Prepare v2023.10
[platform/kernel/u-boot.git] / drivers / net / e1000.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /**************************************************************************
3 Intel Pro 1000 for ppcboot/das-u-boot
4 Drivers are port from Intel's Linux driver e1000-4.3.15
5 and from Etherboot pro 1000 driver by mrakes at vivato dot net
6 tested on both gig copper and gig fiber boards
7 ***************************************************************************/
8 /*******************************************************************************
9
10
11   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <command.h>
34 #include <cpu_func.h>
35 #include <dm.h>
36 #include <errno.h>
37 #include <log.h>
38 #include <malloc.h>
39 #include <memalign.h>
40 #include <net.h>
41 #include <pci.h>
42 #include <linux/delay.h>
43 #include "e1000.h"
44 #include <asm/cache.h>
45
46 #define TOUT_LOOP   100000
47
48 #define E1000_DEFAULT_PCI_PBA   0x00000030
49 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
50
51 /* NIC specific static variables go here */
52
53 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
54 #define E1000_BUFFER_ALIGN      128
55
56 /*
57  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
58  * Concurrent receiving on multiple active Ethernet devices will not work.
59  * Normally U-Boot does not support this anyway. To fix it in this driver,
60  * move these buffers and the tx/rx pointers to struct e1000_hw.
61  */
62 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
63 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
65
66 static int tx_tail;
67 static int rx_tail, rx_last;
68 static int num_cards;   /* Number of E1000 devices seen so far */
69
70 static struct pci_device_id e1000_supported[] = {
71         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
72         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
73         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
74         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
75         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
85         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
88         /* E1000 PCIe card */
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
91         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
93         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
116         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
117         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
118         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
119
120         {}
121 };
122
123 /* Function forward declarations */
124 static int e1000_setup_link(struct e1000_hw *hw);
125 static int e1000_setup_fiber_link(struct e1000_hw *hw);
126 static int e1000_setup_copper_link(struct e1000_hw *hw);
127 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
128 static void e1000_config_collision_dist(struct e1000_hw *hw);
129 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
130 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
131 static int e1000_check_for_link(struct e1000_hw *hw);
132 static int e1000_wait_autoneg(struct e1000_hw *hw);
133 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
134                                        uint16_t * duplex);
135 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
136                               uint16_t * phy_data);
137 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
138                                uint16_t phy_data);
139 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
140 static int e1000_phy_reset(struct e1000_hw *hw);
141 static int e1000_detect_gig_phy(struct e1000_hw *hw);
142 static void e1000_set_media_type(struct e1000_hw *hw);
143
144 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
145 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
146 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
147
148 #ifndef CONFIG_E1000_NO_NVM
149 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
150 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
151 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
152                 uint16_t words,
153                 uint16_t *data);
154 /******************************************************************************
155  * Raises the EEPROM's clock input.
156  *
157  * hw - Struct containing variables accessed by shared code
158  * eecd - EECD's current value
159  *****************************************************************************/
160 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
161 {
162         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
163          * wait 50 microseconds.
164          */
165         *eecd = *eecd | E1000_EECD_SK;
166         E1000_WRITE_REG(hw, EECD, *eecd);
167         E1000_WRITE_FLUSH(hw);
168         udelay(50);
169 }
170
171 /******************************************************************************
172  * Lowers the EEPROM's clock input.
173  *
174  * hw - Struct containing variables accessed by shared code
175  * eecd - EECD's current value
176  *****************************************************************************/
177 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
178 {
179         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
180          * wait 50 microseconds.
181          */
182         *eecd = *eecd & ~E1000_EECD_SK;
183         E1000_WRITE_REG(hw, EECD, *eecd);
184         E1000_WRITE_FLUSH(hw);
185         udelay(50);
186 }
187
188 /******************************************************************************
189  * Shift data bits out to the EEPROM.
190  *
191  * hw - Struct containing variables accessed by shared code
192  * data - data to send to the EEPROM
193  * count - number of bits to shift out
194  *****************************************************************************/
195 static void
196 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
197 {
198         uint32_t eecd;
199         uint32_t mask;
200
201         /* We need to shift "count" bits out to the EEPROM. So, value in the
202          * "data" parameter will be shifted out to the EEPROM one bit at a time.
203          * In order to do this, "data" must be broken down into bits.
204          */
205         mask = 0x01 << (count - 1);
206         eecd = E1000_READ_REG(hw, EECD);
207         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
208         do {
209                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
210                  * and then raising and then lowering the clock (the SK bit controls
211                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
212                  * by setting "DI" to "0" and then raising and then lowering the clock.
213                  */
214                 eecd &= ~E1000_EECD_DI;
215
216                 if (data & mask)
217                         eecd |= E1000_EECD_DI;
218
219                 E1000_WRITE_REG(hw, EECD, eecd);
220                 E1000_WRITE_FLUSH(hw);
221
222                 udelay(50);
223
224                 e1000_raise_ee_clk(hw, &eecd);
225                 e1000_lower_ee_clk(hw, &eecd);
226
227                 mask = mask >> 1;
228
229         } while (mask);
230
231         /* We leave the "DI" bit set to "0" when we leave this routine. */
232         eecd &= ~E1000_EECD_DI;
233         E1000_WRITE_REG(hw, EECD, eecd);
234 }
235
236 /******************************************************************************
237  * Shift data bits in from the EEPROM
238  *
239  * hw - Struct containing variables accessed by shared code
240  *****************************************************************************/
241 static uint16_t
242 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
243 {
244         uint32_t eecd;
245         uint32_t i;
246         uint16_t data;
247
248         /* In order to read a register from the EEPROM, we need to shift 'count'
249          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
250          * input to the EEPROM (setting the SK bit), and then reading the
251          * value of the "DO" bit.  During this "shifting in" process the
252          * "DI" bit should always be clear.
253          */
254
255         eecd = E1000_READ_REG(hw, EECD);
256
257         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
258         data = 0;
259
260         for (i = 0; i < count; i++) {
261                 data = data << 1;
262                 e1000_raise_ee_clk(hw, &eecd);
263
264                 eecd = E1000_READ_REG(hw, EECD);
265
266                 eecd &= ~(E1000_EECD_DI);
267                 if (eecd & E1000_EECD_DO)
268                         data |= 1;
269
270                 e1000_lower_ee_clk(hw, &eecd);
271         }
272
273         return data;
274 }
275
276 /******************************************************************************
277  * Returns EEPROM to a "standby" state
278  *
279  * hw - Struct containing variables accessed by shared code
280  *****************************************************************************/
281 void e1000_standby_eeprom(struct e1000_hw *hw)
282 {
283         struct e1000_eeprom_info *eeprom = &hw->eeprom;
284         uint32_t eecd;
285
286         eecd = E1000_READ_REG(hw, EECD);
287
288         if (eeprom->type == e1000_eeprom_microwire) {
289                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
290                 E1000_WRITE_REG(hw, EECD, eecd);
291                 E1000_WRITE_FLUSH(hw);
292                 udelay(eeprom->delay_usec);
293
294                 /* Clock high */
295                 eecd |= E1000_EECD_SK;
296                 E1000_WRITE_REG(hw, EECD, eecd);
297                 E1000_WRITE_FLUSH(hw);
298                 udelay(eeprom->delay_usec);
299
300                 /* Select EEPROM */
301                 eecd |= E1000_EECD_CS;
302                 E1000_WRITE_REG(hw, EECD, eecd);
303                 E1000_WRITE_FLUSH(hw);
304                 udelay(eeprom->delay_usec);
305
306                 /* Clock low */
307                 eecd &= ~E1000_EECD_SK;
308                 E1000_WRITE_REG(hw, EECD, eecd);
309                 E1000_WRITE_FLUSH(hw);
310                 udelay(eeprom->delay_usec);
311         } else if (eeprom->type == e1000_eeprom_spi) {
312                 /* Toggle CS to flush commands */
313                 eecd |= E1000_EECD_CS;
314                 E1000_WRITE_REG(hw, EECD, eecd);
315                 E1000_WRITE_FLUSH(hw);
316                 udelay(eeprom->delay_usec);
317                 eecd &= ~E1000_EECD_CS;
318                 E1000_WRITE_REG(hw, EECD, eecd);
319                 E1000_WRITE_FLUSH(hw);
320                 udelay(eeprom->delay_usec);
321         }
322 }
323
324 /***************************************************************************
325 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
326 *
327 * hw - Struct containing variables accessed by shared code
328 ****************************************************************************/
329 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
330 {
331         uint32_t eecd = 0;
332
333         DEBUGFUNC();
334
335         if (hw->mac_type == e1000_ich8lan)
336                 return false;
337
338         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
339                 eecd = E1000_READ_REG(hw, EECD);
340
341                 /* Isolate bits 15 & 16 */
342                 eecd = ((eecd >> 15) & 0x03);
343
344                 /* If both bits are set, device is Flash type */
345                 if (eecd == 0x03)
346                         return false;
347         }
348         return true;
349 }
350
351 /******************************************************************************
352  * Prepares EEPROM for access
353  *
354  * hw - Struct containing variables accessed by shared code
355  *
356  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
357  * function should be called before issuing a command to the EEPROM.
358  *****************************************************************************/
359 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
360 {
361         struct e1000_eeprom_info *eeprom = &hw->eeprom;
362         uint32_t eecd, i = 0;
363
364         DEBUGFUNC();
365
366         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
367                 return -E1000_ERR_SWFW_SYNC;
368         eecd = E1000_READ_REG(hw, EECD);
369
370         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
371                 /* Request EEPROM Access */
372                 if (hw->mac_type > e1000_82544) {
373                         eecd |= E1000_EECD_REQ;
374                         E1000_WRITE_REG(hw, EECD, eecd);
375                         eecd = E1000_READ_REG(hw, EECD);
376                         while ((!(eecd & E1000_EECD_GNT)) &&
377                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
378                                 i++;
379                                 udelay(5);
380                                 eecd = E1000_READ_REG(hw, EECD);
381                         }
382                         if (!(eecd & E1000_EECD_GNT)) {
383                                 eecd &= ~E1000_EECD_REQ;
384                                 E1000_WRITE_REG(hw, EECD, eecd);
385                                 DEBUGOUT("Could not acquire EEPROM grant\n");
386                                 return -E1000_ERR_EEPROM;
387                         }
388                 }
389         }
390
391         /* Setup EEPROM for Read/Write */
392
393         if (eeprom->type == e1000_eeprom_microwire) {
394                 /* Clear SK and DI */
395                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
396                 E1000_WRITE_REG(hw, EECD, eecd);
397
398                 /* Set CS */
399                 eecd |= E1000_EECD_CS;
400                 E1000_WRITE_REG(hw, EECD, eecd);
401         } else if (eeprom->type == e1000_eeprom_spi) {
402                 /* Clear SK and CS */
403                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
404                 E1000_WRITE_REG(hw, EECD, eecd);
405                 udelay(1);
406         }
407
408         return E1000_SUCCESS;
409 }
410
411 /******************************************************************************
412  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
413  * is configured.  Additionally, if this is ICH8, the flash controller GbE
414  * registers must be mapped, or this will crash.
415  *
416  * hw - Struct containing variables accessed by shared code
417  *****************************************************************************/
418 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
419 {
420         struct e1000_eeprom_info *eeprom = &hw->eeprom;
421         uint32_t eecd;
422         int32_t ret_val = E1000_SUCCESS;
423         uint16_t eeprom_size;
424
425         if (hw->mac_type == e1000_igb)
426                 eecd = E1000_READ_REG(hw, I210_EECD);
427         else
428                 eecd = E1000_READ_REG(hw, EECD);
429
430         DEBUGFUNC();
431
432         switch (hw->mac_type) {
433         case e1000_82542_rev2_0:
434         case e1000_82542_rev2_1:
435         case e1000_82543:
436         case e1000_82544:
437                 eeprom->type = e1000_eeprom_microwire;
438                 eeprom->word_size = 64;
439                 eeprom->opcode_bits = 3;
440                 eeprom->address_bits = 6;
441                 eeprom->delay_usec = 50;
442                 eeprom->use_eerd = false;
443                 eeprom->use_eewr = false;
444         break;
445         case e1000_82540:
446         case e1000_82545:
447         case e1000_82545_rev_3:
448         case e1000_82546:
449         case e1000_82546_rev_3:
450                 eeprom->type = e1000_eeprom_microwire;
451                 eeprom->opcode_bits = 3;
452                 eeprom->delay_usec = 50;
453                 if (eecd & E1000_EECD_SIZE) {
454                         eeprom->word_size = 256;
455                         eeprom->address_bits = 8;
456                 } else {
457                         eeprom->word_size = 64;
458                         eeprom->address_bits = 6;
459                 }
460                 eeprom->use_eerd = false;
461                 eeprom->use_eewr = false;
462                 break;
463         case e1000_82541:
464         case e1000_82541_rev_2:
465         case e1000_82547:
466         case e1000_82547_rev_2:
467                 if (eecd & E1000_EECD_TYPE) {
468                         eeprom->type = e1000_eeprom_spi;
469                         eeprom->opcode_bits = 8;
470                         eeprom->delay_usec = 1;
471                         if (eecd & E1000_EECD_ADDR_BITS) {
472                                 eeprom->page_size = 32;
473                                 eeprom->address_bits = 16;
474                         } else {
475                                 eeprom->page_size = 8;
476                                 eeprom->address_bits = 8;
477                         }
478                 } else {
479                         eeprom->type = e1000_eeprom_microwire;
480                         eeprom->opcode_bits = 3;
481                         eeprom->delay_usec = 50;
482                         if (eecd & E1000_EECD_ADDR_BITS) {
483                                 eeprom->word_size = 256;
484                                 eeprom->address_bits = 8;
485                         } else {
486                                 eeprom->word_size = 64;
487                                 eeprom->address_bits = 6;
488                         }
489                 }
490                 eeprom->use_eerd = false;
491                 eeprom->use_eewr = false;
492                 break;
493         case e1000_82571:
494         case e1000_82572:
495                 eeprom->type = e1000_eeprom_spi;
496                 eeprom->opcode_bits = 8;
497                 eeprom->delay_usec = 1;
498                 if (eecd & E1000_EECD_ADDR_BITS) {
499                         eeprom->page_size = 32;
500                         eeprom->address_bits = 16;
501                 } else {
502                         eeprom->page_size = 8;
503                         eeprom->address_bits = 8;
504                 }
505                 eeprom->use_eerd = false;
506                 eeprom->use_eewr = false;
507                 break;
508         case e1000_82573:
509         case e1000_82574:
510                 eeprom->type = e1000_eeprom_spi;
511                 eeprom->opcode_bits = 8;
512                 eeprom->delay_usec = 1;
513                 if (eecd & E1000_EECD_ADDR_BITS) {
514                         eeprom->page_size = 32;
515                         eeprom->address_bits = 16;
516                 } else {
517                         eeprom->page_size = 8;
518                         eeprom->address_bits = 8;
519                 }
520                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
521                         eeprom->use_eerd = true;
522                         eeprom->use_eewr = true;
523
524                         eeprom->type = e1000_eeprom_flash;
525                         eeprom->word_size = 2048;
526
527                 /* Ensure that the Autonomous FLASH update bit is cleared due to
528                  * Flash update issue on parts which use a FLASH for NVM. */
529                         eecd &= ~E1000_EECD_AUPDEN;
530                         E1000_WRITE_REG(hw, EECD, eecd);
531                 }
532                 break;
533         case e1000_80003es2lan:
534                 eeprom->type = e1000_eeprom_spi;
535                 eeprom->opcode_bits = 8;
536                 eeprom->delay_usec = 1;
537                 if (eecd & E1000_EECD_ADDR_BITS) {
538                         eeprom->page_size = 32;
539                         eeprom->address_bits = 16;
540                 } else {
541                         eeprom->page_size = 8;
542                         eeprom->address_bits = 8;
543                 }
544                 eeprom->use_eerd = true;
545                 eeprom->use_eewr = false;
546                 break;
547         case e1000_igb:
548                 /* i210 has 4k of iNVM mapped as EEPROM */
549                 eeprom->type = e1000_eeprom_invm;
550                 eeprom->opcode_bits = 8;
551                 eeprom->delay_usec = 1;
552                 eeprom->page_size = 32;
553                 eeprom->address_bits = 16;
554                 eeprom->use_eerd = true;
555                 eeprom->use_eewr = false;
556                 break;
557         default:
558                 break;
559         }
560
561         if (eeprom->type == e1000_eeprom_spi ||
562             eeprom->type == e1000_eeprom_invm) {
563                 /* eeprom_size will be an enum [0..8] that maps
564                  * to eeprom sizes 128B to
565                  * 32KB (incremented by powers of 2).
566                  */
567                 if (hw->mac_type <= e1000_82547_rev_2) {
568                         /* Set to default value for initial eeprom read. */
569                         eeprom->word_size = 64;
570                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
571                                         &eeprom_size);
572                         if (ret_val)
573                                 return ret_val;
574                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
575                                 >> EEPROM_SIZE_SHIFT;
576                         /* 256B eeprom size was not supported in earlier
577                          * hardware, so we bump eeprom_size up one to
578                          * ensure that "1" (which maps to 256B) is never
579                          * the result used in the shifting logic below. */
580                         if (eeprom_size)
581                                 eeprom_size++;
582                 } else {
583                         eeprom_size = (uint16_t)((eecd &
584                                 E1000_EECD_SIZE_EX_MASK) >>
585                                 E1000_EECD_SIZE_EX_SHIFT);
586                 }
587
588                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
589         }
590         return ret_val;
591 }
592
593 /******************************************************************************
594  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
595  *
596  * hw - Struct containing variables accessed by shared code
597  *****************************************************************************/
598 static int32_t
599 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
600 {
601         uint32_t attempts = 100000;
602         uint32_t i, reg = 0;
603         int32_t done = E1000_ERR_EEPROM;
604
605         for (i = 0; i < attempts; i++) {
606                 if (eerd == E1000_EEPROM_POLL_READ) {
607                         if (hw->mac_type == e1000_igb)
608                                 reg = E1000_READ_REG(hw, I210_EERD);
609                         else
610                                 reg = E1000_READ_REG(hw, EERD);
611                 } else {
612                         if (hw->mac_type == e1000_igb)
613                                 reg = E1000_READ_REG(hw, I210_EEWR);
614                         else
615                                 reg = E1000_READ_REG(hw, EEWR);
616                 }
617
618                 if (reg & E1000_EEPROM_RW_REG_DONE) {
619                         done = E1000_SUCCESS;
620                         break;
621                 }
622                 udelay(5);
623         }
624
625         return done;
626 }
627
628 /******************************************************************************
629  * Reads a 16 bit word from the EEPROM using the EERD register.
630  *
631  * hw - Struct containing variables accessed by shared code
632  * offset - offset of  word in the EEPROM to read
633  * data - word read from the EEPROM
634  * words - number of words to read
635  *****************************************************************************/
636 static int32_t
637 e1000_read_eeprom_eerd(struct e1000_hw *hw,
638                         uint16_t offset,
639                         uint16_t words,
640                         uint16_t *data)
641 {
642         uint32_t i, eerd = 0;
643         int32_t error = 0;
644
645         for (i = 0; i < words; i++) {
646                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
647                         E1000_EEPROM_RW_REG_START;
648
649                 if (hw->mac_type == e1000_igb)
650                         E1000_WRITE_REG(hw, I210_EERD, eerd);
651                 else
652                         E1000_WRITE_REG(hw, EERD, eerd);
653
654                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
655
656                 if (error)
657                         break;
658
659                 if (hw->mac_type == e1000_igb) {
660                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
661                                 E1000_EEPROM_RW_REG_DATA);
662                 } else {
663                         data[i] = (E1000_READ_REG(hw, EERD) >>
664                                 E1000_EEPROM_RW_REG_DATA);
665                 }
666
667         }
668
669         return error;
670 }
671
672 void e1000_release_eeprom(struct e1000_hw *hw)
673 {
674         uint32_t eecd;
675
676         DEBUGFUNC();
677
678         eecd = E1000_READ_REG(hw, EECD);
679
680         if (hw->eeprom.type == e1000_eeprom_spi) {
681                 eecd |= E1000_EECD_CS;  /* Pull CS high */
682                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
683
684                 E1000_WRITE_REG(hw, EECD, eecd);
685
686                 udelay(hw->eeprom.delay_usec);
687         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
688                 /* cleanup eeprom */
689
690                 /* CS on Microwire is active-high */
691                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
692
693                 E1000_WRITE_REG(hw, EECD, eecd);
694
695                 /* Rising edge of clock */
696                 eecd |= E1000_EECD_SK;
697                 E1000_WRITE_REG(hw, EECD, eecd);
698                 E1000_WRITE_FLUSH(hw);
699                 udelay(hw->eeprom.delay_usec);
700
701                 /* Falling edge of clock */
702                 eecd &= ~E1000_EECD_SK;
703                 E1000_WRITE_REG(hw, EECD, eecd);
704                 E1000_WRITE_FLUSH(hw);
705                 udelay(hw->eeprom.delay_usec);
706         }
707
708         /* Stop requesting EEPROM access */
709         if (hw->mac_type > e1000_82544) {
710                 eecd &= ~E1000_EECD_REQ;
711                 E1000_WRITE_REG(hw, EECD, eecd);
712         }
713
714         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
715 }
716
717 /******************************************************************************
718  * Reads a 16 bit word from the EEPROM.
719  *
720  * hw - Struct containing variables accessed by shared code
721  *****************************************************************************/
722 static int32_t
723 e1000_spi_eeprom_ready(struct e1000_hw *hw)
724 {
725         uint16_t retry_count = 0;
726         uint8_t spi_stat_reg;
727
728         DEBUGFUNC();
729
730         /* Read "Status Register" repeatedly until the LSB is cleared.  The
731          * EEPROM will signal that the command has been completed by clearing
732          * bit 0 of the internal status register.  If it's not cleared within
733          * 5 milliseconds, then error out.
734          */
735         retry_count = 0;
736         do {
737                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
738                         hw->eeprom.opcode_bits);
739                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
740                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
741                         break;
742
743                 udelay(5);
744                 retry_count += 5;
745
746                 e1000_standby_eeprom(hw);
747         } while (retry_count < EEPROM_MAX_RETRY_SPI);
748
749         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
750          * only 0-5mSec on 5V devices)
751          */
752         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
753                 DEBUGOUT("SPI EEPROM Status error\n");
754                 return -E1000_ERR_EEPROM;
755         }
756
757         return E1000_SUCCESS;
758 }
759
760 /******************************************************************************
761  * Reads a 16 bit word from the EEPROM.
