Merge branch 'u-boot/master' into 'u-boot-arm/master'
[platform/kernel/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include "e1000.h"
33
34 #define TOUT_LOOP   100000
35
36 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
38
39 #define E1000_DEFAULT_PCI_PBA   0x00000030
40 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
41
42 /* NIC specific static variables go here */
43
44 static char tx_pool[128 + 16];
45 static char rx_pool[128 + 16];
46 static char packet[2096];
47
48 static struct e1000_tx_desc *tx_base;
49 static struct e1000_rx_desc *rx_base;
50
51 static int tx_tail;
52 static int rx_tail, rx_last;
53
54 static struct pci_device_id e1000_supported[] = {
55         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72         /* E1000 PCIe card */
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95         {}
96 };
97
98 /* Function forward declarations */
99 static int e1000_setup_link(struct eth_device *nic);
100 static int e1000_setup_fiber_link(struct eth_device *nic);
101 static int e1000_setup_copper_link(struct eth_device *nic);
102 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
103 static void e1000_config_collision_dist(struct e1000_hw *hw);
104 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
105 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
106 static int e1000_check_for_link(struct eth_device *nic);
107 static int e1000_wait_autoneg(struct e1000_hw *hw);
108 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
109                                        uint16_t * duplex);
110 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
111                               uint16_t * phy_data);
112 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
113                                uint16_t phy_data);
114 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
115 static int e1000_phy_reset(struct e1000_hw *hw);
116 static int e1000_detect_gig_phy(struct e1000_hw *hw);
117 static void e1000_set_media_type(struct e1000_hw *hw);
118
119 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
120 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
121
122 #ifndef CONFIG_E1000_NO_NVM
123 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
124 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
125                 uint16_t words,
126                 uint16_t *data);
127 /******************************************************************************
128  * Raises the EEPROM's clock input.
129  *
130  * hw - Struct containing variables accessed by shared code
131  * eecd - EECD's current value
132  *****************************************************************************/
133 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
134 {
135         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
136          * wait 50 microseconds.
137          */
138         *eecd = *eecd | E1000_EECD_SK;
139         E1000_WRITE_REG(hw, EECD, *eecd);
140         E1000_WRITE_FLUSH(hw);
141         udelay(50);
142 }
143
144 /******************************************************************************
145  * Lowers the EEPROM's clock input.
146  *
147  * hw - Struct containing variables accessed by shared code
148  * eecd - EECD's current value
149  *****************************************************************************/
150 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
151 {
152         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
153          * wait 50 microseconds.
154          */
155         *eecd = *eecd & ~E1000_EECD_SK;
156         E1000_WRITE_REG(hw, EECD, *eecd);
157         E1000_WRITE_FLUSH(hw);
158         udelay(50);
159 }
160
161 /******************************************************************************
162  * Shift data bits out to the EEPROM.
163  *
164  * hw - Struct containing variables accessed by shared code
165  * data - data to send to the EEPROM
166  * count - number of bits to shift out
167  *****************************************************************************/
168 static void
169 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
170 {
171         uint32_t eecd;
172         uint32_t mask;
173
174         /* We need to shift "count" bits out to the EEPROM. So, value in the
175          * "data" parameter will be shifted out to the EEPROM one bit at a time.
176          * In order to do this, "data" must be broken down into bits.
177          */
178         mask = 0x01 << (count - 1);
179         eecd = E1000_READ_REG(hw, EECD);
180         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
181         do {
182                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
183                  * and then raising and then lowering the clock (the SK bit controls
184                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
185                  * by setting "DI" to "0" and then raising and then lowering the clock.
186                  */
187                 eecd &= ~E1000_EECD_DI;
188
189                 if (data & mask)
190                         eecd |= E1000_EECD_DI;
191
192                 E1000_WRITE_REG(hw, EECD, eecd);
193                 E1000_WRITE_FLUSH(hw);
194
195                 udelay(50);
196
197                 e1000_raise_ee_clk(hw, &eecd);
198                 e1000_lower_ee_clk(hw, &eecd);
199
200                 mask = mask >> 1;
201
202         } while (mask);
203
204         /* We leave the "DI" bit set to "0" when we leave this routine. */
205         eecd &= ~E1000_EECD_DI;
206         E1000_WRITE_REG(hw, EECD, eecd);
207 }
208
209 /******************************************************************************
210  * Shift data bits in from the EEPROM
211  *
212  * hw - Struct containing variables accessed by shared code
213  *****************************************************************************/
214 static uint16_t
215 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
216 {
217         uint32_t eecd;
218         uint32_t i;
219         uint16_t data;
220
221         /* In order to read a register from the EEPROM, we need to shift 'count'
222          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
223          * input to the EEPROM (setting the SK bit), and then reading the
224          * value of the "DO" bit.  During this "shifting in" process the
225          * "DI" bit should always be clear.
226          */
227
228         eecd = E1000_READ_REG(hw, EECD);
229
230         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
231         data = 0;
232
233         for (i = 0; i < count; i++) {
234                 data = data << 1;
235                 e1000_raise_ee_clk(hw, &eecd);
236
237                 eecd = E1000_READ_REG(hw, EECD);
238
239                 eecd &= ~(E1000_EECD_DI);
240                 if (eecd & E1000_EECD_DO)
241                         data |= 1;
242
243                 e1000_lower_ee_clk(hw, &eecd);
244         }
245
246         return data;
247 }
248
249 /******************************************************************************
250  * Returns EEPROM to a "standby" state
251  *
252  * hw - Struct containing variables accessed by shared code
253  *****************************************************************************/
254 void e1000_standby_eeprom(struct e1000_hw *hw)
255 {
256         struct e1000_eeprom_info *eeprom = &hw->eeprom;
257         uint32_t eecd;
258
259         eecd = E1000_READ_REG(hw, EECD);
260
261         if (eeprom->type == e1000_eeprom_microwire) {
262                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263                 E1000_WRITE_REG(hw, EECD, eecd);
264                 E1000_WRITE_FLUSH(hw);
265                 udelay(eeprom->delay_usec);
266
267                 /* Clock high */
268                 eecd |= E1000_EECD_SK;
269                 E1000_WRITE_REG(hw, EECD, eecd);
270                 E1000_WRITE_FLUSH(hw);
271                 udelay(eeprom->delay_usec);
272
273                 /* Select EEPROM */
274                 eecd |= E1000_EECD_CS;
275                 E1000_WRITE_REG(hw, EECD, eecd);
276                 E1000_WRITE_FLUSH(hw);
277                 udelay(eeprom->delay_usec);
278
279                 /* Clock low */
280                 eecd &= ~E1000_EECD_SK;
281                 E1000_WRITE_REG(hw, EECD, eecd);
282                 E1000_WRITE_FLUSH(hw);
283                 udelay(eeprom->delay_usec);
284         } else if (eeprom->type == e1000_eeprom_spi) {
285                 /* Toggle CS to flush commands */
286                 eecd |= E1000_EECD_CS;
287                 E1000_WRITE_REG(hw, EECD, eecd);
288                 E1000_WRITE_FLUSH(hw);
289                 udelay(eeprom->delay_usec);
290                 eecd &= ~E1000_EECD_CS;
291                 E1000_WRITE_REG(hw, EECD, eecd);
292                 E1000_WRITE_FLUSH(hw);
293                 udelay(eeprom->delay_usec);
294         }
295 }
296
297 /***************************************************************************
298 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
299 *
300 * hw - Struct containing variables accessed by shared code
301 ****************************************************************************/
302 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
303 {
304         uint32_t eecd = 0;
305
306         DEBUGFUNC();
307
308         if (hw->mac_type == e1000_ich8lan)
309                 return false;
310
311         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
312                 eecd = E1000_READ_REG(hw, EECD);
313
314                 /* Isolate bits 15 & 16 */
315                 eecd = ((eecd >> 15) & 0x03);
316
317                 /* If both bits are set, device is Flash type */
318                 if (eecd == 0x03)
319                         return false;
320         }
321         return true;
322 }
323
324 /******************************************************************************
325  * Prepares EEPROM for access
326  *
327  * hw - Struct containing variables accessed by shared code
328  *
329  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
330  * function should be called before issuing a command to the EEPROM.
331  *****************************************************************************/
332 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
333 {
334         struct e1000_eeprom_info *eeprom = &hw->eeprom;
335         uint32_t eecd, i = 0;
336
337         DEBUGFUNC();
338
339         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
340                 return -E1000_ERR_SWFW_SYNC;
341         eecd = E1000_READ_REG(hw, EECD);
342
343         if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
344                 /* Request EEPROM Access */
345                 if (hw->mac_type > e1000_82544) {
346                         eecd |= E1000_EECD_REQ;
347                         E1000_WRITE_REG(hw, EECD, eecd);
348                         eecd = E1000_READ_REG(hw, EECD);
349                         while ((!(eecd & E1000_EECD_GNT)) &&
350                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
351                                 i++;
352                                 udelay(5);
353                                 eecd = E1000_READ_REG(hw, EECD);
354                         }
355                         if (!(eecd & E1000_EECD_GNT)) {
356                                 eecd &= ~E1000_EECD_REQ;
357                                 E1000_WRITE_REG(hw, EECD, eecd);
358                                 DEBUGOUT("Could not acquire EEPROM grant\n");
359                                 return -E1000_ERR_EEPROM;
360                         }
361                 }
362         }
363
364         /* Setup EEPROM for Read/Write */
365
366         if (eeprom->type == e1000_eeprom_microwire) {
367                 /* Clear SK and DI */
368                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
369                 E1000_WRITE_REG(hw, EECD, eecd);
370
371                 /* Set CS */
372                 eecd |= E1000_EECD_CS;
373                 E1000_WRITE_REG(hw, EECD, eecd);
374         } else if (eeprom->type == e1000_eeprom_spi) {
375                 /* Clear SK and CS */
376                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
377                 E1000_WRITE_REG(hw, EECD, eecd);
378                 udelay(1);
379         }
380
381         return E1000_SUCCESS;
382 }
383
384 /******************************************************************************
385  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
386  * is configured.  Additionally, if this is ICH8, the flash controller GbE
387  * registers must be mapped, or this will crash.
388  *
389  * hw - Struct containing variables accessed by shared code
390  *****************************************************************************/
391 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
392 {
393         struct e1000_eeprom_info *eeprom = &hw->eeprom;
394         uint32_t eecd = E1000_READ_REG(hw, EECD);
395         int32_t ret_val = E1000_SUCCESS;
396         uint16_t eeprom_size;
397
398         DEBUGFUNC();
399
400         switch (hw->mac_type) {
401         case e1000_82542_rev2_0:
402         case e1000_82542_rev2_1:
403         case e1000_82543:
404         case e1000_82544:
405                 eeprom->type = e1000_eeprom_microwire;
406                 eeprom->word_size = 64;
407                 eeprom->opcode_bits = 3;
408                 eeprom->address_bits = 6;
409                 eeprom->delay_usec = 50;
410                 eeprom->use_eerd = false;
411                 eeprom->use_eewr = false;
412         break;
413         case e1000_82540:
414         case e1000_82545:
415         case e1000_82545_rev_3:
416         case e1000_82546:
417         case e1000_82546_rev_3:
418                 eeprom->type = e1000_eeprom_microwire;
419                 eeprom->opcode_bits = 3;
420                 eeprom->delay_usec = 50;
421                 if (eecd & E1000_EECD_SIZE) {
422                         eeprom->word_size = 256;
423                         eeprom->address_bits = 8;
424                 } else {
425                         eeprom->word_size = 64;
426                         eeprom->address_bits = 6;
427                 }
428                 eeprom->use_eerd = false;
429                 eeprom->use_eewr = false;
430                 break;
431         case e1000_82541:
432         case e1000_82541_rev_2:
433         case e1000_82547:
434         case e1000_82547_rev_2:
435                 if (eecd & E1000_EECD_TYPE) {
436                         eeprom->type = e1000_eeprom_spi;
437                         eeprom->opcode_bits = 8;
438                         eeprom->delay_usec = 1;
439                         if (eecd & E1000_EECD_ADDR_BITS) {
440                                 eeprom->page_size = 32;
441                                 eeprom->address_bits = 16;
442                         } else {
443                                 eeprom->page_size = 8;
444                                 eeprom->address_bits = 8;
445                         }
446                 } else {
447                         eeprom->type = e1000_eeprom_microwire;
448                         eeprom->opcode_bits = 3;
449                         eeprom->delay_usec = 50;
450                         if (eecd & E1000_EECD_ADDR_BITS) {
451                                 eeprom->word_size = 256;
452                                 eeprom->address_bits = 8;
453                         } else {
454                                 eeprom->word_size = 64;
455                                 eeprom->address_bits = 6;
456                         }
457                 }
458                 eeprom->use_eerd = false;
459                 eeprom->use_eewr = false;
460                 break;
461         case e1000_82571:
462         case e1000_82572:
463                 eeprom->type = e1000_eeprom_spi;
464                 eeprom->opcode_bits = 8;
465                 eeprom->delay_usec = 1;
466                 if (eecd & E1000_EECD_ADDR_BITS) {
467                         eeprom->page_size = 32;
468                         eeprom->address_bits = 16;
469                 } else {
470                         eeprom->page_size = 8;
471                         eeprom->address_bits = 8;
472                 }
473                 eeprom->use_eerd = false;
474                 eeprom->use_eewr = false;
475                 break;
476         case e1000_82573:
477         case e1000_82574:
478                 eeprom->type = e1000_eeprom_spi;
479                 eeprom->opcode_bits = 8;
480                 eeprom->delay_usec = 1;
481                 if (eecd & E1000_EECD_ADDR_BITS) {
482                         eeprom->page_size = 32;
483                         eeprom->address_bits = 16;
484                 } else {
485                         eeprom->page_size = 8;
486                         eeprom->address_bits = 8;
487                 }
488                 eeprom->use_eerd = true;
489                 eeprom->use_eewr = true;
490                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
491                         eeprom->type = e1000_eeprom_flash;
492                         eeprom->word_size = 2048;
493
494                 /* Ensure that the Autonomous FLASH update bit is cleared due to
495                  * Flash update issue on parts which use a FLASH for NVM. */
496                         eecd &= ~E1000_EECD_AUPDEN;
497                         E1000_WRITE_REG(hw, EECD, eecd);
498                 }
499                 break;
500         case e1000_80003es2lan:
501                 eeprom->type = e1000_eeprom_spi;
502                 eeprom->opcode_bits = 8;
503                 eeprom->delay_usec = 1;
504                 if (eecd & E1000_EECD_ADDR_BITS) {
505                         eeprom->page_size = 32;
506                         eeprom->address_bits = 16;
507                 } else {
508                         eeprom->page_size = 8;
509                         eeprom->address_bits = 8;
510                 }
511                 eeprom->use_eerd = true;
512                 eeprom->use_eewr = false;
513                 break;
514
515         /* ich8lan does not support currently. if needed, please
516          * add corresponding code and functions.
517          */
518 #if 0
519         case e1000_ich8lan:
520                 {
521                 int32_t  i = 0;
522
523                 eeprom->type = e1000_eeprom_ich8;
524                 eeprom->use_eerd = false;
525                 eeprom->use_eewr = false;
526                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
527                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
528                                 ICH_FLASH_GFPREG);
529                 /* Zero the shadow RAM structure. But don't load it from NVM
530                  * so as to save time for driver init */
531                 if (hw->eeprom_shadow_ram != NULL) {
532                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
533                                 hw->eeprom_shadow_ram[i].modified = false;
534                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
535                         }
536                 }
537
538                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
539                                 ICH_FLASH_SECTOR_SIZE;
540
541                 hw->flash_bank_size = ((flash_size >> 16)
542                                 & ICH_GFPREG_BASE_MASK) + 1;
543                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
544
545                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
546
547                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
548                 break;
549                 }
550 #endif
551         default:
552                 break;
553         }
554
555         if (eeprom->type == e1000_eeprom_spi) {
556                 /* eeprom_size will be an enum [0..8] that maps
557                  * to eeprom sizes 128B to
558                  * 32KB (incremented by powers of 2).
559                  */
560                 if (hw->mac_type <= e1000_82547_rev_2) {
561                         /* Set to default value for initial eeprom read. */
562                         eeprom->word_size = 64;
563                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
564                                         &eeprom_size);
565                         if (ret_val)
566                                 return ret_val;
567                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
568                                 >> EEPROM_SIZE_SHIFT;
569                         /* 256B eeprom size was not supported in earlier
570                          * hardware, so we bump eeprom_size up one to
571                          * ensure that "1" (which maps to 256B) is never
572                          * the result used in the shifting logic below. */
573                         if (eeprom_size)
574                                 eeprom_size++;
575                 } else {
576                         eeprom_size = (uint16_t)((eecd &
577                                 E1000_EECD_SIZE_EX_MASK) >>
578                                 E1000_EECD_SIZE_EX_SHIFT);
579                 }
580
581                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
582         }
583         return ret_val;
584 }
585
586 /******************************************************************************
587  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
588  *
589  * hw - Struct containing variables accessed by shared code
590  *****************************************************************************/
591 static int32_t
592 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
593 {
594         uint32_t attempts = 100000;
595         uint32_t i, reg = 0;
596         int32_t done = E1000_ERR_EEPROM;
597
598         for (i = 0; i < attempts; i++) {
599                 if (eerd == E1000_EEPROM_POLL_READ)
600                         reg = E1000_READ_REG(hw, EERD);
601                 else
602                         reg = E1000_READ_REG(hw, EEWR);
603
604                 if (reg & E1000_EEPROM_RW_REG_DONE) {
605                         done = E1000_SUCCESS;
606                         break;
607                 }
608                 udelay(5);
609         }
610
611         return done;
612 }
613
614 /******************************************************************************
615  * Reads a 16 bit word from the EEPROM using the EERD register.
616  *
617  * hw - Struct containing variables accessed by shared code
618  * offset - offset of  word in the EEPROM to read
619  * data - word read from the EEPROM
620  * words - number of words to read
621  *****************************************************************************/
622 static int32_t
623 e1000_read_eeprom_eerd(struct e1000_hw *hw,
624                         uint16_t offset,
625                         uint16_t words,
626                         uint16_t *data)
627 {
628         uint32_t i, eerd = 0;
629         int32_t error = 0;
630
631         for (i = 0; i < words; i++) {
632                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
633                         E1000_EEPROM_RW_REG_START;
634
635                 E1000_WRITE_REG(hw, EERD, eerd);
636                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
637
638                 if (error)
639                         break;
640                 data[i] = (E1000_READ_REG(hw, EERD) >>
641                                 E1000_EEPROM_RW_REG_DATA);
642
643         }
644
645         return error;
646 }
647
648 void e1000_release_eeprom(struct e1000_hw *hw)
649 {
650         uint32_t eecd;
651
652         DEBUGFUNC();
653
654         eecd = E1000_READ_REG(hw, EECD);
655
656         if (hw->eeprom.type == e1000_eeprom_spi) {
657                 eecd |= E1000_EECD_CS;  /* Pull CS high */
658                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
659
660                 E1000_WRITE_REG(hw, EECD, eecd);
661
662                 udelay(hw->eeprom.delay_usec);
663         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
664                 /* cleanup eeprom */
665
666                 /* CS on Microwire is active-high */
667                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
668
669                 E1000_WRITE_REG(hw, EECD, eecd);
670
671                 /* Rising edge of clock */
672                 eecd |= E1000_EECD_SK;
673                 E1000_WRITE_REG(hw, EECD, eecd);
674                 E1000_WRITE_FLUSH(hw);
675                 udelay(hw->eeprom.delay_usec);
676
677                 /* Falling edge of clock */
678                 eecd &= ~E1000_EECD_SK;
679                 E1000_WRITE_REG(hw, EECD, eecd);
680                 E1000_WRITE_FLUSH(hw);
681                 udelay(hw->eeprom.delay_usec);
682         }
683
684         /* Stop requesting EEPROM access */
685         if (hw->mac_type > e1000_82544) {
686                 eecd &= ~E1000_EECD_REQ;
687                 E1000_WRITE_REG(hw, EECD, eecd);
688         }
689 }
690 /******************************************************************************
691  * Reads a 16 bit word from the EEPROM.
692  *
693  * hw - Struct containing variables accessed by shared code
694  *****************************************************************************/
695 static int32_t
696 e1000_spi_eeprom_ready(struct e1000_hw *hw)
697 {
698         uint16_t retry_count = 0;
699         uint8_t spi_stat_reg;
700
701         DEBUGFUNC();
702
703         /* Read "Status Register" repeatedly until the LSB is cleared.  The
704          * EEPROM will signal that the command has been completed by clearing
705          * bit 0 of the internal status register.  If it's not cleared within
706          * 5 milliseconds, then error out.
