Merge branch 'master' of git://git.denx.de/u-boot
[platform/kernel/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include "e1000.h"
33
34 #define TOUT_LOOP   100000
35
36 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
37 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
38
39 #define E1000_DEFAULT_PCI_PBA   0x00000030
40 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
41
42 /* NIC specific static variables go here */
43
44 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
45 #define E1000_BUFFER_ALIGN      128
46
47 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
48 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
49 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
50
51 static int tx_tail;
52 static int rx_tail, rx_last;
53
54 static struct pci_device_id e1000_supported[] = {
55         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
56         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
57         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
58         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
59         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
60         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
61         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
62         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
63         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
64         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
65         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
66         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
67         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
68         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
69         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
70         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
71         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
72         /* E1000 PCIe card */
73         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
74         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER      },
75         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES     },
76         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
77         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
78         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
79         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
80         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
81         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
82         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
83         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
84         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
85         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
86         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
87         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
88         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
89         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
90         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
91         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
92         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
93         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
94         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
95         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED},
96         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED},
97         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER},
98         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER},
99         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS},
100         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES},
101         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS},
102         {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX},
103
104         {}
105 };
106
107 /* Function forward declarations */
108 static int e1000_setup_link(struct eth_device *nic);
109 static int e1000_setup_fiber_link(struct eth_device *nic);
110 static int e1000_setup_copper_link(struct eth_device *nic);
111 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
112 static void e1000_config_collision_dist(struct e1000_hw *hw);
113 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
114 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
115 static int e1000_check_for_link(struct eth_device *nic);
116 static int e1000_wait_autoneg(struct e1000_hw *hw);
117 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
118                                        uint16_t * duplex);
119 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
120                               uint16_t * phy_data);
121 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
122                                uint16_t phy_data);
123 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
124 static int e1000_phy_reset(struct e1000_hw *hw);
125 static int e1000_detect_gig_phy(struct e1000_hw *hw);
126 static void e1000_set_media_type(struct e1000_hw *hw);
127
128 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
129 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
130
131 #ifndef CONFIG_E1000_NO_NVM
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
134                 uint16_t words,
135                 uint16_t *data);
136 /******************************************************************************
137  * Raises the EEPROM's clock input.
138  *
139  * hw - Struct containing variables accessed by shared code
140  * eecd - EECD's current value
141  *****************************************************************************/
142 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
143 {
144         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
145          * wait 50 microseconds.
146          */
147         *eecd = *eecd | E1000_EECD_SK;
148         E1000_WRITE_REG(hw, EECD, *eecd);
149         E1000_WRITE_FLUSH(hw);
150         udelay(50);
151 }
152
153 /******************************************************************************
154  * Lowers the EEPROM's clock input.
155  *
156  * hw - Struct containing variables accessed by shared code
157  * eecd - EECD's current value
158  *****************************************************************************/
159 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
160 {
161         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
162          * wait 50 microseconds.
163          */
164         *eecd = *eecd & ~E1000_EECD_SK;
165         E1000_WRITE_REG(hw, EECD, *eecd);
166         E1000_WRITE_FLUSH(hw);
167         udelay(50);
168 }
169
170 /******************************************************************************
171  * Shift data bits out to the EEPROM.
172  *
173  * hw - Struct containing variables accessed by shared code
174  * data - data to send to the EEPROM
175  * count - number of bits to shift out
176  *****************************************************************************/
177 static void
178 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
179 {
180         uint32_t eecd;
181         uint32_t mask;
182
183         /* We need to shift "count" bits out to the EEPROM. So, value in the
184          * "data" parameter will be shifted out to the EEPROM one bit at a time.
185          * In order to do this, "data" must be broken down into bits.
186          */
187         mask = 0x01 << (count - 1);
188         eecd = E1000_READ_REG(hw, EECD);
189         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
190         do {
191                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
192                  * and then raising and then lowering the clock (the SK bit controls
193                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
194                  * by setting "DI" to "0" and then raising and then lowering the clock.
195                  */
196                 eecd &= ~E1000_EECD_DI;
197
198                 if (data & mask)
199                         eecd |= E1000_EECD_DI;
200
201                 E1000_WRITE_REG(hw, EECD, eecd);
202                 E1000_WRITE_FLUSH(hw);
203
204                 udelay(50);
205
206                 e1000_raise_ee_clk(hw, &eecd);
207                 e1000_lower_ee_clk(hw, &eecd);
208
209                 mask = mask >> 1;
210
211         } while (mask);
212
213         /* We leave the "DI" bit set to "0" when we leave this routine. */
214         eecd &= ~E1000_EECD_DI;
215         E1000_WRITE_REG(hw, EECD, eecd);
216 }
217
218 /******************************************************************************
219  * Shift data bits in from the EEPROM
220  *
221  * hw - Struct containing variables accessed by shared code
222  *****************************************************************************/
223 static uint16_t
224 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
225 {
226         uint32_t eecd;
227         uint32_t i;
228         uint16_t data;
229
230         /* In order to read a register from the EEPROM, we need to shift 'count'
231          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
232          * input to the EEPROM (setting the SK bit), and then reading the
233          * value of the "DO" bit.  During this "shifting in" process the
234          * "DI" bit should always be clear.
235          */
236
237         eecd = E1000_READ_REG(hw, EECD);
238
239         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
240         data = 0;
241
242         for (i = 0; i < count; i++) {
243                 data = data << 1;
244                 e1000_raise_ee_clk(hw, &eecd);
245
246                 eecd = E1000_READ_REG(hw, EECD);
247
248                 eecd &= ~(E1000_EECD_DI);
249                 if (eecd & E1000_EECD_DO)
250                         data |= 1;
251
252                 e1000_lower_ee_clk(hw, &eecd);
253         }
254
255         return data;
256 }
257
258 /******************************************************************************
259  * Returns EEPROM to a "standby" state
260  *
261  * hw - Struct containing variables accessed by shared code
262  *****************************************************************************/
263 void e1000_standby_eeprom(struct e1000_hw *hw)
264 {
265         struct e1000_eeprom_info *eeprom = &hw->eeprom;
266         uint32_t eecd;
267
268         eecd = E1000_READ_REG(hw, EECD);
269
270         if (eeprom->type == e1000_eeprom_microwire) {
271                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
272                 E1000_WRITE_REG(hw, EECD, eecd);
273                 E1000_WRITE_FLUSH(hw);
274                 udelay(eeprom->delay_usec);
275
276                 /* Clock high */
277                 eecd |= E1000_EECD_SK;
278                 E1000_WRITE_REG(hw, EECD, eecd);
279                 E1000_WRITE_FLUSH(hw);
280                 udelay(eeprom->delay_usec);
281
282                 /* Select EEPROM */
283                 eecd |= E1000_EECD_CS;
284                 E1000_WRITE_REG(hw, EECD, eecd);
285                 E1000_WRITE_FLUSH(hw);
286                 udelay(eeprom->delay_usec);
287
288                 /* Clock low */
289                 eecd &= ~E1000_EECD_SK;
290                 E1000_WRITE_REG(hw, EECD, eecd);
291                 E1000_WRITE_FLUSH(hw);
292                 udelay(eeprom->delay_usec);
293         } else if (eeprom->type == e1000_eeprom_spi) {
294                 /* Toggle CS to flush commands */
295                 eecd |= E1000_EECD_CS;
296                 E1000_WRITE_REG(hw, EECD, eecd);
297                 E1000_WRITE_FLUSH(hw);
298                 udelay(eeprom->delay_usec);
299                 eecd &= ~E1000_EECD_CS;
300                 E1000_WRITE_REG(hw, EECD, eecd);
301                 E1000_WRITE_FLUSH(hw);
302                 udelay(eeprom->delay_usec);
303         }
304 }
305
306 /***************************************************************************
307 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
308 *
309 * hw - Struct containing variables accessed by shared code
310 ****************************************************************************/
311 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
312 {
313         uint32_t eecd = 0;
314
315         DEBUGFUNC();
316
317         if (hw->mac_type == e1000_ich8lan)
318                 return false;
319
320         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
321                 eecd = E1000_READ_REG(hw, EECD);
322
323                 /* Isolate bits 15 & 16 */
324                 eecd = ((eecd >> 15) & 0x03);
325
326                 /* If both bits are set, device is Flash type */
327                 if (eecd == 0x03)
328                         return false;
329         }
330         return true;
331 }
332
333 /******************************************************************************
334  * Prepares EEPROM for access
335  *
336  * hw - Struct containing variables accessed by shared code
337  *
338  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
339  * function should be called before issuing a command to the EEPROM.
340  *****************************************************************************/
341 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
342 {
343         struct e1000_eeprom_info *eeprom = &hw->eeprom;
344         uint32_t eecd, i = 0;
345
346         DEBUGFUNC();
347
348         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
349                 return -E1000_ERR_SWFW_SYNC;
350         eecd = E1000_READ_REG(hw, EECD);
351
352         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
353                 /* Request EEPROM Access */
354                 if (hw->mac_type > e1000_82544) {
355                         eecd |= E1000_EECD_REQ;
356                         E1000_WRITE_REG(hw, EECD, eecd);
357                         eecd = E1000_READ_REG(hw, EECD);
358                         while ((!(eecd & E1000_EECD_GNT)) &&
359                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
360                                 i++;
361                                 udelay(5);
362                                 eecd = E1000_READ_REG(hw, EECD);
363                         }
364                         if (!(eecd & E1000_EECD_GNT)) {
365                                 eecd &= ~E1000_EECD_REQ;
366                                 E1000_WRITE_REG(hw, EECD, eecd);
367                                 DEBUGOUT("Could not acquire EEPROM grant\n");
368                                 return -E1000_ERR_EEPROM;
369                         }
370                 }
371         }
372
373         /* Setup EEPROM for Read/Write */
374
375         if (eeprom->type == e1000_eeprom_microwire) {
376                 /* Clear SK and DI */
377                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
378                 E1000_WRITE_REG(hw, EECD, eecd);
379
380                 /* Set CS */
381                 eecd |= E1000_EECD_CS;
382                 E1000_WRITE_REG(hw, EECD, eecd);
383         } else if (eeprom->type == e1000_eeprom_spi) {
384                 /* Clear SK and CS */
385                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
386                 E1000_WRITE_REG(hw, EECD, eecd);
387                 udelay(1);
388         }
389
390         return E1000_SUCCESS;
391 }
392
393 /******************************************************************************
394  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
395  * is configured.  Additionally, if this is ICH8, the flash controller GbE
396  * registers must be mapped, or this will crash.
397  *
398  * hw - Struct containing variables accessed by shared code
399  *****************************************************************************/
400 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
401 {
402         struct e1000_eeprom_info *eeprom = &hw->eeprom;
403         uint32_t eecd;
404         int32_t ret_val = E1000_SUCCESS;
405         uint16_t eeprom_size;
406
407         if (hw->mac_type == e1000_igb)
408                 eecd = E1000_READ_REG(hw, I210_EECD);
409         else
410                 eecd = E1000_READ_REG(hw, EECD);
411
412         DEBUGFUNC();
413
414         switch (hw->mac_type) {
415         case e1000_82542_rev2_0:
416         case e1000_82542_rev2_1:
417         case e1000_82543:
418         case e1000_82544:
419                 eeprom->type = e1000_eeprom_microwire;
420                 eeprom->word_size = 64;
421                 eeprom->opcode_bits = 3;
422                 eeprom->address_bits = 6;
423                 eeprom->delay_usec = 50;
424                 eeprom->use_eerd = false;
425                 eeprom->use_eewr = false;
426         break;
427         case e1000_82540:
428         case e1000_82545:
429         case e1000_82545_rev_3:
430         case e1000_82546:
431         case e1000_82546_rev_3:
432                 eeprom->type = e1000_eeprom_microwire;
433                 eeprom->opcode_bits = 3;
434                 eeprom->delay_usec = 50;
435                 if (eecd & E1000_EECD_SIZE) {
436                         eeprom->word_size = 256;
437                         eeprom->address_bits = 8;
438                 } else {
439                         eeprom->word_size = 64;
440                         eeprom->address_bits = 6;
441                 }
442                 eeprom->use_eerd = false;
443                 eeprom->use_eewr = false;
444                 break;
445         case e1000_82541:
446         case e1000_82541_rev_2:
447         case e1000_82547:
448         case e1000_82547_rev_2:
449                 if (eecd & E1000_EECD_TYPE) {
450                         eeprom->type = e1000_eeprom_spi;
451                         eeprom->opcode_bits = 8;
452                         eeprom->delay_usec = 1;
453                         if (eecd & E1000_EECD_ADDR_BITS) {
454                                 eeprom->page_size = 32;
455                                 eeprom->address_bits = 16;
456                         } else {
457                                 eeprom->page_size = 8;
458                                 eeprom->address_bits = 8;
459                         }
460                 } else {
461                         eeprom->type = e1000_eeprom_microwire;
462                         eeprom->opcode_bits = 3;
463                         eeprom->delay_usec = 50;
464                         if (eecd & E1000_EECD_ADDR_BITS) {
465                                 eeprom->word_size = 256;
466                                 eeprom->address_bits = 8;
467                         } else {
468                                 eeprom->word_size = 64;
469                                 eeprom->address_bits = 6;
470                         }
471                 }
472                 eeprom->use_eerd = false;
473                 eeprom->use_eewr = false;
474                 break;
475         case e1000_82571:
476         case e1000_82572:
477                 eeprom->type = e1000_eeprom_spi;
478                 eeprom->opcode_bits = 8;
479                 eeprom->delay_usec = 1;
480                 if (eecd & E1000_EECD_ADDR_BITS) {
481                         eeprom->page_size = 32;
482                         eeprom->address_bits = 16;
483                 } else {
484                         eeprom->page_size = 8;
485                         eeprom->address_bits = 8;
486                 }
487                 eeprom->use_eerd = false;
488                 eeprom->use_eewr = false;
489                 break;
490         case e1000_82573:
491         case e1000_82574:
492                 eeprom->type = e1000_eeprom_spi;
493                 eeprom->opcode_bits = 8;
494                 eeprom->delay_usec = 1;
495                 if (eecd & E1000_EECD_ADDR_BITS) {
496                         eeprom->page_size = 32;
497                         eeprom->address_bits = 16;
498                 } else {
499                         eeprom->page_size = 8;
500                         eeprom->address_bits = 8;
501                 }
502                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
503                         eeprom->use_eerd = true;
504                         eeprom->use_eewr = true;
505
506                         eeprom->type = e1000_eeprom_flash;
507                         eeprom->word_size = 2048;
508
509                 /* Ensure that the Autonomous FLASH update bit is cleared due to
510                  * Flash update issue on parts which use a FLASH for NVM. */
511                         eecd &= ~E1000_EECD_AUPDEN;
512                         E1000_WRITE_REG(hw, EECD, eecd);
513                 }
514                 break;
515         case e1000_80003es2lan:
516                 eeprom->type = e1000_eeprom_spi;
517                 eeprom->opcode_bits = 8;
518                 eeprom->delay_usec = 1;
519                 if (eecd & E1000_EECD_ADDR_BITS) {
520                         eeprom->page_size = 32;
521                         eeprom->address_bits = 16;
522                 } else {
523                         eeprom->page_size = 8;
524                         eeprom->address_bits = 8;
525                 }
526                 eeprom->use_eerd = true;
527                 eeprom->use_eewr = false;
528                 break;
529         case e1000_igb:
530                 /* i210 has 4k of iNVM mapped as EEPROM */
531                 eeprom->type = e1000_eeprom_invm;
532                 eeprom->opcode_bits = 8;
533                 eeprom->delay_usec = 1;
534                 eeprom->page_size = 32;
535                 eeprom->address_bits = 16;
536                 eeprom->use_eerd = true;
537                 eeprom->use_eewr = false;
538                 break;
539
540         /* ich8lan does not support currently. if needed, please
541          * add corresponding code and functions.
542          */
543 #if 0
544         case e1000_ich8lan:
545                 {
546                 int32_t  i = 0;
547
548                 eeprom->type = e1000_eeprom_ich8;
549                 eeprom->use_eerd = false;
550                 eeprom->use_eewr = false;
551                 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
552                 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
553                                 ICH_FLASH_GFPREG);
554                 /* Zero the shadow RAM structure. But don't load it from NVM
555                  * so as to save time for driver init */
556                 if (hw->eeprom_shadow_ram != NULL) {
557                         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
558                                 hw->eeprom_shadow_ram[i].modified = false;
559                                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
560                         }
561                 }
562
563                 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
564                                 ICH_FLASH_SECTOR_SIZE;
565
566                 hw->flash_bank_size = ((flash_size >> 16)
567                                 & ICH_GFPREG_BASE_MASK) + 1;
568                 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
569
570                 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
571
572                 hw->flash_bank_size /= 2 * sizeof(uint16_t);
573                 break;
574                 }
575 #endif
576         default:
577                 break;
578         }
579
580         if (eeprom->type == e1000_eeprom_spi ||
581             eeprom->type == e1000_eeprom_invm) {
582                 /* eeprom_size will be an enum [0..8] that maps
583                  * to eeprom sizes 128B to
584                  * 32KB (incremented by powers of 2).
585                  */
586                 if (hw->mac_type <= e1000_82547_rev_2) {
587                         /* Set to default value for initial eeprom read. */
588                         eeprom->word_size = 64;
589                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
590                                         &eeprom_size);
591                         if (ret_val)
592                                 return ret_val;
593                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
594                                 >> EEPROM_SIZE_SHIFT;
595                         /* 256B eeprom size was not supported in earlier
596                          * hardware, so we bump eeprom_size up one to
597                          * ensure that "1" (which maps to 256B) is never
598                          * the result used in the shifting logic below. */
599                         if (eeprom_size)
600                                 eeprom_size++;
601                 } else {
602                         eeprom_size = (uint16_t)((eecd &
603                                 E1000_EECD_SIZE_EX_MASK) >>
604                                 E1000_EECD_SIZE_EX_SHIFT);
605                 }
606
607                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
608         }
609         return ret_val;
610 }
611
612 /******************************************************************************
613  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
614  *
615  * hw - Struct containing variables accessed by shared code
616  *****************************************************************************/
617 static int32_t
618 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
619 {
620         uint32_t attempts = 100000;
621         uint32_t i, reg = 0;
622         int32_t done = E1000_ERR_EEPROM;
623
624         for (i = 0; i < attempts; i++) {
625                 if (eerd == E1000_EEPROM_POLL_READ) {
626                         if (hw->mac_type == e1000_igb)
627                                 reg = E1000_READ_REG(hw, I210_EERD);
628                         else
629                                 reg = E1000_READ_REG(hw, EERD);
630                 } else {
631                         if (hw->mac_type == e1000_igb)
632                                 reg = E1000_READ_REG(hw, I210_EEWR);
633                         else
634                                 reg = E1000_READ_REG(hw, EEWR);
635                 }
636
637                 if (reg & E1000_EEPROM_RW_REG_DONE) {
638                         done = E1000_SUCCESS;
639                         break;
640                 }
641                 udelay(5);
642         }
643
644         return done;
645 }
646
647 /******************************************************************************
648  * Reads a 16 bit word from the EEPROM using the EERD register.
649  *
650  * hw - Struct containing variables accessed by shared code
651  * offset - offset of  word in the EEPROM to read
652  * data - word read from the EEPROM
653  * words - number of words to read
654  *****************************************************************************/
655 static int32_t
656 e1000_read_eeprom_eerd(struct e1000_hw *hw,
657                         uint16_t offset,
658                         uint16_t words,
659                         uint16_t *data)
660 {
661         uint32_t i, eerd = 0;
662         int32_t error = 0;
663
664         for (i = 0; i < words; i++) {
665                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
666                         E1000_EEPROM_RW_REG_START;
667
668                 if (hw->mac_type == e1000_igb)
669                         E1000_WRITE_REG(hw, I210_EERD, eerd);
670                 else
671                         E1000_WRITE_REG(hw, EERD, eerd);
672
673                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
674
675                 if (error)
676                         break;
677
678                 if (hw->mac_type == e1000_igb) {
679                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
680                                 E1000_EEPROM_RW_REG_DATA);
681                 } else {
682                         data[i] = (E1000_READ_REG(hw, EERD) >>
683                                 E1000_EEPROM_RW_REG_DATA);
684                 }
685
686         }
687
688         return error;
689 }
690
691 void e1000_release_eeprom(struct e1000_hw *hw)
692 {
693         uint32_t eecd;
694
695         DEBUGFUNC();
696
697         eecd = E1000_READ_REG(hw, EECD);
698
699         if (hw->eeprom.type == e1000_eeprom_spi) {
700                 eecd |= E1000_EECD_CS;  /* Pull CS high */
701                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
702
703                 E1000_WRITE_REG(hw, EECD, eecd);
704
705                 udelay(hw->eeprom.delay_usec);
706         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
707                 /* cleanup eeprom */
708
709                 /* CS on Microwire is active-high */
710                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
711
712                 E1000_WRITE_REG(hw, EECD, eecd);
713
714                 /* Rising edge of clock */
715                 eecd |= E1000_EECD_SK;
716                 E1000_WRITE_REG(hw, EECD, eecd);
717                 E1000_WRITE_FLUSH(hw);
718                 udelay(hw->eeprom.delay_usec);
719
720                 /* Falling edge of clock */
721                 eecd &= ~E1000_EECD_SK;
722                 E1000_WRITE_REG(hw, EECD, eecd);
723                 E1000_WRITE_FLUSH(hw);
724                 udelay(hw->eeprom.delay_usec);
725         }
726
727         /* Stop requesting EEPROM access */
728         if (hw->mac_type > e1000_82544) {
729                 eecd &= ~E1000_EECD_REQ;
730                 E1000_WRITE_REG(hw, EECD, eecd);
731         }
732 }
733 /******************************************************************************
734  * Reads a 16 bit word from the EEPROM.
