Merge tag 'asoc-fix-v5.17-rc7' of https://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
4  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
5  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6  *
7  * Derived from Intel e1000 driver
8  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9  *
10  * Contact Information:
11  * Xiong Huang <xiong.huang@atheros.com>
12  * Jie Yang <jie.yang@atheros.com>
13  * Chris Snook <csnook@redhat.com>
14  * Jay Cliburn <jcliburn@gmail.com>
15  *
16  * This version is adapted from the Attansic reference driver.
17  *
18  * TODO:
19  * Add more ethtool functions.
20  * Fix abstruse irq enable/disable condition described here:
21  *      http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
22  *
23  * NEEDS TESTING:
24  * VLAN
25  * multicast
26  * promiscuous mode
27  * interrupt coalescing
28  * SMP torture testing
29  */
30
31 #include <linux/atomic.h>
32 #include <asm/byteorder.h>
33
34 #include <linux/compiler.h>
35 #include <linux/crc32.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/etherdevice.h>
39 #include <linux/hardirq.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <linux/in.h>
43 #include <linux/interrupt.h>
44 #include <linux/ip.h>
45 #include <linux/irqflags.h>
46 #include <linux/irqreturn.h>
47 #include <linux/jiffies.h>
48 #include <linux/mii.h>
49 #include <linux/module.h>
50 #include <linux/net.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/pci_ids.h>
54 #include <linux/pm.h>
55 #include <linux/skbuff.h>
56 #include <linux/slab.h>
57 #include <linux/spinlock.h>
58 #include <linux/string.h>
59 #include <linux/tcp.h>
60 #include <linux/timer.h>
61 #include <linux/types.h>
62 #include <linux/workqueue.h>
63
64 #include <net/checksum.h>
65
66 #include "atl1.h"
67
68 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
69               "Chris Snook <csnook@redhat.com>, "
70               "Jay Cliburn <jcliburn@gmail.com>");
71 MODULE_LICENSE("GPL");
72
73 /* Temporary hack for merging atl1 and atl2 */
74 #include "atlx.c"
75
76 static const struct ethtool_ops atl1_ethtool_ops;
77
78 /*
79  * This is the only thing that needs to be changed to adjust the
80  * maximum number of ports that the driver can manage.
81  */
82 #define ATL1_MAX_NIC 4
83
84 #define OPTION_UNSET    -1
85 #define OPTION_DISABLED 0
86 #define OPTION_ENABLED  1
87
88 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
89
90 /*
91  * Interrupt Moderate Timer in units of 2 us
92  *
93  * Valid Range: 10-65535
94  *
95  * Default Value: 100 (200us)
96  */
97 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
98 static unsigned int num_int_mod_timer;
99 module_param_array_named(int_mod_timer, int_mod_timer, int,
100         &num_int_mod_timer, 0);
101 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
102
103 #define DEFAULT_INT_MOD_CNT     100     /* 200us */
104 #define MAX_INT_MOD_CNT         65000
105 #define MIN_INT_MOD_CNT         50
106
107 struct atl1_option {
108         enum { enable_option, range_option, list_option } type;
109         char *name;
110         char *err;
111         int def;
112         union {
113                 struct {        /* range_option info */
114                         int min;
115                         int max;
116                 } r;
117                 struct {        /* list_option info */
118                         int nr;
119                         struct atl1_opt_list {
120                                 int i;
121                                 char *str;
122                         } *p;
123                 } l;
124         } arg;
125 };
126
127 static int atl1_validate_option(int *value, struct atl1_option *opt,
128                                 struct pci_dev *pdev)
129 {
130         if (*value == OPTION_UNSET) {
131                 *value = opt->def;
132                 return 0;
133         }
134
135         switch (opt->type) {
136         case enable_option:
137                 switch (*value) {
138                 case OPTION_ENABLED:
139                         dev_info(&pdev->dev, "%s enabled\n", opt->name);
140                         return 0;
141                 case OPTION_DISABLED:
142                         dev_info(&pdev->dev, "%s disabled\n", opt->name);
143                         return 0;
144                 }
145                 break;
146         case range_option:
147                 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
148                         dev_info(&pdev->dev, "%s set to %i\n", opt->name,
149                                 *value);
150                         return 0;
151                 }
152                 break;
153         case list_option:{
154                         int i;
155                         struct atl1_opt_list *ent;
156
157                         for (i = 0; i < opt->arg.l.nr; i++) {
158                                 ent = &opt->arg.l.p[i];
159                                 if (*value == ent->i) {
160                                         if (ent->str[0] != '\0')
161                                                 dev_info(&pdev->dev, "%s\n",
162                                                         ent->str);
163                                         return 0;
164                                 }
165                         }
166                 }
167                 break;
168
169         default:
170                 break;
171         }
172
173         dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
174                 opt->name, *value, opt->err);
175         *value = opt->def;
176         return -1;
177 }
178
179 /**
180  * atl1_check_options - Range Checking for Command Line Parameters
181  * @adapter: board private structure
182  *
183  * This routine checks all command line parameters for valid user
184  * input.  If an invalid value is given, or if no user specified
185  * value exists, a default value is used.  The final value is stored
186  * in a variable in the adapter structure.
187  */
188 static void atl1_check_options(struct atl1_adapter *adapter)
189 {
190         struct pci_dev *pdev = adapter->pdev;
191         int bd = adapter->bd_number;
192         if (bd >= ATL1_MAX_NIC) {
193                 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
194                 dev_notice(&pdev->dev, "using defaults for all values\n");
195         }
196         {                       /* Interrupt Moderate Timer */
197                 struct atl1_option opt = {
198                         .type = range_option,
199                         .name = "Interrupt Moderator Timer",
200                         .err = "using default of "
201                                 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
202                         .def = DEFAULT_INT_MOD_CNT,
203                         .arg = {.r = {.min = MIN_INT_MOD_CNT,
204                                         .max = MAX_INT_MOD_CNT} }
205                 };
206                 int val;
207                 if (num_int_mod_timer > bd) {
208                         val = int_mod_timer[bd];
209                         atl1_validate_option(&val, &opt, pdev);
210                         adapter->imt = (u16) val;
211                 } else
212                         adapter->imt = (u16) (opt.def);
213         }
214 }
215
216 /*
217  * atl1_pci_tbl - PCI Device ID Table
218  */
219 static const struct pci_device_id atl1_pci_tbl[] = {
220         {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
221         /* required last entry */
222         {0,}
223 };
224 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
225
226 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
227         NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
228
229 static int debug = -1;
230 module_param(debug, int, 0);
231 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
232
233 /*
234  * Reset the transmit and receive units; mask and clear all interrupts.
235  * hw - Struct containing variables accessed by shared code
236  * return : 0  or  idle status (if error)
237  */
238 static s32 atl1_reset_hw(struct atl1_hw *hw)
239 {
240         struct pci_dev *pdev = hw->back->pdev;
241         struct atl1_adapter *adapter = hw->back;
242         u32 icr;
243         int i;
244
245         /*
246          * Clear Interrupt mask to stop board from generating
247          * interrupts & Clear any pending interrupt events
248          */
249         /*
250          * atlx_irq_disable(adapter);
251          * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
252          */
253
254         /*
255          * Issue Soft Reset to the MAC.  This will reset the chip's
256          * transmit, receive, DMA.  It will not effect
257          * the current PCI configuration.  The global reset bit is self-
258          * clearing, and should clear within a microsecond.
259          */
260         iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
261         ioread32(hw->hw_addr + REG_MASTER_CTRL);
262
263         iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
264         ioread16(hw->hw_addr + REG_PHY_ENABLE);
265
266         /* delay about 1ms */
267         msleep(1);
268
269         /* Wait at least 10ms for All module to be Idle */
270         for (i = 0; i < 10; i++) {
271                 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
272                 if (!icr)
273                         break;
274                 /* delay 1 ms */
275                 msleep(1);
276                 /* FIXME: still the right way to do this? */
277                 cpu_relax();
278         }
279
280         if (icr) {
281                 if (netif_msg_hw(adapter))
282                         dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
283                 return icr;
284         }
285
286         return 0;
287 }
288
289 /* function about EEPROM
290  *
291  * check_eeprom_exist
292  * return 0 if eeprom exist
293  */
294 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
295 {
296         u32 value;
297         value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
298         if (value & SPI_FLASH_CTRL_EN_VPD) {
299                 value &= ~SPI_FLASH_CTRL_EN_VPD;
300                 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
301         }
302
303         value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
304         return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
305 }
306
307 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
308 {
309         int i;
310         u32 control;
311
312         if (offset & 3)
313                 /* address do not align */
314                 return false;
315
316         iowrite32(0, hw->hw_addr + REG_VPD_DATA);
317         control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
318         iowrite32(control, hw->hw_addr + REG_VPD_CAP);
319         ioread32(hw->hw_addr + REG_VPD_CAP);
320
321         for (i = 0; i < 10; i++) {
322                 msleep(2);
323                 control = ioread32(hw->hw_addr + REG_VPD_CAP);
324                 if (control & VPD_CAP_VPD_FLAG)
325                         break;
326         }
327         if (control & VPD_CAP_VPD_FLAG) {
328                 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
329                 return true;
330         }
331         /* timeout */
332         return false;
333 }
334
335 /*
336  * Reads the value from a PHY register
337  * hw - Struct containing variables accessed by shared code
338  * reg_addr - address of the PHY register to read
339  */
340 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
341 {
342         u32 val;
343         int i;
344
345         val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
346                 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
347                 MDIO_CLK_SEL_SHIFT;
348         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
349         ioread32(hw->hw_addr + REG_MDIO_CTRL);
350
351         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
352                 udelay(2);
353                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
354                 if (!(val & (MDIO_START | MDIO_BUSY)))
355                         break;
356         }
357         if (!(val & (MDIO_START | MDIO_BUSY))) {
358                 *phy_data = (u16) val;
359                 return 0;
360         }
361         return ATLX_ERR_PHY;
362 }
363
364 #define CUSTOM_SPI_CS_SETUP     2
365 #define CUSTOM_SPI_CLK_HI       2
366 #define CUSTOM_SPI_CLK_LO       2
367 #define CUSTOM_SPI_CS_HOLD      2
368 #define CUSTOM_SPI_CS_HI        3
369
370 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
371 {
372         int i;
373         u32 value;
374
375         iowrite32(0, hw->hw_addr + REG_SPI_DATA);
376         iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
377
378         value = SPI_FLASH_CTRL_WAIT_READY |
379             (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
380             SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
381                                              SPI_FLASH_CTRL_CLK_HI_MASK) <<
382             SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
383                                            SPI_FLASH_CTRL_CLK_LO_MASK) <<
384             SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
385                                            SPI_FLASH_CTRL_CS_HOLD_MASK) <<
386             SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
387                                             SPI_FLASH_CTRL_CS_HI_MASK) <<
388             SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
389             SPI_FLASH_CTRL_INS_SHIFT;
390
391         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
392
393         value |= SPI_FLASH_CTRL_START;
394         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
395         ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
396
397         for (i = 0; i < 10; i++) {
398                 msleep(1);
399                 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
400                 if (!(value & SPI_FLASH_CTRL_START))
401                         break;
402         }
403
404         if (value & SPI_FLASH_CTRL_START)
405                 return false;
406
407         *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
408
409         return true;
410 }
411
412 /*
413  * get_permanent_address
414  * return 0 if get valid mac address,
415  */
416 static int atl1_get_permanent_address(struct atl1_hw *hw)
417 {
418         u32 addr[2];
419         u32 i, control;
420         u16 reg;
421         u8 eth_addr[ETH_ALEN];
422         bool key_valid;
423
424         if (is_valid_ether_addr(hw->perm_mac_addr))
425                 return 0;
426
427         /* init */
428         addr[0] = addr[1] = 0;
429
430         if (!atl1_check_eeprom_exist(hw)) {
431                 reg = 0;
432                 key_valid = false;
433                 /* Read out all EEPROM content */
434                 i = 0;
435                 while (1) {
436                         if (atl1_read_eeprom(hw, i + 0x100, &control)) {
437                                 if (key_valid) {
438                                         if (reg == REG_MAC_STA_ADDR)
439                                                 addr[0] = control;
440                                         else if (reg == (REG_MAC_STA_ADDR + 4))
441                                                 addr[1] = control;
442                                         key_valid = false;
443                                 } else if ((control & 0xff) == 0x5A) {
444                                         key_valid = true;
445                                         reg = (u16) (control >> 16);
446                                 } else
447                                         break;
448                         } else
449                                 /* read error */
450                                 break;
451                         i += 4;
452                 }
453
454                 *(u32 *) &eth_addr[2] = swab32(addr[0]);
455                 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
456                 if (is_valid_ether_addr(eth_addr)) {
457                         memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
458                         return 0;
459                 }
460         }
461
462         /* see if SPI FLAGS exist ? */
463         addr[0] = addr[1] = 0;
464         reg = 0;
465         key_valid = false;
466         i = 0;
467         while (1) {
468                 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
469                         if (key_valid) {
470                                 if (reg == REG_MAC_STA_ADDR)
471                                         addr[0] = control;
472                                 else if (reg == (REG_MAC_STA_ADDR + 4))
473                                         addr[1] = control;
474                                 key_valid = false;
475                         } else if ((control & 0xff) == 0x5A) {
476                                 key_valid = true;
477                                 reg = (u16) (control >> 16);
478                         } else
479                                 /* data end */
480                                 break;
481                 } else
482                         /* read error */
483                         break;
484                 i += 4;
485         }
486
487         *(u32 *) &eth_addr[2] = swab32(addr[0]);
488         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
489         if (is_valid_ether_addr(eth_addr)) {
490                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
491                 return 0;
492         }
493
494         /*
495          * On some motherboards, the MAC address is written by the
496          * BIOS directly to the MAC register during POST, and is
497          * not stored in eeprom.  If all else thus far has failed
498          * to fetch the permanent MAC address, try reading it directly.