707          */
708         retry_count = 0;
709         do {
710                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
711                         hw->eeprom.opcode_bits);
712                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
713                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
714                         break;
715
716                 udelay(5);
717                 retry_count += 5;
718
719                 e1000_standby_eeprom(hw);
720         } while (retry_count < EEPROM_MAX_RETRY_SPI);
721
722         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
723          * only 0-5mSec on 5V devices)
724          */
725         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
726                 DEBUGOUT("SPI EEPROM Status error\n");
727                 return -E1000_ERR_EEPROM;
728         }
729
730         return E1000_SUCCESS;
731 }
732
733 /******************************************************************************
734  * Reads a 16 bit word from the EEPROM.
735  *
736  * hw - Struct containing variables accessed by shared code
737  * offset - offset of  word in the EEPROM to read
738  * data - word read from the EEPROM
739  *****************************************************************************/
740 static int32_t
741 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
742                 uint16_t words, uint16_t *data)
743 {
744         struct e1000_eeprom_info *eeprom = &hw->eeprom;
745         uint32_t i = 0;
746
747         DEBUGFUNC();
748
749         /* If eeprom is not yet detected, do so now */
750         if (eeprom->word_size == 0)
751                 e1000_init_eeprom_params(hw);
752
753         /* A check for invalid values:  offset too large, too many words,
754          * and not enough words.
755          */
756         if ((offset >= eeprom->word_size) ||
757                 (words > eeprom->word_size - offset) ||
758                 (words == 0)) {
759                 DEBUGOUT("\"words\" parameter out of bounds."
760                         "Words = %d, size = %d\n", offset, eeprom->word_size);
761                 return -E1000_ERR_EEPROM;
762         }
763
764         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
765          * directly. In this case, we need to acquire the EEPROM so that
766          * FW or other port software does not interrupt.
767          */
768         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
769                 hw->eeprom.use_eerd == false) {
770
771                 /* Prepare the EEPROM for bit-bang reading */
772                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
773                         return -E1000_ERR_EEPROM;
774         }
775
776         /* Eerd register EEPROM access requires no eeprom aquire/release */
777         if (eeprom->use_eerd == true)
778                 return e1000_read_eeprom_eerd(hw, offset, words, data);
779
780         /* ich8lan does not support currently. if needed, please
781          * add corresponding code and functions.
782          */
783 #if 0
784         /* ICH EEPROM access is done via the ICH flash controller */
785         if (eeprom->type == e1000_eeprom_ich8)
786                 return e1000_read_eeprom_ich8(hw, offset, words, data);
787 #endif
788         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
789          * acquired the EEPROM at this point, so any returns should relase it */
790         if (eeprom->type == e1000_eeprom_spi) {
791                 uint16_t word_in;
792                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
793
794                 if (e1000_spi_eeprom_ready(hw)) {
795                         e1000_release_eeprom(hw);
796                         return -E1000_ERR_EEPROM;
797                 }
798
799                 e1000_standby_eeprom(hw);
800
801                 /* Some SPI eeproms use the 8th address bit embedded in
802                  * the opcode */
803                 if ((eeprom->address_bits == 8) && (offset >= 128))
804                         read_opcode |= EEPROM_A8_OPCODE_SPI;
805
806                 /* Send the READ command (opcode + addr)  */
807                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
808                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
809                                 eeprom->address_bits);
810
811                 /* Read the data.  The address of the eeprom internally
812                  * increments with each byte (spi) being read, saving on the
813                  * overhead of eeprom setup and tear-down.  The address
814                  * counter will roll over if reading beyond the size of
815                  * the eeprom, thus allowing the entire memory to be read
816                  * starting from any offset. */
817                 for (i = 0; i < words; i++) {
818                         word_in = e1000_shift_in_ee_bits(hw, 16);
819                         data[i] = (word_in >> 8) | (word_in << 8);
820                 }
821         } else if (eeprom->type == e1000_eeprom_microwire) {
822                 for (i = 0; i < words; i++) {
823                         /* Send the READ command (opcode + addr)  */
824                         e1000_shift_out_ee_bits(hw,
825                                 EEPROM_READ_OPCODE_MICROWIRE,
826                                 eeprom->opcode_bits);
827                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
828                                 eeprom->address_bits);
829
830                         /* Read the data.  For microwire, each word requires
831                          * the overhead of eeprom setup and tear-down. */
832                         data[i] = e1000_shift_in_ee_bits(hw, 16);
833                         e1000_standby_eeprom(hw);
834                 }
835         }
836
837         /* End this read operation */
838         e1000_release_eeprom(hw);
839
840         return E1000_SUCCESS;
841 }
842
843 /******************************************************************************
844  * Verifies that the EEPROM has a valid checksum
845  *
846  * hw - Struct containing variables accessed by shared code
847  *
848  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
849  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
850  * valid.
851  *****************************************************************************/
852 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
853 {
854         uint16_t i, checksum, checksum_reg, *buf;
855
856         DEBUGFUNC();
857
858         /* Allocate a temporary buffer */
859         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
860         if (!buf) {
861                 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
862                 return -E1000_ERR_EEPROM;
863         }
864
865         /* Read the EEPROM */
866         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
867                 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
868                 return -E1000_ERR_EEPROM;
869         }
870
871         /* Compute the checksum */
872         checksum = 0;
873         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
874                 checksum += buf[i];
875         checksum = ((uint16_t)EEPROM_SUM) - checksum;
876         checksum_reg = buf[i];
877
878         /* Verify it! */
879         if (checksum == checksum_reg)
880                 return 0;
881
882         /* Hrm, verification failed, print an error */
883         E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
884         E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
885                         checksum_reg, checksum);
886
887         return -E1000_ERR_EEPROM;
888 }
889 #endif /* CONFIG_E1000_NO_NVM */
890
891 /*****************************************************************************
892  * Set PHY to class A mode
893  * Assumes the following operations will follow to enable the new class mode.
894  *  1. Do a PHY soft reset
895  *  2. Restart auto-negotiation or force link.
896  *
897  * hw - Struct containing variables accessed by shared code
898  ****************************************************************************/
899 static int32_t
900 e1000_set_phy_mode(struct e1000_hw *hw)
901 {
902 #ifndef CONFIG_E1000_NO_NVM
903         int32_t ret_val;
904         uint16_t eeprom_data;
905
906         DEBUGFUNC();
907
908         if ((hw->mac_type == e1000_82545_rev_3) &&
909                 (hw->media_type == e1000_media_type_copper)) {
910                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
911                                 1, &eeprom_data);
912                 if (ret_val)
913                         return ret_val;
914
915                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
916                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
917                         ret_val = e1000_write_phy_reg(hw,
918                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
919                         if (ret_val)
920                                 return ret_val;
921                         ret_val = e1000_write_phy_reg(hw,
922                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
923                         if (ret_val)
924                                 return ret_val;
925
926                         hw->phy_reset_disable = false;
927                 }
928         }
929 #endif
930         return E1000_SUCCESS;
931 }
932
933 #ifndef CONFIG_E1000_NO_NVM
934 /***************************************************************************
935  *
936  * Obtaining software semaphore bit (SMBI) before resetting PHY.
937  *
938  * hw: Struct containing variables accessed by shared code
939  *
940  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
941  *            E1000_SUCCESS at any other case.
942  *
943  ***************************************************************************/
944 static int32_t
945 e1000_get_software_semaphore(struct e1000_hw *hw)
946 {
947          int32_t timeout = hw->eeprom.word_size + 1;
948          uint32_t swsm;
949
950         DEBUGFUNC();
951
952         if (hw->mac_type != e1000_80003es2lan)
953                 return E1000_SUCCESS;
954
955         while (timeout) {
956                 swsm = E1000_READ_REG(hw, SWSM);
957                 /* If SMBI bit cleared, it is now set and we hold
958                  * the semaphore */
959                 if (!(swsm & E1000_SWSM_SMBI))
960                         break;
961                 mdelay(1);
962                 timeout--;
963         }
964
965         if (!timeout) {
966                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
967                 return -E1000_ERR_RESET;
968         }
969
970         return E1000_SUCCESS;
971 }
972 #endif
973
974 /***************************************************************************
975  * This function clears HW semaphore bits.
976  *
977  * hw: Struct containing variables accessed by shared code
978  *
979  * returns: - None.
980  *
981  ***************************************************************************/
982 static void
983 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
984 {
985 #ifndef CONFIG_E1000_NO_NVM
986          uint32_t swsm;
987
988         DEBUGFUNC();
989
990         if (!hw->eeprom_semaphore_present)
991                 return;
992
993         swsm = E1000_READ_REG(hw, SWSM);
994         if (hw->mac_type == e1000_80003es2lan) {
995                 /* Release both semaphores. */
996                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
997         } else
998                 swsm &= ~(E1000_SWSM_SWESMBI);
999         E1000_WRITE_REG(hw, SWSM, swsm);
1000 #endif
1001 }
1002
1003 /***************************************************************************
1004  *
1005  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1006  * adapter or Eeprom access.
1007  *
1008  * hw: Struct containing variables accessed by shared code
1009  *
1010  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1011  *            E1000_SUCCESS at any other case.
1012  *
1013  ***************************************************************************/
1014 static int32_t
1015 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1016 {
1017 #ifndef CONFIG_E1000_NO_NVM
1018         int32_t timeout;
1019         uint32_t swsm;
1020
1021         DEBUGFUNC();
1022
1023         if (!hw->eeprom_semaphore_present)
1024                 return E1000_SUCCESS;
1025
1026         if (hw->mac_type == e1000_80003es2lan) {
1027                 /* Get the SW semaphore. */
1028                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1029                         return -E1000_ERR_EEPROM;
1030         }
1031
1032         /* Get the FW semaphore. */
1033         timeout = hw->eeprom.word_size + 1;
1034         while (timeout) {
1035                 swsm = E1000_READ_REG(hw, SWSM);
1036                 swsm |= E1000_SWSM_SWESMBI;
1037                 E1000_WRITE_REG(hw, SWSM, swsm);
1038                 /* if we managed to set the bit we got the semaphore. */
1039                 swsm = E1000_READ_REG(hw, SWSM);
1040                 if (swsm & E1000_SWSM_SWESMBI)
1041                         break;
1042
1043                 udelay(50);
1044                 timeout--;
1045         }
1046
1047         if (!timeout) {
1048                 /* Release semaphores */
1049                 e1000_put_hw_eeprom_semaphore(hw);
1050                 DEBUGOUT("Driver can't access the Eeprom - "
1051                                 "SWESMBI bit is set.\n");
1052                 return -E1000_ERR_EEPROM;
1053         }
1054 #endif
1055         return E1000_SUCCESS;
1056 }
1057
1058 static int32_t
1059 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1060 {
1061         uint32_t swfw_sync = 0;
1062         uint32_t swmask = mask;
1063         uint32_t fwmask = mask << 16;
1064         int32_t timeout = 200;
1065
1066         DEBUGFUNC();
1067         while (timeout) {
1068                 if (e1000_get_hw_eeprom_semaphore(hw))
1069                         return -E1000_ERR_SWFW_SYNC;
1070
1071                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1072                 if (!(swfw_sync & (fwmask | swmask)))
1073                         break;
1074
1075                 /* firmware currently using resource (fwmask) */
1076                 /* or other software thread currently using resource (swmask) */
1077                 e1000_put_hw_eeprom_semaphore(hw);
1078                 mdelay(5);
1079                 timeout--;
1080         }
1081
1082         if (!timeout) {
1083                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1084                 return -E1000_ERR_SWFW_SYNC;
1085         }
1086
1087         swfw_sync |= swmask;
1088         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1089
1090         e1000_put_hw_eeprom_semaphore(hw);
1091         return E1000_SUCCESS;
1092 }
1093
1094 static bool e1000_is_second_port(struct e1000_hw *hw)
1095 {
1096         switch (hw->mac_type) {
1097         case e1000_80003es2lan:
1098         case e1000_82546:
1099         case e1000_82571:
1100                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1101                         return true;
1102                 /* Fallthrough */
1103         default:
1104                 return false;
1105         }
1106 }
1107
1108 #ifndef CONFIG_E1000_NO_NVM
1109 /******************************************************************************
1110  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1111  * second function of dual function devices
1112  *
1113  * nic - Struct containing variables accessed by shared code
1114  *****************************************************************************/
1115 static int
1116 e1000_read_mac_addr(struct eth_device *nic)
1117 {
1118         struct e1000_hw *hw = nic->priv;
1119         uint16_t offset;
1120         uint16_t eeprom_data;
1121         int i;
1122
1123         DEBUGFUNC();
1124
1125         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1126                 offset = i >> 1;
1127                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1128                         DEBUGOUT("EEPROM Read Error\n");
1129                         return -E1000_ERR_EEPROM;
1130                 }
1131                 nic->enetaddr[i] = eeprom_data & 0xff;
1132                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1133         }
1134
1135         /* Invert the last bit if this is the second device */
1136         if (e1000_is_second_port(hw))
1137                 nic->enetaddr[5] ^= 1;
1138
1139 #ifdef CONFIG_E1000_FALLBACK_MAC
1140         if (!is_valid_ether_addr(nic->enetaddr)) {
1141                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1142
1143                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1144         }
1145 #endif
1146         return 0;
1147 }
1148 #endif
1149
1150 /******************************************************************************
1151  * Initializes receive address filters.
1152  *
1153  * hw - Struct containing variables accessed by shared code
1154  *
1155  * Places the MAC address in receive address register 0 and clears the rest
1156  * of the receive addresss registers. Clears the multicast table. Assumes
1157  * the receiver is in reset when the routine is called.
1158  *****************************************************************************/
1159 static void
1160 e1000_init_rx_addrs(struct eth_device *nic)
1161 {
1162         struct e1000_hw *hw = nic->priv;
1163         uint32_t i;
1164         uint32_t addr_low;
1165         uint32_t addr_high;
1166
1167         DEBUGFUNC();
1168
1169         /* Setup the receive address. */
1170         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1171         addr_low = (nic->enetaddr[0] |
1172                     (nic->enetaddr[1] << 8) |
1173                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1174
1175         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1176
1177         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1178         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1179
1180         /* Zero out the other 15 receive addresses. */
1181         DEBUGOUT("Clearing RAR[1-15]\n");
1182         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1183                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1184                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1185         }
1186 }
1187
1188 /******************************************************************************
1189  * Clears the VLAN filer table
1190  *
1191  * hw - Struct containing variables accessed by shared code
1192  *****************************************************************************/
1193 static void
1194 e1000_clear_vfta(struct e1000_hw *hw)
1195 {
1196         uint32_t offset;
1197
1198         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1199                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1200 }
1201
1202 /******************************************************************************
1203  * Set the mac type member in the hw struct.
1204  *
1205  * hw - Struct containing variables accessed by shared code
1206  *****************************************************************************/
1207 int32_t
1208 e1000_set_mac_type(struct e1000_hw *hw)
1209 {
1210         DEBUGFUNC();
1211
1212         switch (hw->device_id) {
1213         case E1000_DEV_ID_82542:
1214                 switch (hw->revision_id) {
1215                 case E1000_82542_2_0_REV_ID:
1216                         hw->mac_type = e1000_82542_rev2_0;
1217                         break;
1218                 case E1000_82542_2_1_REV_ID:
1219                         hw->mac_type = e1000_82542_rev2_1;
1220                         break;
1221                 default:
1222                         /* Invalid 82542 revision ID */
1223                         return -E1000_ERR_MAC_TYPE;
1224                 }
1225                 break;
1226         case E1000_DEV_ID_82543GC_FIBER:
1227         case E1000_DEV_ID_82543GC_COPPER:
1228                 hw->mac_type = e1000_82543;
1229                 break;
1230         case E1000_DEV_ID_82544EI_COPPER:
1231         case E1000_DEV_ID_82544EI_FIBER:
1232         case E1000_DEV_ID_82544GC_COPPER:
1233         case E1000_DEV_ID_82544GC_LOM:
1234                 hw->mac_type = e1000_82544;
1235                 break;
1236         case E1000_DEV_ID_82540EM:
1237         case E1000_DEV_ID_82540EM_LOM:
1238         case E1000_DEV_ID_82540EP:
1239         case E1000_DEV_ID_82540EP_LOM:
1240         case E1000_DEV_ID_82540EP_LP:
1241                 hw->mac_type = e1000_82540;
1242                 break;
1243         case E1000_DEV_ID_82545EM_COPPER:
1244         case E1000_DEV_ID_82545EM_FIBER:
1245                 hw->mac_type = e1000_82545;
1246                 break;
1247         case E1000_DEV_ID_82545GM_COPPER:
1248         case E1000_DEV_ID_82545GM_FIBER:
1249         case E1000_DEV_ID_82545GM_SERDES:
1250                 hw->mac_type = e1000_82545_rev_3;
1251                 break;
1252         case E1000_DEV_ID_82546EB_COPPER:
1253         case E1000_DEV_ID_82546EB_FIBER:
1254         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1255                 hw->mac_type = e1000_82546;
1256                 break;
1257         case E1000_DEV_ID_82546GB_COPPER:
1258         case E1000_DEV_ID_82546GB_FIBER:
1259         case E1000_DEV_ID_82546GB_SERDES:
1260         case E1000_DEV_ID_82546GB_PCIE:
1261         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1262         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1263                 hw->mac_type = e1000_82546_rev_3;
1264                 break;
1265         case E1000_DEV_ID_82541EI:
1266         case E1000_DEV_ID_82541EI_MOBILE:
1267         case E1000_DEV_ID_82541ER_LOM:
1268                 hw->mac_type = e1000_82541;
1269                 break;
1270         case E1000_DEV_ID_82541ER:
1271         case E1000_DEV_ID_82541GI:
1272         case E1000_DEV_ID_82541GI_LF:
1273         case E1000_DEV_ID_82541GI_MOBILE:
1274                 hw->mac_type = e1000_82541_rev_2;
1275                 break;
1276         case E1000_DEV_ID_82547EI:
1277         case E1000_DEV_ID_82547EI_MOBILE:
1278                 hw->mac_type = e1000_82547;
1279                 break;
1280         case E1000_DEV_ID_82547GI:
1281                 hw->mac_type = e1000_82547_rev_2;
1282                 break;
1283         case E1000_DEV_ID_82571EB_COPPER:
1284         case E1000_DEV_ID_82571EB_FIBER:
1285         case E1000_DEV_ID_82571EB_SERDES:
1286         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1287         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1288         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1289         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1290         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1291         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1292                 hw->mac_type = e1000_82571;
1293                 break;
1294         case E1000_DEV_ID_82572EI_COPPER:
1295         case E1000_DEV_ID_82572EI_FIBER:
1296         case E1000_DEV_ID_82572EI_SERDES:
1297         case E1000_DEV_ID_82572EI:
1298                 hw->mac_type = e1000_82572;
1299                 break;
1300         case E1000_DEV_ID_82573E:
1301         case E1000_DEV_ID_82573E_IAMT:
1302         case E1000_DEV_ID_82573L:
1303                 hw->mac_type = e1000_82573;
1304                 break;
1305         case E1000_DEV_ID_82574L:
1306                 hw->mac_type = e1000_82574;
1307                 break;
1308         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1309         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1310         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1311         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1312                 hw->mac_type = e1000_80003es2lan;
1313                 break;
1314         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1315         case E1000_DEV_ID_ICH8_IGP_AMT:
1316         case E1000_DEV_ID_ICH8_IGP_C:
1317         case E1000_DEV_ID_ICH8_IFE:
1318         case E1000_DEV_ID_ICH8_IFE_GT:
1319         case E1000_DEV_ID_ICH8_IFE_G:
1320         case E1000_DEV_ID_ICH8_IGP_M:
1321                 hw->mac_type = e1000_ich8lan;
1322                 break;
1323         default:
1324                 /* Should never have loaded on this device */
1325                 return -E1000_ERR_MAC_TYPE;
1326         }
1327         return E1000_SUCCESS;
1328 }
1329
1330 /******************************************************************************
1331  * Reset the transmit and receive units; mask and clear all interrupts.
1332  *
1333  * hw - Struct containing variables accessed by shared code
1334  *****************************************************************************/
1335 void
1336 e1000_reset_hw(struct e1000_hw *hw)
1337 {
1338         uint32_t ctrl;
1339         uint32_t ctrl_ext;
1340         uint32_t manc;
1341         uint32_t pba = 0;
1342
1343         DEBUGFUNC();
1344
1345         /* get the correct pba value for both PCI and PCIe*/
1346         if (hw->mac_type <  e1000_82571)
1347                 pba = E1000_DEFAULT_PCI_PBA;
1348         else
1349                 pba = E1000_DEFAULT_PCIE_PBA;
1350
1351         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1352         if (hw->mac_type == e1000_82542_rev2_0) {
1353                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1354                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1355                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1356         }
1357
1358         /* Clear interrupt mask to stop board from generating interrupts */
1359         DEBUGOUT("Masking off all interrupts\n");
1360         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1361
1362         /* Disable the Transmit and Receive units.  Then delay to allow
1363          * any pending transactions to complete before we hit the MAC with
1364          * the global reset.