762  *
763  * hw - Struct containing variables accessed by shared code
764  * offset - offset of  word in the EEPROM to read
765  * data - word read from the EEPROM
766  *****************************************************************************/
767 static int32_t
768 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
769                 uint16_t words, uint16_t *data)
770 {
771         struct e1000_eeprom_info *eeprom = &hw->eeprom;
772         uint32_t i = 0;
773
774         DEBUGFUNC();
775
776         /* If eeprom is not yet detected, do so now */
777         if (eeprom->word_size == 0)
778                 e1000_init_eeprom_params(hw);
779
780         /* A check for invalid values:  offset too large, too many words,
781          * and not enough words.
782          */
783         if ((offset >= eeprom->word_size) ||
784                 (words > eeprom->word_size - offset) ||
785                 (words == 0)) {
786                 DEBUGOUT("\"words\" parameter out of bounds."
787                         "Words = %d, size = %d\n", offset, eeprom->word_size);
788                 return -E1000_ERR_EEPROM;
789         }
790
791         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
792          * directly. In this case, we need to acquire the EEPROM so that
793          * FW or other port software does not interrupt.
794          */
795         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
796                 hw->eeprom.use_eerd == false) {
797
798                 /* Prepare the EEPROM for bit-bang reading */
799                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
800                         return -E1000_ERR_EEPROM;
801         }
802
803         /* Eerd register EEPROM access requires no eeprom aquire/release */
804         if (eeprom->use_eerd == true)
805                 return e1000_read_eeprom_eerd(hw, offset, words, data);
806
807         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
808          * acquired the EEPROM at this point, so any returns should relase it */
809         if (eeprom->type == e1000_eeprom_spi) {
810                 uint16_t word_in;
811                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
812
813                 if (e1000_spi_eeprom_ready(hw)) {
814                         e1000_release_eeprom(hw);
815                         return -E1000_ERR_EEPROM;
816                 }
817
818                 e1000_standby_eeprom(hw);
819
820                 /* Some SPI eeproms use the 8th address bit embedded in
821                  * the opcode */
822                 if ((eeprom->address_bits == 8) && (offset >= 128))
823                         read_opcode |= EEPROM_A8_OPCODE_SPI;
824
825                 /* Send the READ command (opcode + addr)  */
826                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
827                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
828                                 eeprom->address_bits);
829
830                 /* Read the data.  The address of the eeprom internally
831                  * increments with each byte (spi) being read, saving on the
832                  * overhead of eeprom setup and tear-down.  The address
833                  * counter will roll over if reading beyond the size of
834                  * the eeprom, thus allowing the entire memory to be read
835                  * starting from any offset. */
836                 for (i = 0; i < words; i++) {
837                         word_in = e1000_shift_in_ee_bits(hw, 16);
838                         data[i] = (word_in >> 8) | (word_in << 8);
839                 }
840         } else if (eeprom->type == e1000_eeprom_microwire) {
841                 for (i = 0; i < words; i++) {
842                         /* Send the READ command (opcode + addr)  */
843                         e1000_shift_out_ee_bits(hw,
844                                 EEPROM_READ_OPCODE_MICROWIRE,
845                                 eeprom->opcode_bits);
846                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
847                                 eeprom->address_bits);
848
849                         /* Read the data.  For microwire, each word requires
850                          * the overhead of eeprom setup and tear-down. */
851                         data[i] = e1000_shift_in_ee_bits(hw, 16);
852                         e1000_standby_eeprom(hw);
853                 }
854         }
855
856         /* End this read operation */
857         e1000_release_eeprom(hw);
858
859         return E1000_SUCCESS;
860 }
861
862 /******************************************************************************
863  *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
864  *  @hw: pointer to the HW structure
865  *  @offset: offset within the Shadow Ram to be written to
866  *  @words: number of words to write
867  *  @data: 16 bit word(s) to be written to the Shadow Ram
868  *
869  *  Writes data to Shadow Ram at offset using EEWR register.
870  *
871  *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
872  *  Shadow Ram will most likely contain an invalid checksum.
873  *****************************************************************************/
874 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
875                                        uint16_t words, uint16_t *data)
876 {
877         struct e1000_eeprom_info *eeprom = &hw->eeprom;
878         uint32_t i, k, eewr = 0;
879         uint32_t attempts = 100000;
880         int32_t ret_val = 0;
881
882         /* A check for invalid values:  offset too large, too many words,
883          * too many words for the offset, and not enough words.
884          */
885         if ((offset >= eeprom->word_size) ||
886             (words > (eeprom->word_size - offset)) || (words == 0)) {
887                 DEBUGOUT("nvm parameter(s) out of bounds\n");
888                 ret_val = -E1000_ERR_EEPROM;
889                 goto out;
890         }
891
892         for (i = 0; i < words; i++) {
893                 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
894                                 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
895                                 E1000_EEPROM_RW_REG_START;
896
897                 E1000_WRITE_REG(hw, I210_EEWR, eewr);
898
899                 for (k = 0; k < attempts; k++) {
900                         if (E1000_EEPROM_RW_REG_DONE &
901                             E1000_READ_REG(hw, I210_EEWR)) {
902                                 ret_val = 0;
903                                 break;
904                         }
905                         udelay(5);
906                 }
907
908                 if (ret_val) {
909                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
910                         break;
911                 }
912         }
913
914 out:
915         return ret_val;
916 }
917
918 /******************************************************************************
919  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
920  *  @hw: pointer to the HW structure
921  *
922  *****************************************************************************/
923 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
924 {
925         int32_t ret_val = -E1000_ERR_EEPROM;
926         uint32_t i, reg;
927
928         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
929                 reg = E1000_READ_REG(hw, EECD);
930                 if (reg & E1000_EECD_FLUDONE_I210) {
931                         ret_val = 0;
932                         break;
933                 }
934                 udelay(5);
935         }
936
937         return ret_val;
938 }
939
940 /******************************************************************************
941  *  e1000_update_flash_i210 - Commit EEPROM to the flash
942  *  @hw: pointer to the HW structure
943  *
944  *****************************************************************************/
945 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
946 {
947         int32_t ret_val = 0;
948         uint32_t flup;
949
950         ret_val = e1000_pool_flash_update_done_i210(hw);
951         if (ret_val == -E1000_ERR_EEPROM) {
952                 DEBUGOUT("Flash update time out\n");
953                 goto out;
954         }
955
956         flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
957         E1000_WRITE_REG(hw, EECD, flup);
958
959         ret_val = e1000_pool_flash_update_done_i210(hw);
960         if (ret_val)
961                 DEBUGOUT("Flash update time out\n");
962         else
963                 DEBUGOUT("Flash update complete\n");
964
965 out:
966         return ret_val;
967 }
968
969 /******************************************************************************
970  *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
971  *  @hw: pointer to the HW structure
972  *
973  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
974  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
975  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
976  *****************************************************************************/
977 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
978 {
979         int32_t ret_val = 0;
980         uint16_t checksum = 0;
981         uint16_t i, nvm_data;
982
983         /* Read the first word from the EEPROM. If this times out or fails, do
984          * not continue or we could be in for a very long wait while every
985          * EEPROM read fails
986          */
987         ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
988         if (ret_val) {
989                 DEBUGOUT("EEPROM read failed\n");
990                 goto out;
991         }
992
993         if (!(e1000_get_hw_eeprom_semaphore(hw))) {
994                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
995                  * because we do not want to take the synchronization
996                  * semaphores twice here.
997                  */
998
999                 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1000                         ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1001                         if (ret_val) {
1002                                 e1000_put_hw_eeprom_semaphore(hw);
1003                                 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1004                                 goto out;
1005                         }
1006                         checksum += nvm_data;
1007                 }
1008                 checksum = (uint16_t)EEPROM_SUM - checksum;
1009                 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1010                                                   &checksum);
1011                 if (ret_val) {
1012                         e1000_put_hw_eeprom_semaphore(hw);
1013                         DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1014                         goto out;
1015                 }
1016
1017                 e1000_put_hw_eeprom_semaphore(hw);
1018
1019                 ret_val = e1000_update_flash_i210(hw);
1020         } else {
1021                 ret_val = -E1000_ERR_SWFW_SYNC;
1022         }
1023
1024 out:
1025         return ret_val;
1026 }
1027
1028 /******************************************************************************
1029  * Verifies that the EEPROM has a valid checksum
1030  *
1031  * hw - Struct containing variables accessed by shared code
1032  *
1033  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1034  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1035  * valid.
1036  *****************************************************************************/
1037 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1038 {
1039         uint16_t i, checksum, checksum_reg, *buf;
1040
1041         DEBUGFUNC();
1042
1043         /* Allocate a temporary buffer */
1044         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1045         if (!buf) {
1046                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1047                 return -E1000_ERR_EEPROM;
1048         }
1049
1050         /* Read the EEPROM */
1051         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1052                 E1000_ERR(hw, "Unable to read EEPROM!\n");
1053                 return -E1000_ERR_EEPROM;
1054         }
1055
1056         /* Compute the checksum */
1057         checksum = 0;
1058         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1059                 checksum += buf[i];
1060         checksum = ((uint16_t)EEPROM_SUM) - checksum;
1061         checksum_reg = buf[i];
1062
1063         /* Verify it! */
1064         if (checksum == checksum_reg)
1065                 return 0;
1066
1067         /* Hrm, verification failed, print an error */
1068         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1069         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
1070                   checksum_reg, checksum);
1071
1072         return -E1000_ERR_EEPROM;
1073 }
1074 #endif /* CONFIG_E1000_NO_NVM */
1075
1076 /*****************************************************************************
1077  * Set PHY to class A mode
1078  * Assumes the following operations will follow to enable the new class mode.
1079  *  1. Do a PHY soft reset
1080  *  2. Restart auto-negotiation or force link.
1081  *
1082  * hw - Struct containing variables accessed by shared code
1083  ****************************************************************************/
1084 static int32_t
1085 e1000_set_phy_mode(struct e1000_hw *hw)
1086 {
1087 #ifndef CONFIG_E1000_NO_NVM
1088         int32_t ret_val;
1089         uint16_t eeprom_data;
1090
1091         DEBUGFUNC();
1092
1093         if ((hw->mac_type == e1000_82545_rev_3) &&
1094                 (hw->media_type == e1000_media_type_copper)) {
1095                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1096                                 1, &eeprom_data);
1097                 if (ret_val)
1098                         return ret_val;
1099
1100                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1101                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
1102                         ret_val = e1000_write_phy_reg(hw,
1103                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
1104                         if (ret_val)
1105                                 return ret_val;
1106                         ret_val = e1000_write_phy_reg(hw,
1107                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
1108                         if (ret_val)
1109                                 return ret_val;
1110
1111                         hw->phy_reset_disable = false;
1112                 }
1113         }
1114 #endif
1115         return E1000_SUCCESS;
1116 }
1117
1118 #ifndef CONFIG_E1000_NO_NVM
1119 /***************************************************************************
1120  *
1121  * Obtaining software semaphore bit (SMBI) before resetting PHY.
1122  *
1123  * hw: Struct containing variables accessed by shared code
1124  *
1125  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1126  *            E1000_SUCCESS at any other case.
1127  *
1128  ***************************************************************************/
1129 static int32_t
1130 e1000_get_software_semaphore(struct e1000_hw *hw)
1131 {
1132          int32_t timeout = hw->eeprom.word_size + 1;
1133          uint32_t swsm;
1134
1135         DEBUGFUNC();
1136
1137         if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1138                 return E1000_SUCCESS;
1139
1140         while (timeout) {
1141                 swsm = E1000_READ_REG(hw, SWSM);
1142                 /* If SMBI bit cleared, it is now set and we hold
1143                  * the semaphore */
1144                 if (!(swsm & E1000_SWSM_SMBI))
1145                         break;
1146                 mdelay(1);
1147                 timeout--;
1148         }
1149
1150         if (!timeout) {
1151                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1152                 return -E1000_ERR_RESET;
1153         }
1154
1155         return E1000_SUCCESS;
1156 }
1157 #endif
1158
1159 /***************************************************************************
1160  * This function clears HW semaphore bits.
1161  *
1162  * hw: Struct containing variables accessed by shared code
1163  *
1164  * returns: - None.
1165  *
1166  ***************************************************************************/
1167 static void
1168 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1169 {
1170 #ifndef CONFIG_E1000_NO_NVM
1171          uint32_t swsm;
1172
1173         DEBUGFUNC();
1174
1175         if (!hw->eeprom_semaphore_present)
1176                 return;
1177
1178         swsm = E1000_READ_REG(hw, SWSM);
1179         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1180                 /* Release both semaphores. */
1181                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1182         } else
1183                 swsm &= ~(E1000_SWSM_SWESMBI);
1184         E1000_WRITE_REG(hw, SWSM, swsm);
1185 #endif
1186 }
1187
1188 /***************************************************************************
1189  *
1190  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1191  * adapter or Eeprom access.
1192  *
1193  * hw: Struct containing variables accessed by shared code
1194  *
1195  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1196  *            E1000_SUCCESS at any other case.
1197  *
1198  ***************************************************************************/
1199 static int32_t
1200 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1201 {
1202 #ifndef CONFIG_E1000_NO_NVM
1203         int32_t timeout;
1204         uint32_t swsm;
1205
1206         DEBUGFUNC();
1207
1208         if (!hw->eeprom_semaphore_present)
1209                 return E1000_SUCCESS;
1210
1211         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1212                 /* Get the SW semaphore. */
1213                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1214                         return -E1000_ERR_EEPROM;
1215         }
1216
1217         /* Get the FW semaphore. */
1218         timeout = hw->eeprom.word_size + 1;
1219         while (timeout) {
1220                 swsm = E1000_READ_REG(hw, SWSM);
1221                 swsm |= E1000_SWSM_SWESMBI;
1222                 E1000_WRITE_REG(hw, SWSM, swsm);
1223                 /* if we managed to set the bit we got the semaphore. */
1224                 swsm = E1000_READ_REG(hw, SWSM);
1225                 if (swsm & E1000_SWSM_SWESMBI)
1226                         break;
1227
1228                 udelay(50);
1229                 timeout--;
1230         }
1231
1232         if (!timeout) {
1233                 /* Release semaphores */
1234                 e1000_put_hw_eeprom_semaphore(hw);
1235                 DEBUGOUT("Driver can't access the Eeprom - "
1236                                 "SWESMBI bit is set.\n");
1237                 return -E1000_ERR_EEPROM;
1238         }
1239 #endif
1240         return E1000_SUCCESS;
1241 }
1242
1243 /* Take ownership of the PHY */
1244 static int32_t
1245 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1246 {
1247         uint32_t swfw_sync = 0;
1248         uint32_t swmask = mask;
1249         uint32_t fwmask = mask << 16;
1250         int32_t timeout = 200;
1251
1252         DEBUGFUNC();
1253         while (timeout) {
1254                 if (e1000_get_hw_eeprom_semaphore(hw))
1255                         return -E1000_ERR_SWFW_SYNC;
1256
1257                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1258                 if (!(swfw_sync & (fwmask | swmask)))
1259                         break;
1260
1261                 /* firmware currently using resource (fwmask) */
1262                 /* or other software thread currently using resource (swmask) */
1263                 e1000_put_hw_eeprom_semaphore(hw);
1264                 mdelay(5);
1265                 timeout--;
1266         }
1267
1268         if (!timeout) {
1269                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1270                 return -E1000_ERR_SWFW_SYNC;
1271         }
1272
1273         swfw_sync |= swmask;
1274         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1275
1276         e1000_put_hw_eeprom_semaphore(hw);
1277         return E1000_SUCCESS;
1278 }
1279
1280 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1281 {
1282         uint32_t swfw_sync = 0;
1283
1284         DEBUGFUNC();
1285         while (e1000_get_hw_eeprom_semaphore(hw))
1286                 ; /* Empty */
1287
1288         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1289         swfw_sync &= ~mask;
1290         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1291
1292         e1000_put_hw_eeprom_semaphore(hw);
1293 }
1294
1295 static bool e1000_is_second_port(struct e1000_hw *hw)
1296 {
1297         switch (hw->mac_type) {
1298         case e1000_80003es2lan:
1299         case e1000_82546:
1300         case e1000_82571:
1301                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1302                         return true;
1303                 /* Fallthrough */
1304         default:
1305                 return false;
1306         }
1307 }
1308
1309 #ifndef CONFIG_E1000_NO_NVM
1310 /******************************************************************************
1311  * Reads the adapter's MAC address from the EEPROM
1312  *
1313  * hw - Struct containing variables accessed by shared code
1314  * enetaddr - buffering where the MAC address will be stored
1315  *****************************************************************************/
1316 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1317                                            unsigned char enetaddr[6])
1318 {
1319         uint16_t offset;
1320         uint16_t eeprom_data;
1321         int i;
1322
1323         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1324                 offset = i >> 1;
1325                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1326                         DEBUGOUT("EEPROM Read Error\n");
1327                         return -E1000_ERR_EEPROM;
1328                 }
1329                 enetaddr[i] = eeprom_data & 0xff;
1330                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1331         }
1332
1333         return 0;
1334 }
1335
1336 /******************************************************************************
1337  * Reads the adapter's MAC address from the RAL/RAH registers
1338  *
1339  * hw - Struct containing variables accessed by shared code
1340  * enetaddr - buffering where the MAC address will be stored
1341  *****************************************************************************/
1342 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1343                                          unsigned char enetaddr[6])
1344 {
1345         uint16_t offset, tmp;
1346         uint32_t reg_data = 0;
1347         int i;
1348
1349         if (hw->mac_type != e1000_igb)
1350                 return -E1000_ERR_MAC_TYPE;
1351
1352         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1353                 offset = i >> 1;
1354
1355                 if (offset == 0)
1356                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1357                 else if (offset == 1)
1358                         reg_data >>= 16;
1359                 else if (offset == 2)
1360                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1361                 tmp = reg_data & 0xffff;
1362
1363                 enetaddr[i] = tmp & 0xff;
1364                 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1365         }
1366
1367         return 0;
1368 }
1369
1370 /******************************************************************************
1371  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1372  * second function of dual function devices
1373  *
1374  * hw - Struct containing variables accessed by shared code
1375  * enetaddr - buffering where the MAC address will be stored
1376  *****************************************************************************/
1377 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1378 {
1379         int ret_val;
1380
1381         if (hw->mac_type == e1000_igb) {
1382                 /* i210 preloads MAC address into RAL/RAH registers */
1383                 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1384         } else {
1385                 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1386         }
1387         if (ret_val)
1388                 return ret_val;
1389
1390         /* Invert the last bit if this is the second device */
1391         if (e1000_is_second_port(hw))
1392                 enetaddr[5] ^= 1;
1393
1394         return 0;
1395 }
1396 #endif
1397
1398 /******************************************************************************
1399  * Initializes receive address filters.
1400  *
1401  * hw - Struct containing variables accessed by shared code
1402  *
1403  * Places the MAC address in receive address register 0 and clears the rest
1404  * of the receive addresss registers. Clears the multicast table. Assumes
1405  * the receiver is in reset when the routine is called.
1406  *****************************************************************************/
1407 static void
1408 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1409 {
1410         uint32_t i;
1411         uint32_t addr_low;
1412         uint32_t addr_high;
1413
1414         DEBUGFUNC();
1415
1416         /* Setup the receive address. */
1417         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1418         addr_low = (enetaddr[0] |
1419                     (enetaddr[1] << 8) |
1420                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1421
1422         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1423
1424         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1425         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1426
1427         /* Zero out the other 15 receive addresses. */
1428         DEBUGOUT("Clearing RAR[1-15]\n");
1429         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1430                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1431                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1432         }
1433 }
1434
1435 /******************************************************************************
1436  * Clears the VLAN filer table
1437  *
1438  * hw - Struct containing variables accessed by shared code
1439  *****************************************************************************/
1440 static void
1441 e1000_clear_vfta(struct e1000_hw *hw)
1442 {
1443         uint32_t offset;
1444
1445         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1446                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1447 }
1448
1449 /******************************************************************************
1450  * Set the mac type member in the hw struct.
