1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
10 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
22 You should have received a copy of the GNU General Public License along with
23 this program; if not, write to the Free Software Foundation, Inc., 59
24 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 The full GNU General Public License is included in this distribution in the
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 *******************************************************************************/
35 * Copyright (C) Archway Digital Solutions.
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
44 * Copyright 2011 Freescale Semiconductor, Inc.
49 #define TOUT_LOOP 100000
51 #define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
52 #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
54 #define E1000_DEFAULT_PCI_PBA 0x00000030
55 #define E1000_DEFAULT_PCIE_PBA 0x000a0026
57 /* NIC specific static variables go here */
59 static char tx_pool[128 + 16];
60 static char rx_pool[128 + 16];
61 static char packet[2096];
63 static struct e1000_tx_desc *tx_base;
64 static struct e1000_rx_desc *rx_base;
67 static int rx_tail, rx_last;
69 static struct pci_device_id e1000_supported[] = {
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
79 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
83 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
84 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
85 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
113 /* Function forward declarations */
114 static int e1000_setup_link(struct eth_device *nic);
115 static int e1000_setup_fiber_link(struct eth_device *nic);
116 static int e1000_setup_copper_link(struct eth_device *nic);
117 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118 static void e1000_config_collision_dist(struct e1000_hw *hw);
119 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121 static int e1000_check_for_link(struct eth_device *nic);
122 static int e1000_wait_autoneg(struct e1000_hw *hw);
123 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
125 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t * phy_data);
127 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
129 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
130 static int e1000_phy_reset(struct e1000_hw *hw);
131 static int e1000_detect_gig_phy(struct e1000_hw *hw);
132 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133 static void e1000_set_media_type(struct e1000_hw *hw);
135 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
138 #ifndef CONFIG_AP1000 /* remove for warnings */
139 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
142 /******************************************************************************
143 * Raises the EEPROM's clock input.
145 * hw - Struct containing variables accessed by shared code
146 * eecd - EECD's current value
147 *****************************************************************************/
148 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
150 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
151 * wait 50 microseconds.
153 *eecd = *eecd | E1000_EECD_SK;
154 E1000_WRITE_REG(hw, EECD, *eecd);
155 E1000_WRITE_FLUSH(hw);
159 /******************************************************************************
160 * Lowers the EEPROM's clock input.
162 * hw - Struct containing variables accessed by shared code
163 * eecd - EECD's current value
164 *****************************************************************************/
165 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
167 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
168 * wait 50 microseconds.
170 *eecd = *eecd & ~E1000_EECD_SK;
171 E1000_WRITE_REG(hw, EECD, *eecd);
172 E1000_WRITE_FLUSH(hw);
176 /******************************************************************************
177 * Shift data bits out to the EEPROM.
179 * hw - Struct containing variables accessed by shared code
180 * data - data to send to the EEPROM
181 * count - number of bits to shift out
182 *****************************************************************************/
184 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
189 /* We need to shift "count" bits out to the EEPROM. So, value in the
190 * "data" parameter will be shifted out to the EEPROM one bit at a time.
191 * In order to do this, "data" must be broken down into bits.
193 mask = 0x01 << (count - 1);
194 eecd = E1000_READ_REG(hw, EECD);
195 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
197 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
198 * and then raising and then lowering the clock (the SK bit controls
199 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
200 * by setting "DI" to "0" and then raising and then lowering the clock.
202 eecd &= ~E1000_EECD_DI;
205 eecd |= E1000_EECD_DI;
207 E1000_WRITE_REG(hw, EECD, eecd);
208 E1000_WRITE_FLUSH(hw);
212 e1000_raise_ee_clk(hw, &eecd);
213 e1000_lower_ee_clk(hw, &eecd);
219 /* We leave the "DI" bit set to "0" when we leave this routine. */
220 eecd &= ~E1000_EECD_DI;
221 E1000_WRITE_REG(hw, EECD, eecd);
224 /******************************************************************************
225 * Shift data bits in from the EEPROM
227 * hw - Struct containing variables accessed by shared code
228 *****************************************************************************/
230 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
236 /* In order to read a register from the EEPROM, we need to shift 'count'
237 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
238 * input to the EEPROM (setting the SK bit), and then reading the
239 * value of the "DO" bit. During this "shifting in" process the
240 * "DI" bit should always be clear.
243 eecd = E1000_READ_REG(hw, EECD);
245 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
248 for (i = 0; i < count; i++) {
250 e1000_raise_ee_clk(hw, &eecd);
252 eecd = E1000_READ_REG(hw, EECD);
254 eecd &= ~(E1000_EECD_DI);
255 if (eecd & E1000_EECD_DO)
258 e1000_lower_ee_clk(hw, &eecd);
264 /******************************************************************************
265 * Returns EEPROM to a "standby" state
267 * hw - Struct containing variables accessed by shared code
268 *****************************************************************************/
269 void e1000_standby_eeprom(struct e1000_hw *hw)
271 struct e1000_eeprom_info *eeprom = &hw->eeprom;
274 eecd = E1000_READ_REG(hw, EECD);
276 if (eeprom->type == e1000_eeprom_microwire) {
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 E1000_WRITE_REG(hw, EECD, eecd);
279 E1000_WRITE_FLUSH(hw);
280 udelay(eeprom->delay_usec);
283 eecd |= E1000_EECD_SK;
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 udelay(eeprom->delay_usec);
289 eecd |= E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(eeprom->delay_usec);
295 eecd &= ~E1000_EECD_SK;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
298 udelay(eeprom->delay_usec);
299 } else if (eeprom->type == e1000_eeprom_spi) {
300 /* Toggle CS to flush commands */
301 eecd |= E1000_EECD_CS;
302 E1000_WRITE_REG(hw, EECD, eecd);
303 E1000_WRITE_FLUSH(hw);
304 udelay(eeprom->delay_usec);
305 eecd &= ~E1000_EECD_CS;
306 E1000_WRITE_REG(hw, EECD, eecd);
307 E1000_WRITE_FLUSH(hw);
308 udelay(eeprom->delay_usec);
312 /***************************************************************************
313 * Description: Determines if the onboard NVM is FLASH or EEPROM.
