b6243cad3103edba9255c6a98dde7da1ab2f6a37
[platform/kernel/linux-exynos.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 enum {NETDEV_STATS, E1000_STATS};
39
40 struct e1000_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int type;
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define E1000_STAT(m)           E1000_STATS, \
48                                 sizeof(((struct e1000_adapter *)0)->m), \
49                                 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
51                                 sizeof(((struct net_device *)0)->m), \
52                                 offsetof(struct net_device, m)
53
54 static const struct e1000_stats e1000_gstrings_stats[] = {
55         { "rx_packets", E1000_STAT(stats.gprc) },
56         { "tx_packets", E1000_STAT(stats.gptc) },
57         { "rx_bytes", E1000_STAT(stats.gorc) },
58         { "tx_bytes", E1000_STAT(stats.gotc) },
59         { "rx_broadcast", E1000_STAT(stats.bprc) },
60         { "tx_broadcast", E1000_STAT(stats.bptc) },
61         { "rx_multicast", E1000_STAT(stats.mprc) },
62         { "tx_multicast", E1000_STAT(stats.mptc) },
63         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
64         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
65         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66         { "multicast", E1000_STAT(stats.mprc) },
67         { "collisions", E1000_STAT(stats.colc) },
68         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
69         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(stats.mpc) },
74         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
75         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(stats.latecol) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "tx_restart_queue", E1000_STAT(restart_queue) },
85         { "rx_long_length_errors", E1000_STAT(stats.roc) },
86         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
87         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
88         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
89         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
90         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
91         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
92         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
93         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
95         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
96         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
97         { "rx_header_split", E1000_STAT(rx_hdr_split) },
98         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99         { "tx_smbus", E1000_STAT(stats.mgptc) },
100         { "rx_smbus", E1000_STAT(stats.mgprc) },
101         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
102         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
103         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
104 };
105
106 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116                               struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120         u32 status;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         status = er32(STATUS);
159         if (status & E1000_STATUS_LU) {
160                 if (status & E1000_STATUS_SPEED_1000)
161                         ecmd->speed = 1000;
162                 else if (status & E1000_STATUS_SPEED_100)
163                         ecmd->speed = 100;
164                 else
165                         ecmd->speed = 10;
166
167                 if (status & E1000_STATUS_FD)
168                         ecmd->duplex = DUPLEX_FULL;
169                 else
170                         ecmd->duplex = DUPLEX_HALF;
171         } else {
172                 ecmd->speed = -1;
173                 ecmd->duplex = -1;
174         }
175
176         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179         /* MDI-X => 2; MDI =>1; Invalid =>0 */
180         if ((hw->phy.media_type == e1000_media_type_copper) &&
181             !hw->mac.get_link_status)
182                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
183                                                       ETH_TP_MDI;
184         else
185                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187         return 0;
188 }
189
190 static u32 e1000_get_link(struct net_device *netdev)
191 {
192         struct e1000_adapter *adapter = netdev_priv(netdev);
193         struct e1000_mac_info *mac = &adapter->hw.mac;
194
195         /*
196          * If the link is not reported up to netdev, interrupts are disabled,
197          * and so the physical link state may have changed since we last
198          * looked. Set get_link_status to make sure that the true link
199          * state is interrogated, rather than pulling a cached and possibly
200          * stale link state from the driver.
201          */
202         if (!netif_carrier_ok(netdev))
203                 mac->get_link_status = 1;
204
205         return e1000_has_link(adapter);
206 }
207
208 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
209 {
210         struct e1000_mac_info *mac = &adapter->hw.mac;
211
212         mac->autoneg = 0;
213
214         /* Fiber NICs only allow 1000 gbps Full duplex */
215         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
216                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
217                 e_err("Unsupported Speed/Duplex configuration\n");
218                 return -EINVAL;
219         }
220
221         switch (spddplx) {
222         case SPEED_10 + DUPLEX_HALF:
223                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
224                 break;
225         case SPEED_10 + DUPLEX_FULL:
226                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
227                 break;
228         case SPEED_100 + DUPLEX_HALF:
229                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
230                 break;
231         case SPEED_100 + DUPLEX_FULL:
232                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
233                 break;
234         case SPEED_1000 + DUPLEX_FULL:
235                 mac->autoneg = 1;
236                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
237                 break;
238         case SPEED_1000 + DUPLEX_HALF: /* not supported */
239         default:
240                 e_err("Unsupported Speed/Duplex configuration\n");
241                 return -EINVAL;
242         }
243         return 0;
244 }
245
246 static int e1000_set_settings(struct net_device *netdev,
247                               struct ethtool_cmd *ecmd)
248 {
249         struct e1000_adapter *adapter = netdev_priv(netdev);
250         struct e1000_hw *hw = &adapter->hw;
251
252         /*
253          * When SoL/IDER sessions are active, autoneg/speed/duplex
254          * cannot be changed
255          */
256         if (e1000_check_reset_block(hw)) {
257                 e_err("Cannot change link characteristics when SoL/IDER is "
258                       "active.\n");
259                 return -EINVAL;
260         }
261
262         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
263                 msleep(1);
264
265         if (ecmd->autoneg == AUTONEG_ENABLE) {
266                 hw->mac.autoneg = 1;
267                 if (hw->phy.media_type == e1000_media_type_fiber)
268                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
269                                                      ADVERTISED_FIBRE |
270                                                      ADVERTISED_Autoneg;
271                 else
272                         hw->phy.autoneg_advertised = ecmd->advertising |
273                                                      ADVERTISED_TP |
274                                                      ADVERTISED_Autoneg;
275                 ecmd->advertising = hw->phy.autoneg_advertised;
276                 if (adapter->fc_autoneg)
277                         hw->fc.requested_mode = e1000_fc_default;
278         } else {
279                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
280                         clear_bit(__E1000_RESETTING, &adapter->state);
281                         return -EINVAL;
282                 }
283         }
284
285         /* reset the link */
286
287         if (netif_running(adapter->netdev)) {
288                 e1000e_down(adapter);
289                 e1000e_up(adapter);
290         } else {
291                 e1000e_reset(adapter);
292         }
293
294         clear_bit(__E1000_RESETTING, &adapter->state);
295         return 0;
296 }
297
298 static void e1000_get_pauseparam(struct net_device *netdev,
299                                  struct ethtool_pauseparam *pause)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         struct e1000_hw *hw = &adapter->hw;
303
304         pause->autoneg =
305                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
306
307         if (hw->fc.current_mode == e1000_fc_rx_pause) {
308                 pause->rx_pause = 1;
309         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
310                 pause->tx_pause = 1;
311         } else if (hw->fc.current_mode == e1000_fc_full) {
312                 pause->rx_pause = 1;
313                 pause->tx_pause = 1;
314         }
315 }
316
317 static int e1000_set_pauseparam(struct net_device *netdev,