1451  *
1452  * hw - Struct containing variables accessed by shared code
1453  *****************************************************************************/
1454 int32_t
1455 e1000_set_mac_type(struct e1000_hw *hw)
1456 {
1457         DEBUGFUNC();
1458
1459         switch (hw->device_id) {
1460         case E1000_DEV_ID_82542:
1461                 switch (hw->revision_id) {
1462                 case E1000_82542_2_0_REV_ID:
1463                         hw->mac_type = e1000_82542_rev2_0;
1464                         break;
1465                 case E1000_82542_2_1_REV_ID:
1466                         hw->mac_type = e1000_82542_rev2_1;
1467                         break;
1468                 default:
1469                         /* Invalid 82542 revision ID */
1470                         return -E1000_ERR_MAC_TYPE;
1471                 }
1472                 break;
1473         case E1000_DEV_ID_82543GC_FIBER:
1474         case E1000_DEV_ID_82543GC_COPPER:
1475                 hw->mac_type = e1000_82543;
1476                 break;
1477         case E1000_DEV_ID_82544EI_COPPER:
1478         case E1000_DEV_ID_82544EI_FIBER:
1479         case E1000_DEV_ID_82544GC_COPPER:
1480         case E1000_DEV_ID_82544GC_LOM:
1481                 hw->mac_type = e1000_82544;
1482                 break;
1483         case E1000_DEV_ID_82540EM:
1484         case E1000_DEV_ID_82540EM_LOM:
1485         case E1000_DEV_ID_82540EP:
1486         case E1000_DEV_ID_82540EP_LOM:
1487         case E1000_DEV_ID_82540EP_LP:
1488                 hw->mac_type = e1000_82540;
1489                 break;
1490         case E1000_DEV_ID_82545EM_COPPER:
1491         case E1000_DEV_ID_82545EM_FIBER:
1492                 hw->mac_type = e1000_82545;
1493                 break;
1494         case E1000_DEV_ID_82545GM_COPPER:
1495         case E1000_DEV_ID_82545GM_FIBER:
1496         case E1000_DEV_ID_82545GM_SERDES:
1497                 hw->mac_type = e1000_82545_rev_3;
1498                 break;
1499         case E1000_DEV_ID_82546EB_COPPER:
1500         case E1000_DEV_ID_82546EB_FIBER:
1501         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1502                 hw->mac_type = e1000_82546;
1503                 break;
1504         case E1000_DEV_ID_82546GB_COPPER:
1505         case E1000_DEV_ID_82546GB_FIBER:
1506         case E1000_DEV_ID_82546GB_SERDES:
1507         case E1000_DEV_ID_82546GB_PCIE:
1508         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1509         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1510                 hw->mac_type = e1000_82546_rev_3;
1511                 break;
1512         case E1000_DEV_ID_82541EI:
1513         case E1000_DEV_ID_82541EI_MOBILE:
1514         case E1000_DEV_ID_82541ER_LOM:
1515                 hw->mac_type = e1000_82541;
1516                 break;
1517         case E1000_DEV_ID_82541ER:
1518         case E1000_DEV_ID_82541GI:
1519         case E1000_DEV_ID_82541GI_LF:
1520         case E1000_DEV_ID_82541GI_MOBILE:
1521                 hw->mac_type = e1000_82541_rev_2;
1522                 break;
1523         case E1000_DEV_ID_82547EI:
1524         case E1000_DEV_ID_82547EI_MOBILE:
1525                 hw->mac_type = e1000_82547;
1526                 break;
1527         case E1000_DEV_ID_82547GI:
1528                 hw->mac_type = e1000_82547_rev_2;
1529                 break;
1530         case E1000_DEV_ID_82571EB_COPPER:
1531         case E1000_DEV_ID_82571EB_FIBER:
1532         case E1000_DEV_ID_82571EB_SERDES:
1533         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1534         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1535         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1536         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1537         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1538         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1539                 hw->mac_type = e1000_82571;
1540                 break;
1541         case E1000_DEV_ID_82572EI_COPPER:
1542         case E1000_DEV_ID_82572EI_FIBER:
1543         case E1000_DEV_ID_82572EI_SERDES:
1544         case E1000_DEV_ID_82572EI:
1545                 hw->mac_type = e1000_82572;
1546                 break;
1547         case E1000_DEV_ID_82573E:
1548         case E1000_DEV_ID_82573E_IAMT:
1549         case E1000_DEV_ID_82573L:
1550                 hw->mac_type = e1000_82573;
1551                 break;
1552         case E1000_DEV_ID_82574L:
1553                 hw->mac_type = e1000_82574;
1554                 break;
1555         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1556         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1557         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1558         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1559                 hw->mac_type = e1000_80003es2lan;
1560                 break;
1561         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1562         case E1000_DEV_ID_ICH8_IGP_AMT:
1563         case E1000_DEV_ID_ICH8_IGP_C:
1564         case E1000_DEV_ID_ICH8_IFE:
1565         case E1000_DEV_ID_ICH8_IFE_GT:
1566         case E1000_DEV_ID_ICH8_IFE_G:
1567         case E1000_DEV_ID_ICH8_IGP_M:
1568                 hw->mac_type = e1000_ich8lan;
1569                 break;
1570         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1571         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1572         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1573         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1574         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1575         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1576         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1577         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1578                 hw->mac_type = e1000_igb;
1579                 break;
1580         default:
1581                 /* Should never have loaded on this device */
1582                 return -E1000_ERR_MAC_TYPE;
1583         }
1584         return E1000_SUCCESS;
1585 }
1586
1587 /******************************************************************************
1588  * Reset the transmit and receive units; mask and clear all interrupts.
1589  *
1590  * hw - Struct containing variables accessed by shared code
1591  *****************************************************************************/
1592 void
1593 e1000_reset_hw(struct e1000_hw *hw)
1594 {
1595         uint32_t ctrl;
1596         uint32_t ctrl_ext;
1597         uint32_t manc;
1598         uint32_t pba = 0;
1599         uint32_t reg;
1600
1601         DEBUGFUNC();
1602
1603         /* get the correct pba value for both PCI and PCIe*/
1604         if (hw->mac_type <  e1000_82571)
1605                 pba = E1000_DEFAULT_PCI_PBA;
1606         else
1607                 pba = E1000_DEFAULT_PCIE_PBA;
1608
1609         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1610         if (hw->mac_type == e1000_82542_rev2_0) {
1611                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1612                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1613                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1614         }
1615
1616         /* Clear interrupt mask to stop board from generating interrupts */
1617         DEBUGOUT("Masking off all interrupts\n");
1618         if (hw->mac_type == e1000_igb)
1619                 E1000_WRITE_REG(hw, I210_IAM, 0);
1620         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1621
1622         /* Disable the Transmit and Receive units.  Then delay to allow
1623          * any pending transactions to complete before we hit the MAC with
1624          * the global reset.
1625          */
1626         E1000_WRITE_REG(hw, RCTL, 0);
1627         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1628         E1000_WRITE_FLUSH(hw);
1629
1630         if (hw->mac_type == e1000_igb) {
1631                 E1000_WRITE_REG(hw, RXPBS, I210_RXPBSIZE_DEFAULT);
1632                 E1000_WRITE_REG(hw, TXPBS, I210_TXPBSIZE_DEFAULT);
1633         }
1634
1635         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1636         hw->tbi_compatibility_on = false;
1637
1638         /* Delay to allow any outstanding PCI transactions to complete before
1639          * resetting the device
1640          */
1641         mdelay(10);
1642
1643         /* Issue a global reset to the MAC.  This will reset the chip's
1644          * transmit, receive, DMA, and link units.  It will not effect
1645          * the current PCI configuration.  The global reset bit is self-
1646          * clearing, and should clear within a microsecond.
1647          */
1648         DEBUGOUT("Issuing a global reset to MAC\n");
1649         ctrl = E1000_READ_REG(hw, CTRL);
1650
1651         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1652
1653         /* Force a reload from the EEPROM if necessary */
1654         if (hw->mac_type == e1000_igb) {
1655                 mdelay(20);
1656                 reg = E1000_READ_REG(hw, STATUS);
1657                 if (reg & E1000_STATUS_PF_RST_DONE)
1658                         DEBUGOUT("PF OK\n");
1659                 reg = E1000_READ_REG(hw, I210_EECD);
1660                 if (reg & E1000_EECD_AUTO_RD)
1661                         DEBUGOUT("EEC OK\n");
1662         } else if (hw->mac_type < e1000_82540) {
1663                 /* Wait for reset to complete */
1664                 udelay(10);
1665                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1666                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1667                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1668                 E1000_WRITE_FLUSH(hw);
1669                 /* Wait for EEPROM reload */
1670                 mdelay(2);
1671         } else {
1672                 /* Wait for EEPROM reload (it happens automatically) */
1673                 mdelay(4);
1674                 /* Dissable HW ARPs on ASF enabled adapters */
1675                 manc = E1000_READ_REG(hw, MANC);
1676                 manc &= ~(E1000_MANC_ARP_EN);
1677                 E1000_WRITE_REG(hw, MANC, manc);
1678         }
1679
1680         /* Clear interrupt mask to stop board from generating interrupts */
1681         DEBUGOUT("Masking off all interrupts\n");
1682         if (hw->mac_type == e1000_igb)
1683                 E1000_WRITE_REG(hw, I210_IAM, 0);
1684         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1685
1686         /* Clear any pending interrupt events. */
1687         E1000_READ_REG(hw, ICR);
1688
1689         /* If MWI was previously enabled, reenable it. */
1690         if (hw->mac_type == e1000_82542_rev2_0) {
1691                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1692         }
1693         if (hw->mac_type != e1000_igb)
1694                 E1000_WRITE_REG(hw, PBA, pba);
1695 }
1696
1697 /******************************************************************************
1698  *
1699  * Initialize a number of hardware-dependent bits
1700  *
1701  * hw: Struct containing variables accessed by shared code
1702  *
1703  * This function contains hardware limitation workarounds for PCI-E adapters
1704  *
1705  *****************************************************************************/
1706 static void
1707 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1708 {
1709         if ((hw->mac_type >= e1000_82571) &&
1710                         (!hw->initialize_hw_bits_disable)) {
1711                 /* Settings common to all PCI-express silicon */
1712                 uint32_t reg_ctrl, reg_ctrl_ext;
1713                 uint32_t reg_tarc0, reg_tarc1;
1714                 uint32_t reg_tctl;
1715                 uint32_t reg_txdctl, reg_txdctl1;
1716
1717                 /* link autonegotiation/sync workarounds */
1718                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1719                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1720
1721                 /* Enable not-done TX descriptor counting */
1722                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1723                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1724                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1725
1726                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1727                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1728                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1729
1730
1731                 switch (hw->mac_type) {
1732                 case e1000_igb:                 /* IGB is cool */
1733                         return;
1734                 case e1000_82571:
1735                 case e1000_82572:
1736                         /* Clear PHY TX compatible mode bits */
1737                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1738                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1739
1740                         /* link autonegotiation/sync workarounds */
1741                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1742
1743                         /* TX ring control fixes */
1744                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1745
1746                         /* Multiple read bit is reversed polarity */
1747                         reg_tctl = E1000_READ_REG(hw, TCTL);
1748                         if (reg_tctl & E1000_TCTL_MULR)
1749                                 reg_tarc1 &= ~(1 << 28);
1750                         else
1751                                 reg_tarc1 |= (1 << 28);
1752
1753                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1754                         break;
1755                 case e1000_82573:
1756                 case e1000_82574:
1757                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1758                         reg_ctrl_ext &= ~(1 << 23);
1759                         reg_ctrl_ext |= (1 << 22);
1760
1761                         /* TX byte count fix */
1762                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1763                         reg_ctrl &= ~(1 << 29);
1764
1765                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1766                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1767                         break;
1768                 case e1000_80003es2lan:
1769         /* improve small packet performace for fiber/serdes */
1770                         if ((hw->media_type == e1000_media_type_fiber)
1771                         || (hw->media_type ==
1772                                 e1000_media_type_internal_serdes)) {
1773                                 reg_tarc0 &= ~(1 << 20);
1774                         }
1775
1776                 /* Multiple read bit is reversed polarity */
1777                         reg_tctl = E1000_READ_REG(hw, TCTL);
1778                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1779                         if (reg_tctl & E1000_TCTL_MULR)
1780                                 reg_tarc1 &= ~(1 << 28);
1781                         else
1782                                 reg_tarc1 |= (1 << 28);
1783
1784                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1785                         break;
1786                 case e1000_ich8lan:
1787                         /* Reduce concurrent DMA requests to 3 from 4 */
1788                         if ((hw->revision_id < 3) ||
1789                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1790                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1791                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1792
1793                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1794                         reg_ctrl_ext |= (1 << 22);
1795                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1796
1797                         /* workaround TX hang with TSO=on */
1798                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1799
1800                         /* Multiple read bit is reversed polarity */
1801                         reg_tctl = E1000_READ_REG(hw, TCTL);
1802                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1803                         if (reg_tctl & E1000_TCTL_MULR)
1804                                 reg_tarc1 &= ~(1 << 28);
1805                         else
1806                                 reg_tarc1 |= (1 << 28);
1807
1808                         /* workaround TX hang with TSO=on */
1809                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1810
1811                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1812                         break;
1813                 default:
1814                         break;
1815                 }
1816
1817                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1818         }
1819 }
1820
1821 /******************************************************************************
1822  * Performs basic configuration of the adapter.
1823  *
1824  * hw - Struct containing variables accessed by shared code
1825  *
1826  * Assumes that the controller has previously been reset and is in a
1827  * post-reset uninitialized state. Initializes the receive address registers,
1828  * multicast table, and VLAN filter table. Calls routines to setup link
1829  * configuration and flow control settings. Clears all on-chip counters. Leaves
1830  * the transmit and receive units disabled and uninitialized.
1831  *****************************************************************************/
1832 static int
1833 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1834 {
1835         uint32_t ctrl;
1836         uint32_t i;
1837         int32_t ret_val;
1838         uint16_t pcix_cmd_word;
1839         uint16_t pcix_stat_hi_word;
1840         uint16_t cmd_mmrbc;
1841         uint16_t stat_mmrbc;
1842         uint32_t mta_size;
1843         uint32_t reg_data;
1844         uint32_t ctrl_ext;
1845         DEBUGFUNC();
1846         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1847         if ((hw->mac_type == e1000_ich8lan) &&
1848                 ((hw->revision_id < 3) ||
1849                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1850                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1851                         reg_data = E1000_READ_REG(hw, STATUS);
1852                         reg_data &= ~0x80000000;
1853                         E1000_WRITE_REG(hw, STATUS, reg_data);
1854         }
1855         /* Do not need initialize Identification LED */
1856
1857         /* Set the media type and TBI compatibility */
1858         e1000_set_media_type(hw);
1859
1860         /* Must be called after e1000_set_media_type
1861          * because media_type is used */
1862         e1000_initialize_hardware_bits(hw);
1863
1864         /* Disabling VLAN filtering. */
1865         DEBUGOUT("Initializing the IEEE VLAN\n");
1866         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1867         if (hw->mac_type != e1000_ich8lan) {
1868                 if (hw->mac_type < e1000_82545_rev_3)
1869                         E1000_WRITE_REG(hw, VET, 0);
1870                 e1000_clear_vfta(hw);
1871         }
1872
1873         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1874         if (hw->mac_type == e1000_82542_rev2_0) {
1875                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1876                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1877                                       hw->
1878                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1879                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1880                 E1000_WRITE_FLUSH(hw);
1881                 mdelay(5);
1882         }
1883
1884         /* Setup the receive address. This involves initializing all of the Receive
1885          * Address Registers (RARs 0 - 15).
1886          */
1887         e1000_init_rx_addrs(hw, enetaddr);
1888
1889         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1890         if (hw->mac_type == e1000_82542_rev2_0) {
1891                 E1000_WRITE_REG(hw, RCTL, 0);
1892                 E1000_WRITE_FLUSH(hw);
1893                 mdelay(1);
1894                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1895         }
1896
1897         /* Zero out the Multicast HASH table */
1898         DEBUGOUT("Zeroing the MTA\n");
1899         mta_size = E1000_MC_TBL_SIZE;
1900         if (hw->mac_type == e1000_ich8lan)
1901                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1902         for (i = 0; i < mta_size; i++) {
1903                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1904                 /* use write flush to prevent Memory Write Block (MWB) from
1905                  * occuring when accessing our register space */
1906                 E1000_WRITE_FLUSH(hw);
1907         }
1908
1909         switch (hw->mac_type) {
1910         case e1000_82545_rev_3:
1911         case e1000_82546_rev_3:
1912         case e1000_igb:
1913                 break;
1914         default:
1915         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1916         if (hw->bus_type == e1000_bus_type_pcix) {
1917                 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1918                                      &pcix_cmd_word);
1919                 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1920                                      &pcix_stat_hi_word);
1921                 cmd_mmrbc =
1922                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1923                     PCIX_COMMAND_MMRBC_SHIFT;
1924                 stat_mmrbc =
1925                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1926                     PCIX_STATUS_HI_MMRBC_SHIFT;
1927                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1928                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1929                 if (cmd_mmrbc > stat_mmrbc) {
1930                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1931                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1932                         dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1933                                               pcix_cmd_word);
1934                 }
1935         }
1936                 break;
1937         }
1938
1939         /* More time needed for PHY to initialize */
1940         if (hw->mac_type == e1000_ich8lan)
1941                 mdelay(15);
1942         if (hw->mac_type == e1000_igb)
1943                 mdelay(15);
1944
1945         /* Call a subroutine to configure the link and setup flow control. */
1946         ret_val = e1000_setup_link(hw);
1947
1948         /* Set the transmit descriptor write-back policy */
1949         if (hw->mac_type > e1000_82544) {
1950                 ctrl = E1000_READ_REG(hw, TXDCTL);
1951                 ctrl =
1952                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1953                     E1000_TXDCTL_FULL_TX_DESC_WB;
1954                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1955         }
1956
1957         /* Set the receive descriptor write back policy */
1958         if (hw->mac_type >= e1000_82571) {
1959                 ctrl = E1000_READ_REG(hw, RXDCTL);
1960                 ctrl =
1961                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1962                     E1000_RXDCTL_FULL_RX_DESC_WB;
1963                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1964         }
1965
1966         switch (hw->mac_type) {
1967         default:
1968                 break;
1969         case e1000_80003es2lan:
1970                 /* Enable retransmit on late collisions */
1971                 reg_data = E1000_READ_REG(hw, TCTL);
1972                 reg_data |= E1000_TCTL_RTLC;
1973                 E1000_WRITE_REG(hw, TCTL, reg_data);
1974
1975                 /* Configure Gigabit Carry Extend Padding */
1976                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1977                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1978                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1979                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1980
1981                 /* Configure Transmit Inter-Packet Gap */
1982                 reg_data = E1000_READ_REG(hw, TIPG);
1983                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1984                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1985                 E1000_WRITE_REG(hw, TIPG, reg_data);
1986
1987                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1988                 reg_data &= ~0x00100000;
1989                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1990                 /* Fall through */
1991         case e1000_82571:
1992         case e1000_82572:
1993         case e1000_ich8lan:
1994                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1995                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1996                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1997                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1998                 break;
1999         case e1000_82573:
2000         case e1000_82574:
2001                 reg_data = E1000_READ_REG(hw, GCR);
2002                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2003                 E1000_WRITE_REG(hw, GCR, reg_data);
2004         case e1000_igb:
2005                 break;
2006         }
2007
2008         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2009                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2010                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2011                 /* Relaxed ordering must be disabled to avoid a parity
2012                  * error crash in a PCI slot. */
2013                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2014                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2015         }
2016
2017         return ret_val;
2018 }
2019
2020 /******************************************************************************
2021  * Configures flow control and link settings.
2022  *
2023  * hw - Struct containing variables accessed by shared code
2024  *
2025  * Determines which flow control settings to use. Calls the apropriate media-
2026  * specific link configuration function. Configures the flow control settings.
2027  * Assuming the adapter has a valid link partner, a valid link should be
2028  * established. Assumes the hardware has previously been reset and the
2029  * transmitter and receiver are not enabled.
2030  *****************************************************************************/
2031 static int
2032 e1000_setup_link(struct e1000_hw *hw)
2033 {
2034         int32_t ret_val;
2035 #ifndef CONFIG_E1000_NO_NVM
2036         uint32_t ctrl_ext;
2037         uint16_t eeprom_data;
2038 #endif
2039
2040         DEBUGFUNC();
2041
2042         /* In the case of the phy reset being blocked, we already have a link.
2043          * We do not have to set it up again. */
2044         if (e1000_check_phy_reset_block(hw))
2045                 return E1000_SUCCESS;
2046
2047 #ifndef CONFIG_E1000_NO_NVM
2048         /* Read and store word 0x0F of the EEPROM. This word contains bits
2049          * that determine the hardware's default PAUSE (flow control) mode,
2050          * a bit that determines whether the HW defaults to enabling or
2051          * disabling auto-negotiation, and the direction of the
2052          * SW defined pins. If there is no SW over-ride of the flow
2053          * control setting, then the variable hw->fc will
2054          * be initialized based on a value in the EEPROM.
2055          */
2056         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2057                                 &eeprom_data) < 0) {
2058                 DEBUGOUT("EEPROM Read Error\n");
2059                 return -E1000_ERR_EEPROM;
2060         }
2061 #endif
2062         if (hw->fc == e1000_fc_default) {
2063                 switch (hw->mac_type) {
2064                 case e1000_ich8lan:
2065                 case e1000_82573:
2066                 case e1000_82574:
2067                 case e1000_igb:
2068                         hw->fc = e1000_fc_full;
2069                         break;
2070                 default:
2071 #ifndef CONFIG_E1000_NO_NVM
2072                         ret_val = e1000_read_eeprom(hw,
2073                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2074                         if (ret_val) {
2075                                 DEBUGOUT("EEPROM Read Error\n");
2076                                 return -E1000_ERR_EEPROM;
2077                         }
2078                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2079                                 hw->fc = e1000_fc_none;
2080                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2081                                     EEPROM_WORD0F_ASM_DIR)
2082                                 hw->fc = e1000_fc_tx_pause;
2083                         else
2084 #endif
2085                                 hw->fc = e1000_fc_full;
2086                         break;
2087                 }
2088         }
2089
2090         /* We want to save off the original Flow Control configuration just
2091          * in case we get disconnected and then reconnected into a different
2092          * hub or switch with different Flow Control capabilities.
2093          */
2094         if (hw->mac_type == e1000_82542_rev2_0)
2095                 hw->fc &= (~e1000_fc_tx_pause);
2096
2097         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2098                 hw->fc &= (~e1000_fc_rx_pause);
2099
2100         hw->original_fc = hw->fc;
2101
2102         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2103
2104 #ifndef CONFIG_E1000_NO_NVM
2105         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2106          * polarity value for the SW controlled pins, and setup the
2107          * Extended Device Control reg with that info.
2108          * This is needed because one of the SW controlled pins is used for
2109          * signal detection.  So this should be done before e1000_setup_pcs_link()
2110          * or e1000_phy_setup() is called.
2111          */
2112         if (hw->mac_type == e1000_82543) {
2113                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2114                             SWDPIO__EXT_SHIFT);
2115                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2116         }
2117 #endif
2118
2119         /* Call the necessary subroutine to configure the link. */
2120         ret_val = (hw->media_type == e1000_media_type_fiber) ?
2121             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2122         if (ret_val < 0) {
2123                 return ret_val;
2124         }
2125
2126         /* Initialize the flow control address, type, and PAUSE timer
2127          * registers to their default values.  This is done even if flow
2128          * control is disabled, because it does not hurt anything to
2129          * initialize these registers.
2130          */
2131         DEBUGOUT("Initializing the Flow Control address, type"
2132                         "and timer regs\n");
2133
2134         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2135         if (hw->mac_type != e1000_ich8lan) {
2136                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2137                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2138                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2139         }
2140
2141         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2142
2143         /* Set the flow control receive threshold registers.  Normally,
2144          * these registers will be set to a default threshold that may be
2145          * adjusted later by the driver's runtime code.  However, if the
2146          * ability to transmit pause frames in not enabled, then these
2147          * registers will be set to 0.
2148          */
2149         if (!(hw->fc & e1000_fc_tx_pause)) {
2150                 E1000_WRITE_REG(hw, FCRTL, 0);
2151                 E1000_WRITE_REG(hw, FCRTH, 0);
2152         } else {
2153                 /* We need to set up the Receive Threshold high and low water marks
2154                  * as well as (optionally) enabling the transmission of XON frames.
2155                  */
2156                 if (hw->fc_send_xon) {
2157                         E1000_WRITE_REG(hw, FCRTL,
2158                                         (hw->fc_low_water | E1000_FCRTL_XONE));
2159                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2160                 } else {
2161                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2162                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2163                 }
2164         }
2165         return ret_val;
2166 }
2167
2168 /******************************************************************************
2169  * Sets up link for a fiber based adapter
2170  *
2171  * hw - Struct containing variables accessed by shared code
2172  *
2173  * Manipulates Physical Coding Sublayer functions in order to configure
2174  * link. Assumes the hardware has been previously reset and the transmitter
2175  * and receiver are not enabled.