735  *
736  * hw - Struct containing variables accessed by shared code
737  *****************************************************************************/
738 static int32_t
739 e1000_spi_eeprom_ready(struct e1000_hw *hw)
740 {
741         uint16_t retry_count = 0;
742         uint8_t spi_stat_reg;
743
744         DEBUGFUNC();
745
746         /* Read "Status Register" repeatedly until the LSB is cleared.  The
747          * EEPROM will signal that the command has been completed by clearing
748          * bit 0 of the internal status register.  If it's not cleared within
749          * 5 milliseconds, then error out.
750          */
751         retry_count = 0;
752         do {
753                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
754                         hw->eeprom.opcode_bits);
755                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
756                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
757                         break;
758
759                 udelay(5);
760                 retry_count += 5;
761
762                 e1000_standby_eeprom(hw);
763         } while (retry_count < EEPROM_MAX_RETRY_SPI);
764
765         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
766          * only 0-5mSec on 5V devices)
767          */
768         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
769                 DEBUGOUT("SPI EEPROM Status error\n");
770                 return -E1000_ERR_EEPROM;
771         }
772
773         return E1000_SUCCESS;
774 }
775
776 /******************************************************************************
777  * Reads a 16 bit word from the EEPROM.
778  *
779  * hw - Struct containing variables accessed by shared code
780  * offset - offset of  word in the EEPROM to read
781  * data - word read from the EEPROM
782  *****************************************************************************/
783 static int32_t
784 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
785                 uint16_t words, uint16_t *data)
786 {
787         struct e1000_eeprom_info *eeprom = &hw->eeprom;
788         uint32_t i = 0;
789
790         DEBUGFUNC();
791
792         /* If eeprom is not yet detected, do so now */
793         if (eeprom->word_size == 0)
794                 e1000_init_eeprom_params(hw);
795
796         /* A check for invalid values:  offset too large, too many words,
797          * and not enough words.
798          */
799         if ((offset >= eeprom->word_size) ||
800                 (words > eeprom->word_size - offset) ||
801                 (words == 0)) {
802                 DEBUGOUT("\"words\" parameter out of bounds."
803                         "Words = %d, size = %d\n", offset, eeprom->word_size);
804                 return -E1000_ERR_EEPROM;
805         }
806
807         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
808          * directly. In this case, we need to acquire the EEPROM so that
809          * FW or other port software does not interrupt.
810          */
811         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
812                 hw->eeprom.use_eerd == false) {
813
814                 /* Prepare the EEPROM for bit-bang reading */
815                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
816                         return -E1000_ERR_EEPROM;
817         }
818
819         /* Eerd register EEPROM access requires no eeprom aquire/release */
820         if (eeprom->use_eerd == true)
821                 return e1000_read_eeprom_eerd(hw, offset, words, data);
822
823         /* ich8lan does not support currently. if needed, please
824          * add corresponding code and functions.
825          */
826 #if 0
827         /* ICH EEPROM access is done via the ICH flash controller */
828         if (eeprom->type == e1000_eeprom_ich8)
829                 return e1000_read_eeprom_ich8(hw, offset, words, data);
830 #endif
831         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
832          * acquired the EEPROM at this point, so any returns should relase it */
833         if (eeprom->type == e1000_eeprom_spi) {
834                 uint16_t word_in;
835                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
836
837                 if (e1000_spi_eeprom_ready(hw)) {
838                         e1000_release_eeprom(hw);
839                         return -E1000_ERR_EEPROM;
840                 }
841
842                 e1000_standby_eeprom(hw);
843
844                 /* Some SPI eeproms use the 8th address bit embedded in
845                  * the opcode */
846                 if ((eeprom->address_bits == 8) && (offset >= 128))
847                         read_opcode |= EEPROM_A8_OPCODE_SPI;
848
849                 /* Send the READ command (opcode + addr)  */
850                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
851                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
852                                 eeprom->address_bits);
853
854                 /* Read the data.  The address of the eeprom internally
855                  * increments with each byte (spi) being read, saving on the
856                  * overhead of eeprom setup and tear-down.  The address
857                  * counter will roll over if reading beyond the size of
858                  * the eeprom, thus allowing the entire memory to be read
859                  * starting from any offset. */
860                 for (i = 0; i < words; i++) {
861                         word_in = e1000_shift_in_ee_bits(hw, 16);
862                         data[i] = (word_in >> 8) | (word_in << 8);
863                 }
864         } else if (eeprom->type == e1000_eeprom_microwire) {
865                 for (i = 0; i < words; i++) {
866                         /* Send the READ command (opcode + addr)  */
867                         e1000_shift_out_ee_bits(hw,
868                                 EEPROM_READ_OPCODE_MICROWIRE,
869                                 eeprom->opcode_bits);
870                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
871                                 eeprom->address_bits);
872
873                         /* Read the data.  For microwire, each word requires
874                          * the overhead of eeprom setup and tear-down. */
875                         data[i] = e1000_shift_in_ee_bits(hw, 16);
876                         e1000_standby_eeprom(hw);
877                 }
878         }
879
880         /* End this read operation */
881         e1000_release_eeprom(hw);
882
883         return E1000_SUCCESS;
884 }
885
886 /******************************************************************************
887  * Verifies that the EEPROM has a valid checksum
888  *
889  * hw - Struct containing variables accessed by shared code
890  *
891  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
892  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
893  * valid.
894  *****************************************************************************/
895 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
896 {
897         uint16_t i, checksum, checksum_reg, *buf;
898
899         DEBUGFUNC();
900
901         /* Allocate a temporary buffer */
902         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
903         if (!buf) {
904                 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
905                 return -E1000_ERR_EEPROM;
906         }
907
908         /* Read the EEPROM */
909         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
910                 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
911                 return -E1000_ERR_EEPROM;
912         }
913
914         /* Compute the checksum */
915         checksum = 0;
916         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
917                 checksum += buf[i];
918         checksum = ((uint16_t)EEPROM_SUM) - checksum;
919         checksum_reg = buf[i];
920
921         /* Verify it! */
922         if (checksum == checksum_reg)
923                 return 0;
924
925         /* Hrm, verification failed, print an error */
926         E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
927         E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n",
928                         checksum_reg, checksum);
929
930         return -E1000_ERR_EEPROM;
931 }
932 #endif /* CONFIG_E1000_NO_NVM */
933
934 /*****************************************************************************
935  * Set PHY to class A mode
936  * Assumes the following operations will follow to enable the new class mode.
937  *  1. Do a PHY soft reset
938  *  2. Restart auto-negotiation or force link.
939  *
940  * hw - Struct containing variables accessed by shared code
941  ****************************************************************************/
942 static int32_t
943 e1000_set_phy_mode(struct e1000_hw *hw)
944 {
945 #ifndef CONFIG_E1000_NO_NVM
946         int32_t ret_val;
947         uint16_t eeprom_data;
948
949         DEBUGFUNC();
950
951         if ((hw->mac_type == e1000_82545_rev_3) &&
952                 (hw->media_type == e1000_media_type_copper)) {
953                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
954                                 1, &eeprom_data);
955                 if (ret_val)
956                         return ret_val;
957
958                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
959                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
960                         ret_val = e1000_write_phy_reg(hw,
961                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
962                         if (ret_val)
963                                 return ret_val;
964                         ret_val = e1000_write_phy_reg(hw,
965                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
966                         if (ret_val)
967                                 return ret_val;
968
969                         hw->phy_reset_disable = false;
970                 }
971         }
972 #endif
973         return E1000_SUCCESS;
974 }
975
976 #ifndef CONFIG_E1000_NO_NVM
977 /***************************************************************************
978  *
979  * Obtaining software semaphore bit (SMBI) before resetting PHY.
980  *
981  * hw: Struct containing variables accessed by shared code
982  *
983  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
984  *            E1000_SUCCESS at any other case.
985  *
986  ***************************************************************************/
987 static int32_t
988 e1000_get_software_semaphore(struct e1000_hw *hw)
989 {
990          int32_t timeout = hw->eeprom.word_size + 1;
991          uint32_t swsm;
992
993         DEBUGFUNC();
994
995                 swsm = E1000_READ_REG(hw, SWSM);
996                 swsm &= ~E1000_SWSM_SMBI;
997                 E1000_WRITE_REG(hw, SWSM, swsm);
998
999         if (hw->mac_type != e1000_80003es2lan)
1000                 return E1000_SUCCESS;
1001
1002         while (timeout) {
1003                 swsm = E1000_READ_REG(hw, SWSM);
1004                 /* If SMBI bit cleared, it is now set and we hold
1005                  * the semaphore */
1006                 if (!(swsm & E1000_SWSM_SMBI))
1007                         break;
1008                 mdelay(1);
1009                 timeout--;
1010         }
1011
1012         if (!timeout) {
1013                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1014                 return -E1000_ERR_RESET;
1015         }
1016
1017         return E1000_SUCCESS;
1018 }
1019 #endif
1020
1021 /***************************************************************************
1022  * This function clears HW semaphore bits.
1023  *
1024  * hw: Struct containing variables accessed by shared code
1025  *
1026  * returns: - None.
1027  *
1028  ***************************************************************************/
1029 static void
1030 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1031 {
1032 #ifndef CONFIG_E1000_NO_NVM
1033          uint32_t swsm;
1034
1035         DEBUGFUNC();
1036
1037         if (!hw->eeprom_semaphore_present)
1038                 return;
1039
1040         swsm = E1000_READ_REG(hw, SWSM);
1041         if (hw->mac_type == e1000_80003es2lan) {
1042                 /* Release both semaphores. */
1043                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1044         } else
1045                 swsm &= ~(E1000_SWSM_SWESMBI);
1046         E1000_WRITE_REG(hw, SWSM, swsm);
1047 #endif
1048 }
1049
1050 /***************************************************************************
1051  *
1052  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1053  * adapter or Eeprom access.
1054  *
1055  * hw: Struct containing variables accessed by shared code
1056  *
1057  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1058  *            E1000_SUCCESS at any other case.
1059  *
1060  ***************************************************************************/
1061 static int32_t
1062 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1063 {
1064 #ifndef CONFIG_E1000_NO_NVM
1065         int32_t timeout;
1066         uint32_t swsm;
1067
1068         DEBUGFUNC();
1069
1070         if (!hw->eeprom_semaphore_present)
1071                 return E1000_SUCCESS;
1072
1073         if (hw->mac_type == e1000_80003es2lan) {
1074                 /* Get the SW semaphore. */
1075                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1076                         return -E1000_ERR_EEPROM;
1077         }
1078
1079         /* Get the FW semaphore. */
1080         timeout = hw->eeprom.word_size + 1;
1081         while (timeout) {
1082                 swsm = E1000_READ_REG(hw, SWSM);
1083                 swsm |= E1000_SWSM_SWESMBI;
1084                 E1000_WRITE_REG(hw, SWSM, swsm);
1085                 /* if we managed to set the bit we got the semaphore. */
1086                 swsm = E1000_READ_REG(hw, SWSM);
1087                 if (swsm & E1000_SWSM_SWESMBI)
1088                         break;
1089
1090                 udelay(50);
1091                 timeout--;
1092         }
1093
1094         if (!timeout) {
1095                 /* Release semaphores */
1096                 e1000_put_hw_eeprom_semaphore(hw);
1097                 DEBUGOUT("Driver can't access the Eeprom - "
1098                                 "SWESMBI bit is set.\n");
1099                 return -E1000_ERR_EEPROM;
1100         }
1101 #endif
1102         return E1000_SUCCESS;
1103 }
1104
1105 static int32_t
1106 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1107 {
1108         uint32_t swfw_sync = 0;
1109         uint32_t swmask = mask;
1110         uint32_t fwmask = mask << 16;
1111         int32_t timeout = 200;
1112
1113         DEBUGFUNC();
1114         while (timeout) {
1115                 if (e1000_get_hw_eeprom_semaphore(hw))
1116                         return -E1000_ERR_SWFW_SYNC;
1117
1118                 if (hw->mac_type == e1000_igb)
1119                         swfw_sync = E1000_READ_REG(hw, I210_SW_FW_SYNC);
1120                 else
1121                         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1122                 if (!(swfw_sync & (fwmask | swmask)))
1123                         break;
1124
1125                 /* firmware currently using resource (fwmask) */
1126                 /* or other software thread currently using resource (swmask) */
1127                 e1000_put_hw_eeprom_semaphore(hw);
1128                 mdelay(5);
1129                 timeout--;
1130         }
1131
1132         if (!timeout) {
1133                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1134                 return -E1000_ERR_SWFW_SYNC;
1135         }
1136
1137         swfw_sync |= swmask;
1138         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1139
1140         e1000_put_hw_eeprom_semaphore(hw);
1141         return E1000_SUCCESS;
1142 }
1143
1144 static bool e1000_is_second_port(struct e1000_hw *hw)
1145 {
1146         switch (hw->mac_type) {
1147         case e1000_80003es2lan:
1148         case e1000_82546:
1149         case e1000_82571:
1150                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1151                         return true;
1152                 /* Fallthrough */
1153         default:
1154                 return false;
1155         }
1156 }
1157
1158 #ifndef CONFIG_E1000_NO_NVM
1159 /******************************************************************************
1160  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1161  * second function of dual function devices
1162  *
1163  * nic - Struct containing variables accessed by shared code
1164  *****************************************************************************/
1165 static int
1166 e1000_read_mac_addr(struct eth_device *nic)
1167 {
1168         struct e1000_hw *hw = nic->priv;
1169         uint16_t offset;
1170         uint16_t eeprom_data;
1171         uint32_t reg_data = 0;
1172         int i;
1173
1174         DEBUGFUNC();
1175
1176         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1177                 offset = i >> 1;
1178                 if (hw->mac_type == e1000_igb) {
1179                         /* i210 preloads MAC address into RAL/RAH registers */
1180                         if (offset == 0)
1181                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1182                         else if (offset == 1)
1183                                 reg_data >>= 16;
1184                         else if (offset == 2)
1185                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1186                         eeprom_data = reg_data & 0xffff;
1187                 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1188                         DEBUGOUT("EEPROM Read Error\n");
1189                         return -E1000_ERR_EEPROM;
1190                 }
1191                 nic->enetaddr[i] = eeprom_data & 0xff;
1192                 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1193         }
1194
1195         /* Invert the last bit if this is the second device */
1196         if (e1000_is_second_port(hw))
1197                 nic->enetaddr[5] ^= 1;
1198
1199 #ifdef CONFIG_E1000_FALLBACK_MAC
1200         if (!is_valid_ether_addr(nic->enetaddr)) {
1201                 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1202
1203                 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1204         }
1205 #endif
1206         return 0;
1207 }
1208 #endif
1209
1210 /******************************************************************************
1211  * Initializes receive address filters.
1212  *
1213  * hw - Struct containing variables accessed by shared code
1214  *
1215  * Places the MAC address in receive address register 0 and clears the rest
1216  * of the receive addresss registers. Clears the multicast table. Assumes
1217  * the receiver is in reset when the routine is called.
1218  *****************************************************************************/
1219 static void
1220 e1000_init_rx_addrs(struct eth_device *nic)
1221 {
1222         struct e1000_hw *hw = nic->priv;
1223         uint32_t i;
1224         uint32_t addr_low;
1225         uint32_t addr_high;
1226
1227         DEBUGFUNC();
1228
1229         /* Setup the receive address. */
1230         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1231         addr_low = (nic->enetaddr[0] |
1232                     (nic->enetaddr[1] << 8) |
1233                     (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1234
1235         addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1236
1237         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1238         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1239
1240         /* Zero out the other 15 receive addresses. */
1241         DEBUGOUT("Clearing RAR[1-15]\n");
1242         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1243                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1244                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1245         }
1246 }
1247
1248 /******************************************************************************
1249  * Clears the VLAN filer table
1250  *
1251  * hw - Struct containing variables accessed by shared code
1252  *****************************************************************************/
1253 static void
1254 e1000_clear_vfta(struct e1000_hw *hw)
1255 {
1256         uint32_t offset;
1257
1258         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1259                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1260 }
1261
1262 /******************************************************************************
1263  * Set the mac type member in the hw struct.
1264  *
1265  * hw - Struct containing variables accessed by shared code
1266  *****************************************************************************/
1267 int32_t
1268 e1000_set_mac_type(struct e1000_hw *hw)
1269 {
1270         DEBUGFUNC();
1271
1272         switch (hw->device_id) {
1273         case E1000_DEV_ID_82542:
1274                 switch (hw->revision_id) {
1275                 case E1000_82542_2_0_REV_ID:
1276                         hw->mac_type = e1000_82542_rev2_0;
1277                         break;
1278                 case E1000_82542_2_1_REV_ID:
1279                         hw->mac_type = e1000_82542_rev2_1;
1280                         break;
1281                 default:
1282                         /* Invalid 82542 revision ID */
1283                         return -E1000_ERR_MAC_TYPE;
1284                 }
1285                 break;
1286         case E1000_DEV_ID_82543GC_FIBER:
1287         case E1000_DEV_ID_82543GC_COPPER:
1288                 hw->mac_type = e1000_82543;
1289                 break;
1290         case E1000_DEV_ID_82544EI_COPPER:
1291         case E1000_DEV_ID_82544EI_FIBER:
1292         case E1000_DEV_ID_82544GC_COPPER:
1293         case E1000_DEV_ID_82544GC_LOM:
1294                 hw->mac_type = e1000_82544;
1295                 break;
1296         case E1000_DEV_ID_82540EM:
1297         case E1000_DEV_ID_82540EM_LOM:
1298         case E1000_DEV_ID_82540EP:
1299         case E1000_DEV_ID_82540EP_LOM:
1300         case E1000_DEV_ID_82540EP_LP:
1301                 hw->mac_type = e1000_82540;
1302                 break;
1303         case E1000_DEV_ID_82545EM_COPPER:
1304         case E1000_DEV_ID_82545EM_FIBER:
1305                 hw->mac_type = e1000_82545;
1306                 break;
1307         case E1000_DEV_ID_82545GM_COPPER:
1308         case E1000_DEV_ID_82545GM_FIBER:
1309         case E1000_DEV_ID_82545GM_SERDES:
1310                 hw->mac_type = e1000_82545_rev_3;
1311                 break;
1312         case E1000_DEV_ID_82546EB_COPPER:
1313         case E1000_DEV_ID_82546EB_FIBER:
1314         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1315                 hw->mac_type = e1000_82546;
1316                 break;
1317         case E1000_DEV_ID_82546GB_COPPER:
1318         case E1000_DEV_ID_82546GB_FIBER:
1319         case E1000_DEV_ID_82546GB_SERDES:
1320         case E1000_DEV_ID_82546GB_PCIE:
1321         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1322         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1323                 hw->mac_type = e1000_82546_rev_3;
1324                 break;
1325         case E1000_DEV_ID_82541EI:
1326         case E1000_DEV_ID_82541EI_MOBILE:
1327         case E1000_DEV_ID_82541ER_LOM:
1328                 hw->mac_type = e1000_82541;
1329                 break;
1330         case E1000_DEV_ID_82541ER:
1331         case E1000_DEV_ID_82541GI:
1332         case E1000_DEV_ID_82541GI_LF:
1333         case E1000_DEV_ID_82541GI_MOBILE:
1334                 hw->mac_type = e1000_82541_rev_2;
1335                 break;
1336         case E1000_DEV_ID_82547EI:
1337         case E1000_DEV_ID_82547EI_MOBILE:
1338                 hw->mac_type = e1000_82547;
1339                 break;
1340         case E1000_DEV_ID_82547GI:
1341                 hw->mac_type = e1000_82547_rev_2;
1342                 break;
1343         case E1000_DEV_ID_82571EB_COPPER:
1344         case E1000_DEV_ID_82571EB_FIBER:
1345         case E1000_DEV_ID_82571EB_SERDES:
1346         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1347         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1348         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1349         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1350         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1351         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1352                 hw->mac_type = e1000_82571;
1353                 break;
1354         case E1000_DEV_ID_82572EI_COPPER:
1355         case E1000_DEV_ID_82572EI_FIBER:
1356         case E1000_DEV_ID_82572EI_SERDES:
1357         case E1000_DEV_ID_82572EI:
1358                 hw->mac_type = e1000_82572;
1359                 break;
1360         case E1000_DEV_ID_82573E:
1361         case E1000_DEV_ID_82573E_IAMT:
1362         case E1000_DEV_ID_82573L:
1363                 hw->mac_type = e1000_82573;
1364                 break;
1365         case E1000_DEV_ID_82574L:
1366                 hw->mac_type = e1000_82574;
1367                 break;
1368         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1369         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1370         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1371         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1372                 hw->mac_type = e1000_80003es2lan;
1373                 break;
1374         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1375         case E1000_DEV_ID_ICH8_IGP_AMT:
1376         case E1000_DEV_ID_ICH8_IGP_C:
1377         case E1000_DEV_ID_ICH8_IFE:
1378         case E1000_DEV_ID_ICH8_IFE_GT:
1379         case E1000_DEV_ID_ICH8_IFE_G:
1380         case E1000_DEV_ID_ICH8_IGP_M:
1381                 hw->mac_type = e1000_ich8lan;
1382                 break;
1383         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1384         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1385         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1386         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1387         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1388         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1389         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1390         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1391                 hw->mac_type = e1000_igb;
1392                 break;
1393         default:
1394                 /* Should never have loaded on this device */
1395                 return -E1000_ERR_MAC_TYPE;
1396         }
1397         return E1000_SUCCESS;
1398 }
1399
1400 /******************************************************************************
1401  * Reset the transmit and receive units; mask and clear all interrupts.