318                                 struct ethtool_pauseparam *pause)
319 {
320         struct e1000_adapter *adapter = netdev_priv(netdev);
321         struct e1000_hw *hw = &adapter->hw;
322         int retval = 0;
323
324         adapter->fc_autoneg = pause->autoneg;
325
326         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
327                 msleep(1);
328
329         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
330                 hw->fc.requested_mode = e1000_fc_default;
331                 if (netif_running(adapter->netdev)) {
332                         e1000e_down(adapter);
333                         e1000e_up(adapter);
334                 } else {
335                         e1000e_reset(adapter);
336                 }
337         } else {
338                 if (pause->rx_pause && pause->tx_pause)
339                         hw->fc.requested_mode = e1000_fc_full;
340                 else if (pause->rx_pause && !pause->tx_pause)
341                         hw->fc.requested_mode = e1000_fc_rx_pause;
342                 else if (!pause->rx_pause && pause->tx_pause)
343                         hw->fc.requested_mode = e1000_fc_tx_pause;
344                 else if (!pause->rx_pause && !pause->tx_pause)
345                         hw->fc.requested_mode = e1000_fc_none;
346
347                 hw->fc.current_mode = hw->fc.requested_mode;
348
349                 if (hw->phy.media_type == e1000_media_type_fiber) {
350                         retval = hw->mac.ops.setup_link(hw);
351                         /* implicit goto out */
352                 } else {
353                         retval = e1000e_force_mac_fc(hw);
354                         if (retval)
355                                 goto out;
356                         e1000e_set_fc_watermarks(hw);
357                 }
358         }
359
360 out:
361         clear_bit(__E1000_RESETTING, &adapter->state);
362         return retval;
363 }
364
365 static u32 e1000_get_rx_csum(struct net_device *netdev)
366 {
367         struct e1000_adapter *adapter = netdev_priv(netdev);
368         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
369 }
370
371 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374
375         if (data)
376                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
377         else
378                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
379
380         if (netif_running(netdev))
381                 e1000e_reinit_locked(adapter);
382         else
383                 e1000e_reset(adapter);
384         return 0;
385 }
386
387 static u32 e1000_get_tx_csum(struct net_device *netdev)
388 {
389         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
390 }
391
392 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
393 {
394         if (data)
395                 netdev->features |= NETIF_F_HW_CSUM;
396         else
397                 netdev->features &= ~NETIF_F_HW_CSUM;
398
399         return 0;
400 }
401
402 static int e1000_set_tso(struct net_device *netdev, u32 data)
403 {
404         struct e1000_adapter *adapter = netdev_priv(netdev);
405
406         if (data) {
407                 netdev->features |= NETIF_F_TSO;
408                 netdev->features |= NETIF_F_TSO6;
409         } else {
410                 netdev->features &= ~NETIF_F_TSO;
411                 netdev->features &= ~NETIF_F_TSO6;
412         }
413
414         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
415         adapter->flags |= FLAG_TSO_FORCE;
416         return 0;
417 }
418
419 static u32 e1000_get_msglevel(struct net_device *netdev)
420 {
421         struct e1000_adapter *adapter = netdev_priv(netdev);
422         return adapter->msg_enable;
423 }
424
425 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
426 {
427         struct e1000_adapter *adapter = netdev_priv(netdev);
428         adapter->msg_enable = data;
429 }
430
431 static int e1000_get_regs_len(struct net_device *netdev)
432 {
433 #define E1000_REGS_LEN 32 /* overestimate */
434         return E1000_REGS_LEN * sizeof(u32);
435 }
436
437 static void e1000_get_regs(struct net_device *netdev,
438                            struct ethtool_regs *regs, void *p)
439 {
440         struct e1000_adapter *adapter = netdev_priv(netdev);
441         struct e1000_hw *hw = &adapter->hw;
442         u32 *regs_buff = p;
443         u16 phy_data;
444         u8 revision_id;
445
446         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
447
448         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
449
450         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
451
452         regs_buff[0]  = er32(CTRL);
453         regs_buff[1]  = er32(STATUS);
454
455         regs_buff[2]  = er32(RCTL);
456         regs_buff[3]  = er32(RDLEN);
457         regs_buff[4]  = er32(RDH);
458         regs_buff[5]  = er32(RDT);
459         regs_buff[6]  = er32(RDTR);
460
461         regs_buff[7]  = er32(TCTL);
462         regs_buff[8]  = er32(TDLEN);
463         regs_buff[9]  = er32(TDH);
464         regs_buff[10] = er32(TDT);
465         regs_buff[11] = er32(TIDV);
466
467         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
468
469         /* ethtool doesn't use anything past this point, so all this
470          * code is likely legacy junk for apps that may or may not
471          * exist */
472         if (hw->phy.type == e1000_phy_m88) {
473                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
474                 regs_buff[13] = (u32)phy_data; /* cable length */
475                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
476                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
479                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
480                 regs_buff[18] = regs_buff[13]; /* cable polarity */
481                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
482                 regs_buff[20] = regs_buff[17]; /* polarity correction */
483                 /* phy receive errors */
484                 regs_buff[22] = adapter->phy_stats.receive_errors;
485                 regs_buff[23] = regs_buff[13]; /* mdix mode */
486         }
487         regs_buff[21] = 0; /* was idle_errors */
488         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
489         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
490         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
491 }
492
493 static int e1000_get_eeprom_len(struct net_device *netdev)
494 {
495         struct e1000_adapter *adapter = netdev_priv(netdev);
496         return adapter->hw.nvm.word_size * 2;
497 }
498
499 static int e1000_get_eeprom(struct net_device *netdev,
500                             struct ethtool_eeprom *eeprom, u8 *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         u16 *eeprom_buff;
505         int first_word;
506         int last_word;
507         int ret_val = 0;
508         u16 i;
509
510         if (eeprom->len == 0)
511                 return -EINVAL;
512
513         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517
518         eeprom_buff = kmalloc(sizeof(u16) *
519                         (last_word - first_word + 1), GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
524                 ret_val = e1000_read_nvm(hw, first_word,
525                                          last_word - first_word + 1,
526                                          eeprom_buff);
527         } else {
528                 for (i = 0; i < last_word - first_word + 1; i++) {
529                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
530                                                       &eeprom_buff[i]);
531                         if (ret_val)
532                                 break;
533                 }
534         }
535
536         if (ret_val) {
537                 /* a read error occurred, throw away the result */
538                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
539         } else {
540                 /* Device's eeprom is always little-endian, word addressable */
541                 for (i = 0; i < last_word - first_word + 1; i++)
542                         le16_to_cpus(&eeprom_buff[i]);
543         }
544
545         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
546         kfree(eeprom_buff);
547
548         return ret_val;
549 }
550
551 static int e1000_set_eeprom(struct net_device *netdev,
552                             struct ethtool_eeprom *eeprom, u8 *bytes)
553 {
554         struct e1000_adapter *adapter = netdev_priv(netdev);
555         struct e1000_hw *hw = &adapter->hw;
556         u16 *eeprom_buff;
557         void *ptr;
558         int max_len;
559         int first_word;
560         int last_word;
561         int ret_val = 0;
562         u16 i;
563
564         if (eeprom->len == 0)
565                 return -EOPNOTSUPP;
566
567         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568                 return -EFAULT;
569
570         if (adapter->flags & FLAG_READ_ONLY_NVM)
571                 return -EINVAL;
572
573         max_len = hw->nvm.word_size * 2;
574
575         first_word = eeprom->offset >> 1;
576         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578         if (!eeprom_buff)
579                 return -ENOMEM;
580
581         ptr = (void *)eeprom_buff;
582
583         if (eeprom->offset & 1) {
584                 /* need read/modify/write of first changed EEPROM word */