2176  *****************************************************************************/
2177 static int
2178 e1000_setup_fiber_link(struct e1000_hw *hw)
2179 {
2180         uint32_t ctrl;
2181         uint32_t status;
2182         uint32_t txcw = 0;
2183         uint32_t i;
2184         uint32_t signal;
2185         int32_t ret_val;
2186
2187         DEBUGFUNC();
2188         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2189          * set when the optics detect a signal. On older adapters, it will be
2190          * cleared when there is a signal
2191          */
2192         ctrl = E1000_READ_REG(hw, CTRL);
2193         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2194                 signal = E1000_CTRL_SWDPIN1;
2195         else
2196                 signal = 0;
2197
2198         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2199                ctrl);
2200         /* Take the link out of reset */
2201         ctrl &= ~(E1000_CTRL_LRST);
2202
2203         e1000_config_collision_dist(hw);
2204
2205         /* Check for a software override of the flow control settings, and setup
2206          * the device accordingly.  If auto-negotiation is enabled, then software
2207          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2208          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2209          * auto-negotiation is disabled, then software will have to manually
2210          * configure the two flow control enable bits in the CTRL register.
2211          *
2212          * The possible values of the "fc" parameter are:
2213          *      0:  Flow control is completely disabled
2214          *      1:  Rx flow control is enabled (we can receive pause frames, but
2215          *          not send pause frames).
2216          *      2:  Tx flow control is enabled (we can send pause frames but we do
2217          *          not support receiving pause frames).
2218          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2219          */
2220         switch (hw->fc) {
2221         case e1000_fc_none:
2222                 /* Flow control is completely disabled by a software over-ride. */
2223                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2224                 break;
2225         case e1000_fc_rx_pause:
2226                 /* RX Flow control is enabled and TX Flow control is disabled by a
2227                  * software over-ride. Since there really isn't a way to advertise
2228                  * that we are capable of RX Pause ONLY, we will advertise that we
2229                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2230                  *  disable the adapter's ability to send PAUSE frames.
2231                  */
2232                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2233                 break;
2234         case e1000_fc_tx_pause:
2235                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2236                  * software over-ride.
2237                  */
2238                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2239                 break;
2240         case e1000_fc_full:
2241                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2242                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2243                 break;
2244         default:
2245                 DEBUGOUT("Flow control param set incorrectly\n");
2246                 return -E1000_ERR_CONFIG;
2247                 break;
2248         }
2249
2250         /* Since auto-negotiation is enabled, take the link out of reset (the link
2251          * will be in reset, because we previously reset the chip). This will
2252          * restart auto-negotiation.  If auto-neogtiation is successful then the
2253          * link-up status bit will be set and the flow control enable bits (RFCE
2254          * and TFCE) will be set according to their negotiated value.
2255          */
2256         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2257
2258         E1000_WRITE_REG(hw, TXCW, txcw);
2259         E1000_WRITE_REG(hw, CTRL, ctrl);
2260         E1000_WRITE_FLUSH(hw);
2261
2262         hw->txcw = txcw;
2263         mdelay(1);
2264
2265         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2266          * indication in the Device Status Register.  Time-out if a link isn't
2267          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2268          * less than 500 milliseconds even if the other end is doing it in SW).
2269          */
2270         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2271                 DEBUGOUT("Looking for Link\n");
2272                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2273                         mdelay(10);
2274                         status = E1000_READ_REG(hw, STATUS);
2275                         if (status & E1000_STATUS_LU)
2276                                 break;
2277                 }
2278                 if (i == (LINK_UP_TIMEOUT / 10)) {
2279                         /* AutoNeg failed to achieve a link, so we'll call
2280                          * e1000_check_for_link. This routine will force the link up if we
2281                          * detect a signal. This will allow us to communicate with
2282                          * non-autonegotiating link partners.
2283                          */
2284                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2285                         hw->autoneg_failed = 1;
2286                         ret_val = e1000_check_for_link(hw);
2287                         if (ret_val < 0) {
2288                                 DEBUGOUT("Error while checking for link\n");
2289                                 return ret_val;
2290                         }
2291                         hw->autoneg_failed = 0;
2292                 } else {
2293                         hw->autoneg_failed = 0;
2294                         DEBUGOUT("Valid Link Found\n");
2295                 }
2296         } else {
2297                 DEBUGOUT("No Signal Detected\n");
2298                 return -E1000_ERR_NOLINK;
2299         }
2300         return 0;
2301 }
2302
2303 /******************************************************************************
2304 * Make sure we have a valid PHY and change PHY mode before link setup.
2305 *
2306 * hw - Struct containing variables accessed by shared code
2307 ******************************************************************************/
2308 static int32_t
2309 e1000_copper_link_preconfig(struct e1000_hw *hw)
2310 {
2311         uint32_t ctrl;
2312         int32_t ret_val;
2313         uint16_t phy_data;
2314
2315         DEBUGFUNC();
2316
2317         ctrl = E1000_READ_REG(hw, CTRL);
2318         /* With 82543, we need to force speed and duplex on the MAC equal to what
2319          * the PHY speed and duplex configuration is. In addition, we need to
2320          * perform a hardware reset on the PHY to take it out of reset.
2321          */
2322         if (hw->mac_type > e1000_82543) {
2323                 ctrl |= E1000_CTRL_SLU;
2324                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2325                 E1000_WRITE_REG(hw, CTRL, ctrl);
2326         } else {
2327                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2328                                 | E1000_CTRL_SLU);
2329                 E1000_WRITE_REG(hw, CTRL, ctrl);
2330                 ret_val = e1000_phy_hw_reset(hw);
2331                 if (ret_val)
2332                         return ret_val;
2333         }
2334
2335         /* Make sure we have a valid PHY */
2336         ret_val = e1000_detect_gig_phy(hw);
2337         if (ret_val) {
2338                 DEBUGOUT("Error, did not detect valid phy.\n");
2339                 return ret_val;
2340         }
2341         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2342
2343         /* Set PHY to class A mode (if necessary) */
2344         ret_val = e1000_set_phy_mode(hw);
2345         if (ret_val)
2346                 return ret_val;
2347         if ((hw->mac_type == e1000_82545_rev_3) ||
2348                 (hw->mac_type == e1000_82546_rev_3)) {
2349                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2350                                 &phy_data);
2351                 phy_data |= 0x00000008;
2352                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2353                                 phy_data);
2354         }
2355
2356         if (hw->mac_type <= e1000_82543 ||
2357                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2358                 hw->mac_type == e1000_82541_rev_2
2359                 || hw->mac_type == e1000_82547_rev_2)
2360                         hw->phy_reset_disable = false;
2361
2362         return E1000_SUCCESS;
2363 }
2364
2365 /*****************************************************************************
2366  *
2367  * This function sets the lplu state according to the active flag.  When
2368  * activating lplu this function also disables smart speed and vise versa.
2369  * lplu will not be activated unless the device autonegotiation advertisment
2370  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2371  * hw: Struct containing variables accessed by shared code
2372  * active - true to enable lplu false to disable lplu.
2373  *
2374  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2375  *            E1000_SUCCESS at any other case.
2376  *
2377  ****************************************************************************/
2378
2379 static int32_t
2380 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2381 {
2382         uint32_t phy_ctrl = 0;
2383         int32_t ret_val;
2384         uint16_t phy_data;
2385         DEBUGFUNC();
2386
2387         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2388             && hw->phy_type != e1000_phy_igp_3)
2389                 return E1000_SUCCESS;
2390
2391         /* During driver activity LPLU should not be used or it will attain link
2392          * from the lowest speeds starting from 10Mbps. The capability is used
2393          * for Dx transitions and states */
2394         if (hw->mac_type == e1000_82541_rev_2
2395                         || hw->mac_type == e1000_82547_rev_2) {
2396                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2397                                 &phy_data);
2398                 if (ret_val)
2399                         return ret_val;
2400         } else if (hw->mac_type == e1000_ich8lan) {
2401                 /* MAC writes into PHY register based on the state transition
2402                  * and start auto-negotiation. SW driver can overwrite the
2403                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2404                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2405         } else {
2406                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2407                                 &phy_data);
2408                 if (ret_val)
2409                         return ret_val;
2410         }
2411
2412         if (!active) {
2413                 if (hw->mac_type == e1000_82541_rev_2 ||
2414                         hw->mac_type == e1000_82547_rev_2) {
2415                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2416                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2417                                         phy_data);
2418                         if (ret_val)
2419                                 return ret_val;
2420                 } else {
2421                         if (hw->mac_type == e1000_ich8lan) {
2422                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2423                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2424                         } else {
2425                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2426                                 ret_val = e1000_write_phy_reg(hw,
2427                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2428                                 if (ret_val)
2429                                         return ret_val;
2430                         }
2431                 }
2432
2433         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2434          * Dx states where the power conservation is most important.  During
2435          * driver activity we should enable SmartSpeed, so performance is
2436          * maintained. */
2437                 if (hw->smart_speed == e1000_smart_speed_on) {
2438                         ret_val = e1000_read_phy_reg(hw,
2439                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2440                         if (ret_val)
2441                                 return ret_val;
2442
2443                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2444                         ret_val = e1000_write_phy_reg(hw,
2445                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2446                         if (ret_val)
2447                                 return ret_val;
2448                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2449                         ret_val = e1000_read_phy_reg(hw,
2450                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2451                         if (ret_val)
2452                                 return ret_val;
2453
2454                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2455                         ret_val = e1000_write_phy_reg(hw,
2456                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2457                         if (ret_val)
2458                                 return ret_val;
2459                 }
2460
2461         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2462                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2463                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2464
2465                 if (hw->mac_type == e1000_82541_rev_2 ||
2466                     hw->mac_type == e1000_82547_rev_2) {
2467                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2468                         ret_val = e1000_write_phy_reg(hw,
2469                                         IGP01E1000_GMII_FIFO, phy_data);
2470                         if (ret_val)
2471                                 return ret_val;
2472                 } else {
2473                         if (hw->mac_type == e1000_ich8lan) {
2474                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2475                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2476                         } else {
2477                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2478                                 ret_val = e1000_write_phy_reg(hw,
2479                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2480                                 if (ret_val)
2481                                         return ret_val;
2482                         }
2483                 }
2484
2485                 /* When LPLU is enabled we should disable SmartSpeed */
2486                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2487                                 &phy_data);
2488                 if (ret_val)
2489                         return ret_val;
2490
2491                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2492                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2493                                 phy_data);
2494                 if (ret_val)
2495                         return ret_val;
2496         }
2497         return E1000_SUCCESS;
2498 }
2499
2500 /*****************************************************************************
2501  *
2502  * This function sets the lplu d0 state according to the active flag.  When
2503  * activating lplu this function also disables smart speed and vise versa.
2504  * lplu will not be activated unless the device autonegotiation advertisment
2505  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2506  * hw: Struct containing variables accessed by shared code
2507  * active - true to enable lplu false to disable lplu.
2508  *
2509  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2510  *            E1000_SUCCESS at any other case.
2511  *
2512  ****************************************************************************/
2513
2514 static int32_t
2515 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2516 {
2517         uint32_t phy_ctrl = 0;
2518         int32_t ret_val;
2519         uint16_t phy_data;
2520         DEBUGFUNC();
2521
2522         if (hw->mac_type <= e1000_82547_rev_2)
2523                 return E1000_SUCCESS;
2524
2525         if (hw->mac_type == e1000_ich8lan) {
2526                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2527         } else if (hw->mac_type == e1000_igb) {
2528                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2529         } else {
2530                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2531                                 &phy_data);
2532                 if (ret_val)
2533                         return ret_val;
2534         }
2535
2536         if (!active) {
2537                 if (hw->mac_type == e1000_ich8lan) {
2538                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2539                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2540                 } else if (hw->mac_type == e1000_igb) {
2541                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2542                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2543                 } else {
2544                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2545                         ret_val = e1000_write_phy_reg(hw,
2546                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2547                         if (ret_val)
2548                                 return ret_val;
2549                 }
2550
2551                 if (hw->mac_type == e1000_igb)
2552                         return E1000_SUCCESS;
2553
2554         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2555          * Dx states where the power conservation is most important.  During
2556          * driver activity we should enable SmartSpeed, so performance is
2557          * maintained. */
2558                 if (hw->smart_speed == e1000_smart_speed_on) {
2559                         ret_val = e1000_read_phy_reg(hw,
2560                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2561                         if (ret_val)
2562                                 return ret_val;
2563
2564                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2565                         ret_val = e1000_write_phy_reg(hw,
2566                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2567                         if (ret_val)
2568                                 return ret_val;
2569                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2570                         ret_val = e1000_read_phy_reg(hw,
2571                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2572                         if (ret_val)
2573                                 return ret_val;
2574
2575                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2576                         ret_val = e1000_write_phy_reg(hw,
2577                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2578                         if (ret_val)
2579                                 return ret_val;
2580                 }
2581
2582
2583         } else {
2584
2585                 if (hw->mac_type == e1000_ich8lan) {
2586                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2587                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2588                 } else if (hw->mac_type == e1000_igb) {
2589                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2590                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2591                 } else {
2592                         phy_data |= IGP02E1000_PM_D0_LPLU;
2593                         ret_val = e1000_write_phy_reg(hw,
2594                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2595                         if (ret_val)
2596                                 return ret_val;
2597                 }
2598
2599                 if (hw->mac_type == e1000_igb)
2600                         return E1000_SUCCESS;
2601
2602                 /* When LPLU is enabled we should disable SmartSpeed */
2603                 ret_val = e1000_read_phy_reg(hw,
2604                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2605                 if (ret_val)
2606                         return ret_val;
2607
2608                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2609                 ret_val = e1000_write_phy_reg(hw,
2610                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2611                 if (ret_val)
2612                         return ret_val;
2613
2614         }
2615         return E1000_SUCCESS;
2616 }
2617
2618 /********************************************************************
2619 * Copper link setup for e1000_phy_igp series.
2620 *
2621 * hw - Struct containing variables accessed by shared code
2622 *********************************************************************/
2623 static int32_t
2624 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2625 {
2626         uint32_t led_ctrl;
2627         int32_t ret_val;
2628         uint16_t phy_data;
2629
2630         DEBUGFUNC();
2631
2632         if (hw->phy_reset_disable)
2633                 return E1000_SUCCESS;
2634
2635         ret_val = e1000_phy_reset(hw);
2636         if (ret_val) {
2637                 DEBUGOUT("Error Resetting the PHY\n");
2638                 return ret_val;
2639         }
2640
2641         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2642         mdelay(15);
2643         if (hw->mac_type != e1000_ich8lan) {
2644                 /* Configure activity LED after PHY reset */
2645                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2646                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2647                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2648                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2649         }
2650
2651         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2652         if (hw->phy_type == e1000_phy_igp) {
2653                 /* disable lplu d3 during driver init */
2654                 ret_val = e1000_set_d3_lplu_state(hw, false);
2655                 if (ret_val) {
2656                         DEBUGOUT("Error Disabling LPLU D3\n");
2657                         return ret_val;
2658                 }
2659         }
2660
2661         /* disable lplu d0 during driver init */
2662         ret_val = e1000_set_d0_lplu_state(hw, false);
2663         if (ret_val) {
2664                 DEBUGOUT("Error Disabling LPLU D0\n");
2665                 return ret_val;
2666         }
2667         /* Configure mdi-mdix settings */
2668         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2669         if (ret_val)
2670                 return ret_val;
2671
2672         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2673                 hw->dsp_config_state = e1000_dsp_config_disabled;
2674                 /* Force MDI for earlier revs of the IGP PHY */
2675                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2676                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2677                 hw->mdix = 1;
2678
2679         } else {
2680                 hw->dsp_config_state = e1000_dsp_config_enabled;
2681                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2682
2683                 switch (hw->mdix) {
2684                 case 1:
2685                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2686                         break;
2687                 case 2:
2688                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2689                         break;
2690                 case 0:
2691                 default:
2692                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2693                         break;
2694                 }
2695         }
2696         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2697         if (ret_val)
2698                 return ret_val;
2699
2700         /* set auto-master slave resolution settings */
2701         if (hw->autoneg) {
2702                 e1000_ms_type phy_ms_setting = hw->master_slave;
2703
2704                 if (hw->ffe_config_state == e1000_ffe_config_active)
2705                         hw->ffe_config_state = e1000_ffe_config_enabled;
2706
2707                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2708                         hw->dsp_config_state = e1000_dsp_config_enabled;
2709
2710                 /* when autonegotiation advertisment is only 1000Mbps then we
2711                   * should disable SmartSpeed and enable Auto MasterSlave
2712                   * resolution as hardware default. */
2713                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2714                         /* Disable SmartSpeed */
2715                         ret_val = e1000_read_phy_reg(hw,
2716                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2717                         if (ret_val)
2718                                 return ret_val;
2719                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2720                         ret_val = e1000_write_phy_reg(hw,
2721                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2722                         if (ret_val)
2723                                 return ret_val;
2724                         /* Set auto Master/Slave resolution process */
2725                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2726                                         &phy_data);
2727                         if (ret_val)
2728                                 return ret_val;
2729                         phy_data &= ~CR_1000T_MS_ENABLE;
2730                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2731                                         phy_data);
2732                         if (ret_val)
2733                                 return ret_val;
2734                 }
2735
2736                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2737                 if (ret_val)
2738                         return ret_val;
2739
2740                 /* load defaults for future use */
2741                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2742                                 ((phy_data & CR_1000T_MS_VALUE) ?
2743                                 e1000_ms_force_master :
2744                                 e1000_ms_force_slave) :
2745                                 e1000_ms_auto;
2746
2747                 switch (phy_ms_setting) {
2748                 case e1000_ms_force_master:
2749                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2750                         break;
2751                 case e1000_ms_force_slave:
2752                         phy_data |= CR_1000T_MS_ENABLE;
2753                         phy_data &= ~(CR_1000T_MS_VALUE);
2754                         break;
2755                 case e1000_ms_auto:
2756                         phy_data &= ~CR_1000T_MS_ENABLE;
2757                 default:
2758                         break;
2759                 }
2760                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2761                 if (ret_val)
2762                         return ret_val;
2763         }
2764
2765         return E1000_SUCCESS;
2766 }
2767
2768 /*****************************************************************************
2769  * This function checks the mode of the firmware.
2770  *
2771  * returns  - true when the mode is IAMT or false.
2772  ****************************************************************************/
2773 bool
2774 e1000_check_mng_mode(struct e1000_hw *hw)
2775 {
2776         uint32_t fwsm;
2777         DEBUGFUNC();
2778
2779         fwsm = E1000_READ_REG(hw, FWSM);
2780
2781         if (hw->mac_type == e1000_ich8lan) {
2782                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2783                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2784                         return true;
2785         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2786                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2787                         return true;
2788
2789         return false;
2790 }
2791
2792 static int32_t
2793 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2794 {
2795         uint16_t swfw = E1000_SWFW_PHY0_SM;
2796         uint32_t reg_val;
2797         DEBUGFUNC();
2798
2799         if (e1000_is_second_port(hw))
2800                 swfw = E1000_SWFW_PHY1_SM;
2801
2802         if (e1000_swfw_sync_acquire(hw, swfw))
2803                 return -E1000_ERR_SWFW_SYNC;
2804
2805         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2806                         & E1000_KUMCTRLSTA_OFFSET) | data;
2807         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2808         udelay(2);
2809
2810         return E1000_SUCCESS;
2811 }
2812
2813 static int32_t
2814 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2815 {
2816         uint16_t swfw = E1000_SWFW_PHY0_SM;
2817         uint32_t reg_val;
2818         DEBUGFUNC();
2819
2820         if (e1000_is_second_port(hw))
2821                 swfw = E1000_SWFW_PHY1_SM;
2822
2823         if (e1000_swfw_sync_acquire(hw, swfw)) {
2824                 debug("%s[%i]\n", __func__, __LINE__);
2825                 return -E1000_ERR_SWFW_SYNC;
2826         }
2827
2828         /* Write register address */
2829         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2830                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2831         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2832         udelay(2);
2833
2834         /* Read the data returned */
2835         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2836         *data = (uint16_t)reg_val;
2837
2838         return E1000_SUCCESS;
2839 }
2840
2841 /********************************************************************
2842 * Copper link setup for e1000_phy_gg82563 series.
2843 *
2844 * hw - Struct containing variables accessed by shared code
2845 *********************************************************************/
2846 static int32_t
2847 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2848 {
2849         int32_t ret_val;
2850         uint16_t phy_data;
2851         uint32_t reg_data;
2852
2853         DEBUGFUNC();
2854
2855         if (!hw->phy_reset_disable) {
2856                 /* Enable CRS on TX for half-duplex operation. */
2857                 ret_val = e1000_read_phy_reg(hw,
2858                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2859                 if (ret_val)
2860                         return ret_val;
2861
2862                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2863                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2864                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2865
2866                 ret_val = e1000_write_phy_reg(hw,
2867                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2868                 if (ret_val)
2869                         return ret_val;
2870
2871                 /* Options:
2872                  *   MDI/MDI-X = 0 (default)
2873                  *   0 - Auto for all speeds
2874                  *   1 - MDI mode
2875                  *   2 - MDI-X mode
2876                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2877                  */
2878                 ret_val = e1000_read_phy_reg(hw,
2879                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2880                 if (ret_val)
2881                         return ret_val;
2882
2883                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2884
2885                 switch (hw->mdix) {
2886                 case 1:
2887                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2888                         break;
2889                 case 2:
2890                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2891                         break;
2892                 case 0:
2893                 default:
2894                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2895                         break;
2896                 }
2897
2898                 /* Options:
2899                  *   disable_polarity_correction = 0 (default)
2900                  *       Automatic Correction for Reversed Cable Polarity
2901                  *   0 - Disabled
2902                  *   1 - Enabled
2903                  */
2904                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2905                 ret_val = e1000_write_phy_reg(hw,
2906                                 GG82563_PHY_SPEC_CTRL, phy_data);
2907
2908                 if (ret_val)
2909                         return ret_val;
2910
2911                 /* SW Reset the PHY so all changes take effect */
2912                 ret_val = e1000_phy_reset(hw);
2913                 if (ret_val) {
2914                         DEBUGOUT("Error Resetting the PHY\n");
2915                         return ret_val;
2916                 }
2917         } /* phy_reset_disable */
2918
2919         if (hw->mac_type == e1000_80003es2lan) {
2920                 /* Bypass RX and TX FIFO's */
2921                 ret_val = e1000_write_kmrn_reg(hw,
2922                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2923                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2924                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2925                 if (ret_val)
2926                         return ret_val;
2927
2928                 ret_val = e1000_read_phy_reg(hw,
2929                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2930                 if (ret_val)
2931                         return ret_val;
2932
2933                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2934                 ret_val = e1000_write_phy_reg(hw,
2935                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2936
2937                 if (ret_val)
2938                         return ret_val;
2939
2940                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2941                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2942                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2943
2944                 ret_val = e1000_read_phy_reg(hw,
2945                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2946                 if (ret_val)
2947                         return ret_val;
2948
2949         /* Do not init these registers when the HW is in IAMT mode, since the
2950          * firmware will have already initialized them.  We only initialize
2951          * them if the HW is not in IAMT mode.