1402  *
1403  * hw - Struct containing variables accessed by shared code
1404  *****************************************************************************/
1405 void
1406 e1000_reset_hw(struct e1000_hw *hw)
1407 {
1408         uint32_t ctrl;
1409         uint32_t ctrl_ext;
1410         uint32_t manc;
1411         uint32_t pba = 0;
1412         uint32_t reg;
1413
1414         DEBUGFUNC();
1415
1416         /* get the correct pba value for both PCI and PCIe*/
1417         if (hw->mac_type <  e1000_82571)
1418                 pba = E1000_DEFAULT_PCI_PBA;
1419         else
1420                 pba = E1000_DEFAULT_PCIE_PBA;
1421
1422         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1423         if (hw->mac_type == e1000_82542_rev2_0) {
1424                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1425                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1426                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1427         }
1428
1429         /* Clear interrupt mask to stop board from generating interrupts */
1430         DEBUGOUT("Masking off all interrupts\n");
1431         if (hw->mac_type == e1000_igb)
1432                 E1000_WRITE_REG(hw, I210_IAM, 0);
1433         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1434
1435         /* Disable the Transmit and Receive units.  Then delay to allow
1436          * any pending transactions to complete before we hit the MAC with
1437          * the global reset.
1438          */
1439         E1000_WRITE_REG(hw, RCTL, 0);
1440         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1441         E1000_WRITE_FLUSH(hw);
1442
1443         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1444         hw->tbi_compatibility_on = false;
1445
1446         /* Delay to allow any outstanding PCI transactions to complete before
1447          * resetting the device
1448          */
1449         mdelay(10);
1450
1451         /* Issue a global reset to the MAC.  This will reset the chip's
1452          * transmit, receive, DMA, and link units.  It will not effect
1453          * the current PCI configuration.  The global reset bit is self-
1454          * clearing, and should clear within a microsecond.
1455          */
1456         DEBUGOUT("Issuing a global reset to MAC\n");
1457         ctrl = E1000_READ_REG(hw, CTRL);
1458
1459         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1460
1461         /* Force a reload from the EEPROM if necessary */
1462         if (hw->mac_type == e1000_igb) {
1463                 mdelay(20);
1464                 reg = E1000_READ_REG(hw, STATUS);
1465                 if (reg & E1000_STATUS_PF_RST_DONE)
1466                         DEBUGOUT("PF OK\n");
1467                 reg = E1000_READ_REG(hw, I210_EECD);
1468                 if (reg & E1000_EECD_AUTO_RD)
1469                         DEBUGOUT("EEC OK\n");
1470         } else if (hw->mac_type < e1000_82540) {
1471                 /* Wait for reset to complete */
1472                 udelay(10);
1473                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1474                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1475                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1476                 E1000_WRITE_FLUSH(hw);
1477                 /* Wait for EEPROM reload */
1478                 mdelay(2);
1479         } else {
1480                 /* Wait for EEPROM reload (it happens automatically) */
1481                 mdelay(4);
1482                 /* Dissable HW ARPs on ASF enabled adapters */
1483                 manc = E1000_READ_REG(hw, MANC);
1484                 manc &= ~(E1000_MANC_ARP_EN);
1485                 E1000_WRITE_REG(hw, MANC, manc);
1486         }
1487
1488         /* Clear interrupt mask to stop board from generating interrupts */
1489         DEBUGOUT("Masking off all interrupts\n");
1490         if (hw->mac_type == e1000_igb)
1491                 E1000_WRITE_REG(hw, I210_IAM, 0);
1492         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1493
1494         /* Clear any pending interrupt events. */
1495         E1000_READ_REG(hw, ICR);
1496
1497         /* If MWI was previously enabled, reenable it. */
1498         if (hw->mac_type == e1000_82542_rev2_0) {
1499                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1500         }
1501         if (hw->mac_type != e1000_igb)
1502                 E1000_WRITE_REG(hw, PBA, pba);
1503 }
1504
1505 /******************************************************************************
1506  *
1507  * Initialize a number of hardware-dependent bits
1508  *
1509  * hw: Struct containing variables accessed by shared code
1510  *
1511  * This function contains hardware limitation workarounds for PCI-E adapters
1512  *
1513  *****************************************************************************/
1514 static void
1515 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1516 {
1517         if ((hw->mac_type >= e1000_82571) &&
1518                         (!hw->initialize_hw_bits_disable)) {
1519                 /* Settings common to all PCI-express silicon */
1520                 uint32_t reg_ctrl, reg_ctrl_ext;
1521                 uint32_t reg_tarc0, reg_tarc1;
1522                 uint32_t reg_tctl;
1523                 uint32_t reg_txdctl, reg_txdctl1;
1524
1525                 /* link autonegotiation/sync workarounds */
1526                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1527                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1528
1529                 /* Enable not-done TX descriptor counting */
1530                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1531                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1532                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1533
1534                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1535                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1536                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1537
1538         /* IGB is cool */
1539         if (hw->mac_type == e1000_igb)
1540                 return;
1541
1542                 switch (hw->mac_type) {
1543                 case e1000_82571:
1544                 case e1000_82572:
1545                         /* Clear PHY TX compatible mode bits */
1546                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1547                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1548
1549                         /* link autonegotiation/sync workarounds */
1550                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1551
1552                         /* TX ring control fixes */
1553                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1554
1555                         /* Multiple read bit is reversed polarity */
1556                         reg_tctl = E1000_READ_REG(hw, TCTL);
1557                         if (reg_tctl & E1000_TCTL_MULR)
1558                                 reg_tarc1 &= ~(1 << 28);
1559                         else
1560                                 reg_tarc1 |= (1 << 28);
1561
1562                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1563                         break;
1564                 case e1000_82573:
1565                 case e1000_82574:
1566                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1567                         reg_ctrl_ext &= ~(1 << 23);
1568                         reg_ctrl_ext |= (1 << 22);
1569
1570                         /* TX byte count fix */
1571                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1572                         reg_ctrl &= ~(1 << 29);
1573
1574                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1575                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1576                         break;
1577                 case e1000_80003es2lan:
1578         /* improve small packet performace for fiber/serdes */
1579                         if ((hw->media_type == e1000_media_type_fiber)
1580                         || (hw->media_type ==
1581                                 e1000_media_type_internal_serdes)) {
1582                                 reg_tarc0 &= ~(1 << 20);
1583                         }
1584
1585                 /* Multiple read bit is reversed polarity */
1586                         reg_tctl = E1000_READ_REG(hw, TCTL);
1587                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1588                         if (reg_tctl & E1000_TCTL_MULR)
1589                                 reg_tarc1 &= ~(1 << 28);
1590                         else
1591                                 reg_tarc1 |= (1 << 28);
1592
1593                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1594                         break;
1595                 case e1000_ich8lan:
1596                         /* Reduce concurrent DMA requests to 3 from 4 */
1597                         if ((hw->revision_id < 3) ||
1598                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1599                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1600                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1601
1602                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1603                         reg_ctrl_ext |= (1 << 22);
1604                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1605
1606                         /* workaround TX hang with TSO=on */
1607                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1608
1609                         /* Multiple read bit is reversed polarity */
1610                         reg_tctl = E1000_READ_REG(hw, TCTL);
1611                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1612                         if (reg_tctl & E1000_TCTL_MULR)
1613                                 reg_tarc1 &= ~(1 << 28);
1614                         else
1615                                 reg_tarc1 |= (1 << 28);
1616
1617                         /* workaround TX hang with TSO=on */
1618                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1619
1620                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1621                         break;
1622                 default:
1623                         break;
1624                 }
1625
1626                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1627         }
1628 }
1629
1630 /******************************************************************************
1631  * Performs basic configuration of the adapter.
1632  *
1633  * hw - Struct containing variables accessed by shared code
1634  *
1635  * Assumes that the controller has previously been reset and is in a
1636  * post-reset uninitialized state. Initializes the receive address registers,
1637  * multicast table, and VLAN filter table. Calls routines to setup link
1638  * configuration and flow control settings. Clears all on-chip counters. Leaves
1639  * the transmit and receive units disabled and uninitialized.
1640  *****************************************************************************/
1641 static int
1642 e1000_init_hw(struct eth_device *nic)
1643 {
1644         struct e1000_hw *hw = nic->priv;
1645         uint32_t ctrl;
1646         uint32_t i;
1647         int32_t ret_val;
1648         uint16_t pcix_cmd_word;
1649         uint16_t pcix_stat_hi_word;
1650         uint16_t cmd_mmrbc;
1651         uint16_t stat_mmrbc;
1652         uint32_t mta_size;
1653         uint32_t reg_data;
1654         uint32_t ctrl_ext;
1655         DEBUGFUNC();
1656         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1657         if ((hw->mac_type == e1000_ich8lan) &&
1658                 ((hw->revision_id < 3) ||
1659                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1660                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1661                         reg_data = E1000_READ_REG(hw, STATUS);
1662                         reg_data &= ~0x80000000;
1663                         E1000_WRITE_REG(hw, STATUS, reg_data);
1664         }
1665         /* Do not need initialize Identification LED */
1666
1667         /* Set the media type and TBI compatibility */
1668         e1000_set_media_type(hw);
1669
1670         /* Must be called after e1000_set_media_type
1671          * because media_type is used */
1672         e1000_initialize_hardware_bits(hw);
1673
1674         /* Disabling VLAN filtering. */
1675         DEBUGOUT("Initializing the IEEE VLAN\n");
1676         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1677         if (hw->mac_type != e1000_ich8lan) {
1678                 if (hw->mac_type < e1000_82545_rev_3)
1679                         E1000_WRITE_REG(hw, VET, 0);
1680                 e1000_clear_vfta(hw);
1681         }
1682
1683         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1684         if (hw->mac_type == e1000_82542_rev2_0) {
1685                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1686                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1687                                       hw->
1688                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1689                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1690                 E1000_WRITE_FLUSH(hw);
1691                 mdelay(5);
1692         }
1693
1694         /* Setup the receive address. This involves initializing all of the Receive
1695          * Address Registers (RARs 0 - 15).
1696          */
1697         e1000_init_rx_addrs(nic);
1698
1699         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1700         if (hw->mac_type == e1000_82542_rev2_0) {
1701                 E1000_WRITE_REG(hw, RCTL, 0);
1702                 E1000_WRITE_FLUSH(hw);
1703                 mdelay(1);
1704                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1705         }
1706
1707         /* Zero out the Multicast HASH table */
1708         DEBUGOUT("Zeroing the MTA\n");
1709         mta_size = E1000_MC_TBL_SIZE;
1710         if (hw->mac_type == e1000_ich8lan)
1711                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1712         for (i = 0; i < mta_size; i++) {
1713                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1714                 /* use write flush to prevent Memory Write Block (MWB) from
1715                  * occuring when accessing our register space */
1716                 E1000_WRITE_FLUSH(hw);
1717         }
1718 #if 0
1719         /* Set the PCI priority bit correctly in the CTRL register.  This
1720          * determines if the adapter gives priority to receives, or if it
1721          * gives equal priority to transmits and receives.  Valid only on
1722          * 82542 and 82543 silicon.
1723          */
1724         if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1725                 ctrl = E1000_READ_REG(hw, CTRL);
1726                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1727         }
1728 #endif
1729         switch (hw->mac_type) {
1730         case e1000_82545_rev_3:
1731         case e1000_82546_rev_3:
1732         case e1000_igb:
1733                 break;
1734         default:
1735         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1736         if (hw->bus_type == e1000_bus_type_pcix) {
1737                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1738                                      &pcix_cmd_word);
1739                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1740                                      &pcix_stat_hi_word);
1741                 cmd_mmrbc =
1742                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1743                     PCIX_COMMAND_MMRBC_SHIFT;
1744                 stat_mmrbc =
1745                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1746                     PCIX_STATUS_HI_MMRBC_SHIFT;
1747                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1748                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1749                 if (cmd_mmrbc > stat_mmrbc) {
1750                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1751                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1752                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1753                                               pcix_cmd_word);
1754                 }
1755         }
1756                 break;
1757         }
1758
1759         /* More time needed for PHY to initialize */
1760         if (hw->mac_type == e1000_ich8lan)
1761                 mdelay(15);
1762         if (hw->mac_type == e1000_igb)
1763                 mdelay(15);
1764
1765         /* Call a subroutine to configure the link and setup flow control. */
1766         ret_val = e1000_setup_link(nic);
1767
1768         /* Set the transmit descriptor write-back policy */
1769         if (hw->mac_type > e1000_82544) {
1770                 ctrl = E1000_READ_REG(hw, TXDCTL);
1771                 ctrl =
1772                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1773                     E1000_TXDCTL_FULL_TX_DESC_WB;
1774                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1775         }
1776
1777         /* Set the receive descriptor write back policy */
1778         if (hw->mac_type >= e1000_82571) {
1779                 ctrl = E1000_READ_REG(hw, RXDCTL);
1780                 ctrl =
1781                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1782                     E1000_RXDCTL_FULL_RX_DESC_WB;
1783                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1784         }
1785
1786         switch (hw->mac_type) {
1787         default:
1788                 break;
1789         case e1000_80003es2lan:
1790                 /* Enable retransmit on late collisions */
1791                 reg_data = E1000_READ_REG(hw, TCTL);
1792                 reg_data |= E1000_TCTL_RTLC;
1793                 E1000_WRITE_REG(hw, TCTL, reg_data);
1794
1795                 /* Configure Gigabit Carry Extend Padding */
1796                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1797                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1798                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1799                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1800
1801                 /* Configure Transmit Inter-Packet Gap */
1802                 reg_data = E1000_READ_REG(hw, TIPG);
1803                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1804                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1805                 E1000_WRITE_REG(hw, TIPG, reg_data);
1806
1807                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1808                 reg_data &= ~0x00100000;
1809                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1810                 /* Fall through */
1811         case e1000_82571:
1812         case e1000_82572:
1813         case e1000_ich8lan:
1814                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1815                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1816                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1817                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1818                 break;
1819         case e1000_82573:
1820         case e1000_82574:
1821                 reg_data = E1000_READ_REG(hw, GCR);
1822                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1823                 E1000_WRITE_REG(hw, GCR, reg_data);
1824         case e1000_igb:
1825                 break;
1826         }
1827
1828 #if 0
1829         /* Clear all of the statistics registers (clear on read).  It is
1830          * important that we do this after we have tried to establish link
1831          * because the symbol error count will increment wildly if there
1832          * is no link.
1833          */
1834         e1000_clear_hw_cntrs(hw);
1835
1836         /* ICH8 No-snoop bits are opposite polarity.
1837          * Set to snoop by default after reset. */
1838         if (hw->mac_type == e1000_ich8lan)
1839                 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1840 #endif
1841
1842         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1843                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1844                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1845                 /* Relaxed ordering must be disabled to avoid a parity
1846                  * error crash in a PCI slot. */
1847                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1848                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1849         }
1850
1851         return ret_val;
1852 }
1853
1854 /******************************************************************************
1855  * Configures flow control and link settings.
1856  *
1857  * hw - Struct containing variables accessed by shared code
1858  *
1859  * Determines which flow control settings to use. Calls the apropriate media-
1860  * specific link configuration function. Configures the flow control settings.
1861  * Assuming the adapter has a valid link partner, a valid link should be
1862  * established. Assumes the hardware has previously been reset and the
1863  * transmitter and receiver are not enabled.
1864  *****************************************************************************/
1865 static int
1866 e1000_setup_link(struct eth_device *nic)
1867 {
1868         struct e1000_hw *hw = nic->priv;
1869         int32_t ret_val;
1870 #ifndef CONFIG_E1000_NO_NVM
1871         uint32_t ctrl_ext;
1872         uint16_t eeprom_data;
1873 #endif
1874
1875         DEBUGFUNC();
1876
1877         /* In the case of the phy reset being blocked, we already have a link.
1878          * We do not have to set it up again. */
1879         if (e1000_check_phy_reset_block(hw))
1880                 return E1000_SUCCESS;
1881
1882 #ifndef CONFIG_E1000_NO_NVM
1883         /* Read and store word 0x0F of the EEPROM. This word contains bits
1884          * that determine the hardware's default PAUSE (flow control) mode,
1885          * a bit that determines whether the HW defaults to enabling or
1886          * disabling auto-negotiation, and the direction of the
1887          * SW defined pins. If there is no SW over-ride of the flow
1888          * control setting, then the variable hw->fc will
1889          * be initialized based on a value in the EEPROM.
1890          */
1891         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1892                                 &eeprom_data) < 0) {
1893                 DEBUGOUT("EEPROM Read Error\n");
1894                 return -E1000_ERR_EEPROM;
1895         }
1896 #endif
1897         if (hw->fc == e1000_fc_default) {
1898                 switch (hw->mac_type) {
1899                 case e1000_ich8lan:
1900                 case e1000_82573:
1901                 case e1000_82574:
1902                 case e1000_igb:
1903                         hw->fc = e1000_fc_full;
1904                         break;
1905                 default:
1906 #ifndef CONFIG_E1000_NO_NVM
1907                         ret_val = e1000_read_eeprom(hw,
1908                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1909                         if (ret_val) {
1910                                 DEBUGOUT("EEPROM Read Error\n");
1911                                 return -E1000_ERR_EEPROM;
1912                         }
1913                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1914                                 hw->fc = e1000_fc_none;
1915                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1916                                     EEPROM_WORD0F_ASM_DIR)
1917                                 hw->fc = e1000_fc_tx_pause;
1918                         else
1919 #endif
1920                                 hw->fc = e1000_fc_full;
1921                         break;
1922                 }
1923         }
1924
1925         /* We want to save off the original Flow Control configuration just
1926          * in case we get disconnected and then reconnected into a different
1927          * hub or switch with different Flow Control capabilities.
1928          */
1929         if (hw->mac_type == e1000_82542_rev2_0)
1930                 hw->fc &= (~e1000_fc_tx_pause);
1931
1932         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1933                 hw->fc &= (~e1000_fc_rx_pause);
1934
1935         hw->original_fc = hw->fc;
1936
1937         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1938
1939 #ifndef CONFIG_E1000_NO_NVM
1940         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1941          * polarity value for the SW controlled pins, and setup the
1942          * Extended Device Control reg with that info.
1943          * This is needed because one of the SW controlled pins is used for
1944          * signal detection.  So this should be done before e1000_setup_pcs_link()
1945          * or e1000_phy_setup() is called.
1946          */
1947         if (hw->mac_type == e1000_82543) {
1948                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1949                             SWDPIO__EXT_SHIFT);
1950                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1951         }
1952 #endif
1953
1954         /* Call the necessary subroutine to configure the link. */
1955         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1956             e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1957         if (ret_val < 0) {
1958                 return ret_val;
1959         }
1960
1961         /* Initialize the flow control address, type, and PAUSE timer
1962          * registers to their default values.  This is done even if flow
1963          * control is disabled, because it does not hurt anything to
1964          * initialize these registers.
1965          */
1966         DEBUGOUT("Initializing the Flow Control address, type"
1967                         "and timer regs\n");
1968
1969         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1970         if (hw->mac_type != e1000_ich8lan) {
1971                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1972                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1973                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1974         }
1975
1976         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1977
1978         /* Set the flow control receive threshold registers.  Normally,
1979          * these registers will be set to a default threshold that may be
1980          * adjusted later by the driver's runtime code.  However, if the
1981          * ability to transmit pause frames in not enabled, then these
1982          * registers will be set to 0.
1983          */
1984         if (!(hw->fc & e1000_fc_tx_pause)) {
1985                 E1000_WRITE_REG(hw, FCRTL, 0);
1986                 E1000_WRITE_REG(hw, FCRTH, 0);
1987         } else {
1988                 /* We need to set up the Receive Threshold high and low water marks
1989                  * as well as (optionally) enabling the transmission of XON frames.
1990                  */
1991                 if (hw->fc_send_xon) {
1992                         E1000_WRITE_REG(hw, FCRTL,
1993                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1994                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1995                 } else {
1996                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1997                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1998                 }
1999         }
2000         return ret_val;
2001 }
2002
2003 /******************************************************************************
2004  * Sets up link for a fiber based adapter
2005  *
2006  * hw - Struct containing variables accessed by shared code
2007  *
2008  * Manipulates Physical Coding Sublayer functions in order to configure
2009  * link. Assumes the hardware has been previously reset and the transmitter
2010  * and receiver are not enabled.
2011  *****************************************************************************/
2012 static int
2013 e1000_setup_fiber_link(struct eth_device *nic)
2014 {
2015         struct e1000_hw *hw = nic->priv;
2016         uint32_t ctrl;
2017         uint32_t status;
2018         uint32_t txcw = 0;
2019         uint32_t i;
2020         uint32_t signal;
2021         int32_t ret_val;
2022
2023         DEBUGFUNC();
2024         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2025          * set when the optics detect a signal. On older adapters, it will be
2026          * cleared when there is a signal
2027          */
2028         ctrl = E1000_READ_REG(hw, CTRL);
2029         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2030                 signal = E1000_CTRL_SWDPIN1;
2031         else
2032                 signal = 0;
2033
2034         printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
2035                ctrl);
2036         /* Take the link out of reset */
2037         ctrl &= ~(E1000_CTRL_LRST);
2038
2039         e1000_config_collision_dist(hw);
2040
2041         /* Check for a software override of the flow control settings, and setup
2042          * the device accordingly.  If auto-negotiation is enabled, then software
2043          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2044          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2045          * auto-negotiation is disabled, then software will have to manually
2046          * configure the two flow control enable bits in the CTRL register.
2047          *
2048          * The possible values of the "fc" parameter are:
2049          *      0:  Flow control is completely disabled
2050          *      1:  Rx flow control is enabled (we can receive pause frames, but
2051          *          not send pause frames).
2052          *      2:  Tx flow control is enabled (we can send pause frames but we do
2053          *          not support receiving pause frames).