499          */
500         addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
501         addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
502         *(u32 *) &eth_addr[2] = swab32(addr[0]);
503         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
504         if (is_valid_ether_addr(eth_addr)) {
505                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
506                 return 0;
507         }
508
509         return 1;
510 }
511
512 /*
513  * Reads the adapter's MAC address from the EEPROM
514  * hw - Struct containing variables accessed by shared code
515  */
516 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
517 {
518         s32 ret = 0;
519         u16 i;
520
521         if (atl1_get_permanent_address(hw)) {
522                 eth_random_addr(hw->perm_mac_addr);
523                 ret = 1;
524         }
525
526         for (i = 0; i < ETH_ALEN; i++)
527                 hw->mac_addr[i] = hw->perm_mac_addr[i];
528         return ret;
529 }
530
531 /*
532  * Hashes an address to determine its location in the multicast table
533  * hw - Struct containing variables accessed by shared code
534  * mc_addr - the multicast address to hash
535  *
536  * atl1_hash_mc_addr
537  *  purpose
538  *      set hash value for a multicast address
539  *      hash calcu processing :
540  *          1. calcu 32bit CRC for multicast address
541  *          2. reverse crc with MSB to LSB
542  */
543 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
544 {
545         u32 crc32, value = 0;
546         int i;
547
548         crc32 = ether_crc_le(6, mc_addr);
549         for (i = 0; i < 32; i++)
550                 value |= (((crc32 >> i) & 1) << (31 - i));
551
552         return value;
553 }
554
555 /*
556  * Sets the bit in the multicast table corresponding to the hash value.
557  * hw - Struct containing variables accessed by shared code
558  * hash_value - Multicast address hash value
559  */
560 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
561 {
562         u32 hash_bit, hash_reg;
563         u32 mta;
564
565         /*
566          * The HASH Table  is a register array of 2 32-bit registers.
567          * It is treated like an array of 64 bits.  We want to set
568          * bit BitArray[hash_value]. So we figure out what register
569          * the bit is in, read it, OR in the new bit, then write
570          * back the new value.  The register is determined by the
571          * upper 7 bits of the hash value and the bit within that
572          * register are determined by the lower 5 bits of the value.
573          */
574         hash_reg = (hash_value >> 31) & 0x1;
575         hash_bit = (hash_value >> 26) & 0x1F;
576         mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
577         mta |= (1 << hash_bit);
578         iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
579 }
580
581 /*
582  * Writes a value to a PHY register
583  * hw - Struct containing variables accessed by shared code
584  * reg_addr - address of the PHY register to write
585  * data - data to write to the PHY
586  */
587 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
588 {
589         int i;
590         u32 val;
591
592         val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
593             (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
594             MDIO_SUP_PREAMBLE |
595             MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
596         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
597         ioread32(hw->hw_addr + REG_MDIO_CTRL);
598
599         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
600                 udelay(2);
601                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
602                 if (!(val & (MDIO_START | MDIO_BUSY)))
603                         break;
604         }
605
606         if (!(val & (MDIO_START | MDIO_BUSY)))
607                 return 0;
608
609         return ATLX_ERR_PHY;
610 }
611
612 /*
613  * Make L001's PHY out of Power Saving State (bug)
614  * hw - Struct containing variables accessed by shared code
615  * when power on, L001's PHY always on Power saving State
616  * (Gigabit Link forbidden)
617  */
618 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
619 {
620         s32 ret;
621         ret = atl1_write_phy_reg(hw, 29, 0x0029);
622         if (ret)
623                 return ret;
624         return atl1_write_phy_reg(hw, 30, 0);
625 }
626
627 /*
628  * Resets the PHY and make all config validate
629  * hw - Struct containing variables accessed by shared code
630  *
631  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
632  */
633 static s32 atl1_phy_reset(struct atl1_hw *hw)
634 {
635         struct pci_dev *pdev = hw->back->pdev;
636         struct atl1_adapter *adapter = hw->back;
637         s32 ret_val;
638         u16 phy_data;
639
640         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
641             hw->media_type == MEDIA_TYPE_1000M_FULL)
642                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
643         else {
644                 switch (hw->media_type) {
645                 case MEDIA_TYPE_100M_FULL:
646                         phy_data =
647                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
648                             MII_CR_RESET;
649                         break;
650                 case MEDIA_TYPE_100M_HALF:
651                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
652                         break;
653                 case MEDIA_TYPE_10M_FULL:
654                         phy_data =
655                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
656                         break;
657                 default:
658                         /* MEDIA_TYPE_10M_HALF: */
659                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
660                         break;
661                 }
662         }
663
664         ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
665         if (ret_val) {
666                 u32 val;
667                 int i;
668                 /* pcie serdes link may be down! */
669                 if (netif_msg_hw(adapter))
670                         dev_dbg(&pdev->dev, "pcie phy link down\n");
671
672                 for (i = 0; i < 25; i++) {
673                         msleep(1);
674                         val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
675                         if (!(val & (MDIO_START | MDIO_BUSY)))
676                                 break;
677                 }
678
679                 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
680                         if (netif_msg_hw(adapter))
681                                 dev_warn(&pdev->dev,
682                                         "pcie link down at least 25ms\n");
683                         return ret_val;
684                 }
685         }
686         return 0;
687 }
688
689 /*
690  * Configures PHY autoneg and flow control advertisement settings
691  * hw - Struct containing variables accessed by shared code
692  */
693 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
694 {
695         s32 ret_val;
696         s16 mii_autoneg_adv_reg;
697         s16 mii_1000t_ctrl_reg;
698
699         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
700         mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
701
702         /* Read the MII 1000Base-T Control Register (Address 9). */
703         mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
704
705         /*
706          * First we clear all the 10/100 mb speed bits in the Auto-Neg
707          * Advertisement Register (Address 4) and the 1000 mb speed bits in
708          * the  1000Base-T Control Register (Address 9).
709          */
710         mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
711         mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
712
713         /*
714          * Need to parse media_type  and set up
715          * the appropriate PHY registers.
716          */
717         switch (hw->media_type) {
718         case MEDIA_TYPE_AUTO_SENSOR:
719                 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
720                                         MII_AR_10T_FD_CAPS |
721                                         MII_AR_100TX_HD_CAPS |
722                                         MII_AR_100TX_FD_CAPS);
723                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
724                 break;
725
726         case MEDIA_TYPE_1000M_FULL:
727                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
728                 break;
729
730         case MEDIA_TYPE_100M_FULL:
731                 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
732                 break;
733
734         case MEDIA_TYPE_100M_HALF:
735                 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
736                 break;
737
738         case MEDIA_TYPE_10M_FULL:
739                 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
740                 break;
741
742         default:
743                 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
744                 break;
745         }
746
747         /* flow control fixed to enable all */
748         mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
749
750         hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
751         hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
752
753         ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
754         if (ret_val)
755                 return ret_val;
756
757         ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
758         if (ret_val)
759                 return ret_val;
760
761         return 0;
762 }
763
764 /*
765  * Configures link settings.
766  * hw - Struct containing variables accessed by shared code
767  * Assumes the hardware has previously been reset and the
768  * transmitter and receiver are not enabled.
769  */
770 static s32 atl1_setup_link(struct atl1_hw *hw)
771 {
772         struct pci_dev *pdev = hw->back->pdev;
773         struct atl1_adapter *adapter = hw->back;
774         s32 ret_val;
775
776         /*
777          * Options:
778          *  PHY will advertise value(s) parsed from
779          *  autoneg_advertised and fc
780          *  no matter what autoneg is , We will not wait link result.
781          */
782         ret_val = atl1_phy_setup_autoneg_adv(hw);
783         if (ret_val) {
784                 if (netif_msg_link(adapter))
785                         dev_dbg(&pdev->dev,
786                                 "error setting up autonegotiation\n");
787                 return ret_val;
788         }
789         /* SW.Reset , En-Auto-Neg if needed */
790         ret_val = atl1_phy_reset(hw);
791         if (ret_val) {
792                 if (netif_msg_link(adapter))
793                         dev_dbg(&pdev->dev, "error resetting phy\n");
794                 return ret_val;
795         }
796         hw->phy_configured = true;
797         return ret_val;
798 }
799
800 static void atl1_init_flash_opcode(struct atl1_hw *hw)
801 {
802         if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
803                 /* Atmel */
804                 hw->flash_vendor = 0;
805
806         /* Init OP table */
807         iowrite8(flash_table[hw->flash_vendor].cmd_program,
808                 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
809         iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
810                 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
811         iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
812                 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
813         iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
814                 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
815         iowrite8(flash_table[hw->flash_vendor].cmd_wren,
816                 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
817         iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
818                 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
819         iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
820                 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
821         iowrite8(flash_table[hw->flash_vendor].cmd_read,
822                 hw->hw_addr + REG_SPI_FLASH_OP_READ);
823 }
824
825 /*
826  * Performs basic configuration of the adapter.
827  * hw - Struct containing variables accessed by shared code
828  * Assumes that the controller has previously been reset and is in a
829  * post-reset uninitialized state. Initializes multicast table,
830  * and  Calls routines to setup link
831  * Leaves the transmit and receive units disabled and uninitialized.
832  */
833 static s32 atl1_init_hw(struct atl1_hw *hw)
834 {
835         u32 ret_val = 0;
836
837         /* Zero out the Multicast HASH table */
838         iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
839         /* clear the old settings from the multicast hash table */
840         iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
841
842         atl1_init_flash_opcode(hw);
843
844         if (!hw->phy_configured) {
845                 /* enable GPHY LinkChange Interrupt */
846                 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
847                 if (ret_val)
848                         return ret_val;
849                 /* make PHY out of power-saving state */
850                 ret_val = atl1_phy_leave_power_saving(hw);
851                 if (ret_val)
852                         return ret_val;
853                 /* Call a subroutine to configure the link */
854                 ret_val = atl1_setup_link(hw);
855         }
856         return ret_val;
857 }
858
859 /*
860  * Detects the current speed and duplex settings of the hardware.
861  * hw - Struct containing variables accessed by shared code
862  * speed - Speed of the connection
863  * duplex - Duplex setting of the connection
864  */
865 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
866 {
867         struct pci_dev *pdev = hw->back->pdev;
868         struct atl1_adapter *adapter = hw->back;
869         s32 ret_val;
870         u16 phy_data;
871
872         /* ; --- Read   PHY Specific Status Register (17) */
873         ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
874         if (ret_val)
875                 return ret_val;
876
877         if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
878                 return ATLX_ERR_PHY_RES;
879
880         switch (phy_data & MII_ATLX_PSSR_SPEED) {
881         case MII_ATLX_PSSR_1000MBS:
882                 *speed = SPEED_1000;
883                 break;
884         case MII_ATLX_PSSR_100MBS:
885                 *speed = SPEED_100;
886                 break;
887         case MII_ATLX_PSSR_10MBS:
888                 *speed = SPEED_10;
889                 break;
890         default:
891                 if (netif_msg_hw(adapter))
892                         dev_dbg(&pdev->dev, "error getting speed\n");
893                 return ATLX_ERR_PHY_SPEED;
894         }
895         if (phy_data & MII_ATLX_PSSR_DPLX)
896                 *duplex = FULL_DUPLEX;
897         else
898                 *duplex = HALF_DUPLEX;
899
900         return 0;
901 }
902
903 static void atl1_set_mac_addr(struct atl1_hw *hw)
904 {
905         u32 value;
906         /*
907          * 00-0B-6A-F6-00-DC
908          * 0:  6AF600DC   1: 000B
909          * low dword
910          */
911         value = (((u32) hw->mac_addr[2]) << 24) |
912             (((u32) hw->mac_addr[3]) << 16) |
913             (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
914         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
915         /* high dword */
916         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
917         iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
918 }
919
920 /**
921  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
922  * @adapter: board private structure to initialize
923  *
924  * atl1_sw_init initializes the Adapter private data structure.
925  * Fields are initialized based on PCI device information and
926  * OS network device settings (MTU size).
927  */
928 static int atl1_sw_init(struct atl1_adapter *adapter)
929 {
930         struct atl1_hw *hw = &adapter->hw;
931         struct net_device *netdev = adapter->netdev;
932
933         hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
934         hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
935
936         adapter->wol = 0;
937         device_set_wakeup_enable(&adapter->pdev->dev, false);
938         adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
939         adapter->ict = 50000;           /* 100ms */
940         adapter->link_speed = SPEED_0;  /* hardware init */
941         adapter->link_duplex = FULL_DUPLEX;
942
943         hw->phy_configured = false;
944         hw->preamble_len = 7;
945         hw->ipgt = 0x60;
946         hw->min_ifg = 0x50;
947         hw->ipgr1 = 0x40;
948         hw->ipgr2 = 0x60;
949         hw->max_retry = 0xf;
950         hw->lcol = 0x37;
951         hw->jam_ipg = 7;
952         hw->rfd_burst = 8;
953         hw->rrd_burst = 8;
954         hw->rfd_fetch_gap = 1;
955         hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
956         hw->rx_jumbo_lkah = 1;
957         hw->rrd_ret_timer = 16;
958         hw->tpd_burst = 4;
959         hw->tpd_fetch_th = 16;
960         hw->txf_burst = 0x100;
961         hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
962         hw->tpd_fetch_gap = 1;
963         hw->rcb_value = atl1_rcb_64;
964         hw->dma_ord = atl1_dma_ord_enh;
965         hw->dmar_block = atl1_dma_req_256;
966         hw->dmaw_block = atl1_dma_req_256;
967         hw->cmb_rrd = 4;
968         hw->cmb_tpd = 4;
969         hw->cmb_rx_timer = 1;   /* about 2us */
970         hw->cmb_tx_timer = 1;   /* about 2us */
971         hw->smb_timer = 100000; /* about 200ms */
972
973         spin_lock_init(&adapter->lock);
974         spin_lock_init(&adapter->mb_lock);
975
976         return 0;
977 }
978
979 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
980 {
981         struct atl1_adapter *adapter = netdev_priv(netdev);
982         u16 result;
983
984         atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
985
986         return result;
987 }
988
989 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
990         int val)
991 {
992         struct atl1_adapter *adapter = netdev_priv(netdev);
993
994         atl1_write_phy_reg(&adapter->hw, reg_num, val);
995 }
996
997 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
998 {
999         struct atl1_adapter *adapter = netdev_priv(netdev);
1000         unsigned long flags;
1001         int retval;
1002
1003         if (!netif_running(netdev))
1004                 return -EINVAL;
1005
1006         spin_lock_irqsave(&adapter->lock, flags);
1007         retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1008         spin_unlock_irqrestore(&adapter->lock, flags);
1009
1010         return retval;
1011 }
1012
1013 /**
1014  * atl1_setup_ring_resources - allocate Tx / RX descriptor resources
1015  * @adapter: board private structure
1016  *
1017  * Return 0 on success, negative on failure
1018  */
1019 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1020 {
1021         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1022         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1023         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1024         struct atl1_ring_header *ring_header = &adapter->ring_header;
1025         struct pci_dev *pdev = adapter->pdev;
1026         int size;
1027         u8 offset = 0;
1028
1029         size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1030         tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1031         if (unlikely(!tpd_ring->buffer_info)) {
1032                 if (netif_msg_drv(adapter))
1033                         dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1034                                 size);
1035                 goto err_nomem;
1036         }
1037         rfd_ring->buffer_info =
1038                 (tpd_ring->buffer_info + tpd_ring->count);
1039
1040         /*
1041          * real ring DMA buffer
1042          * each ring/block may need up to 8 bytes for alignment, hence the
1043          * additional 40 bytes tacked onto the end.