2952          */
2953                 if (e1000_check_mng_mode(hw) == false) {
2954                         /* Enable Electrical Idle on the PHY */
2955                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2956                         ret_val = e1000_write_phy_reg(hw,
2957                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2958                         if (ret_val)
2959                                 return ret_val;
2960
2961                         ret_val = e1000_read_phy_reg(hw,
2962                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2963                         if (ret_val)
2964                                 return ret_val;
2965
2966                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2967                         ret_val = e1000_write_phy_reg(hw,
2968                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2969
2970                         if (ret_val)
2971                                 return ret_val;
2972                 }
2973
2974                 /* Workaround: Disable padding in Kumeran interface in the MAC
2975                  * and in the PHY to avoid CRC errors.
2976                  */
2977                 ret_val = e1000_read_phy_reg(hw,
2978                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2979                 if (ret_val)
2980                         return ret_val;
2981                 phy_data |= GG82563_ICR_DIS_PADDING;
2982                 ret_val = e1000_write_phy_reg(hw,
2983                                 GG82563_PHY_INBAND_CTRL, phy_data);
2984                 if (ret_val)
2985                         return ret_val;
2986         }
2987         return E1000_SUCCESS;
2988 }
2989
2990 /********************************************************************
2991 * Copper link setup for e1000_phy_m88 series.
2992 *
2993 * hw - Struct containing variables accessed by shared code
2994 *********************************************************************/
2995 static int32_t
2996 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2997 {
2998         int32_t ret_val;
2999         uint16_t phy_data;
3000
3001         DEBUGFUNC();
3002
3003         if (hw->phy_reset_disable)
3004                 return E1000_SUCCESS;
3005
3006         /* Enable CRS on TX. This must be set for half-duplex operation. */
3007         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3008         if (ret_val)
3009                 return ret_val;
3010
3011         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3012
3013         /* Options:
3014          *   MDI/MDI-X = 0 (default)
3015          *   0 - Auto for all speeds
3016          *   1 - MDI mode
3017          *   2 - MDI-X mode
3018          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3019          */
3020         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3021
3022         switch (hw->mdix) {
3023         case 1:
3024                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3025                 break;
3026         case 2:
3027                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3028                 break;
3029         case 3:
3030                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3031                 break;
3032         case 0:
3033         default:
3034                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3035                 break;
3036         }
3037
3038         /* Options:
3039          *   disable_polarity_correction = 0 (default)
3040          *       Automatic Correction for Reversed Cable Polarity
3041          *   0 - Disabled
3042          *   1 - Enabled
3043          */
3044         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3045         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3046         if (ret_val)
3047                 return ret_val;
3048
3049         if (hw->phy_revision < M88E1011_I_REV_4) {
3050                 /* Force TX_CLK in the Extended PHY Specific Control Register
3051                  * to 25MHz clock.
3052                  */
3053                 ret_val = e1000_read_phy_reg(hw,
3054                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3055                 if (ret_val)
3056                         return ret_val;
3057
3058                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3059
3060                 if ((hw->phy_revision == E1000_REVISION_2) &&
3061                         (hw->phy_id == M88E1111_I_PHY_ID)) {
3062                         /* Vidalia Phy, set the downshift counter to 5x */
3063                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3064                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3065                         ret_val = e1000_write_phy_reg(hw,
3066                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3067                         if (ret_val)
3068                                 return ret_val;
3069                 } else {
3070                         /* Configure Master and Slave downshift values */
3071                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3072                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3073                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3074                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3075                         ret_val = e1000_write_phy_reg(hw,
3076                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3077                         if (ret_val)
3078                                 return ret_val;
3079                 }
3080         }
3081
3082         /* SW Reset the PHY so all changes take effect */
3083         ret_val = e1000_phy_reset(hw);
3084         if (ret_val) {
3085                 DEBUGOUT("Error Resetting the PHY\n");
3086                 return ret_val;
3087         }
3088
3089         return E1000_SUCCESS;
3090 }
3091
3092 /********************************************************************
3093 * Setup auto-negotiation and flow control advertisements,
3094 * and then perform auto-negotiation.
3095 *
3096 * hw - Struct containing variables accessed by shared code
3097 *********************************************************************/
3098 static int32_t
3099 e1000_copper_link_autoneg(struct e1000_hw *hw)
3100 {
3101         int32_t ret_val;
3102         uint16_t phy_data;
3103
3104         DEBUGFUNC();
3105
3106         /* Perform some bounds checking on the hw->autoneg_advertised
3107          * parameter.  If this variable is zero, then set it to the default.
3108          */
3109         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3110
3111         /* If autoneg_advertised is zero, we assume it was not defaulted
3112          * by the calling code so we set to advertise full capability.
3113          */
3114         if (hw->autoneg_advertised == 0)
3115                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3116
3117         /* IFE phy only supports 10/100 */
3118         if (hw->phy_type == e1000_phy_ife)
3119                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3120
3121         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3122         ret_val = e1000_phy_setup_autoneg(hw);
3123         if (ret_val) {
3124                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3125                 return ret_val;
3126         }
3127         DEBUGOUT("Restarting Auto-Neg\n");
3128
3129         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3130          * the Auto Neg Restart bit in the PHY control register.
3131          */
3132         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3133         if (ret_val)
3134                 return ret_val;
3135
3136         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3137         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3138         if (ret_val)
3139                 return ret_val;
3140
3141         /* Does the user want to wait for Auto-Neg to complete here, or
3142          * check at a later time (for example, callback routine).
3143          */
3144         /* If we do not wait for autonegtation to complete I
3145          * do not see a valid link status.
3146          * wait_autoneg_complete = 1 .
3147          */
3148         if (hw->wait_autoneg_complete) {
3149                 ret_val = e1000_wait_autoneg(hw);
3150                 if (ret_val) {
3151                         DEBUGOUT("Error while waiting for autoneg"
3152                                         "to complete\n");
3153                         return ret_val;
3154                 }
3155         }
3156
3157         hw->get_link_status = true;
3158
3159         return E1000_SUCCESS;
3160 }
3161
3162 /******************************************************************************
3163 * Config the MAC and the PHY after link is up.
3164 *   1) Set up the MAC to the current PHY speed/duplex
3165 *      if we are on 82543.  If we
3166 *      are on newer silicon, we only need to configure
3167 *      collision distance in the Transmit Control Register.
3168 *   2) Set up flow control on the MAC to that established with
3169 *      the link partner.
3170 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3171 *
3172 * hw - Struct containing variables accessed by shared code
3173 ******************************************************************************/
3174 static int32_t
3175 e1000_copper_link_postconfig(struct e1000_hw *hw)
3176 {
3177         int32_t ret_val;
3178         DEBUGFUNC();
3179
3180         if (hw->mac_type >= e1000_82544) {
3181                 e1000_config_collision_dist(hw);
3182         } else {
3183                 ret_val = e1000_config_mac_to_phy(hw);
3184                 if (ret_val) {
3185                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3186                         return ret_val;
3187                 }
3188         }
3189         ret_val = e1000_config_fc_after_link_up(hw);
3190         if (ret_val) {
3191                 DEBUGOUT("Error Configuring Flow Control\n");
3192                 return ret_val;
3193         }
3194         return E1000_SUCCESS;
3195 }
3196
3197 /******************************************************************************
3198 * Detects which PHY is present and setup the speed and duplex
3199 *
3200 * hw - Struct containing variables accessed by shared code
3201 ******************************************************************************/
3202 static int
3203 e1000_setup_copper_link(struct e1000_hw *hw)
3204 {
3205         int32_t ret_val;
3206         uint16_t i;
3207         uint16_t phy_data;
3208         uint16_t reg_data;
3209
3210         DEBUGFUNC();
3211
3212         switch (hw->mac_type) {
3213         case e1000_80003es2lan:
3214         case e1000_ich8lan:
3215                 /* Set the mac to wait the maximum time between each
3216                  * iteration and increase the max iterations when
3217                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3218                 ret_val = e1000_write_kmrn_reg(hw,
3219                                 GG82563_REG(0x34, 4), 0xFFFF);
3220                 if (ret_val)
3221                         return ret_val;
3222                 ret_val = e1000_read_kmrn_reg(hw,
3223                                 GG82563_REG(0x34, 9), &reg_data);
3224                 if (ret_val)
3225                         return ret_val;
3226                 reg_data |= 0x3F;
3227                 ret_val = e1000_write_kmrn_reg(hw,
3228                                 GG82563_REG(0x34, 9), reg_data);
3229                 if (ret_val)
3230                         return ret_val;
3231         default:
3232                 break;
3233         }
3234
3235         /* Check if it is a valid PHY and set PHY mode if necessary. */
3236         ret_val = e1000_copper_link_preconfig(hw);
3237         if (ret_val)
3238                 return ret_val;
3239         switch (hw->mac_type) {
3240         case e1000_80003es2lan:
3241                 /* Kumeran registers are written-only */
3242                 reg_data =
3243                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3244                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3245                 ret_val = e1000_write_kmrn_reg(hw,
3246                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3247                 if (ret_val)
3248                         return ret_val;
3249                 break;
3250         default:
3251                 break;
3252         }
3253
3254         if (hw->phy_type == e1000_phy_igp ||
3255                 hw->phy_type == e1000_phy_igp_3 ||
3256                 hw->phy_type == e1000_phy_igp_2) {
3257                 ret_val = e1000_copper_link_igp_setup(hw);
3258                 if (ret_val)
3259                         return ret_val;
3260         } else if (hw->phy_type == e1000_phy_m88 ||
3261                 hw->phy_type == e1000_phy_igb) {
3262                 ret_val = e1000_copper_link_mgp_setup(hw);
3263                 if (ret_val)
3264                         return ret_val;
3265         } else if (hw->phy_type == e1000_phy_gg82563) {
3266                 ret_val = e1000_copper_link_ggp_setup(hw);
3267                 if (ret_val)
3268                         return ret_val;
3269         }
3270
3271         /* always auto */
3272         /* Setup autoneg and flow control advertisement
3273           * and perform autonegotiation */
3274         ret_val = e1000_copper_link_autoneg(hw);
3275         if (ret_val)
3276                 return ret_val;
3277
3278         /* Check link status. Wait up to 100 microseconds for link to become
3279          * valid.
3280          */
3281         for (i = 0; i < 10; i++) {
3282                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3283                 if (ret_val)
3284                         return ret_val;
3285                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3286                 if (ret_val)
3287                         return ret_val;
3288
3289                 if (phy_data & MII_SR_LINK_STATUS) {
3290                         /* Config the MAC and PHY after link is up */
3291                         ret_val = e1000_copper_link_postconfig(hw);
3292                         if (ret_val)
3293                                 return ret_val;
3294
3295                         DEBUGOUT("Valid link established!!!\n");
3296                         return E1000_SUCCESS;
3297                 }
3298                 udelay(10);
3299         }
3300
3301         DEBUGOUT("Unable to establish link!!!\n");
3302         return E1000_SUCCESS;
3303 }
3304
3305 /******************************************************************************
3306 * Configures PHY autoneg and flow control advertisement settings
3307 *
3308 * hw - Struct containing variables accessed by shared code
3309 ******************************************************************************/
3310 int32_t
3311 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3312 {
3313         int32_t ret_val;
3314         uint16_t mii_autoneg_adv_reg;
3315         uint16_t mii_1000t_ctrl_reg;
3316
3317         DEBUGFUNC();
3318
3319         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3320         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3321         if (ret_val)
3322                 return ret_val;
3323
3324         if (hw->phy_type != e1000_phy_ife) {
3325                 /* Read the MII 1000Base-T Control Register (Address 9). */
3326                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3327                                 &mii_1000t_ctrl_reg);
3328                 if (ret_val)
3329                         return ret_val;
3330         } else
3331                 mii_1000t_ctrl_reg = 0;
3332
3333         /* Need to parse both autoneg_advertised and fc and set up
3334          * the appropriate PHY registers.  First we will parse for
3335          * autoneg_advertised software override.  Since we can advertise
3336          * a plethora of combinations, we need to check each bit
3337          * individually.
3338          */
3339
3340         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3341          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3342          * the  1000Base-T Control Register (Address 9).
3343          */
3344         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3345         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3346
3347         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3348
3349         /* Do we want to advertise 10 Mb Half Duplex? */
3350         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3351                 DEBUGOUT("Advertise 10mb Half duplex\n");
3352                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3353         }
3354
3355         /* Do we want to advertise 10 Mb Full Duplex? */
3356         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3357                 DEBUGOUT("Advertise 10mb Full duplex\n");
3358                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3359         }
3360
3361         /* Do we want to advertise 100 Mb Half Duplex? */
3362         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3363                 DEBUGOUT("Advertise 100mb Half duplex\n");
3364                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3365         }
3366
3367         /* Do we want to advertise 100 Mb Full Duplex? */
3368         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3369                 DEBUGOUT("Advertise 100mb Full duplex\n");
3370                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3371         }
3372
3373         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3374         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3375                 DEBUGOUT
3376                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3377         }
3378
3379         /* Do we want to advertise 1000 Mb Full Duplex? */
3380         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3381                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3382                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3383         }
3384
3385         /* Check for a software override of the flow control settings, and
3386          * setup the PHY advertisement registers accordingly.  If
3387          * auto-negotiation is enabled, then software will have to set the
3388          * "PAUSE" bits to the correct value in the Auto-Negotiation
3389          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3390          *
3391          * The possible values of the "fc" parameter are:
3392          *      0:  Flow control is completely disabled
3393          *      1:  Rx flow control is enabled (we can receive pause frames
3394          *          but not send pause frames).
3395          *      2:  Tx flow control is enabled (we can send pause frames
3396          *          but we do not support receiving pause frames).
3397          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3398          *  other:  No software override.  The flow control configuration
3399          *          in the EEPROM is used.
3400          */
3401         switch (hw->fc) {
3402         case e1000_fc_none:     /* 0 */
3403                 /* Flow control (RX & TX) is completely disabled by a
3404                  * software over-ride.
3405                  */
3406                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3407                 break;
3408         case e1000_fc_rx_pause: /* 1 */
3409                 /* RX Flow control is enabled, and TX Flow control is
3410                  * disabled, by a software over-ride.
3411                  */
3412                 /* Since there really isn't a way to advertise that we are
3413                  * capable of RX Pause ONLY, we will advertise that we
3414                  * support both symmetric and asymmetric RX PAUSE.  Later
3415                  * (in e1000_config_fc_after_link_up) we will disable the
3416                  *hw's ability to send PAUSE frames.
3417                  */
3418                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3419                 break;
3420         case e1000_fc_tx_pause: /* 2 */
3421                 /* TX Flow control is enabled, and RX Flow control is
3422                  * disabled, by a software over-ride.
3423                  */
3424                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3425                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3426                 break;
3427         case e1000_fc_full:     /* 3 */
3428                 /* Flow control (both RX and TX) is enabled by a software
3429                  * over-ride.
3430                  */
3431                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3432                 break;
3433         default:
3434                 DEBUGOUT("Flow control param set incorrectly\n");
3435                 return -E1000_ERR_CONFIG;
3436         }
3437
3438         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3439         if (ret_val)
3440                 return ret_val;
3441
3442         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3443
3444         if (hw->phy_type != e1000_phy_ife) {
3445                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3446                                 mii_1000t_ctrl_reg);
3447                 if (ret_val)
3448                         return ret_val;
3449         }
3450
3451         return E1000_SUCCESS;
3452 }
3453
3454 /******************************************************************************
3455 * Sets the collision distance in the Transmit Control register
3456 *
3457 * hw - Struct containing variables accessed by shared code
3458 *
3459 * Link should have been established previously. Reads the speed and duplex
3460 * information from the Device Status register.
3461 ******************************************************************************/
3462 static void
3463 e1000_config_collision_dist(struct e1000_hw *hw)
3464 {
3465         uint32_t tctl, coll_dist;
3466
3467         DEBUGFUNC();
3468
3469         if (hw->mac_type < e1000_82543)
3470                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3471         else
3472                 coll_dist = E1000_COLLISION_DISTANCE;
3473
3474         tctl = E1000_READ_REG(hw, TCTL);
3475
3476         tctl &= ~E1000_TCTL_COLD;
3477         tctl |= coll_dist << E1000_COLD_SHIFT;
3478
3479         E1000_WRITE_REG(hw, TCTL, tctl);
3480         E1000_WRITE_FLUSH(hw);
3481 }
3482
3483 /******************************************************************************
3484 * Sets MAC speed and duplex settings to reflect the those in the PHY
3485 *
3486 * hw - Struct containing variables accessed by shared code
3487 * mii_reg - data to write to the MII control register
3488 *
3489 * The contents of the PHY register containing the needed information need to
3490 * be passed in.
3491 ******************************************************************************/
3492 static int
3493 e1000_config_mac_to_phy(struct e1000_hw *hw)
3494 {
3495         uint32_t ctrl;
3496         uint16_t phy_data;
3497
3498         DEBUGFUNC();
3499
3500         /* Read the Device Control Register and set the bits to Force Speed
3501          * and Duplex.
3502          */
3503         ctrl = E1000_READ_REG(hw, CTRL);
3504         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3505         ctrl &= ~(E1000_CTRL_ILOS);
3506         ctrl |= (E1000_CTRL_SPD_SEL);
3507
3508         /* Set up duplex in the Device Control and Transmit Control
3509          * registers depending on negotiated values.
3510          */
3511         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3512                 DEBUGOUT("PHY Read Error\n");
3513                 return -E1000_ERR_PHY;
3514         }
3515         if (phy_data & M88E1000_PSSR_DPLX)
3516                 ctrl |= E1000_CTRL_FD;
3517         else
3518                 ctrl &= ~E1000_CTRL_FD;
3519
3520         e1000_config_collision_dist(hw);
3521
3522         /* Set up speed in the Device Control register depending on
3523          * negotiated values.
3524          */
3525         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3526                 ctrl |= E1000_CTRL_SPD_1000;
3527         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3528                 ctrl |= E1000_CTRL_SPD_100;
3529         /* Write the configured values back to the Device Control Reg. */
3530         E1000_WRITE_REG(hw, CTRL, ctrl);
3531         return 0;
3532 }
3533
3534 /******************************************************************************
3535  * Forces the MAC's flow control settings.
3536  *
3537  * hw - Struct containing variables accessed by shared code
3538  *
3539  * Sets the TFCE and RFCE bits in the device control register to reflect
3540  * the adapter settings. TFCE and RFCE need to be explicitly set by
3541  * software when a Copper PHY is used because autonegotiation is managed
3542  * by the PHY rather than the MAC. Software must also configure these
3543  * bits when link is forced on a fiber connection.
3544  *****************************************************************************/
3545 static int
3546 e1000_force_mac_fc(struct e1000_hw *hw)
3547 {
3548         uint32_t ctrl;
3549
3550         DEBUGFUNC();
3551
3552         /* Get the current configuration of the Device Control Register */
3553         ctrl = E1000_READ_REG(hw, CTRL);
3554
3555         /* Because we didn't get link via the internal auto-negotiation
3556          * mechanism (we either forced link or we got link via PHY
3557          * auto-neg), we have to manually enable/disable transmit an
3558          * receive flow control.
3559          *
3560          * The "Case" statement below enables/disable flow control
3561          * according to the "hw->fc" parameter.
3562          *
3563          * The possible values of the "fc" parameter are:
3564          *      0:  Flow control is completely disabled
3565          *      1:  Rx flow control is enabled (we can receive pause
3566          *          frames but not send pause frames).
3567          *      2:  Tx flow control is enabled (we can send pause frames
3568          *          frames but we do not receive pause frames).
3569          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3570          *  other:  No other values should be possible at this point.
3571          */
3572
3573         switch (hw->fc) {
3574         case e1000_fc_none:
3575                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3576                 break;
3577         case e1000_fc_rx_pause:
3578                 ctrl &= (~E1000_CTRL_TFCE);
3579                 ctrl |= E1000_CTRL_RFCE;
3580                 break;
3581         case e1000_fc_tx_pause:
3582                 ctrl &= (~E1000_CTRL_RFCE);
3583                 ctrl |= E1000_CTRL_TFCE;
3584                 break;
3585         case e1000_fc_full:
3586                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3587                 break;
3588         default:
3589                 DEBUGOUT("Flow control param set incorrectly\n");
3590                 return -E1000_ERR_CONFIG;
3591         }
3592
3593         /* Disable TX Flow Control for 82542 (rev 2.0) */
3594         if (hw->mac_type == e1000_82542_rev2_0)
3595                 ctrl &= (~E1000_CTRL_TFCE);
3596
3597         E1000_WRITE_REG(hw, CTRL, ctrl);
3598         return 0;
3599 }
3600
3601 /******************************************************************************
3602  * Configures flow control settings after link is established
3603  *
3604  * hw - Struct containing variables accessed by shared code
3605  *
3606  * Should be called immediately after a valid link has been established.
3607  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3608  * and autonegotiation is enabled, the MAC flow control settings will be set
3609  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3610  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3611  *****************************************************************************/
3612 static int32_t
3613 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3614 {
3615         int32_t ret_val;
3616         uint16_t mii_status_reg;
3617         uint16_t mii_nway_adv_reg;
3618         uint16_t mii_nway_lp_ability_reg;
3619         uint16_t speed;
3620         uint16_t duplex;
3621
3622         DEBUGFUNC();
3623
3624         /* Check for the case where we have fiber media and auto-neg failed
3625          * so we had to force link.  In this case, we need to force the
3626          * configuration of the MAC to match the "fc" parameter.
3627          */
3628         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3629                 || ((hw->media_type == e1000_media_type_internal_serdes)
3630                 && (hw->autoneg_failed))
3631                 || ((hw->media_type == e1000_media_type_copper)
3632                 && (!hw->autoneg))) {
3633                 ret_val = e1000_force_mac_fc(hw);
3634                 if (ret_val < 0) {
3635                         DEBUGOUT("Error forcing flow control settings\n");
3636                         return ret_val;
3637                 }
3638         }
3639
3640         /* Check for the case where we have copper media and auto-neg is
3641          * enabled.  In this case, we need to check and see if Auto-Neg
3642          * has completed, and if so, how the PHY and link partner has
3643          * flow control configured.
