
9439                 return;
9440 #endif
9441         }
9442
9443         /* stop_ptp should be after the Tx queues are drained to prevent
9444          * scheduling to the cancelled PTP work queue. It should also be after
9445          * function stop ramrod is sent, since as part of this ramrod FW access
9446          * PTP registers.
9447          */
9448         if (bp->flags & PTP_SUPPORTED)
9449                 bnx2x_stop_ptp(bp);
9450
9451         /* Disable HW interrupts, NAPI */
9452         bnx2x_netif_stop(bp, 1);
9453         /* Delete all NAPI objects */
9454         bnx2x_del_all_napi(bp);
9455         if (CNIC_LOADED(bp))
9456                 bnx2x_del_all_napi_cnic(bp);
9457
9458         /* Release IRQs */
9459         bnx2x_free_irq(bp);
9460
9461         /* Reset the chip, unless PCI function is offline. If we reach this
9462          * point following a PCI error handling, it means device is really
9463          * in a bad state and we're about to remove it, so reset the chip
9464          * is not a good idea.
9465          */
9466         if (!pci_channel_offline(bp->pdev)) {
9467                 rc = bnx2x_reset_hw(bp, reset_code);
9468                 if (rc)
9469                         BNX2X_ERR("HW_RESET failed\n");
9470         }
9471
9472         /* Report UNLOAD_DONE to MCP */
9473         bnx2x_send_unload_done(bp, keep_link);
9474 }
9475
9476 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9477 {
9478         u32 val;
9479
9480         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9481
9482         if (CHIP_IS_E1(bp)) {
9483                 int port = BP_PORT(bp);
9484                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9485                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9486
9487                 val = REG_RD(bp, addr);
9488                 val &= ~(0x300);
9489                 REG_WR(bp, addr, val);
9490         } else {
9491                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9492                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9493                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9494                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9495         }
9496 }
9497
9498 /* Close gates #2, #3 and #4: */
9499 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9500 {
9501         u32 val;
9502
9503         /* Gates #2 and #4a are closed/opened for "not E1" only */
9504         if (!CHIP_IS_E1(bp)) {
9505                 /* #4 */
9506                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9507                 /* #2 */
9508                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9509         }
9510
9511         /* #3 */
9512         if (CHIP_IS_E1x(bp)) {
9513                 /* Prevent interrupts from HC on both ports */
9514                 val = REG_RD(bp, HC_REG_CONFIG_1);
9515                 REG_WR(bp, HC_REG_CONFIG_1,
9516                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9517                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9518
9519                 val = REG_RD(bp, HC_REG_CONFIG_0);
9520                 REG_WR(bp, HC_REG_CONFIG_0,
9521                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9522                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9523         } else {
9524                 /* Prevent incoming interrupts in IGU */
9525                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9526
9527                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9528                        (!close) ?
9529                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9530                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9531         }
9532
9533         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9534                 close ? "closing" : "opening");
9535         mmiowb();
9536 }
9537
9538 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9539
9540 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9541 {
9542         /* Do some magic... */
9543         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9544         *magic_val = val & SHARED_MF_CLP_MAGIC;
9545         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9546 }
9547
9548 /**
9549  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9550  *
9551  * @bp:         driver handle
9552  * @magic_val:  old value of the `magic' bit.
9553  */
9554 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9555 {
9556         /* Restore the `magic' bit value... */
9557         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9558         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9559                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9560 }
9561
9562 /**
9563  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9564  *
9565  * @bp:         driver handle
9566  * @magic_val:  old value of 'magic' bit.
9567  *
9568  * Takes care of CLP configurations.
9569  */
9570 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9571 {
9572         u32 shmem;
9573         u32 validity_offset;
9574
9575         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9576
9577         /* Set `magic' bit in order to save MF config */
9578         if (!CHIP_IS_E1(bp))
9579                 bnx2x_clp_reset_prep(bp, magic_val);
9580
9581         /* Get shmem offset */
9582         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9583         validity_offset =
9584                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9585
9586         /* Clear validity map flags */
9587         if (shmem > 0)
9588                 REG_WR(bp, shmem + validity_offset, 0);
9589 }
9590
9591 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9592 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9593
9594 /**
9595  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9596  *
9597  * @bp: driver handle
9598  */
9599 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9600 {
9601         /* special handling for emulation and FPGA,
9602            wait 10 times longer */
9603         if (CHIP_REV_IS_SLOW(bp))
9604                 msleep(MCP_ONE_TIMEOUT*10);
9605         else
9606                 msleep(MCP_ONE_TIMEOUT);
9607 }
9608
9609 /*
9610  * initializes bp->common.shmem_base and waits for validity signature to appear
9611  */
9612 static int bnx2x_init_shmem(struct bnx2x *bp)
9613 {
9614         int cnt = 0;
9615         u32 val = 0;
9616
9617         do {
9618                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9619
9620                 /* If we read all 0xFFs, means we are in PCI error state and
9621                  * should bail out to avoid crashes on adapter's FW reads.
9622                  */
9623                 if (bp->common.shmem_base == 0xFFFFFFFF) {
9624                         bp->flags |= NO_MCP_FLAG;
9625                         return -ENODEV;
9626                 }
9627
9628                 if (bp->common.shmem_base) {
9629                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9630                         if (val & SHR_MEM_VALIDITY_MB)
9631                                 return 0;
9632                 }
9633
9634                 bnx2x_mcp_wait_one(bp);
9635
9636         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9637
9638         BNX2X_ERR("BAD MCP validity signature\n");
9639
9640         return -ENODEV;
9641 }
9642
9643 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9644 {
9645         int rc = bnx2x_init_shmem(bp);
9646
9647         /* Restore the `magic' bit value */
9648         if (!CHIP_IS_E1(bp))
9649                 bnx2x_clp_reset_done(bp, magic_val);
9650
9651         return rc;
9652 }
9653
9654 static void bnx2x_pxp_prep(struct bnx2x *bp)
9655 {
9656         if (!CHIP_IS_E1(bp)) {
9657                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9658                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9659                 mmiowb();
9660         }
9661 }
9662
9663 /*
9664  * Reset the whole chip except for:
9665  *      - PCIE core
9666  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9667  *              one reset bit)
9668  *      - IGU
9669  *      - MISC (including AEU)
9670  *      - GRC
9671  *      - RBCN, RBCP
9672  */
9673 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9674 {
9675         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9676         u32 global_bits2, stay_reset2;
9677
9678         /*
9679          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9680          * (per chip) blocks.
9681          */
9682         global_bits2 =
9683                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9684                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9685
9686         /* Don't reset the following blocks.
9687          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9688          *            reset, as in 4 port device they might still be owned
9689          *            by the MCP (there is only one leader per path).
9690          */
9691         not_reset_mask1 =
9692                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9693                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9694                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9695
9696         not_reset_mask2 =
9697                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9698                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9699                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9700                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9701                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9702                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9703                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9704                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9705                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9706                 MISC_REGISTERS_RESET_REG_2_PGLC |
9707                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9708                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9709                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9710                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9711                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9712                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9713
9714         /*
9715          * Keep the following blocks in reset:
9716          *  - all xxMACs are handled by the bnx2x_link code.
9717          */
9718         stay_reset2 =
9719                 MISC_REGISTERS_RESET_REG_2_XMAC |
9720                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9721
9722         /* Full reset masks according to the chip */
9723         reset_mask1 = 0xffffffff;
9724
9725         if (CHIP_IS_E1(bp))
9726                 reset_mask2 = 0xffff;
9727         else if (CHIP_IS_E1H(bp))
9728                 reset_mask2 = 0x1ffff;
9729         else if (CHIP_IS_E2(bp))
9730                 reset_mask2 = 0xfffff;
9731         else /* CHIP_IS_E3 */
9732                 reset_mask2 = 0x3ffffff;
9733
9734         /* Don't reset global blocks unless we need to */
9735         if (!global)
9736                 reset_mask2 &= ~global_bits2;
9737
9738         /*
9739          * In case of attention in the QM, we need to reset PXP
9740          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9741          * because otherwise QM reset would release 'close the gates' shortly
9742          * before resetting the PXP, then the PSWRQ would send a write
9743          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9744          * read the payload data from PSWWR, but PSWWR would not
9745          * respond. The write queue in PGLUE would stuck, dmae commands
9746          * would not return. Therefore it's important to reset the second
9747          * reset register (containing the
9748          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9749          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9750          * bit).
9751          */
9752         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9753                reset_mask2 & (~not_reset_mask2));
9754
9755         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9756                reset_mask1 & (~not_reset_mask1));
9757
9758         barrier();
9759         mmiowb();
9760
9761         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9762                reset_mask2 & (~stay_reset2));
9763
9764         barrier();
9765         mmiowb();
9766
9767         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9768         mmiowb();
9769 }
9770
9771 /**
9772  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9773  * It should get cleared in no more than 1s.
9774  *
9775  * @bp: driver handle
9776  *
9777  * It should get cleared in no more than 1s. Returns 0 if
9778  * pending writes bit gets cleared.
9779  */
9780 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9781 {
9782         u32 cnt = 1000;
9783         u32 pend_bits = 0;
9784
9785         do {
9786                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9787
9788                 if (pend_bits == 0)
9789                         break;
9790
9791                 usleep_range(1000, 2000);
9792         } while (cnt-- > 0);
9793
9794         if (cnt <= 0) {
9795                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9796                           pend_bits);
9797                 return -EBUSY;
9798         }
9799
9800         return 0;
9801 }
9802
9803 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9804 {
9805         int cnt = 1000;
9806         u32 val = 0;
9807         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9808         u32 tags_63_32 = 0;
9809
9810         /* Empty the Tetris buffer, wait for 1s */
9811         do {
9812                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9813                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9814                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9815                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9816                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9817                 if (CHIP_IS_E3(bp))
9818                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9819
9820                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9821                     ((port_is_idle_0 & 0x1) == 0x1) &&
9822                     ((port_is_idle_1 & 0x1) == 0x1) &&
9823                     (pgl_exp_rom2 == 0xffffffff) &&
9824                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9825                         break;
9826                 usleep_range(1000, 2000);
9827         } while (cnt-- > 0);
9828
9829         if (cnt <= 0) {
9830                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9831                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9832                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9833                           pgl_exp_rom2);
9834                 return -EAGAIN;
9835         }
9836
9837         barrier();
9838
9839         /* Close gates #2, #3 and #4 */
9840         bnx2x_set_234_gates(bp, true);
9841
9842         /* Poll for IGU VQs for 57712 and newer chips */
9843         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9844                 return -EAGAIN;
9845
9846         /* TBD: Indicate that "process kill" is in progress to MCP */
9847
9848         /* Clear "unprepared" bit */
9849         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9850         barrier();
9851
9852         /* Make sure all is written to the chip before the reset */
9853         mmiowb();
9854
9855         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9856          * PSWHST, GRC and PSWRD Tetris buffer.
9857          */
9858         usleep_range(1000, 2000);
9859
9860         /* Prepare to chip reset: */
9861         /* MCP */
9862         if (global)
9863                 bnx2x_reset_mcp_prep(bp, &val);
9864
9865         /* PXP */
9866         bnx2x_pxp_prep(bp);
9867         barrier();
9868
9869         /* reset the chip */
9870         bnx2x_process_kill_chip_reset(bp, global);
9871         barrier();
9872
9873         /* clear errors in PGB */
9874         if (!CHIP_IS_E1x(bp))
9875                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9876
9877         /* Recover after reset: */
9878         /* MCP */
9879         if (global && bnx2x_reset_mcp_comp(bp, val))
9880                 return -EAGAIN;
9881
9882         /* TBD: Add resetting the NO_MCP mode DB here */
9883
9884         /* Open the gates #2, #3 and #4 */
9885         bnx2x_set_234_gates(bp, false);
9886
9887         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9888          * reset state, re-enable attentions. */
9889
9890         return 0;
9891 }
9892
9893 static int bnx2x_leader_reset(struct bnx2x *bp)
9894 {
9895         int rc = 0;
9896         bool global = bnx2x_reset_is_global(bp);
9897         u32 load_code;
9898
9899         /* if not going to reset MCP - load "fake" driver to reset HW while
9900          * driver is owner of the HW
9901          */
9902         if (!global && !BP_NOMCP(bp)) {
9903                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9904                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9905                 if (!load_code) {
9906                         BNX2X_ERR("MCP response failure, aborting\n");
9907                         rc = -EAGAIN;
9908                         goto exit_leader_reset;
9909                 }
9910                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9911                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9912                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9913                         rc = -EAGAIN;
9914                         goto exit_leader_reset2;
9915                 }
9916                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9917                 if (!load_code) {
9918                         BNX2X_ERR("MCP response failure, aborting\n");
9919                         rc = -EAGAIN;
9920                         goto exit_leader_reset2;
9921                 }
9922         }
9923
9924         /* Try to recover after the failure */
9925         if (bnx2x_process_kill(bp, global)) {
9926                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9927                           BP_PATH(bp));
9928                 rc = -EAGAIN;
9929                 goto exit_leader_reset2;
9930         }
9931
9932         /*
9933          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9934          * state.
9935          */
9936         bnx2x_set_reset_done(bp);
9937         if (global)
9938                 bnx2x_clear_reset_global(bp);
9939
9940 exit_leader_reset2:
9941         /* unload "fake driver" if it was loaded */
9942         if (!global && !BP_NOMCP(bp)) {
9943                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9944                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9945         }
9946 exit_leader_reset:
9947         bp->is_leader = 0;
9948         bnx2x_release_leader_lock(bp);
9949         smp_mb();
9950         return rc;
9951 }
9952
9953 static void bnx2x_recovery_failed(struct bnx2x *bp)
9954 {
9955         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9956
9957         /* Disconnect this device */
9958         netif_device_detach(bp->dev);
9959
9960         /*
9961          * Block ifup for all function on this engine until "process kill"
9962          * or power cycle.
9963          */
9964         bnx2x_set_reset_in_progress(bp);
9965
9966         /* Shut down the power */
9967         bnx2x_set_power_state(bp, PCI_D3hot);
9968
9969         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9970
9971         smp_mb();
9972 }
9973
9974 /*
9975  * Assumption: runs under rtnl lock. This together with the fact
9976  * that it's called only from bnx2x_sp_rtnl() ensure that it
9977  * will never be called when netif_running(bp->dev) is false.
9978  */
9979 static void bnx2x_parity_recover(struct bnx2x *bp)
9980 {
9981         bool global = false;
9982         u32 error_recovered, error_unrecovered;
9983         bool is_parity;
9984
9985         DP(NETIF_MSG_HW, "Handling parity\n");
9986         while (1) {
9987                 switch (bp->recovery_state) {
9988                 case BNX2X_RECOVERY_INIT:
9989                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9990                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9991                         WARN_ON(!is_parity);
9992
9993                         /* Try to get a LEADER_LOCK HW lock */
9994                         if (bnx2x_trylock_leader_lock(bp)) {
9995                                 bnx2x_set_reset_in_progress(bp);
9996                                 /*
9997                                  * Check if there is a global attention and if
9998                                  * there was a global attention, set the global
9999                                  * reset bit.
10000                                  */
10001
10002                                 if (global)
10003                                         bnx2x_set_reset_global(bp);
10004
10005                                 bp->is_leader = 1;
10006                         }
10007
10008                         /* Stop the driver */
10009                         /* If interface has been removed - break */
10010                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10011                                 return;
10012
10013                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
10014
10015                         /* Ensure "is_leader", MCP command sequence and
10016                          * "recovery_state" update values are seen on other
10017                          * CPUs.
10018                          */
10019                         smp_mb();
10020                         break;
10021
10022                 case BNX2X_RECOVERY_WAIT:
10023                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10024                         if (bp->is_leader) {
10025                                 int other_engine = BP_PATH(bp) ? 0 : 1;
10026                                 bool other_load_status =
10027                                         bnx2x_get_load_status(bp, other_engine);
10028                                 bool load_status =
10029                                         bnx2x_get_load_status(bp, BP_PATH(bp));
10030                                 global = bnx2x_reset_is_global(bp);
10031
10032                                 /*
10033                                  * In case of a parity in a global block, let
10034                                  * the first leader that performs a
10035                                  * leader_reset() reset the global blocks in
10036                                  * order to clear global attentions. Otherwise
10037                                  * the gates will remain closed for that
10038                                  * engine.
10039                                  */
10040                                 if (load_status ||
10041                                     (global && other_load_status)) {
10042                                         /* Wait until all other functions get
10043                                          * down.
10044                                          */
10045                                         schedule_delayed_work(&bp->sp_rtnl_task,
10046                                                                 HZ/10);
10047                                         return;
10048                                 } else {
10049                                         /* If all other functions got down -
10050                                          * try to bring the chip back to
10051                                          * normal. In any case it's an exit
10052                                          * point for a leader.
10053                                          */
10054                                         if (bnx2x_leader_reset(bp)) {
10055                                                 bnx2x_recovery_failed(bp);
10056                                                 return;
10057                                         }
10058
10059                                         /* If we are here, means that the
10060                                          * leader has succeeded and doesn't
10061                                          * want to be a leader any more. Try
10062                                          * to continue as a none-leader.
10063                                          */
10064                                         break;
10065                                 }
10066                         } else { /* non-leader */
10067                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10068                                         /* Try to get a LEADER_LOCK HW lock as
10069                                          * long as a former leader may have
10070                                          * been unloaded by the user or
10071                                          * released a leadership by another
10072                                          * reason.
10073                                          */
10074                                         if (bnx2x_trylock_leader_lock(bp)) {
10075                                                 /* I'm a leader now! Restart a
10076                                                  * switch case.
10077                                                  */
10078                                                 bp->is_leader = 1;
10079                                                 break;
10080                                         }
10081
10082                                         schedule_delayed_work(&bp->sp_rtnl_task,
10083                                                                 HZ/10);
10084                                         return;
10085
10086                                 } else {
10087                                         /*
10088                                          * If there was a global attention, wait
10089                                          * for it to be cleared.
10090                                          */
10091                                         if (bnx2x_reset_is_global(bp)) {
10092                                                 schedule_delayed_work(
10093                                                         &bp->sp_rtnl_task,
10094                                                         HZ/10);
10095                                                 return;
10096                                         }
10097
10098                                         error_recovered =
10099                                           bp->eth_stats.recoverable_error;
10100                                         error_unrecovered =
10101                                           bp->eth_stats.unrecoverable_error;
10102                                         bp->recovery_state =
10103                                                 BNX2X_RECOVERY_NIC_LOADING;
10104                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10105                                                 error_unrecovered++;
10106                                                 netdev_err(bp->dev,
10107                                                            "Recovery failed. Power cycle needed\n");
10108                                                 /* Disconnect this device */
10109                                                 netif_device_detach(bp->dev);
10110                                                 /* Shut down the power */
10111                                                 bnx2x_set_power_state(
10112                                                         bp, PCI_D3hot);
10113                                                 smp_mb();
10114                                         } else {
10115                                                 bp->recovery_state =
10116                                                         BNX2X_RECOVERY_DONE;
10117                                                 error_recovered++;
10118                                                 smp_mb();
10119                                         }
10120                                         bp->eth_stats.recoverable_error =
10121                                                 error_recovered;
10122                                         bp->eth_stats.unrecoverable_error =
10123                                                 error_unrecovered;
10124
10125                                         return;
10126                                 }
10127                         }
10128                 default:
10129                         return;
10130                 }
10131         }
10132 }
10133
10134 static int bnx2x_udp_port_update(struct bnx2x *bp)
10135 {
10136         struct bnx2x_func_switch_update_params *switch_update_params;
10137         struct bnx2x_func_state_params func_params = {NULL};
10138         struct bnx2x_udp_tunnel *udp_tunnel;
10139         u16 vxlan_port = 0, geneve_port = 0;
10140         int rc;
10141
10142         switch_update_params = &func_params.params.switch_update;
10143
10144         /* Prepare parameters for function state transitions */
10145         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10146         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10147
10148         func_params.f_obj = &bp->func_obj;
10149         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10150
10151         /* Function parameters */
10152         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10153                   &switch_update_params->changes);
10154
10155         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10156                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10157                 geneve_port = udp_tunnel->dst_port;
10158                 switch_update_params->geneve_dst_port = geneve_port;
10159         }
10160
10161         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10162                 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10163                 vxlan_port = udp_tunnel->dst_port;
10164                 switch_update_params->vxlan_dst_port = vxlan_port;
10165         }
10166
10167         /* Re-enable inner-rss for the offloaded UDP tunnels */
10168         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10169                   &switch_update_params->changes);
10170
10171         rc = bnx2x_func_state_change(bp, &func_params);
10172         if (rc)
10173                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10174                           vxlan_port, geneve_port, rc);
10175         else
10176                 DP(BNX2X_MSG_SP,
10177                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10178                    vxlan_port, geneve_port);
10179
10180         return rc;
10181 }
10182
10183 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10184                                  enum bnx2x_udp_port_type type)
10185 {
10186         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10187
10188         if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10189                 return;
10190
10191         if (udp_port->count && udp_port->dst_port == port) {
10192                 udp_port->count++;
10193                 return;
10194         }
10195
10196         if (udp_port->count) {
10197                 DP(BNX2X_MSG_SP,
10198                    "UDP tunnel [%d] -  destination port limit reached\n",
10199                    type);
10200                 return;
10201         }
10202
10203         udp_port->dst_port = port;
10204         udp_port->count = 1;
10205         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10206 }
10207
10208 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10209                                  enum bnx2x_udp_port_type type)
10210 {
10211         struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10212
10213         if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10214                 return;
10215
10216         if (!udp_port->count || udp_port->dst_port != port) {
10217                 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10218                    type);
10219                 return;
10220         }
10221
10222         /* Remove reference, and make certain it's no longer in use */
10223         udp_port->count--;
10224         if (udp_port->count)
10225                 return;
10226         udp_port->dst_port = 0;
10227
10228         if (netif_running(bp->dev))
10229                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10230         else
10231                 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10232                    type, port);
10233 }
10234
10235 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10236                                  struct udp_tunnel_info *ti)
10237 {
10238         struct bnx2x *bp = netdev_priv(netdev);
10239         u16 t_port = ntohs(ti->port);
10240
10241         switch (ti->type) {
10242         case UDP_TUNNEL_TYPE_VXLAN:
10243                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10244                 break;
10245         case UDP_TUNNEL_TYPE_GENEVE:
10246                 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10247                 break;
10248         default:
10249                 break;
10250         }
10251 }
10252
10253 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10254                                  struct udp_tunnel_info *ti)
10255 {
10256         struct bnx2x *bp = netdev_priv(netdev);
10257         u16 t_port = ntohs(ti->port);
10258
10259         switch (ti->type) {
10260         case UDP_TUNNEL_TYPE_VXLAN:
10261                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10262                 break;
10263         case UDP_TUNNEL_TYPE_GENEVE:
10264                 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10265                 break;
10266         default:
10267                 break;
10268         }
10269 }
10270
10271 static int bnx2x_close(struct net_device *dev);
10272
10273 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10274  * scheduled on a general queue in order to prevent a dead lock.