1044          */
1045         ring_header->size =
1046                 sizeof(struct tx_packet_desc) * tpd_ring->count
1047                 + sizeof(struct rx_free_desc) * rfd_ring->count
1048                 + sizeof(struct rx_return_desc) * rrd_ring->count
1049                 + sizeof(struct coals_msg_block)
1050                 + sizeof(struct stats_msg_block)
1051                 + 40;
1052
1053         ring_header->desc = dma_alloc_coherent(&pdev->dev, ring_header->size,
1054                                                &ring_header->dma, GFP_KERNEL);
1055         if (unlikely(!ring_header->desc)) {
1056                 if (netif_msg_drv(adapter))
1057                         dev_err(&pdev->dev, "dma_alloc_coherent failed\n");
1058                 goto err_nomem;
1059         }
1060
1061         /* init TPD ring */
1062         tpd_ring->dma = ring_header->dma;
1063         offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1064         tpd_ring->dma += offset;
1065         tpd_ring->desc = (u8 *) ring_header->desc + offset;
1066         tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1067
1068         /* init RFD ring */
1069         rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1070         offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1071         rfd_ring->dma += offset;
1072         rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1073         rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1074
1075
1076         /* init RRD ring */
1077         rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1078         offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1079         rrd_ring->dma += offset;
1080         rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1081         rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1082
1083
1084         /* init CMB */
1085         adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1086         offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1087         adapter->cmb.dma += offset;
1088         adapter->cmb.cmb = (struct coals_msg_block *)
1089                 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1090
1091         /* init SMB */
1092         adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1093         offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1094         adapter->smb.dma += offset;
1095         adapter->smb.smb = (struct stats_msg_block *)
1096                 ((u8 *) adapter->cmb.cmb +
1097                 (sizeof(struct coals_msg_block) + offset));
1098
1099         return 0;
1100
1101 err_nomem:
1102         kfree(tpd_ring->buffer_info);
1103         return -ENOMEM;
1104 }
1105
1106 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1107 {
1108         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1109         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1110         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1111
1112         atomic_set(&tpd_ring->next_to_use, 0);
1113         atomic_set(&tpd_ring->next_to_clean, 0);
1114
1115         rfd_ring->next_to_clean = 0;
1116         atomic_set(&rfd_ring->next_to_use, 0);
1117
1118         rrd_ring->next_to_use = 0;
1119         atomic_set(&rrd_ring->next_to_clean, 0);
1120 }
1121
1122 /**
1123  * atl1_clean_rx_ring - Free RFD Buffers
1124  * @adapter: board private structure
1125  */
1126 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1127 {
1128         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1129         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1130         struct atl1_buffer *buffer_info;
1131         struct pci_dev *pdev = adapter->pdev;
1132         unsigned long size;
1133         unsigned int i;
1134
1135         /* Free all the Rx ring sk_buffs */
1136         for (i = 0; i < rfd_ring->count; i++) {
1137                 buffer_info = &rfd_ring->buffer_info[i];
1138                 if (buffer_info->dma) {
1139                         dma_unmap_page(&pdev->dev, buffer_info->dma,
1140                                        buffer_info->length, DMA_FROM_DEVICE);
1141                         buffer_info->dma = 0;
1142                 }
1143                 if (buffer_info->skb) {
1144                         dev_kfree_skb(buffer_info->skb);
1145                         buffer_info->skb = NULL;
1146                 }
1147         }
1148
1149         size = sizeof(struct atl1_buffer) * rfd_ring->count;
1150         memset(rfd_ring->buffer_info, 0, size);
1151
1152         /* Zero out the descriptor ring */
1153         memset(rfd_ring->desc, 0, rfd_ring->size);
1154
1155         rfd_ring->next_to_clean = 0;
1156         atomic_set(&rfd_ring->next_to_use, 0);
1157
1158         rrd_ring->next_to_use = 0;
1159         atomic_set(&rrd_ring->next_to_clean, 0);
1160 }
1161
1162 /**
1163  * atl1_clean_tx_ring - Free Tx Buffers
1164  * @adapter: board private structure
1165  */
1166 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1167 {
1168         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1169         struct atl1_buffer *buffer_info;
1170         struct pci_dev *pdev = adapter->pdev;
1171         unsigned long size;
1172         unsigned int i;
1173
1174         /* Free all the Tx ring sk_buffs */
1175         for (i = 0; i < tpd_ring->count; i++) {
1176                 buffer_info = &tpd_ring->buffer_info[i];
1177                 if (buffer_info->dma) {
1178                         dma_unmap_page(&pdev->dev, buffer_info->dma,
1179                                        buffer_info->length, DMA_TO_DEVICE);
1180                         buffer_info->dma = 0;
1181                 }
1182         }
1183
1184         for (i = 0; i < tpd_ring->count; i++) {
1185                 buffer_info = &tpd_ring->buffer_info[i];
1186                 if (buffer_info->skb) {
1187                         dev_kfree_skb_any(buffer_info->skb);
1188                         buffer_info->skb = NULL;
1189                 }
1190         }
1191
1192         size = sizeof(struct atl1_buffer) * tpd_ring->count;
1193         memset(tpd_ring->buffer_info, 0, size);
1194
1195         /* Zero out the descriptor ring */
1196         memset(tpd_ring->desc, 0, tpd_ring->size);
1197
1198         atomic_set(&tpd_ring->next_to_use, 0);
1199         atomic_set(&tpd_ring->next_to_clean, 0);
1200 }
1201
1202 /**
1203  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1204  * @adapter: board private structure
1205  *
1206  * Free all transmit software resources
1207  */
1208 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1209 {
1210         struct pci_dev *pdev = adapter->pdev;
1211         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1212         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1213         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1214         struct atl1_ring_header *ring_header = &adapter->ring_header;
1215
1216         atl1_clean_tx_ring(adapter);
1217         atl1_clean_rx_ring(adapter);
1218
1219         kfree(tpd_ring->buffer_info);
1220         dma_free_coherent(&pdev->dev, ring_header->size, ring_header->desc,
1221                           ring_header->dma);
1222
1223         tpd_ring->buffer_info = NULL;
1224         tpd_ring->desc = NULL;
1225         tpd_ring->dma = 0;
1226
1227         rfd_ring->buffer_info = NULL;
1228         rfd_ring->desc = NULL;
1229         rfd_ring->dma = 0;
1230
1231         rrd_ring->desc = NULL;
1232         rrd_ring->dma = 0;
1233
1234         adapter->cmb.dma = 0;
1235         adapter->cmb.cmb = NULL;
1236
1237         adapter->smb.dma = 0;
1238         adapter->smb.smb = NULL;
1239 }
1240
1241 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1242 {
1243         u32 value;
1244         struct atl1_hw *hw = &adapter->hw;
1245         struct net_device *netdev = adapter->netdev;
1246         /* Config MAC CTRL Register */
1247         value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1248         /* duplex */
1249         if (FULL_DUPLEX == adapter->link_duplex)
1250                 value |= MAC_CTRL_DUPLX;
1251         /* speed */
1252         value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1253                          MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1254                   MAC_CTRL_SPEED_SHIFT);
1255         /* flow control */
1256         value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1257         /* PAD & CRC */
1258         value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1259         /* preamble length */
1260         value |= (((u32) adapter->hw.preamble_len
1261                    & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1262         /* vlan */
1263         __atlx_vlan_mode(netdev->features, &value);
1264         /* rx checksum
1265            if (adapter->rx_csum)
1266            value |= MAC_CTRL_RX_CHKSUM_EN;
1267          */
1268         /* filter mode */
1269         value |= MAC_CTRL_BC_EN;
1270         if (netdev->flags & IFF_PROMISC)
1271                 value |= MAC_CTRL_PROMIS_EN;
1272         else if (netdev->flags & IFF_ALLMULTI)
1273                 value |= MAC_CTRL_MC_ALL_EN;
1274         /* value |= MAC_CTRL_LOOPBACK; */
1275         iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1276 }
1277
1278 static u32 atl1_check_link(struct atl1_adapter *adapter)
1279 {
1280         struct atl1_hw *hw = &adapter->hw;
1281         struct net_device *netdev = adapter->netdev;
1282         u32 ret_val;
1283         u16 speed, duplex, phy_data;
1284         int reconfig = 0;
1285
1286         /* MII_BMSR must read twice */
1287         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1288         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1289         if (!(phy_data & BMSR_LSTATUS)) {
1290                 /* link down */
1291                 if (netif_carrier_ok(netdev)) {
1292                         /* old link state: Up */
1293                         if (netif_msg_link(adapter))
1294                                 dev_info(&adapter->pdev->dev, "link is down\n");
1295                         adapter->link_speed = SPEED_0;
1296                         netif_carrier_off(netdev);
1297                 }
1298                 return 0;
1299         }
1300
1301         /* Link Up */
1302         ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1303         if (ret_val)
1304                 return ret_val;
1305
1306         switch (hw->media_type) {
1307         case MEDIA_TYPE_1000M_FULL:
1308                 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1309                         reconfig = 1;
1310                 break;
1311         case MEDIA_TYPE_100M_FULL:
1312                 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1313                         reconfig = 1;
1314                 break;
1315         case MEDIA_TYPE_100M_HALF:
1316                 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1317                         reconfig = 1;
1318                 break;
1319         case MEDIA_TYPE_10M_FULL:
1320                 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1321                         reconfig = 1;
1322                 break;
1323         case MEDIA_TYPE_10M_HALF:
1324                 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1325                         reconfig = 1;
1326                 break;
1327         }
1328
1329         /* link result is our setting */
1330         if (!reconfig) {
1331                 if (adapter->link_speed != speed ||
1332                     adapter->link_duplex != duplex) {
1333                         adapter->link_speed = speed;
1334                         adapter->link_duplex = duplex;
1335                         atl1_setup_mac_ctrl(adapter);
1336                         if (netif_msg_link(adapter))
1337                                 dev_info(&adapter->pdev->dev,
1338                                         "%s link is up %d Mbps %s\n",
1339                                         netdev->name, adapter->link_speed,
1340                                         adapter->link_duplex == FULL_DUPLEX ?
1341                                         "full duplex" : "half duplex");
1342                 }
1343                 if (!netif_carrier_ok(netdev)) {
1344                         /* Link down -> Up */
1345                         netif_carrier_on(netdev);
1346                 }
1347                 return 0;
1348         }
1349
1350         /* change original link status */
1351         if (netif_carrier_ok(netdev)) {
1352                 adapter->link_speed = SPEED_0;
1353                 netif_carrier_off(netdev);
1354                 netif_stop_queue(netdev);
1355         }
1356
1357         if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1358             hw->media_type != MEDIA_TYPE_1000M_FULL) {
1359                 switch (hw->media_type) {
1360                 case MEDIA_TYPE_100M_FULL:
1361                         phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1362                                    MII_CR_RESET;
1363                         break;
1364                 case MEDIA_TYPE_100M_HALF:
1365                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1366                         break;
1367                 case MEDIA_TYPE_10M_FULL:
1368                         phy_data =
1369                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1370                         break;
1371                 default:
1372                         /* MEDIA_TYPE_10M_HALF: */
1373                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1374                         break;
1375                 }
1376                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1377                 return 0;
1378         }
1379
1380         /* auto-neg, insert timer to re-config phy */
1381         if (!adapter->phy_timer_pending) {
1382                 adapter->phy_timer_pending = true;
1383                 mod_timer(&adapter->phy_config_timer,
1384                           round_jiffies(jiffies + 3 * HZ));
1385         }
1386
1387         return 0;
1388 }
1389
1390 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1391 {
1392         u32 hi, lo, value;
1393
1394         /* RFD Flow Control */
1395         value = adapter->rfd_ring.count;
1396         hi = value / 16;
1397         if (hi < 2)
1398                 hi = 2;
1399         lo = value * 7 / 8;
1400
1401         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1402                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1403         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1404
1405         /* RRD Flow Control */
1406         value = adapter->rrd_ring.count;
1407         lo = value / 16;
1408         hi = value * 7 / 8;
1409         if (lo < 2)
1410                 lo = 2;
1411         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1412                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1413         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1414 }
1415
1416 static void set_flow_ctrl_new(struct atl1_hw *hw)
1417 {
1418         u32 hi, lo, value;
1419
1420         /* RXF Flow Control */
1421         value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1422         lo = value / 16;
1423         if (lo < 192)
1424                 lo = 192;
1425         hi = value * 7 / 8;
1426         if (hi < lo)
1427                 hi = lo + 16;
1428         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1429                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1430         iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1431
1432         /* RRD Flow Control */
1433         value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1434         lo = value / 8;
1435         hi = value * 7 / 8;
1436         if (lo < 2)
1437                 lo = 2;
1438         if (hi < lo)
1439                 hi = lo + 3;
1440         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1441                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1442         iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1443 }
1444
1445 /**
1446  * atl1_configure - Configure Transmit&Receive Unit after Reset
1447  * @adapter: board private structure
1448  *
1449  * Configure the Tx /Rx unit of the MAC after a reset.