315 * hw - Struct containing variables accessed by shared code
316 ****************************************************************************/
317 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
323 if (hw->mac_type == e1000_ich8lan)
326 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
327 eecd = E1000_READ_REG(hw, EECD);
329 /* Isolate bits 15 & 16 */
330 eecd = ((eecd >> 15) & 0x03);
332 /* If both bits are set, device is Flash type */
339 /******************************************************************************
340 * Prepares EEPROM for access
342 * hw - Struct containing variables accessed by shared code
344 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
345 * function should be called before issuing a command to the EEPROM.
346 *****************************************************************************/
347 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
349 struct e1000_eeprom_info *eeprom = &hw->eeprom;
350 uint32_t eecd, i = 0;
354 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
355 return -E1000_ERR_SWFW_SYNC;
356 eecd = E1000_READ_REG(hw, EECD);
358 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
359 /* Request EEPROM Access */
360 if (hw->mac_type > e1000_82544) {
361 eecd |= E1000_EECD_REQ;
362 E1000_WRITE_REG(hw, EECD, eecd);
363 eecd = E1000_READ_REG(hw, EECD);
364 while ((!(eecd & E1000_EECD_GNT)) &&
365 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
368 eecd = E1000_READ_REG(hw, EECD);
370 if (!(eecd & E1000_EECD_GNT)) {
371 eecd &= ~E1000_EECD_REQ;
372 E1000_WRITE_REG(hw, EECD, eecd);
373 DEBUGOUT("Could not acquire EEPROM grant\n");
374 return -E1000_ERR_EEPROM;
379 /* Setup EEPROM for Read/Write */
381 if (eeprom->type == e1000_eeprom_microwire) {
382 /* Clear SK and DI */
383 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
384 E1000_WRITE_REG(hw, EECD, eecd);
387 eecd |= E1000_EECD_CS;
388 E1000_WRITE_REG(hw, EECD, eecd);
389 } else if (eeprom->type == e1000_eeprom_spi) {
390 /* Clear SK and CS */
391 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
392 E1000_WRITE_REG(hw, EECD, eecd);
396 return E1000_SUCCESS;
399 /******************************************************************************
400 * Sets up eeprom variables in the hw struct. Must be called after mac_type
401 * is configured. Additionally, if this is ICH8, the flash controller GbE
402 * registers must be mapped, or this will crash.
404 * hw - Struct containing variables accessed by shared code
405 *****************************************************************************/
406 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
408 struct e1000_eeprom_info *eeprom = &hw->eeprom;
409 uint32_t eecd = E1000_READ_REG(hw, EECD);
410 int32_t ret_val = E1000_SUCCESS;
411 uint16_t eeprom_size;
415 switch (hw->mac_type) {
416 case e1000_82542_rev2_0:
417 case e1000_82542_rev2_1:
420 eeprom->type = e1000_eeprom_microwire;
421 eeprom->word_size = 64;
422 eeprom->opcode_bits = 3;
423 eeprom->address_bits = 6;
424 eeprom->delay_usec = 50;
425 eeprom->use_eerd = FALSE;
426 eeprom->use_eewr = FALSE;
430 case e1000_82545_rev_3:
432 case e1000_82546_rev_3:
433 eeprom->type = e1000_eeprom_microwire;
434 eeprom->opcode_bits = 3;
435 eeprom->delay_usec = 50;
436 if (eecd & E1000_EECD_SIZE) {
437 eeprom->word_size = 256;
438 eeprom->address_bits = 8;
440 eeprom->word_size = 64;
441 eeprom->address_bits = 6;
443 eeprom->use_eerd = FALSE;
444 eeprom->use_eewr = FALSE;
447 case e1000_82541_rev_2:
449 case e1000_82547_rev_2:
450 if (eecd & E1000_EECD_TYPE) {
451 eeprom->type = e1000_eeprom_spi;
452 eeprom->opcode_bits = 8;
453 eeprom->delay_usec = 1;
454 if (eecd & E1000_EECD_ADDR_BITS) {
455 eeprom->page_size = 32;
456 eeprom->address_bits = 16;
458 eeprom->page_size = 8;
459 eeprom->address_bits = 8;
462 eeprom->type = e1000_eeprom_microwire;
463 eeprom->opcode_bits = 3;
464 eeprom->delay_usec = 50;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->word_size = 256;