2054          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2055          */
2056         switch (hw->fc) {
2057         case e1000_fc_none:
2058                 /* Flow control is completely disabled by a software over-ride. */
2059                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2060                 break;
2061         case e1000_fc_rx_pause:
2062                 /* RX Flow control is enabled and TX Flow control is disabled by a
2063                  * software over-ride. Since there really isn't a way to advertise
2064                  * that we are capable of RX Pause ONLY, we will advertise that we
2065                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2066                  *  disable the adapter's ability to send PAUSE frames.
2067                  */
2068                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2069                 break;
2070         case e1000_fc_tx_pause:
2071                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2072                  * software over-ride.
2073                  */
2074                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2075                 break;
2076         case e1000_fc_full:
2077                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2078                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2079                 break;
2080         default:
2081                 DEBUGOUT("Flow control param set incorrectly\n");
2082                 return -E1000_ERR_CONFIG;
2083                 break;
2084         }
2085
2086         /* Since auto-negotiation is enabled, take the link out of reset (the link
2087          * will be in reset, because we previously reset the chip). This will
2088          * restart auto-negotiation.  If auto-neogtiation is successful then the
2089          * link-up status bit will be set and the flow control enable bits (RFCE
2090          * and TFCE) will be set according to their negotiated value.
2091          */
2092         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2093
2094         E1000_WRITE_REG(hw, TXCW, txcw);
2095         E1000_WRITE_REG(hw, CTRL, ctrl);
2096         E1000_WRITE_FLUSH(hw);
2097
2098         hw->txcw = txcw;
2099         mdelay(1);
2100
2101         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2102          * indication in the Device Status Register.  Time-out if a link isn't
2103          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2104          * less than 500 milliseconds even if the other end is doing it in SW).
2105          */
2106         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2107                 DEBUGOUT("Looking for Link\n");
2108                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2109                         mdelay(10);
2110                         status = E1000_READ_REG(hw, STATUS);
2111                         if (status & E1000_STATUS_LU)
2112                                 break;
2113                 }
2114                 if (i == (LINK_UP_TIMEOUT / 10)) {
2115                         /* AutoNeg failed to achieve a link, so we'll call
2116                          * e1000_check_for_link. This routine will force the link up if we
2117                          * detect a signal. This will allow us to communicate with
2118                          * non-autonegotiating link partners.
2119                          */
2120                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2121                         hw->autoneg_failed = 1;
2122                         ret_val = e1000_check_for_link(nic);
2123                         if (ret_val < 0) {
2124                                 DEBUGOUT("Error while checking for link\n");
2125                                 return ret_val;
2126                         }
2127                         hw->autoneg_failed = 0;
2128                 } else {
2129                         hw->autoneg_failed = 0;
2130                         DEBUGOUT("Valid Link Found\n");
2131                 }
2132         } else {
2133                 DEBUGOUT("No Signal Detected\n");
2134                 return -E1000_ERR_NOLINK;
2135         }
2136         return 0;
2137 }
2138
2139 /******************************************************************************
2140 * Make sure we have a valid PHY and change PHY mode before link setup.
2141 *
2142 * hw - Struct containing variables accessed by shared code
2143 ******************************************************************************/
2144 static int32_t
2145 e1000_copper_link_preconfig(struct e1000_hw *hw)
2146 {
2147         uint32_t ctrl;
2148         int32_t ret_val;
2149         uint16_t phy_data;
2150
2151         DEBUGFUNC();
2152
2153         ctrl = E1000_READ_REG(hw, CTRL);
2154         /* With 82543, we need to force speed and duplex on the MAC equal to what
2155          * the PHY speed and duplex configuration is. In addition, we need to
2156          * perform a hardware reset on the PHY to take it out of reset.
2157          */
2158         if (hw->mac_type > e1000_82543) {
2159                 ctrl |= E1000_CTRL_SLU;
2160                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2161                 E1000_WRITE_REG(hw, CTRL, ctrl);
2162         } else {
2163                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2164                                 | E1000_CTRL_SLU);
2165                 E1000_WRITE_REG(hw, CTRL, ctrl);
2166                 ret_val = e1000_phy_hw_reset(hw);
2167                 if (ret_val)
2168                         return ret_val;
2169         }
2170
2171         /* Make sure we have a valid PHY */
2172         ret_val = e1000_detect_gig_phy(hw);
2173         if (ret_val) {
2174                 DEBUGOUT("Error, did not detect valid phy.\n");
2175                 return ret_val;
2176         }
2177         DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2178
2179         /* Set PHY to class A mode (if necessary) */
2180         ret_val = e1000_set_phy_mode(hw);
2181         if (ret_val)
2182                 return ret_val;
2183         if ((hw->mac_type == e1000_82545_rev_3) ||
2184                 (hw->mac_type == e1000_82546_rev_3)) {
2185                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2186                                 &phy_data);
2187                 phy_data |= 0x00000008;
2188                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2189                                 phy_data);
2190         }
2191
2192         if (hw->mac_type <= e1000_82543 ||
2193                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2194                 hw->mac_type == e1000_82541_rev_2
2195                 || hw->mac_type == e1000_82547_rev_2)
2196                         hw->phy_reset_disable = false;
2197
2198         return E1000_SUCCESS;
2199 }
2200
2201 /*****************************************************************************
2202  *
2203  * This function sets the lplu state according to the active flag.  When
2204  * activating lplu this function also disables smart speed and vise versa.
2205  * lplu will not be activated unless the device autonegotiation advertisment
2206  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2207  * hw: Struct containing variables accessed by shared code
2208  * active - true to enable lplu false to disable lplu.
2209  *
2210  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2211  *            E1000_SUCCESS at any other case.
2212  *
2213  ****************************************************************************/
2214
2215 static int32_t
2216 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2217 {
2218         uint32_t phy_ctrl = 0;
2219         int32_t ret_val;
2220         uint16_t phy_data;
2221         DEBUGFUNC();
2222
2223         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2224             && hw->phy_type != e1000_phy_igp_3)
2225                 return E1000_SUCCESS;
2226
2227         /* During driver activity LPLU should not be used or it will attain link
2228          * from the lowest speeds starting from 10Mbps. The capability is used
2229          * for Dx transitions and states */
2230         if (hw->mac_type == e1000_82541_rev_2
2231                         || hw->mac_type == e1000_82547_rev_2) {
2232                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2233                                 &phy_data);
2234                 if (ret_val)
2235                         return ret_val;
2236         } else if (hw->mac_type == e1000_ich8lan) {
2237                 /* MAC writes into PHY register based on the state transition
2238                  * and start auto-negotiation. SW driver can overwrite the
2239                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2240                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2241         } else {
2242                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2243                                 &phy_data);
2244                 if (ret_val)
2245                         return ret_val;
2246         }
2247
2248         if (!active) {
2249                 if (hw->mac_type == e1000_82541_rev_2 ||
2250                         hw->mac_type == e1000_82547_rev_2) {
2251                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2252                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2253                                         phy_data);
2254                         if (ret_val)
2255                                 return ret_val;
2256                 } else {
2257                         if (hw->mac_type == e1000_ich8lan) {
2258                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2259                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2260                         } else {
2261                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2262                                 ret_val = e1000_write_phy_reg(hw,
2263                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2264                                 if (ret_val)
2265                                         return ret_val;
2266                         }
2267                 }
2268
2269         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2270          * Dx states where the power conservation is most important.  During
2271          * driver activity we should enable SmartSpeed, so performance is
2272          * maintained. */
2273                 if (hw->smart_speed == e1000_smart_speed_on) {
2274                         ret_val = e1000_read_phy_reg(hw,
2275                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2276                         if (ret_val)
2277                                 return ret_val;
2278
2279                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2280                         ret_val = e1000_write_phy_reg(hw,
2281                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2282                         if (ret_val)
2283                                 return ret_val;
2284                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2285                         ret_val = e1000_read_phy_reg(hw,
2286                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2287                         if (ret_val)
2288                                 return ret_val;
2289
2290                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2291                         ret_val = e1000_write_phy_reg(hw,
2292                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2293                         if (ret_val)
2294                                 return ret_val;
2295                 }
2296
2297         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2298                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2299                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2300
2301                 if (hw->mac_type == e1000_82541_rev_2 ||
2302                     hw->mac_type == e1000_82547_rev_2) {
2303                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2304                         ret_val = e1000_write_phy_reg(hw,
2305                                         IGP01E1000_GMII_FIFO, phy_data);
2306                         if (ret_val)
2307                                 return ret_val;
2308                 } else {
2309                         if (hw->mac_type == e1000_ich8lan) {
2310                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2311                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2312                         } else {
2313                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2314                                 ret_val = e1000_write_phy_reg(hw,
2315                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2316                                 if (ret_val)
2317                                         return ret_val;
2318                         }
2319                 }
2320
2321                 /* When LPLU is enabled we should disable SmartSpeed */
2322                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2323                                 &phy_data);
2324                 if (ret_val)
2325                         return ret_val;
2326
2327                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2328                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2329                                 phy_data);
2330                 if (ret_val)
2331                         return ret_val;
2332         }
2333         return E1000_SUCCESS;
2334 }
2335
2336 /*****************************************************************************
2337  *
2338  * This function sets the lplu d0 state according to the active flag.  When
2339  * activating lplu this function also disables smart speed and vise versa.
2340  * lplu will not be activated unless the device autonegotiation advertisment
2341  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2342  * hw: Struct containing variables accessed by shared code
2343  * active - true to enable lplu false to disable lplu.
2344  *
2345  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2346  *            E1000_SUCCESS at any other case.
2347  *
2348  ****************************************************************************/
2349
2350 static int32_t
2351 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2352 {
2353         uint32_t phy_ctrl = 0;
2354         int32_t ret_val;
2355         uint16_t phy_data;
2356         DEBUGFUNC();
2357
2358         if (hw->mac_type <= e1000_82547_rev_2)
2359                 return E1000_SUCCESS;
2360
2361         if (hw->mac_type == e1000_ich8lan) {
2362                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2363         } else if (hw->mac_type == e1000_igb) {
2364                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2365         } else {
2366                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2367                                 &phy_data);
2368                 if (ret_val)
2369                         return ret_val;
2370         }
2371
2372         if (!active) {
2373                 if (hw->mac_type == e1000_ich8lan) {
2374                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2375                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2376                 } else if (hw->mac_type == e1000_igb) {
2377                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2378                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2379                 } else {
2380                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2381                         ret_val = e1000_write_phy_reg(hw,
2382                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2383                         if (ret_val)
2384                                 return ret_val;
2385                 }
2386
2387                 if (hw->mac_type == e1000_igb)
2388                         return E1000_SUCCESS;
2389
2390         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2391          * Dx states where the power conservation is most important.  During
2392          * driver activity we should enable SmartSpeed, so performance is
2393          * maintained. */
2394                 if (hw->smart_speed == e1000_smart_speed_on) {
2395                         ret_val = e1000_read_phy_reg(hw,
2396                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2397                         if (ret_val)
2398                                 return ret_val;
2399
2400                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2401                         ret_val = e1000_write_phy_reg(hw,
2402                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2403                         if (ret_val)
2404                                 return ret_val;
2405                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2406                         ret_val = e1000_read_phy_reg(hw,
2407                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2408                         if (ret_val)
2409                                 return ret_val;
2410
2411                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2412                         ret_val = e1000_write_phy_reg(hw,
2413                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2414                         if (ret_val)
2415                                 return ret_val;
2416                 }
2417
2418
2419         } else {
2420
2421                 if (hw->mac_type == e1000_ich8lan) {
2422                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2423                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2424                 } else if (hw->mac_type == e1000_igb) {
2425                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2426                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2427                 } else {
2428                         phy_data |= IGP02E1000_PM_D0_LPLU;
2429                         ret_val = e1000_write_phy_reg(hw,
2430                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2431                         if (ret_val)
2432                                 return ret_val;
2433                 }
2434
2435                 if (hw->mac_type == e1000_igb)
2436                         return E1000_SUCCESS;
2437
2438                 /* When LPLU is enabled we should disable SmartSpeed */
2439                 ret_val = e1000_read_phy_reg(hw,
2440                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2441                 if (ret_val)
2442                         return ret_val;
2443
2444                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2445                 ret_val = e1000_write_phy_reg(hw,
2446                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2447                 if (ret_val)
2448                         return ret_val;
2449
2450         }
2451         return E1000_SUCCESS;
2452 }
2453
2454 /********************************************************************
2455 * Copper link setup for e1000_phy_igp series.
2456 *
2457 * hw - Struct containing variables accessed by shared code
2458 *********************************************************************/
2459 static int32_t
2460 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2461 {
2462         uint32_t led_ctrl;
2463         int32_t ret_val;
2464         uint16_t phy_data;
2465
2466         DEBUGFUNC();
2467
2468         if (hw->phy_reset_disable)
2469                 return E1000_SUCCESS;
2470
2471         ret_val = e1000_phy_reset(hw);
2472         if (ret_val) {
2473                 DEBUGOUT("Error Resetting the PHY\n");
2474                 return ret_val;
2475         }
2476
2477         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2478         mdelay(15);
2479         if (hw->mac_type != e1000_ich8lan) {
2480                 /* Configure activity LED after PHY reset */
2481                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2482                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2483                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2484                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2485         }
2486
2487         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2488         if (hw->phy_type == e1000_phy_igp) {
2489                 /* disable lplu d3 during driver init */
2490                 ret_val = e1000_set_d3_lplu_state(hw, false);
2491                 if (ret_val) {
2492                         DEBUGOUT("Error Disabling LPLU D3\n");
2493                         return ret_val;
2494                 }
2495         }
2496
2497         /* disable lplu d0 during driver init */
2498         ret_val = e1000_set_d0_lplu_state(hw, false);
2499         if (ret_val) {
2500                 DEBUGOUT("Error Disabling LPLU D0\n");
2501                 return ret_val;
2502         }
2503         /* Configure mdi-mdix settings */
2504         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2505         if (ret_val)
2506                 return ret_val;
2507
2508         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2509                 hw->dsp_config_state = e1000_dsp_config_disabled;
2510                 /* Force MDI for earlier revs of the IGP PHY */
2511                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2512                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2513                 hw->mdix = 1;
2514
2515         } else {
2516                 hw->dsp_config_state = e1000_dsp_config_enabled;
2517                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2518
2519                 switch (hw->mdix) {
2520                 case 1:
2521                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2522                         break;
2523                 case 2:
2524                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2525                         break;
2526                 case 0:
2527                 default:
2528                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2529                         break;
2530                 }
2531         }
2532         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2533         if (ret_val)
2534                 return ret_val;
2535
2536         /* set auto-master slave resolution settings */
2537         if (hw->autoneg) {
2538                 e1000_ms_type phy_ms_setting = hw->master_slave;
2539
2540                 if (hw->ffe_config_state == e1000_ffe_config_active)
2541                         hw->ffe_config_state = e1000_ffe_config_enabled;
2542
2543                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2544                         hw->dsp_config_state = e1000_dsp_config_enabled;
2545
2546                 /* when autonegotiation advertisment is only 1000Mbps then we
2547                   * should disable SmartSpeed and enable Auto MasterSlave
2548                   * resolution as hardware default. */
2549                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2550                         /* Disable SmartSpeed */
2551                         ret_val = e1000_read_phy_reg(hw,
2552                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2553                         if (ret_val)
2554                                 return ret_val;
2555                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2556                         ret_val = e1000_write_phy_reg(hw,
2557                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2558                         if (ret_val)
2559                                 return ret_val;
2560                         /* Set auto Master/Slave resolution process */
2561                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2562                                         &phy_data);
2563                         if (ret_val)
2564                                 return ret_val;
2565                         phy_data &= ~CR_1000T_MS_ENABLE;
2566                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2567                                         phy_data);
2568                         if (ret_val)
2569                                 return ret_val;
2570                 }
2571
2572                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2573                 if (ret_val)
2574                         return ret_val;
2575
2576                 /* load defaults for future use */
2577                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2578                                 ((phy_data & CR_1000T_MS_VALUE) ?
2579                                 e1000_ms_force_master :
2580                                 e1000_ms_force_slave) :
2581                                 e1000_ms_auto;
2582
2583                 switch (phy_ms_setting) {
2584                 case e1000_ms_force_master:
2585                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2586                         break;
2587                 case e1000_ms_force_slave:
2588                         phy_data |= CR_1000T_MS_ENABLE;
2589                         phy_data &= ~(CR_1000T_MS_VALUE);
2590                         break;
2591                 case e1000_ms_auto:
2592                         phy_data &= ~CR_1000T_MS_ENABLE;
2593                 default:
2594                         break;
2595                 }
2596                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2597                 if (ret_val)
2598                         return ret_val;
2599         }
2600
2601         return E1000_SUCCESS;
2602 }
2603
2604 /*****************************************************************************
2605  * This function checks the mode of the firmware.
2606  *
2607  * returns  - true when the mode is IAMT or false.
2608  ****************************************************************************/
2609 bool
2610 e1000_check_mng_mode(struct e1000_hw *hw)
2611 {
2612         uint32_t fwsm;
2613         DEBUGFUNC();
2614
2615         fwsm = E1000_READ_REG(hw, FWSM);
2616
2617         if (hw->mac_type == e1000_ich8lan) {
2618                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2619                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2620                         return true;
2621         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2622                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2623                         return true;
2624
2625         return false;
2626 }
2627
2628 static int32_t
2629 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2630 {
2631         uint16_t swfw = E1000_SWFW_PHY0_SM;
2632         uint32_t reg_val;
2633         DEBUGFUNC();
2634
2635         if (e1000_is_second_port(hw))
2636                 swfw = E1000_SWFW_PHY1_SM;
2637
2638         if (e1000_swfw_sync_acquire(hw, swfw))
2639                 return -E1000_ERR_SWFW_SYNC;
2640
2641         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2642                         & E1000_KUMCTRLSTA_OFFSET) | data;
2643         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2644         udelay(2);
2645
2646         return E1000_SUCCESS;
2647 }
2648
2649 static int32_t
2650 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2651 {
2652         uint16_t swfw = E1000_SWFW_PHY0_SM;
2653         uint32_t reg_val;
2654         DEBUGFUNC();
2655
2656         if (e1000_is_second_port(hw))
2657                 swfw = E1000_SWFW_PHY1_SM;
2658
2659         if (e1000_swfw_sync_acquire(hw, swfw)) {
2660                 debug("%s[%i]\n", __func__, __LINE__);
2661                 return -E1000_ERR_SWFW_SYNC;
2662         }
2663
2664         /* Write register address */
2665         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2666                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2667         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2668         udelay(2);
2669
2670         /* Read the data returned */
2671         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2672         *data = (uint16_t)reg_val;
2673
2674         return E1000_SUCCESS;
2675 }
2676
2677 /********************************************************************
2678 * Copper link setup for e1000_phy_gg82563 series.
2679 *
2680 * hw - Struct containing variables accessed by shared code
2681 *********************************************************************/
2682 static int32_t
2683 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2684 {
2685         int32_t ret_val;
2686         uint16_t phy_data;
2687         uint32_t reg_data;
2688
2689         DEBUGFUNC();
2690
2691         if (!hw->phy_reset_disable) {
2692                 /* Enable CRS on TX for half-duplex operation. */
2693                 ret_val = e1000_read_phy_reg(hw,
2694                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2695                 if (ret_val)
2696                         return ret_val;
2697
2698                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2699                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2700                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2701
2702                 ret_val = e1000_write_phy_reg(hw,
2703                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2704                 if (ret_val)
2705                         return ret_val;
2706
2707                 /* Options:
2708                  *   MDI/MDI-X = 0 (default)
2709                  *   0 - Auto for all speeds
2710                  *   1 - MDI mode
2711                  *   2 - MDI-X mode
2712                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2713                  */
2714                 ret_val = e1000_read_phy_reg(hw,
2715                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2716                 if (ret_val)
2717                         return ret_val;
2718
2719                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2720
2721                 switch (hw->mdix) {
2722                 case 1:
2723                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2724                         break;
2725                 case 2:
2726                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2727                         break;
2728                 case 0:
2729                 default:
2730                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2731                         break;
2732                 }
2733
2734                 /* Options:
2735                  *   disable_polarity_correction = 0 (default)
2736                  *       Automatic Correction for Reversed Cable Polarity
2737                  *   0 - Disabled
2738                  *   1 - Enabled
2739                  */
2740                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2741                 ret_val = e1000_write_phy_reg(hw,
2742                                 GG82563_PHY_SPEC_CTRL, phy_data);
2743
2744                 if (ret_val)
2745                         return ret_val;
2746
2747                 /* SW Reset the PHY so all changes take effect */
2748                 ret_val = e1000_phy_reset(hw);
2749                 if (ret_val) {
2750                         DEBUGOUT("Error Resetting the PHY\n");
2751                         return ret_val;
2752                 }
2753         } /* phy_reset_disable */
2754
2755         if (hw->mac_type == e1000_80003es2lan) {
2756                 /* Bypass RX and TX FIFO's */
2757                 ret_val = e1000_write_kmrn_reg(hw,
2758                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2759                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2760                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2761                 if (ret_val)
2762                         return ret_val;
2763
2764                 ret_val = e1000_read_phy_reg(hw,
2765                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2766                 if (ret_val)
2767                         return ret_val;
2768
2769                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2770                 ret_val = e1000_write_phy_reg(hw,
2771                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2772
2773                 if (ret_val)
2774                         return ret_val;
2775
2776                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2777                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2778                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2779
2780                 ret_val = e1000_read_phy_reg(hw,
2781                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2782                 if (ret_val)
2783                         return ret_val;
2784
2785         /* Do not init these registers when the HW is in IAMT mode, since the
2786          * firmware will have already initialized them.  We only initialize
2787          * them if the HW is not in IAMT mode.