1450  */
1451 static u32 atl1_configure(struct atl1_adapter *adapter)
1452 {
1453         struct atl1_hw *hw = &adapter->hw;
1454         u32 value;
1455
1456         /* clear interrupt status */
1457         iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1458
1459         /* set MAC Address */
1460         value = (((u32) hw->mac_addr[2]) << 24) |
1461                 (((u32) hw->mac_addr[3]) << 16) |
1462                 (((u32) hw->mac_addr[4]) << 8) |
1463                 (((u32) hw->mac_addr[5]));
1464         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1465         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1466         iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1467
1468         /* tx / rx ring */
1469
1470         /* HI base address */
1471         iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1472                 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1473         /* LO base address */
1474         iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1475                 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1476         iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1477                 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1478         iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1479                 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1480         iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1481                 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1482         iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1483                 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1484
1485         /* element count */
1486         value = adapter->rrd_ring.count;
1487         value <<= 16;
1488         value += adapter->rfd_ring.count;
1489         iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1490         iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1491                 REG_DESC_TPD_RING_SIZE);
1492
1493         /* Load Ptr */
1494         iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1495
1496         /* config Mailbox */
1497         value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1498                   & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1499                 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1500                 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1501                 ((atomic_read(&adapter->rfd_ring.next_to_use)
1502                 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1503         iowrite32(value, hw->hw_addr + REG_MAILBOX);
1504
1505         /* config IPG/IFG */
1506         value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1507                  << MAC_IPG_IFG_IPGT_SHIFT) |
1508                 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1509                 << MAC_IPG_IFG_MIFG_SHIFT) |
1510                 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1511                 << MAC_IPG_IFG_IPGR1_SHIFT) |
1512                 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1513                 << MAC_IPG_IFG_IPGR2_SHIFT);
1514         iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1515
1516         /* config  Half-Duplex Control */
1517         value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1518                 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1519                 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1520                 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1521                 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1522                 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1523                 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1524         iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1525
1526         /* set Interrupt Moderator Timer */
1527         iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1528         iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1529
1530         /* set Interrupt Clear Timer */
1531         iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1532
1533         /* set max frame size hw will accept */
1534         iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1535
1536         /* jumbo size & rrd retirement timer */
1537         value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1538                  << RXQ_JMBOSZ_TH_SHIFT) |
1539                 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1540                 << RXQ_JMBO_LKAH_SHIFT) |
1541                 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1542                 << RXQ_RRD_TIMER_SHIFT);
1543         iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1544
1545         /* Flow Control */
1546         switch (hw->dev_rev) {
1547         case 0x8001:
1548         case 0x9001:
1549         case 0x9002:
1550         case 0x9003:
1551                 set_flow_ctrl_old(adapter);
1552                 break;
1553         default:
1554                 set_flow_ctrl_new(hw);
1555                 break;
1556         }
1557
1558         /* config TXQ */
1559         value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1560                  << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1561                 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1562                 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1563                 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1564                 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1565                 TXQ_CTRL_EN;
1566         iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1567
1568         /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1569         value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1570                 << TX_JUMBO_TASK_TH_SHIFT) |
1571                 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1572                 << TX_TPD_MIN_IPG_SHIFT);
1573         iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1574
1575         /* config RXQ */
1576         value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1577                 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1578                 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1579                 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1580                 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1581                 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1582                 RXQ_CTRL_EN;
1583         iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1584
1585         /* config DMA Engine */
1586         value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1587                 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1588                 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1589                 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1590                 DMA_CTRL_DMAW_EN;
1591         value |= (u32) hw->dma_ord;
1592         if (atl1_rcb_128 == hw->rcb_value)
1593                 value |= DMA_CTRL_RCB_VALUE;
1594         iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1595
1596         /* config CMB / SMB */
1597         value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1598                 hw->cmb_tpd : adapter->tpd_ring.count;
1599         value <<= 16;
1600         value |= hw->cmb_rrd;
1601         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1602         value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1603         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1604         iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1605
1606         /* --- enable CMB / SMB */
1607         value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1608         iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1609
1610         value = ioread32(adapter->hw.hw_addr + REG_ISR);
1611         if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1612                 value = 1;      /* config failed */
1613         else
1614                 value = 0;
1615
1616         /* clear all interrupt status */
1617         iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1618         iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1619         return value;
1620 }
1621
1622 /*
1623  * atl1_pcie_patch - Patch for PCIE module
1624  */
1625 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1626 {
1627         u32 value;
1628
1629         /* much vendor magic here */
1630         value = 0x6500;
1631         iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1632         /* pcie flow control mode change */
1633         value = ioread32(adapter->hw.hw_addr + 0x1008);
1634         value |= 0x8000;
1635         iowrite32(value, adapter->hw.hw_addr + 0x1008);
1636 }
1637
1638 /*
1639  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1640  * on PCI Command register is disable.
1641  * The function enable this bit.
1642  * Brackett, 2006/03/15
1643  */
1644 static void atl1_via_workaround(struct atl1_adapter *adapter)
1645 {
1646         unsigned long value;
1647
1648         value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1649         if (value & PCI_COMMAND_INTX_DISABLE)
1650                 value &= ~PCI_COMMAND_INTX_DISABLE;
1651         iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1652 }
1653
1654 static void atl1_inc_smb(struct atl1_adapter *adapter)
1655 {
1656         struct net_device *netdev = adapter->netdev;
1657         struct stats_msg_block *smb = adapter->smb.smb;
1658
1659         u64 new_rx_errors = smb->rx_frag +
1660                             smb->rx_fcs_err +
1661                             smb->rx_len_err +
1662                             smb->rx_sz_ov +
1663                             smb->rx_rxf_ov +
1664                             smb->rx_rrd_ov +
1665                             smb->rx_align_err;
1666         u64 new_tx_errors = smb->tx_late_col +
1667                             smb->tx_abort_col +
1668                             smb->tx_underrun +
1669                             smb->tx_trunc;
1670
1671         /* Fill out the OS statistics structure */
1672         adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1673         adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1674         adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1675         adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1676         adapter->soft_stats.multicast += smb->rx_mcast;
1677         adapter->soft_stats.collisions += smb->tx_1_col +
1678                                           smb->tx_2_col +
1679                                           smb->tx_late_col +
1680                                           smb->tx_abort_col;
1681
1682         /* Rx Errors */
1683         adapter->soft_stats.rx_errors += new_rx_errors;
1684         adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1685         adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1686         adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1687         adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1688
1689         adapter->soft_stats.rx_pause += smb->rx_pause;
1690         adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1691         adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1692
1693         /* Tx Errors */
1694         adapter->soft_stats.tx_errors += new_tx_errors;
1695         adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1696         adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1697         adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1698
1699         adapter->soft_stats.excecol += smb->tx_abort_col;
1700         adapter->soft_stats.deffer += smb->tx_defer;
1701         adapter->soft_stats.scc += smb->tx_1_col;
1702         adapter->soft_stats.mcc += smb->tx_2_col;
1703         adapter->soft_stats.latecol += smb->tx_late_col;
1704         adapter->soft_stats.tx_underrun += smb->tx_underrun;
1705         adapter->soft_stats.tx_trunc += smb->tx_trunc;
1706         adapter->soft_stats.tx_pause += smb->tx_pause;
1707
1708         netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1709         netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1710         netdev->stats.multicast = adapter->soft_stats.multicast;
1711         netdev->stats.collisions = adapter->soft_stats.collisions;
1712         netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1713         netdev->stats.rx_length_errors =
1714                 adapter->soft_stats.rx_length_errors;
1715         netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1716         netdev->stats.rx_frame_errors =
1717                 adapter->soft_stats.rx_frame_errors;
1718         netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1719         netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1720         netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1721         netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1722         netdev->stats.tx_aborted_errors =
1723                 adapter->soft_stats.tx_aborted_errors;
1724         netdev->stats.tx_window_errors =
1725                 adapter->soft_stats.tx_window_errors;
1726         netdev->stats.tx_carrier_errors =
1727                 adapter->soft_stats.tx_carrier_errors;
1728
1729         netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1730         netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1731 }
1732
1733 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1734 {
1735         unsigned long flags;
1736         u32 tpd_next_to_use;
1737         u32 rfd_next_to_use;
1738         u32 rrd_next_to_clean;
1739         u32 value;
1740
1741         spin_lock_irqsave(&adapter->mb_lock, flags);
1742
1743         tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1744         rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1745         rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1746
1747         value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1748                 MB_RFD_PROD_INDX_SHIFT) |
1749                 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1750                 MB_RRD_CONS_INDX_SHIFT) |
1751                 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1752                 MB_TPD_PROD_INDX_SHIFT);
1753         iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1754
1755         spin_unlock_irqrestore(&adapter->mb_lock, flags);
1756 }
1757
1758 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1759         struct rx_return_desc *rrd, u16 offset)
1760 {
1761         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1762
1763         while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1764                 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1765                 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1766                         rfd_ring->next_to_clean = 0;
1767                 }
1768         }
1769 }
1770
1771 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1772         struct rx_return_desc *rrd)
1773 {
1774         u16 num_buf;
1775
1776         num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1777                 adapter->rx_buffer_len;
1778         if (rrd->num_buf == num_buf)
1779                 /* clean alloc flag for bad rrd */
1780                 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1781 }
1782
1783 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1784         struct rx_return_desc *rrd, struct sk_buff *skb)
1785 {
1786         struct pci_dev *pdev = adapter->pdev;
1787
1788         /*
1789          * The L1 hardware contains a bug that erroneously sets the
1790          * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1791          * fragmented IP packet is received, even though the packet
1792          * is perfectly valid and its checksum is correct. There's
1793          * no way to distinguish between one of these good packets
1794          * and a packet that actually contains a TCP/UDP checksum
1795          * error, so all we can do is allow it to be handed up to
1796          * the higher layers and let it be sorted out there.
1797          */
1798
1799         skb_checksum_none_assert(skb);
1800
1801         if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1802                 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1803                                         ERR_FLAG_CODE | ERR_FLAG_OV)) {
1804                         adapter->hw_csum_err++;
1805                         if (netif_msg_rx_err(adapter))
1806                                 dev_printk(KERN_DEBUG, &pdev->dev,
1807                                         "rx checksum error\n");
1808                         return;
1809                 }
1810         }
1811
1812         /* not IPv4 */
1813         if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1814                 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1815                 return;
1816
1817         /* IPv4 packet */
1818         if (likely(!(rrd->err_flg &
1819                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1820                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1821                 adapter->hw_csum_good++;
1822                 return;
1823         }
1824 }
1825
1826 /**
1827  * atl1_alloc_rx_buffers - Replace used receive buffers
1828  * @adapter: address of board private structure
1829  */
1830 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1831 {
1832         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1833         struct pci_dev *pdev = adapter->pdev;
1834         struct page *page;
1835         unsigned long offset;
1836         struct atl1_buffer *buffer_info, *next_info;
1837         struct sk_buff *skb;
1838         u16 num_alloc = 0;
1839         u16 rfd_next_to_use, next_next;
1840         struct rx_free_desc *rfd_desc;
1841
1842         next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1843         if (++next_next == rfd_ring->count)
1844                 next_next = 0;
1845         buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1846         next_info = &rfd_ring->buffer_info[next_next];
1847
1848         while (!buffer_info->alloced && !next_info->alloced) {
1849                 if (buffer_info->skb) {
1850                         buffer_info->alloced = 1;
1851                         goto next;
1852                 }
1853
1854                 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1855
1856                 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1857                                                 adapter->rx_buffer_len);
1858                 if (unlikely(!skb)) {
1859                         /* Better luck next round */
1860                         adapter->soft_stats.rx_dropped++;
1861                         break;
1862                 }
1863
1864                 buffer_info->alloced = 1;
1865                 buffer_info->skb = skb;
1866                 buffer_info->length = (u16) adapter->rx_buffer_len;
1867                 page = virt_to_page(skb->data);
1868                 offset = offset_in_page(skb->data);
1869                 buffer_info->dma = dma_map_page(&pdev->dev, page, offset,
1870                                                 adapter->rx_buffer_len,
1871                                                 DMA_FROM_DEVICE);
1872                 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1873                 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1874                 rfd_desc->coalese = 0;
1875
1876 next:
1877                 rfd_next_to_use = next_next;
1878                 if (unlikely(++next_next == rfd_ring->count))
1879                         next_next = 0;
1880
1881                 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1882                 next_info = &rfd_ring->buffer_info[next_next];
1883                 num_alloc++;
1884         }
1885
1886         if (num_alloc) {
1887                 /*
1888                  * Force memory writes to complete before letting h/w
1889                  * know there are new descriptors to fetch.  (Only
1890                  * applicable for weak-ordered memory model archs,
1891                  * such as IA-64).