585                 /* only the second byte of the word is being modified */
586                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
587                 ptr++;
588         }
589         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
590                 /* need read/modify/write of last changed EEPROM word */
591                 /* only the first byte of the word is being modified */
592                 ret_val = e1000_read_nvm(hw, last_word, 1,
593                                   &eeprom_buff[last_word - first_word]);
594
595         if (ret_val)
596                 goto out;
597
598         /* Device's eeprom is always little-endian, word addressable */
599         for (i = 0; i < last_word - first_word + 1; i++)
600                 le16_to_cpus(&eeprom_buff[i]);
601
602         memcpy(ptr, bytes, eeprom->len);
603
604         for (i = 0; i < last_word - first_word + 1; i++)
605                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
606
607         ret_val = e1000_write_nvm(hw, first_word,
608                                   last_word - first_word + 1, eeprom_buff);
609
610         if (ret_val)
611                 goto out;
612
613         /*
614          * Update the checksum over the first part of the EEPROM if needed
615          * and flush shadow RAM for applicable controllers
616          */
617         if ((first_word <= NVM_CHECKSUM_REG) ||
618             (hw->mac.type == e1000_82583) ||
619             (hw->mac.type == e1000_82574) ||
620             (hw->mac.type == e1000_82573))
621                 ret_val = e1000e_update_nvm_checksum(hw);
622
623 out:
624         kfree(eeprom_buff);
625         return ret_val;
626 }
627
628 static void e1000_get_drvinfo(struct net_device *netdev,
629                               struct ethtool_drvinfo *drvinfo)
630 {
631         struct e1000_adapter *adapter = netdev_priv(netdev);
632         char firmware_version[32];
633
634         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
635         strncpy(drvinfo->version, e1000e_driver_version, 32);
636
637         /*
638          * EEPROM image version # is reported as firmware version # for
639          * PCI-E controllers
640          */
641         sprintf(firmware_version, "%d.%d-%d",
642                 (adapter->eeprom_vers & 0xF000) >> 12,
643                 (adapter->eeprom_vers & 0x0FF0) >> 4,
644                 (adapter->eeprom_vers & 0x000F));
645
646         strncpy(drvinfo->fw_version, firmware_version, 32);
647         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
648         drvinfo->regdump_len = e1000_get_regs_len(netdev);
649         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
650 }
651
652 static void e1000_get_ringparam(struct net_device *netdev,
653                                 struct ethtool_ringparam *ring)
654 {
655         struct e1000_adapter *adapter = netdev_priv(netdev);
656         struct e1000_ring *tx_ring = adapter->tx_ring;
657         struct e1000_ring *rx_ring = adapter->rx_ring;
658
659         ring->rx_max_pending = E1000_MAX_RXD;
660         ring->tx_max_pending = E1000_MAX_TXD;
661         ring->rx_mini_max_pending = 0;
662         ring->rx_jumbo_max_pending = 0;
663         ring->rx_pending = rx_ring->count;
664         ring->tx_pending = tx_ring->count;
665         ring->rx_mini_pending = 0;
666         ring->rx_jumbo_pending = 0;
667 }
668
669 static int e1000_set_ringparam(struct net_device *netdev,
670                                struct ethtool_ringparam *ring)
671 {
672         struct e1000_adapter *adapter = netdev_priv(netdev);
673         struct e1000_ring *tx_ring, *tx_old;
674         struct e1000_ring *rx_ring, *rx_old;
675         int err;
676
677         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
678                 return -EINVAL;
679
680         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
681                 msleep(1);
682
683         if (netif_running(adapter->netdev))
684                 e1000e_down(adapter);
685
686         tx_old = adapter->tx_ring;
687         rx_old = adapter->rx_ring;
688
689         err = -ENOMEM;
690         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
691         if (!tx_ring)
692                 goto err_alloc_tx;
693         /*
694          * use a memcpy to save any previously configured
695          * items like napi structs from having to be
696          * reinitialized
697          */
698         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
699
700         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
701         if (!rx_ring)
702                 goto err_alloc_rx;
703         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
704
705         adapter->tx_ring = tx_ring;
706         adapter->rx_ring = rx_ring;
707
708         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
709         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
710         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
711
712         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
713         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
714         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
715
716         if (netif_running(adapter->netdev)) {
717                 /* Try to get new resources before deleting old */
718                 err = e1000e_setup_rx_resources(adapter);
719                 if (err)
720                         goto err_setup_rx;
721                 err = e1000e_setup_tx_resources(adapter);
722                 if (err)
723                         goto err_setup_tx;
724
725                 /*
726                  * restore the old in order to free it,
727                  * then add in the new
728                  */
729                 adapter->rx_ring = rx_old;
730                 adapter->tx_ring = tx_old;
731                 e1000e_free_rx_resources(adapter);
732                 e1000e_free_tx_resources(adapter);
733                 kfree(tx_old);
734                 kfree(rx_old);
735                 adapter->rx_ring = rx_ring;
736                 adapter->tx_ring = tx_ring;
737                 err = e1000e_up(adapter);
738                 if (err)
739                         goto err_setup;
740         }
741
742         clear_bit(__E1000_RESETTING, &adapter->state);
743         return 0;
744 err_setup_tx:
745         e1000e_free_rx_resources(adapter);
746 err_setup_rx:
747         adapter->rx_ring = rx_old;
748         adapter->tx_ring = tx_old;
749         kfree(rx_ring);
750 err_alloc_rx:
751         kfree(tx_ring);
752 err_alloc_tx:
753         e1000e_up(adapter);
754 err_setup:
755         clear_bit(__E1000_RESETTING, &adapter->state);
756         return err;
757 }
758
759 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
760                              int reg, int offset, u32 mask, u32 write)
761 {
762         u32 pat, val;
763         static const u32 test[] =
764                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
765         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
766                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
767                                       (test[pat] & write));
768                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
769                 if (val != (test[pat] & write & mask)) {
770                         e_err("pattern test reg %04X failed: got 0x%08X "
771                               "expected 0x%08X\n", reg + offset, val,
772                               (test[pat] & write & mask));
773                         *data = reg;
774                         return 1;
775                 }
776         }
777         return 0;
778 }
779
780 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
781                               int reg, u32 mask, u32 write)
782 {
783         u32 val;
784         __ew32(&adapter->hw, reg, write & mask);
785         val = __er32(&adapter->hw, reg);
786         if ((write & mask) != (val & mask)) {
787                 e_err("set/check reg %04X test failed: got 0x%08X "
788                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
789                 *data = reg;
790                 return 1;
791         }
792         return 0;
793 }
794 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
795         do {                                                                   \
796                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
797                         return 1;                                              \
798         } while (0)
799 #define REG_PATTERN_TEST(reg, mask, write)                                     \
800         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
801
802 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
803         do {                                                                   \
804                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
805                         return 1;                                              \
806         } while (0)
807
808 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
809 {
810         struct e1000_hw *hw = &adapter->hw;
811         struct e1000_mac_info *mac = &adapter->hw.mac;
812         u32 value;
813         u32 before;
814         u32 after;
815         u32 i;
816         u32 toggle;
817         u32 mask;
818
819         /*
820          * The status register is Read Only, so a write should fail.
821          * Some bits that get toggled are ignored.