1365          */
1366         E1000_WRITE_REG(hw, RCTL, 0);
1367         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1368         E1000_WRITE_FLUSH(hw);
1369
1370         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1371         hw->tbi_compatibility_on = false;
1372
1373         /* Delay to allow any outstanding PCI transactions to complete before
1374          * resetting the device
1375          */
1376         mdelay(10);
1377
1378         /* Issue a global reset to the MAC.  This will reset the chip's
1379          * transmit, receive, DMA, and link units.  It will not effect
1380          * the current PCI configuration.  The global reset bit is self-
1381          * clearing, and should clear within a microsecond.
1382          */
1383         DEBUGOUT("Issuing a global reset to MAC\n");
1384         ctrl = E1000_READ_REG(hw, CTRL);
1385
1386         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1387
1388         /* Force a reload from the EEPROM if necessary */
1389         if (hw->mac_type < e1000_82540) {
1390                 /* Wait for reset to complete */
1391                 udelay(10);
1392                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1393                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1394                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1395                 E1000_WRITE_FLUSH(hw);
1396                 /* Wait for EEPROM reload */
1397                 mdelay(2);
1398         } else {
1399                 /* Wait for EEPROM reload (it happens automatically) */
1400                 mdelay(4);
1401                 /* Dissable HW ARPs on ASF enabled adapters */
1402                 manc = E1000_READ_REG(hw, MANC);
1403                 manc &= ~(E1000_MANC_ARP_EN);
1404                 E1000_WRITE_REG(hw, MANC, manc);
1405         }
1406
1407         /* Clear interrupt mask to stop board from generating interrupts */
1408         DEBUGOUT("Masking off all interrupts\n");
1409         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1410
1411         /* Clear any pending interrupt events. */
1412         E1000_READ_REG(hw, ICR);
1413
1414         /* If MWI was previously enabled, reenable it. */
1415         if (hw->mac_type == e1000_82542_rev2_0) {
1416                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1417         }
1418         E1000_WRITE_REG(hw, PBA, pba);
1419 }
1420
1421 /******************************************************************************
1422  *
1423  * Initialize a number of hardware-dependent bits
1424  *
1425  * hw: Struct containing variables accessed by shared code
1426  *
1427  * This function contains hardware limitation workarounds for PCI-E adapters
1428  *
1429  *****************************************************************************/
1430 static void
1431 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1432 {
1433         if ((hw->mac_type >= e1000_82571) &&
1434                         (!hw->initialize_hw_bits_disable)) {
1435                 /* Settings common to all PCI-express silicon */
1436                 uint32_t reg_ctrl, reg_ctrl_ext;
1437                 uint32_t reg_tarc0, reg_tarc1;
1438                 uint32_t reg_tctl;
1439                 uint32_t reg_txdctl, reg_txdctl1;
1440
1441                 /* link autonegotiation/sync workarounds */
1442                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1443                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1444
1445                 /* Enable not-done TX descriptor counting */
1446                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1447                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1448                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1449
1450                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1451                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1452                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1453
1454                 switch (hw->mac_type) {
1455                 case e1000_82571:
1456                 case e1000_82572:
1457                         /* Clear PHY TX compatible mode bits */
1458                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1459                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1460
1461                         /* link autonegotiation/sync workarounds */
1462                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1463
1464                         /* TX ring control fixes */
1465                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1466
1467                         /* Multiple read bit is reversed polarity */
1468                         reg_tctl = E1000_READ_REG(hw, TCTL);
1469                         if (reg_tctl & E1000_TCTL_MULR)
1470                                 reg_tarc1 &= ~(1 << 28);
1471                         else
1472                                 reg_tarc1 |= (1 << 28);
1473
1474                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1475                         break;
1476                 case e1000_82573:
1477                 case e1000_82574:
1478                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1479                         reg_ctrl_ext &= ~(1 << 23);
1480                         reg_ctrl_ext |= (1 << 22);
1481
1482                         /* TX byte count fix */
1483                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1484                         reg_ctrl &= ~(1 << 29);
1485
1486                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1487                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1488                         break;
1489                 case e1000_80003es2lan:
1490         /* improve small packet performace for fiber/serdes */
1491                         if ((hw->media_type == e1000_media_type_fiber)
1492                         || (hw->media_type ==
1493                                 e1000_media_type_internal_serdes)) {
1494                                 reg_tarc0 &= ~(1 << 20);
1495                         }
1496
1497                 /* Multiple read bit is reversed polarity */
1498                         reg_tctl = E1000_READ_REG(hw, TCTL);
1499                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1500                         if (reg_tctl & E1000_TCTL_MULR)
1501                                 reg_tarc1 &= ~(1 << 28);
1502                         else
1503                                 reg_tarc1 |= (1 << 28);
1504
1505                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1506                         break;
1507                 case e1000_ich8lan:
1508                         /* Reduce concurrent DMA requests to 3 from 4 */
1509                         if ((hw->revision_id < 3) ||
1510                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1511                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1512                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1513
1514                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1515                         reg_ctrl_ext |= (1 << 22);
1516                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1517
1518                         /* workaround TX hang with TSO=on */
1519                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1520
1521                         /* Multiple read bit is reversed polarity */
1522                         reg_tctl = E1000_READ_REG(hw, TCTL);
1523                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1524                         if (reg_tctl & E1000_TCTL_MULR)
1525                                 reg_tarc1 &= ~(1 << 28);
1526                         else
1527                                 reg_tarc1 |= (1 << 28);
1528
1529                         /* workaround TX hang with TSO=on */
1530                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1531
1532                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1533                         break;
1534                 default:
1535                         break;
1536                 }
1537
1538                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1539         }
1540 }
1541
1542 /******************************************************************************
1543  * Performs basic configuration of the adapter.
1544  *
1545  * hw - Struct containing variables accessed by shared code
1546  *
1547  * Assumes that the controller has previously been reset and is in a
1548  * post-reset uninitialized state. Initializes the receive address registers,
1549  * multicast table, and VLAN filter table. Calls routines to setup link
1550  * configuration and flow control settings. Clears all on-chip counters. Leaves
1551  * the transmit and receive units disabled and uninitialized.
1552  *****************************************************************************/
1553 static int
1554 e1000_init_hw(struct eth_device *nic)
1555 {
1556         struct e1000_hw *hw = nic->priv;
1557         uint32_t ctrl;
1558         uint32_t i;
1559         int32_t ret_val;
1560         uint16_t pcix_cmd_word;
1561         uint16_t pcix_stat_hi_word;
1562         uint16_t cmd_mmrbc;
1563         uint16_t stat_mmrbc;
1564         uint32_t mta_size;
1565         uint32_t reg_data;
1566         uint32_t ctrl_ext;
1567         DEBUGFUNC();
1568         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1569         if ((hw->mac_type == e1000_ich8lan) &&
1570                 ((hw->revision_id < 3) ||
1571                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1572                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1573                         reg_data = E1000_READ_REG(hw, STATUS);
1574                         reg_data &= ~0x80000000;
1575                         E1000_WRITE_REG(hw, STATUS, reg_data);
1576         }
1577         /* Do not need initialize Identification LED */
1578
1579         /* Set the media type and TBI compatibility */
1580         e1000_set_media_type(hw);
1581
1582         /* Must be called after e1000_set_media_type
1583          * because media_type is used */
1584         e1000_initialize_hardware_bits(hw);
1585
1586         /* Disabling VLAN filtering. */
1587         DEBUGOUT("Initializing the IEEE VLAN\n");
1588         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1589         if (hw->mac_type != e1000_ich8lan) {
1590                 if (hw->mac_type < e1000_82545_rev_3)
1591                         E1000_WRITE_REG(hw, VET, 0);
1592                 e1000_clear_vfta(hw);
1593         }
1594
1595         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1596         if (hw->mac_type == e1000_82542_rev2_0) {
1597                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1598                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1599                                       hw->
1600                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1601                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1602                 E1000_WRITE_FLUSH(hw);
1603                 mdelay(5);
1604         }
1605
1606         /* Setup the receive address. This involves initializing all of the Receive
1607          * Address Registers (RARs 0 - 15).
1608          */
1609         e1000_init_rx_addrs(nic);
1610
1611         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1612         if (hw->mac_type == e1000_82542_rev2_0) {
1613                 E1000_WRITE_REG(hw, RCTL, 0);
1614                 E1000_WRITE_FLUSH(hw);
1615                 mdelay(1);
1616                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1617         }
1618
1619         /* Zero out the Multicast HASH table */
1620         DEBUGOUT("Zeroing the MTA\n");
1621         mta_size = E1000_MC_TBL_SIZE;
1622         if (hw->mac_type == e1000_ich8lan)
1623                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1624         for (i = 0; i < mta_size; i++) {
1625                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1626                 /* use write flush to prevent Memory Write Block (MWB) from
1627                  * occuring when accessing our register space */
1628                 E1000_WRITE_FLUSH(hw);
1629         }
1630 #if 0
1631         /* Set the PCI priority bit correctly in the CTRL register.  This
1632          * determines if the adapter gives priority to receives, or if it
1633          * gives equal priority to transmits and receives.  Valid only on
1634          * 82542 and 82543 silicon.
1635          */
1636         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1637                 ctrl = E1000_READ_REG(hw, CTRL);
1638                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1639         }
1640 #endif
1641         switch (hw->mac_type) {
1642         case e1000_82545_rev_3:
1643         case e1000_82546_rev_3:
1644                 break;
1645         default:
1646         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1647         if (hw->bus_type == e1000_bus_type_pcix) {
1648                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1649                                      &pcix_cmd_word);
1650                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1651                                      &pcix_stat_hi_word);
1652                 cmd_mmrbc =
1653                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1654                     PCIX_COMMAND_MMRBC_SHIFT;
1655                 stat_mmrbc =
1656                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1657                     PCIX_STATUS_HI_MMRBC_SHIFT;
1658                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1659                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1660                 if (cmd_mmrbc > stat_mmrbc) {
1661                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1662                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1663                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1664                                               pcix_cmd_word);
1665                 }
1666         }
1667                 break;
1668         }
1669
1670         /* More time needed for PHY to initialize */
1671         if (hw->mac_type == e1000_ich8lan)
1672                 mdelay(15);
1673
1674         /* Call a subroutine to configure the link and setup flow control. */
1675         ret_val = e1000_setup_link(nic);
1676
1677         /* Set the transmit descriptor write-back policy */
1678         if (hw->mac_type > e1000_82544) {
1679                 ctrl = E1000_READ_REG(hw, TXDCTL);
1680                 ctrl =
1681                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1682                     E1000_TXDCTL_FULL_TX_DESC_WB;
1683                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1684         }
1685
1686         /* Set the receive descriptor write back policy */
1687
1688         if (hw->mac_type >= e1000_82571) {
1689                 ctrl = E1000_READ_REG(hw, RXDCTL);
1690                 ctrl =
1691                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1692                     E1000_RXDCTL_FULL_RX_DESC_WB;
1693                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1694         }
1695
1696         switch (hw->mac_type) {
1697         default:
1698                 break;
1699         case e1000_80003es2lan:
1700                 /* Enable retransmit on late collisions */
1701                 reg_data = E1000_READ_REG(hw, TCTL);
1702                 reg_data |= E1000_TCTL_RTLC;
1703                 E1000_WRITE_REG(hw, TCTL, reg_data);
1704
1705                 /* Configure Gigabit Carry Extend Padding */
1706                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1707                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1708                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1709                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1710
1711                 /* Configure Transmit Inter-Packet Gap */
1712                 reg_data = E1000_READ_REG(hw, TIPG);
1713                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1714                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1715                 E1000_WRITE_REG(hw, TIPG, reg_data);
1716
1717                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1718                 reg_data &= ~0x00100000;
1719                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1720                 /* Fall through */
1721         case e1000_82571:
1722         case e1000_82572:
1723         case e1000_ich8lan:
1724                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1725                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1726                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1727                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1728                 break;
1729         case e1000_82573:
1730         case e1000_82574:
1731                 reg_data = E1000_READ_REG(hw, GCR);
1732                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1733                 E1000_WRITE_REG(hw, GCR, reg_data);
1734         }
1735
1736 #if 0
1737         /* Clear all of the statistics registers (clear on read).  It is
1738          * important that we do this after we have tried to establish link
1739          * because the symbol error count will increment wildly if there
1740          * is no link.
1741          */
1742         e1000_clear_hw_cntrs(hw);
1743
1744         /* ICH8 No-snoop bits are opposite polarity.
1745          * Set to snoop by default after reset. */
1746         if (hw->mac_type == e1000_ich8lan)
1747                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1748 #endif
1749
1750         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1751                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1752                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1753                 /* Relaxed ordering must be disabled to avoid a parity
1754                  * error crash in a PCI slot. */
1755                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1756                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1757         }
1758
1759         return ret_val;
1760 }
1761
1762 /******************************************************************************
1763  * Configures flow control and link settings.
1764  *
1765  * hw - Struct containing variables accessed by shared code
1766  *
1767  * Determines which flow control settings to use. Calls the apropriate media-
1768  * specific link configuration function. Configures the flow control settings.
1769  * Assuming the adapter has a valid link partner, a valid link should be
1770  * established. Assumes the hardware has previously been reset and the
1771  * transmitter and receiver are not enabled.
1772  *****************************************************************************/
1773 static int
1774 e1000_setup_link(struct eth_device *nic)
1775 {
1776         struct e1000_hw *hw = nic->priv;
1777         int32_t ret_val;
1778 #ifndef CONFIG_E1000_NO_NVM
1779         uint32_t ctrl_ext;
1780         uint16_t eeprom_data;
1781 #endif
1782
1783         DEBUGFUNC();
1784
1785         /* In the case of the phy reset being blocked, we already have a link.
1786          * We do not have to set it up again. */
1787         if (e1000_check_phy_reset_block(hw))
1788                 return E1000_SUCCESS;
1789
1790 #ifndef CONFIG_E1000_NO_NVM
1791         /* Read and store word 0x0F of the EEPROM. This word contains bits
1792          * that determine the hardware's default PAUSE (flow control) mode,
1793          * a bit that determines whether the HW defaults to enabling or
1794          * disabling auto-negotiation, and the direction of the
1795          * SW defined pins. If there is no SW over-ride of the flow
1796          * control setting, then the variable hw->fc will
1797          * be initialized based on a value in the EEPROM.
1798          */
1799         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1800                                 &eeprom_data) < 0) {
1801                 DEBUGOUT("EEPROM Read Error\n");
1802                 return -E1000_ERR_EEPROM;
1803         }
1804 #endif
1805         if (hw->fc == e1000_fc_default) {
1806                 switch (hw->mac_type) {
1807                 case e1000_ich8lan:
1808                 case e1000_82573:
1809                 case e1000_82574:
1810                         hw->fc = e1000_fc_full;
1811                         break;
1812                 default:
1813 #ifndef CONFIG_E1000_NO_NVM
1814                         ret_val = e1000_read_eeprom(hw,
1815                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1816                         if (ret_val) {
1817                                 DEBUGOUT("EEPROM Read Error\n");
1818                                 return -E1000_ERR_EEPROM;
1819                         }
1820                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1821                                 hw->fc = e1000_fc_none;
1822                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1823                                     EEPROM_WORD0F_ASM_DIR)
1824                                 hw->fc = e1000_fc_tx_pause;
1825                         else
1826 #endif
1827                                 hw->fc = e1000_fc_full;
1828                         break;
1829                 }
1830         }
1831
1832         /* We want to save off the original Flow Control configuration just
1833          * in case we get disconnected and then reconnected into a different
1834          * hub or switch with different Flow Control capabilities.
1835          */
1836         if (hw->mac_type == e1000_82542_rev2_0)
1837                 hw->fc &= (~e1000_fc_tx_pause);
1838
1839         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1840                 hw->fc &= (~e1000_fc_rx_pause);
1841
1842         hw->original_fc = hw->fc;
1843
1844         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1845
1846 #ifndef CONFIG_E1000_NO_NVM
1847         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1848          * polarity value for the SW controlled pins, and setup the
1849          * Extended Device Control reg with that info.
1850          * This is needed because one of the SW controlled pins is used for
1851          * signal detection.  So this should be done before e1000_setup_pcs_link()
1852          * or e1000_phy_setup() is called.
1853          */
1854         if (hw->mac_type == e1000_82543) {
1855                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1856                             SWDPIO__EXT_SHIFT);
1857                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1858         }
1859 #endif
1860
1861         /* Call the necessary subroutine to configure the link. */
1862         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1863             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1864         if (ret_val < 0) {
1865                 return ret_val;
1866         }
1867
1868         /* Initialize the flow control address, type, and PAUSE timer
1869          * registers to their default values.  This is done even if flow
1870          * control is disabled, because it does not hurt anything to
1871          * initialize these registers.
1872          */
1873         DEBUGOUT("Initializing the Flow Control address, type"
1874                         "and timer regs\n");
1875
1876         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1877         if (hw->mac_type != e1000_ich8lan) {
1878                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1879                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1880                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1881         }
1882
1883         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1884
1885         /* Set the flow control receive threshold registers.  Normally,
1886          * these registers will be set to a default threshold that may be
1887          * adjusted later by the driver's runtime code.  However, if the
1888          * ability to transmit pause frames in not enabled, then these
1889          * registers will be set to 0.
1890          */
1891         if (!(hw->fc & e1000_fc_tx_pause)) {
1892                 E1000_WRITE_REG(hw, FCRTL, 0);
1893                 E1000_WRITE_REG(hw, FCRTH, 0);
1894         } else {
1895                 /* We need to set up the Receive Threshold high and low water marks
1896                  * as well as (optionally) enabling the transmission of XON frames.
1897                  */
1898                 if (hw->fc_send_xon) {
1899                         E1000_WRITE_REG(hw, FCRTL,
1900                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1901                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1902                 } else {
1903                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1904                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1905                 }
1906         }
1907         return ret_val;
1908 }
1909
1910 /******************************************************************************
1911  * Sets up link for a fiber based adapter
1912  *
1913  * hw - Struct containing variables accessed by shared code
1914  *
1915  * Manipulates Physical Coding Sublayer functions in order to configure
1916  * link. Assumes the hardware has been previously reset and the transmitter
1917  * and receiver are not enabled.
1918  *****************************************************************************/
1919 static int
1920 e1000_setup_fiber_link(struct eth_device *nic)
1921 {
1922         struct e1000_hw *hw = nic->priv;
1923         uint32_t ctrl;
1924         uint32_t status;
1925         uint32_t txcw = 0;
1926         uint32_t i;
1927         uint32_t signal;
1928         int32_t ret_val;
1929
1930         DEBUGFUNC();
1931         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1932          * set when the optics detect a signal. On older adapters, it will be
1933          * cleared when there is a signal
1934          */
1935         ctrl = E1000_READ_REG(hw, CTRL);
1936         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1937                 signal = E1000_CTRL_SWDPIN1;
1938         else
1939                 signal = 0;
1940
1941         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1942                ctrl);
1943         /* Take the link out of reset */
1944         ctrl &= ~(E1000_CTRL_LRST);
1945
1946         e1000_config_collision_dist(hw);
1947
1948         /* Check for a software override of the flow control settings, and setup
1949          * the device accordingly.  If auto-negotiation is enabled, then software
1950          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1951          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
1952          * auto-negotiation is disabled, then software will have to manually
1953          * configure the two flow control enable bits in the CTRL register.
1954          *
1955          * The possible values of the "fc" parameter are:
1956          *      0:  Flow control is completely disabled
1957          *      1:  Rx flow control is enabled (we can receive pause frames, but
1958          *          not send pause frames).
1959          *      2:  Tx flow control is enabled (we can send pause frames but we do
1960          *          not support receiving pause frames).
1961          *      3:  Both Rx and TX flow control (symmetric) are enabled.
1962          */
1963         switch (hw->fc) {
1964         case e1000_fc_none:
1965                 /* Flow control is completely disabled by a software over-ride. */
1966                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1967                 break;
1968         case e1000_fc_rx_pause:
1969                 /* RX Flow control is enabled and TX Flow control is disabled by a
1970                  * software over-ride. Since there really isn't a way to advertise
1971                  * that we are capable of RX Pause ONLY, we will advertise that we
1972                  * support both symmetric and asymmetric RX PAUSE. Later, we will
1973                  *  disable the adapter's ability to send PAUSE frames.
1974                  */
1975                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1976                 break;
1977         case e1000_fc_tx_pause:
1978                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1979                  * software over-ride.
1980                  */
1981                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1982                 break;
1983         case e1000_fc_full:
1984                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1985                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1986                 break;
1987         default:
1988                 DEBUGOUT("Flow control param set incorrectly\n");
1989                 return -E1000_ERR_CONFIG;
1990                 break;
1991         }
1992
1993         /* Since auto-negotiation is enabled, take the link out of reset (the link
1994          * will be in reset, because we previously reset the chip). This will
1995          * restart auto-negotiation.  If auto-neogtiation is successful then the
1996          * link-up status bit will be set and the flow control enable bits (RFCE
1997          * and TFCE) will be set according to their negotiated value.