467 eeprom->address_bits = 8;
469 eeprom->word_size = 64;
470 eeprom->address_bits = 6;
473 eeprom->use_eerd = FALSE;
474 eeprom->use_eewr = FALSE;
478 eeprom->type = e1000_eeprom_spi;
479 eeprom->opcode_bits = 8;
480 eeprom->delay_usec = 1;
481 if (eecd & E1000_EECD_ADDR_BITS) {
482 eeprom->page_size = 32;
483 eeprom->address_bits = 16;
485 eeprom->page_size = 8;
486 eeprom->address_bits = 8;
488 eeprom->use_eerd = FALSE;
489 eeprom->use_eewr = FALSE;
493 eeprom->type = e1000_eeprom_spi;
494 eeprom->opcode_bits = 8;
495 eeprom->delay_usec = 1;
496 if (eecd & E1000_EECD_ADDR_BITS) {
497 eeprom->page_size = 32;
498 eeprom->address_bits = 16;
500 eeprom->page_size = 8;
501 eeprom->address_bits = 8;
503 eeprom->use_eerd = TRUE;
504 eeprom->use_eewr = TRUE;
505 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
506 eeprom->type = e1000_eeprom_flash;
507 eeprom->word_size = 2048;
509 /* Ensure that the Autonomous FLASH update bit is cleared due to
510 * Flash update issue on parts which use a FLASH for NVM. */
511 eecd &= ~E1000_EECD_AUPDEN;
512 E1000_WRITE_REG(hw, EECD, eecd);
515 case e1000_80003es2lan:
516 eeprom->type = e1000_eeprom_spi;
517 eeprom->opcode_bits = 8;
518 eeprom->delay_usec = 1;
519 if (eecd & E1000_EECD_ADDR_BITS) {
520 eeprom->page_size = 32;
521 eeprom->address_bits = 16;
523 eeprom->page_size = 8;
524 eeprom->address_bits = 8;
526 eeprom->use_eerd = TRUE;
527 eeprom->use_eewr = FALSE;
530 /* ich8lan does not support currently. if needed, please
531 * add corresponding code and functions.
538 eeprom->type = e1000_eeprom_ich8;
539 eeprom->use_eerd = FALSE;
540 eeprom->use_eewr = FALSE;
541 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
542 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
544 /* Zero the shadow RAM structure. But don't load it from NVM
545 * so as to save time for driver init */
546 if (hw->eeprom_shadow_ram != NULL) {
547 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
548 hw->eeprom_shadow_ram[i].modified = FALSE;
549 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
553 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
554 ICH_FLASH_SECTOR_SIZE;
556 hw->flash_bank_size = ((flash_size >> 16)
557 & ICH_GFPREG_BASE_MASK) + 1;
558 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
560 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
562 hw->flash_bank_size /= 2 * sizeof(uint16_t);
570 if (eeprom->type == e1000_eeprom_spi) {
571 /* eeprom_size will be an enum [0..8] that maps
572 * to eeprom sizes 128B to
573 * 32KB (incremented by powers of 2).
575 if (hw->mac_type <= e1000_82547_rev_2) {
576 /* Set to default value for initial eeprom read. */
577 eeprom->word_size = 64;
578 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
582 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
583 >> EEPROM_SIZE_SHIFT;
584 /* 256B eeprom size was not supported in earlier
585 * hardware, so we bump eeprom_size up one to
586 * ensure that "1" (which maps to 256B) is never
587 * the result used in the shifting logic below. */
591 eeprom_size = (uint16_t)((eecd &
592 E1000_EECD_SIZE_EX_MASK) >>
593 E1000_EECD_SIZE_EX_SHIFT);
596 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
601 /******************************************************************************
602 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
604 * hw - Struct containing variables accessed by shared code
605 *****************************************************************************/
607 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
609 uint32_t attempts = 100000;
611 int32_t done = E1000_ERR_EEPROM;
613 for (i = 0; i < attempts; i++) {
614 if (eerd == E1000_EEPROM_POLL_READ)
615 reg = E1000_READ_REG(hw, EERD);
617 reg = E1000_READ_REG(hw, EEWR);
619 if (reg & E1000_EEPROM_RW_REG_DONE) {
620 done = E1000_SUCCESS;
629 /******************************************************************************
630 * Reads a 16 bit word from the EEPROM using the EERD register.