1892                  */
1893                 wmb();
1894                 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1895         }
1896         return num_alloc;
1897 }
1898
1899 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1900 {
1901         int i, count;
1902         u16 length;
1903         u16 rrd_next_to_clean;
1904         u32 value;
1905         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1906         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1907         struct atl1_buffer *buffer_info;
1908         struct rx_return_desc *rrd;
1909         struct sk_buff *skb;
1910
1911         count = 0;
1912
1913         rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1914
1915         while (count < budget) {
1916                 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1917                 i = 1;
1918                 if (likely(rrd->xsz.valid)) {   /* packet valid */
1919 chk_rrd:
1920                         /* check rrd status */
1921                         if (likely(rrd->num_buf == 1))
1922                                 goto rrd_ok;
1923                         else if (netif_msg_rx_err(adapter)) {
1924                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1925                                         "unexpected RRD buffer count\n");
1926                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1927                                         "rx_buf_len = %d\n",
1928                                         adapter->rx_buffer_len);
1929                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1930                                         "RRD num_buf = %d\n",
1931                                         rrd->num_buf);
1932                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1933                                         "RRD pkt_len = %d\n",
1934                                         rrd->xsz.xsum_sz.pkt_size);
1935                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936                                         "RRD pkt_flg = 0x%08X\n",
1937                                         rrd->pkt_flg);
1938                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939                                         "RRD err_flg = 0x%08X\n",
1940                                         rrd->err_flg);
1941                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942                                         "RRD vlan_tag = 0x%08X\n",
1943                                         rrd->vlan_tag);
1944                         }
1945
1946                         /* rrd seems to be bad */
1947                         if (unlikely(i-- > 0)) {
1948                                 /* rrd may not be DMAed completely */
1949                                 udelay(1);
1950                                 goto chk_rrd;
1951                         }
1952                         /* bad rrd */
1953                         if (netif_msg_rx_err(adapter))
1954                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955                                         "bad RRD\n");
1956                         /* see if update RFD index */
1957                         if (rrd->num_buf > 1)
1958                                 atl1_update_rfd_index(adapter, rrd);
1959
1960                         /* update rrd */
1961                         rrd->xsz.valid = 0;
1962                         if (++rrd_next_to_clean == rrd_ring->count)
1963                                 rrd_next_to_clean = 0;
1964                         count++;
1965                         continue;
1966                 } else {        /* current rrd still not be updated */
1967
1968                         break;
1969                 }
1970 rrd_ok:
1971                 /* clean alloc flag for bad rrd */
1972                 atl1_clean_alloc_flag(adapter, rrd, 0);
1973
1974                 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1975                 if (++rfd_ring->next_to_clean == rfd_ring->count)
1976                         rfd_ring->next_to_clean = 0;
1977
1978                 /* update rrd next to clean */
1979                 if (++rrd_next_to_clean == rrd_ring->count)
1980                         rrd_next_to_clean = 0;
1981                 count++;
1982
1983                 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1984                         if (!(rrd->err_flg &
1985                                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1986                                 | ERR_FLAG_LEN))) {
1987                                 /* packet error, don't need upstream */
1988                                 buffer_info->alloced = 0;
1989                                 rrd->xsz.valid = 0;
1990                                 continue;
1991                         }
1992                 }
1993
1994                 /* Good Receive */
1995                 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1996                                buffer_info->length, DMA_FROM_DEVICE);
1997                 buffer_info->dma = 0;
1998                 skb = buffer_info->skb;
1999                 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2000
2001                 skb_put(skb, length - ETH_FCS_LEN);
2002
2003                 /* Receive Checksum Offload */
2004                 atl1_rx_checksum(adapter, rrd, skb);
2005                 skb->protocol = eth_type_trans(skb, adapter->netdev);
2006
2007                 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2008                         u16 vlan_tag = (rrd->vlan_tag >> 4) |
2009                                         ((rrd->vlan_tag & 7) << 13) |
2010                                         ((rrd->vlan_tag & 8) << 9);
2011
2012                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2013                 }
2014                 netif_receive_skb(skb);
2015
2016                 /* let protocol layer free skb */
2017                 buffer_info->skb = NULL;
2018                 buffer_info->alloced = 0;
2019                 rrd->xsz.valid = 0;
2020         }
2021
2022         atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2023
2024         atl1_alloc_rx_buffers(adapter);
2025
2026         /* update mailbox ? */
2027         if (count) {
2028                 u32 tpd_next_to_use;
2029                 u32 rfd_next_to_use;
2030
2031                 spin_lock(&adapter->mb_lock);
2032
2033                 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2034                 rfd_next_to_use =
2035                     atomic_read(&adapter->rfd_ring.next_to_use);
2036                 rrd_next_to_clean =
2037                     atomic_read(&adapter->rrd_ring.next_to_clean);
2038                 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2039                         MB_RFD_PROD_INDX_SHIFT) |
2040                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2041                         MB_RRD_CONS_INDX_SHIFT) |
2042                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2043                         MB_TPD_PROD_INDX_SHIFT);
2044                 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2045                 spin_unlock(&adapter->mb_lock);
2046         }
2047
2048         return count;
2049 }
2050
2051 static int atl1_intr_tx(struct atl1_adapter *adapter)
2052 {
2053         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2054         struct atl1_buffer *buffer_info;
2055         u16 sw_tpd_next_to_clean;
2056         u16 cmb_tpd_next_to_clean;
2057         int count = 0;
2058
2059         sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2060         cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2061
2062         while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2063                 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2064                 if (buffer_info->dma) {
2065                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
2066                                        buffer_info->length, DMA_TO_DEVICE);
2067                         buffer_info->dma = 0;
2068                 }
2069
2070                 if (buffer_info->skb) {
2071                         dev_consume_skb_irq(buffer_info->skb);
2072                         buffer_info->skb = NULL;
2073                 }
2074
2075                 if (++sw_tpd_next_to_clean == tpd_ring->count)
2076                         sw_tpd_next_to_clean = 0;
2077
2078                 count++;
2079         }
2080         atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2081
2082         if (netif_queue_stopped(adapter->netdev) &&
2083             netif_carrier_ok(adapter->netdev))
2084                 netif_wake_queue(adapter->netdev);
2085
2086         return count;
2087 }
2088
2089 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2090 {
2091         u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2092         u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2093         return (next_to_clean > next_to_use) ?
2094                 next_to_clean - next_to_use - 1 :
2095                 tpd_ring->count + next_to_clean - next_to_use - 1;
2096 }
2097
2098 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2099                     struct tx_packet_desc *ptpd)
2100 {
2101         u8 hdr_len, ip_off;
2102         u32 real_len;
2103
2104         if (skb_shinfo(skb)->gso_size) {
2105                 int err;
2106
2107                 err = skb_cow_head(skb, 0);
2108                 if (err < 0)
2109                         return err;
2110
2111                 if (skb->protocol == htons(ETH_P_IP)) {
2112                         struct iphdr *iph = ip_hdr(skb);
2113
2114                         real_len = (((unsigned char *)iph - skb->data) +
2115                                 ntohs(iph->tot_len));
2116                         if (real_len < skb->len)
2117                                 pskb_trim(skb, real_len);
2118                         hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2119                         if (skb->len == hdr_len) {
2120                                 iph->check = 0;
2121                                 tcp_hdr(skb)->check =
2122                                         ~csum_tcpudp_magic(iph->saddr,
2123                                         iph->daddr, tcp_hdrlen(skb),
2124                                         IPPROTO_TCP, 0);
2125                                 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2126                                         TPD_IPHL_SHIFT;
2127                                 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2128                                         TPD_TCPHDRLEN_MASK) <<
2129                                         TPD_TCPHDRLEN_SHIFT;
2130                                 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2131                                 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2132                                 return 1;
2133                         }
2134
2135                         iph->check = 0;
2136                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2137                                         iph->daddr, 0, IPPROTO_TCP, 0);
2138                         ip_off = (unsigned char *)iph -
2139                                 (unsigned char *) skb_network_header(skb);
2140                         if (ip_off == 8) /* 802.3-SNAP frame */
2141                                 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2142                         else if (ip_off != 0)
2143                                 return -2;
2144
2145                         ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2146                                 TPD_IPHL_SHIFT;
2147                         ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2148                                 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2149                         ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2150                                 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2151                         ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2152                         return 3;
2153                 }
2154         }
2155         return 0;
2156 }
2157
2158 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2159         struct tx_packet_desc *ptpd)
2160 {
2161         u8 css, cso;
2162
2163         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2164                 css = skb_checksum_start_offset(skb);
2165                 cso = css + (u8) skb->csum_offset;
2166                 if (unlikely(css & 0x1)) {
2167                         /* L1 hardware requires an even number here */
2168                         if (netif_msg_tx_err(adapter))
2169                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2170                                         "payload offset not an even number\n");
2171                         return -1;
2172                 }
2173                 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2174                         TPD_PLOADOFFSET_SHIFT;
2175                 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2176                         TPD_CCSUMOFFSET_SHIFT;
2177                 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2178                 return true;
2179         }
2180         return 0;
2181 }
2182
2183 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2184         struct tx_packet_desc *ptpd)
2185 {
2186         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2187         struct atl1_buffer *buffer_info;
2188         u16 buf_len = skb->len;
2189         struct page *page;
2190         unsigned long offset;
2191         unsigned int nr_frags;
2192         unsigned int f;
2193         int retval;
2194         u16 next_to_use;
2195         u16 data_len;
2196         u8 hdr_len;
2197
2198         buf_len -= skb->data_len;
2199         nr_frags = skb_shinfo(skb)->nr_frags;
2200         next_to_use = atomic_read(&tpd_ring->next_to_use);
2201         buffer_info = &tpd_ring->buffer_info[next_to_use];
2202         BUG_ON(buffer_info->skb);
2203         /* put skb in last TPD */
2204         buffer_info->skb = NULL;
2205
2206         retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2207         if (retval) {
2208                 /* TSO */
2209                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2210                 buffer_info->length = hdr_len;
2211                 page = virt_to_page(skb->data);
2212                 offset = offset_in_page(skb->data);
2213                 buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2214                                                 offset, hdr_len,
2215                                                 DMA_TO_DEVICE);
2216
2217                 if (++next_to_use == tpd_ring->count)
2218                         next_to_use = 0;
2219
2220                 if (buf_len > hdr_len) {
2221                         int i, nseg;
2222
2223                         data_len = buf_len - hdr_len;
2224                         nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2225                                 ATL1_MAX_TX_BUF_LEN;
2226                         for (i = 0; i < nseg; i++) {
2227                                 buffer_info =
2228                                     &tpd_ring->buffer_info[next_to_use];
2229                                 buffer_info->skb = NULL;
2230                                 buffer_info->length =
2231                                     (ATL1_MAX_TX_BUF_LEN >=
2232                                      data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2233                                 data_len -= buffer_info->length;
2234                                 page = virt_to_page(skb->data +
2235                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2236                                 offset = offset_in_page(skb->data +
2237                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2238                                 buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2239                                                                 page, offset,
2240                                                                 buffer_info->length,
2241                                                                 DMA_TO_DEVICE);
2242                                 if (++next_to_use == tpd_ring->count)
2243                                         next_to_use = 0;
2244                         }
2245                 }
2246         } else {
2247                 /* not TSO */
2248                 buffer_info->length = buf_len;
2249                 page = virt_to_page(skb->data);
2250                 offset = offset_in_page(skb->data);
2251                 buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2252                                                 offset, buf_len,
2253                                                 DMA_TO_DEVICE);
2254                 if (++next_to_use == tpd_ring->count)
2255                         next_to_use = 0;
2256         }
2257
2258         for (f = 0; f < nr_frags; f++) {
2259                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2260                 u16 i, nseg;
2261
2262                 buf_len = skb_frag_size(frag);
2263
2264                 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2265                         ATL1_MAX_TX_BUF_LEN;
2266                 for (i = 0; i < nseg; i++) {
2267                         buffer_info = &tpd_ring->buffer_info[next_to_use];
2268                         BUG_ON(buffer_info->skb);
2269
2270                         buffer_info->skb = NULL;
2271                         buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2272                                 ATL1_MAX_TX_BUF_LEN : buf_len;
2273                         buf_len -= buffer_info->length;
2274                         buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2275                                 frag, i * ATL1_MAX_TX_BUF_LEN,
2276                                 buffer_info->length, DMA_TO_DEVICE);
2277
2278                         if (++next_to_use == tpd_ring->count)
2279                                 next_to_use = 0;
2280                 }
2281         }
2282
2283         /* last tpd's buffer-info */
2284         buffer_info->skb = skb;
2285 }
2286
2287 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2288        struct tx_packet_desc *ptpd)
2289 {
2290         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2291         struct atl1_buffer *buffer_info;
2292         struct tx_packet_desc *tpd;
2293         u16 j;
2294         u32 val;
2295         u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2296
2297         for (j = 0; j < count; j++) {
2298                 buffer_info = &tpd_ring->buffer_info[next_to_use];
2299                 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2300                 if (tpd != ptpd)
2301                         memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2302                 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2303                 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2304                 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2305                         TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2306
2307                 /*
2308                  * if this is the first packet in a TSO chain, set
2309                  * TPD_HDRFLAG, otherwise, clear it.
2310                  */
2311                 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2312                         TPD_SEGMENT_EN_MASK;
2313                 if (val) {
2314                         if (!j)
2315                                 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2316                         else
2317                                 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2318                 }
2319
2320                 if (j == (count - 1))
2321                         tpd->word3 |= 1 << TPD_EOP_SHIFT;
2322
2323                 if (++next_to_use == tpd_ring->count)
2324                         next_to_use = 0;
2325         }
2326         /*
2327          * Force memory writes to complete before letting h/w
2328          * know there are new descriptors to fetch.  (Only
2329          * applicable for weak-ordered memory model archs,
2330          * such as IA-64).