2788          */
2789                 if (e1000_check_mng_mode(hw) == false) {
2790                         /* Enable Electrical Idle on the PHY */
2791                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2792                         ret_val = e1000_write_phy_reg(hw,
2793                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2794                         if (ret_val)
2795                                 return ret_val;
2796
2797                         ret_val = e1000_read_phy_reg(hw,
2798                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2799                         if (ret_val)
2800                                 return ret_val;
2801
2802                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2803                         ret_val = e1000_write_phy_reg(hw,
2804                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2805
2806                         if (ret_val)
2807                                 return ret_val;
2808                 }
2809
2810                 /* Workaround: Disable padding in Kumeran interface in the MAC
2811                  * and in the PHY to avoid CRC errors.
2812                  */
2813                 ret_val = e1000_read_phy_reg(hw,
2814                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2815                 if (ret_val)
2816                         return ret_val;
2817                 phy_data |= GG82563_ICR_DIS_PADDING;
2818                 ret_val = e1000_write_phy_reg(hw,
2819                                 GG82563_PHY_INBAND_CTRL, phy_data);
2820                 if (ret_val)
2821                         return ret_val;
2822         }
2823         return E1000_SUCCESS;
2824 }
2825
2826 /********************************************************************
2827 * Copper link setup for e1000_phy_m88 series.
2828 *
2829 * hw - Struct containing variables accessed by shared code
2830 *********************************************************************/
2831 static int32_t
2832 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2833 {
2834         int32_t ret_val;
2835         uint16_t phy_data;
2836
2837         DEBUGFUNC();
2838
2839         if (hw->phy_reset_disable)
2840                 return E1000_SUCCESS;
2841
2842         /* Enable CRS on TX. This must be set for half-duplex operation. */
2843         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2844         if (ret_val)
2845                 return ret_val;
2846
2847         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2848
2849         /* Options:
2850          *   MDI/MDI-X = 0 (default)
2851          *   0 - Auto for all speeds
2852          *   1 - MDI mode
2853          *   2 - MDI-X mode
2854          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2855          */
2856         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2857
2858         switch (hw->mdix) {
2859         case 1:
2860                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2861                 break;
2862         case 2:
2863                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2864                 break;
2865         case 3:
2866                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2867                 break;
2868         case 0:
2869         default:
2870                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2871                 break;
2872         }
2873
2874         /* Options:
2875          *   disable_polarity_correction = 0 (default)
2876          *       Automatic Correction for Reversed Cable Polarity
2877          *   0 - Disabled
2878          *   1 - Enabled
2879          */
2880         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2881         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2882         if (ret_val)
2883                 return ret_val;
2884
2885         if (hw->phy_revision < M88E1011_I_REV_4) {
2886                 /* Force TX_CLK in the Extended PHY Specific Control Register
2887                  * to 25MHz clock.
2888                  */
2889                 ret_val = e1000_read_phy_reg(hw,
2890                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2891                 if (ret_val)
2892                         return ret_val;
2893
2894                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2895
2896                 if ((hw->phy_revision == E1000_REVISION_2) &&
2897                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2898                         /* Vidalia Phy, set the downshift counter to 5x */
2899                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2900                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2901                         ret_val = e1000_write_phy_reg(hw,
2902                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2903                         if (ret_val)
2904                                 return ret_val;
2905                 } else {
2906                         /* Configure Master and Slave downshift values */
2907                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2908                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2909                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2910                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2911                         ret_val = e1000_write_phy_reg(hw,
2912                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2913                         if (ret_val)
2914                                 return ret_val;
2915                 }
2916         }
2917
2918         /* SW Reset the PHY so all changes take effect */
2919         ret_val = e1000_phy_reset(hw);
2920         if (ret_val) {
2921                 DEBUGOUT("Error Resetting the PHY\n");
2922                 return ret_val;
2923         }
2924
2925         return E1000_SUCCESS;
2926 }
2927
2928 /********************************************************************
2929 * Setup auto-negotiation and flow control advertisements,
2930 * and then perform auto-negotiation.
2931 *
2932 * hw - Struct containing variables accessed by shared code
2933 *********************************************************************/
2934 static int32_t
2935 e1000_copper_link_autoneg(struct e1000_hw *hw)
2936 {
2937         int32_t ret_val;
2938         uint16_t phy_data;
2939
2940         DEBUGFUNC();
2941
2942         /* Perform some bounds checking on the hw->autoneg_advertised
2943          * parameter.  If this variable is zero, then set it to the default.
2944          */
2945         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2946
2947         /* If autoneg_advertised is zero, we assume it was not defaulted
2948          * by the calling code so we set to advertise full capability.
2949          */
2950         if (hw->autoneg_advertised == 0)
2951                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2952
2953         /* IFE phy only supports 10/100 */
2954         if (hw->phy_type == e1000_phy_ife)
2955                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2956
2957         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2958         ret_val = e1000_phy_setup_autoneg(hw);
2959         if (ret_val) {
2960                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2961                 return ret_val;
2962         }
2963         DEBUGOUT("Restarting Auto-Neg\n");
2964
2965         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2966          * the Auto Neg Restart bit in the PHY control register.
2967          */
2968         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2969         if (ret_val)
2970                 return ret_val;
2971
2972         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2973         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2974         if (ret_val)
2975                 return ret_val;
2976
2977         /* Does the user want to wait for Auto-Neg to complete here, or
2978          * check at a later time (for example, callback routine).
2979          */
2980         /* If we do not wait for autonegtation to complete I
2981          * do not see a valid link status.
2982          * wait_autoneg_complete = 1 .
2983          */
2984         if (hw->wait_autoneg_complete) {
2985                 ret_val = e1000_wait_autoneg(hw);
2986                 if (ret_val) {
2987                         DEBUGOUT("Error while waiting for autoneg"
2988                                         "to complete\n");
2989                         return ret_val;
2990                 }
2991         }
2992
2993         hw->get_link_status = true;
2994
2995         return E1000_SUCCESS;
2996 }
2997
2998 /******************************************************************************
2999 * Config the MAC and the PHY after link is up.
3000 *   1) Set up the MAC to the current PHY speed/duplex
3001 *      if we are on 82543.  If we
3002 *      are on newer silicon, we only need to configure
3003 *      collision distance in the Transmit Control Register.
3004 *   2) Set up flow control on the MAC to that established with
3005 *      the link partner.
3006 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3007 *
3008 * hw - Struct containing variables accessed by shared code
3009 ******************************************************************************/
3010 static int32_t
3011 e1000_copper_link_postconfig(struct e1000_hw *hw)
3012 {
3013         int32_t ret_val;
3014         DEBUGFUNC();
3015
3016         if (hw->mac_type >= e1000_82544) {
3017                 e1000_config_collision_dist(hw);
3018         } else {
3019                 ret_val = e1000_config_mac_to_phy(hw);
3020                 if (ret_val) {
3021                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3022                         return ret_val;
3023                 }
3024         }
3025         ret_val = e1000_config_fc_after_link_up(hw);
3026         if (ret_val) {
3027                 DEBUGOUT("Error Configuring Flow Control\n");
3028                 return ret_val;
3029         }
3030         return E1000_SUCCESS;
3031 }
3032
3033 /******************************************************************************
3034 * Detects which PHY is present and setup the speed and duplex
3035 *
3036 * hw - Struct containing variables accessed by shared code
3037 ******************************************************************************/
3038 static int
3039 e1000_setup_copper_link(struct eth_device *nic)
3040 {
3041         struct e1000_hw *hw = nic->priv;
3042         int32_t ret_val;
3043         uint16_t i;
3044         uint16_t phy_data;
3045         uint16_t reg_data;
3046
3047         DEBUGFUNC();
3048
3049         switch (hw->mac_type) {
3050         case e1000_80003es2lan:
3051         case e1000_ich8lan:
3052                 /* Set the mac to wait the maximum time between each
3053                  * iteration and increase the max iterations when
3054                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3055                 ret_val = e1000_write_kmrn_reg(hw,
3056                                 GG82563_REG(0x34, 4), 0xFFFF);
3057                 if (ret_val)
3058                         return ret_val;
3059                 ret_val = e1000_read_kmrn_reg(hw,
3060                                 GG82563_REG(0x34, 9), &reg_data);
3061                 if (ret_val)
3062                         return ret_val;
3063                 reg_data |= 0x3F;
3064                 ret_val = e1000_write_kmrn_reg(hw,
3065                                 GG82563_REG(0x34, 9), reg_data);
3066                 if (ret_val)
3067                         return ret_val;
3068         default:
3069                 break;
3070         }
3071
3072         /* Check if it is a valid PHY and set PHY mode if necessary. */
3073         ret_val = e1000_copper_link_preconfig(hw);
3074         if (ret_val)
3075                 return ret_val;
3076         switch (hw->mac_type) {
3077         case e1000_80003es2lan:
3078                 /* Kumeran registers are written-only */
3079                 reg_data =
3080                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3081                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3082                 ret_val = e1000_write_kmrn_reg(hw,
3083                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3084                 if (ret_val)
3085                         return ret_val;
3086                 break;
3087         default:
3088                 break;
3089         }
3090
3091         if (hw->phy_type == e1000_phy_igp ||
3092                 hw->phy_type == e1000_phy_igp_3 ||
3093                 hw->phy_type == e1000_phy_igp_2) {
3094                 ret_val = e1000_copper_link_igp_setup(hw);
3095                 if (ret_val)
3096                         return ret_val;
3097         } else if (hw->phy_type == e1000_phy_m88 ||
3098                 hw->phy_type == e1000_phy_igb) {
3099                 ret_val = e1000_copper_link_mgp_setup(hw);
3100                 if (ret_val)
3101                         return ret_val;
3102         } else if (hw->phy_type == e1000_phy_gg82563) {
3103                 ret_val = e1000_copper_link_ggp_setup(hw);
3104                 if (ret_val)
3105                         return ret_val;
3106         }
3107
3108         /* always auto */
3109         /* Setup autoneg and flow control advertisement
3110           * and perform autonegotiation */
3111         ret_val = e1000_copper_link_autoneg(hw);
3112         if (ret_val)
3113                 return ret_val;
3114
3115         /* Check link status. Wait up to 100 microseconds for link to become
3116          * valid.
3117          */
3118         for (i = 0; i < 10; i++) {
3119                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3120                 if (ret_val)
3121                         return ret_val;
3122                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3123                 if (ret_val)
3124                         return ret_val;
3125
3126                 if (phy_data & MII_SR_LINK_STATUS) {
3127                         /* Config the MAC and PHY after link is up */
3128                         ret_val = e1000_copper_link_postconfig(hw);
3129                         if (ret_val)
3130                                 return ret_val;
3131
3132                         DEBUGOUT("Valid link established!!!\n");
3133                         return E1000_SUCCESS;
3134                 }
3135                 udelay(10);
3136         }
3137
3138         DEBUGOUT("Unable to establish link!!!\n");
3139         return E1000_SUCCESS;
3140 }
3141
3142 /******************************************************************************
3143 * Configures PHY autoneg and flow control advertisement settings
3144 *
3145 * hw - Struct containing variables accessed by shared code
3146 ******************************************************************************/
3147 int32_t
3148 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3149 {
3150         int32_t ret_val;
3151         uint16_t mii_autoneg_adv_reg;
3152         uint16_t mii_1000t_ctrl_reg;
3153
3154         DEBUGFUNC();
3155
3156         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3157         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3158         if (ret_val)
3159                 return ret_val;
3160
3161         if (hw->phy_type != e1000_phy_ife) {
3162                 /* Read the MII 1000Base-T Control Register (Address 9). */
3163                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3164                                 &mii_1000t_ctrl_reg);
3165                 if (ret_val)
3166                         return ret_val;
3167         } else
3168                 mii_1000t_ctrl_reg = 0;
3169
3170         /* Need to parse both autoneg_advertised and fc and set up
3171          * the appropriate PHY registers.  First we will parse for
3172          * autoneg_advertised software override.  Since we can advertise
3173          * a plethora of combinations, we need to check each bit
3174          * individually.
3175          */
3176
3177         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3178          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3179          * the  1000Base-T Control Register (Address 9).
3180          */
3181         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3182         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3183
3184         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3185
3186         /* Do we want to advertise 10 Mb Half Duplex? */
3187         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3188                 DEBUGOUT("Advertise 10mb Half duplex\n");
3189                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3190         }
3191
3192         /* Do we want to advertise 10 Mb Full Duplex? */
3193         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3194                 DEBUGOUT("Advertise 10mb Full duplex\n");
3195                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3196         }
3197
3198         /* Do we want to advertise 100 Mb Half Duplex? */
3199         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3200                 DEBUGOUT("Advertise 100mb Half duplex\n");
3201                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3202         }
3203
3204         /* Do we want to advertise 100 Mb Full Duplex? */
3205         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3206                 DEBUGOUT("Advertise 100mb Full duplex\n");
3207                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3208         }
3209
3210         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3211         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3212                 DEBUGOUT
3213                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3214         }
3215
3216         /* Do we want to advertise 1000 Mb Full Duplex? */
3217         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3218                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3219                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3220         }
3221
3222         /* Check for a software override of the flow control settings, and
3223          * setup the PHY advertisement registers accordingly.  If
3224          * auto-negotiation is enabled, then software will have to set the
3225          * "PAUSE" bits to the correct value in the Auto-Negotiation
3226          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3227          *
3228          * The possible values of the "fc" parameter are:
3229          *      0:  Flow control is completely disabled
3230          *      1:  Rx flow control is enabled (we can receive pause frames
3231          *          but not send pause frames).
3232          *      2:  Tx flow control is enabled (we can send pause frames
3233          *          but we do not support receiving pause frames).
3234          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3235          *  other:  No software override.  The flow control configuration
3236          *          in the EEPROM is used.
3237          */
3238         switch (hw->fc) {
3239         case e1000_fc_none:     /* 0 */
3240                 /* Flow control (RX & TX) is completely disabled by a
3241                  * software over-ride.
3242                  */
3243                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3244                 break;
3245         case e1000_fc_rx_pause: /* 1 */
3246                 /* RX Flow control is enabled, and TX Flow control is
3247                  * disabled, by a software over-ride.
3248                  */
3249                 /* Since there really isn't a way to advertise that we are
3250                  * capable of RX Pause ONLY, we will advertise that we
3251                  * support both symmetric and asymmetric RX PAUSE.  Later
3252                  * (in e1000_config_fc_after_link_up) we will disable the
3253                  *hw's ability to send PAUSE frames.
3254                  */
3255                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3256                 break;
3257         case e1000_fc_tx_pause: /* 2 */
3258                 /* TX Flow control is enabled, and RX Flow control is
3259                  * disabled, by a software over-ride.
3260                  */
3261                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3262                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3263                 break;
3264         case e1000_fc_full:     /* 3 */
3265                 /* Flow control (both RX and TX) is enabled by a software
3266                  * over-ride.
3267                  */
3268                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3269                 break;
3270         default:
3271                 DEBUGOUT("Flow control param set incorrectly\n");
3272                 return -E1000_ERR_CONFIG;
3273         }
3274
3275         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3276         if (ret_val)
3277                 return ret_val;
3278
3279         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3280
3281         if (hw->phy_type != e1000_phy_ife) {
3282                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3283                                 mii_1000t_ctrl_reg);
3284                 if (ret_val)
3285                         return ret_val;
3286         }
3287
3288         return E1000_SUCCESS;
3289 }
3290
3291 /******************************************************************************
3292 * Sets the collision distance in the Transmit Control register
3293 *
3294 * hw - Struct containing variables accessed by shared code
3295 *
3296 * Link should have been established previously. Reads the speed and duplex
3297 * information from the Device Status register.
3298 ******************************************************************************/
3299 static void
3300 e1000_config_collision_dist(struct e1000_hw *hw)
3301 {
3302         uint32_t tctl, coll_dist;
3303
3304         DEBUGFUNC();
3305
3306         if (hw->mac_type < e1000_82543)
3307                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3308         else
3309                 coll_dist = E1000_COLLISION_DISTANCE;
3310
3311         tctl = E1000_READ_REG(hw, TCTL);
3312
3313         tctl &= ~E1000_TCTL_COLD;
3314         tctl |= coll_dist << E1000_COLD_SHIFT;
3315
3316         E1000_WRITE_REG(hw, TCTL, tctl);
3317         E1000_WRITE_FLUSH(hw);
3318 }
3319
3320 /******************************************************************************
3321 * Sets MAC speed and duplex settings to reflect the those in the PHY
3322 *
3323 * hw - Struct containing variables accessed by shared code
3324 * mii_reg - data to write to the MII control register
3325 *
3326 * The contents of the PHY register containing the needed information need to
3327 * be passed in.
3328 ******************************************************************************/
3329 static int
3330 e1000_config_mac_to_phy(struct e1000_hw *hw)
3331 {
3332         uint32_t ctrl;
3333         uint16_t phy_data;
3334
3335         DEBUGFUNC();
3336
3337         /* Read the Device Control Register and set the bits to Force Speed
3338          * and Duplex.
3339          */
3340         ctrl = E1000_READ_REG(hw, CTRL);
3341         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3342         ctrl &= ~(E1000_CTRL_ILOS);
3343         ctrl |= (E1000_CTRL_SPD_SEL);
3344
3345         /* Set up duplex in the Device Control and Transmit Control
3346          * registers depending on negotiated values.
3347          */
3348         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3349                 DEBUGOUT("PHY Read Error\n");
3350                 return -E1000_ERR_PHY;
3351         }
3352         if (phy_data & M88E1000_PSSR_DPLX)
3353                 ctrl |= E1000_CTRL_FD;
3354         else
3355                 ctrl &= ~E1000_CTRL_FD;
3356
3357         e1000_config_collision_dist(hw);
3358
3359         /* Set up speed in the Device Control register depending on
3360          * negotiated values.
3361          */
3362         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3363                 ctrl |= E1000_CTRL_SPD_1000;
3364         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3365                 ctrl |= E1000_CTRL_SPD_100;
3366         /* Write the configured values back to the Device Control Reg. */
3367         E1000_WRITE_REG(hw, CTRL, ctrl);
3368         return 0;
3369 }
3370
3371 /******************************************************************************
3372  * Forces the MAC's flow control settings.
3373  *
3374  * hw - Struct containing variables accessed by shared code
3375  *
3376  * Sets the TFCE and RFCE bits in the device control register to reflect
3377  * the adapter settings. TFCE and RFCE need to be explicitly set by
3378  * software when a Copper PHY is used because autonegotiation is managed
3379  * by the PHY rather than the MAC. Software must also configure these
3380  * bits when link is forced on a fiber connection.
3381  *****************************************************************************/
3382 static int
3383 e1000_force_mac_fc(struct e1000_hw *hw)
3384 {
3385         uint32_t ctrl;
3386
3387         DEBUGFUNC();
3388
3389         /* Get the current configuration of the Device Control Register */
3390         ctrl = E1000_READ_REG(hw, CTRL);
3391
3392         /* Because we didn't get link via the internal auto-negotiation
3393          * mechanism (we either forced link or we got link via PHY
3394          * auto-neg), we have to manually enable/disable transmit an
3395          * receive flow control.
3396          *
3397          * The "Case" statement below enables/disable flow control
3398          * according to the "hw->fc" parameter.
3399          *
3400          * The possible values of the "fc" parameter are:
3401          *      0:  Flow control is completely disabled
3402          *      1:  Rx flow control is enabled (we can receive pause
3403          *          frames but not send pause frames).
3404          *      2:  Tx flow control is enabled (we can send pause frames
3405          *          frames but we do not receive pause frames).
3406          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3407          *  other:  No other values should be possible at this point.
3408          */
3409
3410         switch (hw->fc) {
3411         case e1000_fc_none:
3412                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3413                 break;
3414         case e1000_fc_rx_pause:
3415                 ctrl &= (~E1000_CTRL_TFCE);
3416                 ctrl |= E1000_CTRL_RFCE;
3417                 break;
3418         case e1000_fc_tx_pause:
3419                 ctrl &= (~E1000_CTRL_RFCE);
3420                 ctrl |= E1000_CTRL_TFCE;
3421                 break;
3422         case e1000_fc_full:
3423                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3424                 break;
3425         default:
3426                 DEBUGOUT("Flow control param set incorrectly\n");
3427                 return -E1000_ERR_CONFIG;
3428         }
3429
3430         /* Disable TX Flow Control for 82542 (rev 2.0) */
3431         if (hw->mac_type == e1000_82542_rev2_0)
3432                 ctrl &= (~E1000_CTRL_TFCE);
3433
3434         E1000_WRITE_REG(hw, CTRL, ctrl);
3435         return 0;
3436 }
3437
3438 /******************************************************************************
3439  * Configures flow control settings after link is established
3440  *
3441  * hw - Struct containing variables accessed by shared code
3442  *
3443  * Should be called immediately after a valid link has been established.
3444  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3445  * and autonegotiation is enabled, the MAC flow control settings will be set
3446  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3447  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3448  *****************************************************************************/
3449 static int32_t
3450 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3451 {
3452         int32_t ret_val;
3453         uint16_t mii_status_reg;
3454         uint16_t mii_nway_adv_reg;
3455         uint16_t mii_nway_lp_ability_reg;
3456         uint16_t speed;
3457         uint16_t duplex;
3458
3459         DEBUGFUNC();
3460
3461         /* Check for the case where we have fiber media and auto-neg failed
3462          * so we had to force link.  In this case, we need to force the
3463          * configuration of the MAC to match the "fc" parameter.