822          */
823         switch (mac->type) {
824         /* there are several bits on newer hardware that are r/w */
825         case e1000_82571:
826         case e1000_82572:
827         case e1000_80003es2lan:
828                 toggle = 0x7FFFF3FF;
829                 break;
830         default:
831                 toggle = 0x7FFFF033;
832                 break;
833         }
834
835         before = er32(STATUS);
836         value = (er32(STATUS) & toggle);
837         ew32(STATUS, toggle);
838         after = er32(STATUS) & toggle;
839         if (value != after) {
840                 e_err("failed STATUS register test got: 0x%08X expected: "
841                       "0x%08X\n", after, value);
842                 *data = 1;
843                 return 1;
844         }
845         /* restore previous status */
846         ew32(STATUS, before);
847
848         if (!(adapter->flags & FLAG_IS_ICH)) {
849                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
850                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
851                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
852                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
853         }
854
855         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
856         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
857         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
858         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
859         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
860         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
861         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
862         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
863         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
864         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
865
866         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
867
868         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
869         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
870         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
871
872         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
873         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874         if (!(adapter->flags & FLAG_IS_ICH))
875                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
876         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
877         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
878         mask = 0x8003FFFF;
879         switch (mac->type) {
880         case e1000_ich10lan:
881         case e1000_pchlan:
882                 mask |= (1 << 18);
883                 break;
884         default:
885                 break;
886         }
887         for (i = 0; i < mac->rar_entry_count; i++)
888                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
889                                        mask, 0xFFFFFFFF);
890
891         for (i = 0; i < mac->mta_reg_count; i++)
892                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
893
894         *data = 0;
895         return 0;
896 }
897
898 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
899 {
900         u16 temp;
901         u16 checksum = 0;
902         u16 i;
903
904         *data = 0;
905         /* Read and add up the contents of the EEPROM */
906         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
907                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
908                         *data = 1;
909                         return *data;
910                 }
911                 checksum += temp;
912         }
913
914         /* If Checksum is not Correct return error else test passed */
915         if ((checksum != (u16) NVM_SUM) && !(*data))
916                 *data = 2;
917
918         return *data;
919 }
920
921 static irqreturn_t e1000_test_intr(int irq, void *data)
922 {
923         struct net_device *netdev = (struct net_device *) data;
924         struct e1000_adapter *adapter = netdev_priv(netdev);
925         struct e1000_hw *hw = &adapter->hw;
926
927         adapter->test_icr |= er32(ICR);
928
929         return IRQ_HANDLED;
930 }
931
932 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
933 {
934         struct net_device *netdev = adapter->netdev;
935         struct e1000_hw *hw = &adapter->hw;
936         u32 mask;
937         u32 shared_int = 1;
938         u32 irq = adapter->pdev->irq;
939         int i;
940         int ret_val = 0;
941         int int_mode = E1000E_INT_MODE_LEGACY;
942
943         *data = 0;
944
945         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
946         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
947                 int_mode = adapter->int_mode;
948                 e1000e_reset_interrupt_capability(adapter);
949                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
950                 e1000e_set_interrupt_capability(adapter);
951         }
952         /* Hook up test interrupt handler just for this test */
953         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
954                          netdev)) {
955                 shared_int = 0;
956         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
957                  netdev->name, netdev)) {
958                 *data = 1;
959                 ret_val = -1;
960                 goto out;
961         }
962         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
963
964         /* Disable all the interrupts */
965         ew32(IMC, 0xFFFFFFFF);
966         msleep(10);
967
968         /* Test each interrupt */
969         for (i = 0; i < 10; i++) {
970                 /* Interrupt to test */
971                 mask = 1 << i;
972
973                 if (adapter->flags & FLAG_IS_ICH) {
974                         switch (mask) {
975                         case E1000_ICR_RXSEQ:
976                                 continue;
977                         case 0x00000100:
978                                 if (adapter->hw.mac.type == e1000_ich8lan ||
979                                     adapter->hw.mac.type == e1000_ich9lan)
980                                         continue;
981                                 break;
982                         default:
983                                 break;
984                         }
985                 }
986
987                 if (!shared_int) {
988                         /*
989                          * Disable the interrupt to be reported in
990                          * the cause register and then force the same
991                          * interrupt and see if one gets posted.  If
992                          * an interrupt was posted to the bus, the
993                          * test failed.
994                          */
995                         adapter->test_icr = 0;
996                         ew32(IMC, mask);
997                         ew32(ICS, mask);
998                         msleep(10);
999
1000                         if (adapter->test_icr & mask) {
1001                                 *data = 3;
1002                                 break;
1003                         }
1004                 }
1005
1006                 /*
1007                  * Enable the interrupt to be reported in
1008                  * the cause register and then force the same
1009                  * interrupt and see if one gets posted.  If
1010                  * an interrupt was not posted to the bus, the
1011                  * test failed.
1012                  */
1013                 adapter->test_icr = 0;
1014                 ew32(IMS, mask);
1015                 ew32(ICS, mask);
1016                 msleep(10);
1017
1018                 if (!(adapter->test_icr & mask)) {
1019                         *data = 4;
1020                         break;
1021                 }
1022
1023                 if (!shared_int) {
1024                         /*
1025                          * Disable the other interrupts to be reported in
1026                          * the cause register and then force the other
1027                          * interrupts and see if any get posted.  If
1028                          * an interrupt was posted to the bus, the
1029                          * test failed.
1030                          */
1031                         adapter->test_icr = 0;
1032                         ew32(IMC, ~mask & 0x00007FFF);
1033                         ew32(ICS, ~mask & 0x00007FFF);
1034                         msleep(10);
1035
1036                         if (adapter->test_icr) {
1037                                 *data = 5;
1038                                 break;
1039                         }
1040                 }
1041         }
1042
1043         /* Disable all the interrupts */
1044         ew32(IMC, 0xFFFFFFFF);
1045         msleep(10);
1046
1047         /* Unhook test interrupt handler */
1048         free_irq(irq, netdev);
1049
1050 out:
1051         if (int_mode == E1000E_INT_MODE_MSIX) {
1052                 e1000e_reset_interrupt_capability(adapter);
1053                 adapter->int_mode = int_mode;
1054                 e1000e_set_interrupt_capability(adapter);
1055         }
1056
1057         return ret_val;
1058 }
1059
1060 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1061 {
1062         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1063         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1064         struct pci_dev *pdev = adapter->pdev;
1065         int i;
1066
1067         if (tx_ring->desc && tx_ring->buffer_info) {
1068                 for (i = 0; i < tx_ring->count; i++) {
1069                         if (tx_ring->buffer_info[i].dma)
1070                                 pci_unmap_single(pdev,
1071                                         tx_ring->buffer_info[i].dma,
1072                                         tx_ring->buffer_info[i].length,
1073                                         PCI_DMA_TODEVICE);
1074                         if (tx_ring->buffer_info[i].skb)
1075                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1076                 }
1077         }
1078
1079         if (rx_ring->desc && rx_ring->buffer_info) {
1080                 for (i = 0; i < rx_ring->count; i++) {
1081                         if (rx_ring->buffer_info[i].dma)
1082                                 pci_unmap_single(pdev,
1083                                         rx_ring->buffer_info[i].dma,
1084                                         2048, PCI_DMA_FROMDEVICE);
1085                         if (rx_ring->buffer_info[i].skb)
1086                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1087                 }
1088         }
1089
1090         if (tx_ring->desc) {
1091                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1092                                   tx_ring->dma);