632 * hw - Struct containing variables accessed by shared code
633 * offset - offset of word in the EEPROM to read
634 * data - word read from the EEPROM
635 * words - number of words to read
636 *****************************************************************************/
638 e1000_read_eeprom_eerd(struct e1000_hw *hw,
643 uint32_t i, eerd = 0;
646 for (i = 0; i < words; i++) {
647 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
648 E1000_EEPROM_RW_REG_START;
650 E1000_WRITE_REG(hw, EERD, eerd);
651 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
655 data[i] = (E1000_READ_REG(hw, EERD) >>
656 E1000_EEPROM_RW_REG_DATA);
663 void e1000_release_eeprom(struct e1000_hw *hw)
669 eecd = E1000_READ_REG(hw, EECD);
671 if (hw->eeprom.type == e1000_eeprom_spi) {
672 eecd |= E1000_EECD_CS; /* Pull CS high */
673 eecd &= ~E1000_EECD_SK; /* Lower SCK */
675 E1000_WRITE_REG(hw, EECD, eecd);
677 udelay(hw->eeprom.delay_usec);
678 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
681 /* CS on Microwire is active-high */
682 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
684 E1000_WRITE_REG(hw, EECD, eecd);
686 /* Rising edge of clock */
687 eecd |= E1000_EECD_SK;
688 E1000_WRITE_REG(hw, EECD, eecd);
689 E1000_WRITE_FLUSH(hw);
690 udelay(hw->eeprom.delay_usec);
692 /* Falling edge of clock */
693 eecd &= ~E1000_EECD_SK;
694 E1000_WRITE_REG(hw, EECD, eecd);
695 E1000_WRITE_FLUSH(hw);
696 udelay(hw->eeprom.delay_usec);
699 /* Stop requesting EEPROM access */
700 if (hw->mac_type > e1000_82544) {
701 eecd &= ~E1000_EECD_REQ;
702 E1000_WRITE_REG(hw, EECD, eecd);
705 /******************************************************************************
706 * Reads a 16 bit word from the EEPROM.
708 * hw - Struct containing variables accessed by shared code
709 *****************************************************************************/
711 e1000_spi_eeprom_ready(struct e1000_hw *hw)
713 uint16_t retry_count = 0;
714 uint8_t spi_stat_reg;
718 /* Read "Status Register" repeatedly until the LSB is cleared. The
719 * EEPROM will signal that the command has been completed by clearing
720 * bit 0 of the internal status register. If it's not cleared within
721 * 5 milliseconds, then error out.
725 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
726 hw->eeprom.opcode_bits);
727 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
728 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
734 e1000_standby_eeprom(hw);
735 } while (retry_count < EEPROM_MAX_RETRY_SPI);
737 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
738 * only 0-5mSec on 5V devices)
740 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
741 DEBUGOUT("SPI EEPROM Status error\n");
742 return -E1000_ERR_EEPROM;
745 return E1000_SUCCESS;
748 /******************************************************************************
749 * Reads a 16 bit word from the EEPROM.
751 * hw - Struct containing variables accessed by shared code
752 * offset - offset of word in the EEPROM to read
753 * data - word read from the EEPROM
754 *****************************************************************************/
756 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
757 uint16_t words, uint16_t *data)
759 struct e1000_eeprom_info *eeprom = &hw->eeprom;
764 /* If eeprom is not yet detected, do so now */
765 if (eeprom->word_size == 0)
766 e1000_init_eeprom_params(hw);
768 /* A check for invalid values: offset too large, too many words,
769 * and not enough words.
771 if ((offset >= eeprom->word_size) ||
772 (words > eeprom->word_size - offset) ||
774 DEBUGOUT("\"words\" parameter out of bounds."
775 "Words = %d, size = %d\n", offset, eeprom->word_size);
776 return -E1000_ERR_EEPROM;
779 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
780 * directly. In this case, we need to acquire the EEPROM so that
781 * FW or other port software does not interrupt.
783 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
784 hw->eeprom.use_eerd == FALSE) {
786 /* Prepare the EEPROM for bit-bang reading */
787 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
788 return -E1000_ERR_EEPROM;
791 /* Eerd register EEPROM access requires no eeprom aquire/release */
792 if (eeprom->use_eerd == TRUE)
793 return e1000_read_eeprom_eerd(hw, offset, words, data);
795 /* ich8lan does not support currently. if needed, please
796 * add corresponding code and functions.
799 /* ICH EEPROM access is done via the ICH flash controller */
800 if (eeprom->type == e1000_eeprom_ich8)
801 return e1000_read_eeprom_ich8(hw, offset, words, data);
803 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
804 * acquired the EEPROM at this point, so any returns should relase it */
805 if (eeprom->type == e1000_eeprom_spi) {
807 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
809 if (e1000_spi_eeprom_ready(hw)) {
810 e1000_release_eeprom(hw);
811 return -E1000_ERR_EEPROM;
814 e1000_standby_eeprom(hw);
816 /* Some SPI eeproms use the 8th address bit embedded in
818 if ((eeprom->address_bits == 8) && (offset >= 128))
819 read_opcode |= EEPROM_A8_OPCODE_SPI;
821 /* Send the READ command (opcode + addr) */
822 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
823 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
824 eeprom->address_bits);
826 /* Read the data. The address of the eeprom internally
827 * increments with each byte (spi) being read, saving on the
828 * overhead of eeprom setup and tear-down. The address
829 * counter will roll over if reading beyond the size of
830 * the eeprom, thus allowing the entire memory to be read
831 * starting from any offset. */
832 for (i = 0; i < words; i++) {
833 word_in = e1000_shift_in_ee_bits(hw, 16);
834 data[i] = (word_in >> 8) | (word_in << 8);
836 } else if (eeprom->type == e1000_eeprom_microwire) {
837 for (i = 0; i < words; i++) {
838 /* Send the READ command (opcode + addr) */
839 e1000_shift_out_ee_bits(hw,
840 EEPROM_READ_OPCODE_MICROWIRE,
841 eeprom->opcode_bits);
842 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
843 eeprom->address_bits);
845 /* Read the data. For microwire, each word requires
846 * the overhead of eeprom setup and tear-down. */
847 data[i] = e1000_shift_in_ee_bits(hw, 16);
848 e1000_standby_eeprom(hw);
852 /* End this read operation */
853 e1000_release_eeprom(hw);
855 return E1000_SUCCESS;
858 /******************************************************************************
859 * Verifies that the EEPROM has a valid checksum
861 * hw - Struct containing variables accessed by shared code
863 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
864 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
866 *****************************************************************************/
867 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
869 uint16_t i, checksum, checksum_reg, *buf;
873 /* Allocate a temporary buffer */
874 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
876 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
877 return -E1000_ERR_EEPROM;
880 /* Read the EEPROM */
881 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
882 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
883 return -E1000_ERR_EEPROM;
886 /* Compute the checksum */
888 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
890 checksum = ((uint16_t)EEPROM_SUM) - checksum;
891 checksum_reg = buf[i];
894 if (checksum == checksum_reg)
897 /* Hrm, verification failed, print an error */
898 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
899 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
900 checksum_reg, checksum);
902 return -E1000_ERR_EEPROM;
905 /*****************************************************************************
906 * Set PHY to class A mode
907 * Assumes the following operations will follow to enable the new class mode.