3644          */
3645         if (hw->media_type == e1000_media_type_copper) {
3646                 /* Read the MII Status Register and check to see if AutoNeg
3647                  * has completed.  We read this twice because this reg has
3648                  * some "sticky" (latched) bits.
3649                  */
3650                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3651                         DEBUGOUT("PHY Read Error\n");
3652                         return -E1000_ERR_PHY;
3653                 }
3654                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3655                         DEBUGOUT("PHY Read Error\n");
3656                         return -E1000_ERR_PHY;
3657                 }
3658
3659                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3660                         /* The AutoNeg process has completed, so we now need to
3661                          * read both the Auto Negotiation Advertisement Register
3662                          * (Address 4) and the Auto_Negotiation Base Page Ability
3663                          * Register (Address 5) to determine how flow control was
3664                          * negotiated.
3665                          */
3666                         if (e1000_read_phy_reg
3667                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3668                                 DEBUGOUT("PHY Read Error\n");
3669                                 return -E1000_ERR_PHY;
3670                         }
3671                         if (e1000_read_phy_reg
3672                             (hw, PHY_LP_ABILITY,
3673                              &mii_nway_lp_ability_reg) < 0) {
3674                                 DEBUGOUT("PHY Read Error\n");
3675                                 return -E1000_ERR_PHY;
3676                         }
3677
3678                         /* Two bits in the Auto Negotiation Advertisement Register
3679                          * (Address 4) and two bits in the Auto Negotiation Base
3680                          * Page Ability Register (Address 5) determine flow control
3681                          * for both the PHY and the link partner.  The following
3682                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3683                          * 1999, describes these PAUSE resolution bits and how flow
3684                          * control is determined based upon these settings.
3685                          * NOTE:  DC = Don't Care
3686                          *
3687                          *   LOCAL DEVICE  |   LINK PARTNER
3688                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3689                          *-------|---------|-------|---------|--------------------
3690                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3691                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3692                          *   0   |    1    |   1   |    0    | e1000_fc_none
3693                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3694                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3695                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3696                          *   1   |    1    |   0   |    0    | e1000_fc_none
3697                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3698                          *
3699                          */
3700                         /* Are both PAUSE bits set to 1?  If so, this implies
3701                          * Symmetric Flow Control is enabled at both ends.  The
3702                          * ASM_DIR bits are irrelevant per the spec.
3703                          *
3704                          * For Symmetric Flow Control:
3705                          *
3706                          *   LOCAL DEVICE  |   LINK PARTNER
3707                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3708                          *-------|---------|-------|---------|--------------------
3709                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3710                          *
3711                          */
3712                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3713                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3714                                 /* Now we need to check if the user selected RX ONLY
3715                                  * of pause frames.  In this case, we had to advertise
3716                                  * FULL flow control because we could not advertise RX
3717                                  * ONLY. Hence, we must now check to see if we need to
3718                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3719                                  */
3720                                 if (hw->original_fc == e1000_fc_full) {
3721                                         hw->fc = e1000_fc_full;
3722                                         DEBUGOUT("Flow Control = FULL.\r\n");
3723                                 } else {
3724                                         hw->fc = e1000_fc_rx_pause;
3725                                         DEBUGOUT
3726                                             ("Flow Control = RX PAUSE frames only.\r\n");
3727                                 }
3728                         }
3729                         /* For receiving PAUSE frames ONLY.
3730                          *
3731                          *   LOCAL DEVICE  |   LINK PARTNER
3732                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3733                          *-------|---------|-------|---------|--------------------
3734                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3735                          *
3736                          */
3737                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3738                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3739                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3740                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3741                         {
3742                                 hw->fc = e1000_fc_tx_pause;
3743                                 DEBUGOUT
3744                                     ("Flow Control = TX PAUSE frames only.\r\n");
3745                         }
3746                         /* For transmitting PAUSE frames ONLY.
3747                          *
3748                          *   LOCAL DEVICE  |   LINK PARTNER
3749                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3750                          *-------|---------|-------|---------|--------------------
3751                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3752                          *
3753                          */
3754                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3755                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3756                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3757                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3758                         {
3759                                 hw->fc = e1000_fc_rx_pause;
3760                                 DEBUGOUT
3761                                     ("Flow Control = RX PAUSE frames only.\r\n");
3762                         }
3763                         /* Per the IEEE spec, at this point flow control should be
3764                          * disabled.  However, we want to consider that we could
3765                          * be connected to a legacy switch that doesn't advertise
3766                          * desired flow control, but can be forced on the link
3767                          * partner.  So if we advertised no flow control, that is
3768                          * what we will resolve to.  If we advertised some kind of
3769                          * receive capability (Rx Pause Only or Full Flow Control)
3770                          * and the link partner advertised none, we will configure
3771                          * ourselves to enable Rx Flow Control only.  We can do
3772                          * this safely for two reasons:  If the link partner really
3773                          * didn't want flow control enabled, and we enable Rx, no
3774                          * harm done since we won't be receiving any PAUSE frames
3775                          * anyway.  If the intent on the link partner was to have
3776                          * flow control enabled, then by us enabling RX only, we
3777                          * can at least receive pause frames and process them.
3778                          * This is a good idea because in most cases, since we are
3779                          * predominantly a server NIC, more times than not we will
3780                          * be asked to delay transmission of packets than asking
3781                          * our link partner to pause transmission of frames.
3782                          */
3783                         else if (hw->original_fc == e1000_fc_none ||
3784                                  hw->original_fc == e1000_fc_tx_pause) {
3785                                 hw->fc = e1000_fc_none;
3786                                 DEBUGOUT("Flow Control = NONE.\r\n");
3787                         } else {
3788                                 hw->fc = e1000_fc_rx_pause;
3789                                 DEBUGOUT
3790                                     ("Flow Control = RX PAUSE frames only.\r\n");
3791                         }
3792
3793                         /* Now we need to do one last check...  If we auto-
3794                          * negotiated to HALF DUPLEX, flow control should not be
3795                          * enabled per IEEE 802.3 spec.
3796                          */
3797                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3798
3799                         if (duplex == HALF_DUPLEX)
3800                                 hw->fc = e1000_fc_none;
3801
3802                         /* Now we call a subroutine to actually force the MAC
3803                          * controller to use the correct flow control settings.
3804                          */
3805                         ret_val = e1000_force_mac_fc(hw);
3806                         if (ret_val < 0) {
3807                                 DEBUGOUT
3808                                     ("Error forcing flow control settings\n");
3809                                 return ret_val;
3810                         }
3811                 } else {
3812                         DEBUGOUT
3813                             ("Copper PHY and Auto Neg has not completed.\r\n");
3814                 }
3815         }
3816         return E1000_SUCCESS;
3817 }
3818
3819 /******************************************************************************
3820  * Checks to see if the link status of the hardware has changed.
3821  *
3822  * hw - Struct containing variables accessed by shared code
3823  *
3824  * Called by any function that needs to check the link status of the adapter.
3825  *****************************************************************************/
3826 static int
3827 e1000_check_for_link(struct e1000_hw *hw)
3828 {
3829         uint32_t rxcw;
3830         uint32_t ctrl;
3831         uint32_t status;
3832         uint32_t rctl;
3833         uint32_t signal;
3834         int32_t ret_val;
3835         uint16_t phy_data;
3836         uint16_t lp_capability;
3837
3838         DEBUGFUNC();
3839
3840         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3841          * set when the optics detect a signal. On older adapters, it will be
3842          * cleared when there is a signal
3843          */
3844         ctrl = E1000_READ_REG(hw, CTRL);
3845         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3846                 signal = E1000_CTRL_SWDPIN1;
3847         else
3848                 signal = 0;
3849
3850         status = E1000_READ_REG(hw, STATUS);
3851         rxcw = E1000_READ_REG(hw, RXCW);
3852         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3853
3854         /* If we have a copper PHY then we only want to go out to the PHY
3855          * registers to see if Auto-Neg has completed and/or if our link
3856          * status has changed.  The get_link_status flag will be set if we
3857          * receive a Link Status Change interrupt or we have Rx Sequence
3858          * Errors.
3859          */
3860         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3861                 /* First we want to see if the MII Status Register reports
3862                  * link.  If so, then we want to get the current speed/duplex
3863                  * of the PHY.
3864                  * Read the register twice since the link bit is sticky.
3865                  */
3866                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3867                         DEBUGOUT("PHY Read Error\n");
3868                         return -E1000_ERR_PHY;
3869                 }
3870                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3871                         DEBUGOUT("PHY Read Error\n");
3872                         return -E1000_ERR_PHY;
3873                 }
3874
3875                 if (phy_data & MII_SR_LINK_STATUS) {
3876                         hw->get_link_status = false;
3877                 } else {
3878                         /* No link detected */
3879                         return -E1000_ERR_NOLINK;
3880                 }
3881
3882                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3883                  * have Si on board that is 82544 or newer, Auto
3884                  * Speed Detection takes care of MAC speed/duplex
3885                  * configuration.  So we only need to configure Collision
3886                  * Distance in the MAC.  Otherwise, we need to force
3887                  * speed/duplex on the MAC to the current PHY speed/duplex
3888                  * settings.
3889                  */
3890                 if (hw->mac_type >= e1000_82544)
3891                         e1000_config_collision_dist(hw);
3892                 else {
3893                         ret_val = e1000_config_mac_to_phy(hw);
3894                         if (ret_val < 0) {
3895                                 DEBUGOUT
3896                                     ("Error configuring MAC to PHY settings\n");
3897                                 return ret_val;
3898                         }
3899                 }
3900
3901                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3902                  * need to restore the desired flow control settings because we may
3903                  * have had to re-autoneg with a different link partner.
3904                  */
3905                 ret_val = e1000_config_fc_after_link_up(hw);
3906                 if (ret_val < 0) {
3907                         DEBUGOUT("Error configuring flow control\n");
3908                         return ret_val;
3909                 }
3910
3911                 /* At this point we know that we are on copper and we have
3912                  * auto-negotiated link.  These are conditions for checking the link
3913                  * parter capability register.  We use the link partner capability to
3914                  * determine if TBI Compatibility needs to be turned on or off.  If
3915                  * the link partner advertises any speed in addition to Gigabit, then
3916                  * we assume that they are GMII-based, and TBI compatibility is not
3917                  * needed. If no other speeds are advertised, we assume the link
3918                  * partner is TBI-based, and we turn on TBI Compatibility.
3919                  */
3920                 if (hw->tbi_compatibility_en) {
3921                         if (e1000_read_phy_reg
3922                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3923                                 DEBUGOUT("PHY Read Error\n");
3924                                 return -E1000_ERR_PHY;
3925                         }
3926                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3927                                              NWAY_LPAR_10T_FD_CAPS |
3928                                              NWAY_LPAR_100TX_HD_CAPS |
3929                                              NWAY_LPAR_100TX_FD_CAPS |
3930                                              NWAY_LPAR_100T4_CAPS)) {
3931                                 /* If our link partner advertises anything in addition to
3932                                  * gigabit, we do not need to enable TBI compatibility.
3933                                  */
3934                                 if (hw->tbi_compatibility_on) {
3935                                         /* If we previously were in the mode, turn it off. */
3936                                         rctl = E1000_READ_REG(hw, RCTL);
3937                                         rctl &= ~E1000_RCTL_SBP;
3938                                         E1000_WRITE_REG(hw, RCTL, rctl);
3939                                         hw->tbi_compatibility_on = false;
3940                                 }
3941                         } else {
3942                                 /* If TBI compatibility is was previously off, turn it on. For
3943                                  * compatibility with a TBI link partner, we will store bad
3944                                  * packets. Some frames have an additional byte on the end and
3945                                  * will look like CRC errors to to the hardware.
3946                                  */
3947                                 if (!hw->tbi_compatibility_on) {
3948                                         hw->tbi_compatibility_on = true;
3949                                         rctl = E1000_READ_REG(hw, RCTL);
3950                                         rctl |= E1000_RCTL_SBP;
3951                                         E1000_WRITE_REG(hw, RCTL, rctl);
3952                                 }
3953                         }
3954                 }
3955         }
3956         /* If we don't have link (auto-negotiation failed or link partner cannot
3957          * auto-negotiate), the cable is plugged in (we have signal), and our
3958          * link partner is not trying to auto-negotiate with us (we are receiving
3959          * idles or data), we need to force link up. We also need to give
3960          * auto-negotiation time to complete, in case the cable was just plugged
3961          * in. The autoneg_failed flag does this.
3962          */
3963         else if ((hw->media_type == e1000_media_type_fiber) &&
3964                  (!(status & E1000_STATUS_LU)) &&
3965                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3966                  (!(rxcw & E1000_RXCW_C))) {
3967                 if (hw->autoneg_failed == 0) {
3968                         hw->autoneg_failed = 1;
3969                         return 0;
3970                 }
3971                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3972
3973                 /* Disable auto-negotiation in the TXCW register */
3974                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3975
3976                 /* Force link-up and also force full-duplex. */
3977                 ctrl = E1000_READ_REG(hw, CTRL);
3978                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3979                 E1000_WRITE_REG(hw, CTRL, ctrl);
3980
3981                 /* Configure Flow Control after forcing link up. */
3982                 ret_val = e1000_config_fc_after_link_up(hw);
3983                 if (ret_val < 0) {
3984                         DEBUGOUT("Error configuring flow control\n");
3985                         return ret_val;
3986                 }
3987         }
3988         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3989          * auto-negotiation in the TXCW register and disable forced link in the
3990          * Device Control register in an attempt to auto-negotiate with our link
3991          * partner.
3992          */
3993         else if ((hw->media_type == e1000_media_type_fiber) &&
3994                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3995                 DEBUGOUT
3996                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3997                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3998                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3999         }
4000         return 0;
4001 }
4002
4003 /******************************************************************************
4004 * Configure the MAC-to-PHY interface for 10/100Mbps
4005 *
4006 * hw - Struct containing variables accessed by shared code
4007 ******************************************************************************/
4008 static int32_t
4009 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4010 {
4011         int32_t ret_val = E1000_SUCCESS;
4012         uint32_t tipg;
4013         uint16_t reg_data;
4014
4015         DEBUGFUNC();
4016
4017         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4018         ret_val = e1000_write_kmrn_reg(hw,
4019                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4020         if (ret_val)
4021                 return ret_val;
4022
4023         /* Configure Transmit Inter-Packet Gap */
4024         tipg = E1000_READ_REG(hw, TIPG);
4025         tipg &= ~E1000_TIPG_IPGT_MASK;
4026         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4027         E1000_WRITE_REG(hw, TIPG, tipg);
4028
4029         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4030
4031         if (ret_val)
4032                 return ret_val;
4033
4034         if (duplex == HALF_DUPLEX)
4035                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4036         else
4037                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4038
4039         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4040
4041         return ret_val;
4042 }
4043
4044 static int32_t
4045 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4046 {
4047         int32_t ret_val = E1000_SUCCESS;
4048         uint16_t reg_data;
4049         uint32_t tipg;
4050
4051         DEBUGFUNC();
4052
4053         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4054         ret_val = e1000_write_kmrn_reg(hw,
4055                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4056         if (ret_val)
4057                 return ret_val;
4058
4059         /* Configure Transmit Inter-Packet Gap */
4060         tipg = E1000_READ_REG(hw, TIPG);
4061         tipg &= ~E1000_TIPG_IPGT_MASK;
4062         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4063         E1000_WRITE_REG(hw, TIPG, tipg);
4064
4065         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4066
4067         if (ret_val)
4068                 return ret_val;
4069
4070         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4071         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4072
4073         return ret_val;
4074 }
4075
4076 /******************************************************************************
4077  * Detects the current speed and duplex settings of the hardware.
4078  *
4079  * hw - Struct containing variables accessed by shared code
4080  * speed - Speed of the connection
4081  * duplex - Duplex setting of the connection
4082  *****************************************************************************/
4083 static int
4084 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4085                 uint16_t *duplex)
4086 {
4087         uint32_t status;
4088         int32_t ret_val;
4089         uint16_t phy_data;
4090
4091         DEBUGFUNC();
4092
4093         if (hw->mac_type >= e1000_82543) {
4094                 status = E1000_READ_REG(hw, STATUS);
4095                 if (status & E1000_STATUS_SPEED_1000) {
4096                         *speed = SPEED_1000;
4097                         DEBUGOUT("1000 Mbs, ");
4098                 } else if (status & E1000_STATUS_SPEED_100) {
4099                         *speed = SPEED_100;
4100                         DEBUGOUT("100 Mbs, ");
4101                 } else {
4102                         *speed = SPEED_10;
4103                         DEBUGOUT("10 Mbs, ");
4104                 }
4105
4106                 if (status & E1000_STATUS_FD) {
4107                         *duplex = FULL_DUPLEX;
4108                         DEBUGOUT("Full Duplex\r\n");
4109                 } else {
4110                         *duplex = HALF_DUPLEX;
4111                         DEBUGOUT(" Half Duplex\r\n");
4112                 }
4113         } else {
4114                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4115                 *speed = SPEED_1000;
4116                 *duplex = FULL_DUPLEX;
4117         }
4118
4119         /* IGP01 PHY may advertise full duplex operation after speed downgrade
4120          * even if it is operating at half duplex.  Here we set the duplex
4121          * settings to match the duplex in the link partner's capabilities.
4122          */
4123         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4124                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4125                 if (ret_val)
4126                         return ret_val;
4127
4128                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4129                         *duplex = HALF_DUPLEX;
4130                 else {
4131                         ret_val = e1000_read_phy_reg(hw,
4132                                         PHY_LP_ABILITY, &phy_data);
4133                         if (ret_val)
4134                                 return ret_val;
4135                         if ((*speed == SPEED_100 &&
4136                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4137                                 || (*speed == SPEED_10
4138                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4139                                 *duplex = HALF_DUPLEX;
4140                 }
4141         }
4142
4143         if ((hw->mac_type == e1000_80003es2lan) &&
4144                 (hw->media_type == e1000_media_type_copper)) {
4145                 if (*speed == SPEED_1000)
4146                         ret_val = e1000_configure_kmrn_for_1000(hw);
4147                 else
4148                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4149                 if (ret_val)
4150                         return ret_val;
4151         }
4152         return E1000_SUCCESS;
4153 }
4154
4155 /******************************************************************************
4156 * Blocks until autoneg completes or times out (~4.5 seconds)
4157 *
4158 * hw - Struct containing variables accessed by shared code
4159 ******************************************************************************/
4160 static int
4161 e1000_wait_autoneg(struct e1000_hw *hw)
4162 {
4163         uint16_t i;
4164         uint16_t phy_data;
4165
4166         DEBUGFUNC();
4167         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4168
4169         /* We will wait for autoneg to complete or timeout to expire. */
4170         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4171                 /* Read the MII Status Register and wait for Auto-Neg
4172                  * Complete bit to be set.
4173                  */
4174                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4175                         DEBUGOUT("PHY Read Error\n");
4176                         return -E1000_ERR_PHY;
4177                 }
4178                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4179                         DEBUGOUT("PHY Read Error\n");
4180                         return -E1000_ERR_PHY;
4181                 }
4182                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4183                         DEBUGOUT("Auto-Neg complete.\n");
4184                         return 0;
4185                 }
4186                 mdelay(100);
4187         }
4188         DEBUGOUT("Auto-Neg timedout.\n");
4189         return -E1000_ERR_TIMEOUT;
4190 }
4191
4192 /******************************************************************************
4193 * Raises the Management Data Clock
4194 *
4195 * hw - Struct containing variables accessed by shared code
4196 * ctrl - Device control register's current value
4197 ******************************************************************************/
4198 static void
4199 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4200 {
4201         /* Raise the clock input to the Management Data Clock (by setting the MDC
4202          * bit), and then delay 2 microseconds.
4203          */
4204         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4205         E1000_WRITE_FLUSH(hw);
4206         udelay(2);
4207 }
4208
4209 /******************************************************************************
4210 * Lowers the Management Data Clock
4211 *
4212 * hw - Struct containing variables accessed by shared code
4213 * ctrl - Device control register's current value
4214 ******************************************************************************/
4215 static void
4216 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4217 {
4218         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4219          * bit), and then delay 2 microseconds.
4220          */
4221         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4222         E1000_WRITE_FLUSH(hw);
4223         udelay(2);
4224 }
4225
4226 /******************************************************************************
4227 * Shifts data bits out to the PHY
4228 *
4229 * hw - Struct containing variables accessed by shared code
4230 * data - Data to send out to the PHY
4231 * count - Number of bits to shift out
4232 *
4233 * Bits are shifted out in MSB to LSB order.
4234 ******************************************************************************/
4235 static void
4236 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4237 {
4238         uint32_t ctrl;
4239         uint32_t mask;
4240
4241         /* We need to shift "count" number of bits out to the PHY. So, the value
4242          * in the "data" parameter will be shifted out to the PHY one bit at a
4243          * time. In order to do this, "data" must be broken down into bits.
4244          */
4245         mask = 0x01;
4246         mask <<= (count - 1);
4247
4248         ctrl = E1000_READ_REG(hw, CTRL);
4249
4250         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4251         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4252
4253         while (mask) {
4254                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4255                  * then raising and lowering the Management Data Clock. A "0" is
4256                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4257                  * raising and lowering the clock.
4258                  */
4259                 if (data & mask)
4260                         ctrl |= E1000_CTRL_MDIO;
4261                 else
4262                         ctrl &= ~E1000_CTRL_MDIO;
4263
4264                 E1000_WRITE_REG(hw, CTRL, ctrl);
4265                 E1000_WRITE_FLUSH(hw);
4266
4267                 udelay(2);
4268
4269                 e1000_raise_mdi_clk(hw, &ctrl);
4270                 e1000_lower_mdi_clk(hw, &ctrl);
4271
4272                 mask = mask >> 1;
4273         }
4274 }
4275
4276 /******************************************************************************
4277 * Shifts data bits in from the PHY
4278 *
4279 * hw - Struct containing variables accessed by shared code
4280 *
4281 * Bits are shifted in in MSB to LSB order.
4282 ******************************************************************************/
4283 static uint16_t
4284 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4285 {
4286         uint32_t ctrl;
4287         uint16_t data = 0;
4288         uint8_t i;
4289
4290         /* In order to read a register from the PHY, we need to shift in a total
4291          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4292          * to avoid contention on the MDIO pin when a read operation is performed.
4293          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4294          * by raising the input to the Management Data Clock (setting the MDC bit),
4295          * and then reading the value of the MDIO bit.