1998          */
1999         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2000
2001         E1000_WRITE_REG(hw, TXCW, txcw);
2002         E1000_WRITE_REG(hw, CTRL, ctrl);
2003         E1000_WRITE_FLUSH(hw);
2004
2005         hw->txcw = txcw;
2006         mdelay(1);
2007
2008         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2009          * indication in the Device Status Register.  Time-out if a link isn't
2010          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2011          * less than 500 milliseconds even if the other end is doing it in SW).
2012          */
2013         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2014                 DEBUGOUT("Looking for Link\n");
2015                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2016                         mdelay(10);
2017                         status = E1000_READ_REG(hw, STATUS);
2018                         if (status & E1000_STATUS_LU)
2019                                 break;
2020                 }
2021                 if (i == (LINK_UP_TIMEOUT / 10)) {
2022                         /* AutoNeg failed to achieve a link, so we'll call
2023                          * e1000_check_for_link. This routine will force the link up if we
2024                          * detect a signal. This will allow us to communicate with
2025                          * non-autonegotiating link partners.
2026                          */
2027                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2028                         hw->autoneg_failed = 1;
2029                         ret_val = e1000_check_for_link(nic);
2030                         if (ret_val < 0) {
2031                                 DEBUGOUT("Error while checking for link\n");
2032                                 return ret_val;
2033                         }
2034                         hw->autoneg_failed = 0;
2035                 } else {
2036                         hw->autoneg_failed = 0;
2037                         DEBUGOUT("Valid Link Found\n");
2038                 }
2039         } else {
2040                 DEBUGOUT("No Signal Detected\n");
2041                 return -E1000_ERR_NOLINK;
2042         }
2043         return 0;
2044 }
2045
2046 /******************************************************************************
2047 * Make sure we have a valid PHY and change PHY mode before link setup.
2048 *
2049 * hw - Struct containing variables accessed by shared code
2050 ******************************************************************************/
2051 static int32_t
2052 e1000_copper_link_preconfig(struct e1000_hw *hw)
2053 {
2054         uint32_t ctrl;
2055         int32_t ret_val;
2056         uint16_t phy_data;
2057
2058         DEBUGFUNC();
2059
2060         ctrl = E1000_READ_REG(hw, CTRL);
2061         /* With 82543, we need to force speed and duplex on the MAC equal to what
2062          * the PHY speed and duplex configuration is. In addition, we need to
2063          * perform a hardware reset on the PHY to take it out of reset.
2064          */
2065         if (hw->mac_type > e1000_82543) {
2066                 ctrl |= E1000_CTRL_SLU;
2067                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2068                 E1000_WRITE_REG(hw, CTRL, ctrl);
2069         } else {
2070                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2071                                 | E1000_CTRL_SLU);
2072                 E1000_WRITE_REG(hw, CTRL, ctrl);
2073                 ret_val = e1000_phy_hw_reset(hw);
2074                 if (ret_val)
2075                         return ret_val;
2076         }
2077
2078         /* Make sure we have a valid PHY */
2079         ret_val = e1000_detect_gig_phy(hw);
2080         if (ret_val) {
2081                 DEBUGOUT("Error, did not detect valid phy.\n");
2082                 return ret_val;
2083         }
2084         DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2085
2086         /* Set PHY to class A mode (if necessary) */
2087         ret_val = e1000_set_phy_mode(hw);
2088         if (ret_val)
2089                 return ret_val;
2090         if ((hw->mac_type == e1000_82545_rev_3) ||
2091                 (hw->mac_type == e1000_82546_rev_3)) {
2092                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2093                                 &phy_data);
2094                 phy_data |= 0x00000008;
2095                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2096                                 phy_data);
2097         }
2098
2099         if (hw->mac_type <= e1000_82543 ||
2100                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2101                 hw->mac_type == e1000_82541_rev_2
2102                 || hw->mac_type == e1000_82547_rev_2)
2103                         hw->phy_reset_disable = false;
2104
2105         return E1000_SUCCESS;
2106 }
2107
2108 /*****************************************************************************
2109  *
2110  * This function sets the lplu state according to the active flag.  When
2111  * activating lplu this function also disables smart speed and vise versa.
2112  * lplu will not be activated unless the device autonegotiation advertisment
2113  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2114  * hw: Struct containing variables accessed by shared code
2115  * active - true to enable lplu false to disable lplu.
2116  *
2117  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2118  *            E1000_SUCCESS at any other case.
2119  *
2120  ****************************************************************************/
2121
2122 static int32_t
2123 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2124 {
2125         uint32_t phy_ctrl = 0;
2126         int32_t ret_val;
2127         uint16_t phy_data;
2128         DEBUGFUNC();
2129
2130         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2131             && hw->phy_type != e1000_phy_igp_3)
2132                 return E1000_SUCCESS;
2133
2134         /* During driver activity LPLU should not be used or it will attain link
2135          * from the lowest speeds starting from 10Mbps. The capability is used
2136          * for Dx transitions and states */
2137         if (hw->mac_type == e1000_82541_rev_2
2138                         || hw->mac_type == e1000_82547_rev_2) {
2139                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2140                                 &phy_data);
2141                 if (ret_val)
2142                         return ret_val;
2143         } else if (hw->mac_type == e1000_ich8lan) {
2144                 /* MAC writes into PHY register based on the state transition
2145                  * and start auto-negotiation. SW driver can overwrite the
2146                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2147                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2148         } else {
2149                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2150                                 &phy_data);
2151                 if (ret_val)
2152                         return ret_val;
2153         }
2154
2155         if (!active) {
2156                 if (hw->mac_type == e1000_82541_rev_2 ||
2157                         hw->mac_type == e1000_82547_rev_2) {
2158                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2159                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2160                                         phy_data);
2161                         if (ret_val)
2162                                 return ret_val;
2163                 } else {
2164                         if (hw->mac_type == e1000_ich8lan) {
2165                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2166                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2167                         } else {
2168                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2169                                 ret_val = e1000_write_phy_reg(hw,
2170                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2171                                 if (ret_val)
2172                                         return ret_val;
2173                         }
2174                 }
2175
2176         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2177          * Dx states where the power conservation is most important.  During
2178          * driver activity we should enable SmartSpeed, so performance is
2179          * maintained. */
2180                 if (hw->smart_speed == e1000_smart_speed_on) {
2181                         ret_val = e1000_read_phy_reg(hw,
2182                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2183                         if (ret_val)
2184                                 return ret_val;
2185
2186                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2187                         ret_val = e1000_write_phy_reg(hw,
2188                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2189                         if (ret_val)
2190                                 return ret_val;
2191                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2192                         ret_val = e1000_read_phy_reg(hw,
2193                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2194                         if (ret_val)
2195                                 return ret_val;
2196
2197                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2198                         ret_val = e1000_write_phy_reg(hw,
2199                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2200                         if (ret_val)
2201                                 return ret_val;
2202                 }
2203
2204         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2205                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2206                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2207
2208                 if (hw->mac_type == e1000_82541_rev_2 ||
2209                     hw->mac_type == e1000_82547_rev_2) {
2210                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2211                         ret_val = e1000_write_phy_reg(hw,
2212                                         IGP01E1000_GMII_FIFO, phy_data);
2213                         if (ret_val)
2214                                 return ret_val;
2215                 } else {
2216                         if (hw->mac_type == e1000_ich8lan) {
2217                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2218                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2219                         } else {
2220                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2221                                 ret_val = e1000_write_phy_reg(hw,
2222                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2223                                 if (ret_val)
2224                                         return ret_val;
2225                         }
2226                 }
2227
2228                 /* When LPLU is enabled we should disable SmartSpeed */
2229                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2230                                 &phy_data);
2231                 if (ret_val)
2232                         return ret_val;
2233
2234                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2235                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2236                                 phy_data);
2237                 if (ret_val)
2238                         return ret_val;
2239         }
2240         return E1000_SUCCESS;
2241 }
2242
2243 /*****************************************************************************
2244  *
2245  * This function sets the lplu d0 state according to the active flag.  When
2246  * activating lplu this function also disables smart speed and vise versa.
2247  * lplu will not be activated unless the device autonegotiation advertisment
2248  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2249  * hw: Struct containing variables accessed by shared code
2250  * active - true to enable lplu false to disable lplu.
2251  *
2252  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2253  *            E1000_SUCCESS at any other case.
2254  *
2255  ****************************************************************************/
2256
2257 static int32_t
2258 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2259 {
2260         uint32_t phy_ctrl = 0;
2261         int32_t ret_val;
2262         uint16_t phy_data;
2263         DEBUGFUNC();
2264
2265         if (hw->mac_type <= e1000_82547_rev_2)
2266                 return E1000_SUCCESS;
2267
2268         if (hw->mac_type == e1000_ich8lan) {
2269                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2270         } else {
2271                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2272                                 &phy_data);
2273                 if (ret_val)
2274                         return ret_val;
2275         }
2276
2277         if (!active) {
2278                 if (hw->mac_type == e1000_ich8lan) {
2279                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2280                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2281                 } else {
2282                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2283                         ret_val = e1000_write_phy_reg(hw,
2284                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2285                         if (ret_val)
2286                                 return ret_val;
2287                 }
2288
2289         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2290          * Dx states where the power conservation is most important.  During
2291          * driver activity we should enable SmartSpeed, so performance is
2292          * maintained. */
2293                 if (hw->smart_speed == e1000_smart_speed_on) {
2294                         ret_val = e1000_read_phy_reg(hw,
2295                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2296                         if (ret_val)
2297                                 return ret_val;
2298
2299                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2300                         ret_val = e1000_write_phy_reg(hw,
2301                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2302                         if (ret_val)
2303                                 return ret_val;
2304                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2305                         ret_val = e1000_read_phy_reg(hw,
2306                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2307                         if (ret_val)
2308                                 return ret_val;
2309
2310                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2311                         ret_val = e1000_write_phy_reg(hw,
2312                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2313                         if (ret_val)
2314                                 return ret_val;
2315                 }
2316
2317
2318         } else {
2319
2320                 if (hw->mac_type == e1000_ich8lan) {
2321                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2322                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2323                 } else {
2324                         phy_data |= IGP02E1000_PM_D0_LPLU;
2325                         ret_val = e1000_write_phy_reg(hw,
2326                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2327                         if (ret_val)
2328                                 return ret_val;
2329                 }
2330
2331                 /* When LPLU is enabled we should disable SmartSpeed */
2332                 ret_val = e1000_read_phy_reg(hw,
2333                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2334                 if (ret_val)
2335                         return ret_val;
2336
2337                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2338                 ret_val = e1000_write_phy_reg(hw,
2339                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2340                 if (ret_val)
2341                         return ret_val;
2342
2343         }
2344         return E1000_SUCCESS;
2345 }
2346
2347 /********************************************************************
2348 * Copper link setup for e1000_phy_igp series.
2349 *
2350 * hw - Struct containing variables accessed by shared code
2351 *********************************************************************/
2352 static int32_t
2353 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2354 {
2355         uint32_t led_ctrl;
2356         int32_t ret_val;
2357         uint16_t phy_data;
2358
2359         DEBUGFUNC();
2360
2361         if (hw->phy_reset_disable)
2362                 return E1000_SUCCESS;
2363
2364         ret_val = e1000_phy_reset(hw);
2365         if (ret_val) {
2366                 DEBUGOUT("Error Resetting the PHY\n");
2367                 return ret_val;
2368         }
2369
2370         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2371         mdelay(15);
2372         if (hw->mac_type != e1000_ich8lan) {
2373                 /* Configure activity LED after PHY reset */
2374                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2375                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2376                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2377                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2378         }
2379
2380         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2381         if (hw->phy_type == e1000_phy_igp) {
2382                 /* disable lplu d3 during driver init */
2383                 ret_val = e1000_set_d3_lplu_state(hw, false);
2384                 if (ret_val) {
2385                         DEBUGOUT("Error Disabling LPLU D3\n");
2386                         return ret_val;
2387                 }
2388         }
2389
2390         /* disable lplu d0 during driver init */
2391         ret_val = e1000_set_d0_lplu_state(hw, false);
2392         if (ret_val) {
2393                 DEBUGOUT("Error Disabling LPLU D0\n");
2394                 return ret_val;
2395         }
2396         /* Configure mdi-mdix settings */
2397         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2398         if (ret_val)
2399                 return ret_val;
2400
2401         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2402                 hw->dsp_config_state = e1000_dsp_config_disabled;
2403                 /* Force MDI for earlier revs of the IGP PHY */
2404                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2405                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2406                 hw->mdix = 1;
2407
2408         } else {
2409                 hw->dsp_config_state = e1000_dsp_config_enabled;
2410                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2411
2412                 switch (hw->mdix) {
2413                 case 1:
2414                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2415                         break;
2416                 case 2:
2417                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2418                         break;
2419                 case 0:
2420                 default:
2421                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2422                         break;
2423                 }
2424         }
2425         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2426         if (ret_val)
2427                 return ret_val;
2428
2429         /* set auto-master slave resolution settings */
2430         if (hw->autoneg) {
2431                 e1000_ms_type phy_ms_setting = hw->master_slave;
2432
2433                 if (hw->ffe_config_state == e1000_ffe_config_active)
2434                         hw->ffe_config_state = e1000_ffe_config_enabled;
2435
2436                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2437                         hw->dsp_config_state = e1000_dsp_config_enabled;
2438
2439                 /* when autonegotiation advertisment is only 1000Mbps then we
2440                   * should disable SmartSpeed and enable Auto MasterSlave
2441                   * resolution as hardware default. */
2442                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2443                         /* Disable SmartSpeed */
2444                         ret_val = e1000_read_phy_reg(hw,
2445                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2446                         if (ret_val)
2447                                 return ret_val;
2448                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2449                         ret_val = e1000_write_phy_reg(hw,
2450                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2451                         if (ret_val)
2452                                 return ret_val;
2453                         /* Set auto Master/Slave resolution process */
2454                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2455                                         &phy_data);
2456                         if (ret_val)
2457                                 return ret_val;
2458                         phy_data &= ~CR_1000T_MS_ENABLE;
2459                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2460                                         phy_data);
2461                         if (ret_val)
2462                                 return ret_val;
2463                 }
2464
2465                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2466                 if (ret_val)
2467                         return ret_val;
2468
2469                 /* load defaults for future use */
2470                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2471                                 ((phy_data & CR_1000T_MS_VALUE) ?
2472                                 e1000_ms_force_master :
2473                                 e1000_ms_force_slave) :
2474                                 e1000_ms_auto;
2475
2476                 switch (phy_ms_setting) {
2477                 case e1000_ms_force_master:
2478                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2479                         break;
2480                 case e1000_ms_force_slave:
2481                         phy_data |= CR_1000T_MS_ENABLE;
2482                         phy_data &= ~(CR_1000T_MS_VALUE);
2483                         break;
2484                 case e1000_ms_auto:
2485                         phy_data &= ~CR_1000T_MS_ENABLE;
2486                 default:
2487                         break;
2488                 }
2489                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2490                 if (ret_val)
2491                         return ret_val;
2492         }
2493
2494         return E1000_SUCCESS;
2495 }
2496
2497 /*****************************************************************************
2498  * This function checks the mode of the firmware.
2499  *
2500  * returns  - true when the mode is IAMT or false.
2501  ****************************************************************************/
2502 bool
2503 e1000_check_mng_mode(struct e1000_hw *hw)
2504 {
2505         uint32_t fwsm;
2506         DEBUGFUNC();
2507
2508         fwsm = E1000_READ_REG(hw, FWSM);
2509
2510         if (hw->mac_type == e1000_ich8lan) {
2511                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2512                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2513                         return true;
2514         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2515                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2516                         return true;
2517
2518         return false;
2519 }
2520
2521 static int32_t
2522 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2523 {
2524         uint16_t swfw = E1000_SWFW_PHY0_SM;
2525         uint32_t reg_val;
2526         DEBUGFUNC();
2527
2528         if (e1000_is_second_port(hw))
2529                 swfw = E1000_SWFW_PHY1_SM;
2530
2531         if (e1000_swfw_sync_acquire(hw, swfw))
2532                 return -E1000_ERR_SWFW_SYNC;
2533
2534         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2535                         & E1000_KUMCTRLSTA_OFFSET) | data;
2536         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2537         udelay(2);
2538
2539         return E1000_SUCCESS;
2540 }
2541
2542 static int32_t
2543 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2544 {
2545         uint16_t swfw = E1000_SWFW_PHY0_SM;
2546         uint32_t reg_val;
2547         DEBUGFUNC();
2548
2549         if (e1000_is_second_port(hw))
2550                 swfw = E1000_SWFW_PHY1_SM;
2551
2552         if (e1000_swfw_sync_acquire(hw, swfw))
2553                 return -E1000_ERR_SWFW_SYNC;
2554
2555         /* Write register address */
2556         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2557                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2558         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2559         udelay(2);
2560
2561         /* Read the data returned */
2562         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2563         *data = (uint16_t)reg_val;
2564
2565         return E1000_SUCCESS;
2566 }
2567
2568 /********************************************************************
2569 * Copper link setup for e1000_phy_gg82563 series.
2570 *
2571 * hw - Struct containing variables accessed by shared code
2572 *********************************************************************/
2573 static int32_t
2574 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2575 {
2576         int32_t ret_val;
2577         uint16_t phy_data;
2578         uint32_t reg_data;
2579
2580         DEBUGFUNC();
2581
2582         if (!hw->phy_reset_disable) {
2583                 /* Enable CRS on TX for half-duplex operation. */
2584                 ret_val = e1000_read_phy_reg(hw,
2585                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2586                 if (ret_val)
2587                         return ret_val;
2588
2589                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2590                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2591                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2592
2593                 ret_val = e1000_write_phy_reg(hw,
2594                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2595                 if (ret_val)
2596                         return ret_val;
2597
2598                 /* Options:
2599                  *   MDI/MDI-X = 0 (default)
2600                  *   0 - Auto for all speeds
2601                  *   1 - MDI mode
2602                  *   2 - MDI-X mode
2603                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2604                  */
2605                 ret_val = e1000_read_phy_reg(hw,
2606                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2607                 if (ret_val)
2608                         return ret_val;
2609
2610                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2611
2612                 switch (hw->mdix) {
2613                 case 1:
2614                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2615                         break;
2616                 case 2:
2617                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2618                         break;
2619                 case 0:
2620                 default:
2621                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2622                         break;
2623                 }
2624
2625                 /* Options:
2626                  *   disable_polarity_correction = 0 (default)
2627                  *       Automatic Correction for Reversed Cable Polarity
2628                  *   0 - Disabled
2629                  *   1 - Enabled
2630                  */
2631                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2632                 ret_val = e1000_write_phy_reg(hw,
2633                                 GG82563_PHY_SPEC_CTRL, phy_data);
2634
2635                 if (ret_val)
2636                         return ret_val;
2637
2638                 /* SW Reset the PHY so all changes take effect */
2639                 ret_val = e1000_phy_reset(hw);
2640                 if (ret_val) {
2641                         DEBUGOUT("Error Resetting the PHY\n");
2642                         return ret_val;
2643                 }
2644         } /* phy_reset_disable */
2645
2646         if (hw->mac_type == e1000_80003es2lan) {
2647                 /* Bypass RX and TX FIFO's */
2648                 ret_val = e1000_write_kmrn_reg(hw,
2649                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2650                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2651                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2652                 if (ret_val)
2653                         return ret_val;
2654
2655                 ret_val = e1000_read_phy_reg(hw,
2656                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2657                 if (ret_val)
2658                         return ret_val;
2659
2660                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2661                 ret_val = e1000_write_phy_reg(hw,
2662                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2663
2664                 if (ret_val)
2665                         return ret_val;
2666
2667                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2668                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2669                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2670
2671                 ret_val = e1000_read_phy_reg(hw,
2672                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2673                 if (ret_val)
2674                         return ret_val;
2675
2676         /* Do not init these registers when the HW is in IAMT mode, since the
2677          * firmware will have already initialized them.  We only initialize
2678          * them if the HW is not in IAMT mode.
2679          */
2680                 if (e1000_check_mng_mode(hw) == false) {
2681                         /* Enable Electrical Idle on the PHY */
2682                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2683                         ret_val = e1000_write_phy_reg(hw,
2684                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2685                         if (ret_val)
2686                                 return ret_val;
2687
2688                         ret_val = e1000_read_phy_reg(hw,
2689                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2690                         if (ret_val)
2691                                 return ret_val;
2692
2693                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2694                         ret_val = e1000_write_phy_reg(hw,
2695                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2696
2697                         if (ret_val)
2698                                 return ret_val;
2699                 }
2700
2701                 /* Workaround: Disable padding in Kumeran interface in the MAC
2702                  * and in the PHY to avoid CRC errors.
2703                  */
2704                 ret_val = e1000_read_phy_reg(hw,
2705                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2706                 if (ret_val)
2707                         return ret_val;
2708                 phy_data |= GG82563_ICR_DIS_PADDING;
2709                 ret_val = e1000_write_phy_reg(hw,
2710                                 GG82563_PHY_INBAND_CTRL, phy_data);
2711                 if (ret_val)
2712                         return ret_val;
2713         }
2714         return E1000_SUCCESS;
2715 }
2716
2717 /********************************************************************
2718 * Copper link setup for e1000_phy_m88 series.