10275  */
10276 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10277 {
10278         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10279
10280         rtnl_lock();
10281
10282         if (!netif_running(bp->dev)) {
10283                 rtnl_unlock();
10284                 return;
10285         }
10286
10287         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10288 #ifdef BNX2X_STOP_ON_ERROR
10289                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10290                           "you will need to reboot when done\n");
10291                 goto sp_rtnl_not_reset;
10292 #endif
10293                 /*
10294                  * Clear all pending SP commands as we are going to reset the
10295                  * function anyway.
10296                  */
10297                 bp->sp_rtnl_state = 0;
10298                 smp_mb();
10299
10300                 bnx2x_parity_recover(bp);
10301
10302                 rtnl_unlock();
10303                 return;
10304         }
10305
10306         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10307 #ifdef BNX2X_STOP_ON_ERROR
10308                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10309                           "you will need to reboot when done\n");
10310                 goto sp_rtnl_not_reset;
10311 #endif
10312
10313                 /*
10314                  * Clear all pending SP commands as we are going to reset the
10315                  * function anyway.
10316                  */
10317                 bp->sp_rtnl_state = 0;
10318                 smp_mb();
10319
10320                 /* Immediately indicate link as down */
10321                 bp->link_vars.link_up = 0;
10322                 bp->force_link_down = true;
10323                 netif_carrier_off(bp->dev);
10324                 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10325
10326                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10327                 bnx2x_nic_load(bp, LOAD_NORMAL);
10328
10329                 rtnl_unlock();
10330                 return;
10331         }
10332 #ifdef BNX2X_STOP_ON_ERROR
10333 sp_rtnl_not_reset:
10334 #endif
10335         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10336                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10337         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10338                 bnx2x_after_function_update(bp);
10339         /*
10340          * in case of fan failure we need to reset id if the "stop on error"
10341          * debug flag is set, since we trying to prevent permanent overheating
10342          * damage
10343          */
10344         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10345                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10346                 netif_device_detach(bp->dev);
10347                 bnx2x_close(bp->dev);
10348                 rtnl_unlock();
10349                 return;
10350         }
10351
10352         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10353                 DP(BNX2X_MSG_SP,
10354                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10355                 bnx2x_vfpf_set_mcast(bp->dev);
10356         }
10357         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10358                                &bp->sp_rtnl_state)){
10359                 if (netif_carrier_ok(bp->dev)) {
10360                         bnx2x_tx_disable(bp);
10361                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10362                 }
10363         }
10364
10365         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10366                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10367                 bnx2x_set_rx_mode_inner(bp);
10368         }
10369
10370         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10371                                &bp->sp_rtnl_state))
10372                 bnx2x_pf_set_vfs_vlan(bp);
10373
10374         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10375                 bnx2x_dcbx_stop_hw_tx(bp);
10376                 bnx2x_dcbx_resume_hw_tx(bp);
10377         }
10378
10379         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10380                                &bp->sp_rtnl_state))
10381                 bnx2x_update_mng_version(bp);
10382
10383         if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10384                 bnx2x_handle_update_svid_cmd(bp);
10385
10386         if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10387                                &bp->sp_rtnl_state)) {
10388                 if (bnx2x_udp_port_update(bp)) {
10389                         /* On error, forget configuration */
10390                         memset(bp->udp_tunnel_ports, 0,
10391                                sizeof(struct bnx2x_udp_tunnel) *
10392                                BNX2X_UDP_PORT_MAX);
10393                 } else {
10394                         /* Since we don't store additional port information,
10395                          * if no ports are configured for any feature ask for
10396                          * information about currently configured ports.
10397                          */
10398                         if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10399                             !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10400                                 udp_tunnel_get_rx_info(bp->dev);
10401                 }
10402         }
10403
10404         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10405          * can be called from other contexts as well)
10406          */
10407         rtnl_unlock();
10408
10409         /* enable SR-IOV if applicable */
10410         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10411                                                &bp->sp_rtnl_state)) {
10412                 bnx2x_disable_sriov(bp);
10413                 bnx2x_enable_sriov(bp);
10414         }
10415 }
10416
10417 static void bnx2x_period_task(struct work_struct *work)
10418 {
10419         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10420
10421         if (!netif_running(bp->dev))
10422                 goto period_task_exit;
10423
10424         if (CHIP_REV_IS_SLOW(bp)) {
10425                 BNX2X_ERR("period task called on emulation, ignoring\n");
10426                 goto period_task_exit;
10427         }
10428
10429         bnx2x_acquire_phy_lock(bp);
10430         /*
10431          * The barrier is needed to ensure the ordering between the writing to
10432          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10433          * the reading here.
10434          */
10435         smp_mb();
10436         if (bp->port.pmf) {
10437                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10438
10439                 /* Re-queue task in 1 sec */
10440                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10441         }
10442
10443         bnx2x_release_phy_lock(bp);
10444 period_task_exit:
10445         return;
10446 }
10447
10448 /*
10449  * Init service functions
10450  */
10451
10452 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10453 {
10454         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10455         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10456         return base + (BP_ABS_FUNC(bp)) * stride;
10457 }
10458
10459 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10460                                          u8 port, u32 reset_reg,
10461                                          struct bnx2x_mac_vals *vals)
10462 {
10463         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10464         u32 base_addr;
10465
10466         if (!(mask & reset_reg))
10467                 return false;
10468
10469         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10470         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10471         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10472         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10473         REG_WR(bp, vals->umac_addr[port], 0);
10474
10475         return true;
10476 }
10477
10478 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10479                                         struct bnx2x_mac_vals *vals)
10480 {
10481         u32 val, base_addr, offset, mask, reset_reg;
10482         bool mac_stopped = false;
10483         u8 port = BP_PORT(bp);
10484
10485         /* reset addresses as they also mark which values were changed */
10486         memset(vals, 0, sizeof(*vals));
10487
10488         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10489
10490         if (!CHIP_IS_E3(bp)) {
10491                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10492                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10493                 if ((mask & reset_reg) && val) {
10494                         u32 wb_data[2];
10495                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10496                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10497                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10498                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10499                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10500
10501                         /*
10502                          * use rd/wr since we cannot use dmae. This is safe
10503                          * since MCP won't access the bus due to the request
10504                          * to unload, and no function on the path can be
10505                          * loaded at this time.
10506                          */
10507                         wb_data[0] = REG_RD(bp, base_addr + offset);
10508                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10509                         vals->bmac_addr = base_addr + offset;
10510                         vals->bmac_val[0] = wb_data[0];
10511                         vals->bmac_val[1] = wb_data[1];
10512                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10513                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10514                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10515                 }
10516                 BNX2X_DEV_INFO("Disable emac Rx\n");
10517                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10518                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10519                 REG_WR(bp, vals->emac_addr, 0);
10520                 mac_stopped = true;
10521         } else {
10522                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10523                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10524                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10525                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10526                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10527                                val & ~(1 << 1));
10528                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10529                                val | (1 << 1));
10530                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10531                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10532                         REG_WR(bp, vals->xmac_addr, 0);
10533                         mac_stopped = true;
10534                 }
10535
10536                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10537                                                             reset_reg, vals);
10538                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10539                                                             reset_reg, vals);
10540         }
10541
10542         if (mac_stopped)
10543                 msleep(20);
10544 }
10545
10546 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10547 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10548                                         0x1848 + ((f) << 4))
10549 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10550 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10551 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10552
10553 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10554 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10555 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10556
10557 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10558 {
10559         /* UNDI marks its presence in DORQ -
10560          * it initializes CID offset for normal bell to 0x7
10561          */
10562         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10563             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10564                 return false;
10565
10566         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10567                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10568                 return true;
10569         }
10570
10571         return false;
10572 }
10573
10574 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10575 {
10576         u16 rcq, bd;
10577         u32 addr, tmp_reg;
10578
10579         if (BP_FUNC(bp) < 2)
10580                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10581         else
10582                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10583
10584         tmp_reg = REG_RD(bp, addr);
10585         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10586         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10587
10588         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10589         REG_WR(bp, addr, tmp_reg);
10590
10591         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10592                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10593 }
10594
10595 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10596 {
10597         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10598                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10599         if (!rc) {
10600                 BNX2X_ERR("MCP response failure, aborting\n");
10601                 return -EBUSY;
10602         }
10603
10604         return 0;
10605 }
10606
10607 static struct bnx2x_prev_path_list *
10608                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10609 {
10610         struct bnx2x_prev_path_list *tmp_list;
10611
10612         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10613                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10614                     bp->pdev->bus->number == tmp_list->bus &&
10615                     BP_PATH(bp) == tmp_list->path)
10616                         return tmp_list;
10617
10618         return NULL;
10619 }
10620
10621 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10622 {
10623         struct bnx2x_prev_path_list *tmp_list;
10624         int rc;
10625
10626         rc = down_interruptible(&bnx2x_prev_sem);
10627         if (rc) {
10628                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10629                 return rc;
10630         }
10631
10632         tmp_list = bnx2x_prev_path_get_entry(bp);
10633         if (tmp_list) {
10634                 tmp_list->aer = 1;
10635                 rc = 0;
10636         } else {
10637                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10638                           BP_PATH(bp));
10639         }
10640
10641         up(&bnx2x_prev_sem);
10642
10643         return rc;
10644 }
10645
10646 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10647 {
10648         struct bnx2x_prev_path_list *tmp_list;
10649         bool rc = false;
10650
10651         if (down_trylock(&bnx2x_prev_sem))
10652                 return false;
10653
10654         tmp_list = bnx2x_prev_path_get_entry(bp);
10655         if (tmp_list) {
10656                 if (tmp_list->aer) {
10657                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10658                            BP_PATH(bp));
10659                 } else {
10660                         rc = true;
10661                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10662                                        BP_PATH(bp));
10663                 }
10664         }
10665
10666         up(&bnx2x_prev_sem);
10667
10668         return rc;
10669 }
10670
10671 bool bnx2x_port_after_undi(struct bnx2x *bp)
10672 {
10673         struct bnx2x_prev_path_list *entry;
10674         bool val;
10675
10676         down(&bnx2x_prev_sem);
10677
10678         entry = bnx2x_prev_path_get_entry(bp);
10679         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10680
10681         up(&bnx2x_prev_sem);
10682
10683         return val;
10684 }
10685
10686 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10687 {
10688         struct bnx2x_prev_path_list *tmp_list;
10689         int rc;
10690
10691         rc = down_interruptible(&bnx2x_prev_sem);
10692         if (rc) {
10693                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10694                 return rc;
10695         }
10696
10697         /* Check whether the entry for this path already exists */
10698         tmp_list = bnx2x_prev_path_get_entry(bp);
10699         if (tmp_list) {
10700                 if (!tmp_list->aer) {
10701                         BNX2X_ERR("Re-Marking the path.\n");
10702                 } else {
10703                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10704                            BP_PATH(bp));
10705                         tmp_list->aer = 0;
10706                 }
10707                 up(&bnx2x_prev_sem);
10708                 return 0;
10709         }
10710         up(&bnx2x_prev_sem);
10711
10712         /* Create an entry for this path and add it */
10713         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10714         if (!tmp_list) {
10715                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10716                 return -ENOMEM;
10717         }
10718
10719         tmp_list->bus = bp->pdev->bus->number;
10720         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10721         tmp_list->path = BP_PATH(bp);
10722         tmp_list->aer = 0;
10723         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10724
10725         rc = down_interruptible(&bnx2x_prev_sem);
10726         if (rc) {
10727                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10728                 kfree(tmp_list);
10729         } else {
10730                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10731                    BP_PATH(bp));
10732                 list_add(&tmp_list->list, &bnx2x_prev_list);
10733                 up(&bnx2x_prev_sem);
10734         }
10735
10736         return rc;
10737 }
10738
10739 static int bnx2x_do_flr(struct bnx2x *bp)
10740 {
10741         struct pci_dev *dev = bp->pdev;
10742
10743         if (CHIP_IS_E1x(bp)) {
10744                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10745                 return -EINVAL;
10746         }
10747
10748         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10749         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10750                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10751                           bp->common.bc_ver);
10752                 return -EINVAL;
10753         }
10754
10755         if (!pci_wait_for_pending_transaction(dev))
10756                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10757
10758         BNX2X_DEV_INFO("Initiating FLR\n");
10759         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10760
10761         return 0;
10762 }
10763
10764 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10765 {
10766         int rc;
10767
10768         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10769
10770         /* Test if previous unload process was already finished for this path */
10771         if (bnx2x_prev_is_path_marked(bp))
10772                 return bnx2x_prev_mcp_done(bp);
10773
10774         BNX2X_DEV_INFO("Path is unmarked\n");
10775
10776         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10777         if (bnx2x_prev_is_after_undi(bp))
10778                 goto out;
10779
10780         /* If function has FLR capabilities, and existing FW version matches
10781          * the one required, then FLR will be sufficient to clean any residue
10782          * left by previous driver
10783          */
10784         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10785
10786         if (!rc) {
10787                 /* fw version is good */
10788                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10789                 rc = bnx2x_do_flr(bp);
10790         }
10791
10792         if (!rc) {
10793                 /* FLR was performed */
10794                 BNX2X_DEV_INFO("FLR successful\n");
10795                 return 0;
10796         }
10797
10798         BNX2X_DEV_INFO("Could not FLR\n");
10799
10800 out:
10801         /* Close the MCP request, return failure*/
10802         rc = bnx2x_prev_mcp_done(bp);
10803         if (!rc)
10804                 rc = BNX2X_PREV_WAIT_NEEDED;
10805
10806         return rc;
10807 }
10808
10809 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10810 {
10811         u32 reset_reg, tmp_reg = 0, rc;
10812         bool prev_undi = false;
10813         struct bnx2x_mac_vals mac_vals;
10814
10815         /* It is possible a previous function received 'common' answer,
10816          * but hasn't loaded yet, therefore creating a scenario of
10817          * multiple functions receiving 'common' on the same path.
10818          */
10819         BNX2X_DEV_INFO("Common unload Flow\n");
10820
10821         memset(&mac_vals, 0, sizeof(mac_vals));
10822
10823         if (bnx2x_prev_is_path_marked(bp))
10824                 return bnx2x_prev_mcp_done(bp);
10825
10826         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10827
10828         /* Reset should be performed after BRB is emptied */
10829         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10830                 u32 timer_count = 1000;
10831
10832                 /* Close the MAC Rx to prevent BRB from filling up */
10833                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10834
10835                 /* close LLH filters for both ports towards the BRB */
10836                 bnx2x_set_rx_filter(&bp->link_params, 0);
10837                 bp->link_params.port ^= 1;
10838                 bnx2x_set_rx_filter(&bp->link_params, 0);
10839                 bp->link_params.port ^= 1;
10840
10841                 /* Check if the UNDI driver was previously loaded */
10842                 if (bnx2x_prev_is_after_undi(bp)) {
10843                         prev_undi = true;
10844                         /* clear the UNDI indication */
10845                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10846                         /* clear possible idle check errors */
10847                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10848                 }
10849                 if (!CHIP_IS_E1x(bp))
10850                         /* block FW from writing to host */
10851                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10852
10853                 /* wait until BRB is empty */
10854                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10855                 while (timer_count) {
10856                         u32 prev_brb = tmp_reg;
10857
10858                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10859                         if (!tmp_reg)
10860                                 break;
10861
10862                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10863
10864                         /* reset timer as long as BRB actually gets emptied */
10865                         if (prev_brb > tmp_reg)
10866                                 timer_count = 1000;
10867                         else
10868                                 timer_count--;
10869
10870                         /* If UNDI resides in memory, manually increment it */
10871                         if (prev_undi)
10872                                 bnx2x_prev_unload_undi_inc(bp, 1);
10873
10874                         udelay(10);
10875                 }
10876
10877                 if (!timer_count)
10878                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10879         }
10880
10881         /* No packets are in the pipeline, path is ready for reset */
10882         bnx2x_reset_common(bp);
10883
10884         if (mac_vals.xmac_addr)
10885                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10886         if (mac_vals.umac_addr[0])
10887                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10888         if (mac_vals.umac_addr[1])
10889                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10890         if (mac_vals.emac_addr)
10891                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10892         if (mac_vals.bmac_addr) {
10893                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10894                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10895         }
10896
10897         rc = bnx2x_prev_mark_path(bp, prev_undi);
10898         if (rc) {
10899                 bnx2x_prev_mcp_done(bp);
10900                 return rc;
10901         }
10902
10903         return bnx2x_prev_mcp_done(bp);
10904 }
10905
10906 static int bnx2x_prev_unload(struct bnx2x *bp)
10907 {
10908         int time_counter = 10;
10909         u32 rc, fw, hw_lock_reg, hw_lock_val;
10910         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10911
10912         /* clear hw from errors which may have resulted from an interrupted
10913          * dmae transaction.