1093                 tx_ring->desc = NULL;
1094         }
1095         if (rx_ring->desc) {
1096                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1097                                   rx_ring->dma);
1098                 rx_ring->desc = NULL;
1099         }
1100
1101         kfree(tx_ring->buffer_info);
1102         tx_ring->buffer_info = NULL;
1103         kfree(rx_ring->buffer_info);
1104         rx_ring->buffer_info = NULL;
1105 }
1106
1107 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1108 {
1109         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1110         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1111         struct pci_dev *pdev = adapter->pdev;
1112         struct e1000_hw *hw = &adapter->hw;
1113         u32 rctl;
1114         int i;
1115         int ret_val;
1116
1117         /* Setup Tx descriptor ring and Tx buffers */
1118
1119         if (!tx_ring->count)
1120                 tx_ring->count = E1000_DEFAULT_TXD;
1121
1122         tx_ring->buffer_info = kcalloc(tx_ring->count,
1123                                        sizeof(struct e1000_buffer),
1124                                        GFP_KERNEL);
1125         if (!(tx_ring->buffer_info)) {
1126                 ret_val = 1;
1127                 goto err_nomem;
1128         }
1129
1130         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1131         tx_ring->size = ALIGN(tx_ring->size, 4096);
1132         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1133                                            &tx_ring->dma, GFP_KERNEL);
1134         if (!tx_ring->desc) {
1135                 ret_val = 2;
1136                 goto err_nomem;
1137         }
1138         tx_ring->next_to_use = 0;
1139         tx_ring->next_to_clean = 0;
1140
1141         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1142         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1143         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1144         ew32(TDH, 0);
1145         ew32(TDT, 0);
1146         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1147              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1148              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1149
1150         for (i = 0; i < tx_ring->count; i++) {
1151                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1152                 struct sk_buff *skb;
1153                 unsigned int skb_size = 1024;
1154
1155                 skb = alloc_skb(skb_size, GFP_KERNEL);
1156                 if (!skb) {
1157                         ret_val = 3;
1158                         goto err_nomem;
1159                 }
1160                 skb_put(skb, skb_size);
1161                 tx_ring->buffer_info[i].skb = skb;
1162                 tx_ring->buffer_info[i].length = skb->len;
1163                 tx_ring->buffer_info[i].dma =
1164                         pci_map_single(pdev, skb->data, skb->len,
1165                                        PCI_DMA_TODEVICE);
1166                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1167                         ret_val = 4;
1168                         goto err_nomem;
1169                 }
1170                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1171                 tx_desc->lower.data = cpu_to_le32(skb->len);
1172                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1173                                                    E1000_TXD_CMD_IFCS |
1174                                                    E1000_TXD_CMD_RS);
1175                 tx_desc->upper.data = 0;
1176         }
1177
1178         /* Setup Rx descriptor ring and Rx buffers */
1179
1180         if (!rx_ring->count)
1181                 rx_ring->count = E1000_DEFAULT_RXD;
1182
1183         rx_ring->buffer_info = kcalloc(rx_ring->count,
1184                                        sizeof(struct e1000_buffer),
1185                                        GFP_KERNEL);
1186         if (!(rx_ring->buffer_info)) {
1187                 ret_val = 5;
1188                 goto err_nomem;
1189         }
1190
1191         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1192         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1193                                            &rx_ring->dma, GFP_KERNEL);
1194         if (!rx_ring->desc) {
1195                 ret_val = 6;
1196                 goto err_nomem;
1197         }
1198         rx_ring->next_to_use = 0;
1199         rx_ring->next_to_clean = 0;
1200
1201         rctl = er32(RCTL);
1202         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1203         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1204         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1205         ew32(RDLEN, rx_ring->size);
1206         ew32(RDH, 0);
1207         ew32(RDT, 0);
1208         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1209                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1210                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1211                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1212                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1213         ew32(RCTL, rctl);
1214
1215         for (i = 0; i < rx_ring->count; i++) {
1216                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1217                 struct sk_buff *skb;
1218
1219                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1220                 if (!skb) {
1221                         ret_val = 7;
1222                         goto err_nomem;
1223                 }
1224                 skb_reserve(skb, NET_IP_ALIGN);
1225                 rx_ring->buffer_info[i].skb = skb;
1226                 rx_ring->buffer_info[i].dma =
1227                         pci_map_single(pdev, skb->data, 2048,
1228                                        PCI_DMA_FROMDEVICE);
1229                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1230                         ret_val = 8;
1231                         goto err_nomem;
1232                 }
1233                 rx_desc->buffer_addr =
1234                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1235                 memset(skb->data, 0x00, skb->len);
1236         }
1237
1238         return 0;
1239
1240 err_nomem:
1241         e1000_free_desc_rings(adapter);
1242         return ret_val;
1243 }
1244
1245 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1246 {
1247         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1248         e1e_wphy(&adapter->hw, 29, 0x001F);
1249         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1250         e1e_wphy(&adapter->hw, 29, 0x001A);
1251         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1252 }
1253
1254 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1255 {
1256         struct e1000_hw *hw = &adapter->hw;
1257         u32 ctrl_reg = 0;
1258         u32 stat_reg = 0;
1259         u16 phy_reg = 0;
1260
1261         hw->mac.autoneg = 0;
1262
1263         /* Workaround: K1 must be disabled for stable 1Gbps operation */
1264         if (hw->mac.type == e1000_pchlan)
1265                 e1000_configure_k1_ich8lan(hw, false);
1266
1267         if (hw->phy.type == e1000_phy_m88) {
1268                 /* Auto-MDI/MDIX Off */
1269                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1270                 /* reset to update Auto-MDI/MDIX */
1271                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1272                 /* autoneg off */
1273                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1274         } else if (hw->phy.type == e1000_phy_gg82563)
1275                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1276
1277         ctrl_reg = er32(CTRL);
1278
1279         switch (hw->phy.type) {
1280         case e1000_phy_ife:
1281                 /* force 100, set loopback */
1282                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1283
1284                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1285                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1286                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1287                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1288                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1289                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1290                 break;
1291         case e1000_phy_bm:
1292                 /* Set Default MAC Interface speed to 1GB */
1293                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1294                 phy_reg &= ~0x0007;
1295                 phy_reg |= 0x006;
1296                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1297                 /* Assert SW reset for above settings to take effect */
1298                 e1000e_commit_phy(hw);
1299                 mdelay(1);
1300                 /* Force Full Duplex */
1301                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1302                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1303                 /* Set Link Up (in force link) */
1304                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1305                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1306                 /* Force Link */
1307                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1308                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1309                 /* Set Early Link Enable */
1310                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1311                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1312                 /* fall through */
1313         default:
1314                 /* force 1000, set loopback */
1315                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1316                 mdelay(250);
1317
1318                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1319                 ctrl_reg = er32(CTRL);
1320                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1321                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1322                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1323                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1324                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1325
1326                 if (adapter->flags & FLAG_IS_ICH)
1327                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1328         }
1329
1330         if (hw->phy.media_type == e1000_media_type_copper &&
1331             hw->phy.type == e1000_phy_m88) {
1332                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1333         } else {
1334                 /*
1335                  * Set the ILOS bit on the fiber Nic if half duplex link is
1336                  * detected.