2719 *
2720 * hw - Struct containing variables accessed by shared code
2721 *********************************************************************/
2722 static int32_t
2723 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2724 {
2725         int32_t ret_val;
2726         uint16_t phy_data;
2727
2728         DEBUGFUNC();
2729
2730         if (hw->phy_reset_disable)
2731                 return E1000_SUCCESS;
2732
2733         /* Enable CRS on TX. This must be set for half-duplex operation. */
2734         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2735         if (ret_val)
2736                 return ret_val;
2737
2738         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2739
2740         /* Options:
2741          *   MDI/MDI-X = 0 (default)
2742          *   0 - Auto for all speeds
2743          *   1 - MDI mode
2744          *   2 - MDI-X mode
2745          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2746          */
2747         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2748
2749         switch (hw->mdix) {
2750         case 1:
2751                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2752                 break;
2753         case 2:
2754                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2755                 break;
2756         case 3:
2757                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2758                 break;
2759         case 0:
2760         default:
2761                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2762                 break;
2763         }
2764
2765         /* Options:
2766          *   disable_polarity_correction = 0 (default)
2767          *       Automatic Correction for Reversed Cable Polarity
2768          *   0 - Disabled
2769          *   1 - Enabled
2770          */
2771         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2772         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2773         if (ret_val)
2774                 return ret_val;
2775
2776         if (hw->phy_revision < M88E1011_I_REV_4) {
2777                 /* Force TX_CLK in the Extended PHY Specific Control Register
2778                  * to 25MHz clock.
2779                  */
2780                 ret_val = e1000_read_phy_reg(hw,
2781                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2782                 if (ret_val)
2783                         return ret_val;
2784
2785                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2786
2787                 if ((hw->phy_revision == E1000_REVISION_2) &&
2788                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2789                         /* Vidalia Phy, set the downshift counter to 5x */
2790                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2791                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2792                         ret_val = e1000_write_phy_reg(hw,
2793                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2794                         if (ret_val)
2795                                 return ret_val;
2796                 } else {
2797                         /* Configure Master and Slave downshift values */
2798                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2799                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2800                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2801                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2802                         ret_val = e1000_write_phy_reg(hw,
2803                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2804                         if (ret_val)
2805                                 return ret_val;
2806                 }
2807         }
2808
2809         /* SW Reset the PHY so all changes take effect */
2810         ret_val = e1000_phy_reset(hw);
2811         if (ret_val) {
2812                 DEBUGOUT("Error Resetting the PHY\n");
2813                 return ret_val;
2814         }
2815
2816         return E1000_SUCCESS;
2817 }
2818
2819 /********************************************************************
2820 * Setup auto-negotiation and flow control advertisements,
2821 * and then perform auto-negotiation.
2822 *
2823 * hw - Struct containing variables accessed by shared code
2824 *********************************************************************/
2825 static int32_t
2826 e1000_copper_link_autoneg(struct e1000_hw *hw)
2827 {
2828         int32_t ret_val;
2829         uint16_t phy_data;
2830
2831         DEBUGFUNC();
2832
2833         /* Perform some bounds checking on the hw->autoneg_advertised
2834          * parameter.  If this variable is zero, then set it to the default.
2835          */
2836         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2837
2838         /* If autoneg_advertised is zero, we assume it was not defaulted
2839          * by the calling code so we set to advertise full capability.
2840          */
2841         if (hw->autoneg_advertised == 0)
2842                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2843
2844         /* IFE phy only supports 10/100 */
2845         if (hw->phy_type == e1000_phy_ife)
2846                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2847
2848         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2849         ret_val = e1000_phy_setup_autoneg(hw);
2850         if (ret_val) {
2851                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2852                 return ret_val;
2853         }
2854         DEBUGOUT("Restarting Auto-Neg\n");
2855
2856         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2857          * the Auto Neg Restart bit in the PHY control register.
2858          */
2859         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2860         if (ret_val)
2861                 return ret_val;
2862
2863         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2864         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2865         if (ret_val)
2866                 return ret_val;
2867
2868         /* Does the user want to wait for Auto-Neg to complete here, or
2869          * check at a later time (for example, callback routine).
2870          */
2871         /* If we do not wait for autonegtation to complete I
2872          * do not see a valid link status.
2873          * wait_autoneg_complete = 1 .
2874          */
2875         if (hw->wait_autoneg_complete) {
2876                 ret_val = e1000_wait_autoneg(hw);
2877                 if (ret_val) {
2878                         DEBUGOUT("Error while waiting for autoneg"
2879                                         "to complete\n");
2880                         return ret_val;
2881                 }
2882         }
2883
2884         hw->get_link_status = true;
2885
2886         return E1000_SUCCESS;
2887 }
2888
2889 /******************************************************************************
2890 * Config the MAC and the PHY after link is up.
2891 *   1) Set up the MAC to the current PHY speed/duplex
2892 *      if we are on 82543.  If we
2893 *      are on newer silicon, we only need to configure
2894 *      collision distance in the Transmit Control Register.
2895 *   2) Set up flow control on the MAC to that established with
2896 *      the link partner.
2897 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2898 *
2899 * hw - Struct containing variables accessed by shared code
2900 ******************************************************************************/
2901 static int32_t
2902 e1000_copper_link_postconfig(struct e1000_hw *hw)
2903 {
2904         int32_t ret_val;
2905         DEBUGFUNC();
2906
2907         if (hw->mac_type >= e1000_82544) {
2908                 e1000_config_collision_dist(hw);
2909         } else {
2910                 ret_val = e1000_config_mac_to_phy(hw);
2911                 if (ret_val) {
2912                         DEBUGOUT("Error configuring MAC to PHY settings\n");
2913                         return ret_val;
2914                 }
2915         }
2916         ret_val = e1000_config_fc_after_link_up(hw);
2917         if (ret_val) {
2918                 DEBUGOUT("Error Configuring Flow Control\n");
2919                 return ret_val;
2920         }
2921         return E1000_SUCCESS;
2922 }
2923
2924 /******************************************************************************
2925 * Detects which PHY is present and setup the speed and duplex
2926 *
2927 * hw - Struct containing variables accessed by shared code
2928 ******************************************************************************/
2929 static int
2930 e1000_setup_copper_link(struct eth_device *nic)
2931 {
2932         struct e1000_hw *hw = nic->priv;
2933         int32_t ret_val;
2934         uint16_t i;
2935         uint16_t phy_data;
2936         uint16_t reg_data;
2937
2938         DEBUGFUNC();
2939
2940         switch (hw->mac_type) {
2941         case e1000_80003es2lan:
2942         case e1000_ich8lan:
2943                 /* Set the mac to wait the maximum time between each
2944                  * iteration and increase the max iterations when
2945                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2946                 ret_val = e1000_write_kmrn_reg(hw,
2947                                 GG82563_REG(0x34, 4), 0xFFFF);
2948                 if (ret_val)
2949                         return ret_val;
2950                 ret_val = e1000_read_kmrn_reg(hw,
2951                                 GG82563_REG(0x34, 9), &reg_data);
2952                 if (ret_val)
2953                         return ret_val;
2954                 reg_data |= 0x3F;
2955                 ret_val = e1000_write_kmrn_reg(hw,
2956                                 GG82563_REG(0x34, 9), reg_data);
2957                 if (ret_val)
2958                         return ret_val;
2959         default:
2960                 break;
2961         }
2962
2963         /* Check if it is a valid PHY and set PHY mode if necessary. */
2964         ret_val = e1000_copper_link_preconfig(hw);
2965         if (ret_val)
2966                 return ret_val;
2967         switch (hw->mac_type) {
2968         case e1000_80003es2lan:
2969                 /* Kumeran registers are written-only */
2970                 reg_data =
2971                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2972                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2973                 ret_val = e1000_write_kmrn_reg(hw,
2974                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2975                 if (ret_val)
2976                         return ret_val;
2977                 break;
2978         default:
2979                 break;
2980         }
2981
2982         if (hw->phy_type == e1000_phy_igp ||
2983                 hw->phy_type == e1000_phy_igp_3 ||
2984                 hw->phy_type == e1000_phy_igp_2) {
2985                 ret_val = e1000_copper_link_igp_setup(hw);
2986                 if (ret_val)
2987                         return ret_val;
2988         } else if (hw->phy_type == e1000_phy_m88) {
2989                 ret_val = e1000_copper_link_mgp_setup(hw);
2990                 if (ret_val)
2991                         return ret_val;
2992         } else if (hw->phy_type == e1000_phy_gg82563) {
2993                 ret_val = e1000_copper_link_ggp_setup(hw);
2994                 if (ret_val)
2995                         return ret_val;
2996         }
2997
2998         /* always auto */
2999         /* Setup autoneg and flow control advertisement
3000           * and perform autonegotiation */
3001         ret_val = e1000_copper_link_autoneg(hw);
3002         if (ret_val)
3003                 return ret_val;
3004
3005         /* Check link status. Wait up to 100 microseconds for link to become
3006          * valid.
3007          */
3008         for (i = 0; i < 10; i++) {
3009                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3010                 if (ret_val)
3011                         return ret_val;
3012                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3013                 if (ret_val)
3014                         return ret_val;
3015
3016                 if (phy_data & MII_SR_LINK_STATUS) {
3017                         /* Config the MAC and PHY after link is up */
3018                         ret_val = e1000_copper_link_postconfig(hw);
3019                         if (ret_val)
3020                                 return ret_val;
3021
3022                         DEBUGOUT("Valid link established!!!\n");
3023                         return E1000_SUCCESS;
3024                 }
3025                 udelay(10);
3026         }
3027
3028         DEBUGOUT("Unable to establish link!!!\n");
3029         return E1000_SUCCESS;
3030 }
3031
3032 /******************************************************************************
3033 * Configures PHY autoneg and flow control advertisement settings
3034 *
3035 * hw - Struct containing variables accessed by shared code
3036 ******************************************************************************/
3037 int32_t
3038 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3039 {
3040         int32_t ret_val;
3041         uint16_t mii_autoneg_adv_reg;
3042         uint16_t mii_1000t_ctrl_reg;
3043
3044         DEBUGFUNC();
3045
3046         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3047         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3048         if (ret_val)
3049                 return ret_val;
3050
3051         if (hw->phy_type != e1000_phy_ife) {
3052                 /* Read the MII 1000Base-T Control Register (Address 9). */
3053                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3054                                 &mii_1000t_ctrl_reg);
3055                 if (ret_val)
3056                         return ret_val;
3057         } else
3058                 mii_1000t_ctrl_reg = 0;
3059
3060         /* Need to parse both autoneg_advertised and fc and set up
3061          * the appropriate PHY registers.  First we will parse for
3062          * autoneg_advertised software override.  Since we can advertise
3063          * a plethora of combinations, we need to check each bit
3064          * individually.
3065          */
3066
3067         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3068          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3069          * the  1000Base-T Control Register (Address 9).
3070          */
3071         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3072         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3073
3074         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3075
3076         /* Do we want to advertise 10 Mb Half Duplex? */
3077         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3078                 DEBUGOUT("Advertise 10mb Half duplex\n");
3079                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3080         }
3081
3082         /* Do we want to advertise 10 Mb Full Duplex? */
3083         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3084                 DEBUGOUT("Advertise 10mb Full duplex\n");
3085                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3086         }
3087
3088         /* Do we want to advertise 100 Mb Half Duplex? */
3089         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3090                 DEBUGOUT("Advertise 100mb Half duplex\n");
3091                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3092         }
3093
3094         /* Do we want to advertise 100 Mb Full Duplex? */
3095         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3096                 DEBUGOUT("Advertise 100mb Full duplex\n");
3097                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3098         }
3099
3100         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3101         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3102                 DEBUGOUT
3103                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3104         }
3105
3106         /* Do we want to advertise 1000 Mb Full Duplex? */
3107         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3108                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3109                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3110         }
3111
3112         /* Check for a software override of the flow control settings, and
3113          * setup the PHY advertisement registers accordingly.  If
3114          * auto-negotiation is enabled, then software will have to set the
3115          * "PAUSE" bits to the correct value in the Auto-Negotiation
3116          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3117          *
3118          * The possible values of the "fc" parameter are:
3119          *      0:  Flow control is completely disabled
3120          *      1:  Rx flow control is enabled (we can receive pause frames
3121          *          but not send pause frames).
3122          *      2:  Tx flow control is enabled (we can send pause frames
3123          *          but we do not support receiving pause frames).
3124          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3125          *  other:  No software override.  The flow control configuration
3126          *          in the EEPROM is used.
3127          */
3128         switch (hw->fc) {
3129         case e1000_fc_none:     /* 0 */
3130                 /* Flow control (RX & TX) is completely disabled by a
3131                  * software over-ride.
3132                  */
3133                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3134                 break;
3135         case e1000_fc_rx_pause: /* 1 */
3136                 /* RX Flow control is enabled, and TX Flow control is
3137                  * disabled, by a software over-ride.
3138                  */
3139                 /* Since there really isn't a way to advertise that we are
3140                  * capable of RX Pause ONLY, we will advertise that we
3141                  * support both symmetric and asymmetric RX PAUSE.  Later
3142                  * (in e1000_config_fc_after_link_up) we will disable the
3143                  *hw's ability to send PAUSE frames.
3144                  */
3145                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3146                 break;
3147         case e1000_fc_tx_pause: /* 2 */
3148                 /* TX Flow control is enabled, and RX Flow control is
3149                  * disabled, by a software over-ride.
3150                  */
3151                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3152                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3153                 break;
3154         case e1000_fc_full:     /* 3 */
3155                 /* Flow control (both RX and TX) is enabled by a software
3156                  * over-ride.
3157                  */
3158                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3159                 break;
3160         default:
3161                 DEBUGOUT("Flow control param set incorrectly\n");
3162                 return -E1000_ERR_CONFIG;
3163         }
3164
3165         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3166         if (ret_val)
3167                 return ret_val;
3168
3169         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3170
3171         if (hw->phy_type != e1000_phy_ife) {
3172                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3173                                 mii_1000t_ctrl_reg);
3174                 if (ret_val)
3175                         return ret_val;
3176         }
3177
3178         return E1000_SUCCESS;
3179 }
3180
3181 /******************************************************************************
3182 * Sets the collision distance in the Transmit Control register
3183 *
3184 * hw - Struct containing variables accessed by shared code
3185 *
3186 * Link should have been established previously. Reads the speed and duplex
3187 * information from the Device Status register.
3188 ******************************************************************************/
3189 static void
3190 e1000_config_collision_dist(struct e1000_hw *hw)
3191 {
3192         uint32_t tctl, coll_dist;
3193
3194         DEBUGFUNC();
3195
3196         if (hw->mac_type < e1000_82543)
3197                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3198         else
3199                 coll_dist = E1000_COLLISION_DISTANCE;
3200
3201         tctl = E1000_READ_REG(hw, TCTL);
3202
3203         tctl &= ~E1000_TCTL_COLD;
3204         tctl |= coll_dist << E1000_COLD_SHIFT;
3205
3206         E1000_WRITE_REG(hw, TCTL, tctl);
3207         E1000_WRITE_FLUSH(hw);
3208 }
3209
3210 /******************************************************************************
3211 * Sets MAC speed and duplex settings to reflect the those in the PHY
3212 *
3213 * hw - Struct containing variables accessed by shared code
3214 * mii_reg - data to write to the MII control register
3215 *
3216 * The contents of the PHY register containing the needed information need to
3217 * be passed in.
3218 ******************************************************************************/
3219 static int
3220 e1000_config_mac_to_phy(struct e1000_hw *hw)
3221 {
3222         uint32_t ctrl;
3223         uint16_t phy_data;
3224
3225         DEBUGFUNC();
3226
3227         /* Read the Device Control Register and set the bits to Force Speed
3228          * and Duplex.
3229          */
3230         ctrl = E1000_READ_REG(hw, CTRL);
3231         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3232         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3233
3234         /* Set up duplex in the Device Control and Transmit Control
3235          * registers depending on negotiated values.
3236          */
3237         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3238                 DEBUGOUT("PHY Read Error\n");
3239                 return -E1000_ERR_PHY;
3240         }
3241         if (phy_data & M88E1000_PSSR_DPLX)
3242                 ctrl |= E1000_CTRL_FD;
3243         else
3244                 ctrl &= ~E1000_CTRL_FD;
3245
3246         e1000_config_collision_dist(hw);
3247
3248         /* Set up speed in the Device Control register depending on
3249          * negotiated values.
3250          */
3251         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3252                 ctrl |= E1000_CTRL_SPD_1000;
3253         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3254                 ctrl |= E1000_CTRL_SPD_100;
3255         /* Write the configured values back to the Device Control Reg. */
3256         E1000_WRITE_REG(hw, CTRL, ctrl);
3257         return 0;
3258 }
3259
3260 /******************************************************************************
3261  * Forces the MAC's flow control settings.
3262  *
3263  * hw - Struct containing variables accessed by shared code
3264  *
3265  * Sets the TFCE and RFCE bits in the device control register to reflect
3266  * the adapter settings. TFCE and RFCE need to be explicitly set by
3267  * software when a Copper PHY is used because autonegotiation is managed
3268  * by the PHY rather than the MAC. Software must also configure these
3269  * bits when link is forced on a fiber connection.
3270  *****************************************************************************/
3271 static int
3272 e1000_force_mac_fc(struct e1000_hw *hw)
3273 {
3274         uint32_t ctrl;
3275
3276         DEBUGFUNC();
3277
3278         /* Get the current configuration of the Device Control Register */
3279         ctrl = E1000_READ_REG(hw, CTRL);
3280
3281         /* Because we didn't get link via the internal auto-negotiation
3282          * mechanism (we either forced link or we got link via PHY
3283          * auto-neg), we have to manually enable/disable transmit an
3284          * receive flow control.
3285          *
3286          * The "Case" statement below enables/disable flow control
3287          * according to the "hw->fc" parameter.
3288          *
3289          * The possible values of the "fc" parameter are:
3290          *      0:  Flow control is completely disabled
3291          *      1:  Rx flow control is enabled (we can receive pause
3292          *          frames but not send pause frames).
3293          *      2:  Tx flow control is enabled (we can send pause frames
3294          *          frames but we do not receive pause frames).
3295          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3296          *  other:  No other values should be possible at this point.
3297          */
3298
3299         switch (hw->fc) {
3300         case e1000_fc_none:
3301                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3302                 break;
3303         case e1000_fc_rx_pause:
3304                 ctrl &= (~E1000_CTRL_TFCE);
3305                 ctrl |= E1000_CTRL_RFCE;
3306                 break;
3307         case e1000_fc_tx_pause:
3308                 ctrl &= (~E1000_CTRL_RFCE);
3309                 ctrl |= E1000_CTRL_TFCE;
3310                 break;
3311         case e1000_fc_full:
3312                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3313                 break;
3314         default:
3315                 DEBUGOUT("Flow control param set incorrectly\n");
3316                 return -E1000_ERR_CONFIG;
3317         }
3318
3319         /* Disable TX Flow Control for 82542 (rev 2.0) */
3320         if (hw->mac_type == e1000_82542_rev2_0)
3321                 ctrl &= (~E1000_CTRL_TFCE);
3322
3323         E1000_WRITE_REG(hw, CTRL, ctrl);
3324         return 0;
3325 }
3326
3327 /******************************************************************************
3328  * Configures flow control settings after link is established
3329  *
3330  * hw - Struct containing variables accessed by shared code
3331  *
3332  * Should be called immediately after a valid link has been established.
3333  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3334  * and autonegotiation is enabled, the MAC flow control settings will be set
3335  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3336  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3337  *****************************************************************************/
3338 static int32_t
3339 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3340 {
3341         int32_t ret_val;
3342         uint16_t mii_status_reg;
3343         uint16_t mii_nway_adv_reg;
3344         uint16_t mii_nway_lp_ability_reg;
3345         uint16_t speed;
3346         uint16_t duplex;
3347
3348         DEBUGFUNC();
3349
3350         /* Check for the case where we have fiber media and auto-neg failed
3351          * so we had to force link.  In this case, we need to force the
3352          * configuration of the MAC to match the "fc" parameter.
3353          */
3354         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3355                 || ((hw->media_type == e1000_media_type_internal_serdes)
3356                 && (hw->autoneg_failed))
3357                 || ((hw->media_type == e1000_media_type_copper)
3358                 && (!hw->autoneg))) {
3359                 ret_val = e1000_force_mac_fc(hw);
3360                 if (ret_val < 0) {
3361                         DEBUGOUT("Error forcing flow control settings\n");
3362                         return ret_val;
3363                 }
3364         }
3365
3366         /* Check for the case where we have copper media and auto-neg is
3367          * enabled.  In this case, we need to check and see if Auto-Neg
3368          * has completed, and if so, how the PHY and link partner has
3369          * flow control configured.
3370          */
3371         if (hw->media_type == e1000_media_type_copper) {
3372                 /* Read the MII Status Register and check to see if AutoNeg
3373                  * has completed.  We read this twice because this reg has
3374                  * some "sticky" (latched) bits.