10914          */
10915         bnx2x_clean_pglue_errors(bp);
10916
10917         /* Release previously held locks */
10918         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10919                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10920                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10921
10922         hw_lock_val = REG_RD(bp, hw_lock_reg);
10923         if (hw_lock_val) {
10924                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10925                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10926                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10927                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10928                 }
10929
10930                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10931                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10932         } else
10933                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10934
10935         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10936                 BNX2X_DEV_INFO("Release previously held alr\n");
10937                 bnx2x_release_alr(bp);
10938         }
10939
10940         do {
10941                 int aer = 0;
10942                 /* Lock MCP using an unload request */
10943                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10944                 if (!fw) {
10945                         BNX2X_ERR("MCP response failure, aborting\n");
10946                         rc = -EBUSY;
10947                         break;
10948                 }
10949
10950                 rc = down_interruptible(&bnx2x_prev_sem);
10951                 if (rc) {
10952                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10953                                   rc);
10954                 } else {
10955                         /* If Path is marked by EEH, ignore unload status */
10956                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10957                                  bnx2x_prev_path_get_entry(bp)->aer);
10958                         up(&bnx2x_prev_sem);
10959                 }
10960
10961                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10962                         rc = bnx2x_prev_unload_common(bp);
10963                         break;
10964                 }
10965
10966                 /* non-common reply from MCP might require looping */
10967                 rc = bnx2x_prev_unload_uncommon(bp);
10968                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10969                         break;
10970
10971                 msleep(20);
10972         } while (--time_counter);
10973
10974         if (!time_counter || rc) {
10975                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10976                 rc = -EPROBE_DEFER;
10977         }
10978
10979         /* Mark function if its port was used to boot from SAN */
10980         if (bnx2x_port_after_undi(bp))
10981                 bp->link_params.feature_config_flags |=
10982                         FEATURE_CONFIG_BOOT_FROM_SAN;
10983
10984         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10985
10986         return rc;
10987 }
10988
10989 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10990 {
10991         u32 val, val2, val3, val4, id, boot_mode;
10992         u16 pmc;
10993
10994         /* Get the chip revision id and number. */
10995         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10996         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10997         id = ((val & 0xffff) << 16);
10998         val = REG_RD(bp, MISC_REG_CHIP_REV);
10999         id |= ((val & 0xf) << 12);
11000
11001         /* Metal is read from PCI regs, but we can't access >=0x400 from
11002          * the configuration space (so we need to reg_rd)
11003          */
11004         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11005         id |= (((val >> 24) & 0xf) << 4);
11006         val = REG_RD(bp, MISC_REG_BOND_ID);
11007         id |= (val & 0xf);
11008         bp->common.chip_id = id;
11009
11010         /* force 57811 according to MISC register */
11011         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11012                 if (CHIP_IS_57810(bp))
11013                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11014                                 (bp->common.chip_id & 0x0000FFFF);
11015                 else if (CHIP_IS_57810_MF(bp))
11016                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11017                                 (bp->common.chip_id & 0x0000FFFF);
11018                 bp->common.chip_id |= 0x1;
11019         }
11020
11021         /* Set doorbell size */
11022         bp->db_size = (1 << BNX2X_DB_SHIFT);
11023
11024         if (!CHIP_IS_E1x(bp)) {
11025                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11026                 if ((val & 1) == 0)
11027                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11028                 else
11029                         val = (val >> 1) & 1;
11030                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11031                                                        "2_PORT_MODE");
11032                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11033                                                  CHIP_2_PORT_MODE;
11034
11035                 if (CHIP_MODE_IS_4_PORT(bp))
11036                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
11037                 else
11038                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
11039         } else {
11040                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11041                 bp->pfid = bp->pf_num;                  /* 0..7 */
11042         }
11043
11044         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11045
11046         bp->link_params.chip_id = bp->common.chip_id;
11047         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11048
11049         val = (REG_RD(bp, 0x2874) & 0x55);
11050         if ((bp->common.chip_id & 0x1) ||
11051             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11052                 bp->flags |= ONE_PORT_FLAG;
11053                 BNX2X_DEV_INFO("single port device\n");
11054         }
11055
11056         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11057         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11058                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
11059         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11060                        bp->common.flash_size, bp->common.flash_size);
11061
11062         bnx2x_init_shmem(bp);
11063
11064         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11065                                         MISC_REG_GENERIC_CR_1 :
11066                                         MISC_REG_GENERIC_CR_0));
11067
11068         bp->link_params.shmem_base = bp->common.shmem_base;
11069         bp->link_params.shmem2_base = bp->common.shmem2_base;
11070         if (SHMEM2_RD(bp, size) >
11071             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11072                 bp->link_params.lfa_base =
11073                 REG_RD(bp, bp->common.shmem2_base +
11074                        (u32)offsetof(struct shmem2_region,
11075                                      lfa_host_addr[BP_PORT(bp)]));
11076         else
11077                 bp->link_params.lfa_base = 0;
11078         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11079                        bp->common.shmem_base, bp->common.shmem2_base);
11080
11081         if (!bp->common.shmem_base) {
11082                 BNX2X_DEV_INFO("MCP not active\n");
11083                 bp->flags |= NO_MCP_FLAG;
11084                 return;
11085         }
11086
11087         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11088         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11089
11090         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11091                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11092                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11093
11094         bp->link_params.feature_config_flags = 0;
11095         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11096         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11097                 bp->link_params.feature_config_flags |=
11098                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11099         else
11100                 bp->link_params.feature_config_flags &=
11101                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11102
11103         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11104         bp->common.bc_ver = val;
11105         BNX2X_DEV_INFO("bc_ver %X\n", val);
11106         if (val < BNX2X_BC_VER) {
11107                 /* for now only warn
11108                  * later we might need to enforce this */
11109                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11110                           BNX2X_BC_VER, val);
11111         }
11112         bp->link_params.feature_config_flags |=
11113                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11114                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11115
11116         bp->link_params.feature_config_flags |=
11117                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11118                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11119         bp->link_params.feature_config_flags |=
11120                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11121                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11122         bp->link_params.feature_config_flags |=
11123                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11124                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11125
11126         bp->link_params.feature_config_flags |=
11127                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11128                 FEATURE_CONFIG_MT_SUPPORT : 0;
11129
11130         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11131                         BC_SUPPORTS_PFC_STATS : 0;
11132
11133         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11134                         BC_SUPPORTS_FCOE_FEATURES : 0;
11135
11136         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11137                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11138
11139         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11140                         BC_SUPPORTS_RMMOD_CMD : 0;
11141
11142         boot_mode = SHMEM_RD(bp,
11143                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11144                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11145         switch (boot_mode) {
11146         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11147                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11148                 break;
11149         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11150                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11151                 break;
11152         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11153                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11154                 break;
11155         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11156                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11157                 break;
11158         }
11159
11160         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11161         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11162
11163         BNX2X_DEV_INFO("%sWoL capable\n",
11164                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11165
11166         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11167         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11168         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11169         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11170
11171         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11172                  val, val2, val3, val4);
11173 }
11174
11175 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11176 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11177
11178 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11179 {
11180         int pfid = BP_FUNC(bp);
11181         int igu_sb_id;
11182         u32 val;
11183         u8 fid, igu_sb_cnt = 0;
11184
11185         bp->igu_base_sb = 0xff;
11186         if (CHIP_INT_MODE_IS_BC(bp)) {
11187                 int vn = BP_VN(bp);
11188                 igu_sb_cnt = bp->igu_sb_cnt;
11189                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11190                         FP_SB_MAX_E1x;
11191
11192                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11193                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11194
11195                 return 0;
11196         }
11197
11198         /* IGU in normal mode - read CAM */
11199         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11200              igu_sb_id++) {
11201                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11202                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11203                         continue;
11204                 fid = IGU_FID(val);
11205                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11206                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11207                                 continue;
11208                         if (IGU_VEC(val) == 0)
11209                                 /* default status block */
11210                                 bp->igu_dsb_id = igu_sb_id;
11211                         else {
11212                                 if (bp->igu_base_sb == 0xff)
11213                                         bp->igu_base_sb = igu_sb_id;
11214                                 igu_sb_cnt++;
11215                         }
11216                 }
11217         }
11218
11219 #ifdef CONFIG_PCI_MSI
11220         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11221          * optional that number of CAM entries will not be equal to the value
11222          * advertised in PCI.
11223          * Driver should use the minimal value of both as the actual status
11224          * block count
11225          */
11226         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11227 #endif
11228
11229         if (igu_sb_cnt == 0) {
11230                 BNX2X_ERR("CAM configuration error\n");
11231                 return -EINVAL;
11232         }
11233
11234         return 0;
11235 }
11236
11237 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11238 {
11239         int cfg_size = 0, idx, port = BP_PORT(bp);
11240
11241         /* Aggregation of supported attributes of all external phys */
11242         bp->port.supported[0] = 0;
11243         bp->port.supported[1] = 0;
11244         switch (bp->link_params.num_phys) {
11245         case 1:
11246                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11247                 cfg_size = 1;
11248                 break;
11249         case 2:
11250                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11251                 cfg_size = 1;
11252                 break;
11253         case 3:
11254                 if (bp->link_params.multi_phy_config &
11255                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11256                         bp->port.supported[1] =
11257                                 bp->link_params.phy[EXT_PHY1].supported;
11258                         bp->port.supported[0] =
11259                                 bp->link_params.phy[EXT_PHY2].supported;
11260                 } else {
11261                         bp->port.supported[0] =
11262                                 bp->link_params.phy[EXT_PHY1].supported;
11263                         bp->port.supported[1] =
11264                                 bp->link_params.phy[EXT_PHY2].supported;
11265                 }
11266                 cfg_size = 2;
11267                 break;
11268         }
11269
11270         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11271                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11272                            SHMEM_RD(bp,
11273                            dev_info.port_hw_config[port].external_phy_config),
11274                            SHMEM_RD(bp,
11275                            dev_info.port_hw_config[port].external_phy_config2));
11276                         return;
11277         }
11278
11279         if (CHIP_IS_E3(bp))
11280                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11281         else {
11282                 switch (switch_cfg) {
11283                 case SWITCH_CFG_1G:
11284                         bp->port.phy_addr = REG_RD(
11285                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11286                         break;
11287                 case SWITCH_CFG_10G:
11288                         bp->port.phy_addr = REG_RD(
11289                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11290                         break;
11291                 default:
11292                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11293                                   bp->port.link_config[0]);
11294                         return;
11295                 }
11296         }
11297         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11298         /* mask what we support according to speed_cap_mask per configuration */
11299         for (idx = 0; idx < cfg_size; idx++) {
11300                 if (!(bp->link_params.speed_cap_mask[idx] &
11301                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11302                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11303
11304                 if (!(bp->link_params.speed_cap_mask[idx] &
11305                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11306                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11307
11308                 if (!(bp->link_params.speed_cap_mask[idx] &
11309                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11310                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11311
11312                 if (!(bp->link_params.speed_cap_mask[idx] &
11313                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11314                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11315
11316                 if (!(bp->link_params.speed_cap_mask[idx] &
11317                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11318                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11319                                                      SUPPORTED_1000baseT_Full);
11320
11321                 if (!(bp->link_params.speed_cap_mask[idx] &
11322                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11323                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11324
11325                 if (!(bp->link_params.speed_cap_mask[idx] &
11326                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11327                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11328
11329                 if (!(bp->link_params.speed_cap_mask[idx] &
11330                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11331                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11332         }
11333
11334         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11335                        bp->port.supported[1]);
11336 }
11337
11338 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11339 {
11340         u32 link_config, idx, cfg_size = 0;
11341         bp->port.advertising[0] = 0;
11342         bp->port.advertising[1] = 0;
11343         switch (bp->link_params.num_phys) {
11344         case 1:
11345         case 2:
11346                 cfg_size = 1;
11347                 break;
11348         case 3:
11349                 cfg_size = 2;
11350                 break;
11351         }
11352         for (idx = 0; idx < cfg_size; idx++) {
11353                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11354                 link_config = bp->port.link_config[idx];
11355                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11356                 case PORT_FEATURE_LINK_SPEED_AUTO:
11357                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11358                                 bp->link_params.req_line_speed[idx] =
11359                                         SPEED_AUTO_NEG;
11360                                 bp->port.advertising[idx] |=
11361                                         bp->port.supported[idx];
11362                                 if (bp->link_params.phy[EXT_PHY1].type ==
11363                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11364                                         bp->port.advertising[idx] |=
11365                                         (SUPPORTED_100baseT_Half |
11366                                          SUPPORTED_100baseT_Full);
11367                         } else {
11368                                 /* force 10G, no AN */
11369                                 bp->link_params.req_line_speed[idx] =
11370                                         SPEED_10000;
11371                                 bp->port.advertising[idx] |=
11372                                         (ADVERTISED_10000baseT_Full |
11373                                          ADVERTISED_FIBRE);
11374                                 continue;
11375                         }
11376                         break;
11377
11378                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11379                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11380                                 bp->link_params.req_line_speed[idx] =
11381                                         SPEED_10;
11382                                 bp->port.advertising[idx] |=
11383                                         (ADVERTISED_10baseT_Full |
11384                                          ADVERTISED_TP);
11385                         } else {
11386                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11387                                             link_config,
11388                                     bp->link_params.speed_cap_mask[idx]);
11389                                 return;
11390                         }
11391                         break;
11392
11393                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11394                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11395                                 bp->link_params.req_line_speed[idx] =
11396                                         SPEED_10;
11397                                 bp->link_params.req_duplex[idx] =
11398                                         DUPLEX_HALF;
11399                                 bp->port.advertising[idx] |=
11400                                         (ADVERTISED_10baseT_Half |
11401                                          ADVERTISED_TP);
11402                         } else {
11403                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11404                                             link_config,
11405                                           bp->link_params.speed_cap_mask[idx]);
11406                                 return;
11407                         }
11408                         break;
11409
11410                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11411                         if (bp->port.supported[idx] &
11412                             SUPPORTED_100baseT_Full) {
11413                                 bp->link_params.req_line_speed[idx] =
11414                                         SPEED_100;
11415                                 bp->port.advertising[idx] |=
11416                                         (ADVERTISED_100baseT_Full |
11417                                          ADVERTISED_TP);
11418                         } else {
11419                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11420                                             link_config,
11421                                           bp->link_params.speed_cap_mask[idx]);
11422                                 return;
11423                         }
11424                         break;
11425
11426                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11427                         if (bp->port.supported[idx] &
11428                             SUPPORTED_100baseT_Half) {
11429                                 bp->link_params.req_line_speed[idx] =
11430                                                                 SPEED_100;
11431                                 bp->link_params.req_duplex[idx] =
11432                                                                 DUPLEX_HALF;
11433                                 bp->port.advertising[idx] |=
11434                                         (ADVERTISED_100baseT_Half |
11435                                          ADVERTISED_TP);
11436                         } else {
11437                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11438                                     link_config,
11439                                     bp->link_params.speed_cap_mask[idx]);
11440                                 return;
11441                         }
11442                         break;
11443
11444                 case PORT_FEATURE_LINK_SPEED_1G:
11445                         if (bp->port.supported[idx] &
11446                             SUPPORTED_1000baseT_Full) {
11447                                 bp->link_params.req_line_speed[idx] =
11448                                         SPEED_1000;
11449                                 bp->port.advertising[idx] |=
11450                                         (ADVERTISED_1000baseT_Full |
11451                                          ADVERTISED_TP);
11452                         } else if (bp->port.supported[idx] &
11453                                    SUPPORTED_1000baseKX_Full) {
11454                                 bp->link_params.req_line_speed[idx] =
11455                                         SPEED_1000;
11456                                 bp->port.advertising[idx] |=
11457                                         ADVERTISED_1000baseKX_Full;
11458                         } else {
11459                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11460                                     link_config,
11461                                     bp->link_params.speed_cap_mask[idx]);
11462                                 return;
11463                         }
11464                         break;
11465
11466                 case PORT_FEATURE_LINK_SPEED_2_5G:
11467                         if (bp->port.supported[idx] &
11468                             SUPPORTED_2500baseX_Full) {
11469                                 bp->link_params.req_line_speed[idx] =
11470                                         SPEED_2500;
11471                                 bp->port.advertising[idx] |=
11472                                         (ADVERTISED_2500baseX_Full |
11473                                                 ADVERTISED_TP);
11474                         } else {
11475                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11476                                     link_config,
11477                                     bp->link_params.speed_cap_mask[idx]);
11478                                 return;
11479                         }
11480                         break;
11481
11482                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11483                         if (bp->port.supported[idx] &
11484                             SUPPORTED_10000baseT_Full) {
11485                                 bp->link_params.req_line_speed[idx] =
11486                                         SPEED_10000;
11487                                 bp->port.advertising[idx] |=
11488                                         (ADVERTISED_10000baseT_Full |
11489                                                 ADVERTISED_FIBRE);
11490                         } else if (bp->port.supported[idx] &
11491                                    SUPPORTED_10000baseKR_Full) {
11492                                 bp->link_params.req_line_speed[idx] =
11493                                         SPEED_10000;
11494                                 bp->port.advertising[idx] |=
11495                                         (ADVERTISED_10000baseKR_Full |
11496                                                 ADVERTISED_FIBRE);
11497                         } else {
11498                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11499                                     link_config,
11500                                     bp->link_params.speed_cap_mask[idx]);
11501                                 return;
11502                         }
11503                         break;
11504                 case PORT_FEATURE_LINK_SPEED_20G:
11505                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11506
11507                         break;
11508                 default:
11509                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11510                                   link_config);
11511                                 bp->link_params.req_line_speed[idx] =
11512                                                         SPEED_AUTO_NEG;
11513                                 bp->port.advertising[idx] =
11514                                                 bp->port.supported[idx];
11515                         break;
11516                 }
11517
11518                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11519                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11520                 if (bp->link_params.req_flow_ctrl[idx] ==
11521                     BNX2X_FLOW_CTRL_AUTO) {
11522                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11523                                 bp->link_params.req_flow_ctrl[idx] =
11524                                                         BNX2X_FLOW_CTRL_NONE;
11525                         else
11526                                 bnx2x_set_requested_fc(bp);
11527                 }
11528
11529                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11530                                bp->link_params.req_line_speed[idx],
11531                                bp->link_params.req_duplex[idx],
11532                                bp->link_params.req_flow_ctrl[idx],
11533                                bp->port.advertising[idx]);
11534         }
11535 }
11536
11537 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11538 {
11539         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11540         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11541         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11542         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11543 }
11544
11545 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11546 {
11547         int port = BP_PORT(bp);
11548         u32 config;
11549         u32 ext_phy_type, ext_phy_config, eee_mode;
11550
11551         bp->link_params.bp = bp;
11552         bp->link_params.port = port;
11553
11554         bp->link_params.lane_config =
11555                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11556
11557         bp->link_params.speed_cap_mask[0] =
11558                 SHMEM_RD(bp,
11559                          dev_info.port_hw_config[port].speed_capability_mask) &
11560                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11561         bp->link_params.speed_cap_mask[1] =
11562                 SHMEM_RD(bp,
11563                          dev_info.port_hw_config[port].speed_capability_mask2) &
11564                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11565         bp->port.link_config[0] =
11566                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11567
11568         bp->port.link_config[1] =
11569                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11570
11571         bp->link_params.multi_phy_config =
11572                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11573         /* If the device is capable of WoL, set the default state according
11574          * to the HW
11575          */
11576         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11577         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11578                    (config & PORT_FEATURE_WOL_ENABLED));
11579
11580         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11581             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11582                 bp->flags |= NO_ISCSI_FLAG;
11583         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11584             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11585                 bp->flags |= NO_FCOE_FLAG;
11586
11587         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11588                        bp->link_params.lane_config,
11589                        bp->link_params.speed_cap_mask[0],
11590                        bp->port.link_config[0]);
11591
11592         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11593                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11594         bnx2x_phy_probe(&bp->link_params);
11595         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11596
11597         bnx2x_link_settings_requested(bp);
11598
11599         /*
11600          * If connected directly, work with the internal PHY, otherwise, work
11601          * with the external PHY
11602          */
11603         ext_phy_config =
11604                 SHMEM_RD(bp,
11605                          dev_info.port_hw_config[port].external_phy_config);
11606         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11607         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11608                 bp->mdio.prtad = bp->port.phy_addr;
11609
11610         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11611                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11612                 bp->mdio.prtad =
11613                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11614
11615         /* Configure link feature according to nvram value */
11616         eee_mode = (((SHMEM_RD(bp, dev_info.
11617                       port_feature_config[port].eee_power_mode)) &
11618                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11619                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11620         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11621                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11622                                            EEE_MODE_ENABLE_LPI |
11623                                            EEE_MODE_OUTPUT_TIME;
11624         } else {
11625                 bp->link_params.eee_mode = 0;
11626         }
11627 }
11628
11629 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11630 {
11631         u32 no_flags = NO_ISCSI_FLAG;
11632         int port = BP_PORT(bp);
11633         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11634                                 drv_lic_key[port].max_iscsi_conn);
11635
11636         if (!CNIC_SUPPORT(bp)) {
11637                 bp->flags |= no_flags;
11638                 return;
11639         }
11640
11641         /* Get the number of maximum allowed iSCSI connections */
11642         bp->cnic_eth_dev.max_iscsi_conn =
11643                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11644                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11645
11646         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11647                        bp->cnic_eth_dev.max_iscsi_conn);
11648
11649         /*
11650          * If maximum allowed number of connections is zero -
11651          * disable the feature.
11652          */
11653         if (!bp->cnic_eth_dev.max_iscsi_conn)
11654                 bp->flags |= no_flags;
11655 }
11656
11657 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11658 {
11659         /* Port info */
11660         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11661                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11662         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11663                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11664
11665         /* Node info */
11666         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11667                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11668         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11669                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11670 }
11671
11672 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11673 {
11674         u8 count = 0;
11675
11676         if (IS_MF(bp)) {
11677                 u8 fid;
11678
11679                 /* iterate over absolute function ids for this path: */
11680                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11681                         if (IS_MF_SD(bp)) {
11682                                 u32 cfg = MF_CFG_RD(bp,
11683                                                     func_mf_config[fid].config);
11684
11685                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11686                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11687                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11688                                         count++;
11689                         } else {
11690                                 u32 cfg = MF_CFG_RD(bp,
11691                                                     func_ext_config[fid].
11692                                                                       func_cfg);
11693
11694                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11695                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11696                                         count++;
11697                         }
11698                 }
11699         } else { /* SF */
11700                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11701
11702                 for (port = 0; port < port_cnt; port++) {
11703                         u32 lic = SHMEM_RD(bp,
11704                                            drv_lic_key[port].max_fcoe_conn) ^
11705                                   FW_ENCODE_32BIT_PATTERN;
11706                         if (lic)
11707                                 count++;
11708                 }
11709         }
11710
11711         return count;
11712 }
11713
11714 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11715 {
11716         int port = BP_PORT(bp);
11717         int func = BP_ABS_FUNC(bp);
11718         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11719                                 drv_lic_key[port].max_fcoe_conn);
11720         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11721
11722         if (!CNIC_SUPPORT(bp)) {
11723                 bp->flags |= NO_FCOE_FLAG;
11724                 return;
11725         }
11726
11727         /* Get the number of maximum allowed FCoE connections */
11728         bp->cnic_eth_dev.max_fcoe_conn =
11729                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11730                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11731
11732         /* Calculate the number of maximum allowed FCoE tasks */
11733         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11734
11735         /* check if FCoE resources must be shared between different functions */
11736         if (num_fcoe_func)
11737                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11738
11739         /* Read the WWN: */
11740         if (!IS_MF(bp)) {
11741                 /* Port info */
11742                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11743                         SHMEM_RD(bp,
11744                                  dev_info.port_hw_config[port].
11745                                  fcoe_wwn_port_name_upper);
11746                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11747                         SHMEM_RD(bp,
11748                                  dev_info.port_hw_config[port].
11749                                  fcoe_wwn_port_name_lower);
11750
11751                 /* Node info */
11752                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11753                         SHMEM_RD(bp,
11754                                  dev_info.port_hw_config[port].
11755                                  fcoe_wwn_node_name_upper);
11756                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11757                         SHMEM_RD(bp,
11758                                  dev_info.port_hw_config[port].
11759                                  fcoe_wwn_node_name_lower);
11760         } else if (!IS_MF_SD(bp)) {
11761                 /* Read the WWN info only if the FCoE feature is enabled for
11762                  * this function.
11763                  */
11764                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11765                         bnx2x_get_ext_wwn_info(bp, func);
11766         } else {
11767                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11768                         bnx2x_get_ext_wwn_info(bp, func);
11769         }
11770
11771         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11772
11773         /*
11774          * If maximum allowed number of connections is zero -
11775          * disable the feature.
11776          */
11777         if (!bp->cnic_eth_dev.max_fcoe_conn) {
11778                 bp->flags |= NO_FCOE_FLAG;
11779                 eth_zero_addr(bp->fip_mac);
11780         }
11781 }
11782
11783 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11784 {
11785         /*
11786          * iSCSI may be dynamically disabled but reading
11787          * info here we will decrease memory usage by driver
11788          * if the feature is disabled for good
11789          */
11790         bnx2x_get_iscsi_info(bp);
11791         bnx2x_get_fcoe_info(bp);
11792 }
11793
11794 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11795 {
11796         u32 val, val2;
11797         int func = BP_ABS_FUNC(bp);
11798         int port = BP_PORT(bp);
11799         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11800         u8 *fip_mac = bp->fip_mac;
11801
11802         if (IS_MF(bp)) {
11803                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11804                  * FCoE MAC then the appropriate feature should be disabled.