4296          */
4297         ctrl = E1000_READ_REG(hw, CTRL);
4298
4299         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4300         ctrl &= ~E1000_CTRL_MDIO_DIR;
4301         ctrl &= ~E1000_CTRL_MDIO;
4302
4303         E1000_WRITE_REG(hw, CTRL, ctrl);
4304         E1000_WRITE_FLUSH(hw);
4305
4306         /* Raise and Lower the clock before reading in the data. This accounts for
4307          * the turnaround bits. The first clock occurred when we clocked out the
4308          * last bit of the Register Address.
4309          */
4310         e1000_raise_mdi_clk(hw, &ctrl);
4311         e1000_lower_mdi_clk(hw, &ctrl);
4312
4313         for (data = 0, i = 0; i < 16; i++) {
4314                 data = data << 1;
4315                 e1000_raise_mdi_clk(hw, &ctrl);
4316                 ctrl = E1000_READ_REG(hw, CTRL);
4317                 /* Check to see if we shifted in a "1". */
4318                 if (ctrl & E1000_CTRL_MDIO)
4319                         data |= 1;
4320                 e1000_lower_mdi_clk(hw, &ctrl);
4321         }
4322
4323         e1000_raise_mdi_clk(hw, &ctrl);
4324         e1000_lower_mdi_clk(hw, &ctrl);
4325
4326         return data;
4327 }
4328
4329 /*****************************************************************************
4330 * Reads the value from a PHY register
4331 *
4332 * hw - Struct containing variables accessed by shared code
4333 * reg_addr - address of the PHY register to read
4334 ******************************************************************************/
4335 static int
4336 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4337 {
4338         uint32_t i;
4339         uint32_t mdic = 0;
4340         const uint32_t phy_addr = 1;
4341
4342         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4343                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4344                 return -E1000_ERR_PARAM;
4345         }
4346
4347         if (hw->mac_type > e1000_82543) {
4348                 /* Set up Op-code, Phy Address, and register address in the MDI
4349                  * Control register.  The MAC will take care of interfacing with the
4350                  * PHY to retrieve the desired data.
4351                  */
4352                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4353                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4354                         (E1000_MDIC_OP_READ));
4355
4356                 E1000_WRITE_REG(hw, MDIC, mdic);
4357
4358                 /* Poll the ready bit to see if the MDI read completed */
4359                 for (i = 0; i < 64; i++) {
4360                         udelay(10);
4361                         mdic = E1000_READ_REG(hw, MDIC);
4362                         if (mdic & E1000_MDIC_READY)
4363                                 break;
4364                 }
4365                 if (!(mdic & E1000_MDIC_READY)) {
4366                         DEBUGOUT("MDI Read did not complete\n");
4367                         return -E1000_ERR_PHY;
4368                 }
4369                 if (mdic & E1000_MDIC_ERROR) {
4370                         DEBUGOUT("MDI Error\n");
4371                         return -E1000_ERR_PHY;
4372                 }
4373                 *phy_data = (uint16_t) mdic;
4374         } else {
4375                 /* We must first send a preamble through the MDIO pin to signal the
4376                  * beginning of an MII instruction.  This is done by sending 32
4377                  * consecutive "1" bits.
4378                  */
4379                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4380
4381                 /* Now combine the next few fields that are required for a read
4382                  * operation.  We use this method instead of calling the
4383                  * e1000_shift_out_mdi_bits routine five different times. The format of
4384                  * a MII read instruction consists of a shift out of 14 bits and is
4385                  * defined as follows:
4386                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4387                  * followed by a shift in of 18 bits.  This first two bits shifted in
4388                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4389                  * READ operation is performed.  These two bits are thrown away
4390                  * followed by a shift in of 16 bits which contains the desired data.
4391                  */
4392                 mdic = ((reg_addr) | (phy_addr << 5) |
4393                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4394
4395                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4396
4397                 /* Now that we've shifted out the read command to the MII, we need to
4398                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4399                  * register address.
4400                  */
4401                 *phy_data = e1000_shift_in_mdi_bits(hw);
4402         }
4403         return 0;
4404 }
4405
4406 /******************************************************************************
4407 * Writes a value to a PHY register
4408 *
4409 * hw - Struct containing variables accessed by shared code
4410 * reg_addr - address of the PHY register to write
4411 * data - data to write to the PHY
4412 ******************************************************************************/
4413 static int
4414 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4415 {
4416         uint32_t i;
4417         uint32_t mdic = 0;
4418         const uint32_t phy_addr = 1;
4419
4420         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4421                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4422                 return -E1000_ERR_PARAM;
4423         }
4424
4425         if (hw->mac_type > e1000_82543) {
4426                 /* Set up Op-code, Phy Address, register address, and data intended
4427                  * for the PHY register in the MDI Control register.  The MAC will take
4428                  * care of interfacing with the PHY to send the desired data.
4429                  */
4430                 mdic = (((uint32_t) phy_data) |
4431                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4432                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4433                         (E1000_MDIC_OP_WRITE));
4434
4435                 E1000_WRITE_REG(hw, MDIC, mdic);
4436
4437                 /* Poll the ready bit to see if the MDI read completed */
4438                 for (i = 0; i < 64; i++) {
4439                         udelay(10);
4440                         mdic = E1000_READ_REG(hw, MDIC);
4441                         if (mdic & E1000_MDIC_READY)
4442                                 break;
4443                 }
4444                 if (!(mdic & E1000_MDIC_READY)) {
4445                         DEBUGOUT("MDI Write did not complete\n");
4446                         return -E1000_ERR_PHY;
4447                 }
4448         } else {
4449                 /* We'll need to use the SW defined pins to shift the write command
4450                  * out to the PHY. We first send a preamble to the PHY to signal the
4451                  * beginning of the MII instruction.  This is done by sending 32
4452                  * consecutive "1" bits.
4453                  */
4454                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4455
4456                 /* Now combine the remaining required fields that will indicate a
4457                  * write operation. We use this method instead of calling the
4458                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4459                  * format of a MII write instruction is as follows:
4460                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4461                  */
4462                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4463                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4464                 mdic <<= 16;
4465                 mdic |= (uint32_t) phy_data;
4466
4467                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4468         }
4469         return 0;
4470 }
4471
4472 /******************************************************************************
4473  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4474  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4475  * the caller to figure out how to deal with it.
4476  *
4477  * hw - Struct containing variables accessed by shared code
4478  *
4479  * returns: - E1000_BLK_PHY_RESET
4480  *            E1000_SUCCESS
4481  *
4482  *****************************************************************************/
4483 int32_t
4484 e1000_check_phy_reset_block(struct e1000_hw *hw)
4485 {
4486         uint32_t manc = 0;
4487         uint32_t fwsm = 0;
4488
4489         if (hw->mac_type == e1000_ich8lan) {
4490                 fwsm = E1000_READ_REG(hw, FWSM);
4491                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4492                                                 : E1000_BLK_PHY_RESET;
4493         }
4494
4495         if (hw->mac_type > e1000_82547_rev_2)
4496                 manc = E1000_READ_REG(hw, MANC);
4497         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4498                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4499 }
4500
4501 /***************************************************************************
4502  * Checks if the PHY configuration is done
4503  *
4504  * hw: Struct containing variables accessed by shared code
4505  *
4506  * returns: - E1000_ERR_RESET if fail to reset MAC
4507  *            E1000_SUCCESS at any other case.
4508  *
4509  ***************************************************************************/
4510 static int32_t
4511 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4512 {
4513         int32_t timeout = PHY_CFG_TIMEOUT;
4514         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4515
4516         DEBUGFUNC();
4517
4518         switch (hw->mac_type) {
4519         default:
4520                 mdelay(10);
4521                 break;
4522
4523         case e1000_80003es2lan:
4524                 /* Separate *_CFG_DONE_* bit for each port */
4525                 if (e1000_is_second_port(hw))
4526                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4527                 /* Fall Through */
4528
4529         case e1000_82571:
4530         case e1000_82572:
4531         case e1000_igb:
4532                 while (timeout) {
4533                         if (hw->mac_type == e1000_igb) {
4534                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4535                                         break;
4536                         } else {
4537                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4538                                         break;
4539                         }
4540                         mdelay(1);
4541                         timeout--;
4542                 }
4543                 if (!timeout) {
4544                         DEBUGOUT("MNG configuration cycle has not "
4545                                         "completed.\n");
4546                         return -E1000_ERR_RESET;
4547                 }
4548                 break;
4549         }
4550
4551         return E1000_SUCCESS;
4552 }
4553
4554 /******************************************************************************
4555 * Returns the PHY to the power-on reset state
4556 *
4557 * hw - Struct containing variables accessed by shared code
4558 ******************************************************************************/
4559 int32_t
4560 e1000_phy_hw_reset(struct e1000_hw *hw)
4561 {
4562         uint16_t swfw = E1000_SWFW_PHY0_SM;
4563         uint32_t ctrl, ctrl_ext;
4564         uint32_t led_ctrl;
4565         int32_t ret_val;
4566
4567         DEBUGFUNC();
4568
4569         /* In the case of the phy reset being blocked, it's not an error, we
4570          * simply return success without performing the reset. */
4571         ret_val = e1000_check_phy_reset_block(hw);
4572         if (ret_val)
4573                 return E1000_SUCCESS;
4574
4575         DEBUGOUT("Resetting Phy...\n");
4576
4577         if (hw->mac_type > e1000_82543) {
4578                 if (e1000_is_second_port(hw))
4579                         swfw = E1000_SWFW_PHY1_SM;
4580
4581                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4582                         DEBUGOUT("Unable to acquire swfw sync\n");
4583                         return -E1000_ERR_SWFW_SYNC;
4584                 }
4585
4586                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4587                  * bit. Then, take it out of reset.
4588                  */
4589                 ctrl = E1000_READ_REG(hw, CTRL);
4590                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4591                 E1000_WRITE_FLUSH(hw);
4592
4593                 if (hw->mac_type < e1000_82571)
4594                         udelay(10);
4595                 else
4596                         udelay(100);
4597
4598                 E1000_WRITE_REG(hw, CTRL, ctrl);
4599                 E1000_WRITE_FLUSH(hw);
4600
4601                 if (hw->mac_type >= e1000_82571)
4602                         mdelay(10);
4603
4604         } else {
4605                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4606                  * bit to put the PHY into reset. Then, take it out of reset.
4607                  */
4608                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4609                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4610                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4611                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4612                 E1000_WRITE_FLUSH(hw);
4613                 mdelay(10);
4614                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4615                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4616                 E1000_WRITE_FLUSH(hw);
4617         }
4618         udelay(150);
4619
4620         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4621                 /* Configure activity LED after PHY reset */
4622                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4623                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4624                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4625                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4626         }
4627
4628         e1000_swfw_sync_release(hw, swfw);
4629
4630         /* Wait for FW to finish PHY configuration. */
4631         ret_val = e1000_get_phy_cfg_done(hw);
4632         if (ret_val != E1000_SUCCESS)
4633                 return ret_val;
4634
4635         return ret_val;
4636 }
4637
4638 /******************************************************************************
4639  * IGP phy init script - initializes the GbE PHY
4640  *
4641  * hw - Struct containing variables accessed by shared code
4642  *****************************************************************************/
4643 static void
4644 e1000_phy_init_script(struct e1000_hw *hw)
4645 {
4646         uint32_t ret_val;
4647         uint16_t phy_saved_data;
4648         DEBUGFUNC();
4649
4650         if (hw->phy_init_script) {
4651                 mdelay(20);
4652
4653                 /* Save off the current value of register 0x2F5B to be
4654                  * restored at the end of this routine. */
4655                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4656
4657                 /* Disabled the PHY transmitter */
4658                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4659
4660                 mdelay(20);
4661
4662                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4663
4664                 mdelay(5);
4665
4666                 switch (hw->mac_type) {
4667                 case e1000_82541:
4668                 case e1000_82547:
4669                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4670
4671                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4672
4673                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4674
4675                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4676
4677                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4678
4679                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4680
4681                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4682
4683                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4684
4685                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4686                         break;
4687
4688                 case e1000_82541_rev_2:
4689                 case e1000_82547_rev_2:
4690                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4691                         break;
4692                 default:
4693                         break;
4694                 }
4695
4696                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4697
4698                 mdelay(20);
4699
4700                 /* Now enable the transmitter */
4701                 if (!ret_val)
4702                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4703
4704                 if (hw->mac_type == e1000_82547) {
4705                         uint16_t fused, fine, coarse;
4706
4707                         /* Move to analog registers page */
4708                         e1000_read_phy_reg(hw,
4709                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4710
4711                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4712                                 e1000_read_phy_reg(hw,
4713                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4714
4715                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4716                                 coarse = fused
4717                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4718
4719                                 if (coarse >
4720                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4721                                         coarse -=
4722                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4723                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4724                                 } else if (coarse
4725                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4726                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4727
4728                                 fused = (fused
4729                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4730                                         (fine
4731                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4732                                         (coarse
4733                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4734
4735                                 e1000_write_phy_reg(hw,
4736                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4737                                 e1000_write_phy_reg(hw,
4738                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4739                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4740                         }
4741                 }
4742         }
4743 }
4744
4745 /******************************************************************************
4746 * Resets the PHY
4747 *
4748 * hw - Struct containing variables accessed by shared code
4749 *
4750 * Sets bit 15 of the MII Control register
4751 ******************************************************************************/
4752 int32_t
4753 e1000_phy_reset(struct e1000_hw *hw)
4754 {
4755         int32_t ret_val;
4756         uint16_t phy_data;
4757
4758         DEBUGFUNC();
4759
4760         /* In the case of the phy reset being blocked, it's not an error, we
4761          * simply return success without performing the reset. */
4762         ret_val = e1000_check_phy_reset_block(hw);
4763         if (ret_val)
4764                 return E1000_SUCCESS;
4765
4766         switch (hw->phy_type) {
4767         case e1000_phy_igp:
4768         case e1000_phy_igp_2:
4769         case e1000_phy_igp_3:
4770         case e1000_phy_ife:
4771         case e1000_phy_igb:
4772                 ret_val = e1000_phy_hw_reset(hw);
4773                 if (ret_val)
4774                         return ret_val;
4775                 break;
4776         default:
4777                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4778                 if (ret_val)
4779                         return ret_val;
4780
4781                 phy_data |= MII_CR_RESET;
4782                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4783                 if (ret_val)
4784                         return ret_val;
4785
4786                 udelay(1);
4787                 break;
4788         }
4789
4790         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4791                 e1000_phy_init_script(hw);
4792
4793         return E1000_SUCCESS;
4794 }
4795
4796 static int e1000_set_phy_type (struct e1000_hw *hw)
4797 {
4798         DEBUGFUNC ();
4799
4800         if (hw->mac_type == e1000_undefined)
4801                 return -E1000_ERR_PHY_TYPE;
4802
4803         switch (hw->phy_id) {
4804         case M88E1000_E_PHY_ID:
4805         case M88E1000_I_PHY_ID:
4806         case M88E1011_I_PHY_ID:
4807         case M88E1111_I_PHY_ID:
4808                 hw->phy_type = e1000_phy_m88;
4809                 break;
4810         case IGP01E1000_I_PHY_ID:
4811                 if (hw->mac_type == e1000_82541 ||
4812                         hw->mac_type == e1000_82541_rev_2 ||
4813                         hw->mac_type == e1000_82547 ||
4814                         hw->mac_type == e1000_82547_rev_2) {
4815                         hw->phy_type = e1000_phy_igp;
4816                         break;
4817                 }
4818         case IGP03E1000_E_PHY_ID:
4819                 hw->phy_type = e1000_phy_igp_3;
4820                 break;
4821         case IFE_E_PHY_ID:
4822         case IFE_PLUS_E_PHY_ID:
4823         case IFE_C_E_PHY_ID:
4824                 hw->phy_type = e1000_phy_ife;
4825                 break;
4826         case GG82563_E_PHY_ID:
4827                 if (hw->mac_type == e1000_80003es2lan) {
4828                         hw->phy_type = e1000_phy_gg82563;
4829                         break;
4830                 }
4831         case BME1000_E_PHY_ID:
4832                 hw->phy_type = e1000_phy_bm;
4833                 break;
4834         case I210_I_PHY_ID:
4835                 hw->phy_type = e1000_phy_igb;
4836                 break;
4837                 /* Fall Through */
4838         default:
4839                 /* Should never have loaded on this device */
4840                 hw->phy_type = e1000_phy_undefined;
4841                 return -E1000_ERR_PHY_TYPE;
4842         }
4843
4844         return E1000_SUCCESS;
4845 }
4846
4847 /******************************************************************************
4848 * Probes the expected PHY address for known PHY IDs
4849 *
4850 * hw - Struct containing variables accessed by shared code
4851 ******************************************************************************/
4852 static int32_t
4853 e1000_detect_gig_phy(struct e1000_hw *hw)
4854 {
4855         int32_t phy_init_status, ret_val;
4856         uint16_t phy_id_high, phy_id_low;
4857         bool match = false;
4858
4859         DEBUGFUNC();
4860
4861         /* The 82571 firmware may still be configuring the PHY.  In this
4862          * case, we cannot access the PHY until the configuration is done.  So
4863          * we explicitly set the PHY values. */
4864         if (hw->mac_type == e1000_82571 ||
4865                 hw->mac_type == e1000_82572) {
4866                 hw->phy_id = IGP01E1000_I_PHY_ID;
4867                 hw->phy_type = e1000_phy_igp_2;
4868                 return E1000_SUCCESS;
4869         }
4870
4871         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4872          * work- around that forces PHY page 0 to be set or the reads fail.
4873          * The rest of the code in this routine uses e1000_read_phy_reg to
4874          * read the PHY ID.  So for ESB-2 we need to have this set so our
4875          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4876          * the routines below will figure this out as well. */
4877         if (hw->mac_type == e1000_80003es2lan)
4878                 hw->phy_type = e1000_phy_gg82563;
4879
4880         /* Read the PHY ID Registers to identify which PHY is onboard. */
4881         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4882         if (ret_val)
4883                 return ret_val;
4884
4885         hw->phy_id = (uint32_t) (phy_id_high << 16);
4886         udelay(20);
4887         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4888         if (ret_val)
4889                 return ret_val;
4890
4891         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4892         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4893
4894         switch (hw->mac_type) {
4895         case e1000_82543:
4896                 if (hw->phy_id == M88E1000_E_PHY_ID)
4897                         match = true;
4898                 break;
4899         case e1000_82544:
4900                 if (hw->phy_id == M88E1000_I_PHY_ID)
4901                         match = true;
4902                 break;
4903         case e1000_82540:
4904         case e1000_82545:
4905         case e1000_82545_rev_3:
4906         case e1000_82546:
4907         case e1000_82546_rev_3:
4908                 if (hw->phy_id == M88E1011_I_PHY_ID)
4909                         match = true;
4910                 break;
4911         case e1000_82541:
4912         case e1000_82541_rev_2:
4913         case e1000_82547:
4914         case e1000_82547_rev_2:
4915                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4916                         match = true;
4917
4918                 break;
4919         case e1000_82573:
4920                 if (hw->phy_id == M88E1111_I_PHY_ID)
4921                         match = true;
4922                 break;
4923         case e1000_82574:
4924                 if (hw->phy_id == BME1000_E_PHY_ID)
4925                         match = true;
4926                 break;
4927         case e1000_80003es2lan:
4928                 if (hw->phy_id == GG82563_E_PHY_ID)
4929                         match = true;
4930                 break;
4931         case e1000_ich8lan:
4932                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4933                         match = true;
4934                 if (hw->phy_id == IFE_E_PHY_ID)
4935                         match = true;
4936                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4937                         match = true;
4938                 if (hw->phy_id == IFE_C_E_PHY_ID)
4939                         match = true;
4940                 break;
4941         case e1000_igb:
4942                 if (hw->phy_id == I210_I_PHY_ID)
4943                         match = true;
4944                 break;
4945         default:
4946                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4947                 return -E1000_ERR_CONFIG;
4948         }
4949
4950         phy_init_status = e1000_set_phy_type(hw);
4951
4952         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4953                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4954                 return 0;
4955         }
4956         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4957         return -E1000_ERR_PHY;
4958 }
4959
4960 /*****************************************************************************
4961  * Set media type and TBI compatibility.
4962  *
4963  * hw - Struct containing variables accessed by shared code
4964  * **************************************************************************/
4965 void
4966 e1000_set_media_type(struct e1000_hw *hw)
4967 {
4968         uint32_t status;
4969
4970         DEBUGFUNC();
4971
4972         if (hw->mac_type != e1000_82543) {
4973                 /* tbi_compatibility is only valid on 82543 */
4974                 hw->tbi_compatibility_en = false;
4975         }
4976
4977         switch (hw->device_id) {
4978         case E1000_DEV_ID_82545GM_SERDES:
4979         case E1000_DEV_ID_82546GB_SERDES:
4980         case E1000_DEV_ID_82571EB_SERDES:
4981         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4982         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4983         case E1000_DEV_ID_82572EI_SERDES:
4984         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4985                 hw->media_type = e1000_media_type_internal_serdes;
4986                 break;
4987         default:
4988                 switch (hw->mac_type) {
4989                 case e1000_82542_rev2_0:
4990                 case e1000_82542_rev2_1:
4991                         hw->media_type = e1000_media_type_fiber;
4992                         break;
4993                 case e1000_ich8lan:
4994                 case e1000_82573:
4995                 case e1000_82574:
4996                 case e1000_igb:
4997                         /* The STATUS_TBIMODE bit is reserved or reused
4998                          * for the this device.
4999                          */
5000                         hw->media_type = e1000_media_type_copper;
5001                         break;
5002                 default:
5003                         status = E1000_READ_REG(hw, STATUS);
5004                         if (status & E1000_STATUS_TBIMODE) {
5005                                 hw->media_type = e1000_media_type_fiber;
5006                                 /* tbi_compatibility not valid on fiber */
5007                                 hw->tbi_compatibility_en = false;
5008                         } else {
5009                                 hw->media_type = e1000_media_type_copper;
5010                         }
5011                         break;
5012                 }
5013         }
5014 }
5015
5016 /**
5017  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5018  *
5019  * e1000_sw_init initializes the Adapter private data structure.
5020  * Fields are initialized based on PCI device information and
5021  * OS network device settings (MTU size).