3464          */
3465         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3466                 || ((hw->media_type == e1000_media_type_internal_serdes)
3467                 && (hw->autoneg_failed))
3468                 || ((hw->media_type == e1000_media_type_copper)
3469                 && (!hw->autoneg))) {
3470                 ret_val = e1000_force_mac_fc(hw);
3471                 if (ret_val < 0) {
3472                         DEBUGOUT("Error forcing flow control settings\n");
3473                         return ret_val;
3474                 }
3475         }
3476
3477         /* Check for the case where we have copper media and auto-neg is
3478          * enabled.  In this case, we need to check and see if Auto-Neg
3479          * has completed, and if so, how the PHY and link partner has
3480          * flow control configured.
3481          */
3482         if (hw->media_type == e1000_media_type_copper) {
3483                 /* Read the MII Status Register and check to see if AutoNeg
3484                  * has completed.  We read this twice because this reg has
3485                  * some "sticky" (latched) bits.
3486                  */
3487                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3488                         DEBUGOUT("PHY Read Error \n");
3489                         return -E1000_ERR_PHY;
3490                 }
3491                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3492                         DEBUGOUT("PHY Read Error \n");
3493                         return -E1000_ERR_PHY;
3494                 }
3495
3496                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3497                         /* The AutoNeg process has completed, so we now need to
3498                          * read both the Auto Negotiation Advertisement Register
3499                          * (Address 4) and the Auto_Negotiation Base Page Ability
3500                          * Register (Address 5) to determine how flow control was
3501                          * negotiated.
3502                          */
3503                         if (e1000_read_phy_reg
3504                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3505                                 DEBUGOUT("PHY Read Error\n");
3506                                 return -E1000_ERR_PHY;
3507                         }
3508                         if (e1000_read_phy_reg
3509                             (hw, PHY_LP_ABILITY,
3510                              &mii_nway_lp_ability_reg) < 0) {
3511                                 DEBUGOUT("PHY Read Error\n");
3512                                 return -E1000_ERR_PHY;
3513                         }
3514
3515                         /* Two bits in the Auto Negotiation Advertisement Register
3516                          * (Address 4) and two bits in the Auto Negotiation Base
3517                          * Page Ability Register (Address 5) determine flow control
3518                          * for both the PHY and the link partner.  The following
3519                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3520                          * 1999, describes these PAUSE resolution bits and how flow
3521                          * control is determined based upon these settings.
3522                          * NOTE:  DC = Don't Care
3523                          *
3524                          *   LOCAL DEVICE  |   LINK PARTNER
3525                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3526                          *-------|---------|-------|---------|--------------------
3527                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3528                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3529                          *   0   |    1    |   1   |    0    | e1000_fc_none
3530                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3531                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3532                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3533                          *   1   |    1    |   0   |    0    | e1000_fc_none
3534                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3535                          *
3536                          */
3537                         /* Are both PAUSE bits set to 1?  If so, this implies
3538                          * Symmetric Flow Control is enabled at both ends.  The
3539                          * ASM_DIR bits are irrelevant per the spec.
3540                          *
3541                          * For Symmetric Flow Control:
3542                          *
3543                          *   LOCAL DEVICE  |   LINK PARTNER
3544                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3545                          *-------|---------|-------|---------|--------------------
3546                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3547                          *
3548                          */
3549                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3550                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3551                                 /* Now we need to check if the user selected RX ONLY
3552                                  * of pause frames.  In this case, we had to advertise
3553                                  * FULL flow control because we could not advertise RX
3554                                  * ONLY. Hence, we must now check to see if we need to
3555                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3556                                  */
3557                                 if (hw->original_fc == e1000_fc_full) {
3558                                         hw->fc = e1000_fc_full;
3559                                         DEBUGOUT("Flow Control = FULL.\r\n");
3560                                 } else {
3561                                         hw->fc = e1000_fc_rx_pause;
3562                                         DEBUGOUT
3563                                             ("Flow Control = RX PAUSE frames only.\r\n");
3564                                 }
3565                         }
3566                         /* For receiving PAUSE frames ONLY.
3567                          *
3568                          *   LOCAL DEVICE  |   LINK PARTNER
3569                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3570                          *-------|---------|-------|---------|--------------------
3571                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3572                          *
3573                          */
3574                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3575                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3576                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3577                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3578                         {
3579                                 hw->fc = e1000_fc_tx_pause;
3580                                 DEBUGOUT
3581                                     ("Flow Control = TX PAUSE frames only.\r\n");
3582                         }
3583                         /* For transmitting PAUSE frames ONLY.
3584                          *
3585                          *   LOCAL DEVICE  |   LINK PARTNER
3586                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3587                          *-------|---------|-------|---------|--------------------
3588                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3589                          *
3590                          */
3591                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3592                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3593                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3594                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3595                         {
3596                                 hw->fc = e1000_fc_rx_pause;
3597                                 DEBUGOUT
3598                                     ("Flow Control = RX PAUSE frames only.\r\n");
3599                         }
3600                         /* Per the IEEE spec, at this point flow control should be
3601                          * disabled.  However, we want to consider that we could
3602                          * be connected to a legacy switch that doesn't advertise
3603                          * desired flow control, but can be forced on the link
3604                          * partner.  So if we advertised no flow control, that is
3605                          * what we will resolve to.  If we advertised some kind of
3606                          * receive capability (Rx Pause Only or Full Flow Control)
3607                          * and the link partner advertised none, we will configure
3608                          * ourselves to enable Rx Flow Control only.  We can do
3609                          * this safely for two reasons:  If the link partner really
3610                          * didn't want flow control enabled, and we enable Rx, no
3611                          * harm done since we won't be receiving any PAUSE frames
3612                          * anyway.  If the intent on the link partner was to have
3613                          * flow control enabled, then by us enabling RX only, we
3614                          * can at least receive pause frames and process them.
3615                          * This is a good idea because in most cases, since we are
3616                          * predominantly a server NIC, more times than not we will
3617                          * be asked to delay transmission of packets than asking
3618                          * our link partner to pause transmission of frames.
3619                          */
3620                         else if (hw->original_fc == e1000_fc_none ||
3621                                  hw->original_fc == e1000_fc_tx_pause) {
3622                                 hw->fc = e1000_fc_none;
3623                                 DEBUGOUT("Flow Control = NONE.\r\n");
3624                         } else {
3625                                 hw->fc = e1000_fc_rx_pause;
3626                                 DEBUGOUT
3627                                     ("Flow Control = RX PAUSE frames only.\r\n");
3628                         }
3629
3630                         /* Now we need to do one last check...  If we auto-
3631                          * negotiated to HALF DUPLEX, flow control should not be
3632                          * enabled per IEEE 802.3 spec.
3633                          */
3634                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3635
3636                         if (duplex == HALF_DUPLEX)
3637                                 hw->fc = e1000_fc_none;
3638
3639                         /* Now we call a subroutine to actually force the MAC
3640                          * controller to use the correct flow control settings.
3641                          */
3642                         ret_val = e1000_force_mac_fc(hw);
3643                         if (ret_val < 0) {
3644                                 DEBUGOUT
3645                                     ("Error forcing flow control settings\n");
3646                                 return ret_val;
3647                         }
3648                 } else {
3649                         DEBUGOUT
3650                             ("Copper PHY and Auto Neg has not completed.\r\n");
3651                 }
3652         }
3653         return E1000_SUCCESS;
3654 }
3655
3656 /******************************************************************************
3657  * Checks to see if the link status of the hardware has changed.
3658  *
3659  * hw - Struct containing variables accessed by shared code
3660  *
3661  * Called by any function that needs to check the link status of the adapter.
3662  *****************************************************************************/
3663 static int
3664 e1000_check_for_link(struct eth_device *nic)
3665 {
3666         struct e1000_hw *hw = nic->priv;
3667         uint32_t rxcw;
3668         uint32_t ctrl;
3669         uint32_t status;
3670         uint32_t rctl;
3671         uint32_t signal;
3672         int32_t ret_val;
3673         uint16_t phy_data;
3674         uint16_t lp_capability;
3675
3676         DEBUGFUNC();
3677
3678         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3679          * set when the optics detect a signal. On older adapters, it will be
3680          * cleared when there is a signal
3681          */
3682         ctrl = E1000_READ_REG(hw, CTRL);
3683         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3684                 signal = E1000_CTRL_SWDPIN1;
3685         else
3686                 signal = 0;
3687
3688         status = E1000_READ_REG(hw, STATUS);
3689         rxcw = E1000_READ_REG(hw, RXCW);
3690         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3691
3692         /* If we have a copper PHY then we only want to go out to the PHY
3693          * registers to see if Auto-Neg has completed and/or if our link
3694          * status has changed.  The get_link_status flag will be set if we
3695          * receive a Link Status Change interrupt or we have Rx Sequence
3696          * Errors.
3697          */
3698         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3699                 /* First we want to see if the MII Status Register reports
3700                  * link.  If so, then we want to get the current speed/duplex
3701                  * of the PHY.
3702                  * Read the register twice since the link bit is sticky.
3703                  */
3704                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3705                         DEBUGOUT("PHY Read Error\n");
3706                         return -E1000_ERR_PHY;
3707                 }
3708                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3709                         DEBUGOUT("PHY Read Error\n");
3710                         return -E1000_ERR_PHY;
3711                 }
3712
3713                 if (phy_data & MII_SR_LINK_STATUS) {
3714                         hw->get_link_status = false;
3715                 } else {
3716                         /* No link detected */
3717                         return -E1000_ERR_NOLINK;
3718                 }
3719
3720                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3721                  * have Si on board that is 82544 or newer, Auto
3722                  * Speed Detection takes care of MAC speed/duplex
3723                  * configuration.  So we only need to configure Collision
3724                  * Distance in the MAC.  Otherwise, we need to force
3725                  * speed/duplex on the MAC to the current PHY speed/duplex
3726                  * settings.
3727                  */
3728                 if (hw->mac_type >= e1000_82544)
3729                         e1000_config_collision_dist(hw);
3730                 else {
3731                         ret_val = e1000_config_mac_to_phy(hw);
3732                         if (ret_val < 0) {
3733                                 DEBUGOUT
3734                                     ("Error configuring MAC to PHY settings\n");
3735                                 return ret_val;
3736                         }
3737                 }
3738
3739                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3740                  * need to restore the desired flow control settings because we may
3741                  * have had to re-autoneg with a different link partner.
3742                  */
3743                 ret_val = e1000_config_fc_after_link_up(hw);
3744                 if (ret_val < 0) {
3745                         DEBUGOUT("Error configuring flow control\n");
3746                         return ret_val;
3747                 }
3748
3749                 /* At this point we know that we are on copper and we have
3750                  * auto-negotiated link.  These are conditions for checking the link
3751                  * parter capability register.  We use the link partner capability to
3752                  * determine if TBI Compatibility needs to be turned on or off.  If
3753                  * the link partner advertises any speed in addition to Gigabit, then
3754                  * we assume that they are GMII-based, and TBI compatibility is not
3755                  * needed. If no other speeds are advertised, we assume the link
3756                  * partner is TBI-based, and we turn on TBI Compatibility.
3757                  */
3758                 if (hw->tbi_compatibility_en) {
3759                         if (e1000_read_phy_reg
3760                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3761                                 DEBUGOUT("PHY Read Error\n");
3762                                 return -E1000_ERR_PHY;
3763                         }
3764                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3765                                              NWAY_LPAR_10T_FD_CAPS |
3766                                              NWAY_LPAR_100TX_HD_CAPS |
3767                                              NWAY_LPAR_100TX_FD_CAPS |
3768                                              NWAY_LPAR_100T4_CAPS)) {
3769                                 /* If our link partner advertises anything in addition to
3770                                  * gigabit, we do not need to enable TBI compatibility.
3771                                  */
3772                                 if (hw->tbi_compatibility_on) {
3773                                         /* If we previously were in the mode, turn it off. */
3774                                         rctl = E1000_READ_REG(hw, RCTL);
3775                                         rctl &= ~E1000_RCTL_SBP;
3776                                         E1000_WRITE_REG(hw, RCTL, rctl);
3777                                         hw->tbi_compatibility_on = false;
3778                                 }
3779                         } else {
3780                                 /* If TBI compatibility is was previously off, turn it on. For
3781                                  * compatibility with a TBI link partner, we will store bad
3782                                  * packets. Some frames have an additional byte on the end and
3783                                  * will look like CRC errors to to the hardware.
3784                                  */
3785                                 if (!hw->tbi_compatibility_on) {
3786                                         hw->tbi_compatibility_on = true;
3787                                         rctl = E1000_READ_REG(hw, RCTL);
3788                                         rctl |= E1000_RCTL_SBP;
3789                                         E1000_WRITE_REG(hw, RCTL, rctl);
3790                                 }
3791                         }
3792                 }
3793         }
3794         /* If we don't have link (auto-negotiation failed or link partner cannot
3795          * auto-negotiate), the cable is plugged in (we have signal), and our
3796          * link partner is not trying to auto-negotiate with us (we are receiving
3797          * idles or data), we need to force link up. We also need to give
3798          * auto-negotiation time to complete, in case the cable was just plugged
3799          * in. The autoneg_failed flag does this.
3800          */
3801         else if ((hw->media_type == e1000_media_type_fiber) &&
3802                  (!(status & E1000_STATUS_LU)) &&
3803                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3804                  (!(rxcw & E1000_RXCW_C))) {
3805                 if (hw->autoneg_failed == 0) {
3806                         hw->autoneg_failed = 1;
3807                         return 0;
3808                 }
3809                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3810
3811                 /* Disable auto-negotiation in the TXCW register */
3812                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3813
3814                 /* Force link-up and also force full-duplex. */
3815                 ctrl = E1000_READ_REG(hw, CTRL);
3816                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3817                 E1000_WRITE_REG(hw, CTRL, ctrl);
3818
3819                 /* Configure Flow Control after forcing link up. */
3820                 ret_val = e1000_config_fc_after_link_up(hw);
3821                 if (ret_val < 0) {
3822                         DEBUGOUT("Error configuring flow control\n");
3823                         return ret_val;
3824                 }
3825         }
3826         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3827          * auto-negotiation in the TXCW register and disable forced link in the
3828          * Device Control register in an attempt to auto-negotiate with our link
3829          * partner.
3830          */
3831         else if ((hw->media_type == e1000_media_type_fiber) &&
3832                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3833                 DEBUGOUT
3834                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3835                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3836                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3837         }
3838         return 0;
3839 }
3840
3841 /******************************************************************************
3842 * Configure the MAC-to-PHY interface for 10/100Mbps
3843 *
3844 * hw - Struct containing variables accessed by shared code
3845 ******************************************************************************/
3846 static int32_t
3847 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3848 {
3849         int32_t ret_val = E1000_SUCCESS;
3850         uint32_t tipg;
3851         uint16_t reg_data;
3852
3853         DEBUGFUNC();
3854
3855         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3856         ret_val = e1000_write_kmrn_reg(hw,
3857                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3858         if (ret_val)
3859                 return ret_val;
3860
3861         /* Configure Transmit Inter-Packet Gap */
3862         tipg = E1000_READ_REG(hw, TIPG);
3863         tipg &= ~E1000_TIPG_IPGT_MASK;
3864         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3865         E1000_WRITE_REG(hw, TIPG, tipg);
3866
3867         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3868
3869         if (ret_val)
3870                 return ret_val;
3871
3872         if (duplex == HALF_DUPLEX)
3873                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3874         else
3875                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3876
3877         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3878
3879         return ret_val;
3880 }
3881
3882 static int32_t
3883 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3884 {
3885         int32_t ret_val = E1000_SUCCESS;
3886         uint16_t reg_data;
3887         uint32_t tipg;
3888
3889         DEBUGFUNC();
3890
3891         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3892         ret_val = e1000_write_kmrn_reg(hw,
3893                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3894         if (ret_val)
3895                 return ret_val;
3896
3897         /* Configure Transmit Inter-Packet Gap */
3898         tipg = E1000_READ_REG(hw, TIPG);
3899         tipg &= ~E1000_TIPG_IPGT_MASK;
3900         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3901         E1000_WRITE_REG(hw, TIPG, tipg);
3902
3903         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3904
3905         if (ret_val)
3906                 return ret_val;
3907
3908         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3909         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3910
3911         return ret_val;
3912 }
3913
3914 /******************************************************************************
3915  * Detects the current speed and duplex settings of the hardware.
3916  *
3917  * hw - Struct containing variables accessed by shared code
3918  * speed - Speed of the connection
3919  * duplex - Duplex setting of the connection
3920  *****************************************************************************/
3921 static int
3922 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3923                 uint16_t *duplex)
3924 {
3925         uint32_t status;
3926         int32_t ret_val;
3927         uint16_t phy_data;
3928
3929         DEBUGFUNC();
3930
3931         if (hw->mac_type >= e1000_82543) {
3932                 status = E1000_READ_REG(hw, STATUS);
3933                 if (status & E1000_STATUS_SPEED_1000) {
3934                         *speed = SPEED_1000;
3935                         DEBUGOUT("1000 Mbs, ");
3936                 } else if (status & E1000_STATUS_SPEED_100) {
3937                         *speed = SPEED_100;
3938                         DEBUGOUT("100 Mbs, ");
3939                 } else {
3940                         *speed = SPEED_10;
3941                         DEBUGOUT("10 Mbs, ");
3942                 }
3943
3944                 if (status & E1000_STATUS_FD) {
3945                         *duplex = FULL_DUPLEX;
3946                         DEBUGOUT("Full Duplex\r\n");
3947                 } else {
3948                         *duplex = HALF_DUPLEX;
3949                         DEBUGOUT(" Half Duplex\r\n");
3950                 }
3951         } else {
3952                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3953                 *speed = SPEED_1000;
3954                 *duplex = FULL_DUPLEX;
3955         }
3956
3957         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3958          * even if it is operating at half duplex.  Here we set the duplex
3959          * settings to match the duplex in the link partner's capabilities.
3960          */
3961         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3962                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3963                 if (ret_val)
3964                         return ret_val;
3965
3966                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3967                         *duplex = HALF_DUPLEX;
3968                 else {
3969                         ret_val = e1000_read_phy_reg(hw,
3970                                         PHY_LP_ABILITY, &phy_data);
3971                         if (ret_val)
3972                                 return ret_val;
3973                         if ((*speed == SPEED_100 &&
3974                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3975                                 || (*speed == SPEED_10
3976                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3977                                 *duplex = HALF_DUPLEX;
3978                 }
3979         }
3980
3981         if ((hw->mac_type == e1000_80003es2lan) &&
3982                 (hw->media_type == e1000_media_type_copper)) {
3983                 if (*speed == SPEED_1000)
3984                         ret_val = e1000_configure_kmrn_for_1000(hw);
3985                 else
3986                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3987                 if (ret_val)
3988                         return ret_val;
3989         }
3990         return E1000_SUCCESS;
3991 }
3992
3993 /******************************************************************************
3994 * Blocks until autoneg completes or times out (~4.5 seconds)
3995 *
3996 * hw - Struct containing variables accessed by shared code
3997 ******************************************************************************/
3998 static int
3999 e1000_wait_autoneg(struct e1000_hw *hw)
4000 {
4001         uint16_t i;
4002         uint16_t phy_data;
4003
4004         DEBUGFUNC();
4005         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4006
4007         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
4008         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4009                 /* Read the MII Status Register and wait for Auto-Neg
4010                  * Complete bit to be set.
4011                  */
4012                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4013                         DEBUGOUT("PHY Read Error\n");
4014                         return -E1000_ERR_PHY;
4015                 }
4016                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4017                         DEBUGOUT("PHY Read Error\n");
4018                         return -E1000_ERR_PHY;
4019                 }
4020                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4021                         DEBUGOUT("Auto-Neg complete.\n");
4022                         return 0;
4023                 }
4024                 mdelay(100);
4025         }
4026         DEBUGOUT("Auto-Neg timedout.\n");
4027         return -E1000_ERR_TIMEOUT;
4028 }
4029
4030 /******************************************************************************
4031 * Raises the Management Data Clock
4032 *
4033 * hw - Struct containing variables accessed by shared code
4034 * ctrl - Device control register's current value
4035 ******************************************************************************/
4036 static void
4037 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4038 {
4039         /* Raise the clock input to the Management Data Clock (by setting the MDC
4040          * bit), and then delay 2 microseconds.
4041          */
4042         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4043         E1000_WRITE_FLUSH(hw);
4044         udelay(2);
4045 }
4046
4047 /******************************************************************************
4048 * Lowers the Management Data Clock
4049 *
4050 * hw - Struct containing variables accessed by shared code
4051 * ctrl - Device control register's current value
4052 ******************************************************************************/
4053 static void
4054 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4055 {
4056         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4057          * bit), and then delay 2 microseconds.
4058          */
4059         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4060         E1000_WRITE_FLUSH(hw);
4061         udelay(2);
4062 }
4063
4064 /******************************************************************************
4065 * Shifts data bits out to the PHY
4066 *
4067 * hw - Struct containing variables accessed by shared code
4068 * data - Data to send out to the PHY
4069 * count - Number of bits to shift out
4070 *
4071 * Bits are shifted out in MSB to LSB order.
4072 ******************************************************************************/
4073 static void
4074 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4075 {
4076         uint32_t ctrl;
4077         uint32_t mask;
4078
4079         /* We need to shift "count" number of bits out to the PHY. So, the value
4080          * in the "data" parameter will be shifted out to the PHY one bit at a
4081          * time. In order to do this, "data" must be broken down into bits.
4082          */
4083         mask = 0x01;
4084         mask <<= (count - 1);
4085
4086         ctrl = E1000_READ_REG(hw, CTRL);
4087
4088         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4089         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4090
4091         while (mask) {
4092                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4093                  * then raising and lowering the Management Data Clock. A "0" is
4094                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4095                  * raising and lowering the clock.