1337                  */
1338                 stat_reg = er32(STATUS);
1339                 if ((stat_reg & E1000_STATUS_FD) == 0)
1340                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1341         }
1342
1343         ew32(CTRL, ctrl_reg);
1344
1345         /*
1346          * Disable the receiver on the PHY so when a cable is plugged in, the
1347          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1348          */
1349         if (hw->phy.type == e1000_phy_m88)
1350                 e1000_phy_disable_receiver(adapter);
1351
1352         udelay(500);
1353
1354         return 0;
1355 }
1356
1357 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1358 {
1359         struct e1000_hw *hw = &adapter->hw;
1360         u32 ctrl = er32(CTRL);
1361         int link = 0;
1362
1363         /* special requirements for 82571/82572 fiber adapters */
1364
1365         /*
1366          * jump through hoops to make sure link is up because serdes
1367          * link is hardwired up
1368          */
1369         ctrl |= E1000_CTRL_SLU;
1370         ew32(CTRL, ctrl);
1371
1372         /* disable autoneg */
1373         ctrl = er32(TXCW);
1374         ctrl &= ~(1 << 31);
1375         ew32(TXCW, ctrl);
1376
1377         link = (er32(STATUS) & E1000_STATUS_LU);
1378
1379         if (!link) {
1380                 /* set invert loss of signal */
1381                 ctrl = er32(CTRL);
1382                 ctrl |= E1000_CTRL_ILOS;
1383                 ew32(CTRL, ctrl);
1384         }
1385
1386         /*
1387          * special write to serdes control register to enable SerDes analog
1388          * loopback
1389          */
1390 #define E1000_SERDES_LB_ON 0x410
1391         ew32(SCTL, E1000_SERDES_LB_ON);
1392         msleep(10);
1393
1394         return 0;
1395 }
1396
1397 /* only call this for fiber/serdes connections to es2lan */
1398 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1399 {
1400         struct e1000_hw *hw = &adapter->hw;
1401         u32 ctrlext = er32(CTRL_EXT);
1402         u32 ctrl = er32(CTRL);
1403
1404         /*
1405          * save CTRL_EXT to restore later, reuse an empty variable (unused
1406          * on mac_type 80003es2lan)
1407          */
1408         adapter->tx_fifo_head = ctrlext;
1409
1410         /* clear the serdes mode bits, putting the device into mac loopback */
1411         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1412         ew32(CTRL_EXT, ctrlext);
1413
1414         /* force speed to 1000/FD, link up */
1415         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1416         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1417                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1418         ew32(CTRL, ctrl);
1419
1420         /* set mac loopback */
1421         ctrl = er32(RCTL);
1422         ctrl |= E1000_RCTL_LBM_MAC;
1423         ew32(RCTL, ctrl);
1424
1425         /* set testing mode parameters (no need to reset later) */
1426 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1427 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1428         ew32(KMRNCTRLSTA,
1429              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1430
1431         return 0;
1432 }
1433
1434 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1435 {
1436         struct e1000_hw *hw = &adapter->hw;
1437         u32 rctl;
1438
1439         if (hw->phy.media_type == e1000_media_type_fiber ||
1440             hw->phy.media_type == e1000_media_type_internal_serdes) {
1441                 switch (hw->mac.type) {
1442                 case e1000_80003es2lan:
1443                         return e1000_set_es2lan_mac_loopback(adapter);
1444                         break;
1445                 case e1000_82571:
1446                 case e1000_82572:
1447                         return e1000_set_82571_fiber_loopback(adapter);
1448                         break;
1449                 default:
1450                         rctl = er32(RCTL);
1451                         rctl |= E1000_RCTL_LBM_TCVR;
1452                         ew32(RCTL, rctl);
1453                         return 0;
1454                 }
1455         } else if (hw->phy.media_type == e1000_media_type_copper) {
1456                 return e1000_integrated_phy_loopback(adapter);
1457         }
1458
1459         return 7;
1460 }
1461
1462 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1463 {
1464         struct e1000_hw *hw = &adapter->hw;
1465         u32 rctl;
1466         u16 phy_reg;
1467
1468         rctl = er32(RCTL);
1469         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1470         ew32(RCTL, rctl);
1471
1472         switch (hw->mac.type) {
1473         case e1000_80003es2lan:
1474                 if (hw->phy.media_type == e1000_media_type_fiber ||
1475                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1476                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1477                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1478                         adapter->tx_fifo_head = 0;
1479                 }
1480                 /* fall through */
1481         case e1000_82571:
1482         case e1000_82572:
1483                 if (hw->phy.media_type == e1000_media_type_fiber ||
1484                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 #define E1000_SERDES_LB_OFF 0x400
1486                         ew32(SCTL, E1000_SERDES_LB_OFF);
1487                         msleep(10);
1488                         break;
1489                 }
1490                 /* Fall Through */
1491         default:
1492                 hw->mac.autoneg = 1;
1493                 if (hw->phy.type == e1000_phy_gg82563)
1494                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1495                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1496                 if (phy_reg & MII_CR_LOOPBACK) {
1497                         phy_reg &= ~MII_CR_LOOPBACK;
1498                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1499                         e1000e_commit_phy(hw);
1500                 }
1501                 break;
1502         }
1503 }
1504
1505 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1506                                       unsigned int frame_size)
1507 {
1508         memset(skb->data, 0xFF, frame_size);
1509         frame_size &= ~1;
1510         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1511         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1512         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1513 }
1514
1515 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1516                                     unsigned int frame_size)
1517 {
1518         frame_size &= ~1;
1519         if (*(skb->data + 3) == 0xFF)
1520                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1521                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1522                         return 0;
1523         return 13;
1524 }
1525
1526 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1527 {
1528         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1529         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1530         struct pci_dev *pdev = adapter->pdev;
1531         struct e1000_hw *hw = &adapter->hw;
1532         int i, j, k, l;
1533         int lc;
1534         int good_cnt;
1535         int ret_val = 0;
1536         unsigned long time;
1537
1538         ew32(RDT, rx_ring->count - 1);
1539
1540         /*
1541          * Calculate the loop count based on the largest descriptor ring
1542          * The idea is to wrap the largest ring a number of times using 64
1543          * send/receive pairs during each loop
1544          */
1545
1546         if (rx_ring->count <= tx_ring->count)
1547                 lc = ((tx_ring->count / 64) * 2) + 1;
1548         else
1549                 lc = ((rx_ring->count / 64) * 2) + 1;
1550
1551         k = 0;
1552         l = 0;
1553         for (j = 0; j <= lc; j++) { /* loop count loop */
1554                 for (i = 0; i < 64; i++) { /* send the packets */
1555                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1556                                                   1024);
1557                         pci_dma_sync_single_for_device(pdev,
1558                                         tx_ring->buffer_info[k].dma,
1559                                         tx_ring->buffer_info[k].length,
1560                                         PCI_DMA_TODEVICE);
1561                         k++;
1562                         if (k == tx_ring->count)
1563                                 k = 0;
1564                 }
1565                 ew32(TDT, k);
1566                 msleep(200);
1567                 time = jiffies; /* set the start time for the receive */
1568                 good_cnt = 0;
1569                 do { /* receive the sent packets */
1570                         pci_dma_sync_single_for_cpu(pdev,
1571                                         rx_ring->buffer_info[l].dma, 2048,