5022  **/
5023
5024 static int
5025 e1000_sw_init(struct e1000_hw *hw)
5026 {
5027         int result;
5028
5029         /* PCI config space info */
5030         dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5031         dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5032         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5033                              &hw->subsystem_vendor_id);
5034         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5035
5036         dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5037         dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5038
5039         /* identify the MAC */
5040         result = e1000_set_mac_type(hw);
5041         if (result) {
5042                 E1000_ERR(hw, "Unknown MAC Type\n");
5043                 return result;
5044         }
5045
5046         switch (hw->mac_type) {
5047         default:
5048                 break;
5049         case e1000_82541:
5050         case e1000_82547:
5051         case e1000_82541_rev_2:
5052         case e1000_82547_rev_2:
5053                 hw->phy_init_script = 1;
5054                 break;
5055         }
5056
5057         /* flow control settings */
5058         hw->fc_high_water = E1000_FC_HIGH_THRESH;
5059         hw->fc_low_water = E1000_FC_LOW_THRESH;
5060         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5061         hw->fc_send_xon = 1;
5062
5063         /* Media type - copper or fiber */
5064         hw->tbi_compatibility_en = true;
5065         e1000_set_media_type(hw);
5066
5067         if (hw->mac_type >= e1000_82543) {
5068                 uint32_t status = E1000_READ_REG(hw, STATUS);
5069
5070                 if (status & E1000_STATUS_TBIMODE) {
5071                         DEBUGOUT("fiber interface\n");
5072                         hw->media_type = e1000_media_type_fiber;
5073                 } else {
5074                         DEBUGOUT("copper interface\n");
5075                         hw->media_type = e1000_media_type_copper;
5076                 }
5077         } else {
5078                 hw->media_type = e1000_media_type_fiber;
5079         }
5080
5081         hw->wait_autoneg_complete = true;
5082         if (hw->mac_type < e1000_82543)
5083                 hw->report_tx_early = 0;
5084         else
5085                 hw->report_tx_early = 1;
5086
5087         return E1000_SUCCESS;
5088 }
5089
5090 void
5091 fill_rx(struct e1000_hw *hw)
5092 {
5093         struct e1000_rx_desc *rd;
5094         unsigned long flush_start, flush_end;
5095
5096         rx_last = rx_tail;
5097         rd = rx_base + rx_tail;
5098         rx_tail = (rx_tail + 1) % 8;
5099         memset(rd, 0, 16);
5100         rd->buffer_addr = cpu_to_le64(virt_to_phys(packet));
5101
5102         /*
5103          * Make sure there are no stale data in WB over this area, which
5104          * might get written into the memory while the e1000 also writes
5105          * into the same memory area.
5106          */
5107         invalidate_dcache_range((unsigned long)packet,
5108                                 (unsigned long)packet + 4096);
5109         /* Dump the DMA descriptor into RAM. */
5110         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5111         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5112         flush_dcache_range(flush_start, flush_end);
5113
5114         E1000_WRITE_REG(hw, RDT, rx_tail);
5115 }
5116
5117 /**
5118  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5119  * @adapter: board private structure
5120  *
5121  * Configure the Tx unit of the MAC after a reset.
5122  **/
5123
5124 static void
5125 e1000_configure_tx(struct e1000_hw *hw)
5126 {
5127         unsigned long tctl;
5128         unsigned long tipg, tarc;
5129         uint32_t ipgr1, ipgr2;
5130
5131         E1000_WRITE_REG(hw, TDBAL, lower_32_bits(virt_to_phys(tx_base)));
5132         E1000_WRITE_REG(hw, TDBAH, upper_32_bits(virt_to_phys(tx_base)));
5133
5134         E1000_WRITE_REG(hw, TDLEN, 128);
5135
5136         /* Setup the HW Tx Head and Tail descriptor pointers */
5137         E1000_WRITE_REG(hw, TDH, 0);
5138         E1000_WRITE_REG(hw, TDT, 0);
5139         tx_tail = 0;
5140
5141         /* Set the default values for the Tx Inter Packet Gap timer */
5142         if (hw->mac_type <= e1000_82547_rev_2 &&
5143             (hw->media_type == e1000_media_type_fiber ||
5144              hw->media_type == e1000_media_type_internal_serdes))
5145                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5146         else
5147                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5148
5149         /* Set the default values for the Tx Inter Packet Gap timer */
5150         switch (hw->mac_type) {
5151         case e1000_82542_rev2_0:
5152         case e1000_82542_rev2_1:
5153                 tipg = DEFAULT_82542_TIPG_IPGT;
5154                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5155                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5156                 break;
5157         case e1000_80003es2lan:
5158                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5159                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5160                 break;
5161         default:
5162                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5163                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5164                 break;
5165         }
5166         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5167         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5168         E1000_WRITE_REG(hw, TIPG, tipg);
5169         /* Program the Transmit Control Register */
5170         tctl = E1000_READ_REG(hw, TCTL);
5171         tctl &= ~E1000_TCTL_CT;
5172         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5173             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5174
5175         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5176                 tarc = E1000_READ_REG(hw, TARC0);
5177                 /* set the speed mode bit, we'll clear it if we're not at
5178                  * gigabit link later */
5179                 /* git bit can be set to 1*/
5180         } else if (hw->mac_type == e1000_80003es2lan) {
5181                 tarc = E1000_READ_REG(hw, TARC0);
5182                 tarc |= 1;
5183                 E1000_WRITE_REG(hw, TARC0, tarc);
5184                 tarc = E1000_READ_REG(hw, TARC1);
5185                 tarc |= 1;
5186                 E1000_WRITE_REG(hw, TARC1, tarc);
5187         }
5188
5189
5190         e1000_config_collision_dist(hw);
5191         /* Setup Transmit Descriptor Settings for eop descriptor */
5192         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5193
5194         /* Need to set up RS bit */
5195         if (hw->mac_type < e1000_82543)
5196                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5197         else
5198                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5199
5200
5201         if (hw->mac_type == e1000_igb) {
5202                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5203
5204                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5205                 reg_txdctl |= 1 << 25;
5206                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5207                 mdelay(20);
5208         }
5209
5210         E1000_WRITE_REG(hw, TCTL, tctl);
5211 }
5212
5213 /**
5214  * e1000_setup_rctl - configure the receive control register
5215  * @adapter: Board private structure
5216  **/
5217 static void
5218 e1000_setup_rctl(struct e1000_hw *hw)
5219 {
5220         uint32_t rctl;
5221
5222         rctl = E1000_READ_REG(hw, RCTL);
5223
5224         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5225
5226         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5227                 | E1000_RCTL_RDMTS_HALF;        /* |
5228                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5229
5230         if (hw->tbi_compatibility_on == 1)
5231                 rctl |= E1000_RCTL_SBP;
5232         else
5233                 rctl &= ~E1000_RCTL_SBP;
5234
5235         rctl &= ~(E1000_RCTL_SZ_4096);
5236                 rctl |= E1000_RCTL_SZ_2048;
5237                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5238         E1000_WRITE_REG(hw, RCTL, rctl);
5239 }
5240
5241 /**
5242  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5243  * @adapter: board private structure
5244  *
5245  * Configure the Rx unit of the MAC after a reset.
5246  **/
5247 static void
5248 e1000_configure_rx(struct e1000_hw *hw)
5249 {
5250         unsigned long rctl, ctrl_ext;
5251         rx_tail = 0;
5252
5253         /* make sure receives are disabled while setting up the descriptors */
5254         rctl = E1000_READ_REG(hw, RCTL);
5255         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5256         if (hw->mac_type >= e1000_82540) {
5257                 /* Set the interrupt throttling rate.  Value is calculated
5258                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5259 #define MAX_INTS_PER_SEC        8000
5260 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5261                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5262         }
5263
5264         if (hw->mac_type >= e1000_82571) {
5265                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5266                 /* Reset delay timers after every interrupt */
5267                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5268                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5269                 E1000_WRITE_FLUSH(hw);
5270         }
5271         /* Setup the Base and Length of the Rx Descriptor Ring */
5272         E1000_WRITE_REG(hw, RDBAL, lower_32_bits(virt_to_phys(rx_base)));
5273         E1000_WRITE_REG(hw, RDBAH, upper_32_bits(virt_to_phys(rx_base)));
5274
5275         E1000_WRITE_REG(hw, RDLEN, 128);
5276
5277         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5278         E1000_WRITE_REG(hw, RDH, 0);
5279         E1000_WRITE_REG(hw, RDT, 0);
5280         /* Enable Receives */
5281
5282         if (hw->mac_type == e1000_igb) {
5283
5284                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5285                 reg_rxdctl |= 1 << 25;
5286                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5287                 mdelay(20);
5288         }
5289
5290         E1000_WRITE_REG(hw, RCTL, rctl);
5291
5292         fill_rx(hw);
5293 }
5294
5295 /**************************************************************************
5296 POLL - Wait for a frame
5297 ***************************************************************************/
5298 static int
5299 _e1000_poll(struct e1000_hw *hw)
5300 {
5301         struct e1000_rx_desc *rd;
5302         unsigned long inval_start, inval_end;
5303         uint32_t len;
5304
5305         /* return true if there's an ethernet packet ready to read */
5306         rd = rx_base + rx_last;
5307
5308         /* Re-load the descriptor from RAM. */
5309         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5310         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5311         invalidate_dcache_range(inval_start, inval_end);
5312
5313         if (!(rd->status & E1000_RXD_STAT_DD))
5314                 return 0;
5315         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5316         /* Packet received, make sure the data are re-loaded from RAM. */
5317         len = le16_to_cpu(rd->length);
5318         invalidate_dcache_range((unsigned long)packet,
5319                                 (unsigned long)packet +
5320                                 roundup(len, ARCH_DMA_MINALIGN));
5321         return len;
5322 }
5323
5324 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5325 {
5326         void *nv_packet = (void *)txpacket;
5327         struct e1000_tx_desc *txp;
5328         int i = 0;
5329         unsigned long flush_start, flush_end;
5330
5331         txp = tx_base + tx_tail;
5332         tx_tail = (tx_tail + 1) % 8;
5333
5334         txp->buffer_addr = cpu_to_le64(virt_to_phys(nv_packet));
5335         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5336         txp->upper.data = 0;
5337
5338         /* Dump the packet into RAM so e1000 can pick them. */
5339         flush_dcache_range((unsigned long)nv_packet,
5340                            (unsigned long)nv_packet +
5341                            roundup(length, ARCH_DMA_MINALIGN));
5342         /* Dump the descriptor into RAM as well. */
5343         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5344         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5345         flush_dcache_range(flush_start, flush_end);
5346
5347         E1000_WRITE_REG(hw, TDT, tx_tail);
5348
5349         E1000_WRITE_FLUSH(hw);
5350         while (1) {
5351                 invalidate_dcache_range(flush_start, flush_end);
5352                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5353                         break;
5354                 if (i++ > TOUT_LOOP) {
5355                         DEBUGOUT("e1000: tx timeout\n");
5356                         return 0;
5357                 }
5358                 udelay(10);     /* give the nic a chance to write to the register */
5359         }
5360         return 1;
5361 }
5362
5363 static void
5364 _e1000_disable(struct e1000_hw *hw)
5365 {
5366         /* Turn off the ethernet interface */
5367         E1000_WRITE_REG(hw, RCTL, 0);
5368         E1000_WRITE_REG(hw, TCTL, 0);
5369
5370         /* Clear the transmit ring */
5371         E1000_WRITE_REG(hw, TDH, 0);
5372         E1000_WRITE_REG(hw, TDT, 0);
5373
5374         /* Clear the receive ring */
5375         E1000_WRITE_REG(hw, RDH, 0);
5376         E1000_WRITE_REG(hw, RDT, 0);
5377
5378         mdelay(10);
5379 }
5380
5381 /*reset function*/
5382 static inline int
5383 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5384 {
5385         e1000_reset_hw(hw);
5386         if (hw->mac_type >= e1000_82544)
5387                 E1000_WRITE_REG(hw, WUC, 0);
5388
5389         return e1000_init_hw(hw, enetaddr);
5390 }
5391
5392 static int
5393 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5394 {
5395         int ret_val = 0;
5396
5397         ret_val = e1000_reset(hw, enetaddr);
5398         if (ret_val < 0) {
5399                 if ((ret_val == -E1000_ERR_NOLINK) ||
5400                     (ret_val == -E1000_ERR_TIMEOUT)) {
5401                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5402                 } else {
5403                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5404                 }
5405                 return ret_val;
5406         }
5407         e1000_configure_tx(hw);
5408         e1000_setup_rctl(hw);
5409         e1000_configure_rx(hw);
5410         return 0;
5411 }
5412
5413 /******************************************************************************
5414  * Gets the current PCI bus type of hardware
5415  *
5416  * hw - Struct containing variables accessed by shared code
5417  *****************************************************************************/
5418 void e1000_get_bus_type(struct e1000_hw *hw)
5419 {
5420         uint32_t status;
5421
5422         switch (hw->mac_type) {
5423         case e1000_82542_rev2_0:
5424         case e1000_82542_rev2_1:
5425                 hw->bus_type = e1000_bus_type_pci;
5426                 break;
5427         case e1000_82571:
5428         case e1000_82572:
5429         case e1000_82573:
5430         case e1000_82574:
5431         case e1000_80003es2lan:
5432         case e1000_ich8lan:
5433         case e1000_igb:
5434                 hw->bus_type = e1000_bus_type_pci_express;
5435                 break;
5436         default:
5437                 status = E1000_READ_REG(hw, STATUS);
5438                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5439                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5440                 break;
5441         }
5442 }
5443
5444 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5445                           struct udevice *devno, unsigned char enetaddr[6])
5446 {
5447         u32 val;
5448
5449         /* Assign the passed-in values */
5450         hw->pdev = devno;
5451         hw->cardnum = cardnum;
5452
5453         /* Print a debug message with the IO base address */
5454         dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5455         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5456
5457         /* Try to enable I/O accesses and bus-mastering */
5458         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5459         dm_pci_write_config32(devno, PCI_COMMAND, val);
5460
5461         /* Make sure it worked */
5462         dm_pci_read_config32(devno, PCI_COMMAND, &val);
5463         if (!(val & PCI_COMMAND_MEMORY)) {
5464                 E1000_ERR(hw, "Can't enable I/O memory\n");
5465                 return -ENOSPC;
5466         }
5467         if (!(val & PCI_COMMAND_MASTER)) {
5468                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5469                 return -EPERM;
5470         }
5471
5472         /* Are these variables needed? */
5473         hw->fc = e1000_fc_default;
5474         hw->original_fc = e1000_fc_default;
5475         hw->autoneg_failed = 0;
5476         hw->autoneg = 1;
5477         hw->get_link_status = true;
5478 #ifndef CONFIG_E1000_NO_NVM
5479         hw->eeprom_semaphore_present = true;
5480 #endif
5481         hw->hw_addr = dm_pci_map_bar(devno,     PCI_BASE_ADDRESS_0, 0, 0,
5482                                                 PCI_REGION_TYPE, PCI_REGION_MEM);
5483         hw->mac_type = e1000_undefined;
5484
5485         /* MAC and Phy settings */
5486         if (e1000_sw_init(hw) < 0) {
5487                 E1000_ERR(hw, "Software init failed\n");
5488                 return -EIO;
5489         }
5490         if (e1000_check_phy_reset_block(hw))
5491                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5492
5493         /* Basic init was OK, reset the hardware and allow SPI access */
5494         e1000_reset_hw(hw);
5495
5496 #ifndef CONFIG_E1000_NO_NVM
5497         /* Validate the EEPROM and get chipset information */
5498         if (e1000_init_eeprom_params(hw)) {
5499                 E1000_ERR(hw, "EEPROM is invalid!\n");
5500                 return -EINVAL;
5501         }
5502         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5503             e1000_validate_eeprom_checksum(hw))
5504                 return -ENXIO;
5505         e1000_read_mac_addr(hw, enetaddr);
5506 #endif
5507         e1000_get_bus_type(hw);
5508
5509 #ifndef CONFIG_E1000_NO_NVM
5510         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5511                enetaddr[0], enetaddr[1], enetaddr[2],
5512                enetaddr[3], enetaddr[4], enetaddr[5]);
5513 #else
5514         memset(enetaddr, 0, 6);
5515         printf("e1000: no NVM\n");
5516 #endif
5517
5518         return 0;
5519 }
5520
5521 /* Put the name of a device in a string */
5522 static void e1000_name(char *str, int cardnum)
5523 {
5524         sprintf(str, "e1000#%u", cardnum);
5525 }
5526
5527 static int e1000_write_hwaddr(struct udevice *dev)
5528 {
5529 #ifndef CONFIG_E1000_NO_NVM
5530         unsigned char current_mac[6];
5531         struct eth_pdata *plat = dev_get_plat(dev);
5532         struct e1000_hw *hw = dev_get_priv(dev);
5533         u8 *mac = plat->enetaddr;
5534         uint16_t data[3];
5535         int ret_val, i;
5536
5537         DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5538
5539         if ((hw->eeprom.type == e1000_eeprom_invm) &&
5540             !(E1000_READ_REG(hw, EECD) & E1000_EECD_FLASH_DETECTED_I210))
5541                 return -ENOSYS;
5542
5543         memset(current_mac, 0, 6);
5544
5545         /* Read from EEPROM, not from registers, to make sure
5546          * the address is persistently configured
5547          */
5548         ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5549         DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5550
5551         /* Only write to EEPROM if the given address is different or
5552          * reading the current address failed
5553          */
5554         if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5555                 return 0;
5556
5557         for (i = 0; i < 3; ++i)
5558                 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5559
5560         ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5561
5562         if (!ret_val)
5563                 ret_val = e1000_update_eeprom_checksum_i210(hw);
5564
5565         return ret_val;
5566 #else
5567         return 0;
5568 #endif
5569 }
5570
5571 #ifdef CONFIG_CMD_E1000
5572 static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc,
5573                     char *const argv[])
5574 {
5575         unsigned char *mac = NULL;
5576         struct eth_pdata *plat;
5577         struct udevice *dev;
5578         char name[30];
5579         int ret;
5580 #if defined(CONFIG_E1000_SPI)
5581         struct e1000_hw *hw;
5582 #endif
5583         int cardnum;
5584
5585         if (argc < 3) {
5586                 cmd_usage(cmdtp);
5587                 return 1;
5588         }
5589
5590         /* Make sure we can find the requested e1000 card */
5591         cardnum = dectoul(argv[1], NULL);
5592         e1000_name(name, cardnum);
5593         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5594         if (!ret) {
5595                 plat = dev_get_plat(dev);
5596                 mac = plat->enetaddr;
5597         }
5598         if (!mac) {
5599                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5600                 return 1;
5601         }
5602
5603         if (!strcmp(argv[2], "print-mac-address")) {
5604                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5605                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5606                 return 0;
5607         }
5608
5609 #ifdef CONFIG_E1000_SPI
5610         hw = dev_get_priv(dev);
5611         /* Handle the "SPI" subcommand */
5612         if (!strcmp(argv[2], "spi"))
5613                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5614 #endif
5615
5616         cmd_usage(cmdtp);
5617         return 1;
5618 }
5619
5620 U_BOOT_CMD(
5621         e1000, 7, 0, do_e1000,
5622         "Intel e1000 controller management",
5623         /*  */"<card#> print-mac-address\n"
5624 #ifdef CONFIG_E1000_SPI
5625         "e1000 <card#> spi show [<offset> [<length>]]\n"
5626         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5627         "e1000 <card#> spi program <addr> <offset> <length>\n"
5628         "e1000 <card#> spi checksum [update]\n"
5629 #endif
5630         "       - Manage the Intel E1000 PCI device"
5631 );
5632 #endif /* not CONFIG_CMD_E1000 */
5633
5634 static int e1000_eth_start(struct udevice *dev)
5635 {
5636         struct eth_pdata *plat = dev_get_plat(dev);
5637         struct e1000_hw *hw = dev_get_priv(dev);
5638
5639         return _e1000_init(hw, plat->enetaddr);
5640 }
5641
5642 static void e1000_eth_stop(struct udevice *dev)
5643 {
5644         struct e1000_hw *hw = dev_get_priv(dev);
5645
5646         _e1000_disable(hw);
5647 }
5648
5649 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5650 {
5651         struct e1000_hw *hw = dev_get_priv(dev);
5652         int ret;
5653
5654         ret = _e1000_transmit(hw, packet, length);
5655
5656         return ret ? 0 : -ETIMEDOUT;
5657 }
5658
5659 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5660 {
5661         struct e1000_hw *hw = dev_get_priv(dev);
5662         int len;
5663
5664         len = _e1000_poll(hw);
5665         if (len)
5666                 *packetp = packet;
5667
5668         return len ? len : -EAGAIN;
5669 }
5670
5671 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5672 {
5673         struct e1000_hw *hw = dev_get_priv(dev);
5674
5675         fill_rx(hw);
5676
5677         return 0;
5678 }
5679
5680 static int e1000_eth_probe(struct udevice *dev)
5681 {
5682         struct eth_pdata *plat = dev_get_plat(dev);
5683         struct e1000_hw *hw = dev_get_priv(dev);
5684         int ret;
5685
5686         hw->name = dev->name;
5687         ret = e1000_init_one(hw, trailing_strtol(dev->name),
5688                              dev, plat->enetaddr);
5689         if (ret < 0) {
5690                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5691                 return ret;
5692         }
5693
5694         return 0;
5695 }
5696
5697 static int e1000_eth_bind(struct udevice *dev)
5698 {
5699         char name[20];
5700
5701         /*
5702          * A simple way to number the devices. When device tree is used this
5703          * is unnecessary, but when the device is just discovered on the PCI
5704          * bus we need a name. We could instead have the uclass figure out
5705          * which devices are different and number them.
5706          */
5707         e1000_name(name, num_cards++);
5708
5709         return device_set_name(dev, name);
5710 }
5711
5712 static const struct eth_ops e1000_eth_ops = {
5713         .start  = e1000_eth_start,
5714         .send   = e1000_eth_send,
5715         .recv   = e1000_eth_recv,
5716         .stop   = e1000_eth_stop,
5717         .free_pkt = e1000_free_pkt,
5718         .write_hwaddr = e1000_write_hwaddr,
5719 };
5720
5721 static const struct udevice_id e1000_eth_ids[] = {
5722         { .compatible = "intel,e1000" },
5723         { }
5724 };
5725
5726 U_BOOT_DRIVER(eth_e1000) = {
5727         .name   = "eth_e1000",
5728         .id     = UCLASS_ETH,
5729         .of_match = e1000_eth_ids,
5730         .bind   = e1000_eth_bind,
5731         .probe  = e1000_eth_probe,
5732         .ops    = &e1000_eth_ops,
5733         .priv_auto      = sizeof(struct e1000_hw),
5734         .plat_auto      = sizeof(struct eth_pdata),
5735 };
5736
5737 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);