4096                  */
4097                 if (data & mask)
4098                         ctrl |= E1000_CTRL_MDIO;
4099                 else
4100                         ctrl &= ~E1000_CTRL_MDIO;
4101
4102                 E1000_WRITE_REG(hw, CTRL, ctrl);
4103                 E1000_WRITE_FLUSH(hw);
4104
4105                 udelay(2);
4106
4107                 e1000_raise_mdi_clk(hw, &ctrl);
4108                 e1000_lower_mdi_clk(hw, &ctrl);
4109
4110                 mask = mask >> 1;
4111         }
4112 }
4113
4114 /******************************************************************************
4115 * Shifts data bits in from the PHY
4116 *
4117 * hw - Struct containing variables accessed by shared code
4118 *
4119 * Bits are shifted in in MSB to LSB order.
4120 ******************************************************************************/
4121 static uint16_t
4122 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4123 {
4124         uint32_t ctrl;
4125         uint16_t data = 0;
4126         uint8_t i;
4127
4128         /* In order to read a register from the PHY, we need to shift in a total
4129          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4130          * to avoid contention on the MDIO pin when a read operation is performed.
4131          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4132          * by raising the input to the Management Data Clock (setting the MDC bit),
4133          * and then reading the value of the MDIO bit.
4134          */
4135         ctrl = E1000_READ_REG(hw, CTRL);
4136
4137         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4138         ctrl &= ~E1000_CTRL_MDIO_DIR;
4139         ctrl &= ~E1000_CTRL_MDIO;
4140
4141         E1000_WRITE_REG(hw, CTRL, ctrl);
4142         E1000_WRITE_FLUSH(hw);
4143
4144         /* Raise and Lower the clock before reading in the data. This accounts for
4145          * the turnaround bits. The first clock occurred when we clocked out the
4146          * last bit of the Register Address.
4147          */
4148         e1000_raise_mdi_clk(hw, &ctrl);
4149         e1000_lower_mdi_clk(hw, &ctrl);
4150
4151         for (data = 0, i = 0; i < 16; i++) {
4152                 data = data << 1;
4153                 e1000_raise_mdi_clk(hw, &ctrl);
4154                 ctrl = E1000_READ_REG(hw, CTRL);
4155                 /* Check to see if we shifted in a "1". */
4156                 if (ctrl & E1000_CTRL_MDIO)
4157                         data |= 1;
4158                 e1000_lower_mdi_clk(hw, &ctrl);
4159         }
4160
4161         e1000_raise_mdi_clk(hw, &ctrl);
4162         e1000_lower_mdi_clk(hw, &ctrl);
4163
4164         return data;
4165 }
4166
4167 /*****************************************************************************
4168 * Reads the value from a PHY register
4169 *
4170 * hw - Struct containing variables accessed by shared code
4171 * reg_addr - address of the PHY register to read
4172 ******************************************************************************/
4173 static int
4174 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4175 {
4176         uint32_t i;
4177         uint32_t mdic = 0;
4178         const uint32_t phy_addr = 1;
4179
4180         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4181                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4182                 return -E1000_ERR_PARAM;
4183         }
4184
4185         if (hw->mac_type > e1000_82543) {
4186                 /* Set up Op-code, Phy Address, and register address in the MDI
4187                  * Control register.  The MAC will take care of interfacing with the
4188                  * PHY to retrieve the desired data.
4189                  */
4190                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4191                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4192                         (E1000_MDIC_OP_READ));
4193
4194                 E1000_WRITE_REG(hw, MDIC, mdic);
4195
4196                 /* Poll the ready bit to see if the MDI read completed */
4197                 for (i = 0; i < 64; i++) {
4198                         udelay(10);
4199                         mdic = E1000_READ_REG(hw, MDIC);
4200                         if (mdic & E1000_MDIC_READY)
4201                                 break;
4202                 }
4203                 if (!(mdic & E1000_MDIC_READY)) {
4204                         DEBUGOUT("MDI Read did not complete\n");
4205                         return -E1000_ERR_PHY;
4206                 }
4207                 if (mdic & E1000_MDIC_ERROR) {
4208                         DEBUGOUT("MDI Error\n");
4209                         return -E1000_ERR_PHY;
4210                 }
4211                 *phy_data = (uint16_t) mdic;
4212         } else {
4213                 /* We must first send a preamble through the MDIO pin to signal the
4214                  * beginning of an MII instruction.  This is done by sending 32
4215                  * consecutive "1" bits.
4216                  */
4217                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4218
4219                 /* Now combine the next few fields that are required for a read
4220                  * operation.  We use this method instead of calling the
4221                  * e1000_shift_out_mdi_bits routine five different times. The format of
4222                  * a MII read instruction consists of a shift out of 14 bits and is
4223                  * defined as follows:
4224                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4225                  * followed by a shift in of 18 bits.  This first two bits shifted in
4226                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4227                  * READ operation is performed.  These two bits are thrown away
4228                  * followed by a shift in of 16 bits which contains the desired data.
4229                  */
4230                 mdic = ((reg_addr) | (phy_addr << 5) |
4231                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4232
4233                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4234
4235                 /* Now that we've shifted out the read command to the MII, we need to
4236                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4237                  * register address.
4238                  */
4239                 *phy_data = e1000_shift_in_mdi_bits(hw);
4240         }
4241         return 0;
4242 }
4243
4244 /******************************************************************************
4245 * Writes a value to a PHY register
4246 *
4247 * hw - Struct containing variables accessed by shared code
4248 * reg_addr - address of the PHY register to write
4249 * data - data to write to the PHY
4250 ******************************************************************************/
4251 static int
4252 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4253 {
4254         uint32_t i;
4255         uint32_t mdic = 0;
4256         const uint32_t phy_addr = 1;
4257
4258         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4259                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4260                 return -E1000_ERR_PARAM;
4261         }
4262
4263         if (hw->mac_type > e1000_82543) {
4264                 /* Set up Op-code, Phy Address, register address, and data intended
4265                  * for the PHY register in the MDI Control register.  The MAC will take
4266                  * care of interfacing with the PHY to send the desired data.
4267                  */
4268                 mdic = (((uint32_t) phy_data) |
4269                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4270                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4271                         (E1000_MDIC_OP_WRITE));
4272
4273                 E1000_WRITE_REG(hw, MDIC, mdic);
4274
4275                 /* Poll the ready bit to see if the MDI read completed */
4276                 for (i = 0; i < 64; i++) {
4277                         udelay(10);
4278                         mdic = E1000_READ_REG(hw, MDIC);
4279                         if (mdic & E1000_MDIC_READY)
4280                                 break;
4281                 }
4282                 if (!(mdic & E1000_MDIC_READY)) {
4283                         DEBUGOUT("MDI Write did not complete\n");
4284                         return -E1000_ERR_PHY;
4285                 }
4286         } else {
4287                 /* We'll need to use the SW defined pins to shift the write command
4288                  * out to the PHY. We first send a preamble to the PHY to signal the
4289                  * beginning of the MII instruction.  This is done by sending 32
4290                  * consecutive "1" bits.
4291                  */
4292                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4293
4294                 /* Now combine the remaining required fields that will indicate a
4295                  * write operation. We use this method instead of calling the
4296                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4297                  * format of a MII write instruction is as follows:
4298                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4299                  */
4300                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4301                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4302                 mdic <<= 16;
4303                 mdic |= (uint32_t) phy_data;
4304
4305                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4306         }
4307         return 0;
4308 }
4309
4310 /******************************************************************************
4311  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4312  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4313  * the caller to figure out how to deal with it.
4314  *
4315  * hw - Struct containing variables accessed by shared code
4316  *
4317  * returns: - E1000_BLK_PHY_RESET
4318  *            E1000_SUCCESS
4319  *
4320  *****************************************************************************/
4321 int32_t
4322 e1000_check_phy_reset_block(struct e1000_hw *hw)
4323 {
4324         uint32_t manc = 0;
4325         uint32_t fwsm = 0;
4326
4327         if (hw->mac_type == e1000_ich8lan) {
4328                 fwsm = E1000_READ_REG(hw, FWSM);
4329                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4330                                                 : E1000_BLK_PHY_RESET;
4331         }
4332
4333         if (hw->mac_type > e1000_82547_rev_2)
4334                 manc = E1000_READ_REG(hw, MANC);
4335         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4336                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4337 }
4338
4339 /***************************************************************************
4340  * Checks if the PHY configuration is done
4341  *
4342  * hw: Struct containing variables accessed by shared code
4343  *
4344  * returns: - E1000_ERR_RESET if fail to reset MAC
4345  *            E1000_SUCCESS at any other case.
4346  *
4347  ***************************************************************************/
4348 static int32_t
4349 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4350 {
4351         int32_t timeout = PHY_CFG_TIMEOUT;
4352         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4353
4354         DEBUGFUNC();
4355
4356         switch (hw->mac_type) {
4357         default:
4358                 mdelay(10);
4359                 break;
4360
4361         case e1000_80003es2lan:
4362                 /* Separate *_CFG_DONE_* bit for each port */
4363                 if (e1000_is_second_port(hw))
4364                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4365                 /* Fall Through */
4366
4367         case e1000_82571:
4368         case e1000_82572:
4369         case e1000_igb:
4370                 while (timeout) {
4371                         if (hw->mac_type == e1000_igb) {
4372                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4373                                         break;
4374                         } else {
4375                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4376                                         break;
4377                         }
4378                         mdelay(1);
4379                         timeout--;
4380                 }
4381                 if (!timeout) {
4382                         DEBUGOUT("MNG configuration cycle has not "
4383                                         "completed.\n");
4384                         return -E1000_ERR_RESET;
4385                 }
4386                 break;
4387         }
4388
4389         return E1000_SUCCESS;
4390 }
4391
4392 /******************************************************************************
4393 * Returns the PHY to the power-on reset state
4394 *
4395 * hw - Struct containing variables accessed by shared code
4396 ******************************************************************************/
4397 int32_t
4398 e1000_phy_hw_reset(struct e1000_hw *hw)
4399 {
4400         uint16_t swfw = E1000_SWFW_PHY0_SM;
4401         uint32_t ctrl, ctrl_ext;
4402         uint32_t led_ctrl;
4403         int32_t ret_val;
4404
4405         DEBUGFUNC();
4406
4407         /* In the case of the phy reset being blocked, it's not an error, we
4408          * simply return success without performing the reset. */
4409         ret_val = e1000_check_phy_reset_block(hw);
4410         if (ret_val)
4411                 return E1000_SUCCESS;
4412
4413         DEBUGOUT("Resetting Phy...\n");
4414
4415         if (hw->mac_type > e1000_82543) {
4416                 if (e1000_is_second_port(hw))
4417                         swfw = E1000_SWFW_PHY1_SM;
4418
4419                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4420                         DEBUGOUT("Unable to acquire swfw sync\n");
4421                         return -E1000_ERR_SWFW_SYNC;
4422                 }
4423
4424                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4425                  * bit. Then, take it out of reset.
4426                  */
4427                 ctrl = E1000_READ_REG(hw, CTRL);
4428                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4429                 E1000_WRITE_FLUSH(hw);
4430
4431                 if (hw->mac_type < e1000_82571)
4432                         udelay(10);
4433                 else
4434                         udelay(100);
4435
4436                 E1000_WRITE_REG(hw, CTRL, ctrl);
4437                 E1000_WRITE_FLUSH(hw);
4438
4439                 if (hw->mac_type >= e1000_82571)
4440                         mdelay(10);
4441         } else {
4442                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4443                  * bit to put the PHY into reset. Then, take it out of reset.
4444                  */
4445                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4446                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4447                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4448                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4449                 E1000_WRITE_FLUSH(hw);
4450                 mdelay(10);
4451                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4452                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4453                 E1000_WRITE_FLUSH(hw);
4454         }
4455         udelay(150);
4456
4457         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4458                 /* Configure activity LED after PHY reset */
4459                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4460                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4461                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4462                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4463         }
4464
4465         /* Wait for FW to finish PHY configuration. */
4466         ret_val = e1000_get_phy_cfg_done(hw);
4467         if (ret_val != E1000_SUCCESS)
4468                 return ret_val;
4469
4470         return ret_val;
4471 }
4472
4473 /******************************************************************************
4474  * IGP phy init script - initializes the GbE PHY
4475  *
4476  * hw - Struct containing variables accessed by shared code
4477  *****************************************************************************/
4478 static void
4479 e1000_phy_init_script(struct e1000_hw *hw)
4480 {
4481         uint32_t ret_val;
4482         uint16_t phy_saved_data;
4483         DEBUGFUNC();
4484
4485         if (hw->phy_init_script) {
4486                 mdelay(20);
4487
4488                 /* Save off the current value of register 0x2F5B to be
4489                  * restored at the end of this routine. */
4490                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4491
4492                 /* Disabled the PHY transmitter */
4493                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4494
4495                 mdelay(20);
4496
4497                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4498
4499                 mdelay(5);
4500
4501                 switch (hw->mac_type) {
4502                 case e1000_82541:
4503                 case e1000_82547:
4504                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4505
4506                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4507
4508                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4509
4510                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4511
4512                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4513
4514                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4515
4516                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4517
4518                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4519
4520                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4521                         break;
4522
4523                 case e1000_82541_rev_2:
4524                 case e1000_82547_rev_2:
4525                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4526                         break;
4527                 default:
4528                         break;
4529                 }
4530
4531                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4532
4533                 mdelay(20);
4534
4535                 /* Now enable the transmitter */
4536                 if (!ret_val)
4537                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4538
4539                 if (hw->mac_type == e1000_82547) {
4540                         uint16_t fused, fine, coarse;
4541
4542                         /* Move to analog registers page */
4543                         e1000_read_phy_reg(hw,
4544                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4545
4546                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4547                                 e1000_read_phy_reg(hw,
4548                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4549
4550                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4551                                 coarse = fused
4552                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4553
4554                                 if (coarse >
4555                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4556                                         coarse -=
4557                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4558                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4559                                 } else if (coarse
4560                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4561                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4562
4563                                 fused = (fused
4564                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4565                                         (fine
4566                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4567                                         (coarse
4568                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4569
4570                                 e1000_write_phy_reg(hw,
4571                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4572                                 e1000_write_phy_reg(hw,
4573                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4574                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4575                         }
4576                 }
4577         }
4578 }
4579
4580 /******************************************************************************
4581 * Resets the PHY
4582 *
4583 * hw - Struct containing variables accessed by shared code
4584 *
4585 * Sets bit 15 of the MII Control register
4586 ******************************************************************************/
4587 int32_t
4588 e1000_phy_reset(struct e1000_hw *hw)
4589 {
4590         int32_t ret_val;
4591         uint16_t phy_data;
4592
4593         DEBUGFUNC();
4594
4595         /* In the case of the phy reset being blocked, it's not an error, we
4596          * simply return success without performing the reset. */
4597         ret_val = e1000_check_phy_reset_block(hw);
4598         if (ret_val)
4599                 return E1000_SUCCESS;
4600
4601         switch (hw->phy_type) {
4602         case e1000_phy_igp:
4603         case e1000_phy_igp_2:
4604         case e1000_phy_igp_3:
4605         case e1000_phy_ife:
4606         case e1000_phy_igb:
4607                 ret_val = e1000_phy_hw_reset(hw);
4608                 if (ret_val)
4609                         return ret_val;
4610                 break;
4611         default:
4612                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4613                 if (ret_val)
4614                         return ret_val;
4615
4616                 phy_data |= MII_CR_RESET;
4617                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4618                 if (ret_val)
4619                         return ret_val;
4620
4621                 udelay(1);
4622                 break;
4623         }
4624
4625         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4626                 e1000_phy_init_script(hw);
4627
4628         return E1000_SUCCESS;
4629 }
4630
4631 static int e1000_set_phy_type (struct e1000_hw *hw)
4632 {
4633         DEBUGFUNC ();
4634
4635         if (hw->mac_type == e1000_undefined)
4636                 return -E1000_ERR_PHY_TYPE;
4637
4638         switch (hw->phy_id) {
4639         case M88E1000_E_PHY_ID:
4640         case M88E1000_I_PHY_ID:
4641         case M88E1011_I_PHY_ID:
4642         case M88E1111_I_PHY_ID:
4643                 hw->phy_type = e1000_phy_m88;
4644                 break;
4645         case IGP01E1000_I_PHY_ID:
4646                 if (hw->mac_type == e1000_82541 ||
4647                         hw->mac_type == e1000_82541_rev_2 ||
4648                         hw->mac_type == e1000_82547 ||
4649                         hw->mac_type == e1000_82547_rev_2) {
4650                         hw->phy_type = e1000_phy_igp;
4651                         break;
4652                 }
4653         case IGP03E1000_E_PHY_ID:
4654                 hw->phy_type = e1000_phy_igp_3;
4655                 break;
4656         case IFE_E_PHY_ID:
4657         case IFE_PLUS_E_PHY_ID:
4658         case IFE_C_E_PHY_ID:
4659                 hw->phy_type = e1000_phy_ife;
4660                 break;
4661         case GG82563_E_PHY_ID:
4662                 if (hw->mac_type == e1000_80003es2lan) {
4663                         hw->phy_type = e1000_phy_gg82563;
4664                         break;
4665                 }
4666         case BME1000_E_PHY_ID:
4667                 hw->phy_type = e1000_phy_bm;
4668                 break;
4669         case I210_I_PHY_ID:
4670                 hw->phy_type = e1000_phy_igb;
4671                 break;
4672                 /* Fall Through */
4673         default:
4674                 /* Should never have loaded on this device */
4675                 hw->phy_type = e1000_phy_undefined;
4676                 return -E1000_ERR_PHY_TYPE;
4677         }
4678
4679         return E1000_SUCCESS;
4680 }
4681
4682 /******************************************************************************
4683 * Probes the expected PHY address for known PHY IDs
4684 *
4685 * hw - Struct containing variables accessed by shared code
4686 ******************************************************************************/
4687 static int32_t
4688 e1000_detect_gig_phy(struct e1000_hw *hw)
4689 {
4690         int32_t phy_init_status, ret_val;
4691         uint16_t phy_id_high, phy_id_low;
4692         bool match = false;
4693
4694         DEBUGFUNC();
4695
4696         /* The 82571 firmware may still be configuring the PHY.  In this
4697          * case, we cannot access the PHY until the configuration is done.  So
4698          * we explicitly set the PHY values. */
4699         if (hw->mac_type == e1000_82571 ||
4700                 hw->mac_type == e1000_82572) {
4701                 hw->phy_id = IGP01E1000_I_PHY_ID;
4702                 hw->phy_type = e1000_phy_igp_2;
4703                 return E1000_SUCCESS;
4704         }
4705
4706         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4707          * work- around that forces PHY page 0 to be set or the reads fail.
4708          * The rest of the code in this routine uses e1000_read_phy_reg to
4709          * read the PHY ID.  So for ESB-2 we need to have this set so our
4710          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4711          * the routines below will figure this out as well. */
4712         if (hw->mac_type == e1000_80003es2lan)
4713                 hw->phy_type = e1000_phy_gg82563;
4714
4715         /* Read the PHY ID Registers to identify which PHY is onboard. */
4716         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4717         if (ret_val)
4718                 return ret_val;
4719
4720         hw->phy_id = (uint32_t) (phy_id_high << 16);
4721         udelay(20);
4722         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4723         if (ret_val)
4724                 return ret_val;
4725
4726         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4727         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4728
4729         switch (hw->mac_type) {
4730         case e1000_82543:
4731                 if (hw->phy_id == M88E1000_E_PHY_ID)
4732                         match = true;
4733                 break;
4734         case e1000_82544:
4735                 if (hw->phy_id == M88E1000_I_PHY_ID)
4736                         match = true;
4737                 break;
4738         case e1000_82540:
4739         case e1000_82545:
4740         case e1000_82545_rev_3:
4741         case e1000_82546:
4742         case e1000_82546_rev_3:
4743                 if (hw->phy_id == M88E1011_I_PHY_ID)
4744                         match = true;
4745                 break;
4746         case e1000_82541:
4747         case e1000_82541_rev_2:
4748         case e1000_82547:
4749         case e1000_82547_rev_2:
4750                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4751                         match = true;
4752
4753                 break;
4754         case e1000_82573:
4755                 if (hw->phy_id == M88E1111_I_PHY_ID)
4756                         match = true;
4757                 break;
4758         case e1000_82574:
4759                 if (hw->phy_id == BME1000_E_PHY_ID)
4760                         match = true;
4761                 break;
4762         case e1000_80003es2lan:
4763                 if (hw->phy_id == GG82563_E_PHY_ID)
4764                         match = true;
4765                 break;
4766         case e1000_ich8lan:
4767                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4768                         match = true;
4769                 if (hw->phy_id == IFE_E_PHY_ID)
4770                         match = true;
4771                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4772                         match = true;
4773                 if (hw->phy_id == IFE_C_E_PHY_ID)
4774                         match = true;
4775                 break;
4776         case e1000_igb:
4777                 if (hw->phy_id == I210_I_PHY_ID)
4778                         match = true;
4779                 break;
4780         default:
4781                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4782                 return -E1000_ERR_CONFIG;
4783         }
4784
4785         phy_init_status = e1000_set_phy_type(hw);
4786
4787         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4788                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4789                 return 0;
4790         }
4791         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4792         return -E1000_ERR_PHY;
4793 }
4794
4795 /*****************************************************************************
4796  * Set media type and TBI compatibility.