1572                                         PCI_DMA_FROMDEVICE);
1573
1574                         ret_val = e1000_check_lbtest_frame(
1575                                         rx_ring->buffer_info[l].skb, 1024);
1576                         if (!ret_val)
1577                                 good_cnt++;
1578                         l++;
1579                         if (l == rx_ring->count)
1580                                 l = 0;
1581                         /*
1582                          * time + 20 msecs (200 msecs on 2.4) is more than
1583                          * enough time to complete the receives, if it's
1584                          * exceeded, break and error off
1585                          */
1586                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1587                 if (good_cnt != 64) {
1588                         ret_val = 13; /* ret_val is the same as mis-compare */
1589                         break;
1590                 }
1591                 if (jiffies >= (time + 20)) {
1592                         ret_val = 14; /* error code for time out error */
1593                         break;
1594                 }
1595         } /* end loop count loop */
1596         return ret_val;
1597 }
1598
1599 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1600 {
1601         /*
1602          * PHY loopback cannot be performed if SoL/IDER
1603          * sessions are active
1604          */
1605         if (e1000_check_reset_block(&adapter->hw)) {
1606                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1607                 *data = 0;
1608                 goto out;
1609         }
1610
1611         *data = e1000_setup_desc_rings(adapter);
1612         if (*data)
1613                 goto out;
1614
1615         *data = e1000_setup_loopback_test(adapter);
1616         if (*data)
1617                 goto err_loopback;
1618
1619         *data = e1000_run_loopback_test(adapter);
1620         e1000_loopback_cleanup(adapter);
1621
1622 err_loopback:
1623         e1000_free_desc_rings(adapter);
1624 out:
1625         return *data;
1626 }
1627
1628 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1629 {
1630         struct e1000_hw *hw = &adapter->hw;
1631
1632         *data = 0;
1633         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1634                 int i = 0;
1635                 hw->mac.serdes_has_link = false;
1636
1637                 /*
1638                  * On some blade server designs, link establishment
1639                  * could take as long as 2-3 minutes
1640                  */
1641                 do {
1642                         hw->mac.ops.check_for_link(hw);
1643                         if (hw->mac.serdes_has_link)
1644                                 return *data;
1645                         msleep(20);
1646                 } while (i++ < 3750);
1647
1648                 *data = 1;
1649         } else {
1650                 hw->mac.ops.check_for_link(hw);
1651                 if (hw->mac.autoneg)
1652                         msleep(4000);
1653
1654                 if (!(er32(STATUS) &
1655                       E1000_STATUS_LU))
1656                         *data = 1;
1657         }
1658         return *data;
1659 }
1660
1661 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1662 {
1663         switch (sset) {
1664         case ETH_SS_TEST:
1665                 return E1000_TEST_LEN;
1666         case ETH_SS_STATS:
1667                 return E1000_STATS_LEN;
1668         default:
1669                 return -EOPNOTSUPP;
1670         }
1671 }
1672
1673 static void e1000_diag_test(struct net_device *netdev,
1674                             struct ethtool_test *eth_test, u64 *data)
1675 {
1676         struct e1000_adapter *adapter = netdev_priv(netdev);
1677         u16 autoneg_advertised;
1678         u8 forced_speed_duplex;
1679         u8 autoneg;
1680         bool if_running = netif_running(netdev);
1681
1682         set_bit(__E1000_TESTING, &adapter->state);
1683         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1684                 /* Offline tests */
1685
1686                 /* save speed, duplex, autoneg settings */
1687                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1688                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1689                 autoneg = adapter->hw.mac.autoneg;
1690
1691                 e_info("offline testing starting\n");
1692
1693                 /*
1694                  * Link test performed before hardware reset so autoneg doesn't
1695                  * interfere with test result
1696                  */
1697                 if (e1000_link_test(adapter, &data[4]))
1698                         eth_test->flags |= ETH_TEST_FL_FAILED;
1699
1700                 if (if_running)
1701                         /* indicate we're in test mode */
1702                         dev_close(netdev);
1703                 else
1704                         e1000e_reset(adapter);
1705
1706                 if (e1000_reg_test(adapter, &data[0]))
1707                         eth_test->flags |= ETH_TEST_FL_FAILED;
1708
1709                 e1000e_reset(adapter);
1710                 if (e1000_eeprom_test(adapter, &data[1]))
1711                         eth_test->flags |= ETH_TEST_FL_FAILED;
1712
1713                 e1000e_reset(adapter);
1714                 if (e1000_intr_test(adapter, &data[2]))
1715                         eth_test->flags |= ETH_TEST_FL_FAILED;
1716
1717                 e1000e_reset(adapter);
1718                 /* make sure the phy is powered up */
1719                 e1000e_power_up_phy(adapter);
1720                 if (e1000_loopback_test(adapter, &data[3]))
1721                         eth_test->flags |= ETH_TEST_FL_FAILED;
1722
1723                 /* restore speed, duplex, autoneg settings */
1724                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1725                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1726                 adapter->hw.mac.autoneg = autoneg;
1727
1728                 /* force this routine to wait until autoneg complete/timeout */
1729                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1730                 e1000e_reset(adapter);
1731                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1732
1733                 clear_bit(__E1000_TESTING, &adapter->state);
1734                 if (if_running)
1735                         dev_open(netdev);
1736         } else {
1737                 e_info("online testing starting\n");
1738                 /* Online tests */
1739                 if (e1000_link_test(adapter, &data[4]))
1740                         eth_test->flags |= ETH_TEST_FL_FAILED;
1741
1742                 /* Online tests aren't run; pass by default */
1743                 data[0] = 0;
1744                 data[1] = 0;
1745                 data[2] = 0;
1746                 data[3] = 0;
1747
1748                 clear_bit(__E1000_TESTING, &adapter->state);
1749         }
1750         msleep_interruptible(4 * 1000);
1751 }
1752
1753 static void e1000_get_wol(struct net_device *netdev,
1754                           struct ethtool_wolinfo *wol)
1755 {
1756         struct e1000_adapter *adapter = netdev_priv(netdev);
1757
1758         wol->supported = 0;
1759         wol->wolopts = 0;
1760
1761         if (!(adapter->flags & FLAG_HAS_WOL) ||
1762             !device_can_wakeup(&adapter->pdev->dev))
1763                 return;
1764
1765         wol->supported = WAKE_UCAST | WAKE_MCAST |
1766                          WAKE_BCAST | WAKE_MAGIC |
1767                          WAKE_PHY | WAKE_ARP;
1768
1769         /* apply any specific unsupported masks here */
1770         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1771                 wol->supported &= ~WAKE_UCAST;
1772
1773                 if (adapter->wol & E1000_WUFC_EX)
1774                         e_err("Interface does not support directed (unicast) "
1775                               "frame wake-up packets\n");
1776         }
1777
1778         if (adapter->wol & E1000_WUFC_EX)
1779                 wol->wolopts |= WAKE_UCAST;
1780         if (adapter->wol & E1000_WUFC_MC)
1781                 wol->wolopts |= WAKE_MCAST;
1782         if (adapter->wol & E1000_WUFC_BC)
1783                 wol->wolopts |= WAKE_BCAST;
1784         if (adapter->wol & E1000_WUFC_MAG)
1785                 wol->wolopts |= WAKE_MAGIC;
1786         if (adapter->wol & E1000_WUFC_LNKC)
1787                 wol->wolopts |= WAKE_PHY;
1788         if (adapter->wol & E1000_WUFC_ARP)
1789                 wol->wolopts |= WAKE_ARP;
1790 }
1791
1792 static int e1000_set_wol(struct net_device *netdev,
1793                          struct ethtool_wolinfo *wol)
1794 {
1795         struct e1000_adapter *adapter = netdev_priv(netdev);
1796
1797         if (!(adapter->flags & FLAG_HAS_WOL) ||
1798             !device_can_wakeup(&adapter->pdev->dev) ||
1799             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1800                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1801                 return -EOPNOTSUPP;