2331          */
2332         wmb();
2333
2334         atomic_set(&tpd_ring->next_to_use, next_to_use);
2335 }
2336
2337 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2338                                          struct net_device *netdev)
2339 {
2340         struct atl1_adapter *adapter = netdev_priv(netdev);
2341         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2342         int len;
2343         int tso;
2344         int count = 1;
2345         int ret_val;
2346         struct tx_packet_desc *ptpd;
2347         u16 vlan_tag;
2348         unsigned int nr_frags = 0;
2349         unsigned int mss = 0;
2350         unsigned int f;
2351         unsigned int proto_hdr_len;
2352
2353         len = skb_headlen(skb);
2354
2355         if (unlikely(skb->len <= 0)) {
2356                 dev_kfree_skb_any(skb);
2357                 return NETDEV_TX_OK;
2358         }
2359
2360         nr_frags = skb_shinfo(skb)->nr_frags;
2361         for (f = 0; f < nr_frags; f++) {
2362                 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2363                 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2364                          ATL1_MAX_TX_BUF_LEN;
2365         }
2366
2367         mss = skb_shinfo(skb)->gso_size;
2368         if (mss) {
2369                 if (skb->protocol == htons(ETH_P_IP)) {
2370                         proto_hdr_len = (skb_transport_offset(skb) +
2371                                          tcp_hdrlen(skb));
2372                         if (unlikely(proto_hdr_len > len)) {
2373                                 dev_kfree_skb_any(skb);
2374                                 return NETDEV_TX_OK;
2375                         }
2376                         /* need additional TPD ? */
2377                         if (proto_hdr_len != len)
2378                                 count += (len - proto_hdr_len +
2379                                         ATL1_MAX_TX_BUF_LEN - 1) /
2380                                         ATL1_MAX_TX_BUF_LEN;
2381                 }
2382         }
2383
2384         if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2385                 /* not enough descriptors */
2386                 netif_stop_queue(netdev);
2387                 if (netif_msg_tx_queued(adapter))
2388                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2389                                 "tx busy\n");
2390                 return NETDEV_TX_BUSY;
2391         }
2392
2393         ptpd = ATL1_TPD_DESC(tpd_ring,
2394                 (u16) atomic_read(&tpd_ring->next_to_use));
2395         memset(ptpd, 0, sizeof(struct tx_packet_desc));
2396
2397         if (skb_vlan_tag_present(skb)) {
2398                 vlan_tag = skb_vlan_tag_get(skb);
2399                 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2400                         ((vlan_tag >> 9) & 0x8);
2401                 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2402                 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2403                         TPD_VLANTAG_SHIFT;
2404         }
2405
2406         tso = atl1_tso(adapter, skb, ptpd);
2407         if (tso < 0) {
2408                 dev_kfree_skb_any(skb);
2409                 return NETDEV_TX_OK;
2410         }
2411
2412         if (!tso) {
2413                 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2414                 if (ret_val < 0) {
2415                         dev_kfree_skb_any(skb);
2416                         return NETDEV_TX_OK;
2417                 }
2418         }
2419
2420         atl1_tx_map(adapter, skb, ptpd);
2421         atl1_tx_queue(adapter, count, ptpd);
2422         atl1_update_mailbox(adapter);
2423         return NETDEV_TX_OK;
2424 }
2425
2426 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2427 {
2428         struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2429         int work_done = atl1_intr_rx(adapter, budget);
2430
2431         if (atl1_intr_tx(adapter))
2432                 work_done = budget;
2433
2434         /* Let's come again to process some more packets */
2435         if (work_done >= budget)
2436                 return work_done;
2437
2438         napi_complete_done(napi, work_done);
2439         /* re-enable Interrupt */
2440         if (likely(adapter->int_enabled))
2441                 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2442         return work_done;
2443 }
2444
2445 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2446 {
2447         if (!napi_schedule_prep(&adapter->napi))
2448                 /* It is possible in case even the RX/TX ints are disabled via IMR
2449                  * register the ISR bits are set anyway (but do not produce IRQ).
2450                  * To handle such situation the napi functions used to check is
2451                  * something scheduled or not.
2452                  */
2453                 return 0;
2454
2455         __napi_schedule(&adapter->napi);
2456
2457         /*
2458          * Disable RX/TX ints via IMR register if it is
2459          * allowed. NAPI handler must reenable them in same
2460          * way.
2461          */
2462         if (!adapter->int_enabled)
2463                 return 1;
2464
2465         atlx_imr_set(adapter, IMR_NORXTX_MASK);
2466         return 1;
2467 }
2468
2469 /**
2470  * atl1_intr - Interrupt Handler
2471  * @irq: interrupt number
2472  * @data: pointer to a network interface device structure
2473  */
2474 static irqreturn_t atl1_intr(int irq, void *data)
2475 {
2476         struct atl1_adapter *adapter = netdev_priv(data);
2477         u32 status;
2478
2479         status = adapter->cmb.cmb->int_stats;
2480         if (!status)
2481                 return IRQ_NONE;
2482
2483         /* clear CMB interrupt status at once,
2484          * but leave rx/tx interrupt status in case it should be dropped
2485          * only if rx/tx processing queued. In other case interrupt
2486          * can be lost.
2487          */
2488         adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2489
2490         if (status & ISR_GPHY)  /* clear phy status */
2491                 atlx_clear_phy_int(adapter);
2492
2493         /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2494         iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2495
2496         /* check if SMB intr */
2497         if (status & ISR_SMB)
2498                 atl1_inc_smb(adapter);
2499
2500         /* check if PCIE PHY Link down */
2501         if (status & ISR_PHY_LINKDOWN) {
2502                 if (netif_msg_intr(adapter))
2503                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2504                                 "pcie phy link down %x\n", status);
2505                 if (netif_running(adapter->netdev)) {   /* reset MAC */
2506                         atlx_irq_disable(adapter);
2507                         schedule_work(&adapter->reset_dev_task);
2508                         return IRQ_HANDLED;
2509                 }
2510         }
2511
2512         /* check if DMA read/write error ? */
2513         if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2514                 if (netif_msg_intr(adapter))
2515                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2516                                 "pcie DMA r/w error (status = 0x%x)\n",
2517                                 status);
2518                 atlx_irq_disable(adapter);
2519                 schedule_work(&adapter->reset_dev_task);
2520                 return IRQ_HANDLED;
2521         }
2522
2523         /* link event */
2524         if (status & ISR_GPHY) {
2525                 adapter->soft_stats.tx_carrier_errors++;
2526                 atl1_check_for_link(adapter);
2527         }
2528
2529         /* transmit or receive event */
2530         if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2531             atl1_sched_rings_clean(adapter))
2532                 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2533                                               ~(ISR_CMB_TX | ISR_CMB_RX);
2534
2535         /* rx exception */
2536         if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537                 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538                 ISR_HOST_RRD_OV))) {
2539                 if (netif_msg_intr(adapter))
2540                         dev_printk(KERN_DEBUG,
2541                                 &adapter->pdev->dev,
2542                                 "rx exception, ISR = 0x%x\n",
2543                                 status);
2544                 atl1_sched_rings_clean(adapter);
2545         }
2546
2547         /* re-enable Interrupt */
2548         iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2549         return IRQ_HANDLED;
2550 }
2551
2552
2553 /**
2554  * atl1_phy_config - Timer Call-back
2555  * @t: timer_list containing pointer to netdev cast into an unsigned long
2556  */
2557 static void atl1_phy_config(struct timer_list *t)
2558 {
2559         struct atl1_adapter *adapter = from_timer(adapter, t,
2560                                                   phy_config_timer);
2561         struct atl1_hw *hw = &adapter->hw;
2562         unsigned long flags;
2563
2564         spin_lock_irqsave(&adapter->lock, flags);
2565         adapter->phy_timer_pending = false;
2566         atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2567         atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2568         atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2569         spin_unlock_irqrestore(&adapter->lock, flags);
2570 }
2571
2572 /*
2573  * Orphaned vendor comment left intact here:
2574  * <vendor comment>
2575  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2576  * will assert. We do soft reset <0x1400=1> according
2577  * with the SPEC. BUT, it seemes that PCIE or DMA
2578  * state-machine will not be reset. DMAR_TO_INT will
2579  * assert again and again.
2580  * </vendor comment>
2581  */
2582
2583 static int atl1_reset(struct atl1_adapter *adapter)
2584 {
2585         int ret;
2586         ret = atl1_reset_hw(&adapter->hw);
2587         if (ret)
2588                 return ret;
2589         return atl1_init_hw(&adapter->hw);
2590 }
2591
2592 static s32 atl1_up(struct atl1_adapter *adapter)
2593 {
2594         struct net_device *netdev = adapter->netdev;
2595         int err;
2596         int irq_flags = 0;
2597
2598         /* hardware has been reset, we need to reload some things */
2599         atlx_set_multi(netdev);
2600         atl1_init_ring_ptrs(adapter);
2601         atlx_restore_vlan(adapter);
2602         err = atl1_alloc_rx_buffers(adapter);
2603         if (unlikely(!err))
2604                 /* no RX BUFFER allocated */
2605                 return -ENOMEM;
2606
2607         if (unlikely(atl1_configure(adapter))) {
2608                 err = -EIO;
2609                 goto err_up;
2610         }
2611
2612         err = pci_enable_msi(adapter->pdev);
2613         if (err) {
2614                 if (netif_msg_ifup(adapter))
2615                         dev_info(&adapter->pdev->dev,
2616                                 "Unable to enable MSI: %d\n", err);
2617                 irq_flags |= IRQF_SHARED;
2618         }
2619
2620         err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2621                         netdev->name, netdev);
2622         if (unlikely(err))
2623                 goto err_up;
2624
2625         napi_enable(&adapter->napi);
2626         atlx_irq_enable(adapter);
2627         atl1_check_link(adapter);
2628         netif_start_queue(netdev);
2629         return 0;
2630
2631 err_up:
2632         pci_disable_msi(adapter->pdev);
2633         /* free rx_buffers */
2634         atl1_clean_rx_ring(adapter);
2635         return err;
2636 }
2637
2638 static void atl1_down(struct atl1_adapter *adapter)
2639 {
2640         struct net_device *netdev = adapter->netdev;
2641
2642         napi_disable(&adapter->napi);
2643         netif_stop_queue(netdev);
2644         del_timer_sync(&adapter->phy_config_timer);
2645         adapter->phy_timer_pending = false;
2646
2647         atlx_irq_disable(adapter);
2648         free_irq(adapter->pdev->irq, netdev);
2649         pci_disable_msi(adapter->pdev);
2650         atl1_reset_hw(&adapter->hw);
2651         adapter->cmb.cmb->int_stats = 0;
2652
2653         adapter->link_speed = SPEED_0;
2654         adapter->link_duplex = -1;
2655         netif_carrier_off(netdev);
2656
2657         atl1_clean_tx_ring(adapter);
2658         atl1_clean_rx_ring(adapter);
2659 }
2660
2661 static void atl1_reset_dev_task(struct work_struct *work)
2662 {
2663         struct atl1_adapter *adapter =
2664                 container_of(work, struct atl1_adapter, reset_dev_task);
2665         struct net_device *netdev = adapter->netdev;
2666
2667         netif_device_detach(netdev);
2668         atl1_down(adapter);
2669         atl1_up(adapter);
2670         netif_device_attach(netdev);
2671 }
2672
2673 /**
2674  * atl1_change_mtu - Change the Maximum Transfer Unit
2675  * @netdev: network interface device structure
2676  * @new_mtu: new value for maximum frame size
2677  *
2678  * Returns 0 on success, negative on failure
2679  */
2680 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2681 {
2682         struct atl1_adapter *adapter = netdev_priv(netdev);
2683         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2684
2685         adapter->hw.max_frame_size = max_frame;
2686         adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2687         adapter->rx_buffer_len = (max_frame + 7) & ~7;
2688         adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2689
2690         netdev->mtu = new_mtu;
2691         if (netif_running(netdev)) {
2692                 atl1_down(adapter);
2693                 atl1_up(adapter);
2694         }
2695
2696         return 0;
2697 }
2698
2699 /**
2700  * atl1_open - Called when a network interface is made active
2701  * @netdev: network interface device structure
2702  *
2703  * Returns 0 on success, negative value on failure
2704  *
2705  * The open entry point is called when a network interface is made
2706  * active by the system (IFF_UP).  At this point all resources needed
2707  * for transmit and receive operations are allocated, the interrupt
2708  * handler is registered with the OS, the watchdog timer is started,
2709  * and the stack is notified that the interface is ready.
2710  */
2711 static int atl1_open(struct net_device *netdev)
2712 {
2713         struct atl1_adapter *adapter = netdev_priv(netdev);
2714         int err;
2715
2716         netif_carrier_off(netdev);
2717
2718         /* allocate transmit descriptors */
2719         err = atl1_setup_ring_resources(adapter);
2720         if (err)
2721                 return err;
2722
2723         err = atl1_up(adapter);
2724         if (err)
2725                 goto err_up;
2726
2727         return 0;
2728
2729 err_up:
2730         atl1_reset(adapter);
2731         return err;
2732 }
2733
2734 /**
2735  * atl1_close - Disables a network interface
2736  * @netdev: network interface device structure
2737  *
2738  * Returns 0, this is not allowed to fail
2739  *
2740  * The close entry point is called when an interface is de-activated
2741  * by the OS.  The hardware is still under the drivers control, but
2742  * needs to be disabled.  A global MAC reset is issued to stop the
2743  * hardware, and all transmit and receive resources are freed.