908 * 1. Do a PHY soft reset
909 * 2. Restart auto-negotiation or force link.
911 * hw - Struct containing variables accessed by shared code
912 ****************************************************************************/
914 e1000_set_phy_mode(struct e1000_hw *hw)
917 uint16_t eeprom_data;
921 if ((hw->mac_type == e1000_82545_rev_3) &&
922 (hw->media_type == e1000_media_type_copper)) {
923 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
928 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
929 (eeprom_data & EEPROM_PHY_CLASS_A)) {
930 ret_val = e1000_write_phy_reg(hw,
931 M88E1000_PHY_PAGE_SELECT, 0x000B);
934 ret_val = e1000_write_phy_reg(hw,
935 M88E1000_PHY_GEN_CONTROL, 0x8104);
939 hw->phy_reset_disable = FALSE;
943 return E1000_SUCCESS;
945 #endif /* #ifndef CONFIG_AP1000 */
947 /***************************************************************************
949 * Obtaining software semaphore bit (SMBI) before resetting PHY.
951 * hw: Struct containing variables accessed by shared code
953 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
954 * E1000_SUCCESS at any other case.
956 ***************************************************************************/
958 e1000_get_software_semaphore(struct e1000_hw *hw)
960 int32_t timeout = hw->eeprom.word_size + 1;
965 if (hw->mac_type != e1000_80003es2lan)
966 return E1000_SUCCESS;
969 swsm = E1000_READ_REG(hw, SWSM);
970 /* If SMBI bit cleared, it is now set and we hold
972 if (!(swsm & E1000_SWSM_SMBI))
979 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
980 return -E1000_ERR_RESET;
983 return E1000_SUCCESS;
986 /***************************************************************************
987 * This function clears HW semaphore bits.
989 * hw: Struct containing variables accessed by shared code
993 ***************************************************************************/
995 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1001 if (!hw->eeprom_semaphore_present)
1004 swsm = E1000_READ_REG(hw, SWSM);
1005 if (hw->mac_type == e1000_80003es2lan) {
1006 /* Release both semaphores. */
1007 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1009 swsm &= ~(E1000_SWSM_SWESMBI);
1010 E1000_WRITE_REG(hw, SWSM, swsm);
1013 /***************************************************************************
1015 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1016 * adapter or Eeprom access.
1018 * hw: Struct containing variables accessed by shared code
1020 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1021 * E1000_SUCCESS at any other case.
1023 ***************************************************************************/
1025 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1032 if (!hw->eeprom_semaphore_present)
1033 return E1000_SUCCESS;
1035 if (hw->mac_type == e1000_80003es2lan) {
1036 /* Get the SW semaphore. */
1037 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1038 return -E1000_ERR_EEPROM;
1041 /* Get the FW semaphore. */
1042 timeout = hw->eeprom.word_size + 1;
1044 swsm = E1000_READ_REG(hw, SWSM);
1045 swsm |= E1000_SWSM_SWESMBI;
1046 E1000_WRITE_REG(hw, SWSM, swsm);
1047 /* if we managed to set the bit we got the semaphore. */
1048 swsm = E1000_READ_REG(hw, SWSM);
1049 if (swsm & E1000_SWSM_SWESMBI)
1057 /* Release semaphores */
1058 e1000_put_hw_eeprom_semaphore(hw);
1059 DEBUGOUT("Driver can't access the Eeprom - "
1060 "SWESMBI bit is set.\n");
1061 return -E1000_ERR_EEPROM;
1064 return E1000_SUCCESS;
1068 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1070 uint32_t swfw_sync = 0;
1071 uint32_t swmask = mask;
1072 uint32_t fwmask = mask << 16;
1073 int32_t timeout = 200;
1077 if (e1000_get_hw_eeprom_semaphore(hw))
1078 return -E1000_ERR_SWFW_SYNC;
1080 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1081 if (!(swfw_sync & (fwmask | swmask)))
1084 /* firmware currently using resource (fwmask) */
1085 /* or other software thread currently using resource (swmask) */
1086 e1000_put_hw_eeprom_semaphore(hw);
1092 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1093 return -E1000_ERR_SWFW_SYNC;
1096 swfw_sync |= swmask;
1097 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1099 e1000_put_hw_eeprom_semaphore(hw);
1100 return E1000_SUCCESS;
1103 static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1105 switch (hw->mac_type) {
1106 case e1000_80003es2lan:
1109 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1117 /******************************************************************************
1118 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1119 * second function of dual function devices
1121 * nic - Struct containing variables accessed by shared code
1122 *****************************************************************************/
1124 e1000_read_mac_addr(struct eth_device *nic)
1126 #ifndef CONFIG_AP1000
1127 struct e1000_hw *hw = nic->priv;
1129 uint16_t eeprom_data;
1134 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1136 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1137 DEBUGOUT("EEPROM Read Error\n");
1138 return -E1000_ERR_EEPROM;