3375                  */
3376                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3377                         DEBUGOUT("PHY Read Error \n");
3378                         return -E1000_ERR_PHY;
3379                 }
3380                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3381                         DEBUGOUT("PHY Read Error \n");
3382                         return -E1000_ERR_PHY;
3383                 }
3384
3385                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3386                         /* The AutoNeg process has completed, so we now need to
3387                          * read both the Auto Negotiation Advertisement Register
3388                          * (Address 4) and the Auto_Negotiation Base Page Ability
3389                          * Register (Address 5) to determine how flow control was
3390                          * negotiated.
3391                          */
3392                         if (e1000_read_phy_reg
3393                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3394                                 DEBUGOUT("PHY Read Error\n");
3395                                 return -E1000_ERR_PHY;
3396                         }
3397                         if (e1000_read_phy_reg
3398                             (hw, PHY_LP_ABILITY,
3399                              &mii_nway_lp_ability_reg) < 0) {
3400                                 DEBUGOUT("PHY Read Error\n");
3401                                 return -E1000_ERR_PHY;
3402                         }
3403
3404                         /* Two bits in the Auto Negotiation Advertisement Register
3405                          * (Address 4) and two bits in the Auto Negotiation Base
3406                          * Page Ability Register (Address 5) determine flow control
3407                          * for both the PHY and the link partner.  The following
3408                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3409                          * 1999, describes these PAUSE resolution bits and how flow
3410                          * control is determined based upon these settings.
3411                          * NOTE:  DC = Don't Care
3412                          *
3413                          *   LOCAL DEVICE  |   LINK PARTNER
3414                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3415                          *-------|---------|-------|---------|--------------------
3416                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3417                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3418                          *   0   |    1    |   1   |    0    | e1000_fc_none
3419                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3420                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3421                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3422                          *   1   |    1    |   0   |    0    | e1000_fc_none
3423                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3424                          *
3425                          */
3426                         /* Are both PAUSE bits set to 1?  If so, this implies
3427                          * Symmetric Flow Control is enabled at both ends.  The
3428                          * ASM_DIR bits are irrelevant per the spec.
3429                          *
3430                          * For Symmetric Flow Control:
3431                          *
3432                          *   LOCAL DEVICE  |   LINK PARTNER
3433                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3434                          *-------|---------|-------|---------|--------------------
3435                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3436                          *
3437                          */
3438                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3439                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3440                                 /* Now we need to check if the user selected RX ONLY
3441                                  * of pause frames.  In this case, we had to advertise
3442                                  * FULL flow control because we could not advertise RX
3443                                  * ONLY. Hence, we must now check to see if we need to
3444                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3445                                  */
3446                                 if (hw->original_fc == e1000_fc_full) {
3447                                         hw->fc = e1000_fc_full;
3448                                         DEBUGOUT("Flow Control = FULL.\r\n");
3449                                 } else {
3450                                         hw->fc = e1000_fc_rx_pause;
3451                                         DEBUGOUT
3452                                             ("Flow Control = RX PAUSE frames only.\r\n");
3453                                 }
3454                         }
3455                         /* For receiving PAUSE frames ONLY.
3456                          *
3457                          *   LOCAL DEVICE  |   LINK PARTNER
3458                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3459                          *-------|---------|-------|---------|--------------------
3460                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3461                          *
3462                          */
3463                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3464                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3465                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3466                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3467                         {
3468                                 hw->fc = e1000_fc_tx_pause;
3469                                 DEBUGOUT
3470                                     ("Flow Control = TX PAUSE frames only.\r\n");
3471                         }
3472                         /* For transmitting PAUSE frames ONLY.
3473                          *
3474                          *   LOCAL DEVICE  |   LINK PARTNER
3475                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3476                          *-------|---------|-------|---------|--------------------
3477                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3478                          *
3479                          */
3480                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3481                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3482                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3483                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3484                         {
3485                                 hw->fc = e1000_fc_rx_pause;
3486                                 DEBUGOUT
3487                                     ("Flow Control = RX PAUSE frames only.\r\n");
3488                         }
3489                         /* Per the IEEE spec, at this point flow control should be
3490                          * disabled.  However, we want to consider that we could
3491                          * be connected to a legacy switch that doesn't advertise
3492                          * desired flow control, but can be forced on the link
3493                          * partner.  So if we advertised no flow control, that is
3494                          * what we will resolve to.  If we advertised some kind of
3495                          * receive capability (Rx Pause Only or Full Flow Control)
3496                          * and the link partner advertised none, we will configure
3497                          * ourselves to enable Rx Flow Control only.  We can do
3498                          * this safely for two reasons:  If the link partner really
3499                          * didn't want flow control enabled, and we enable Rx, no
3500                          * harm done since we won't be receiving any PAUSE frames
3501                          * anyway.  If the intent on the link partner was to have
3502                          * flow control enabled, then by us enabling RX only, we
3503                          * can at least receive pause frames and process them.
3504                          * This is a good idea because in most cases, since we are
3505                          * predominantly a server NIC, more times than not we will
3506                          * be asked to delay transmission of packets than asking
3507                          * our link partner to pause transmission of frames.
3508                          */
3509                         else if (hw->original_fc == e1000_fc_none ||
3510                                  hw->original_fc == e1000_fc_tx_pause) {
3511                                 hw->fc = e1000_fc_none;
3512                                 DEBUGOUT("Flow Control = NONE.\r\n");
3513                         } else {
3514                                 hw->fc = e1000_fc_rx_pause;
3515                                 DEBUGOUT
3516                                     ("Flow Control = RX PAUSE frames only.\r\n");
3517                         }
3518
3519                         /* Now we need to do one last check...  If we auto-
3520                          * negotiated to HALF DUPLEX, flow control should not be
3521                          * enabled per IEEE 802.3 spec.
3522                          */
3523                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3524
3525                         if (duplex == HALF_DUPLEX)
3526                                 hw->fc = e1000_fc_none;
3527
3528                         /* Now we call a subroutine to actually force the MAC
3529                          * controller to use the correct flow control settings.
3530                          */
3531                         ret_val = e1000_force_mac_fc(hw);
3532                         if (ret_val < 0) {
3533                                 DEBUGOUT
3534                                     ("Error forcing flow control settings\n");
3535                                 return ret_val;
3536                         }
3537                 } else {
3538                         DEBUGOUT
3539                             ("Copper PHY and Auto Neg has not completed.\r\n");
3540                 }
3541         }
3542         return E1000_SUCCESS;
3543 }
3544
3545 /******************************************************************************
3546  * Checks to see if the link status of the hardware has changed.
3547  *
3548  * hw - Struct containing variables accessed by shared code
3549  *
3550  * Called by any function that needs to check the link status of the adapter.
3551  *****************************************************************************/
3552 static int
3553 e1000_check_for_link(struct eth_device *nic)
3554 {
3555         struct e1000_hw *hw = nic->priv;
3556         uint32_t rxcw;
3557         uint32_t ctrl;
3558         uint32_t status;
3559         uint32_t rctl;
3560         uint32_t signal;
3561         int32_t ret_val;
3562         uint16_t phy_data;
3563         uint16_t lp_capability;
3564
3565         DEBUGFUNC();
3566
3567         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3568          * set when the optics detect a signal. On older adapters, it will be
3569          * cleared when there is a signal
3570          */
3571         ctrl = E1000_READ_REG(hw, CTRL);
3572         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3573                 signal = E1000_CTRL_SWDPIN1;
3574         else
3575                 signal = 0;
3576
3577         status = E1000_READ_REG(hw, STATUS);
3578         rxcw = E1000_READ_REG(hw, RXCW);
3579         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3580
3581         /* If we have a copper PHY then we only want to go out to the PHY
3582          * registers to see if Auto-Neg has completed and/or if our link
3583          * status has changed.  The get_link_status flag will be set if we
3584          * receive a Link Status Change interrupt or we have Rx Sequence
3585          * Errors.
3586          */
3587         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3588                 /* First we want to see if the MII Status Register reports
3589                  * link.  If so, then we want to get the current speed/duplex
3590                  * of the PHY.
3591                  * Read the register twice since the link bit is sticky.
3592                  */
3593                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3594                         DEBUGOUT("PHY Read Error\n");
3595                         return -E1000_ERR_PHY;
3596                 }
3597                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3598                         DEBUGOUT("PHY Read Error\n");
3599                         return -E1000_ERR_PHY;
3600                 }
3601
3602                 if (phy_data & MII_SR_LINK_STATUS) {
3603                         hw->get_link_status = false;
3604                 } else {
3605                         /* No link detected */
3606                         return -E1000_ERR_NOLINK;
3607                 }
3608
3609                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3610                  * have Si on board that is 82544 or newer, Auto
3611                  * Speed Detection takes care of MAC speed/duplex
3612                  * configuration.  So we only need to configure Collision
3613                  * Distance in the MAC.  Otherwise, we need to force
3614                  * speed/duplex on the MAC to the current PHY speed/duplex
3615                  * settings.
3616                  */
3617                 if (hw->mac_type >= e1000_82544)
3618                         e1000_config_collision_dist(hw);
3619                 else {
3620                         ret_val = e1000_config_mac_to_phy(hw);
3621                         if (ret_val < 0) {
3622                                 DEBUGOUT
3623                                     ("Error configuring MAC to PHY settings\n");
3624                                 return ret_val;
3625                         }
3626                 }
3627
3628                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3629                  * need to restore the desired flow control settings because we may
3630                  * have had to re-autoneg with a different link partner.
3631                  */
3632                 ret_val = e1000_config_fc_after_link_up(hw);
3633                 if (ret_val < 0) {
3634                         DEBUGOUT("Error configuring flow control\n");
3635                         return ret_val;
3636                 }
3637
3638                 /* At this point we know that we are on copper and we have
3639                  * auto-negotiated link.  These are conditions for checking the link
3640                  * parter capability register.  We use the link partner capability to
3641                  * determine if TBI Compatibility needs to be turned on or off.  If
3642                  * the link partner advertises any speed in addition to Gigabit, then
3643                  * we assume that they are GMII-based, and TBI compatibility is not
3644                  * needed. If no other speeds are advertised, we assume the link
3645                  * partner is TBI-based, and we turn on TBI Compatibility.
3646                  */
3647                 if (hw->tbi_compatibility_en) {
3648                         if (e1000_read_phy_reg
3649                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3650                                 DEBUGOUT("PHY Read Error\n");
3651                                 return -E1000_ERR_PHY;
3652                         }
3653                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3654                                              NWAY_LPAR_10T_FD_CAPS |
3655                                              NWAY_LPAR_100TX_HD_CAPS |
3656                                              NWAY_LPAR_100TX_FD_CAPS |
3657                                              NWAY_LPAR_100T4_CAPS)) {
3658                                 /* If our link partner advertises anything in addition to
3659                                  * gigabit, we do not need to enable TBI compatibility.
3660                                  */
3661                                 if (hw->tbi_compatibility_on) {
3662                                         /* If we previously were in the mode, turn it off. */
3663                                         rctl = E1000_READ_REG(hw, RCTL);
3664                                         rctl &= ~E1000_RCTL_SBP;
3665                                         E1000_WRITE_REG(hw, RCTL, rctl);
3666                                         hw->tbi_compatibility_on = false;
3667                                 }
3668                         } else {
3669                                 /* If TBI compatibility is was previously off, turn it on. For
3670                                  * compatibility with a TBI link partner, we will store bad
3671                                  * packets. Some frames have an additional byte on the end and
3672                                  * will look like CRC errors to to the hardware.
3673                                  */
3674                                 if (!hw->tbi_compatibility_on) {
3675                                         hw->tbi_compatibility_on = true;
3676                                         rctl = E1000_READ_REG(hw, RCTL);
3677                                         rctl |= E1000_RCTL_SBP;
3678                                         E1000_WRITE_REG(hw, RCTL, rctl);
3679                                 }
3680                         }
3681                 }
3682         }
3683         /* If we don't have link (auto-negotiation failed or link partner cannot
3684          * auto-negotiate), the cable is plugged in (we have signal), and our
3685          * link partner is not trying to auto-negotiate with us (we are receiving
3686          * idles or data), we need to force link up. We also need to give
3687          * auto-negotiation time to complete, in case the cable was just plugged
3688          * in. The autoneg_failed flag does this.
3689          */
3690         else if ((hw->media_type == e1000_media_type_fiber) &&
3691                  (!(status & E1000_STATUS_LU)) &&
3692                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3693                  (!(rxcw & E1000_RXCW_C))) {
3694                 if (hw->autoneg_failed == 0) {
3695                         hw->autoneg_failed = 1;
3696                         return 0;
3697                 }
3698                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3699
3700                 /* Disable auto-negotiation in the TXCW register */
3701                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3702
3703                 /* Force link-up and also force full-duplex. */
3704                 ctrl = E1000_READ_REG(hw, CTRL);
3705                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3706                 E1000_WRITE_REG(hw, CTRL, ctrl);
3707
3708                 /* Configure Flow Control after forcing link up. */
3709                 ret_val = e1000_config_fc_after_link_up(hw);
3710                 if (ret_val < 0) {
3711                         DEBUGOUT("Error configuring flow control\n");
3712                         return ret_val;
3713                 }
3714         }
3715         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3716          * auto-negotiation in the TXCW register and disable forced link in the
3717          * Device Control register in an attempt to auto-negotiate with our link
3718          * partner.
3719          */
3720         else if ((hw->media_type == e1000_media_type_fiber) &&
3721                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3722                 DEBUGOUT
3723                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3724                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3725                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3726         }
3727         return 0;
3728 }
3729
3730 /******************************************************************************
3731 * Configure the MAC-to-PHY interface for 10/100Mbps
3732 *
3733 * hw - Struct containing variables accessed by shared code
3734 ******************************************************************************/
3735 static int32_t
3736 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3737 {
3738         int32_t ret_val = E1000_SUCCESS;
3739         uint32_t tipg;
3740         uint16_t reg_data;
3741
3742         DEBUGFUNC();
3743
3744         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3745         ret_val = e1000_write_kmrn_reg(hw,
3746                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3747         if (ret_val)
3748                 return ret_val;
3749
3750         /* Configure Transmit Inter-Packet Gap */
3751         tipg = E1000_READ_REG(hw, TIPG);
3752         tipg &= ~E1000_TIPG_IPGT_MASK;
3753         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3754         E1000_WRITE_REG(hw, TIPG, tipg);
3755
3756         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3757
3758         if (ret_val)
3759                 return ret_val;
3760
3761         if (duplex == HALF_DUPLEX)
3762                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3763         else
3764                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3765
3766         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3767
3768         return ret_val;
3769 }
3770
3771 static int32_t
3772 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3773 {
3774         int32_t ret_val = E1000_SUCCESS;
3775         uint16_t reg_data;
3776         uint32_t tipg;
3777
3778         DEBUGFUNC();
3779
3780         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3781         ret_val = e1000_write_kmrn_reg(hw,
3782                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3783         if (ret_val)
3784                 return ret_val;
3785
3786         /* Configure Transmit Inter-Packet Gap */
3787         tipg = E1000_READ_REG(hw, TIPG);
3788         tipg &= ~E1000_TIPG_IPGT_MASK;
3789         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3790         E1000_WRITE_REG(hw, TIPG, tipg);
3791
3792         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3793
3794         if (ret_val)
3795                 return ret_val;
3796
3797         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3798         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3799
3800         return ret_val;
3801 }
3802
3803 /******************************************************************************
3804  * Detects the current speed and duplex settings of the hardware.
3805  *
3806  * hw - Struct containing variables accessed by shared code
3807  * speed - Speed of the connection
3808  * duplex - Duplex setting of the connection
3809  *****************************************************************************/
3810 static int
3811 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3812                 uint16_t *duplex)
3813 {
3814         uint32_t status;
3815         int32_t ret_val;
3816         uint16_t phy_data;
3817
3818         DEBUGFUNC();
3819
3820         if (hw->mac_type >= e1000_82543) {
3821                 status = E1000_READ_REG(hw, STATUS);
3822                 if (status & E1000_STATUS_SPEED_1000) {
3823                         *speed = SPEED_1000;
3824                         DEBUGOUT("1000 Mbs, ");
3825                 } else if (status & E1000_STATUS_SPEED_100) {
3826                         *speed = SPEED_100;
3827                         DEBUGOUT("100 Mbs, ");
3828                 } else {
3829                         *speed = SPEED_10;
3830                         DEBUGOUT("10 Mbs, ");
3831                 }
3832
3833                 if (status & E1000_STATUS_FD) {
3834                         *duplex = FULL_DUPLEX;
3835                         DEBUGOUT("Full Duplex\r\n");
3836                 } else {
3837                         *duplex = HALF_DUPLEX;
3838                         DEBUGOUT(" Half Duplex\r\n");
3839                 }
3840         } else {
3841                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3842                 *speed = SPEED_1000;
3843                 *duplex = FULL_DUPLEX;
3844         }
3845
3846         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3847          * even if it is operating at half duplex.  Here we set the duplex
3848          * settings to match the duplex in the link partner's capabilities.
3849          */
3850         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3851                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3852                 if (ret_val)
3853                         return ret_val;
3854
3855                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3856                         *duplex = HALF_DUPLEX;
3857                 else {
3858                         ret_val = e1000_read_phy_reg(hw,
3859                                         PHY_LP_ABILITY, &phy_data);
3860                         if (ret_val)
3861                                 return ret_val;
3862                         if ((*speed == SPEED_100 &&
3863                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3864                                 || (*speed == SPEED_10
3865                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3866                                 *duplex = HALF_DUPLEX;
3867                 }
3868         }
3869
3870         if ((hw->mac_type == e1000_80003es2lan) &&
3871                 (hw->media_type == e1000_media_type_copper)) {
3872                 if (*speed == SPEED_1000)
3873                         ret_val = e1000_configure_kmrn_for_1000(hw);
3874                 else
3875                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3876                 if (ret_val)
3877                         return ret_val;
3878         }
3879         return E1000_SUCCESS;
3880 }
3881
3882 /******************************************************************************
3883 * Blocks until autoneg completes or times out (~4.5 seconds)
3884 *
3885 * hw - Struct containing variables accessed by shared code
3886 ******************************************************************************/
3887 static int
3888 e1000_wait_autoneg(struct e1000_hw *hw)
3889 {
3890         uint16_t i;
3891         uint16_t phy_data;
3892
3893         DEBUGFUNC();
3894         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3895
3896         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3897         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3898                 /* Read the MII Status Register and wait for Auto-Neg
3899                  * Complete bit to be set.
3900                  */
3901                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902                         DEBUGOUT("PHY Read Error\n");
3903                         return -E1000_ERR_PHY;
3904                 }
3905                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3906                         DEBUGOUT("PHY Read Error\n");
3907                         return -E1000_ERR_PHY;
3908                 }
3909                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3910                         DEBUGOUT("Auto-Neg complete.\n");
3911                         return 0;
3912                 }
3913                 mdelay(100);
3914         }
3915         DEBUGOUT("Auto-Neg timedout.\n");
3916         return -E1000_ERR_TIMEOUT;
3917 }
3918
3919 /******************************************************************************
3920 * Raises the Management Data Clock
3921 *
3922 * hw - Struct containing variables accessed by shared code
3923 * ctrl - Device control register's current value
3924 ******************************************************************************/
3925 static void
3926 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3927 {
3928         /* Raise the clock input to the Management Data Clock (by setting the MDC
3929          * bit), and then delay 2 microseconds.
3930          */
3931         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3932         E1000_WRITE_FLUSH(hw);
3933         udelay(2);
3934 }
3935
3936 /******************************************************************************
3937 * Lowers the Management Data Clock
3938 *
3939 * hw - Struct containing variables accessed by shared code
3940 * ctrl - Device control register's current value
3941 ******************************************************************************/
3942 static void
3943 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3944 {
3945         /* Lower the clock input to the Management Data Clock (by clearing the MDC
3946          * bit), and then delay 2 microseconds.
3947          */
3948         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3949         E1000_WRITE_FLUSH(hw);
3950         udelay(2);
3951 }
3952
3953 /******************************************************************************
3954 * Shifts data bits out to the PHY
3955 *
3956 * hw - Struct containing variables accessed by shared code
3957 * data - Data to send out to the PHY
3958 * count - Number of bits to shift out
3959 *
3960 * Bits are shifted out in MSB to LSB order.
3961 ******************************************************************************/
3962 static void
3963 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3964 {
3965         uint32_t ctrl;
3966         uint32_t mask;
3967
3968         /* We need to shift "count" number of bits out to the PHY. So, the value
3969          * in the "data" parameter will be shifted out to the PHY one bit at a
3970          * time. In order to do this, "data" must be broken down into bits.
3971          */
3972         mask = 0x01;
3973         mask <<= (count - 1);
3974
3975         ctrl = E1000_READ_REG(hw, CTRL);
3976
3977         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3978         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3979
3980         while (mask) {
3981                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3982                  * then raising and lowering the Management Data Clock. A "0" is
3983                  * shifted out to the PHY by setting the MDIO bit to "0" and then
3984                  * raising and lowering the clock.