2744  */
2745 static int atl1_close(struct net_device *netdev)
2746 {
2747         struct atl1_adapter *adapter = netdev_priv(netdev);
2748         atl1_down(adapter);
2749         atl1_free_ring_resources(adapter);
2750         return 0;
2751 }
2752
2753 #ifdef CONFIG_PM_SLEEP
2754 static int atl1_suspend(struct device *dev)
2755 {
2756         struct net_device *netdev = dev_get_drvdata(dev);
2757         struct atl1_adapter *adapter = netdev_priv(netdev);
2758         struct atl1_hw *hw = &adapter->hw;
2759         u32 ctrl = 0;
2760         u32 wufc = adapter->wol;
2761         u32 val;
2762         u16 speed;
2763         u16 duplex;
2764
2765         netif_device_detach(netdev);
2766         if (netif_running(netdev))
2767                 atl1_down(adapter);
2768
2769         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2770         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2771         val = ctrl & BMSR_LSTATUS;
2772         if (val)
2773                 wufc &= ~ATLX_WUFC_LNKC;
2774         if (!wufc)
2775                 goto disable_wol;
2776
2777         if (val) {
2778                 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2779                 if (val) {
2780                         if (netif_msg_ifdown(adapter))
2781                                 dev_printk(KERN_DEBUG, dev,
2782                                         "error getting speed/duplex\n");
2783                         goto disable_wol;
2784                 }
2785
2786                 ctrl = 0;
2787
2788                 /* enable magic packet WOL */
2789                 if (wufc & ATLX_WUFC_MAG)
2790                         ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2791                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2792                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2793
2794                 /* configure the mac */
2795                 ctrl = MAC_CTRL_RX_EN;
2796                 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2797                         MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2798                 if (duplex == FULL_DUPLEX)
2799                         ctrl |= MAC_CTRL_DUPLX;
2800                 ctrl |= (((u32)adapter->hw.preamble_len &
2801                         MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2802                 __atlx_vlan_mode(netdev->features, &ctrl);
2803                 if (wufc & ATLX_WUFC_MAG)
2804                         ctrl |= MAC_CTRL_BC_EN;
2805                 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2806                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2807
2808                 /* poke the PHY */
2809                 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2810                 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2811                 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2812                 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813         } else {
2814                 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2815                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2816                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2817                 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2818                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2819                 hw->phy_configured = false;
2820         }
2821
2822         return 0;
2823
2824  disable_wol:
2825         iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2826         ioread32(hw->hw_addr + REG_WOL_CTRL);
2827         ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2828         ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2829         iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2830         ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831         hw->phy_configured = false;
2832
2833         return 0;
2834 }
2835
2836 static int atl1_resume(struct device *dev)
2837 {
2838         struct net_device *netdev = dev_get_drvdata(dev);
2839         struct atl1_adapter *adapter = netdev_priv(netdev);
2840
2841         iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2842
2843         atl1_reset_hw(&adapter->hw);
2844
2845         if (netif_running(netdev)) {
2846                 adapter->cmb.cmb->int_stats = 0;
2847                 atl1_up(adapter);
2848         }
2849         netif_device_attach(netdev);
2850
2851         return 0;
2852 }
2853 #endif
2854
2855 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2856
2857 static void atl1_shutdown(struct pci_dev *pdev)
2858 {
2859         struct net_device *netdev = pci_get_drvdata(pdev);
2860         struct atl1_adapter *adapter = netdev_priv(netdev);
2861
2862 #ifdef CONFIG_PM_SLEEP
2863         atl1_suspend(&pdev->dev);
2864 #endif
2865         pci_wake_from_d3(pdev, adapter->wol);
2866         pci_set_power_state(pdev, PCI_D3hot);
2867 }
2868
2869 #ifdef CONFIG_NET_POLL_CONTROLLER
2870 static void atl1_poll_controller(struct net_device *netdev)
2871 {
2872         disable_irq(netdev->irq);
2873         atl1_intr(netdev->irq, netdev);
2874         enable_irq(netdev->irq);
2875 }
2876 #endif
2877
2878 static const struct net_device_ops atl1_netdev_ops = {
2879         .ndo_open               = atl1_open,
2880         .ndo_stop               = atl1_close,
2881         .ndo_start_xmit         = atl1_xmit_frame,
2882         .ndo_set_rx_mode        = atlx_set_multi,
2883         .ndo_validate_addr      = eth_validate_addr,
2884         .ndo_set_mac_address    = atl1_set_mac,
2885         .ndo_change_mtu         = atl1_change_mtu,
2886         .ndo_fix_features       = atlx_fix_features,
2887         .ndo_set_features       = atlx_set_features,
2888         .ndo_eth_ioctl          = atlx_ioctl,
2889         .ndo_tx_timeout         = atlx_tx_timeout,
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891         .ndo_poll_controller    = atl1_poll_controller,
2892 #endif
2893 };
2894
2895 /**
2896  * atl1_probe - Device Initialization Routine
2897  * @pdev: PCI device information struct
2898  * @ent: entry in atl1_pci_tbl
2899  *
2900  * Returns 0 on success, negative on failure
2901  *
2902  * atl1_probe initializes an adapter identified by a pci_dev structure.
2903  * The OS initialization, configuring of the adapter private structure,
2904  * and a hardware reset occur.
2905  */
2906 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2907 {
2908         struct net_device *netdev;
2909         struct atl1_adapter *adapter;
2910         static int cards_found = 0;
2911         int err;
2912
2913         err = pci_enable_device(pdev);
2914         if (err)
2915                 return err;
2916
2917         /*
2918          * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2919          * shared register for the high 32 bits, so only a single, aligned,
2920          * 4 GB physical address range can be used at a time.
2921          *
2922          * Supporting 64-bit DMA on this hardware is more trouble than it's
2923          * worth.  It is far easier to limit to 32-bit DMA than update
2924          * various kernel subsystems to support the mechanics required by a
2925          * fixed-high-32-bit system.
2926          */
2927         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2928         if (err) {
2929                 dev_err(&pdev->dev, "no usable DMA configuration\n");
2930                 goto err_dma;
2931         }
2932         /*
2933          * Mark all PCI regions associated with PCI device
2934          * pdev as being reserved by owner atl1_driver_name
2935          */
2936         err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2937         if (err)
2938                 goto err_request_regions;
2939
2940         /*
2941          * Enables bus-mastering on the device and calls
2942          * pcibios_set_master to do the needed arch specific settings
2943          */
2944         pci_set_master(pdev);
2945
2946         netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2947         if (!netdev) {
2948                 err = -ENOMEM;
2949                 goto err_alloc_etherdev;
2950         }
2951         SET_NETDEV_DEV(netdev, &pdev->dev);
2952
2953         pci_set_drvdata(pdev, netdev);
2954         adapter = netdev_priv(netdev);
2955         adapter->netdev = netdev;
2956         adapter->pdev = pdev;
2957         adapter->hw.back = adapter;
2958         adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2959
2960         adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2961         if (!adapter->hw.hw_addr) {
2962                 err = -EIO;
2963                 goto err_pci_iomap;
2964         }
2965         /* get device revision number */
2966         adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2967                 (REG_MASTER_CTRL + 2));
2968
2969         /* set default ring resource counts */
2970         adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2971         adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2972
2973         adapter->mii.dev = netdev;
2974         adapter->mii.mdio_read = mdio_read;
2975         adapter->mii.mdio_write = mdio_write;
2976         adapter->mii.phy_id_mask = 0x1f;
2977         adapter->mii.reg_num_mask = 0x1f;
2978
2979         netdev->netdev_ops = &atl1_netdev_ops;
2980         netdev->watchdog_timeo = 5 * HZ;
2981         netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
2982
2983         netdev->ethtool_ops = &atl1_ethtool_ops;
2984         adapter->bd_number = cards_found;
2985
2986         /* setup the private structure */
2987         err = atl1_sw_init(adapter);
2988         if (err)
2989                 goto err_common;
2990
2991         netdev->features = NETIF_F_HW_CSUM;
2992         netdev->features |= NETIF_F_SG;
2993         netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2994
2995         netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2996                               NETIF_F_HW_VLAN_CTAG_RX;
2997
2998         /* is this valid? see atl1_setup_mac_ctrl() */
2999         netdev->features |= NETIF_F_RXCSUM;
3000
3001         /* MTU range: 42 - 10218 */
3002         netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3003         netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3004                           (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3005
3006         /*
3007          * patch for some L1 of old version,
3008          * the final version of L1 may not need these
3009          * patches
3010          */
3011         /* atl1_pcie_patch(adapter); */
3012
3013         /* really reset GPHY core */
3014         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3015
3016         /*
3017          * reset the controller to
3018          * put the device in a known good starting state
3019          */
3020         if (atl1_reset_hw(&adapter->hw)) {
3021                 err = -EIO;
3022                 goto err_common;
3023         }
3024
3025         /* copy the MAC address out of the EEPROM */
3026         if (atl1_read_mac_addr(&adapter->hw)) {
3027                 /* mark random mac */
3028                 netdev->addr_assign_type = NET_ADDR_RANDOM;
3029         }
3030         eth_hw_addr_set(netdev, adapter->hw.mac_addr);
3031
3032         if (!is_valid_ether_addr(netdev->dev_addr)) {
3033                 err = -EIO;
3034                 goto err_common;
3035         }
3036
3037         atl1_check_options(adapter);
3038
3039         /* pre-init the MAC, and setup link */
3040         err = atl1_init_hw(&adapter->hw);
3041         if (err) {
3042                 err = -EIO;
3043                 goto err_common;
3044         }
3045
3046         atl1_pcie_patch(adapter);
3047         /* assume we have no link for now */
3048         netif_carrier_off(netdev);
3049
3050         timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3051         adapter->phy_timer_pending = false;
3052
3053         INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3054
3055         INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056
3057         err = register_netdev(netdev);
3058         if (err)
3059                 goto err_common;
3060
3061         cards_found++;
3062         atl1_via_workaround(adapter);
3063         return 0;
3064
3065 err_common:
3066         pci_iounmap(pdev, adapter->hw.hw_addr);
3067 err_pci_iomap:
3068         free_netdev(netdev);
3069 err_alloc_etherdev:
3070         pci_release_regions(pdev);
3071 err_dma:
3072 err_request_regions:
3073         pci_disable_device(pdev);
3074         return err;
3075 }
3076
3077 /**
3078  * atl1_remove - Device Removal Routine
3079  * @pdev: PCI device information struct
3080  *
3081  * atl1_remove is called by the PCI subsystem to alert the driver
3082  * that it should release a PCI device.  The could be caused by a
3083  * Hot-Plug event, or because the driver is going to be removed from
3084  * memory.
3085  */
3086 static void atl1_remove(struct pci_dev *pdev)
3087 {
3088         struct net_device *netdev = pci_get_drvdata(pdev);
3089         struct atl1_adapter *adapter;
3090         /* Device not available. Return. */
3091         if (!netdev)
3092                 return;
3093
3094         adapter = netdev_priv(netdev);
3095
3096         /*
3097          * Some atl1 boards lack persistent storage for their MAC, and get it
3098          * from the BIOS during POST.  If we've been messing with the MAC
3099          * address, we need to save the permanent one.
3100          */
3101         if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3102                                         adapter->hw.perm_mac_addr)) {
3103                 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104                         ETH_ALEN);
3105                 atl1_set_mac_addr(&adapter->hw);
3106         }
3107
3108         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109         unregister_netdev(netdev);
3110         pci_iounmap(pdev, adapter->hw.hw_addr);
3111         pci_release_regions(pdev);
3112         free_netdev(netdev);
3113         pci_disable_device(pdev);
3114 }
3115
3116 static struct pci_driver atl1_driver = {
3117         .name = ATLX_DRIVER_NAME,
3118         .id_table = atl1_pci_tbl,
3119         .probe = atl1_probe,
3120         .remove = atl1_remove,
3121         .shutdown = atl1_shutdown,
3122         .driver.pm = &atl1_pm_ops,
3123 };
3124
3125 struct atl1_stats {
3126         char stat_string[ETH_GSTRING_LEN];
3127         int sizeof_stat;
3128         int stat_offset;
3129 };
3130
3131 #define ATL1_STAT(m) \
3132         sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3133
3134 static struct atl1_stats atl1_gstrings_stats[] = {
3135         {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3136         {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3137         {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3138         {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3139         {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3140         {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3141         {"multicast", ATL1_STAT(soft_stats.multicast)},
3142         {"collisions", ATL1_STAT(soft_stats.collisions)},
3143         {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3144         {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3145         {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3146         {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3147         {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3148         {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3149         {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3150         {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3151         {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3152         {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3153         {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3154         {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3155         {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3156         {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3157         {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3158         {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3159         {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3160         {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3161         {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3162         {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3163         {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3164 };
3165
3166 static void atl1_get_ethtool_stats(struct net_device *netdev,
3167         struct ethtool_stats *stats, u64 *data)
3168 {
3169         struct atl1_adapter *adapter = netdev_priv(netdev);
3170         int i;
3171         char *p;
3172
3173         for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3174                 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3175                 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3176                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3177         }
3178
3179 }
3180
3181 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3182 {
3183         switch (sset) {
3184         case ETH_SS_STATS:
3185                 return ARRAY_SIZE(atl1_gstrings_stats);
3186         default:
3187                 return -EOPNOTSUPP;
3188         }
3189 }
3190
3191 static int atl1_get_link_ksettings(struct net_device *netdev,
3192                                    struct ethtool_link_ksettings *cmd)
3193 {
3194         struct atl1_adapter *adapter = netdev_priv(netdev);
3195         struct atl1_hw *hw = &adapter->hw;
3196         u32 supported, advertising;
3197
3198         supported = (SUPPORTED_10baseT_Half |
3199                            SUPPORTED_10baseT_Full |
3200                            SUPPORTED_100baseT_Half |
3201                            SUPPORTED_100baseT_Full |
3202                            SUPPORTED_1000baseT_Full |
3203                            SUPPORTED_Autoneg | SUPPORTED_TP);
3204         advertising = ADVERTISED_TP;
3205         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3206             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3207                 advertising |= ADVERTISED_Autoneg;