1140 nic->enetaddr[i] = eeprom_data & 0xff;
1141 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1144 /* Invert the last bit if this is the second device */
1145 if (e1000_is_second_port(hw))
1146 nic->enetaddr[5] ^= 1;
1148 #ifdef CONFIG_E1000_FALLBACK_MAC
1149 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1150 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1152 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1157 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1158 * environment variables. Currently this does not support the addition
1159 * of a PMC e1000 card, which is certainly a possibility, so this should
1160 * be updated to properly use the env variable only for the onboard e1000
1168 s = getenv ("ethaddr");
1170 return -E1000_ERR_EEPROM;
1172 for(ii = 0; ii < 6; ii++) {
1173 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1175 s = (*e) ? e + 1 : e;
1183 /******************************************************************************
1184 * Initializes receive address filters.
1186 * hw - Struct containing variables accessed by shared code
1188 * Places the MAC address in receive address register 0 and clears the rest
1189 * of the receive addresss registers. Clears the multicast table. Assumes
1190 * the receiver is in reset when the routine is called.
1191 *****************************************************************************/
1193 e1000_init_rx_addrs(struct eth_device *nic)
1195 struct e1000_hw *hw = nic->priv;
1202 /* Setup the receive address. */
1203 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204 addr_low = (nic->enetaddr[0] |
1205 (nic->enetaddr[1] << 8) |
1206 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1208 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1210 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1213 /* Zero out the other 15 receive addresses. */
1214 DEBUGOUT("Clearing RAR[1-15]\n");
1215 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1221 /******************************************************************************
1222 * Clears the VLAN filer table
1224 * hw - Struct containing variables accessed by shared code
1225 *****************************************************************************/
1227 e1000_clear_vfta(struct e1000_hw *hw)
1231 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1235 /******************************************************************************
1236 * Set the mac type member in the hw struct.
1238 * hw - Struct containing variables accessed by shared code
1239 *****************************************************************************/
1241 e1000_set_mac_type(struct e1000_hw *hw)
1245 switch (hw->device_id) {
1246 case E1000_DEV_ID_82542:
1247 switch (hw->revision_id) {
1248 case E1000_82542_2_0_REV_ID:
1249 hw->mac_type = e1000_82542_rev2_0;
1251 case E1000_82542_2_1_REV_ID:
1252 hw->mac_type = e1000_82542_rev2_1;
1255 /* Invalid 82542 revision ID */
1256 return -E1000_ERR_MAC_TYPE;
1259 case E1000_DEV_ID_82543GC_FIBER:
1260 case E1000_DEV_ID_82543GC_COPPER:
1261 hw->mac_type = e1000_82543;
1263 case E1000_DEV_ID_82544EI_COPPER:
1264 case E1000_DEV_ID_82544EI_FIBER:
1265 case E1000_DEV_ID_82544GC_COPPER:
1266 case E1000_DEV_ID_82544GC_LOM:
1267 hw->mac_type = e1000_82544;
1269 case E1000_DEV_ID_82540EM:
1270 case E1000_DEV_ID_82540EM_LOM:
1271 case E1000_DEV_ID_82540EP:
1272 case E1000_DEV_ID_82540EP_LOM:
1273 case E1000_DEV_ID_82540EP_LP:
1274 hw->mac_type = e1000_82540;
1276 case E1000_DEV_ID_82545EM_COPPER:
1277 case E1000_DEV_ID_82545EM_FIBER:
1278 hw->mac_type = e1000_82545;
1280 case E1000_DEV_ID_82545GM_COPPER:
1281 case E1000_DEV_ID_82545GM_FIBER:
1282 case E1000_DEV_ID_82545GM_SERDES:
1283 hw->mac_type = e1000_82545_rev_3;
1285 case E1000_DEV_ID_82546EB_COPPER:
1286 case E1000_DEV_ID_82546EB_FIBER:
1287 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1288 hw->mac_type = e1000_82546;
1290 case E1000_DEV_ID_82546GB_COPPER:
1291 case E1000_DEV_ID_82546GB_FIBER:
1292 case E1000_DEV_ID_82546GB_SERDES:
1293 case E1000_DEV_ID_82546GB_PCIE:
1294 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296 hw->mac_type = e1000_82546_rev_3;
1298 case E1000_DEV_ID_82541EI:
1299 case E1000_DEV_ID_82541EI_MOBILE:
1300 case E1000_DEV_ID_82541ER_LOM:
1301 hw->mac_type = e1000_82541;
1303 case E1000_DEV_ID_82541ER:
1304 case E1000_DEV_ID_82541GI:
1305 case E1000_DEV_ID_82541GI_LF:
1306 case E1000_DEV_ID_82541GI_MOBILE:
1307 hw->mac_type = e1000_82541_rev_2;
1309 case E1000_DEV_ID_82547EI:
1310 case E1000_DEV_ID_82547EI_MOBILE:
1311 hw->mac_type = e1000_82547;
1313 case E1000_DEV_ID_82547GI:
1314 hw->mac_type = e1000_82547_rev_2;
1316 case E1000_DEV_ID_82571EB_COPPER:
1317 case E1000_DEV_ID_82571EB_FIBER:
1318 case E1000_DEV_ID_82571EB_SERDES:
1319 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325 hw->mac_type = e1000_82571;
1327 case E1000_DEV_ID_82572EI_COPPER:
1328 case E1000_DEV_ID_82572EI_FIBER:
1329 case E1000_DEV_ID_82572EI_SERDES:
1330 case E1000_DEV_ID_82572EI:
1331 hw->mac_type = e1000_82572;
1333 case E1000_DEV_ID_82573E:
1334 case E1000_DEV_ID_82573E_IAMT:
1335 case E1000_DEV_ID_82573L:
1336 hw->mac_type = e1000_82573;
1338 case E1000_DEV_ID_82574L:
1339 hw->mac_type = e1000_82574;
1341 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345 hw->mac_type = e1000_80003es2lan;
1347 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348 case E1000_DEV_ID_ICH8_IGP_AMT:
1349 case E1000_DEV_ID_ICH8_IGP_C:
1350 case E1000_DEV_ID_ICH8_IFE:
1351 case E1000_DEV_ID_ICH8_IFE_GT:
1352 case E1000_DEV_ID_ICH8_IFE_G:
1353 case E1000_DEV_ID_ICH8_IGP_M:
1354 hw->mac_type = e1000_ich8lan;
1357 /* Should never have loaded on this device */
1358 return -E1000_ERR_MAC_TYPE;
1360 return E1000_SUCCESS;
1363 /******************************************************************************
1364 * Reset the transmit and receive units; mask and clear all interrupts.
1366 * hw - Struct containing variables accessed by shared code
1367 *****************************************************************************/
1369 e1000_reset_hw(struct e1000_hw *hw)
1379 /* get the correct pba value for both PCI and PCIe*/
1380 if (hw->mac_type < e1000_82571)
1381 pba = E1000_DEFAULT_PCI_PBA;
1383 pba = E1000_DEFAULT_PCIE_PBA;
1385 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1386 if (hw->mac_type == e1000_82542_rev2_0) {
1387 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1388 pci_write_config_word(hw->pdev, PCI_COMMAND,
1389 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1392 /* Clear interrupt mask to stop board from generating interrupts */
1393 DEBUGOUT("Masking off all interrupts\n");
1394 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1396 /* Disable the Transmit and Receive units. Then delay to allow
1397 * any pending transactions to complete before we hit the MAC with
1400 E1000_WRITE_REG(hw, RCTL, 0);
1401 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1402 E1000_WRITE_FLUSH(hw);
1404 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1405 hw->tbi_compatibility_on = FALSE;
1407 /* Delay to allow any outstanding PCI transactions to complete before
1408 * resetting the device
1412 /* Issue a global reset to the MAC. This will reset the chip's
1413 * transmit, receive, DMA, and link units. It will not effect
1414 * the current PCI configuration. The global reset bit is self-
1415 * clearing, and should clear within a microsecond.
1417 DEBUGOUT("Issuing a global reset to MAC\n");
1418 ctrl = E1000_READ_REG(hw, CTRL);
1420 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1422 /* Force a reload from the EEPROM if necessary */
1423 if (hw->mac_type < e1000_82540) {
1424 /* Wait for reset to complete */
1426 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1427 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1428 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1429 E1000_WRITE_FLUSH(hw);
1430 /* Wait for EEPROM reload */
1433 /* Wait for EEPROM reload (it happens automatically) */
1435 /* Dissable HW ARPs on ASF enabled adapters */
1436 manc = E1000_READ_REG(hw, MANC);
1437 manc &= ~(E1000_MANC_ARP_EN);
1438 E1000_WRITE_REG(hw, MANC, manc);
1441 /* Clear interrupt mask to stop board from generating interrupts */
1442 DEBUGOUT("Masking off all interrupts\n");
1443 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1445 /* Clear any pending interrupt events. */
1446 icr = E1000_READ_REG(hw, ICR);
1448 /* If MWI was previously enabled, reenable it. */
1449 if (hw->mac_type == e1000_82542_rev2_0) {
1450 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1452 E1000_WRITE_REG(hw, PBA, pba);
1455 /******************************************************************************
1457 * Initialize a number of hardware-dependent bits
1459 * hw: Struct containing variables accessed by shared code
1461 * This function contains hardware limitation workarounds for PCI-E adapters
1463 *****************************************************************************/
1465 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1467 if ((hw->mac_type >= e1000_82571) &&
1468 (!hw->initialize_hw_bits_disable)) {
1469 /* Settings common to all PCI-express silicon */
1470 uint32_t reg_ctrl, reg_ctrl_ext;
1471 uint32_t reg_tarc0, reg_tarc1;
1473 uint32_t reg_txdctl, reg_txdctl1;
1475 /* link autonegotiation/sync workarounds */
1476 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1477 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1479 /* Enable not-done TX descriptor counting */
1480 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1481 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1482 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1484 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1485 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1486 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1488 switch (hw->mac_type) {
1491 /* Clear PHY TX compatible mode bits */
1492 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1493 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1495 /* link autonegotiation/sync workarounds */