11805                  * In non SD mode features configuration comes from struct
11806                  * func_ext_config.
11807                  */
11808                 if (!IS_MF_SD(bp)) {
11809                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11810                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11811                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11812                                                  iscsi_mac_addr_upper);
11813                                 val = MF_CFG_RD(bp, func_ext_config[func].
11814                                                 iscsi_mac_addr_lower);
11815                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11816                                 BNX2X_DEV_INFO
11817                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11818                         } else {
11819                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11820                         }
11821
11822                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11823                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11824                                                  fcoe_mac_addr_upper);
11825                                 val = MF_CFG_RD(bp, func_ext_config[func].
11826                                                 fcoe_mac_addr_lower);
11827                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11828                                 BNX2X_DEV_INFO
11829                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11830                         } else {
11831                                 bp->flags |= NO_FCOE_FLAG;
11832                         }
11833
11834                         bp->mf_ext_config = cfg;
11835
11836                 } else { /* SD MODE */
11837                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11838                                 /* use primary mac as iscsi mac */
11839                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11840
11841                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11842                                 BNX2X_DEV_INFO
11843                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11844                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11845                                 /* use primary mac as fip mac */
11846                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11847                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11848                                 BNX2X_DEV_INFO
11849                                         ("Read FIP MAC: %pM\n", fip_mac);
11850                         }
11851                 }
11852
11853                 /* If this is a storage-only interface, use SAN mac as
11854                  * primary MAC. Notice that for SD this is already the case,
11855                  * as the SAN mac was copied from the primary MAC.
11856                  */
11857                 if (IS_MF_FCOE_AFEX(bp))
11858                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11859         } else {
11860                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11861                                 iscsi_mac_upper);
11862                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11863                                iscsi_mac_lower);
11864                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11865
11866                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11867                                 fcoe_fip_mac_upper);
11868                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11869                                fcoe_fip_mac_lower);
11870                 bnx2x_set_mac_buf(fip_mac, val, val2);
11871         }
11872
11873         /* Disable iSCSI OOO if MAC configuration is invalid. */
11874         if (!is_valid_ether_addr(iscsi_mac)) {
11875                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11876                 eth_zero_addr(iscsi_mac);
11877         }
11878
11879         /* Disable FCoE if MAC configuration is invalid. */
11880         if (!is_valid_ether_addr(fip_mac)) {
11881                 bp->flags |= NO_FCOE_FLAG;
11882                 eth_zero_addr(bp->fip_mac);
11883         }
11884 }
11885
11886 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11887 {
11888         u32 val, val2;
11889         int func = BP_ABS_FUNC(bp);
11890         int port = BP_PORT(bp);
11891
11892         /* Zero primary MAC configuration */
11893         eth_zero_addr(bp->dev->dev_addr);
11894
11895         if (BP_NOMCP(bp)) {
11896                 BNX2X_ERROR("warning: random MAC workaround active\n");
11897                 eth_hw_addr_random(bp->dev);
11898         } else if (IS_MF(bp)) {
11899                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11900                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11901                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11902                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11903                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11904
11905                 if (CNIC_SUPPORT(bp))
11906                         bnx2x_get_cnic_mac_hwinfo(bp);
11907         } else {
11908                 /* in SF read MACs from port configuration */
11909                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11910                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11911                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11912
11913                 if (CNIC_SUPPORT(bp))
11914                         bnx2x_get_cnic_mac_hwinfo(bp);
11915         }
11916
11917         if (!BP_NOMCP(bp)) {
11918                 /* Read physical port identifier from shmem */
11919                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11920                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11921                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11922                 bp->flags |= HAS_PHYS_PORT_ID;
11923         }
11924
11925         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11926
11927         if (!is_valid_ether_addr(bp->dev->dev_addr))
11928                 dev_err(&bp->pdev->dev,
11929                         "bad Ethernet MAC address configuration: %pM\n"
11930                         "change it manually before bringing up the appropriate network interface\n",
11931                         bp->dev->dev_addr);
11932 }
11933
11934 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11935 {
11936         int tmp;
11937         u32 cfg;
11938
11939         if (IS_VF(bp))
11940                 return false;
11941
11942         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11943                 /* Take function: tmp = func */
11944                 tmp = BP_ABS_FUNC(bp);
11945                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11946                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11947         } else {
11948                 /* Take port: tmp = port */
11949                 tmp = BP_PORT(bp);
11950                 cfg = SHMEM_RD(bp,
11951                                dev_info.port_hw_config[tmp].generic_features);
11952                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11953         }
11954         return cfg;
11955 }
11956
11957 static void validate_set_si_mode(struct bnx2x *bp)
11958 {
11959         u8 func = BP_ABS_FUNC(bp);
11960         u32 val;
11961
11962         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11963
11964         /* check for legal mac (upper bytes) */
11965         if (val != 0xffff) {
11966                 bp->mf_mode = MULTI_FUNCTION_SI;
11967                 bp->mf_config[BP_VN(bp)] =
11968                         MF_CFG_RD(bp, func_mf_config[func].config);
11969         } else
11970                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11971 }
11972
11973 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11974 {
11975         int /*abs*/func = BP_ABS_FUNC(bp);
11976         int vn, mfw_vn;
11977         u32 val = 0, val2 = 0;
11978         int rc = 0;
11979
11980         /* Validate that chip access is feasible */
11981         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11982                 dev_err(&bp->pdev->dev,
11983                         "Chip read returns all Fs. Preventing probe from continuing\n");
11984                 return -EINVAL;
11985         }
11986
11987         bnx2x_get_common_hwinfo(bp);
11988
11989         /*
11990          * initialize IGU parameters
11991          */
11992         if (CHIP_IS_E1x(bp)) {
11993                 bp->common.int_block = INT_BLOCK_HC;
11994
11995                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11996                 bp->igu_base_sb = 0;
11997         } else {
11998                 bp->common.int_block = INT_BLOCK_IGU;
11999
12000                 /* do not allow device reset during IGU info processing */
12001                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12002
12003                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12004
12005                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12006                         int tout = 5000;
12007
12008                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
12009
12010                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12011                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12012                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12013
12014                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12015                                 tout--;
12016                                 usleep_range(1000, 2000);
12017                         }
12018
12019                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12020                                 dev_err(&bp->pdev->dev,
12021                                         "FORCING Normal Mode failed!!!\n");
12022                                 bnx2x_release_hw_lock(bp,
12023                                                       HW_LOCK_RESOURCE_RESET);
12024                                 return -EPERM;
12025                         }
12026                 }
12027
12028                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12029                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12030                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12031                 } else
12032                         BNX2X_DEV_INFO("IGU Normal Mode\n");
12033
12034                 rc = bnx2x_get_igu_cam_info(bp);
12035                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12036                 if (rc)
12037                         return rc;
12038         }
12039
12040         /*
12041          * set base FW non-default (fast path) status block id, this value is
12042          * used to initialize the fw_sb_id saved on the fp/queue structure to
12043          * determine the id used by the FW.
12044          */
12045         if (CHIP_IS_E1x(bp))
12046                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12047         else /*
12048               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12049               * the same queue are indicated on the same IGU SB). So we prefer
12050               * FW and IGU SBs to be the same value.
12051               */
12052                 bp->base_fw_ndsb = bp->igu_base_sb;
12053
12054         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12055                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12056                        bp->igu_sb_cnt, bp->base_fw_ndsb);
12057
12058         /*
12059          * Initialize MF configuration
12060          */
12061
12062         bp->mf_ov = 0;
12063         bp->mf_mode = 0;
12064         bp->mf_sub_mode = 0;
12065         vn = BP_VN(bp);
12066         mfw_vn = BP_FW_MB_IDX(bp);
12067
12068         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12069                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12070                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12071                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12072
12073                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12074                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12075                 else
12076                         bp->common.mf_cfg_base = bp->common.shmem_base +
12077                                 offsetof(struct shmem_region, func_mb) +
12078                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12079                 /*
12080                  * get mf configuration:
12081                  * 1. Existence of MF configuration
12082                  * 2. MAC address must be legal (check only upper bytes)
12083                  *    for  Switch-Independent mode;
12084                  *    OVLAN must be legal for Switch-Dependent mode
12085                  * 3. SF_MODE configures specific MF mode
12086                  */
12087                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12088                         /* get mf configuration */
12089                         val = SHMEM_RD(bp,
12090                                        dev_info.shared_feature_config.config);
12091                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12092
12093                         switch (val) {
12094                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12095                                 validate_set_si_mode(bp);
12096                                 break;
12097                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12098                                 if ((!CHIP_IS_E1x(bp)) &&
12099                                     (MF_CFG_RD(bp, func_mf_config[func].
12100                                                mac_upper) != 0xffff) &&
12101                                     (SHMEM2_HAS(bp,
12102                                                 afex_driver_support))) {
12103                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12104                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12105                                                 func_mf_config[func].config);
12106                                 } else {
12107                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12108                                 }
12109                                 break;
12110                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12111                                 /* get OV configuration */
12112                                 val = MF_CFG_RD(bp,
12113                                         func_mf_config[FUNC_0].e1hov_tag);
12114                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12115
12116                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12117                                         bp->mf_mode = MULTI_FUNCTION_SD;
12118                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12119                                                 func_mf_config[func].config);
12120                                 } else
12121                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12122                                 break;
12123                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12124                                 bp->mf_mode = MULTI_FUNCTION_SD;
12125                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12126                                 bp->mf_config[vn] =
12127                                         MF_CFG_RD(bp,
12128                                                   func_mf_config[func].config);
12129
12130                                 if (SHMEM2_HAS(bp, mtu_size)) {
12131                                         int mtu_idx = BP_FW_MB_IDX(bp);
12132                                         u16 mtu_size;
12133                                         u32 mtu;
12134
12135                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12136                                         mtu_size = (u16)mtu;
12137                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12138                                            mtu_size, mtu);
12139
12140                                         /* if valid: update device mtu */
12141                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12142                                             (mtu_size <=
12143                                              ETH_MAX_JUMBO_PACKET_SIZE))
12144                                                 bp->dev->mtu = mtu_size;
12145                                 }
12146                                 break;
12147                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12148                                 bp->mf_mode = MULTI_FUNCTION_SD;
12149                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12150                                 bp->mf_config[vn] =
12151                                         MF_CFG_RD(bp,
12152                                                   func_mf_config[func].config);
12153                                 break;
12154                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12155                                 bp->mf_config[vn] = 0;
12156                                 break;
12157                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12158                                 val2 = SHMEM_RD(bp,
12159                                         dev_info.shared_hw_config.config_3);
12160                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12161                                 switch (val2) {
12162                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12163                                         validate_set_si_mode(bp);
12164                                         bp->mf_sub_mode =
12165                                                         SUB_MF_MODE_NPAR1_DOT_5;
12166                                         break;
12167                                 default:
12168                                         /* Unknown configuration */
12169                                         bp->mf_config[vn] = 0;
12170                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12171                                                        val);
12172                                 }
12173                                 break;
12174                         default:
12175                                 /* Unknown configuration: reset mf_config */
12176                                 bp->mf_config[vn] = 0;
12177                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12178                         }
12179                 }
12180
12181                 BNX2X_DEV_INFO("%s function mode\n",
12182                                IS_MF(bp) ? "multi" : "single");
12183
12184                 switch (bp->mf_mode) {
12185                 case MULTI_FUNCTION_SD:
12186                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12187                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12188                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12189                                 bp->mf_ov = val;
12190                                 bp->path_has_ovlan = true;
12191
12192                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12193                                                func, bp->mf_ov, bp->mf_ov);
12194                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12195                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12196                                 dev_err(&bp->pdev->dev,
12197                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12198                                         func);
12199                                 bp->path_has_ovlan = true;
12200                         } else {
12201                                 dev_err(&bp->pdev->dev,
12202                                         "No valid MF OV for func %d, aborting\n",
12203                                         func);
12204                                 return -EPERM;
12205                         }
12206                         break;
12207                 case MULTI_FUNCTION_AFEX:
12208                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12209                         break;
12210                 case MULTI_FUNCTION_SI:
12211                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12212                                        func);
12213                         break;
12214                 default:
12215                         if (vn) {
12216                                 dev_err(&bp->pdev->dev,
12217                                         "VN %d is in a single function mode, aborting\n",
12218                                         vn);
12219                                 return -EPERM;
12220                         }
12221                         break;
12222                 }
12223
12224                 /* check if other port on the path needs ovlan:
12225                  * Since MF configuration is shared between ports
12226                  * Possible mixed modes are only
12227                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12228                  */
12229                 if (CHIP_MODE_IS_4_PORT(bp) &&
12230                     !bp->path_has_ovlan &&
12231                     !IS_MF(bp) &&
12232                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12233                         u8 other_port = !BP_PORT(bp);
12234                         u8 other_func = BP_PATH(bp) + 2*other_port;
12235                         val = MF_CFG_RD(bp,
12236                                         func_mf_config[other_func].e1hov_tag);
12237                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12238                                 bp->path_has_ovlan = true;
12239                 }
12240         }
12241
12242         /* adjust igu_sb_cnt to MF for E1H */
12243         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12244                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12245
12246         /* port info */
12247         bnx2x_get_port_hwinfo(bp);
12248
12249         /* Get MAC addresses */
12250         bnx2x_get_mac_hwinfo(bp);
12251
12252         bnx2x_get_cnic_info(bp);
12253
12254         return rc;
12255 }
12256
12257 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12258 {
12259         int cnt, i, block_end, rodi;
12260         char vpd_start[BNX2X_VPD_LEN+1];
12261         char str_id_reg[VENDOR_ID_LEN+1];
12262         char str_id_cap[VENDOR_ID_LEN+1];
12263         char *vpd_data;
12264         char *vpd_extended_data = NULL;
12265         u8 len;
12266
12267         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12268         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12269
12270         if (cnt < BNX2X_VPD_LEN)
12271                 goto out_not_found;
12272
12273         /* VPD RO tag should be first tag after identifier string, hence
12274          * we should be able to find it in first BNX2X_VPD_LEN chars
12275          */
12276         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12277                              PCI_VPD_LRDT_RO_DATA);
12278         if (i < 0)
12279                 goto out_not_found;
12280
12281         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12282                     pci_vpd_lrdt_size(&vpd_start[i]);
12283
12284         i += PCI_VPD_LRDT_TAG_SIZE;
12285
12286         if (block_end > BNX2X_VPD_LEN) {
12287                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12288                 if (vpd_extended_data  == NULL)
12289                         goto out_not_found;
12290
12291                 /* read rest of vpd image into vpd_extended_data */
12292                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12293                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12294                                    block_end - BNX2X_VPD_LEN,
12295                                    vpd_extended_data + BNX2X_VPD_LEN);
12296                 if (cnt < (block_end - BNX2X_VPD_LEN))
12297                         goto out_not_found;
12298                 vpd_data = vpd_extended_data;
12299         } else
12300                 vpd_data = vpd_start;
12301
12302         /* now vpd_data holds full vpd content in both cases */
12303
12304         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12305                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12306         if (rodi < 0)
12307                 goto out_not_found;
12308
12309         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12310
12311         if (len != VENDOR_ID_LEN)
12312                 goto out_not_found;
12313
12314         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12315
12316         /* vendor specific info */
12317         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12318         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12319         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12320             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12321
12322                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12323                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12324                 if (rodi >= 0) {
12325                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12326
12327                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12328
12329                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12330                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12331                                 bp->fw_ver[len] = ' ';
12332                         }
12333                 }
12334                 kfree(vpd_extended_data);
12335                 return;
12336         }
12337 out_not_found:
12338         kfree(vpd_extended_data);
12339         return;
12340 }
12341
12342 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12343 {
12344         u32 flags = 0;
12345
12346         if (CHIP_REV_IS_FPGA(bp))
12347                 SET_FLAGS(flags, MODE_FPGA);
12348         else if (CHIP_REV_IS_EMUL(bp))
12349                 SET_FLAGS(flags, MODE_EMUL);
12350         else
12351                 SET_FLAGS(flags, MODE_ASIC);
12352
12353         if (CHIP_MODE_IS_4_PORT(bp))
12354                 SET_FLAGS(flags, MODE_PORT4);
12355         else
12356                 SET_FLAGS(flags, MODE_PORT2);
12357
12358         if (CHIP_IS_E2(bp))
12359                 SET_FLAGS(flags, MODE_E2);
12360         else if (CHIP_IS_E3(bp)) {
12361                 SET_FLAGS(flags, MODE_E3);
12362                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12363                         SET_FLAGS(flags, MODE_E3_A0);
12364                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12365                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12366         }
12367
12368         if (IS_MF(bp)) {
12369                 SET_FLAGS(flags, MODE_MF);
12370                 switch (bp->mf_mode) {
12371                 case MULTI_FUNCTION_SD:
12372                         SET_FLAGS(flags, MODE_MF_SD);
12373                         break;
12374                 case MULTI_FUNCTION_SI:
12375                         SET_FLAGS(flags, MODE_MF_SI);
12376                         break;
12377                 case MULTI_FUNCTION_AFEX:
12378                         SET_FLAGS(flags, MODE_MF_AFEX);
12379                         break;
12380                 }
12381         } else
12382                 SET_FLAGS(flags, MODE_SF);
12383
12384 #if defined(__LITTLE_ENDIAN)
12385         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12386 #else /*(__BIG_ENDIAN)*/
12387         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12388 #endif
12389         INIT_MODE_FLAGS(bp) = flags;
12390 }
12391
12392 static int bnx2x_init_bp(struct bnx2x *bp)
12393 {
12394         int func;
12395         int rc;
12396
12397         mutex_init(&bp->port.phy_mutex);
12398         mutex_init(&bp->fw_mb_mutex);
12399         mutex_init(&bp->drv_info_mutex);
12400         sema_init(&bp->stats_lock, 1);
12401         bp->drv_info_mng_owner = false;
12402         INIT_LIST_HEAD(&bp->vlan_reg);
12403
12404         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12405         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12406         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12407         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12408         if (IS_PF(bp)) {
12409                 rc = bnx2x_get_hwinfo(bp);
12410                 if (rc)
12411                         return rc;
12412         } else {
12413                 eth_zero_addr(bp->dev->dev_addr);
12414         }
12415
12416         bnx2x_set_modes_bitmap(bp);
12417
12418         rc = bnx2x_alloc_mem_bp(bp);
12419         if (rc)
12420                 return rc;
12421
12422         bnx2x_read_fwinfo(bp);
12423
12424         func = BP_FUNC(bp);
12425
12426         /* need to reset chip if undi was active */
12427         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12428                 /* init fw_seq */
12429                 bp->fw_seq =
12430                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12431                                                         DRV_MSG_SEQ_NUMBER_MASK;
12432                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12433
12434                 rc = bnx2x_prev_unload(bp);
12435                 if (rc) {
12436                         bnx2x_free_mem_bp(bp);
12437                         return rc;
12438                 }
12439         }
12440
12441         if (CHIP_REV_IS_FPGA(bp))
12442                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12443
12444         if (BP_NOMCP(bp) && (func == 0))
12445                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12446
12447         bp->disable_tpa = disable_tpa;
12448         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12449         /* Reduce memory usage in kdump environment by disabling TPA */
12450         bp->disable_tpa |= is_kdump_kernel();
12451
12452         /* Set TPA flags */
12453         if (bp->disable_tpa) {
12454                 bp->dev->hw_features &= ~NETIF_F_LRO;
12455                 bp->dev->features &= ~NETIF_F_LRO;
12456         }
12457
12458         if (CHIP_IS_E1(bp))
12459                 bp->dropless_fc = 0;
12460         else
12461                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12462
12463         bp->mrrs = mrrs;
12464
12465         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12466         if (IS_VF(bp))
12467                 bp->rx_ring_size = MAX_RX_AVAIL;
12468
12469         /* make sure that the numbers are in the right granularity */
12470         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12471         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12472
12473         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12474
12475         init_timer(&bp->timer);
12476         bp->timer.expires = jiffies + bp->current_interval;
12477         bp->timer.data = (unsigned long) bp;
12478         bp->timer.function = bnx2x_timer;
12479
12480         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12481             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12482             SHMEM2_HAS(bp, dcbx_en) &&
12483             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12484             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12485             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12486                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12487                 bnx2x_dcbx_init_params(bp);
12488         } else {
12489                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12490         }
12491
12492         if (CHIP_IS_E1x(bp))
12493                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12494         else
12495                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12496
12497         /* multiple tx priority */
12498         if (IS_VF(bp))
12499                 bp->max_cos = 1;
12500         else if (CHIP_IS_E1x(bp))
12501                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12502         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12503                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12504         else if (CHIP_IS_E3B0(bp))
12505                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12506         else
12507                 BNX2X_ERR("unknown chip %x revision %x\n",
12508                           CHIP_NUM(bp), CHIP_REV(bp));
12509         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12510
12511         /* We need at least one default status block for slow-path events,
12512          * second status block for the L2 queue, and a third status block for
12513          * CNIC if supported.