3208                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3209                         advertising |= ADVERTISED_Autoneg;
3210                         advertising |=
3211                             (ADVERTISED_10baseT_Half |
3212                              ADVERTISED_10baseT_Full |
3213                              ADVERTISED_100baseT_Half |
3214                              ADVERTISED_100baseT_Full |
3215                              ADVERTISED_1000baseT_Full);
3216                 } else
3217                         advertising |= (ADVERTISED_1000baseT_Full);
3218         }
3219         cmd->base.port = PORT_TP;
3220         cmd->base.phy_address = 0;
3221
3222         if (netif_carrier_ok(adapter->netdev)) {
3223                 u16 link_speed, link_duplex;
3224                 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3225                 cmd->base.speed = link_speed;
3226                 if (link_duplex == FULL_DUPLEX)
3227                         cmd->base.duplex = DUPLEX_FULL;
3228                 else
3229                         cmd->base.duplex = DUPLEX_HALF;
3230         } else {
3231                 cmd->base.speed = SPEED_UNKNOWN;
3232                 cmd->base.duplex = DUPLEX_UNKNOWN;
3233         }
3234         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3235             hw->media_type == MEDIA_TYPE_1000M_FULL)
3236                 cmd->base.autoneg = AUTONEG_ENABLE;
3237         else
3238                 cmd->base.autoneg = AUTONEG_DISABLE;
3239
3240         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3241                                                 supported);
3242         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3243                                                 advertising);
3244
3245         return 0;
3246 }
3247
3248 static int atl1_set_link_ksettings(struct net_device *netdev,
3249                                    const struct ethtool_link_ksettings *cmd)
3250 {
3251         struct atl1_adapter *adapter = netdev_priv(netdev);
3252         struct atl1_hw *hw = &adapter->hw;
3253         u16 phy_data;
3254         int ret_val = 0;
3255         u16 old_media_type = hw->media_type;
3256
3257         if (netif_running(adapter->netdev)) {
3258                 if (netif_msg_link(adapter))
3259                         dev_dbg(&adapter->pdev->dev,
3260                                 "ethtool shutting down adapter\n");
3261                 atl1_down(adapter);
3262         }
3263
3264         if (cmd->base.autoneg == AUTONEG_ENABLE)
3265                 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3266         else {
3267                 u32 speed = cmd->base.speed;
3268                 if (speed == SPEED_1000) {
3269                         if (cmd->base.duplex != DUPLEX_FULL) {
3270                                 if (netif_msg_link(adapter))
3271                                         dev_warn(&adapter->pdev->dev,
3272                                                 "1000M half is invalid\n");
3273                                 ret_val = -EINVAL;
3274                                 goto exit_sset;
3275                         }
3276                         hw->media_type = MEDIA_TYPE_1000M_FULL;
3277                 } else if (speed == SPEED_100) {
3278                         if (cmd->base.duplex == DUPLEX_FULL)
3279                                 hw->media_type = MEDIA_TYPE_100M_FULL;
3280                         else
3281                                 hw->media_type = MEDIA_TYPE_100M_HALF;
3282                 } else {
3283                         if (cmd->base.duplex == DUPLEX_FULL)
3284                                 hw->media_type = MEDIA_TYPE_10M_FULL;
3285                         else
3286                                 hw->media_type = MEDIA_TYPE_10M_HALF;
3287                 }
3288         }
3289
3290         if (atl1_phy_setup_autoneg_adv(hw)) {
3291                 ret_val = -EINVAL;
3292                 if (netif_msg_link(adapter))
3293                         dev_warn(&adapter->pdev->dev,
3294                                 "invalid ethtool speed/duplex setting\n");
3295                 goto exit_sset;
3296         }
3297         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3298             hw->media_type == MEDIA_TYPE_1000M_FULL)
3299                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3300         else {
3301                 switch (hw->media_type) {
3302                 case MEDIA_TYPE_100M_FULL:
3303                         phy_data =
3304                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3305                             MII_CR_RESET;
3306                         break;
3307                 case MEDIA_TYPE_100M_HALF:
3308                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3309                         break;
3310                 case MEDIA_TYPE_10M_FULL:
3311                         phy_data =
3312                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3313                         break;
3314                 default:
3315                         /* MEDIA_TYPE_10M_HALF: */
3316                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3317                         break;
3318                 }
3319         }
3320         atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3321 exit_sset:
3322         if (ret_val)
3323                 hw->media_type = old_media_type;
3324
3325         if (netif_running(adapter->netdev)) {
3326                 if (netif_msg_link(adapter))
3327                         dev_dbg(&adapter->pdev->dev,
3328                                 "ethtool starting adapter\n");
3329                 atl1_up(adapter);
3330         } else if (!ret_val) {
3331                 if (netif_msg_link(adapter))
3332                         dev_dbg(&adapter->pdev->dev,
3333                                 "ethtool resetting adapter\n");
3334                 atl1_reset(adapter);
3335         }
3336         return ret_val;
3337 }
3338
3339 static void atl1_get_drvinfo(struct net_device *netdev,
3340         struct ethtool_drvinfo *drvinfo)
3341 {
3342         struct atl1_adapter *adapter = netdev_priv(netdev);
3343
3344         strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3345         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3346                 sizeof(drvinfo->bus_info));
3347 }
3348
3349 static void atl1_get_wol(struct net_device *netdev,
3350         struct ethtool_wolinfo *wol)
3351 {
3352         struct atl1_adapter *adapter = netdev_priv(netdev);
3353
3354         wol->supported = WAKE_MAGIC;
3355         wol->wolopts = 0;
3356         if (adapter->wol & ATLX_WUFC_MAG)
3357                 wol->wolopts |= WAKE_MAGIC;
3358 }
3359
3360 static int atl1_set_wol(struct net_device *netdev,
3361         struct ethtool_wolinfo *wol)
3362 {
3363         struct atl1_adapter *adapter = netdev_priv(netdev);
3364
3365         if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3366                 WAKE_ARP | WAKE_MAGICSECURE))
3367                 return -EOPNOTSUPP;
3368         adapter->wol = 0;
3369         if (wol->wolopts & WAKE_MAGIC)
3370                 adapter->wol |= ATLX_WUFC_MAG;
3371
3372         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3373
3374         return 0;
3375 }
3376
3377 static u32 atl1_get_msglevel(struct net_device *netdev)
3378 {
3379         struct atl1_adapter *adapter = netdev_priv(netdev);
3380         return adapter->msg_enable;
3381 }
3382
3383 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3384 {
3385         struct atl1_adapter *adapter = netdev_priv(netdev);
3386         adapter->msg_enable = value;
3387 }
3388
3389 static int atl1_get_regs_len(struct net_device *netdev)
3390 {
3391         return ATL1_REG_COUNT * sizeof(u32);
3392 }
3393
3394 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3395         void *p)
3396 {
3397         struct atl1_adapter *adapter = netdev_priv(netdev);
3398         struct atl1_hw *hw = &adapter->hw;
3399         unsigned int i;
3400         u32 *regbuf = p;
3401
3402         for (i = 0; i < ATL1_REG_COUNT; i++) {
3403                 /*
3404                  * This switch statement avoids reserved regions
3405                  * of register space.
3406                  */
3407                 switch (i) {
3408                 case 6 ... 9:
3409                 case 14:
3410                 case 29 ... 31:
3411                 case 34 ... 63:
3412                 case 75 ... 127:
3413                 case 136 ... 1023:
3414                 case 1027 ... 1087:
3415                 case 1091 ... 1151:
3416                 case 1194 ... 1195:
3417                 case 1200 ... 1201:
3418                 case 1206 ... 1213:
3419                 case 1216 ... 1279:
3420                 case 1290 ... 1311:
3421                 case 1323 ... 1343:
3422                 case 1358 ... 1359:
3423                 case 1368 ... 1375:
3424                 case 1378 ... 1383:
3425                 case 1388 ... 1391:
3426                 case 1393 ... 1395:
3427                 case 1402 ... 1403:
3428                 case 1410 ... 1471:
3429                 case 1522 ... 1535:
3430                         /* reserved region; don't read it */
3431                         regbuf[i] = 0;
3432                         break;
3433                 default:
3434                         /* unreserved region */
3435                         regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3436                 }
3437         }
3438 }
3439
3440 static void atl1_get_ringparam(struct net_device *netdev,
3441                                struct ethtool_ringparam *ring,
3442                                struct kernel_ethtool_ringparam *kernel_ring,
3443                                struct netlink_ext_ack *extack)
3444 {
3445         struct atl1_adapter *adapter = netdev_priv(netdev);
3446         struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3447         struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3448
3449         ring->rx_max_pending = ATL1_MAX_RFD;
3450         ring->tx_max_pending = ATL1_MAX_TPD;
3451         ring->rx_pending = rxdr->count;
3452         ring->tx_pending = txdr->count;
3453 }
3454
3455 static int atl1_set_ringparam(struct net_device *netdev,
3456                               struct ethtool_ringparam *ring,
3457                               struct kernel_ethtool_ringparam *kernel_ring,
3458                               struct netlink_ext_ack *extack)
3459 {
3460         struct atl1_adapter *adapter = netdev_priv(netdev);
3461         struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3462         struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3463         struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3464
3465         struct atl1_tpd_ring tpd_old, tpd_new;
3466         struct atl1_rfd_ring rfd_old, rfd_new;
3467         struct atl1_rrd_ring rrd_old, rrd_new;
3468         struct atl1_ring_header rhdr_old, rhdr_new;
3469         struct atl1_smb smb;
3470         struct atl1_cmb cmb;
3471         int err;
3472
3473         tpd_old = adapter->tpd_ring;
3474         rfd_old = adapter->rfd_ring;
3475         rrd_old = adapter->rrd_ring;
3476         rhdr_old = adapter->ring_header;
3477
3478         if (netif_running(adapter->netdev))
3479                 atl1_down(adapter);
3480
3481         rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3482         rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3483                         rfdr->count;
3484         rfdr->count = (rfdr->count + 3) & ~3;
3485         rrdr->count = rfdr->count;
3486
3487         tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3488         tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3489                         tpdr->count;
3490         tpdr->count = (tpdr->count + 3) & ~3;
3491
3492         if (netif_running(adapter->netdev)) {
3493                 /* try to get new resources before deleting old */
3494                 err = atl1_setup_ring_resources(adapter);
3495                 if (err)
3496                         goto err_setup_ring;
3497
3498                 /*
3499                  * save the new, restore the old in order to free it,
3500                  * then restore the new back again
3501                  */
3502
3503                 rfd_new = adapter->rfd_ring;
3504                 rrd_new = adapter->rrd_ring;
3505                 tpd_new = adapter->tpd_ring;
3506                 rhdr_new = adapter->ring_header;
3507                 adapter->rfd_ring = rfd_old;
3508                 adapter->rrd_ring = rrd_old;
3509                 adapter->tpd_ring = tpd_old;
3510                 adapter->ring_header = rhdr_old;
3511                 /*
3512                  * Save SMB and CMB, since atl1_free_ring_resources
3513                  * will clear them.
3514                  */
3515                 smb = adapter->smb;
3516                 cmb = adapter->cmb;
3517                 atl1_free_ring_resources(adapter);
3518                 adapter->rfd_ring = rfd_new;
3519                 adapter->rrd_ring = rrd_new;
3520                 adapter->tpd_ring = tpd_new;
3521                 adapter->ring_header = rhdr_new;
3522                 adapter->smb = smb;
3523                 adapter->cmb = cmb;
3524
3525                 err = atl1_up(adapter);
3526                 if (err)
3527                         return err;
3528         }
3529         return 0;
3530
3531 err_setup_ring:
3532         adapter->rfd_ring = rfd_old;
3533         adapter->rrd_ring = rrd_old;
3534         adapter->tpd_ring = tpd_old;
3535         adapter->ring_header = rhdr_old;
3536         atl1_up(adapter);
3537         return err;
3538 }
3539
3540 static void atl1_get_pauseparam(struct net_device *netdev,
3541         struct ethtool_pauseparam *epause)
3542 {
3543         struct atl1_adapter *adapter = netdev_priv(netdev);
3544         struct atl1_hw *hw = &adapter->hw;
3545
3546         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3547             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3548                 epause->autoneg = AUTONEG_ENABLE;
3549         } else {
3550                 epause->autoneg = AUTONEG_DISABLE;
3551         }
3552         epause->rx_pause = 1;
3553         epause->tx_pause = 1;
3554 }
3555
3556 static int atl1_set_pauseparam(struct net_device *netdev,
3557         struct ethtool_pauseparam *epause)
3558 {
3559         struct atl1_adapter *adapter = netdev_priv(netdev);
3560         struct atl1_hw *hw = &adapter->hw;
3561
3562         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3563             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3564                 epause->autoneg = AUTONEG_ENABLE;
3565         } else {
3566                 epause->autoneg = AUTONEG_DISABLE;
3567         }
3568
3569         epause->rx_pause = 1;
3570         epause->tx_pause = 1;
3571
3572         return 0;
3573 }
3574
3575 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3576         u8 *data)
3577 {
3578         u8 *p = data;
3579         int i;
3580
3581         switch (stringset) {
3582         case ETH_SS_STATS:
3583                 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3584                         memcpy(p, atl1_gstrings_stats[i].stat_string,
3585                                 ETH_GSTRING_LEN);
3586                         p += ETH_GSTRING_LEN;
3587                 }
3588                 break;
3589         }
3590 }
3591
3592 static int atl1_nway_reset(struct net_device *netdev)
3593 {
3594         struct atl1_adapter *adapter = netdev_priv(netdev);
3595         struct atl1_hw *hw = &adapter->hw;
3596
3597         if (netif_running(netdev)) {
3598                 u16 phy_data;
3599                 atl1_down(adapter);
3600
3601                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3602                         hw->media_type == MEDIA_TYPE_1000M_FULL) {
3603                         phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3604                 } else {
3605                         switch (hw->media_type) {
3606                         case MEDIA_TYPE_100M_FULL:
3607                                 phy_data = MII_CR_FULL_DUPLEX |
3608                                         MII_CR_SPEED_100 | MII_CR_RESET;
3609                                 break;
3610                         case MEDIA_TYPE_100M_HALF:
3611                                 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3612                                 break;
3613                         case MEDIA_TYPE_10M_FULL:
3614                                 phy_data = MII_CR_FULL_DUPLEX |
3615                                         MII_CR_SPEED_10 | MII_CR_RESET;
3616                                 break;
3617                         default:
3618                                 /* MEDIA_TYPE_10M_HALF */
3619                                 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3620                         }
3621                 }
3622                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3623                 atl1_up(adapter);
3624         }
3625         return 0;
3626 }
3627
3628 static const struct ethtool_ops atl1_ethtool_ops = {
3629         .get_drvinfo            = atl1_get_drvinfo,
3630         .get_wol                = atl1_get_wol,
3631         .set_wol                = atl1_set_wol,
3632         .get_msglevel           = atl1_get_msglevel,
3633         .set_msglevel           = atl1_set_msglevel,
3634         .get_regs_len           = atl1_get_regs_len,
3635         .get_regs               = atl1_get_regs,
3636         .get_ringparam          = atl1_get_ringparam,
3637         .set_ringparam          = atl1_set_ringparam,
3638         .get_pauseparam         = atl1_get_pauseparam,
3639         .set_pauseparam         = atl1_set_pauseparam,
3640         .get_link               = ethtool_op_get_link,
3641         .get_strings            = atl1_get_strings,
3642         .nway_reset             = atl1_nway_reset,
3643         .get_ethtool_stats      = atl1_get_ethtool_stats,
3644         .get_sset_count         = atl1_get_sset_count,
3645         .get_link_ksettings     = atl1_get_link_ksettings,
3646         .set_link_ksettings     = atl1_set_link_ksettings,
3647 };
3648
3649 module_pci_driver(atl1_driver);