4797  *
4798  * hw - Struct containing variables accessed by shared code
4799  * **************************************************************************/
4800 void
4801 e1000_set_media_type(struct e1000_hw *hw)
4802 {
4803         uint32_t status;
4804
4805         DEBUGFUNC();
4806
4807         if (hw->mac_type != e1000_82543) {
4808                 /* tbi_compatibility is only valid on 82543 */
4809                 hw->tbi_compatibility_en = false;
4810         }
4811
4812         switch (hw->device_id) {
4813         case E1000_DEV_ID_82545GM_SERDES:
4814         case E1000_DEV_ID_82546GB_SERDES:
4815         case E1000_DEV_ID_82571EB_SERDES:
4816         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4817         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4818         case E1000_DEV_ID_82572EI_SERDES:
4819         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4820                 hw->media_type = e1000_media_type_internal_serdes;
4821                 break;
4822         default:
4823                 switch (hw->mac_type) {
4824                 case e1000_82542_rev2_0:
4825                 case e1000_82542_rev2_1:
4826                         hw->media_type = e1000_media_type_fiber;
4827                         break;
4828                 case e1000_ich8lan:
4829                 case e1000_82573:
4830                 case e1000_82574:
4831                 case e1000_igb:
4832                         /* The STATUS_TBIMODE bit is reserved or reused
4833                          * for the this device.
4834                          */
4835                         hw->media_type = e1000_media_type_copper;
4836                         break;
4837                 default:
4838                         status = E1000_READ_REG(hw, STATUS);
4839                         if (status & E1000_STATUS_TBIMODE) {
4840                                 hw->media_type = e1000_media_type_fiber;
4841                                 /* tbi_compatibility not valid on fiber */
4842                                 hw->tbi_compatibility_en = false;
4843                         } else {
4844                                 hw->media_type = e1000_media_type_copper;
4845                         }
4846                         break;
4847                 }
4848         }
4849 }
4850
4851 /**
4852  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4853  *
4854  * e1000_sw_init initializes the Adapter private data structure.
4855  * Fields are initialized based on PCI device information and
4856  * OS network device settings (MTU size).
4857  **/
4858
4859 static int
4860 e1000_sw_init(struct eth_device *nic)
4861 {
4862         struct e1000_hw *hw = (typeof(hw)) nic->priv;
4863         int result;
4864
4865         /* PCI config space info */
4866         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4867         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4868         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4869                              &hw->subsystem_vendor_id);
4870         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4871
4872         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4873         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4874
4875         /* identify the MAC */
4876         result = e1000_set_mac_type(hw);
4877         if (result) {
4878                 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4879                 return result;
4880         }
4881
4882         switch (hw->mac_type) {
4883         default:
4884                 break;
4885         case e1000_82541:
4886         case e1000_82547:
4887         case e1000_82541_rev_2:
4888         case e1000_82547_rev_2:
4889                 hw->phy_init_script = 1;
4890                 break;
4891         }
4892
4893         /* flow control settings */
4894         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4895         hw->fc_low_water = E1000_FC_LOW_THRESH;
4896         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4897         hw->fc_send_xon = 1;
4898
4899         /* Media type - copper or fiber */
4900         hw->tbi_compatibility_en = true;
4901         e1000_set_media_type(hw);
4902
4903         if (hw->mac_type >= e1000_82543) {
4904                 uint32_t status = E1000_READ_REG(hw, STATUS);
4905
4906                 if (status & E1000_STATUS_TBIMODE) {
4907                         DEBUGOUT("fiber interface\n");
4908                         hw->media_type = e1000_media_type_fiber;
4909                 } else {
4910                         DEBUGOUT("copper interface\n");
4911                         hw->media_type = e1000_media_type_copper;
4912                 }
4913         } else {
4914                 hw->media_type = e1000_media_type_fiber;
4915         }
4916
4917         hw->wait_autoneg_complete = true;
4918         if (hw->mac_type < e1000_82543)
4919                 hw->report_tx_early = 0;
4920         else
4921                 hw->report_tx_early = 1;
4922
4923         return E1000_SUCCESS;
4924 }
4925
4926 void
4927 fill_rx(struct e1000_hw *hw)
4928 {
4929         struct e1000_rx_desc *rd;
4930         unsigned long flush_start, flush_end;
4931
4932         rx_last = rx_tail;
4933         rd = rx_base + rx_tail;
4934         rx_tail = (rx_tail + 1) % 8;
4935         memset(rd, 0, 16);
4936         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4937
4938         /*
4939          * Make sure there are no stale data in WB over this area, which
4940          * might get written into the memory while the e1000 also writes
4941          * into the same memory area.
4942          */
4943         invalidate_dcache_range((unsigned long)packet,
4944                                 (unsigned long)packet + 4096);
4945         /* Dump the DMA descriptor into RAM. */
4946         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4947         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4948         flush_dcache_range(flush_start, flush_end);
4949
4950         E1000_WRITE_REG(hw, RDT, rx_tail);
4951 }
4952
4953 /**
4954  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4955  * @adapter: board private structure
4956  *
4957  * Configure the Tx unit of the MAC after a reset.
4958  **/
4959
4960 static void
4961 e1000_configure_tx(struct e1000_hw *hw)
4962 {
4963         unsigned long tctl;
4964         unsigned long tipg, tarc;
4965         uint32_t ipgr1, ipgr2;
4966
4967         E1000_WRITE_REG(hw, TDBAL, (unsigned long)tx_base);
4968         E1000_WRITE_REG(hw, TDBAH, 0);
4969
4970         E1000_WRITE_REG(hw, TDLEN, 128);
4971
4972         /* Setup the HW Tx Head and Tail descriptor pointers */
4973         E1000_WRITE_REG(hw, TDH, 0);
4974         E1000_WRITE_REG(hw, TDT, 0);
4975         tx_tail = 0;
4976
4977         /* Set the default values for the Tx Inter Packet Gap timer */
4978         if (hw->mac_type <= e1000_82547_rev_2 &&
4979             (hw->media_type == e1000_media_type_fiber ||
4980              hw->media_type == e1000_media_type_internal_serdes))
4981                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4982         else
4983                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4984
4985         /* Set the default values for the Tx Inter Packet Gap timer */
4986         switch (hw->mac_type) {
4987         case e1000_82542_rev2_0:
4988         case e1000_82542_rev2_1:
4989                 tipg = DEFAULT_82542_TIPG_IPGT;
4990                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4991                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4992                 break;
4993         case e1000_80003es2lan:
4994                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4995                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4996                 break;
4997         default:
4998                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4999                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5000                 break;
5001         }
5002         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5003         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5004         E1000_WRITE_REG(hw, TIPG, tipg);
5005         /* Program the Transmit Control Register */
5006         tctl = E1000_READ_REG(hw, TCTL);
5007         tctl &= ~E1000_TCTL_CT;
5008         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5009             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5010
5011         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5012                 tarc = E1000_READ_REG(hw, TARC0);
5013                 /* set the speed mode bit, we'll clear it if we're not at
5014                  * gigabit link later */
5015                 /* git bit can be set to 1*/
5016         } else if (hw->mac_type == e1000_80003es2lan) {
5017                 tarc = E1000_READ_REG(hw, TARC0);
5018                 tarc |= 1;
5019                 E1000_WRITE_REG(hw, TARC0, tarc);
5020                 tarc = E1000_READ_REG(hw, TARC1);
5021                 tarc |= 1;
5022                 E1000_WRITE_REG(hw, TARC1, tarc);
5023         }
5024
5025
5026         e1000_config_collision_dist(hw);
5027         /* Setup Transmit Descriptor Settings for eop descriptor */
5028         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5029
5030         /* Need to set up RS bit */
5031         if (hw->mac_type < e1000_82543)
5032                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5033         else
5034                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5035
5036
5037         if (hw->mac_type == e1000_igb) {
5038                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5039
5040                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5041                 reg_txdctl |= 1 << 25;
5042                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5043                 mdelay(20);
5044         }
5045
5046
5047
5048         E1000_WRITE_REG(hw, TCTL, tctl);
5049
5050
5051 }
5052
5053 /**
5054  * e1000_setup_rctl - configure the receive control register
5055  * @adapter: Board private structure
5056  **/
5057 static void
5058 e1000_setup_rctl(struct e1000_hw *hw)
5059 {
5060         uint32_t rctl;
5061
5062         rctl = E1000_READ_REG(hw, RCTL);
5063
5064         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5065
5066         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5067                 | E1000_RCTL_RDMTS_HALF;        /* |
5068                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5069
5070         if (hw->tbi_compatibility_on == 1)
5071                 rctl |= E1000_RCTL_SBP;
5072         else
5073                 rctl &= ~E1000_RCTL_SBP;
5074
5075         rctl &= ~(E1000_RCTL_SZ_4096);
5076                 rctl |= E1000_RCTL_SZ_2048;
5077                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5078         E1000_WRITE_REG(hw, RCTL, rctl);
5079 }
5080
5081 /**
5082  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5083  * @adapter: board private structure
5084  *
5085  * Configure the Rx unit of the MAC after a reset.
5086  **/
5087 static void
5088 e1000_configure_rx(struct e1000_hw *hw)
5089 {
5090         unsigned long rctl, ctrl_ext;
5091         rx_tail = 0;
5092         /* make sure receives are disabled while setting up the descriptors */
5093         rctl = E1000_READ_REG(hw, RCTL);
5094         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5095         if (hw->mac_type >= e1000_82540) {
5096                 /* Set the interrupt throttling rate.  Value is calculated
5097                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5098 #define MAX_INTS_PER_SEC        8000
5099 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5100                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5101         }
5102
5103         if (hw->mac_type >= e1000_82571) {
5104                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5105                 /* Reset delay timers after every interrupt */
5106                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5107                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5108                 E1000_WRITE_FLUSH(hw);
5109         }
5110         /* Setup the Base and Length of the Rx Descriptor Ring */
5111         E1000_WRITE_REG(hw, RDBAL, (unsigned long)rx_base);
5112         E1000_WRITE_REG(hw, RDBAH, 0);
5113
5114         E1000_WRITE_REG(hw, RDLEN, 128);
5115
5116         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5117         E1000_WRITE_REG(hw, RDH, 0);
5118         E1000_WRITE_REG(hw, RDT, 0);
5119         /* Enable Receives */
5120
5121         if (hw->mac_type == e1000_igb) {
5122
5123                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5124                 reg_rxdctl |= 1 << 25;
5125                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5126                 mdelay(20);
5127         }
5128
5129         E1000_WRITE_REG(hw, RCTL, rctl);
5130
5131         fill_rx(hw);
5132 }
5133
5134 /**************************************************************************
5135 POLL - Wait for a frame
5136 ***************************************************************************/
5137 static int
5138 e1000_poll(struct eth_device *nic)
5139 {
5140         struct e1000_hw *hw = nic->priv;
5141         struct e1000_rx_desc *rd;
5142         unsigned long inval_start, inval_end;
5143         uint32_t len;
5144
5145         /* return true if there's an ethernet packet ready to read */
5146         rd = rx_base + rx_last;
5147
5148         /* Re-load the descriptor from RAM. */
5149         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5150         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5151         invalidate_dcache_range(inval_start, inval_end);
5152
5153         if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5154                 return 0;
5155         /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5156         /* Packet received, make sure the data are re-loaded from RAM. */
5157         len = le32_to_cpu(rd->length);
5158         invalidate_dcache_range((unsigned long)packet,
5159                                 (unsigned long)packet +
5160                                 roundup(len, ARCH_DMA_MINALIGN));
5161         NetReceive((uchar *)packet, len);
5162         fill_rx(hw);
5163         return 1;
5164 }
5165
5166 /**************************************************************************
5167 TRANSMIT - Transmit a frame
5168 ***************************************************************************/
5169 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5170 {
5171         void *nv_packet = (void *)txpacket;
5172         struct e1000_hw *hw = nic->priv;
5173         struct e1000_tx_desc *txp;
5174         int i = 0;
5175         unsigned long flush_start, flush_end;
5176
5177         txp = tx_base + tx_tail;
5178         tx_tail = (tx_tail + 1) % 8;
5179
5180         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5181         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5182         txp->upper.data = 0;
5183
5184         /* Dump the packet into RAM so e1000 can pick them. */
5185         flush_dcache_range((unsigned long)nv_packet,
5186                            (unsigned long)nv_packet +
5187                            roundup(length, ARCH_DMA_MINALIGN));
5188         /* Dump the descriptor into RAM as well. */
5189         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5190         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5191         flush_dcache_range(flush_start, flush_end);
5192
5193         E1000_WRITE_REG(hw, TDT, tx_tail);
5194
5195         E1000_WRITE_FLUSH(hw);
5196         while (1) {
5197                 invalidate_dcache_range(flush_start, flush_end);
5198                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5199                         break;
5200                 if (i++ > TOUT_LOOP) {
5201                         DEBUGOUT("e1000: tx timeout\n");
5202                         return 0;
5203                 }
5204                 udelay(10);     /* give the nic a chance to write to the register */
5205         }
5206         return 1;
5207 }
5208
5209 /*reset function*/
5210 static inline int
5211 e1000_reset(struct eth_device *nic)
5212 {
5213         struct e1000_hw *hw = nic->priv;
5214
5215         e1000_reset_hw(hw);
5216         if (hw->mac_type >= e1000_82544) {
5217                 E1000_WRITE_REG(hw, WUC, 0);
5218         }
5219         return e1000_init_hw(nic);
5220 }
5221
5222 /**************************************************************************
5223 DISABLE - Turn off ethernet interface
5224 ***************************************************************************/
5225 static void
5226 e1000_disable(struct eth_device *nic)
5227 {
5228         struct e1000_hw *hw = nic->priv;
5229
5230         /* Turn off the ethernet interface */
5231         E1000_WRITE_REG(hw, RCTL, 0);
5232         E1000_WRITE_REG(hw, TCTL, 0);
5233
5234         /* Clear the transmit ring */
5235         E1000_WRITE_REG(hw, TDH, 0);
5236         E1000_WRITE_REG(hw, TDT, 0);
5237
5238         /* Clear the receive ring */
5239         E1000_WRITE_REG(hw, RDH, 0);
5240         E1000_WRITE_REG(hw, RDT, 0);
5241
5242         /* put the card in its initial state */
5243 #if 0
5244         E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5245 #endif
5246         mdelay(10);
5247
5248 }
5249
5250 /**************************************************************************
5251 INIT - set up ethernet interface(s)
5252 ***************************************************************************/
5253 static int
5254 e1000_init(struct eth_device *nic, bd_t * bis)
5255 {
5256         struct e1000_hw *hw = nic->priv;
5257         int ret_val = 0;
5258
5259         ret_val = e1000_reset(nic);
5260         if (ret_val < 0) {
5261                 if ((ret_val == -E1000_ERR_NOLINK) ||
5262                     (ret_val == -E1000_ERR_TIMEOUT)) {
5263                         E1000_ERR(hw->nic, "Valid Link not detected\n");
5264                 } else {
5265                         E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5266                 }
5267                 return 0;
5268         }
5269         e1000_configure_tx(hw);
5270         e1000_setup_rctl(hw);
5271         e1000_configure_rx(hw);
5272         return 1;
5273 }
5274
5275 /******************************************************************************
5276  * Gets the current PCI bus type of hardware
5277  *
5278  * hw - Struct containing variables accessed by shared code
5279  *****************************************************************************/
5280 void e1000_get_bus_type(struct e1000_hw *hw)
5281 {
5282         uint32_t status;
5283
5284         switch (hw->mac_type) {
5285         case e1000_82542_rev2_0:
5286         case e1000_82542_rev2_1:
5287                 hw->bus_type = e1000_bus_type_pci;
5288                 break;
5289         case e1000_82571:
5290         case e1000_82572:
5291         case e1000_82573:
5292         case e1000_82574:
5293         case e1000_80003es2lan:
5294         case e1000_ich8lan:
5295         case e1000_igb:
5296                 hw->bus_type = e1000_bus_type_pci_express;
5297                 break;
5298         default:
5299                 status = E1000_READ_REG(hw, STATUS);
5300                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5301                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5302                 break;
5303         }
5304 }
5305
5306 /* A list of all registered e1000 devices */
5307 static LIST_HEAD(e1000_hw_list);
5308
5309 /**************************************************************************
5310 PROBE - Look for an adapter, this routine's visible to the outside
5311 You should omit the last argument struct pci_device * for a non-PCI NIC
5312 ***************************************************************************/
5313 int
5314 e1000_initialize(bd_t * bis)
5315 {
5316         unsigned int i;
5317         pci_dev_t devno;
5318
5319         DEBUGFUNC();
5320
5321         /* Find and probe all the matching PCI devices */
5322         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5323                 u32 val;
5324
5325                 /*
5326                  * These will never get freed due to errors, this allows us to
5327                  * perform SPI EEPROM programming from U-boot, for example.
5328                  */
5329                 struct eth_device *nic = malloc(sizeof(*nic));
5330                 struct e1000_hw *hw = malloc(sizeof(*hw));
5331                 if (!nic || !hw) {
5332                         printf("e1000#%u: Out of Memory!\n", i);
5333                         free(nic);
5334                         free(hw);
5335                         continue;
5336                 }
5337
5338                 /* Make sure all of the fields are initially zeroed */
5339                 memset(nic, 0, sizeof(*nic));
5340                 memset(hw, 0, sizeof(*hw));
5341
5342                 /* Assign the passed-in values */
5343                 hw->cardnum = i;
5344                 hw->pdev = devno;
5345                 hw->nic = nic;
5346                 nic->priv = hw;
5347
5348                 /* Generate a card name */
5349                 sprintf(nic->name, "e1000#%u", hw->cardnum);
5350
5351                 /* Print a debug message with the IO base address */
5352                 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5353                 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5354
5355                 /* Try to enable I/O accesses and bus-mastering */
5356                 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5357                 pci_write_config_dword(devno, PCI_COMMAND, val);
5358
5359                 /* Make sure it worked */
5360                 pci_read_config_dword(devno, PCI_COMMAND, &val);
5361                 if (!(val & PCI_COMMAND_MEMORY)) {
5362                         E1000_ERR(nic, "Can't enable I/O memory\n");
5363                         continue;
5364                 }
5365                 if (!(val & PCI_COMMAND_MASTER)) {
5366                         E1000_ERR(nic, "Can't enable bus-mastering\n");
5367                         continue;
5368                 }
5369
5370                 /* Are these variables needed? */
5371                 hw->fc = e1000_fc_default;
5372                 hw->original_fc = e1000_fc_default;
5373                 hw->autoneg_failed = 0;
5374                 hw->autoneg = 1;
5375                 hw->get_link_status = true;
5376 #ifndef CONFIG_E1000_NO_NVM
5377                 hw->eeprom_semaphore_present = true;
5378 #endif
5379                 hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5380                                                         PCI_REGION_MEM);
5381                 hw->mac_type = e1000_undefined;
5382
5383                 /* MAC and Phy settings */
5384                 if (e1000_sw_init(nic) < 0) {
5385                         E1000_ERR(nic, "Software init failed\n");
5386                         continue;
5387                 }
5388                 if (e1000_check_phy_reset_block(hw))
5389                         E1000_ERR(nic, "PHY Reset is blocked!\n");
5390
5391                 /* Basic init was OK, reset the hardware and allow SPI access */
5392                 e1000_reset_hw(hw);
5393                 list_add_tail(&hw->list_node, &e1000_hw_list);
5394
5395 #ifndef CONFIG_E1000_NO_NVM
5396                 /* Validate the EEPROM and get chipset information */
5397 #if !defined(CONFIG_MVBC_1G)
5398                 if (e1000_init_eeprom_params(hw)) {
5399                         E1000_ERR(nic, "EEPROM is invalid!\n");
5400                         continue;
5401                 }
5402                 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5403                     e1000_validate_eeprom_checksum(hw))
5404                         continue;
5405 #endif
5406                 e1000_read_mac_addr(nic);
5407 #endif
5408                 e1000_get_bus_type(hw);
5409
5410 #ifndef CONFIG_E1000_NO_NVM
5411                 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5412                        nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5413                        nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5414 #else
5415                 memset(nic->enetaddr, 0, 6);
5416                 printf("e1000: no NVM\n");
5417 #endif
5418
5419                 /* Set up the function pointers and register the device */
5420                 nic->init = e1000_init;
5421                 nic->recv = e1000_poll;
5422                 nic->send = e1000_transmit;
5423                 nic->halt = e1000_disable;
5424                 eth_register(nic);
5425         }
5426
5427         return i;
5428 }
5429
5430 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5431 {
5432         struct e1000_hw *hw;
5433
5434         list_for_each_entry(hw, &e1000_hw_list, list_node)
5435                 if (hw->cardnum == cardnum)
5436                         return hw;
5437
5438         return NULL;
5439 }
5440
5441 #ifdef CONFIG_CMD_E1000
5442 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5443                 int argc, char * const argv[])
5444 {
5445         struct e1000_hw *hw;
5446
5447         if (argc < 3) {
5448                 cmd_usage(cmdtp);
5449                 return 1;
5450         }
5451
5452         /* Make sure we can find the requested e1000 card */
5453         hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5454         if (!hw) {
5455                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5456                 return 1;
5457         }
5458
5459         if (!strcmp(argv[2], "print-mac-address")) {
5460                 unsigned char *mac = hw->nic->enetaddr;
5461                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5462                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5463                 return 0;
5464         }
5465
5466 #ifdef CONFIG_E1000_SPI
5467         /* Handle the "SPI" subcommand */
5468         if (!strcmp(argv[2], "spi"))
5469                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5470 #endif
5471
5472         cmd_usage(cmdtp);
5473         return 1;
5474 }
5475
5476 U_BOOT_CMD(
5477         e1000, 7, 0, do_e1000,
5478         "Intel e1000 controller management",
5479         /*  */"<card#> print-mac-address\n"
5480 #ifdef CONFIG_E1000_SPI
5481         "e1000 <card#> spi show [<offset> [<length>]]\n"
5482         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5483         "e1000 <card#> spi program <addr> <offset> <length>\n"
5484         "e1000 <card#> spi checksum [update]\n"
5485 #endif
5486         "       - Manage the Intel E1000 PCI device"
5487 );
5488 #endif /* not CONFIG_CMD_E1000 */