12514          */
12515         if (IS_VF(bp))
12516                 bp->min_msix_vec_cnt = 1;
12517         else if (CNIC_SUPPORT(bp))
12518                 bp->min_msix_vec_cnt = 3;
12519         else /* PF w/o cnic */
12520                 bp->min_msix_vec_cnt = 2;
12521         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12522
12523         bp->dump_preset_idx = 1;
12524
12525         if (CHIP_IS_E3B0(bp))
12526                 bp->flags |= PTP_SUPPORTED;
12527
12528         return rc;
12529 }
12530
12531 /****************************************************************************
12532 * General service functions
12533 ****************************************************************************/
12534
12535 /*
12536  * net_device service functions
12537  */
12538
12539 /* called with rtnl_lock */
12540 static int bnx2x_open(struct net_device *dev)
12541 {
12542         struct bnx2x *bp = netdev_priv(dev);
12543         int rc;
12544
12545         bp->stats_init = true;
12546
12547         netif_carrier_off(dev);
12548
12549         bnx2x_set_power_state(bp, PCI_D0);
12550
12551         /* If parity had happen during the unload, then attentions
12552          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12553          * want the first function loaded on the current engine to
12554          * complete the recovery.
12555          * Parity recovery is only relevant for PF driver.
12556          */
12557         if (IS_PF(bp)) {
12558                 int other_engine = BP_PATH(bp) ? 0 : 1;
12559                 bool other_load_status, load_status;
12560                 bool global = false;
12561
12562                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12563                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12564                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12565                     bnx2x_chk_parity_attn(bp, &global, true)) {
12566                         do {
12567                                 /* If there are attentions and they are in a
12568                                  * global blocks, set the GLOBAL_RESET bit
12569                                  * regardless whether it will be this function
12570                                  * that will complete the recovery or not.
12571                                  */
12572                                 if (global)
12573                                         bnx2x_set_reset_global(bp);
12574
12575                                 /* Only the first function on the current
12576                                  * engine should try to recover in open. In case
12577                                  * of attentions in global blocks only the first
12578                                  * in the chip should try to recover.
12579                                  */
12580                                 if ((!load_status &&
12581                                      (!global || !other_load_status)) &&
12582                                       bnx2x_trylock_leader_lock(bp) &&
12583                                       !bnx2x_leader_reset(bp)) {
12584                                         netdev_info(bp->dev,
12585                                                     "Recovered in open\n");
12586                                         break;
12587                                 }
12588
12589                                 /* recovery has failed... */
12590                                 bnx2x_set_power_state(bp, PCI_D3hot);
12591                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12592
12593                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12594                                           "If you still see this message after a few retries then power cycle is required.\n");
12595
12596                                 return -EAGAIN;
12597                         } while (0);
12598                 }
12599         }
12600
12601         bp->recovery_state = BNX2X_RECOVERY_DONE;
12602         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12603         if (rc)
12604                 return rc;
12605
12606         if (IS_PF(bp))
12607                 udp_tunnel_get_rx_info(dev);
12608
12609         return 0;
12610 }
12611
12612 /* called with rtnl_lock */
12613 static int bnx2x_close(struct net_device *dev)
12614 {
12615         struct bnx2x *bp = netdev_priv(dev);
12616
12617         /* Unload the driver, release IRQs */
12618         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12619
12620         return 0;
12621 }
12622
12623 struct bnx2x_mcast_list_elem_group
12624 {
12625         struct list_head mcast_group_link;
12626         struct bnx2x_mcast_list_elem mcast_elems[];
12627 };
12628
12629 #define MCAST_ELEMS_PER_PG \
12630         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12631         sizeof(struct bnx2x_mcast_list_elem))
12632
12633 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12634 {
12635         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12636
12637         while (!list_empty(mcast_group_list)) {
12638                 current_mcast_group = list_first_entry(mcast_group_list,
12639                                       struct bnx2x_mcast_list_elem_group,
12640                                       mcast_group_link);
12641                 list_del(&current_mcast_group->mcast_group_link);
12642                 free_page((unsigned long)current_mcast_group);
12643         }
12644 }
12645
12646 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12647                                       struct bnx2x_mcast_ramrod_params *p,
12648                                       struct list_head *mcast_group_list)
12649 {
12650         struct bnx2x_mcast_list_elem *mc_mac;
12651         struct netdev_hw_addr *ha;
12652         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12653         int mc_count = netdev_mc_count(bp->dev);
12654         int offset = 0;
12655
12656         INIT_LIST_HEAD(&p->mcast_list);
12657         netdev_for_each_mc_addr(ha, bp->dev) {
12658                 if (!offset) {
12659                         current_mcast_group =
12660                                 (struct bnx2x_mcast_list_elem_group *)
12661                                 __get_free_page(GFP_ATOMIC);
12662                         if (!current_mcast_group) {
12663                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12664                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12665                                 return -ENOMEM;
12666                         }
12667                         list_add(&current_mcast_group->mcast_group_link,
12668                                  mcast_group_list);
12669                 }
12670                 mc_mac = &current_mcast_group->mcast_elems[offset];
12671                 mc_mac->mac = bnx2x_mc_addr(ha);
12672                 list_add_tail(&mc_mac->link, &p->mcast_list);
12673                 offset++;
12674                 if (offset == MCAST_ELEMS_PER_PG)
12675                         offset = 0;
12676         }
12677         p->mcast_list_len = mc_count;
12678         return 0;
12679 }
12680
12681 /**
12682  * bnx2x_set_uc_list - configure a new unicast MACs list.
12683  *
12684  * @bp: driver handle
12685  *
12686  * We will use zero (0) as a MAC type for these MACs.
12687  */
12688 static int bnx2x_set_uc_list(struct bnx2x *bp)
12689 {
12690         int rc;
12691         struct net_device *dev = bp->dev;
12692         struct netdev_hw_addr *ha;
12693         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12694         unsigned long ramrod_flags = 0;
12695
12696         /* First schedule a cleanup up of old configuration */
12697         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12698         if (rc < 0) {
12699                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12700                 return rc;
12701         }
12702
12703         netdev_for_each_uc_addr(ha, dev) {
12704                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12705                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12706                 if (rc == -EEXIST) {
12707                         DP(BNX2X_MSG_SP,
12708                            "Failed to schedule ADD operations: %d\n", rc);
12709                         /* do not treat adding same MAC as error */
12710                         rc = 0;
12711
12712                 } else if (rc < 0) {
12713
12714                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12715                                   rc);
12716                         return rc;
12717                 }
12718         }
12719
12720         /* Execute the pending commands */
12721         __set_bit(RAMROD_CONT, &ramrod_flags);
12722         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12723                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12724 }
12725
12726 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12727 {
12728         LIST_HEAD(mcast_group_list);
12729         struct net_device *dev = bp->dev;
12730         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12731         int rc = 0;
12732
12733         rparam.mcast_obj = &bp->mcast_obj;
12734
12735         /* first, clear all configured multicast MACs */
12736         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12737         if (rc < 0) {
12738                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12739                 return rc;
12740         }
12741
12742         /* then, configure a new MACs list */
12743         if (netdev_mc_count(dev)) {
12744                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12745                 if (rc)
12746                         return rc;
12747
12748                 /* Now add the new MACs */
12749                 rc = bnx2x_config_mcast(bp, &rparam,
12750                                         BNX2X_MCAST_CMD_ADD);
12751                 if (rc < 0)
12752                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12753                                   rc);
12754
12755                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12756         }
12757
12758         return rc;
12759 }
12760
12761 static int bnx2x_set_mc_list(struct bnx2x *bp)
12762 {
12763         LIST_HEAD(mcast_group_list);
12764         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12765         struct net_device *dev = bp->dev;
12766         int rc = 0;
12767
12768         /* On older adapters, we need to flush and re-add filters */
12769         if (CHIP_IS_E1x(bp))
12770                 return bnx2x_set_mc_list_e1x(bp);
12771
12772         rparam.mcast_obj = &bp->mcast_obj;
12773
12774         if (netdev_mc_count(dev)) {
12775                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12776                 if (rc)
12777                         return rc;
12778
12779                 /* Override the curently configured set of mc filters */
12780                 rc = bnx2x_config_mcast(bp, &rparam,
12781                                         BNX2X_MCAST_CMD_SET);
12782                 if (rc < 0)
12783                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12784                                   rc);
12785
12786                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12787         } else {
12788                 /* If no mc addresses are required, flush the configuration */
12789                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12790                 if (rc < 0)
12791                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12792                                   rc);
12793         }
12794
12795         return rc;
12796 }
12797
12798 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12799 static void bnx2x_set_rx_mode(struct net_device *dev)
12800 {
12801         struct bnx2x *bp = netdev_priv(dev);
12802
12803         if (bp->state != BNX2X_STATE_OPEN) {
12804                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12805                 return;
12806         } else {
12807                 /* Schedule an SP task to handle rest of change */
12808                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12809                                        NETIF_MSG_IFUP);
12810         }
12811 }
12812
12813 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12814 {
12815         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12816
12817         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12818
12819         netif_addr_lock_bh(bp->dev);
12820
12821         if (bp->dev->flags & IFF_PROMISC) {
12822                 rx_mode = BNX2X_RX_MODE_PROMISC;
12823         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12824                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12825                     CHIP_IS_E1(bp))) {
12826                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12827         } else {
12828                 if (IS_PF(bp)) {
12829                         /* some multicasts */
12830                         if (bnx2x_set_mc_list(bp) < 0)
12831                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12832
12833                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12834                         netif_addr_unlock_bh(bp->dev);
12835                         if (bnx2x_set_uc_list(bp) < 0)
12836                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12837                         netif_addr_lock_bh(bp->dev);
12838                 } else {
12839                         /* configuring mcast to a vf involves sleeping (when we
12840                          * wait for the pf's response).
12841                          */
12842                         bnx2x_schedule_sp_rtnl(bp,
12843                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12844                 }
12845         }
12846
12847         bp->rx_mode = rx_mode;
12848         /* handle ISCSI SD mode */
12849         if (IS_MF_ISCSI_ONLY(bp))
12850                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12851
12852         /* Schedule the rx_mode command */
12853         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12854                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12855                 netif_addr_unlock_bh(bp->dev);
12856                 return;
12857         }
12858
12859         if (IS_PF(bp)) {
12860                 bnx2x_set_storm_rx_mode(bp);
12861                 netif_addr_unlock_bh(bp->dev);
12862         } else {
12863                 /* VF will need to request the PF to make this change, and so
12864                  * the VF needs to release the bottom-half lock prior to the
12865                  * request (as it will likely require sleep on the VF side)
12866                  */
12867                 netif_addr_unlock_bh(bp->dev);
12868                 bnx2x_vfpf_storm_rx_mode(bp);
12869         }
12870 }
12871
12872 /* called with rtnl_lock */
12873 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12874                            int devad, u16 addr)
12875 {
12876         struct bnx2x *bp = netdev_priv(netdev);
12877         u16 value;
12878         int rc;
12879
12880         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12881            prtad, devad, addr);
12882
12883         /* The HW expects different devad if CL22 is used */
12884         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12885
12886         bnx2x_acquire_phy_lock(bp);
12887         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12888         bnx2x_release_phy_lock(bp);
12889         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12890
12891         if (!rc)
12892                 rc = value;
12893         return rc;
12894 }
12895
12896 /* called with rtnl_lock */
12897 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12898                             u16 addr, u16 value)
12899 {
12900         struct bnx2x *bp = netdev_priv(netdev);
12901         int rc;
12902
12903         DP(NETIF_MSG_LINK,
12904            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12905            prtad, devad, addr, value);
12906
12907         /* The HW expects different devad if CL22 is used */
12908         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12909
12910         bnx2x_acquire_phy_lock(bp);
12911         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12912         bnx2x_release_phy_lock(bp);
12913         return rc;
12914 }
12915
12916 /* called with rtnl_lock */
12917 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12918 {
12919         struct bnx2x *bp = netdev_priv(dev);
12920         struct mii_ioctl_data *mdio = if_mii(ifr);
12921
12922         if (!netif_running(dev))
12923                 return -EAGAIN;
12924
12925         switch (cmd) {
12926         case SIOCSHWTSTAMP:
12927                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12928         default:
12929                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12930                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12931                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12932         }
12933 }
12934
12935 #ifdef CONFIG_NET_POLL_CONTROLLER
12936 static void poll_bnx2x(struct net_device *dev)
12937 {
12938         struct bnx2x *bp = netdev_priv(dev);
12939         int i;
12940
12941         for_each_eth_queue(bp, i) {
12942                 struct bnx2x_fastpath *fp = &bp->fp[i];
12943                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12944         }
12945 }
12946 #endif
12947
12948 static int bnx2x_validate_addr(struct net_device *dev)
12949 {
12950         struct bnx2x *bp = netdev_priv(dev);
12951
12952         /* query the bulletin board for mac address configured by the PF */
12953         if (IS_VF(bp))
12954                 bnx2x_sample_bulletin(bp);
12955
12956         if (!is_valid_ether_addr(dev->dev_addr)) {
12957                 BNX2X_ERR("Non-valid Ethernet address\n");
12958                 return -EADDRNOTAVAIL;
12959         }
12960         return 0;
12961 }
12962
12963 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12964                                   struct netdev_phys_item_id *ppid)
12965 {
12966         struct bnx2x *bp = netdev_priv(netdev);
12967
12968         if (!(bp->flags & HAS_PHYS_PORT_ID))
12969                 return -EOPNOTSUPP;
12970
12971         ppid->id_len = sizeof(bp->phys_port_id);
12972         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12973
12974         return 0;
12975 }
12976
12977 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12978                                               struct net_device *dev,
12979                                               netdev_features_t features)
12980 {
12981         features = vlan_features_check(skb, features);
12982         return vxlan_features_check(skb, features);
12983 }
12984
12985 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12986 {
12987         int rc;
12988
12989         if (IS_PF(bp)) {
12990                 unsigned long ramrod_flags = 0;
12991
12992                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12993                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12994                                         add, &ramrod_flags);
12995         } else {
12996                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12997         }
12998
12999         return rc;
13000 }
13001
13002 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
13003 {
13004         struct bnx2x_vlan_entry *vlan;
13005         int rc = 0;
13006
13007         /* Configure all non-configured entries */
13008         list_for_each_entry(vlan, &bp->vlan_reg, link) {
13009                 if (vlan->hw)
13010                         continue;
13011
13012                 if (bp->vlan_cnt >= bp->vlan_credit)
13013                         return -ENOBUFS;
13014
13015                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13016                 if (rc) {
13017                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13018                         return rc;
13019                 }
13020
13021                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13022                 vlan->hw = true;
13023                 bp->vlan_cnt++;
13024         }
13025
13026         return 0;
13027 }
13028
13029 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13030 {
13031         bool need_accept_any_vlan;
13032
13033         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13034
13035         if (bp->accept_any_vlan != need_accept_any_vlan) {
13036                 bp->accept_any_vlan = need_accept_any_vlan;
13037                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13038                    bp->accept_any_vlan ? "raised" : "cleared");
13039                 if (set_rx_mode) {
13040                         if (IS_PF(bp))
13041                                 bnx2x_set_rx_mode_inner(bp);
13042                         else
13043                                 bnx2x_vfpf_storm_rx_mode(bp);
13044                 }
13045         }
13046 }
13047
13048 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13049 {
13050         /* Don't set rx mode here. Our caller will do it. */
13051         bnx2x_vlan_configure(bp, false);
13052
13053         return 0;
13054 }
13055
13056 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13057 {
13058         struct bnx2x *bp = netdev_priv(dev);
13059         struct bnx2x_vlan_entry *vlan;
13060
13061         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13062
13063         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13064         if (!vlan)
13065                 return -ENOMEM;
13066
13067         vlan->vid = vid;
13068         vlan->hw = false;
13069         list_add_tail(&vlan->link, &bp->vlan_reg);
13070
13071         if (netif_running(dev))
13072                 bnx2x_vlan_configure(bp, true);
13073
13074         return 0;
13075 }
13076
13077 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13078 {
13079         struct bnx2x *bp = netdev_priv(dev);
13080         struct bnx2x_vlan_entry *vlan;
13081         bool found = false;
13082         int rc = 0;
13083
13084         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13085
13086         list_for_each_entry(vlan, &bp->vlan_reg, link)
13087                 if (vlan->vid == vid) {
13088                         found = true;
13089                         break;
13090                 }
13091
13092         if (!found) {
13093                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13094                 return -EINVAL;
13095         }
13096
13097         if (netif_running(dev) && vlan->hw) {
13098                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13099                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13100                 bp->vlan_cnt--;
13101         }
13102
13103         list_del(&vlan->link);
13104         kfree(vlan);
13105
13106         if (netif_running(dev))
13107                 bnx2x_vlan_configure(bp, true);
13108
13109         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13110
13111         return rc;
13112 }
13113
13114 static const struct net_device_ops bnx2x_netdev_ops = {
13115         .ndo_open               = bnx2x_open,
13116         .ndo_stop               = bnx2x_close,
13117         .ndo_start_xmit         = bnx2x_start_xmit,
13118         .ndo_select_queue       = bnx2x_select_queue,
13119         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13120         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13121         .ndo_validate_addr      = bnx2x_validate_addr,
13122         .ndo_do_ioctl           = bnx2x_ioctl,
13123         .ndo_change_mtu         = bnx2x_change_mtu,
13124         .ndo_fix_features       = bnx2x_fix_features,
13125         .ndo_set_features       = bnx2x_set_features,
13126         .ndo_tx_timeout         = bnx2x_tx_timeout,
13127         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13128         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13129 #ifdef CONFIG_NET_POLL_CONTROLLER
13130         .ndo_poll_controller    = poll_bnx2x,
13131 #endif
13132         .ndo_setup_tc           = __bnx2x_setup_tc,
13133 #ifdef CONFIG_BNX2X_SRIOV
13134         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13135         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13136         .ndo_get_vf_config      = bnx2x_get_vf_config,
13137 #endif
13138 #ifdef NETDEV_FCOE_WWNN
13139         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13140 #endif
13141
13142         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13143         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13144         .ndo_features_check     = bnx2x_features_check,
13145         .ndo_udp_tunnel_add     = bnx2x_udp_tunnel_add,
13146         .ndo_udp_tunnel_del     = bnx2x_udp_tunnel_del,
13147 };
13148
13149 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13150 {
13151         struct device *dev = &bp->pdev->dev;
13152
13153         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13154             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13155                 dev_err(dev, "System does not support DMA, aborting\n");
13156                 return -EIO;
13157         }
13158
13159         return 0;
13160 }
13161
13162 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13163 {
13164         if (bp->flags & AER_ENABLED) {
13165                 pci_disable_pcie_error_reporting(bp->pdev);
13166                 bp->flags &= ~AER_ENABLED;
13167         }
13168 }
13169
13170 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13171                           struct net_device *dev, unsigned long board_type)
13172 {
13173         int rc;
13174         u32 pci_cfg_dword;
13175         bool chip_is_e1x = (board_type == BCM57710 ||
13176                             board_type == BCM57711 ||
13177                             board_type == BCM57711E);
13178
13179         SET_NETDEV_DEV(dev, &pdev->dev);
13180
13181         bp->dev = dev;
13182         bp->pdev = pdev;
13183
13184         rc = pci_enable_device(pdev);
13185         if (rc) {
13186                 dev_err(&bp->pdev->dev,
13187                         "Cannot enable PCI device, aborting\n");
13188                 goto err_out;
13189         }
13190
13191         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13192                 dev_err(&bp->pdev->dev,
13193                         "Cannot find PCI device base address, aborting\n");
13194                 rc = -ENODEV;
13195                 goto err_out_disable;
13196         }
13197
13198         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13199                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13200                 rc = -ENODEV;
13201                 goto err_out_disable;
13202         }
13203
13204         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13205         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13206             PCICFG_REVESION_ID_ERROR_VAL) {
13207                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13208                 rc = -ENODEV;
13209                 goto err_out_disable;
13210         }
13211
13212         if (atomic_read(&pdev->enable_cnt) == 1) {
13213                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13214                 if (rc) {
13215                         dev_err(&bp->pdev->dev,
13216                                 "Cannot obtain PCI resources, aborting\n");
13217                         goto err_out_disable;
13218                 }
13219
13220                 pci_set_master(pdev);
13221                 pci_save_state(pdev);
13222         }
13223
13224         if (IS_PF(bp)) {
13225                 if (!pdev->pm_cap) {
13226                         dev_err(&bp->pdev->dev,
13227                                 "Cannot find power management capability, aborting\n");
13228                         rc = -EIO;
13229                         goto err_out_release;
13230                 }
13231         }
13232
13233         if (!pci_is_pcie(pdev)) {
13234                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13235                 rc = -EIO;
13236                 goto err_out_release;
13237         }
13238
13239         rc = bnx2x_set_coherency_mask(bp);
13240         if (rc)
13241                 goto err_out_release;
13242
13243         dev->mem_start = pci_resource_start(pdev, 0);
13244         dev->base_addr = dev->mem_start;
13245         dev->mem_end = pci_resource_end(pdev, 0);
13246
13247         dev->irq = pdev->irq;
13248
13249         bp->regview = pci_ioremap_bar(pdev, 0);
13250         if (!bp->regview) {
13251                 dev_err(&bp->pdev->dev,
13252                         "Cannot map register space, aborting\n");
13253                 rc = -ENOMEM;
13254                 goto err_out_release;
13255         }
13256
13257         /* In E1/E1H use pci device function given by kernel.
13258          * In E2/E3 read physical function from ME register since these chips
13259          * support Physical Device Assignment where kernel BDF maybe arbitrary
13260          * (depending on hypervisor).