1802
1803         /* these settings will always override what we currently have */
1804         adapter->wol = 0;
1805
1806         if (wol->wolopts & WAKE_UCAST)
1807                 adapter->wol |= E1000_WUFC_EX;
1808         if (wol->wolopts & WAKE_MCAST)
1809                 adapter->wol |= E1000_WUFC_MC;
1810         if (wol->wolopts & WAKE_BCAST)
1811                 adapter->wol |= E1000_WUFC_BC;
1812         if (wol->wolopts & WAKE_MAGIC)
1813                 adapter->wol |= E1000_WUFC_MAG;
1814         if (wol->wolopts & WAKE_PHY)
1815                 adapter->wol |= E1000_WUFC_LNKC;
1816         if (wol->wolopts & WAKE_ARP)
1817                 adapter->wol |= E1000_WUFC_ARP;
1818
1819         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1820
1821         return 0;
1822 }
1823
1824 /* toggle LED 4 times per second = 2 "blinks" per second */
1825 #define E1000_ID_INTERVAL       (HZ/4)
1826
1827 /* bit defines for adapter->led_status */
1828 #define E1000_LED_ON            0
1829
1830 static void e1000e_led_blink_task(struct work_struct *work)
1831 {
1832         struct e1000_adapter *adapter = container_of(work,
1833                                         struct e1000_adapter, led_blink_task);
1834
1835         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1836                 adapter->hw.mac.ops.led_off(&adapter->hw);
1837         else
1838                 adapter->hw.mac.ops.led_on(&adapter->hw);
1839 }
1840
1841 static void e1000_led_blink_callback(unsigned long data)
1842 {
1843         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1844
1845         schedule_work(&adapter->led_blink_task);
1846         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1847 }
1848
1849 static int e1000_phys_id(struct net_device *netdev, u32 data)
1850 {
1851         struct e1000_adapter *adapter = netdev_priv(netdev);
1852         struct e1000_hw *hw = &adapter->hw;
1853
1854         if (!data)
1855                 data = INT_MAX;
1856
1857         if ((hw->phy.type == e1000_phy_ife) ||
1858             (hw->mac.type == e1000_pchlan) ||
1859             (hw->mac.type == e1000_82583) ||
1860             (hw->mac.type == e1000_82574)) {
1861                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1862                 if (!adapter->blink_timer.function) {
1863                         init_timer(&adapter->blink_timer);
1864                         adapter->blink_timer.function =
1865                                 e1000_led_blink_callback;
1866                         adapter->blink_timer.data = (unsigned long) adapter;
1867                 }
1868                 mod_timer(&adapter->blink_timer, jiffies);
1869                 msleep_interruptible(data * 1000);
1870                 del_timer_sync(&adapter->blink_timer);
1871                 if (hw->phy.type == e1000_phy_ife)
1872                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1873         } else {
1874                 e1000e_blink_led(hw);
1875                 msleep_interruptible(data * 1000);
1876         }
1877
1878         hw->mac.ops.led_off(hw);
1879         clear_bit(E1000_LED_ON, &adapter->led_status);
1880         hw->mac.ops.cleanup_led(hw);
1881
1882         return 0;
1883 }
1884
1885 static int e1000_get_coalesce(struct net_device *netdev,
1886                               struct ethtool_coalesce *ec)
1887 {
1888         struct e1000_adapter *adapter = netdev_priv(netdev);
1889
1890         if (adapter->itr_setting <= 3)
1891                 ec->rx_coalesce_usecs = adapter->itr_setting;
1892         else
1893                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1894
1895         return 0;
1896 }
1897
1898 static int e1000_set_coalesce(struct net_device *netdev,
1899                               struct ethtool_coalesce *ec)
1900 {
1901         struct e1000_adapter *adapter = netdev_priv(netdev);
1902         struct e1000_hw *hw = &adapter->hw;
1903
1904         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1905             ((ec->rx_coalesce_usecs > 3) &&
1906              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1907             (ec->rx_coalesce_usecs == 2))
1908                 return -EINVAL;
1909
1910         if (ec->rx_coalesce_usecs <= 3) {
1911                 adapter->itr = 20000;
1912                 adapter->itr_setting = ec->rx_coalesce_usecs;
1913         } else {
1914                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1915                 adapter->itr_setting = adapter->itr & ~3;
1916         }
1917
1918         if (adapter->itr_setting != 0)
1919                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1920         else
1921                 ew32(ITR, 0);
1922
1923         return 0;
1924 }
1925
1926 static int e1000_nway_reset(struct net_device *netdev)
1927 {
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929         if (netif_running(netdev))
1930                 e1000e_reinit_locked(adapter);
1931         return 0;
1932 }
1933
1934 static void e1000_get_ethtool_stats(struct net_device *netdev,
1935                                     struct ethtool_stats *stats,
1936                                     u64 *data)
1937 {
1938         struct e1000_adapter *adapter = netdev_priv(netdev);
1939         int i;
1940         char *p = NULL;
1941
1942         e1000e_update_stats(adapter);
1943         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1944                 switch (e1000_gstrings_stats[i].type) {
1945                 case NETDEV_STATS:
1946                         p = (char *) netdev +
1947                                         e1000_gstrings_stats[i].stat_offset;
1948                         break;
1949                 case E1000_STATS:
1950                         p = (char *) adapter +
1951                                         e1000_gstrings_stats[i].stat_offset;
1952                         break;
1953                 }
1954
1955                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1956                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1957         }
1958 }
1959
1960 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1961                               u8 *data)
1962 {
1963         u8 *p = data;
1964         int i;
1965
1966         switch (stringset) {
1967         case ETH_SS_TEST:
1968                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1969                 break;
1970         case ETH_SS_STATS:
1971                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1972                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1973                                ETH_GSTRING_LEN);
1974                         p += ETH_GSTRING_LEN;
1975                 }
1976                 break;
1977         }
1978 }
1979
1980 static const struct ethtool_ops e1000_ethtool_ops = {
1981         .get_settings           = e1000_get_settings,
1982         .set_settings           = e1000_set_settings,
1983         .get_drvinfo            = e1000_get_drvinfo,
1984         .get_regs_len           = e1000_get_regs_len,
1985         .get_regs               = e1000_get_regs,
1986         .get_wol                = e1000_get_wol,
1987         .set_wol                = e1000_set_wol,
1988         .get_msglevel           = e1000_get_msglevel,
1989         .set_msglevel           = e1000_set_msglevel,
1990         .nway_reset             = e1000_nway_reset,
1991         .get_link               = e1000_get_link,
1992         .get_eeprom_len         = e1000_get_eeprom_len,
1993         .get_eeprom             = e1000_get_eeprom,
1994         .set_eeprom             = e1000_set_eeprom,
1995         .get_ringparam          = e1000_get_ringparam,
1996         .set_ringparam          = e1000_set_ringparam,
1997         .get_pauseparam         = e1000_get_pauseparam,
1998         .set_pauseparam         = e1000_set_pauseparam,
1999         .get_rx_csum            = e1000_get_rx_csum,
2000         .set_rx_csum            = e1000_set_rx_csum,
2001         .get_tx_csum            = e1000_get_tx_csum,
2002         .set_tx_csum            = e1000_set_tx_csum,
2003         .get_sg                 = ethtool_op_get_sg,
2004         .set_sg                 = ethtool_op_set_sg,
2005         .get_tso                = ethtool_op_get_tso,
2006         .set_tso                = e1000_set_tso,
2007         .self_test              = e1000_diag_test,
2008         .get_strings            = e1000_get_strings,
2009         .phys_id                = e1000_phys_id,
2010         .get_ethtool_stats      = e1000_get_ethtool_stats,
2011         .get_sset_count         = e1000e_get_sset_count,
2012         .get_coalesce           = e1000_get_coalesce,
2013         .set_coalesce           = e1000_set_coalesce,
2014         .get_flags              = ethtool_op_get_flags,
2015         .set_flags              = ethtool_op_set_flags,
2016 };
2017
2018 void e1000e_set_ethtool_ops(struct net_device *netdev)
2019 {
2020         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2021 }