3985                  */
3986                 if (data & mask)
3987                         ctrl |= E1000_CTRL_MDIO;
3988                 else
3989                         ctrl &= ~E1000_CTRL_MDIO;
3990
3991                 E1000_WRITE_REG(hw, CTRL, ctrl);
3992                 E1000_WRITE_FLUSH(hw);
3993
3994                 udelay(2);
3995
3996                 e1000_raise_mdi_clk(hw, &ctrl);
3997                 e1000_lower_mdi_clk(hw, &ctrl);
3998
3999                 mask = mask >> 1;
4000         }
4001 }
4002
4003 /******************************************************************************
4004 * Shifts data bits in from the PHY
4005 *
4006 * hw - Struct containing variables accessed by shared code
4007 *
4008 * Bits are shifted in in MSB to LSB order.
4009 ******************************************************************************/
4010 static uint16_t
4011 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4012 {
4013         uint32_t ctrl;
4014         uint16_t data = 0;
4015         uint8_t i;
4016
4017         /* In order to read a register from the PHY, we need to shift in a total
4018          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4019          * to avoid contention on the MDIO pin when a read operation is performed.
4020          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4021          * by raising the input to the Management Data Clock (setting the MDC bit),
4022          * and then reading the value of the MDIO bit.
4023          */
4024         ctrl = E1000_READ_REG(hw, CTRL);
4025
4026         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4027         ctrl &= ~E1000_CTRL_MDIO_DIR;
4028         ctrl &= ~E1000_CTRL_MDIO;
4029
4030         E1000_WRITE_REG(hw, CTRL, ctrl);
4031         E1000_WRITE_FLUSH(hw);
4032
4033         /* Raise and Lower the clock before reading in the data. This accounts for
4034          * the turnaround bits. The first clock occurred when we clocked out the
4035          * last bit of the Register Address.
4036          */
4037         e1000_raise_mdi_clk(hw, &ctrl);
4038         e1000_lower_mdi_clk(hw, &ctrl);
4039
4040         for (data = 0, i = 0; i < 16; i++) {
4041                 data = data << 1;
4042                 e1000_raise_mdi_clk(hw, &ctrl);
4043                 ctrl = E1000_READ_REG(hw, CTRL);
4044                 /* Check to see if we shifted in a "1". */
4045                 if (ctrl & E1000_CTRL_MDIO)
4046                         data |= 1;
4047                 e1000_lower_mdi_clk(hw, &ctrl);
4048         }
4049
4050         e1000_raise_mdi_clk(hw, &ctrl);
4051         e1000_lower_mdi_clk(hw, &ctrl);
4052
4053         return data;
4054 }
4055
4056 /*****************************************************************************
4057 * Reads the value from a PHY register
4058 *
4059 * hw - Struct containing variables accessed by shared code
4060 * reg_addr - address of the PHY register to read
4061 ******************************************************************************/
4062 static int
4063 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4064 {
4065         uint32_t i;
4066         uint32_t mdic = 0;
4067         const uint32_t phy_addr = 1;
4068
4069         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4070                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4071                 return -E1000_ERR_PARAM;
4072         }
4073
4074         if (hw->mac_type > e1000_82543) {
4075                 /* Set up Op-code, Phy Address, and register address in the MDI
4076                  * Control register.  The MAC will take care of interfacing with the
4077                  * PHY to retrieve the desired data.
4078                  */
4079                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4080                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4081                         (E1000_MDIC_OP_READ));
4082
4083                 E1000_WRITE_REG(hw, MDIC, mdic);
4084
4085                 /* Poll the ready bit to see if the MDI read completed */
4086                 for (i = 0; i < 64; i++) {
4087                         udelay(10);
4088                         mdic = E1000_READ_REG(hw, MDIC);
4089                         if (mdic & E1000_MDIC_READY)
4090                                 break;
4091                 }
4092                 if (!(mdic & E1000_MDIC_READY)) {
4093                         DEBUGOUT("MDI Read did not complete\n");
4094                         return -E1000_ERR_PHY;
4095                 }
4096                 if (mdic & E1000_MDIC_ERROR) {
4097                         DEBUGOUT("MDI Error\n");
4098                         return -E1000_ERR_PHY;
4099                 }
4100                 *phy_data = (uint16_t) mdic;
4101         } else {
4102                 /* We must first send a preamble through the MDIO pin to signal the
4103                  * beginning of an MII instruction.  This is done by sending 32
4104                  * consecutive "1" bits.
4105                  */
4106                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4107
4108                 /* Now combine the next few fields that are required for a read
4109                  * operation.  We use this method instead of calling the
4110                  * e1000_shift_out_mdi_bits routine five different times. The format of
4111                  * a MII read instruction consists of a shift out of 14 bits and is
4112                  * defined as follows:
4113                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4114                  * followed by a shift in of 18 bits.  This first two bits shifted in
4115                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4116                  * READ operation is performed.  These two bits are thrown away
4117                  * followed by a shift in of 16 bits which contains the desired data.
4118                  */
4119                 mdic = ((reg_addr) | (phy_addr << 5) |
4120                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4121
4122                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4123
4124                 /* Now that we've shifted out the read command to the MII, we need to
4125                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4126                  * register address.
4127                  */
4128                 *phy_data = e1000_shift_in_mdi_bits(hw);
4129         }
4130         return 0;
4131 }
4132
4133 /******************************************************************************
4134 * Writes a value to a PHY register
4135 *
4136 * hw - Struct containing variables accessed by shared code
4137 * reg_addr - address of the PHY register to write
4138 * data - data to write to the PHY
4139 ******************************************************************************/
4140 static int
4141 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4142 {
4143         uint32_t i;
4144         uint32_t mdic = 0;
4145         const uint32_t phy_addr = 1;
4146
4147         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4148                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4149                 return -E1000_ERR_PARAM;
4150         }
4151
4152         if (hw->mac_type > e1000_82543) {
4153                 /* Set up Op-code, Phy Address, register address, and data intended
4154                  * for the PHY register in the MDI Control register.  The MAC will take
4155                  * care of interfacing with the PHY to send the desired data.
4156                  */
4157                 mdic = (((uint32_t) phy_data) |
4158                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4159                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4160                         (E1000_MDIC_OP_WRITE));
4161
4162                 E1000_WRITE_REG(hw, MDIC, mdic);
4163
4164                 /* Poll the ready bit to see if the MDI read completed */
4165                 for (i = 0; i < 64; i++) {
4166                         udelay(10);
4167                         mdic = E1000_READ_REG(hw, MDIC);
4168                         if (mdic & E1000_MDIC_READY)
4169                                 break;
4170                 }
4171                 if (!(mdic & E1000_MDIC_READY)) {
4172                         DEBUGOUT("MDI Write did not complete\n");
4173                         return -E1000_ERR_PHY;
4174                 }
4175         } else {
4176                 /* We'll need to use the SW defined pins to shift the write command
4177                  * out to the PHY. We first send a preamble to the PHY to signal the
4178                  * beginning of the MII instruction.  This is done by sending 32
4179                  * consecutive "1" bits.
4180                  */
4181                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4182
4183                 /* Now combine the remaining required fields that will indicate a
4184                  * write operation. We use this method instead of calling the
4185                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4186                  * format of a MII write instruction is as follows:
4187                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4188                  */
4189                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4190                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4191                 mdic <<= 16;
4192                 mdic |= (uint32_t) phy_data;
4193
4194                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4195         }
4196         return 0;
4197 }
4198
4199 /******************************************************************************
4200  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4201  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4202  * the caller to figure out how to deal with it.
4203  *
4204  * hw - Struct containing variables accessed by shared code
4205  *
4206  * returns: - E1000_BLK_PHY_RESET
4207  *            E1000_SUCCESS
4208  *
4209  *****************************************************************************/
4210 int32_t
4211 e1000_check_phy_reset_block(struct e1000_hw *hw)
4212 {
4213         uint32_t manc = 0;
4214         uint32_t fwsm = 0;
4215
4216         if (hw->mac_type == e1000_ich8lan) {
4217                 fwsm = E1000_READ_REG(hw, FWSM);
4218                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4219                                                 : E1000_BLK_PHY_RESET;
4220         }
4221
4222         if (hw->mac_type > e1000_82547_rev_2)
4223                 manc = E1000_READ_REG(hw, MANC);
4224         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4225                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4226 }
4227
4228 /***************************************************************************
4229  * Checks if the PHY configuration is done
4230  *
4231  * hw: Struct containing variables accessed by shared code
4232  *
4233  * returns: - E1000_ERR_RESET if fail to reset MAC
4234  *            E1000_SUCCESS at any other case.
4235  *
4236  ***************************************************************************/
4237 static int32_t
4238 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4239 {
4240         int32_t timeout = PHY_CFG_TIMEOUT;
4241         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4242
4243         DEBUGFUNC();
4244
4245         switch (hw->mac_type) {
4246         default:
4247                 mdelay(10);
4248                 break;
4249
4250         case e1000_80003es2lan:
4251                 /* Separate *_CFG_DONE_* bit for each port */
4252                 if (e1000_is_second_port(hw))
4253                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4254                 /* Fall Through */
4255
4256         case e1000_82571:
4257         case e1000_82572:
4258                 while (timeout) {
4259                         if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4260                                 break;
4261                         else
4262                                 mdelay(1);
4263                         timeout--;
4264                 }
4265                 if (!timeout) {
4266                         DEBUGOUT("MNG configuration cycle has not "
4267                                         "completed.\n");
4268                         return -E1000_ERR_RESET;
4269                 }
4270                 break;
4271         }
4272
4273         return E1000_SUCCESS;
4274 }
4275
4276 /******************************************************************************
4277 * Returns the PHY to the power-on reset state
4278 *
4279 * hw - Struct containing variables accessed by shared code
4280 ******************************************************************************/
4281 int32_t
4282 e1000_phy_hw_reset(struct e1000_hw *hw)
4283 {
4284         uint16_t swfw = E1000_SWFW_PHY0_SM;
4285         uint32_t ctrl, ctrl_ext;
4286         uint32_t led_ctrl;
4287         int32_t ret_val;
4288
4289         DEBUGFUNC();
4290
4291         /* In the case of the phy reset being blocked, it's not an error, we
4292          * simply return success without performing the reset. */
4293         ret_val = e1000_check_phy_reset_block(hw);
4294         if (ret_val)
4295                 return E1000_SUCCESS;
4296
4297         DEBUGOUT("Resetting Phy...\n");
4298
4299         if (hw->mac_type > e1000_82543) {
4300                 if (e1000_is_second_port(hw))
4301                         swfw = E1000_SWFW_PHY1_SM;
4302
4303                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4304                         DEBUGOUT("Unable to acquire swfw sync\n");
4305                         return -E1000_ERR_SWFW_SYNC;
4306                 }
4307
4308                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4309                  * bit. Then, take it out of reset.
4310                  */
4311                 ctrl = E1000_READ_REG(hw, CTRL);
4312                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4313                 E1000_WRITE_FLUSH(hw);
4314
4315                 if (hw->mac_type < e1000_82571)
4316                         udelay(10);
4317                 else
4318                         udelay(100);
4319
4320                 E1000_WRITE_REG(hw, CTRL, ctrl);
4321                 E1000_WRITE_FLUSH(hw);
4322
4323                 if (hw->mac_type >= e1000_82571)
4324                         mdelay(10);
4325
4326         } else {
4327                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4328                  * bit to put the PHY into reset. Then, take it out of reset.
4329                  */
4330                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4331                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4332                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4333                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4334                 E1000_WRITE_FLUSH(hw);
4335                 mdelay(10);
4336                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4337                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4338                 E1000_WRITE_FLUSH(hw);
4339         }
4340         udelay(150);
4341
4342         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4343                 /* Configure activity LED after PHY reset */
4344                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4345                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4346                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4347                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4348         }
4349
4350         /* Wait for FW to finish PHY configuration. */
4351         ret_val = e1000_get_phy_cfg_done(hw);
4352         if (ret_val != E1000_SUCCESS)
4353                 return ret_val;
4354
4355         return ret_val;
4356 }
4357
4358 /******************************************************************************
4359  * IGP phy init script - initializes the GbE PHY
4360  *
4361  * hw - Struct containing variables accessed by shared code
4362  *****************************************************************************/
4363 static void
4364 e1000_phy_init_script(struct e1000_hw *hw)
4365 {
4366         uint32_t ret_val;
4367         uint16_t phy_saved_data;
4368         DEBUGFUNC();
4369
4370         if (hw->phy_init_script) {
4371                 mdelay(20);
4372
4373                 /* Save off the current value of register 0x2F5B to be
4374                  * restored at the end of this routine. */
4375                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4376
4377                 /* Disabled the PHY transmitter */
4378                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4379
4380                 mdelay(20);
4381
4382                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4383
4384                 mdelay(5);
4385
4386                 switch (hw->mac_type) {
4387                 case e1000_82541:
4388                 case e1000_82547:
4389                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4390
4391                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4392
4393                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4394
4395                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4396
4397                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4398
4399                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4400
4401                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4402
4403                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4404
4405                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4406                         break;
4407
4408                 case e1000_82541_rev_2:
4409                 case e1000_82547_rev_2:
4410                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4411                         break;
4412                 default:
4413                         break;
4414                 }
4415
4416                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4417
4418                 mdelay(20);
4419
4420                 /* Now enable the transmitter */
4421                 if (!ret_val)
4422                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4423
4424                 if (hw->mac_type == e1000_82547) {
4425                         uint16_t fused, fine, coarse;
4426
4427                         /* Move to analog registers page */
4428                         e1000_read_phy_reg(hw,
4429                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4430
4431                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4432                                 e1000_read_phy_reg(hw,
4433                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4434
4435                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4436                                 coarse = fused
4437                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4438
4439                                 if (coarse >
4440                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4441                                         coarse -=
4442                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4443                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4444                                 } else if (coarse
4445                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4446                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4447
4448                                 fused = (fused
4449                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4450                                         (fine
4451                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4452                                         (coarse
4453                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4454
4455                                 e1000_write_phy_reg(hw,
4456                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4457                                 e1000_write_phy_reg(hw,
4458                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4459                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4460                         }
4461                 }
4462         }
4463 }
4464
4465 /******************************************************************************
4466 * Resets the PHY
4467 *
4468 * hw - Struct containing variables accessed by shared code
4469 *
4470 * Sets bit 15 of the MII Control register
4471 ******************************************************************************/
4472 int32_t
4473 e1000_phy_reset(struct e1000_hw *hw)
4474 {
4475         int32_t ret_val;
4476         uint16_t phy_data;
4477
4478         DEBUGFUNC();
4479
4480         /* In the case of the phy reset being blocked, it's not an error, we
4481          * simply return success without performing the reset. */
4482         ret_val = e1000_check_phy_reset_block(hw);
4483         if (ret_val)
4484                 return E1000_SUCCESS;
4485
4486         switch (hw->phy_type) {
4487         case e1000_phy_igp:
4488         case e1000_phy_igp_2:
4489         case e1000_phy_igp_3:
4490         case e1000_phy_ife:
4491                 ret_val = e1000_phy_hw_reset(hw);
4492                 if (ret_val)
4493                         return ret_val;
4494                 break;
4495         default:
4496                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4497                 if (ret_val)
4498                         return ret_val;
4499
4500                 phy_data |= MII_CR_RESET;
4501                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4502                 if (ret_val)
4503                         return ret_val;
4504
4505                 udelay(1);
4506                 break;
4507         }
4508
4509         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4510                 e1000_phy_init_script(hw);
4511
4512         return E1000_SUCCESS;
4513 }
4514
4515 static int e1000_set_phy_type (struct e1000_hw *hw)
4516 {
4517         DEBUGFUNC ();
4518
4519         if (hw->mac_type == e1000_undefined)
4520                 return -E1000_ERR_PHY_TYPE;
4521
4522         switch (hw->phy_id) {
4523         case M88E1000_E_PHY_ID:
4524         case M88E1000_I_PHY_ID:
4525         case M88E1011_I_PHY_ID:
4526         case M88E1111_I_PHY_ID:
4527                 hw->phy_type = e1000_phy_m88;
4528                 break;
4529         case IGP01E1000_I_PHY_ID:
4530                 if (hw->mac_type == e1000_82541 ||
4531                         hw->mac_type == e1000_82541_rev_2 ||
4532                         hw->mac_type == e1000_82547 ||
4533                         hw->mac_type == e1000_82547_rev_2) {
4534                         hw->phy_type = e1000_phy_igp;
4535                         hw->phy_type = e1000_phy_igp;
4536                         break;
4537                 }
4538         case IGP03E1000_E_PHY_ID:
4539                 hw->phy_type = e1000_phy_igp_3;
4540                 break;
4541         case IFE_E_PHY_ID:
4542         case IFE_PLUS_E_PHY_ID:
4543         case IFE_C_E_PHY_ID:
4544                 hw->phy_type = e1000_phy_ife;
4545                 break;
4546         case GG82563_E_PHY_ID:
4547                 if (hw->mac_type == e1000_80003es2lan) {
4548                         hw->phy_type = e1000_phy_gg82563;
4549                         break;
4550                 }
4551         case BME1000_E_PHY_ID:
4552                 hw->phy_type = e1000_phy_bm;
4553                 break;
4554                 /* Fall Through */
4555         default:
4556                 /* Should never have loaded on this device */
4557                 hw->phy_type = e1000_phy_undefined;
4558                 return -E1000_ERR_PHY_TYPE;
4559         }
4560
4561         return E1000_SUCCESS;
4562 }
4563
4564 /******************************************************************************
4565 * Probes the expected PHY address for known PHY IDs
4566 *
4567 * hw - Struct containing variables accessed by shared code
4568 ******************************************************************************/
4569 static int32_t
4570 e1000_detect_gig_phy(struct e1000_hw *hw)
4571 {
4572         int32_t phy_init_status, ret_val;
4573         uint16_t phy_id_high, phy_id_low;
4574         bool match = false;
4575
4576         DEBUGFUNC();
4577
4578         /* The 82571 firmware may still be configuring the PHY.  In this
4579          * case, we cannot access the PHY until the configuration is done.  So
4580          * we explicitly set the PHY values. */
4581         if (hw->mac_type == e1000_82571 ||
4582                 hw->mac_type == e1000_82572) {
4583                 hw->phy_id = IGP01E1000_I_PHY_ID;
4584                 hw->phy_type = e1000_phy_igp_2;
4585                 return E1000_SUCCESS;
4586         }
4587
4588         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4589          * work- around that forces PHY page 0 to be set or the reads fail.
4590          * The rest of the code in this routine uses e1000_read_phy_reg to
4591          * read the PHY ID.  So for ESB-2 we need to have this set so our
4592          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4593          * the routines below will figure this out as well. */
4594         if (hw->mac_type == e1000_80003es2lan)
4595                 hw->phy_type = e1000_phy_gg82563;
4596
4597         /* Read the PHY ID Registers to identify which PHY is onboard. */
4598         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4599         if (ret_val)
4600                 return ret_val;
4601
4602         hw->phy_id = (uint32_t) (phy_id_high << 16);
4603         udelay(20);
4604         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4605         if (ret_val)
4606                 return ret_val;
4607
4608         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4609         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4610
4611         switch (hw->mac_type) {
4612         case e1000_82543:
4613                 if (hw->phy_id == M88E1000_E_PHY_ID)
4614                         match = true;
4615                 break;
4616         case e1000_82544:
4617                 if (hw->phy_id == M88E1000_I_PHY_ID)
4618                         match = true;
4619                 break;
4620         case e1000_82540:
4621         case e1000_82545:
4622         case e1000_82545_rev_3:
4623         case e1000_82546:
4624         case e1000_82546_rev_3:
4625                 if (hw->phy_id == M88E1011_I_PHY_ID)
4626                         match = true;
4627                 break;
4628         case e1000_82541:
4629         case e1000_82541_rev_2:
4630         case e1000_82547:
4631         case e1000_82547_rev_2:
4632                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4633                         match = true;
4634
4635                 break;
4636         case e1000_82573:
4637                 if (hw->phy_id == M88E1111_I_PHY_ID)
4638                         match = true;
4639                 break;
4640         case e1000_82574:
4641                 if (hw->phy_id == BME1000_E_PHY_ID)
4642                         match = true;
4643                 break;
4644         case e1000_80003es2lan:
4645                 if (hw->phy_id == GG82563_E_PHY_ID)
4646                         match = true;
4647                 break;
4648         case e1000_ich8lan:
4649                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4650                         match = true;
4651                 if (hw->phy_id == IFE_E_PHY_ID)
4652                         match = true;
4653                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4654                         match = true;
4655                 if (hw->phy_id == IFE_C_E_PHY_ID)
4656                         match = true;
4657                 break;
4658         default:
4659                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4660                 return -E1000_ERR_CONFIG;
4661         }
4662
4663         phy_init_status = e1000_set_phy_type(hw);
4664
4665         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4666                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4667                 return 0;
4668         }
4669         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4670         return -E1000_ERR_PHY;
4671 }
4672
4673 /*****************************************************************************
4674  * Set media type and TBI compatibility.