13261          */
13262         if (chip_is_e1x) {
13263                 bp->pf_num = PCI_FUNC(pdev->devfn);
13264         } else {
13265                 /* chip is E2/3*/
13266                 pci_read_config_dword(bp->pdev,
13267                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13268                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13269                                   ME_REG_ABS_PF_NUM_SHIFT);
13270         }
13271         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13272
13273         /* clean indirect addresses */
13274         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13275                                PCICFG_VENDOR_ID_OFFSET);
13276
13277         /* Set PCIe reset type to fundamental for EEH recovery */
13278         pdev->needs_freset = 1;
13279
13280         /* AER (Advanced Error reporting) configuration */
13281         rc = pci_enable_pcie_error_reporting(pdev);
13282         if (!rc)
13283                 bp->flags |= AER_ENABLED;
13284         else
13285                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13286
13287         /*
13288          * Clean the following indirect addresses for all functions since it
13289          * is not used by the driver.
13290          */
13291         if (IS_PF(bp)) {
13292                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13293                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13294                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13295                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13296
13297                 if (chip_is_e1x) {
13298                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13299                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13300                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13301                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13302                 }
13303
13304                 /* Enable internal target-read (in case we are probed after PF
13305                  * FLR). Must be done prior to any BAR read access. Only for
13306                  * 57712 and up
13307                  */
13308                 if (!chip_is_e1x)
13309                         REG_WR(bp,
13310                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13311         }
13312
13313         dev->watchdog_timeo = TX_TIMEOUT;
13314
13315         dev->netdev_ops = &bnx2x_netdev_ops;
13316         bnx2x_set_ethtool_ops(bp, dev);
13317
13318         dev->priv_flags |= IFF_UNICAST_FLT;
13319
13320         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13321                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13322                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13323                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13324         if (!chip_is_e1x) {
13325                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13326                                     NETIF_F_GSO_IPXIP4 |
13327                                     NETIF_F_GSO_UDP_TUNNEL |
13328                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13329                                     NETIF_F_GSO_PARTIAL;
13330
13331                 dev->hw_enc_features =
13332                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13333                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13334                         NETIF_F_GSO_IPXIP4 |
13335                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13336                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13337                         NETIF_F_GSO_PARTIAL;
13338
13339                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13340                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13341         }
13342
13343         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13344                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13345
13346         if (IS_PF(bp)) {
13347                 if (chip_is_e1x)
13348                         bp->accept_any_vlan = true;
13349                 else
13350                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13351         }
13352         /* For VF we'll know whether to enable VLAN filtering after
13353          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13354          */
13355
13356         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13357         dev->features |= NETIF_F_HIGHDMA;
13358
13359         /* Add Loopback capability to the device */
13360         dev->hw_features |= NETIF_F_LOOPBACK;
13361
13362 #ifdef BCM_DCBNL
13363         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13364 #endif
13365
13366         /* MTU range, 46 - 9600 */
13367         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13368         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13369
13370         /* get_port_hwinfo() will set prtad and mmds properly */
13371         bp->mdio.prtad = MDIO_PRTAD_NONE;
13372         bp->mdio.mmds = 0;
13373         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13374         bp->mdio.dev = dev;
13375         bp->mdio.mdio_read = bnx2x_mdio_read;
13376         bp->mdio.mdio_write = bnx2x_mdio_write;
13377
13378         return 0;
13379
13380 err_out_release:
13381         if (atomic_read(&pdev->enable_cnt) == 1)
13382                 pci_release_regions(pdev);
13383
13384 err_out_disable:
13385         pci_disable_device(pdev);
13386
13387 err_out:
13388         return rc;
13389 }
13390
13391 static int bnx2x_check_firmware(struct bnx2x *bp)
13392 {
13393         const struct firmware *firmware = bp->firmware;
13394         struct bnx2x_fw_file_hdr *fw_hdr;
13395         struct bnx2x_fw_file_section *sections;
13396         u32 offset, len, num_ops;
13397         __be16 *ops_offsets;
13398         int i;
13399         const u8 *fw_ver;
13400
13401         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13402                 BNX2X_ERR("Wrong FW size\n");
13403                 return -EINVAL;
13404         }
13405
13406         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13407         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13408
13409         /* Make sure none of the offsets and sizes make us read beyond
13410          * the end of the firmware data */
13411         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13412                 offset = be32_to_cpu(sections[i].offset);
13413                 len = be32_to_cpu(sections[i].len);
13414                 if (offset + len > firmware->size) {
13415                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13416                         return -EINVAL;
13417                 }
13418         }
13419
13420         /* Likewise for the init_ops offsets */
13421         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13422         ops_offsets = (__force __be16 *)(firmware->data + offset);
13423         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13424
13425         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13426                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13427                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13428                         return -EINVAL;
13429                 }
13430         }
13431
13432         /* Check FW version */
13433         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13434         fw_ver = firmware->data + offset;
13435         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13436             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13437             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13438             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13439                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13440                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13441                        BCM_5710_FW_MAJOR_VERSION,
13442                        BCM_5710_FW_MINOR_VERSION,
13443                        BCM_5710_FW_REVISION_VERSION,
13444                        BCM_5710_FW_ENGINEERING_VERSION);
13445                 return -EINVAL;
13446         }
13447
13448         return 0;
13449 }
13450
13451 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13452 {
13453         const __be32 *source = (const __be32 *)_source;
13454         u32 *target = (u32 *)_target;
13455         u32 i;
13456
13457         for (i = 0; i < n/4; i++)
13458                 target[i] = be32_to_cpu(source[i]);
13459 }
13460
13461 /*
13462    Ops array is stored in the following format:
13463    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13464  */
13465 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13466 {
13467         const __be32 *source = (const __be32 *)_source;
13468         struct raw_op *target = (struct raw_op *)_target;
13469         u32 i, j, tmp;
13470
13471         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13472                 tmp = be32_to_cpu(source[j]);
13473                 target[i].op = (tmp >> 24) & 0xff;
13474                 target[i].offset = tmp & 0xffffff;
13475                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13476         }
13477 }
13478
13479 /* IRO array is stored in the following format:
13480  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13481  */
13482 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13483 {
13484         const __be32 *source = (const __be32 *)_source;
13485         struct iro *target = (struct iro *)_target;
13486         u32 i, j, tmp;
13487
13488         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13489                 target[i].base = be32_to_cpu(source[j]);
13490                 j++;
13491                 tmp = be32_to_cpu(source[j]);
13492                 target[i].m1 = (tmp >> 16) & 0xffff;
13493                 target[i].m2 = tmp & 0xffff;
13494                 j++;
13495                 tmp = be32_to_cpu(source[j]);
13496                 target[i].m3 = (tmp >> 16) & 0xffff;
13497                 target[i].size = tmp & 0xffff;
13498                 j++;
13499         }
13500 }
13501
13502 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13503 {
13504         const __be16 *source = (const __be16 *)_source;
13505         u16 *target = (u16 *)_target;
13506         u32 i;
13507
13508         for (i = 0; i < n/2; i++)
13509                 target[i] = be16_to_cpu(source[i]);
13510 }
13511
13512 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13513 do {                                                                    \
13514         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13515         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13516         if (!bp->arr)                                                   \
13517                 goto lbl;                                               \
13518         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13519              (u8 *)bp->arr, len);                                       \
13520 } while (0)
13521
13522 static int bnx2x_init_firmware(struct bnx2x *bp)
13523 {
13524         const char *fw_file_name;
13525         struct bnx2x_fw_file_hdr *fw_hdr;
13526         int rc;
13527
13528         if (bp->firmware)
13529                 return 0;
13530
13531         if (CHIP_IS_E1(bp))
13532                 fw_file_name = FW_FILE_NAME_E1;
13533         else if (CHIP_IS_E1H(bp))
13534                 fw_file_name = FW_FILE_NAME_E1H;
13535         else if (!CHIP_IS_E1x(bp))
13536                 fw_file_name = FW_FILE_NAME_E2;
13537         else {
13538                 BNX2X_ERR("Unsupported chip revision\n");
13539                 return -EINVAL;
13540         }
13541         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13542
13543         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13544         if (rc) {
13545                 BNX2X_ERR("Can't load firmware file %s\n",
13546                           fw_file_name);
13547                 goto request_firmware_exit;
13548         }
13549
13550         rc = bnx2x_check_firmware(bp);
13551         if (rc) {
13552                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13553                 goto request_firmware_exit;
13554         }
13555
13556         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13557
13558         /* Initialize the pointers to the init arrays */
13559         /* Blob */
13560         rc = -ENOMEM;
13561         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13562
13563         /* Opcodes */
13564         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13565
13566         /* Offsets */
13567         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13568                             be16_to_cpu_n);
13569
13570         /* STORMs firmware */
13571         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13572                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13573         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13574                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13575         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13576                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13577         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13578                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13579         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13580                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13581         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13582                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13583         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13584                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13585         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13586                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13587         /* IRO */
13588         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13589
13590         return 0;
13591
13592 iro_alloc_err:
13593         kfree(bp->init_ops_offsets);
13594 init_offsets_alloc_err:
13595         kfree(bp->init_ops);
13596 init_ops_alloc_err:
13597         kfree(bp->init_data);
13598 request_firmware_exit:
13599         release_firmware(bp->firmware);
13600         bp->firmware = NULL;
13601
13602         return rc;
13603 }
13604
13605 static void bnx2x_release_firmware(struct bnx2x *bp)
13606 {
13607         kfree(bp->init_ops_offsets);
13608         kfree(bp->init_ops);
13609         kfree(bp->init_data);
13610         release_firmware(bp->firmware);
13611         bp->firmware = NULL;
13612 }
13613
13614 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13615         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13616         .init_hw_cmn      = bnx2x_init_hw_common,
13617         .init_hw_port     = bnx2x_init_hw_port,
13618         .init_hw_func     = bnx2x_init_hw_func,
13619
13620         .reset_hw_cmn     = bnx2x_reset_common,
13621         .reset_hw_port    = bnx2x_reset_port,
13622         .reset_hw_func    = bnx2x_reset_func,
13623
13624         .gunzip_init      = bnx2x_gunzip_init,
13625         .gunzip_end       = bnx2x_gunzip_end,
13626
13627         .init_fw          = bnx2x_init_firmware,
13628         .release_fw       = bnx2x_release_firmware,
13629 };
13630
13631 void bnx2x__init_func_obj(struct bnx2x *bp)
13632 {
13633         /* Prepare DMAE related driver resources */
13634         bnx2x_setup_dmae(bp);
13635
13636         bnx2x_init_func_obj(bp, &bp->func_obj,
13637                             bnx2x_sp(bp, func_rdata),
13638                             bnx2x_sp_mapping(bp, func_rdata),
13639                             bnx2x_sp(bp, func_afex_rdata),
13640                             bnx2x_sp_mapping(bp, func_afex_rdata),
13641                             &bnx2x_func_sp_drv);
13642 }
13643
13644 /* must be called after sriov-enable */
13645 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13646 {
13647         int cid_count = BNX2X_L2_MAX_CID(bp);
13648
13649         if (IS_SRIOV(bp))
13650                 cid_count += BNX2X_VF_CIDS;
13651
13652         if (CNIC_SUPPORT(bp))
13653                 cid_count += CNIC_CID_MAX;
13654
13655         return roundup(cid_count, QM_CID_ROUND);
13656 }
13657
13658 /**
13659  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13660  *
13661  * @dev:        pci device
13662  *
13663  */
13664 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13665 {
13666         int index;
13667         u16 control = 0;
13668
13669         /*
13670          * If MSI-X is not supported - return number of SBs needed to support
13671          * one fast path queue: one FP queue + SB for CNIC
13672          */
13673         if (!pdev->msix_cap) {
13674                 dev_info(&pdev->dev, "no msix capability found\n");
13675                 return 1 + cnic_cnt;
13676         }
13677         dev_info(&pdev->dev, "msix capability found\n");
13678
13679         /*
13680          * The value in the PCI configuration space is the index of the last
13681          * entry, namely one less than the actual size of the table, which is
13682          * exactly what we want to return from this function: number of all SBs
13683          * without the default SB.
13684          * For VFs there is no default SB, then we return (index+1).
13685          */
13686         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13687
13688         index = control & PCI_MSIX_FLAGS_QSIZE;
13689
13690         return index;
13691 }
13692
13693 static int set_max_cos_est(int chip_id)
13694 {
13695         switch (chip_id) {
13696         case BCM57710:
13697         case BCM57711:
13698         case BCM57711E:
13699                 return BNX2X_MULTI_TX_COS_E1X;
13700         case BCM57712:
13701         case BCM57712_MF:
13702                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13703         case BCM57800:
13704         case BCM57800_MF:
13705         case BCM57810:
13706         case BCM57810_MF:
13707         case BCM57840_4_10:
13708         case BCM57840_2_20:
13709         case BCM57840_O:
13710         case BCM57840_MFO:
13711         case BCM57840_MF:
13712         case BCM57811:
13713         case BCM57811_MF:
13714                 return BNX2X_MULTI_TX_COS_E3B0;
13715         case BCM57712_VF:
13716         case BCM57800_VF:
13717         case BCM57810_VF:
13718         case BCM57840_VF:
13719         case BCM57811_VF:
13720                 return 1;
13721         default:
13722                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13723                 return -ENODEV;
13724         }
13725 }
13726
13727 static int set_is_vf(int chip_id)
13728 {
13729         switch (chip_id) {
13730         case BCM57712_VF:
13731         case BCM57800_VF:
13732         case BCM57810_VF:
13733         case BCM57840_VF:
13734         case BCM57811_VF:
13735                 return true;
13736         default:
13737                 return false;
13738         }
13739 }
13740
13741 /* nig_tsgen registers relative address */
13742 #define tsgen_ctrl 0x0
13743 #define tsgen_freecount 0x10
13744 #define tsgen_synctime_t0 0x20
13745 #define tsgen_offset_t0 0x28
13746 #define tsgen_drift_t0 0x30
13747 #define tsgen_synctime_t1 0x58
13748 #define tsgen_offset_t1 0x60
13749 #define tsgen_drift_t1 0x68
13750
13751 /* FW workaround for setting drift */
13752 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13753                                           int best_val, int best_period)
13754 {
13755         struct bnx2x_func_state_params func_params = {NULL};
13756         struct bnx2x_func_set_timesync_params *set_timesync_params =
13757                 &func_params.params.set_timesync;
13758
13759         /* Prepare parameters for function state transitions */
13760         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13761         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13762
13763         func_params.f_obj = &bp->func_obj;
13764         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13765
13766         /* Function parameters */
13767         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13768         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13769         set_timesync_params->add_sub_drift_adjust_value =
13770                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13771         set_timesync_params->drift_adjust_value = best_val;
13772         set_timesync_params->drift_adjust_period = best_period;
13773
13774         return bnx2x_func_state_change(bp, &func_params);
13775 }
13776
13777 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13778 {
13779         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13780         int rc;
13781         int drift_dir = 1;
13782         int val, period, period1, period2, dif, dif1, dif2;
13783         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13784
13785         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13786
13787         if (!netif_running(bp->dev)) {
13788                 DP(BNX2X_MSG_PTP,
13789                    "PTP adjfreq called while the interface is down\n");
13790                 return -ENETDOWN;
13791         }
13792
13793         if (ppb < 0) {
13794                 ppb = -ppb;
13795                 drift_dir = 0;
13796         }
13797
13798         if (ppb == 0) {
13799                 best_val = 1;
13800                 best_period = 0x1FFFFFF;
13801         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13802                 best_val = 31;
13803                 best_period = 1;
13804         } else {
13805                 /* Changed not to allow val = 8, 16, 24 as these values
13806                  * are not supported in workaround.
13807                  */
13808                 for (val = 0; val <= 31; val++) {
13809                         if ((val & 0x7) == 0)
13810                                 continue;
13811                         period1 = val * 1000000 / ppb;
13812                         period2 = period1 + 1;
13813                         if (period1 != 0)
13814                                 dif1 = ppb - (val * 1000000 / period1);
13815                         else
13816                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13817                         if (dif1 < 0)
13818                                 dif1 = -dif1;
13819                         dif2 = ppb - (val * 1000000 / period2);
13820                         if (dif2 < 0)
13821                                 dif2 = -dif2;
13822                         dif = (dif1 < dif2) ? dif1 : dif2;
13823                         period = (dif1 < dif2) ? period1 : period2;
13824                         if (dif < best_dif) {
13825                                 best_dif = dif;
13826                                 best_val = val;
13827                                 best_period = period;
13828                         }
13829                 }
13830         }
13831
13832         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13833                                             best_period);
13834         if (rc) {
13835                 BNX2X_ERR("Failed to set drift\n");
13836                 return -EFAULT;
13837         }
13838
13839         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13840            best_period);
13841
13842         return 0;
13843 }
13844
13845 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13846 {
13847         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13848
13849         if (!netif_running(bp->dev)) {
13850                 DP(BNX2X_MSG_PTP,
13851                    "PTP adjtime called while the interface is down\n");
13852                 return -ENETDOWN;
13853         }
13854
13855         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13856
13857         timecounter_adjtime(&bp->timecounter, delta);
13858
13859         return 0;
13860 }
13861
13862 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13863 {
13864         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13865         u64 ns;
13866
13867         if (!netif_running(bp->dev)) {
13868                 DP(BNX2X_MSG_PTP,
13869                    "PTP gettime called while the interface is down\n");
13870                 return -ENETDOWN;
13871         }
13872
13873         ns = timecounter_read(&bp->timecounter);
13874
13875         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13876
13877         *ts = ns_to_timespec64(ns);
13878
13879         return 0;
13880 }
13881
13882 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13883                              const struct timespec64 *ts)
13884 {
13885         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13886         u64 ns;
13887
13888         if (!netif_running(bp->dev)) {
13889                 DP(BNX2X_MSG_PTP,
13890                    "PTP settime called while the interface is down\n");
13891                 return -ENETDOWN;
13892         }
13893
13894         ns = timespec64_to_ns(ts);
13895
13896         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13897
13898         /* Re-init the timecounter */
13899         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13900
13901         return 0;
13902 }
13903
13904 /* Enable (or disable) ancillary features of the phc subsystem */
13905 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13906                             struct ptp_clock_request *rq, int on)
13907 {
13908         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13909
13910         BNX2X_ERR("PHC ancillary features are not supported\n");
13911         return -ENOTSUPP;
13912 }
13913
13914 static void bnx2x_register_phc(struct bnx2x *bp)
13915 {
13916         /* Fill the ptp_clock_info struct and register PTP clock*/
13917         bp->ptp_clock_info.owner = THIS_MODULE;
13918         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13919         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13920         bp->ptp_clock_info.n_alarm = 0;
13921         bp->ptp_clock_info.n_ext_ts = 0;
13922         bp->ptp_clock_info.n_per_out = 0;
13923         bp->ptp_clock_info.pps = 0;
13924         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13925         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13926         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13927         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13928         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13929
13930         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13931         if (IS_ERR(bp->ptp_clock)) {
13932                 bp->ptp_clock = NULL;
13933                 BNX2X_ERR("PTP clock registeration failed\n");
13934         }
13935 }
13936
13937 static int bnx2x_init_one(struct pci_dev *pdev,
13938                                     const struct pci_device_id *ent)
13939 {
13940         struct net_device *dev = NULL;
13941         struct bnx2x *bp;
13942         enum pcie_link_width pcie_width;
13943         enum pci_bus_speed pcie_speed;
13944         int rc, max_non_def_sbs;
13945         int rx_count, tx_count, rss_count, doorbell_size;
13946         int max_cos_est;
13947         bool is_vf;
13948         int cnic_cnt;
13949
13950         /* Management FW 'remembers' living interfaces. Allow it some time
13951          * to forget previously living interfaces, allowing a proper re-load.
13952          */
13953         if (is_kdump_kernel()) {
13954                 ktime_t now = ktime_get_boottime();
13955                 ktime_t fw_ready_time = ktime_set(5, 0);
13956
13957                 if (ktime_before(now, fw_ready_time))
13958                         msleep(ktime_ms_delta(fw_ready_time, now));
13959         }
13960
13961         /* An estimated maximum supported CoS number according to the chip
13962          * version.
13963          * We will try to roughly estimate the maximum number of CoSes this chip
13964          * may support in order to minimize the memory allocated for Tx
13965          * netdev_queue's. This number will be accurately calculated during the
13966          * initialization of bp->max_cos based on the chip versions AND chip
13967          * revision in the bnx2x_init_bp().
13968          */
13969         max_cos_est = set_max_cos_est(ent->driver_data);
13970         if (max_cos_est < 0)
13971                 return max_cos_est;
13972         is_vf = set_is_vf(ent->driver_data);
13973         cnic_cnt = is_vf ? 0 : 1;
13974
13975         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13976
13977         /* add another SB for VF as it has no default SB */
13978         max_non_def_sbs += is_vf ? 1 : 0;
13979
13980         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13981         rss_count = max_non_def_sbs - cnic_cnt;
13982
13983         if (rss_count < 1)
13984                 return -EINVAL;
13985
13986         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13987         rx_count = rss_count + cnic_cnt;
13988
13989         /* Maximum number of netdev Tx queues:
13990          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13991          */
13992         tx_count = rss_count * max_cos_est + cnic_cnt;
13993
13994         /* dev zeroed in init_etherdev */
13995         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13996         if (!dev)
13997                 return -ENOMEM;
13998
13999         bp = netdev_priv(dev);
14000
14001         bp->flags = 0;
14002         if (is_vf)
14003                 bp->flags |= IS_VF_FLAG;
14004
14005         bp->igu_sb_cnt = max_non_def_sbs;
14006         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14007         bp->msg_enable = debug;
14008         bp->cnic_support = cnic_cnt;
14009         bp->cnic_probe = bnx2x_cnic_probe;
14010
14011         pci_set_drvdata(pdev, dev);
14012
14013         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14014         if (rc < 0) {
14015                 free_netdev(dev);
14016                 return rc;
14017         }
14018
14019         BNX2X_DEV_INFO("This is a %s function\n",
14020                        IS_PF(bp) ? "physical" : "virtual");
14021         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14022         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14023         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14024                        tx_count, rx_count);
14025
14026         rc = bnx2x_init_bp(bp);
14027         if (rc)
14028                 goto init_one_exit;
14029
14030         /* Map doorbells here as we need the real value of bp->max_cos which
14031          * is initialized in bnx2x_init_bp() to determine the number of
14032          * l2 connections.
14033          */
14034         if (IS_VF(bp)) {
14035                 bp->doorbells = bnx2x_vf_doorbells(bp);
14036                 rc = bnx2x_vf_pci_alloc(bp);
14037                 if (rc)
14038                         goto init_one_freemem;
14039         } else {
14040                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14041                 if (doorbell_size > pci_resource_len(pdev, 2)) {
14042                         dev_err(&bp->pdev->dev,
14043                                 "Cannot map doorbells, bar size too small, aborting\n");
14044                         rc = -ENOMEM;
14045                         goto init_one_freemem;
14046                 }
14047                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14048                                                 doorbell_size);
14049         }
14050         if (!bp->doorbells) {
14051                 dev_err(&bp->pdev->dev,
14052                         "Cannot map doorbell space, aborting\n");
14053                 rc = -ENOMEM;
14054                 goto init_one_freemem;
14055         }
14056
14057         if (IS_VF(bp)) {
14058                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14059                 if (rc)
14060                         goto init_one_freemem;
14061
14062 #ifdef CONFIG_BNX2X_SRIOV
14063                 /* VF with OLD Hypervisor or old PF do not support filtering */
14064                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14065                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14066                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14067                 }
14068 #endif
14069         }
14070
14071         /* Enable SRIOV if capability found in configuration space */
14072         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14073         if (rc)
14074                 goto init_one_freemem;
14075
14076         /* calc qm_cid_count */
14077         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14078         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14079
14080         /* disable FCOE L2 queue for E1x*/
14081         if (CHIP_IS_E1x(bp))
14082                 bp->flags |= NO_FCOE_FLAG;
14083
14084         /* Set bp->num_queues for MSI-X mode*/
14085         bnx2x_set_num_queues(bp);
14086
14087         /* Configure interrupt mode: try to enable MSI-X/MSI if
14088          * needed.
14089          */
14090         rc = bnx2x_set_int_mode(bp);
14091         if (rc) {
14092                 dev_err(&pdev->dev, "Cannot set interrupts\n");
14093                 goto init_one_freemem;
14094         }
14095         BNX2X_DEV_INFO("set interrupts successfully\n");
14096
14097         /* register the net device */
14098         rc = register_netdev(dev);
14099         if (rc) {
14100                 dev_err(&pdev->dev, "Cannot register net device\n");
14101                 goto init_one_freemem;
14102         }
14103         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14104
14105         if (!NO_FCOE(bp)) {
14106                 /* Add storage MAC address */
14107                 rtnl_lock();
14108                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14109                 rtnl_unlock();
14110         }
14111         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
14112             pcie_speed == PCI_SPEED_UNKNOWN ||
14113             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
14114                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
14115         else
14116                 BNX2X_DEV_INFO(
14117                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
14118                        board_info[ent->driver_data].name,
14119                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14120                        pcie_width,
14121                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
14122                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
14123                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
14124                        "Unknown",
14125                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
14126
14127         bnx2x_register_phc(bp);
14128
14129         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14130                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14131
14132         return 0;
14133
14134 init_one_freemem:
14135         bnx2x_free_mem_bp(bp);
14136
14137 init_one_exit:
14138         bnx2x_disable_pcie_error_reporting(bp);
14139
14140         if (bp->regview)
14141                 iounmap(bp->regview);
14142
14143         if (IS_PF(bp) && bp->doorbells)
14144                 iounmap(bp->doorbells);
14145
14146         free_netdev(dev);
14147
14148         if (atomic_read(&pdev->enable_cnt) == 1)
14149                 pci_release_regions(pdev);
14150
14151         pci_disable_device(pdev);
14152
14153         return rc;
14154 }
14155
14156 static void __bnx2x_remove(struct pci_dev *pdev,
14157                            struct net_device *dev,
14158                            struct bnx2x *bp,
14159                            bool remove_netdev)
14160 {
14161         if (bp->ptp_clock) {
14162                 ptp_clock_unregister(bp->ptp_clock);
14163                 bp->ptp_clock = NULL;
14164         }
14165
14166         /* Delete storage MAC address */
14167         if (!NO_FCOE(bp)) {
14168                 rtnl_lock();
14169                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14170                 rtnl_unlock();
14171         }
14172
14173 #ifdef BCM_DCBNL
14174         /* Delete app tlvs from dcbnl */
14175         bnx2x_dcbnl_update_applist(bp, true);
14176 #endif
14177
14178         if (IS_PF(bp) &&
14179             !BP_NOMCP(bp) &&
14180             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14181                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14182
14183         /* Close the interface - either directly or implicitly */
14184         if (remove_netdev) {
14185                 unregister_netdev(dev);
14186         } else {
14187                 rtnl_lock();
14188                 dev_close(dev);
14189                 rtnl_unlock();
14190         }
14191
14192         bnx2x_iov_remove_one(bp);
14193
14194         /* Power on: we can't let PCI layer write to us while we are in D3 */
14195         if (IS_PF(bp)) {
14196                 bnx2x_set_power_state(bp, PCI_D0);
14197                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14198
14199                 /* Set endianity registers to reset values in case next driver
14200                  * boots in different endianty environment.
14201                  */
14202                 bnx2x_reset_endianity(bp);
14203         }
14204
14205         /* Disable MSI/MSI-X */
14206         bnx2x_disable_msi(bp);
14207
14208         /* Power off */
14209         if (IS_PF(bp))
14210                 bnx2x_set_power_state(bp, PCI_D3hot);
14211
14212         /* Make sure RESET task is not scheduled before continuing */
14213         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14214
14215         /* send message via vfpf channel to release the resources of this vf */
14216         if (IS_VF(bp))
14217                 bnx2x_vfpf_release(bp);
14218
14219         /* Assumes no further PCIe PM changes will occur */
14220         if (system_state == SYSTEM_POWER_OFF) {
14221                 pci_wake_from_d3(pdev, bp->wol);
14222                 pci_set_power_state(pdev, PCI_D3hot);
14223         }
14224
14225         bnx2x_disable_pcie_error_reporting(bp);
14226         if (remove_netdev) {
14227                 if (bp->regview)
14228                         iounmap(bp->regview);
14229
14230                 /* For vfs, doorbells are part of the regview and were unmapped
14231                  * along with it. FW is only loaded by PF.
14232                  */
14233                 if (IS_PF(bp)) {
14234                         if (bp->doorbells)
14235                                 iounmap(bp->doorbells);
14236
14237                         bnx2x_release_firmware(bp);
14238                 } else {
14239                         bnx2x_vf_pci_dealloc(bp);
14240                 }
14241                 bnx2x_free_mem_bp(bp);
14242
14243                 free_netdev(dev);
14244
14245                 if (atomic_read(&pdev->enable_cnt) == 1)
14246                         pci_release_regions(pdev);
14247
14248                 pci_disable_device(pdev);
14249         }
14250 }
14251
14252 static void bnx2x_remove_one(struct pci_dev *pdev)
14253 {
14254         struct net_device *dev = pci_get_drvdata(pdev);
14255         struct bnx2x *bp;
14256
14257         if (!dev) {
14258                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14259                 return;
14260         }
14261         bp = netdev_priv(dev);
14262
14263         __bnx2x_remove(pdev, dev, bp, true);
14264 }
14265
14266 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14267 {
14268         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14269
14270         bp->rx_mode = BNX2X_RX_MODE_NONE;
14271
14272         if (CNIC_LOADED(bp))
14273                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14274
14275         /* Stop Tx */
14276         bnx2x_tx_disable(bp);
14277         /* Delete all NAPI objects */
14278         bnx2x_del_all_napi(bp);
14279         if (CNIC_LOADED(bp))
14280                 bnx2x_del_all_napi_cnic(bp);
14281         netdev_reset_tc(bp->dev);
14282
14283         del_timer_sync(&bp->timer);
14284         cancel_delayed_work_sync(&bp->sp_task);
14285         cancel_delayed_work_sync(&bp->period_task);
14286
14287         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14288                 bp->stats_state = STATS_STATE_DISABLED;
14289                 up(&bp->stats_lock);
14290         }
14291
14292         bnx2x_save_statistics(bp);
14293
14294         netif_carrier_off(bp->dev);
14295
14296         return 0;
14297 }
14298
14299 /**
14300  * bnx2x_io_error_detected - called when PCI error is detected
14301  * @pdev: Pointer to PCI device
14302  * @state: The current pci connection state
14303  *
14304  * This function is called after a PCI bus error affecting
14305  * this device has been detected.
14306  */
14307 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14308                                                 pci_channel_state_t state)
14309 {
14310         struct net_device *dev = pci_get_drvdata(pdev);
14311         struct bnx2x *bp = netdev_priv(dev);
14312
14313         rtnl_lock();
14314
14315         BNX2X_ERR("IO error detected\n");
14316
14317         netif_device_detach(dev);
14318
14319         if (state == pci_channel_io_perm_failure) {
14320                 rtnl_unlock();
14321                 return PCI_ERS_RESULT_DISCONNECT;
14322         }
14323
14324         if (netif_running(dev))
14325                 bnx2x_eeh_nic_unload(bp);
14326
14327         bnx2x_prev_path_mark_eeh(bp);
14328
14329         pci_disable_device(pdev);
14330
14331         rtnl_unlock();
14332
14333         /* Request a slot reset */
14334         return PCI_ERS_RESULT_NEED_RESET;
14335 }
14336
14337 /**
14338  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14339  * @pdev: Pointer to PCI device
14340  *
14341  * Restart the card from scratch, as if from a cold-boot.
14342  */
14343 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14344 {
14345         struct net_device *dev = pci_get_drvdata(pdev);
14346         struct bnx2x *bp = netdev_priv(dev);
14347         int i;
14348
14349         rtnl_lock();
14350         BNX2X_ERR("IO slot reset initializing...\n");
14351         if (pci_enable_device(pdev)) {
14352                 dev_err(&pdev->dev,
14353                         "Cannot re-enable PCI device after reset\n");
14354                 rtnl_unlock();
14355                 return PCI_ERS_RESULT_DISCONNECT;
14356         }
14357
14358         pci_set_master(pdev);
14359         pci_restore_state(pdev);
14360         pci_save_state(pdev);
14361
14362         if (netif_running(dev))
14363                 bnx2x_set_power_state(bp, PCI_D0);
14364
14365         if (netif_running(dev)) {
14366                 BNX2X_ERR("IO slot reset --> driver unload\n");
14367
14368                 /* MCP should have been reset; Need to wait for validity */
14369                 if (bnx2x_init_shmem(bp)) {
14370                         rtnl_unlock();
14371                         return PCI_ERS_RESULT_DISCONNECT;
14372                 }
14373
14374                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14375                         u32 v;
14376
14377                         v = SHMEM2_RD(bp,
14378                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14379                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14380                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14381                 }
14382                 bnx2x_drain_tx_queues(bp);
14383                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14384                 bnx2x_netif_stop(bp, 1);
14385                 bnx2x_free_irq(bp);
14386
14387                 /* Report UNLOAD_DONE to MCP */
14388                 bnx2x_send_unload_done(bp, true);
14389
14390                 bp->sp_state = 0;
14391                 bp->port.pmf = 0;
14392
14393                 bnx2x_prev_unload(bp);
14394
14395                 /* We should have reseted the engine, so It's fair to
14396                  * assume the FW will no longer write to the bnx2x driver.
14397                  */
14398                 bnx2x_squeeze_objects(bp);
14399                 bnx2x_free_skbs(bp);
14400                 for_each_rx_queue(bp, i)
14401                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14402                 bnx2x_free_fp_mem(bp);
14403                 bnx2x_free_mem(bp);
14404
14405                 bp->state = BNX2X_STATE_CLOSED;
14406         }
14407
14408         rtnl_unlock();
14409
14410         /* If AER, perform cleanup of the PCIe registers */
14411         if (bp->flags & AER_ENABLED) {
14412                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14413                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14414                 else
14415                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14416         }
14417
14418         return PCI_ERS_RESULT_RECOVERED;
14419 }
14420
14421 /**
14422  * bnx2x_io_resume - called when traffic can start flowing again
14423  * @pdev: Pointer to PCI device
14424  *
14425  * This callback is called when the error recovery driver tells us that
14426  * its OK to resume normal operation.
14427  */
14428 static void bnx2x_io_resume(struct pci_dev *pdev)
14429 {
14430         struct net_device *dev = pci_get_drvdata(pdev);
14431         struct bnx2x *bp = netdev_priv(dev);
14432
14433         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14434                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14435                 return;
14436         }
14437
14438         rtnl_lock();
14439
14440         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14441                                                         DRV_MSG_SEQ_NUMBER_MASK;
14442
14443         if (netif_running(dev))
14444                 bnx2x_nic_load(bp, LOAD_NORMAL);
14445
14446         netif_device_attach(dev);
14447
14448         rtnl_unlock();
14449 }
14450
14451 static const struct pci_error_handlers bnx2x_err_handler = {
14452         .error_detected = bnx2x_io_error_detected,
14453         .slot_reset     = bnx2x_io_slot_reset,
14454         .resume         = bnx2x_io_resume,
14455 };
14456
14457 static void bnx2x_shutdown(struct pci_dev *pdev)
14458 {
14459         struct net_device *dev = pci_get_drvdata(pdev);
14460         struct bnx2x *bp;
14461
14462         if (!dev)
14463                 return;
14464
14465         bp = netdev_priv(dev);
14466         if (!bp)
14467                 return;
14468
14469         rtnl_lock();
14470         netif_device_detach(dev);
14471         rtnl_unlock();
14472
14473         /* Don't remove the netdevice, as there are scenarios which will cause
14474          * the kernel to hang, e.g., when trying to remove bnx2i while the
14475          * rootfs is mounted from SAN.
14476          */
14477         __bnx2x_remove(pdev, dev, bp, false);
14478 }
14479
14480 static struct pci_driver bnx2x_pci_driver = {
14481         .name        = DRV_MODULE_NAME,
14482         .id_table    = bnx2x_pci_tbl,
14483         .probe       = bnx2x_init_one,
14484         .remove      = bnx2x_remove_one,
14485         .suspend     = bnx2x_suspend,
14486         .resume      = bnx2x_resume,
14487         .err_handler = &bnx2x_err_handler,
14488 #ifdef CONFIG_BNX2X_SRIOV
14489         .sriov_configure = bnx2x_sriov_configure,
14490 #endif
14491         .shutdown    = bnx2x_shutdown,
14492 };
14493
14494 static int __init bnx2x_init(void)
14495 {
14496         int ret;
14497
14498         pr_info("%s", version);
14499
14500         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14501         if (bnx2x_wq == NULL) {
14502                 pr_err("Cannot create workqueue\n");
14503                 return -ENOMEM;
14504         }
14505         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14506         if (!bnx2x_iov_wq) {
14507                 pr_err("Cannot create iov workqueue\n");
14508                 destroy_workqueue(bnx2x_wq);
14509                 return -ENOMEM;
14510         }
14511
14512         ret = pci_register_driver(&bnx2x_pci_driver);
14513         if (ret) {
14514                 pr_err("Cannot register driver\n");
14515                 destroy_workqueue(bnx2x_wq);
14516                 destroy_workqueue(bnx2x_iov_wq);
14517         }
14518         return ret;
14519 }
14520
14521 static void __exit bnx2x_cleanup(void)
14522 {
14523         struct list_head *pos, *q;
14524
14525         pci_unregister_driver(&bnx2x_pci_driver);
14526
14527         destroy_workqueue(bnx2x_wq);
14528         destroy_workqueue(bnx2x_iov_wq);
14529
14530         /* Free globally allocated resources */
14531         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14532                 struct bnx2x_prev_path_list *tmp =
14533                         list_entry(pos, struct bnx2x_prev_path_list, list);
14534                 list_del(pos);
14535                 kfree(tmp);
14536         }
14537 }
14538
14539 void bnx2x_notify_link_changed(struct bnx2x *bp)
14540 {
14541         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14542 }
14543
14544 module_init(bnx2x_init);
14545 module_exit(bnx2x_cleanup);
14546
14547 /**
14548  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14549  *
14550  * @bp:         driver handle
14551  * @set:        set or clear the CAM entry
14552  *
14553  * This function will wait until the ramrod completion returns.
14554  * Return 0 if success, -ENODEV if ramrod doesn't return.
14555  */
14556 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14557 {
14558         unsigned long ramrod_flags = 0;
14559
14560         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14561         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14562                                  &bp->iscsi_l2_mac_obj, true,
14563                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14564 }
14565
14566 /* count denotes the number of new completions we have seen */
14567 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14568 {
14569         struct eth_spe *spe;
14570         int cxt_index, cxt_offset;
14571
14572 #ifdef BNX2X_STOP_ON_ERROR
14573         if (unlikely(bp->panic))
14574                 return;
14575 #endif
14576
14577         spin_lock_bh(&bp->spq_lock);
14578         BUG_ON(bp->cnic_spq_pending < count);
14579         bp->cnic_spq_pending -= count;
14580
14581         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14582                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14583                                 & SPE_HDR_CONN_TYPE) >>
14584                                 SPE_HDR_CONN_TYPE_SHIFT;
14585                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14586                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14587
14588                 /* Set validation for iSCSI L2 client before sending SETUP
14589                  *  ramrod
14590                  */
14591                 if (type == ETH_CONNECTION_TYPE) {
14592                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14593                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14594                                         ILT_PAGE_CIDS;
14595                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14596                                         (cxt_index * ILT_PAGE_CIDS);
14597                                 bnx2x_set_ctx_validation(bp,
14598                                         &bp->context[cxt_index].
14599                                                          vcxt[cxt_offset].eth,
14600                                         BNX2X_ISCSI_ETH_CID(bp));
14601                         }
14602                 }
14603
14604                 /*
14605                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14606                  * and in the air. We also check that number of outstanding
14607                  * COMMON ramrods is not more than the EQ and SPQ can
14608                  * accommodate.
14609                  */
14610                 if (type == ETH_CONNECTION_TYPE) {
14611                         if (!atomic_read(&bp->cq_spq_left))
14612                                 break;
14613                         else
14614                                 atomic_dec(&bp->cq_spq_left);
14615                 } else if (type == NONE_CONNECTION_TYPE) {
14616                         if (!atomic_read(&bp->eq_spq_left))
14617                                 break;
14618                         else
14619                                 atomic_dec(&bp->eq_spq_left);
14620                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14621                            (type == FCOE_CONNECTION_TYPE)) {
14622                         if (bp->cnic_spq_pending >=
14623                             bp->cnic_eth_dev.max_kwqe_pending)
14624                                 break;
14625                         else
14626                                 bp->cnic_spq_pending++;
14627                 } else {
14628                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14629                         bnx2x_panic();
14630                         break;
14631                 }
14632
14633                 spe = bnx2x_sp_get_next(bp);
14634                 *spe = *bp->cnic_kwq_cons;
14635
14636                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14637                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14638
14639                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14640                         bp->cnic_kwq_cons = bp->cnic_kwq;
14641                 else
14642                         bp->cnic_kwq_cons++;
14643         }
14644         bnx2x_sp_prod_update(bp);
14645         spin_unlock_bh(&bp->spq_lock);
14646 }
14647
14648 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14649                                struct kwqe_16 *kwqes[], u32 count)
14650 {
14651         struct bnx2x *bp = netdev_priv(dev);
14652         int i;
14653
14654 #ifdef BNX2X_STOP_ON_ERROR
14655         if (unlikely(bp->panic)) {
14656                 BNX2X_ERR("Can't post to SP queue while panic\n");
14657                 return -EIO;
14658         }
14659 #endif
14660
14661         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14662             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14663                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14664                 return -EAGAIN;
14665         }
14666
14667         spin_lock_bh(&bp->spq_lock);
14668
14669         for (i = 0; i < count; i++) {
14670                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14671
14672                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14673                         break;
14674
14675                 *bp->cnic_kwq_prod = *spe;
14676
14677                 bp->cnic_kwq_pending++;
14678
14679                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14680                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14681                    spe->data.update_data_addr.hi,
14682                    spe->data.update_data_addr.lo,
14683                    bp->cnic_kwq_pending);
14684
14685                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14686                         bp->cnic_kwq_prod = bp->cnic_kwq;
14687                 else
14688                         bp->cnic_kwq_prod++;
14689         }
14690
14691         spin_unlock_bh(&bp->spq_lock);
14692
14693         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14694                 bnx2x_cnic_sp_post(bp, 0);
14695
14696         return i;
14697 }
14698
14699 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14700 {
14701         struct cnic_ops *c_ops;
14702         int rc = 0;
14703
14704         mutex_lock(&bp->cnic_mutex);
14705         c_ops = rcu_dereference_protected(bp->cnic_ops,
14706                                           lockdep_is_held(&bp->cnic_mutex));
14707         if (c_ops)
14708                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14709         mutex_unlock(&bp->cnic_mutex);
14710
14711         return rc;
14712 }
14713
14714 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14715 {
14716         struct cnic_ops *c_ops;
14717         int rc = 0;
14718
14719         rcu_read_lock();
14720         c_ops = rcu_dereference(bp->cnic_ops);
14721         if (c_ops)
14722                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14723         rcu_read_unlock();
14724
14725         return rc;
14726 }
14727
14728 /*
14729  * for commands that have no data
14730  */
14731 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14732 {
14733         struct cnic_ctl_info ctl = {0};
14734
14735         ctl.cmd = cmd;
14736
14737         return bnx2x_cnic_ctl_send(bp, &ctl);
14738 }
14739
14740 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14741 {
14742         struct cnic_ctl_info ctl = {0};
14743
14744         /* first we tell CNIC and only then we count this as a completion */
14745         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14746         ctl.data.comp.cid = cid;
14747         ctl.data.comp.error = err;
14748
14749         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14750         bnx2x_cnic_sp_post(bp, 0);
14751 }
14752
14753 /* Called with netif_addr_lock_bh() taken.