4675  *
4676  * hw - Struct containing variables accessed by shared code
4677  * **************************************************************************/
4678 void
4679 e1000_set_media_type(struct e1000_hw *hw)
4680 {
4681         uint32_t status;
4682
4683         DEBUGFUNC();
4684
4685         if (hw->mac_type != e1000_82543) {
4686                 /* tbi_compatibility is only valid on 82543 */
4687                 hw->tbi_compatibility_en = false;
4688         }
4689
4690         switch (hw->device_id) {
4691         case E1000_DEV_ID_82545GM_SERDES:
4692         case E1000_DEV_ID_82546GB_SERDES:
4693         case E1000_DEV_ID_82571EB_SERDES:
4694         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4695         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4696         case E1000_DEV_ID_82572EI_SERDES:
4697         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4698                 hw->media_type = e1000_media_type_internal_serdes;
4699                 break;
4700         default:
4701                 switch (hw->mac_type) {
4702                 case e1000_82542_rev2_0:
4703                 case e1000_82542_rev2_1:
4704                         hw->media_type = e1000_media_type_fiber;
4705                         break;
4706                 case e1000_ich8lan:
4707                 case e1000_82573:
4708                 case e1000_82574:
4709                         /* The STATUS_TBIMODE bit is reserved or reused
4710                          * for the this device.
4711                          */
4712                         hw->media_type = e1000_media_type_copper;
4713                         break;
4714                 default:
4715                         status = E1000_READ_REG(hw, STATUS);
4716                         if (status & E1000_STATUS_TBIMODE) {
4717                                 hw->media_type = e1000_media_type_fiber;
4718                                 /* tbi_compatibility not valid on fiber */
4719                                 hw->tbi_compatibility_en = false;
4720                         } else {
4721                                 hw->media_type = e1000_media_type_copper;
4722                         }
4723                         break;
4724                 }
4725         }
4726 }
4727
4728 /**
4729  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4730  *
4731  * e1000_sw_init initializes the Adapter private data structure.
4732  * Fields are initialized based on PCI device information and
4733  * OS network device settings (MTU size).
4734  **/
4735
4736 static int
4737 e1000_sw_init(struct eth_device *nic)
4738 {
4739         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4740         int result;
4741
4742         /* PCI config space info */
4743         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4744         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4745         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4746                              &hw->subsystem_vendor_id);
4747         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4748
4749         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4750         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4751
4752         /* identify the MAC */
4753         result = e1000_set_mac_type(hw);
4754         if (result) {
4755                 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4756                 return result;
4757         }
4758
4759         switch (hw->mac_type) {
4760         default:
4761                 break;
4762         case e1000_82541:
4763         case e1000_82547:
4764         case e1000_82541_rev_2:
4765         case e1000_82547_rev_2:
4766                 hw->phy_init_script = 1;
4767                 break;
4768         }
4769
4770         /* flow control settings */
4771         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4772         hw->fc_low_water = E1000_FC_LOW_THRESH;
4773         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4774         hw->fc_send_xon = 1;
4775
4776         /* Media type - copper or fiber */
4777         e1000_set_media_type(hw);
4778
4779         if (hw->mac_type >= e1000_82543) {
4780                 uint32_t status = E1000_READ_REG(hw, STATUS);
4781
4782                 if (status & E1000_STATUS_TBIMODE) {
4783                         DEBUGOUT("fiber interface\n");
4784                         hw->media_type = e1000_media_type_fiber;
4785                 } else {
4786                         DEBUGOUT("copper interface\n");
4787                         hw->media_type = e1000_media_type_copper;
4788                 }
4789         } else {
4790                 hw->media_type = e1000_media_type_fiber;
4791         }
4792
4793         hw->tbi_compatibility_en = true;
4794         hw->wait_autoneg_complete = true;
4795         if (hw->mac_type < e1000_82543)
4796                 hw->report_tx_early = 0;
4797         else
4798                 hw->report_tx_early = 1;
4799
4800         return E1000_SUCCESS;
4801 }
4802
4803 void
4804 fill_rx(struct e1000_hw *hw)
4805 {
4806         struct e1000_rx_desc *rd;
4807
4808         rx_last = rx_tail;
4809         rd = rx_base + rx_tail;
4810         rx_tail = (rx_tail + 1) % 8;
4811         memset(rd, 0, 16);
4812         rd->buffer_addr = cpu_to_le64((u32) & packet);
4813         E1000_WRITE_REG(hw, RDT, rx_tail);
4814 }
4815
4816 /**
4817  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4818  * @adapter: board private structure
4819  *
4820  * Configure the Tx unit of the MAC after a reset.
4821  **/
4822
4823 static void
4824 e1000_configure_tx(struct e1000_hw *hw)
4825 {
4826         unsigned long ptr;
4827         unsigned long tctl;
4828         unsigned long tipg, tarc;
4829         uint32_t ipgr1, ipgr2;
4830
4831         ptr = (u32) tx_pool;
4832         if (ptr & 0xf)
4833                 ptr = (ptr + 0x10) & (~0xf);
4834
4835         tx_base = (typeof(tx_base)) ptr;
4836
4837         E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4838         E1000_WRITE_REG(hw, TDBAH, 0);
4839
4840         E1000_WRITE_REG(hw, TDLEN, 128);
4841
4842         /* Setup the HW Tx Head and Tail descriptor pointers */
4843         E1000_WRITE_REG(hw, TDH, 0);
4844         E1000_WRITE_REG(hw, TDT, 0);
4845         tx_tail = 0;
4846
4847         /* Set the default values for the Tx Inter Packet Gap timer */
4848         if (hw->mac_type <= e1000_82547_rev_2 &&
4849             (hw->media_type == e1000_media_type_fiber ||
4850              hw->media_type == e1000_media_type_internal_serdes))
4851                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4852         else
4853                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4854
4855         /* Set the default values for the Tx Inter Packet Gap timer */
4856         switch (hw->mac_type) {
4857         case e1000_82542_rev2_0:
4858         case e1000_82542_rev2_1:
4859                 tipg = DEFAULT_82542_TIPG_IPGT;
4860                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4861                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4862                 break;
4863         case e1000_80003es2lan:
4864                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4865                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4866                 break;
4867         default:
4868                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4869                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4870                 break;
4871         }
4872         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4873         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4874         E1000_WRITE_REG(hw, TIPG, tipg);
4875         /* Program the Transmit Control Register */
4876         tctl = E1000_READ_REG(hw, TCTL);
4877         tctl &= ~E1000_TCTL_CT;
4878         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4879             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4880
4881         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4882                 tarc = E1000_READ_REG(hw, TARC0);
4883                 /* set the speed mode bit, we'll clear it if we're not at
4884                  * gigabit link later */
4885                 /* git bit can be set to 1*/
4886         } else if (hw->mac_type == e1000_80003es2lan) {
4887                 tarc = E1000_READ_REG(hw, TARC0);
4888                 tarc |= 1;
4889                 E1000_WRITE_REG(hw, TARC0, tarc);
4890                 tarc = E1000_READ_REG(hw, TARC1);
4891                 tarc |= 1;
4892                 E1000_WRITE_REG(hw, TARC1, tarc);
4893         }
4894
4895
4896         e1000_config_collision_dist(hw);
4897         /* Setup Transmit Descriptor Settings for eop descriptor */
4898         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4899
4900         /* Need to set up RS bit */
4901         if (hw->mac_type < e1000_82543)
4902                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4903         else
4904                 hw->txd_cmd |= E1000_TXD_CMD_RS;
4905         E1000_WRITE_REG(hw, TCTL, tctl);
4906 }
4907
4908 /**
4909  * e1000_setup_rctl - configure the receive control register
4910  * @adapter: Board private structure
4911  **/
4912 static void
4913 e1000_setup_rctl(struct e1000_hw *hw)
4914 {
4915         uint32_t rctl;
4916
4917         rctl = E1000_READ_REG(hw, RCTL);
4918
4919         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4920
4921         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4922                 | E1000_RCTL_RDMTS_HALF;        /* |
4923                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4924
4925         if (hw->tbi_compatibility_on == 1)
4926                 rctl |= E1000_RCTL_SBP;
4927         else
4928                 rctl &= ~E1000_RCTL_SBP;
4929
4930         rctl &= ~(E1000_RCTL_SZ_4096);
4931                 rctl |= E1000_RCTL_SZ_2048;
4932                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4933         E1000_WRITE_REG(hw, RCTL, rctl);
4934 }
4935
4936 /**
4937  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4938  * @adapter: board private structure
4939  *
4940  * Configure the Rx unit of the MAC after a reset.
4941  **/
4942 static void
4943 e1000_configure_rx(struct e1000_hw *hw)
4944 {
4945         unsigned long ptr;
4946         unsigned long rctl, ctrl_ext;
4947         rx_tail = 0;
4948         /* make sure receives are disabled while setting up the descriptors */
4949         rctl = E1000_READ_REG(hw, RCTL);
4950         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4951         if (hw->mac_type >= e1000_82540) {
4952                 /* Set the interrupt throttling rate.  Value is calculated
4953                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4954 #define MAX_INTS_PER_SEC        8000
4955 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
4956                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4957         }
4958
4959         if (hw->mac_type >= e1000_82571) {
4960                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4961                 /* Reset delay timers after every interrupt */
4962                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4963                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4964                 E1000_WRITE_FLUSH(hw);
4965         }
4966         /* Setup the Base and Length of the Rx Descriptor Ring */
4967         ptr = (u32) rx_pool;
4968         if (ptr & 0xf)
4969                 ptr = (ptr + 0x10) & (~0xf);
4970         rx_base = (typeof(rx_base)) ptr;
4971         E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4972         E1000_WRITE_REG(hw, RDBAH, 0);
4973
4974         E1000_WRITE_REG(hw, RDLEN, 128);
4975
4976         /* Setup the HW Rx Head and Tail Descriptor Pointers */
4977         E1000_WRITE_REG(hw, RDH, 0);
4978         E1000_WRITE_REG(hw, RDT, 0);
4979         /* Enable Receives */
4980
4981         E1000_WRITE_REG(hw, RCTL, rctl);
4982         fill_rx(hw);
4983 }
4984
4985 /**************************************************************************
4986 POLL - Wait for a frame
4987 ***************************************************************************/
4988 static int
4989 e1000_poll(struct eth_device *nic)
4990 {
4991         struct e1000_hw *hw = nic->priv;
4992         struct e1000_rx_desc *rd;
4993         /* return true if there's an ethernet packet ready to read */
4994         rd = rx_base + rx_last;
4995         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
4996                 return 0;
4997         /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
4998         NetReceive((uchar *)packet, le32_to_cpu(rd->length));
4999         fill_rx(hw);
5000         return 1;
5001 }
5002
5003 /**************************************************************************
5004 TRANSMIT - Transmit a frame
5005 ***************************************************************************/
5006 static int e1000_transmit(struct eth_device *nic, void *packet, int length)
5007 {
5008         void *nv_packet = (void *)packet;
5009         struct e1000_hw *hw = nic->priv;
5010         struct e1000_tx_desc *txp;
5011         int i = 0;
5012
5013         txp = tx_base + tx_tail;
5014         tx_tail = (tx_tail + 1) % 8;
5015
5016         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5017         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5018         txp->upper.data = 0;
5019         E1000_WRITE_REG(hw, TDT, tx_tail);
5020
5021         E1000_WRITE_FLUSH(hw);
5022         while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5023                 if (i++ > TOUT_LOOP) {
5024                         DEBUGOUT("e1000: tx timeout\n");
5025                         return 0;
5026                 }
5027                 udelay(10);     /* give the nic a chance to write to the register */
5028         }
5029         return 1;
5030 }
5031
5032 /*reset function*/
5033 static inline int
5034 e1000_reset(struct eth_device *nic)
5035 {
5036         struct e1000_hw *hw = nic->priv;
5037
5038         e1000_reset_hw(hw);
5039         if (hw->mac_type >= e1000_82544) {
5040                 E1000_WRITE_REG(hw, WUC, 0);
5041         }
5042         return e1000_init_hw(nic);
5043 }
5044
5045 /**************************************************************************
5046 DISABLE - Turn off ethernet interface
5047 ***************************************************************************/
5048 static void
5049 e1000_disable(struct eth_device *nic)
5050 {
5051         struct e1000_hw *hw = nic->priv;
5052
5053         /* Turn off the ethernet interface */
5054         E1000_WRITE_REG(hw, RCTL, 0);
5055         E1000_WRITE_REG(hw, TCTL, 0);
5056
5057         /* Clear the transmit ring */
5058         E1000_WRITE_REG(hw, TDH, 0);
5059         E1000_WRITE_REG(hw, TDT, 0);
5060
5061         /* Clear the receive ring */
5062         E1000_WRITE_REG(hw, RDH, 0);
5063         E1000_WRITE_REG(hw, RDT, 0);
5064
5065         /* put the card in its initial state */
5066 #if 0
5067         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5068 #endif
5069         mdelay(10);
5070
5071 }
5072
5073 /**************************************************************************
5074 INIT - set up ethernet interface(s)
5075 ***************************************************************************/
5076 static int
5077 e1000_init(struct eth_device *nic, bd_t * bis)
5078 {
5079         struct e1000_hw *hw = nic->priv;
5080         int ret_val = 0;
5081
5082         ret_val = e1000_reset(nic);
5083         if (ret_val < 0) {
5084                 if ((ret_val == -E1000_ERR_NOLINK) ||
5085                     (ret_val == -E1000_ERR_TIMEOUT)) {
5086                         E1000_ERR(hw->nic, "Valid Link not detected\n");
5087                 } else {
5088                         E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5089                 }
5090                 return 0;
5091         }
5092         e1000_configure_tx(hw);
5093         e1000_setup_rctl(hw);
5094         e1000_configure_rx(hw);
5095         return 1;
5096 }
5097
5098 /******************************************************************************
5099  * Gets the current PCI bus type of hardware
5100  *
5101  * hw - Struct containing variables accessed by shared code
5102  *****************************************************************************/
5103 void e1000_get_bus_type(struct e1000_hw *hw)
5104 {
5105         uint32_t status;
5106
5107         switch (hw->mac_type) {
5108         case e1000_82542_rev2_0:
5109         case e1000_82542_rev2_1:
5110                 hw->bus_type = e1000_bus_type_pci;
5111                 break;
5112         case e1000_82571:
5113         case e1000_82572:
5114         case e1000_82573:
5115         case e1000_82574:
5116         case e1000_80003es2lan:
5117                 hw->bus_type = e1000_bus_type_pci_express;
5118                 break;
5119         case e1000_ich8lan:
5120                 hw->bus_type = e1000_bus_type_pci_express;
5121                 break;
5122         default:
5123                 status = E1000_READ_REG(hw, STATUS);
5124                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5125                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5126                 break;
5127         }
5128 }
5129
5130 /* A list of all registered e1000 devices */
5131 static LIST_HEAD(e1000_hw_list);
5132
5133 /**************************************************************************
5134 PROBE - Look for an adapter, this routine's visible to the outside
5135 You should omit the last argument struct pci_device * for a non-PCI NIC
5136 ***************************************************************************/
5137 int
5138 e1000_initialize(bd_t * bis)
5139 {
5140         unsigned int i;
5141         pci_dev_t devno;
5142
5143         DEBUGFUNC();
5144
5145         /* Find and probe all the matching PCI devices */
5146         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5147                 u32 val;
5148
5149                 /*
5150                  * These will never get freed due to errors, this allows us to
5151                  * perform SPI EEPROM programming from U-boot, for example.
5152                  */
5153                 struct eth_device *nic = malloc(sizeof(*nic));
5154                 struct e1000_hw *hw = malloc(sizeof(*hw));
5155                 if (!nic || !hw) {
5156                         printf("e1000#%u: Out of Memory!\n", i);
5157                         free(nic);
5158                         free(hw);
5159                         continue;
5160                 }
5161
5162                 /* Make sure all of the fields are initially zeroed */
5163                 memset(nic, 0, sizeof(*nic));
5164                 memset(hw, 0, sizeof(*hw));
5165
5166                 /* Assign the passed-in values */
5167                 hw->cardnum = i;
5168                 hw->pdev = devno;
5169                 hw->nic = nic;
5170                 nic->priv = hw;
5171
5172                 /* Generate a card name */
5173                 sprintf(nic->name, "e1000#%u", hw->cardnum);
5174
5175                 /* Print a debug message with the IO base address */
5176                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5177                 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5178
5179                 /* Try to enable I/O accesses and bus-mastering */
5180                 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5181                 pci_write_config_dword(devno, PCI_COMMAND, val);
5182
5183                 /* Make sure it worked */
5184                 pci_read_config_dword(devno, PCI_COMMAND, &val);
5185                 if (!(val & PCI_COMMAND_MEMORY)) {
5186                         E1000_ERR(nic, "Can't enable I/O memory\n");
5187                         continue;
5188                 }
5189                 if (!(val & PCI_COMMAND_MASTER)) {
5190                         E1000_ERR(nic, "Can't enable bus-mastering\n");
5191                         continue;
5192                 }
5193
5194                 /* Are these variables needed? */
5195                 hw->fc = e1000_fc_default;
5196                 hw->original_fc = e1000_fc_default;
5197                 hw->autoneg_failed = 0;
5198                 hw->autoneg = 1;
5199                 hw->get_link_status = true;
5200                 hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5201                                                         PCI_REGION_MEM);
5202                 hw->mac_type = e1000_undefined;
5203
5204                 /* MAC and Phy settings */
5205                 if (e1000_sw_init(nic) < 0) {
5206                         E1000_ERR(nic, "Software init failed\n");
5207                         continue;
5208                 }
5209                 if (e1000_check_phy_reset_block(hw))
5210                         E1000_ERR(nic, "PHY Reset is blocked!\n");
5211
5212                 /* Basic init was OK, reset the hardware and allow SPI access */
5213                 e1000_reset_hw(hw);
5214                 list_add_tail(&hw->list_node, &e1000_hw_list);
5215
5216 #ifndef CONFIG_E1000_NO_NVM
5217                 /* Validate the EEPROM and get chipset information */
5218 #if !defined(CONFIG_MVBC_1G)
5219                 if (e1000_init_eeprom_params(hw)) {
5220                         E1000_ERR(nic, "EEPROM is invalid!\n");
5221                         continue;
5222                 }
5223                 if (e1000_validate_eeprom_checksum(hw))
5224                         continue;
5225 #endif
5226                 e1000_read_mac_addr(nic);
5227 #endif
5228                 e1000_get_bus_type(hw);
5229
5230 #ifndef CONFIG_E1000_NO_NVM
5231                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5232                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5233                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5234 #else
5235                 memset(nic->enetaddr, 0, 6);
5236                 printf("e1000: no NVM\n");
5237 #endif
5238
5239                 /* Set up the function pointers and register the device */
5240                 nic->init = e1000_init;
5241                 nic->recv = e1000_poll;
5242                 nic->send = e1000_transmit;
5243                 nic->halt = e1000_disable;
5244                 eth_register(nic);
5245         }
5246
5247         return i;
5248 }
5249
5250 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5251 {
5252         struct e1000_hw *hw;
5253
5254         list_for_each_entry(hw, &e1000_hw_list, list_node)
5255                 if (hw->cardnum == cardnum)
5256                         return hw;
5257
5258         return NULL;
5259 }
5260
5261 #ifdef CONFIG_CMD_E1000
5262 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5263                 int argc, char * const argv[])
5264 {
5265         struct e1000_hw *hw;
5266
5267         if (argc < 3) {
5268                 cmd_usage(cmdtp);
5269                 return 1;
5270         }
5271
5272         /* Make sure we can find the requested e1000 card */
5273         hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5274         if (!hw) {
5275                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5276                 return 1;
5277         }
5278
5279         if (!strcmp(argv[2], "print-mac-address")) {
5280                 unsigned char *mac = hw->nic->enetaddr;
5281                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5282                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5283                 return 0;
5284         }
5285
5286 #ifdef CONFIG_E1000_SPI
5287         /* Handle the "SPI" subcommand */
5288         if (!strcmp(argv[2], "spi"))
5289                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5290 #endif
5291
5292         cmd_usage(cmdtp);
5293         return 1;
5294 }
5295
5296 U_BOOT_CMD(
5297         e1000, 7, 0, do_e1000,
5298         "Intel e1000 controller management",
5299         /*  */"<card#> print-mac-address\n"
5300 #ifdef CONFIG_E1000_SPI
5301         "e1000 <card#> spi show [<offset> [<length>]]\n"
5302         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5303         "e1000 <card#> spi program <addr> <offset> <length>\n"
5304         "e1000 <card#> spi checksum [update]\n"
5305 #endif
5306         "       - Manage the Intel E1000 PCI device"
5307 );
5308 #endif /* not CONFIG_CMD_E1000 */