14754  * Sets an rx_mode config for an iSCSI ETH client.
14755  * Doesn't block.
14756  * Completion should be checked outside.
14757  */
14758 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14759 {
14760         unsigned long accept_flags = 0, ramrod_flags = 0;
14761         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14762         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14763
14764         if (start) {
14765                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14766                  * because it's the only way for UIO Queue to accept
14767                  * multicasts (in non-promiscuous mode only one Queue per
14768                  * function will receive multicast packets (leading in our
14769                  * case).
14770                  */
14771                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14772                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14773                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14774                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14775
14776                 /* Clear STOP_PENDING bit if START is requested */
14777                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14778
14779                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14780         } else
14781                 /* Clear START_PENDING bit if STOP is requested */
14782                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14783
14784         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14785                 set_bit(sched_state, &bp->sp_state);
14786         else {
14787                 __set_bit(RAMROD_RX, &ramrod_flags);
14788                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14789                                     ramrod_flags);
14790         }
14791 }
14792
14793 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14794 {
14795         struct bnx2x *bp = netdev_priv(dev);
14796         int rc = 0;
14797
14798         switch (ctl->cmd) {
14799         case DRV_CTL_CTXTBL_WR_CMD: {
14800                 u32 index = ctl->data.io.offset;
14801                 dma_addr_t addr = ctl->data.io.dma_addr;
14802
14803                 bnx2x_ilt_wr(bp, index, addr);
14804                 break;
14805         }
14806
14807         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14808                 int count = ctl->data.credit.credit_count;
14809
14810                 bnx2x_cnic_sp_post(bp, count);
14811                 break;
14812         }
14813
14814         /* rtnl_lock is held.  */
14815         case DRV_CTL_START_L2_CMD: {
14816                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14817                 unsigned long sp_bits = 0;
14818
14819                 /* Configure the iSCSI classification object */
14820                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14821                                    cp->iscsi_l2_client_id,
14822                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14823                                    bnx2x_sp(bp, mac_rdata),
14824                                    bnx2x_sp_mapping(bp, mac_rdata),
14825                                    BNX2X_FILTER_MAC_PENDING,
14826                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14827                                    &bp->macs_pool);
14828
14829                 /* Set iSCSI MAC address */
14830                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14831                 if (rc)
14832                         break;
14833
14834                 mmiowb();
14835                 barrier();
14836
14837                 /* Start accepting on iSCSI L2 ring */
14838
14839                 netif_addr_lock_bh(dev);
14840                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14841                 netif_addr_unlock_bh(dev);
14842
14843                 /* bits to wait on */
14844                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14845                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14846
14847                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14848                         BNX2X_ERR("rx_mode completion timed out!\n");
14849
14850                 break;
14851         }
14852
14853         /* rtnl_lock is held.  */
14854         case DRV_CTL_STOP_L2_CMD: {
14855                 unsigned long sp_bits = 0;
14856
14857                 /* Stop accepting on iSCSI L2 ring */
14858                 netif_addr_lock_bh(dev);
14859                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14860                 netif_addr_unlock_bh(dev);
14861
14862                 /* bits to wait on */
14863                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14864                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14865
14866                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14867                         BNX2X_ERR("rx_mode completion timed out!\n");
14868
14869                 mmiowb();
14870                 barrier();
14871
14872                 /* Unset iSCSI L2 MAC */
14873                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14874                                         BNX2X_ISCSI_ETH_MAC, true);
14875                 break;
14876         }
14877         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14878                 int count = ctl->data.credit.credit_count;
14879
14880                 smp_mb__before_atomic();
14881                 atomic_add(count, &bp->cq_spq_left);
14882                 smp_mb__after_atomic();
14883                 break;
14884         }
14885         case DRV_CTL_ULP_REGISTER_CMD: {
14886                 int ulp_type = ctl->data.register_data.ulp_type;
14887
14888                 if (CHIP_IS_E3(bp)) {
14889                         int idx = BP_FW_MB_IDX(bp);
14890                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14891                         int path = BP_PATH(bp);
14892                         int port = BP_PORT(bp);
14893                         int i;
14894                         u32 scratch_offset;
14895                         u32 *host_addr;
14896
14897                         /* first write capability to shmem2 */
14898                         if (ulp_type == CNIC_ULP_ISCSI)
14899                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14900                         else if (ulp_type == CNIC_ULP_FCOE)
14901                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14902                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14903
14904                         if ((ulp_type != CNIC_ULP_FCOE) ||
14905                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14906                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14907                                 break;
14908
14909                         /* if reached here - should write fcoe capabilities */
14910                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14911                         if (!scratch_offset)
14912                                 break;
14913                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14914                                                    fcoe_features[path][port]);
14915                         host_addr = (u32 *) &(ctl->data.register_data.
14916                                               fcoe_features);
14917                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14918                              i += 4)
14919                                 REG_WR(bp, scratch_offset + i,
14920                                        *(host_addr + i/4));
14921                 }
14922                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14923                 break;
14924         }
14925
14926         case DRV_CTL_ULP_UNREGISTER_CMD: {
14927                 int ulp_type = ctl->data.ulp_type;
14928
14929                 if (CHIP_IS_E3(bp)) {
14930                         int idx = BP_FW_MB_IDX(bp);
14931                         u32 cap;
14932
14933                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14934                         if (ulp_type == CNIC_ULP_ISCSI)
14935                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14936                         else if (ulp_type == CNIC_ULP_FCOE)
14937                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14938                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14939                 }
14940                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14941                 break;
14942         }
14943
14944         default:
14945                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14946                 rc = -EINVAL;
14947         }
14948
14949         /* For storage-only interfaces, change driver state */
14950         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14951                 switch (ctl->drv_state) {
14952                 case DRV_NOP:
14953                         break;
14954                 case DRV_ACTIVE:
14955                         bnx2x_set_os_driver_state(bp,
14956                                                   OS_DRIVER_STATE_ACTIVE);
14957                         break;
14958                 case DRV_INACTIVE:
14959                         bnx2x_set_os_driver_state(bp,
14960                                                   OS_DRIVER_STATE_DISABLED);
14961                         break;
14962                 case DRV_UNLOADED:
14963                         bnx2x_set_os_driver_state(bp,
14964                                                   OS_DRIVER_STATE_NOT_LOADED);
14965                         break;
14966                 default:
14967                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14968                 }
14969         }
14970
14971         return rc;
14972 }
14973
14974 static int bnx2x_get_fc_npiv(struct net_device *dev,
14975                              struct cnic_fc_npiv_tbl *cnic_tbl)
14976 {
14977         struct bnx2x *bp = netdev_priv(dev);
14978         struct bdn_fc_npiv_tbl *tbl = NULL;
14979         u32 offset, entries;
14980         int rc = -EINVAL;
14981         int i;
14982
14983         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14984                 goto out;
14985
14986         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14987
14988         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14989         if (!tbl) {
14990                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14991                 goto out;
14992         }
14993
14994         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14995         if (!offset) {
14996                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14997                 goto out;
14998         }
14999         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
15000
15001         /* Read the table contents from nvram */
15002         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
15003                 BNX2X_ERR("Failed to read FC-NPIV table\n");
15004                 goto out;
15005         }
15006
15007         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
15008          * the number of entries back to cpu endianness.
15009          */
15010         entries = tbl->fc_npiv_cfg.num_of_npiv;
15011         entries = (__force u32)be32_to_cpu((__force __be32)entries);
15012         tbl->fc_npiv_cfg.num_of_npiv = entries;
15013
15014         if (!tbl->fc_npiv_cfg.num_of_npiv) {
15015                 DP(BNX2X_MSG_MCP,
15016                    "No FC-NPIV table [valid, simply not present]\n");
15017                 goto out;
15018         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
15019                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
15020                           tbl->fc_npiv_cfg.num_of_npiv);
15021                 goto out;
15022         } else {
15023                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
15024                    tbl->fc_npiv_cfg.num_of_npiv);
15025         }
15026
15027         /* Copy the data into cnic-provided struct */
15028         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15029         for (i = 0; i < cnic_tbl->count; i++) {
15030                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15031                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15032         }
15033
15034         rc = 0;
15035 out:
15036         kfree(tbl);
15037         return rc;
15038 }
15039
15040 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15041 {
15042         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15043
15044         if (bp->flags & USING_MSIX_FLAG) {
15045                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15046                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15047                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
15048         } else {
15049                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15050                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15051         }
15052         if (!CHIP_IS_E1x(bp))
15053                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15054         else
15055                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15056
15057         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15058         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15059         cp->irq_arr[1].status_blk = bp->def_status_blk;
15060         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15061         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15062
15063         cp->num_irq = 2;
15064 }
15065
15066 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15067 {
15068         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15069
15070         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15071                              bnx2x_cid_ilt_lines(bp);
15072         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15073         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15074         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15075
15076         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15077            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15078            cp->iscsi_l2_cid);
15079
15080         if (NO_ISCSI_OOO(bp))
15081                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15082 }
15083
15084 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15085                                void *data)
15086 {
15087         struct bnx2x *bp = netdev_priv(dev);
15088         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15089         int rc;
15090
15091         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15092
15093         if (ops == NULL) {
15094                 BNX2X_ERR("NULL ops received\n");
15095                 return -EINVAL;
15096         }
15097
15098         if (!CNIC_SUPPORT(bp)) {
15099                 BNX2X_ERR("Can't register CNIC when not supported\n");
15100                 return -EOPNOTSUPP;
15101         }
15102
15103         if (!CNIC_LOADED(bp)) {
15104                 rc = bnx2x_load_cnic(bp);
15105                 if (rc) {
15106                         BNX2X_ERR("CNIC-related load failed\n");
15107                         return rc;
15108                 }
15109         }
15110
15111         bp->cnic_enabled = true;
15112
15113         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15114         if (!bp->cnic_kwq)
15115                 return -ENOMEM;
15116
15117         bp->cnic_kwq_cons = bp->cnic_kwq;
15118         bp->cnic_kwq_prod = bp->cnic_kwq;
15119         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15120
15121         bp->cnic_spq_pending = 0;
15122         bp->cnic_kwq_pending = 0;
15123
15124         bp->cnic_data = data;
15125
15126         cp->num_irq = 0;
15127         cp->drv_state |= CNIC_DRV_STATE_REGD;
15128         cp->iro_arr = bp->iro_arr;
15129
15130         bnx2x_setup_cnic_irq_info(bp);
15131
15132         rcu_assign_pointer(bp->cnic_ops, ops);
15133
15134         /* Schedule driver to read CNIC driver versions */
15135         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15136
15137         return 0;
15138 }
15139
15140 static int bnx2x_unregister_cnic(struct net_device *dev)
15141 {
15142         struct bnx2x *bp = netdev_priv(dev);
15143         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15144
15145         mutex_lock(&bp->cnic_mutex);
15146         cp->drv_state = 0;
15147         RCU_INIT_POINTER(bp->cnic_ops, NULL);
15148         mutex_unlock(&bp->cnic_mutex);
15149         synchronize_rcu();
15150         bp->cnic_enabled = false;
15151         kfree(bp->cnic_kwq);
15152         bp->cnic_kwq = NULL;
15153
15154         return 0;
15155 }
15156
15157 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15158 {
15159         struct bnx2x *bp = netdev_priv(dev);
15160         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15161
15162         /* If both iSCSI and FCoE are disabled - return NULL in
15163          * order to indicate CNIC that it should not try to work
15164          * with this device.
15165          */
15166         if (NO_ISCSI(bp) && NO_FCOE(bp))
15167                 return NULL;
15168
15169         cp->drv_owner = THIS_MODULE;
15170         cp->chip_id = CHIP_ID(bp);
15171         cp->pdev = bp->pdev;
15172         cp->io_base = bp->regview;
15173         cp->io_base2 = bp->doorbells;
15174         cp->max_kwqe_pending = 8;
15175         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15176         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15177                              bnx2x_cid_ilt_lines(bp);
15178         cp->ctx_tbl_len = CNIC_ILT_LINES;
15179         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15180         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15181         cp->drv_ctl = bnx2x_drv_ctl;
15182         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15183         cp->drv_register_cnic = bnx2x_register_cnic;
15184         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15185         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15186         cp->iscsi_l2_client_id =
15187                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15188         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15189
15190         if (NO_ISCSI_OOO(bp))
15191                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15192
15193         if (NO_ISCSI(bp))
15194                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15195
15196         if (NO_FCOE(bp))
15197                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15198
15199         BNX2X_DEV_INFO(
15200                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15201            cp->ctx_blk_size,
15202            cp->ctx_tbl_offset,
15203            cp->ctx_tbl_len,
15204            cp->starting_cid);
15205         return cp;
15206 }
15207
15208 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15209 {
15210         struct bnx2x *bp = fp->bp;
15211         u32 offset = BAR_USTRORM_INTMEM;
15212
15213         if (IS_VF(bp))
15214                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15215         else if (!CHIP_IS_E1x(bp))
15216                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15217         else
15218                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15219
15220         return offset;
15221 }
15222
15223 /* called only on E1H or E2.
15224  * When pretending to be PF, the pretend value is the function number 0...7
15225  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15226  * combination
15227  */
15228 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15229 {
15230         u32 pretend_reg;
15231
15232         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15233                 return -1;
15234
15235         /* get my own pretend register */
15236         pretend_reg = bnx2x_get_pretend_reg(bp);
15237         REG_WR(bp, pretend_reg, pretend_func_val);
15238         REG_RD(bp, pretend_reg);
15239         return 0;
15240 }
15241
15242 static void bnx2x_ptp_task(struct work_struct *work)
15243 {
15244         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15245         int port = BP_PORT(bp);
15246         u32 val_seq;
15247         u64 timestamp, ns;
15248         struct skb_shared_hwtstamps shhwtstamps;
15249
15250         /* Read Tx timestamp registers */
15251         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15252                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15253         if (val_seq & 0x10000) {
15254                 /* There is a valid timestamp value */
15255                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15256                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15257                 timestamp <<= 32;
15258                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15259                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15260                 /* Reset timestamp register to allow new timestamp */
15261                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15262                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15263                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15264
15265                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15266                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15267                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15268                 dev_kfree_skb_any(bp->ptp_tx_skb);
15269                 bp->ptp_tx_skb = NULL;
15270
15271                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15272                    timestamp, ns);
15273         } else {
15274                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15275                 /* Reschedule to keep checking for a valid timestamp value */
15276                 schedule_work(&bp->ptp_task);
15277         }
15278 }
15279
15280 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15281 {
15282         int port = BP_PORT(bp);
15283         u64 timestamp, ns;
15284
15285         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15286                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15287         timestamp <<= 32;
15288         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15289                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15290
15291         /* Reset timestamp register to allow new timestamp */
15292         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15293                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15294
15295         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15296
15297         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15298
15299         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15300            timestamp, ns);
15301 }
15302
15303 /* Read the PHC */
15304 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15305 {
15306         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15307         int port = BP_PORT(bp);
15308         u32 wb_data[2];
15309         u64 phc_cycles;
15310
15311         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15312                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15313         phc_cycles = wb_data[1];
15314         phc_cycles = (phc_cycles << 32) + wb_data[0];
15315
15316         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15317
15318         return phc_cycles;
15319 }
15320
15321 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15322 {
15323         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15324         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15325         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15326         bp->cyclecounter.shift = 0;
15327         bp->cyclecounter.mult = 1;
15328 }
15329
15330 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15331 {
15332         struct bnx2x_func_state_params func_params = {NULL};
15333         struct bnx2x_func_set_timesync_params *set_timesync_params =
15334                 &func_params.params.set_timesync;
15335
15336         /* Prepare parameters for function state transitions */
15337         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15338         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15339
15340         func_params.f_obj = &bp->func_obj;
15341         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15342
15343         /* Function parameters */
15344         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15345         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15346
15347         return bnx2x_func_state_change(bp, &func_params);
15348 }
15349
15350 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15351 {
15352         struct bnx2x_queue_state_params q_params;
15353         int rc, i;
15354
15355         /* send queue update ramrod to enable PTP packets */
15356         memset(&q_params, 0, sizeof(q_params));
15357         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15358         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15359         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15360                   &q_params.params.update.update_flags);
15361         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15362                   &q_params.params.update.update_flags);
15363
15364         /* send the ramrod on all the queues of the PF */
15365         for_each_eth_queue(bp, i) {
15366                 struct bnx2x_fastpath *fp = &bp->fp[i];
15367
15368                 /* Set the appropriate Queue object */
15369                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15370
15371                 /* Update the Queue state */
15372                 rc = bnx2x_queue_state_change(bp, &q_params);
15373                 if (rc) {
15374                         BNX2X_ERR("Failed to enable PTP packets\n");
15375                         return rc;
15376                 }
15377         }
15378
15379         return 0;
15380 }
15381
15382 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15383 {
15384         int port = BP_PORT(bp);
15385         int rc;
15386
15387         if (!bp->hwtstamp_ioctl_called)
15388                 return 0;
15389
15390         switch (bp->tx_type) {
15391         case HWTSTAMP_TX_ON:
15392                 bp->flags |= TX_TIMESTAMPING_EN;
15393                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15394                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15395                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15396                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15397                 break;
15398         case HWTSTAMP_TX_ONESTEP_SYNC:
15399                 BNX2X_ERR("One-step timestamping is not supported\n");
15400                 return -ERANGE;
15401         }
15402
15403         switch (bp->rx_filter) {
15404         case HWTSTAMP_FILTER_NONE:
15405                 break;
15406         case HWTSTAMP_FILTER_ALL:
15407         case HWTSTAMP_FILTER_SOME:
15408         case HWTSTAMP_FILTER_NTP_ALL:
15409                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15410                 break;
15411         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15412         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15413         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15414                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15415                 /* Initialize PTP detection for UDP/IPv4 events */
15416                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15417                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15418                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15419                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15420                 break;
15421         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15422         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15423         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15424                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15425                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15426                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15427                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15428                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15429                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15430                 break;
15431         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15432         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15433         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15434                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15435                 /* Initialize PTP detection L2 events */
15436                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15437                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15438                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15439                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15440
15441                 break;
15442         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15443         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15444         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15445                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15446                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15447                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15448                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15449                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15450                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15451                 break;
15452         }
15453
15454         /* Indicate to FW that this PF expects recorded PTP packets */
15455         rc = bnx2x_enable_ptp_packets(bp);
15456         if (rc)
15457                 return rc;
15458
15459         /* Enable sending PTP packets to host */
15460         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15461                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15462
15463         return 0;
15464 }
15465
15466 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15467 {
15468         struct hwtstamp_config config;
15469         int rc;
15470
15471         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15472
15473         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15474                 return -EFAULT;
15475
15476         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15477            config.tx_type, config.rx_filter);
15478
15479         if (config.flags) {
15480                 BNX2X_ERR("config.flags is reserved for future use\n");
15481                 return -EINVAL;
15482         }
15483
15484         bp->hwtstamp_ioctl_called = 1;
15485         bp->tx_type = config.tx_type;
15486         bp->rx_filter = config.rx_filter;
15487
15488         rc = bnx2x_configure_ptp_filters(bp);
15489         if (rc)
15490                 return rc;
15491
15492         config.rx_filter = bp->rx_filter;
15493
15494         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15495                 -EFAULT : 0;
15496 }
15497
15498 /* Configures HW for PTP */
15499 static int bnx2x_configure_ptp(struct bnx2x *bp)
15500 {
15501         int rc, port = BP_PORT(bp);
15502         u32 wb_data[2];
15503
15504         /* Reset PTP event detection rules - will be configured in the IOCTL */
15505         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15506                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15507         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15508                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15509         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15510                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15511         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15512                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15513
15514         /* Disable PTP packets to host - will be configured in the IOCTL*/
15515         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15516                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15517
15518         /* Enable the PTP feature */
15519         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15520                NIG_REG_P0_PTP_EN, 0x3F);
15521
15522         /* Enable the free-running counter */
15523         wb_data[0] = 0;
15524         wb_data[1] = 0;
15525         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15526
15527         /* Reset drift register (offset register is not reset) */
15528         rc = bnx2x_send_reset_timesync_ramrod(bp);
15529         if (rc) {
15530                 BNX2X_ERR("Failed to reset PHC drift register\n");
15531                 return -EFAULT;
15532         }
15533
15534         /* Reset possibly old timestamps */
15535         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15536                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15537         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15538                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15539
15540         return 0;
15541 }
15542
15543 /* Called during load, to initialize PTP-related stuff */
15544 void bnx2x_init_ptp(struct bnx2x *bp)
15545 {
15546         int rc;
15547
15548         /* Configure PTP in HW */
15549         rc = bnx2x_configure_ptp(bp);
15550         if (rc) {
15551                 BNX2X_ERR("Stopping PTP initialization\n");
15552                 return;
15553         }
15554
15555         /* Init work queue for Tx timestamping */
15556         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15557
15558         /* Init cyclecounter and timecounter. This is done only in the first
15559          * load. If done in every load, PTP application will fail when doing
15560          * unload / load (e.g. MTU change) while it is running.
15561          */
15562         if (!bp->timecounter_init_done) {
15563                 bnx2x_init_cyclecounter(bp);
15564                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15565                                  ktime_to_ns(ktime_get_real()));
15566                 bp->timecounter_init_done = 1;
15567         }
15568
15569         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15570 }