1496 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1498 /* TX ring control fixes */
1499 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1501 /* Multiple read bit is reversed polarity */
1502 reg_tctl = E1000_READ_REG(hw, TCTL);
1503 if (reg_tctl & E1000_TCTL_MULR)
1504 reg_tarc1 &= ~(1 << 28);
1506 reg_tarc1 |= (1 << 28);
1508 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1512 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1513 reg_ctrl_ext &= ~(1 << 23);
1514 reg_ctrl_ext |= (1 << 22);
1516 /* TX byte count fix */
1517 reg_ctrl = E1000_READ_REG(hw, CTRL);
1518 reg_ctrl &= ~(1 << 29);
1520 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1521 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1523 case e1000_80003es2lan:
1524 /* improve small packet performace for fiber/serdes */
1525 if ((hw->media_type == e1000_media_type_fiber)
1526 || (hw->media_type ==
1527 e1000_media_type_internal_serdes)) {
1528 reg_tarc0 &= ~(1 << 20);
1531 /* Multiple read bit is reversed polarity */
1532 reg_tctl = E1000_READ_REG(hw, TCTL);
1533 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1534 if (reg_tctl & E1000_TCTL_MULR)
1535 reg_tarc1 &= ~(1 << 28);
1537 reg_tarc1 |= (1 << 28);
1539 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1542 /* Reduce concurrent DMA requests to 3 from 4 */
1543 if ((hw->revision_id < 3) ||
1544 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1545 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1546 reg_tarc0 |= ((1 << 29)|(1 << 28));
1548 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1549 reg_ctrl_ext |= (1 << 22);
1550 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1552 /* workaround TX hang with TSO=on */
1553 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1555 /* Multiple read bit is reversed polarity */
1556 reg_tctl = E1000_READ_REG(hw, TCTL);
1557 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1558 if (reg_tctl & E1000_TCTL_MULR)
1559 reg_tarc1 &= ~(1 << 28);
1561 reg_tarc1 |= (1 << 28);
1563 /* workaround TX hang with TSO=on */
1564 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1566 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1572 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1576 /******************************************************************************
1577 * Performs basic configuration of the adapter.
1579 * hw - Struct containing variables accessed by shared code
1581 * Assumes that the controller has previously been reset and is in a
1582 * post-reset uninitialized state. Initializes the receive address registers,
1583 * multicast table, and VLAN filter table. Calls routines to setup link
1584 * configuration and flow control settings. Clears all on-chip counters. Leaves
1585 * the transmit and receive units disabled and uninitialized.
1586 *****************************************************************************/
1588 e1000_init_hw(struct eth_device *nic)
1590 struct e1000_hw *hw = nic->priv;
1594 uint16_t pcix_cmd_word;
1595 uint16_t pcix_stat_hi_word;
1597 uint16_t stat_mmrbc;
1602 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1603 if ((hw->mac_type == e1000_ich8lan) &&
1604 ((hw->revision_id < 3) ||
1605 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1606 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1607 reg_data = E1000_READ_REG(hw, STATUS);
1608 reg_data &= ~0x80000000;
1609 E1000_WRITE_REG(hw, STATUS, reg_data);
1611 /* Do not need initialize Identification LED */
1613 /* Set the media type and TBI compatibility */
1614 e1000_set_media_type(hw);
1616 /* Must be called after e1000_set_media_type
1617 * because media_type is used */
1618 e1000_initialize_hardware_bits(hw);
1620 /* Disabling VLAN filtering. */
1621 DEBUGOUT("Initializing the IEEE VLAN\n");
1622 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1623 if (hw->mac_type != e1000_ich8lan) {
1624 if (hw->mac_type < e1000_82545_rev_3)
1625 E1000_WRITE_REG(hw, VET, 0);
1626 e1000_clear_vfta(hw);
1629 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1630 if (hw->mac_type == e1000_82542_rev2_0) {
1631 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1632 pci_write_config_word(hw->pdev, PCI_COMMAND,
1634 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1635 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1636 E1000_WRITE_FLUSH(hw);
1640 /* Setup the receive address. This involves initializing all of the Receive
1641 * Address Registers (RARs 0 - 15).
1643 e1000_init_rx_addrs(nic);
1645 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1646 if (hw->mac_type == e1000_82542_rev2_0) {
1647 E1000_WRITE_REG(hw, RCTL, 0);
1648 E1000_WRITE_FLUSH(hw);
1650 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1653 /* Zero out the Multicast HASH table */
1654 DEBUGOUT("Zeroing the MTA\n");
1655 mta_size = E1000_MC_TBL_SIZE;
1656 if (hw->mac_type == e1000_ich8lan)
1657 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1658 for (i = 0; i < mta_size; i++) {
1659 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1660 /* use write flush to prevent Memory Write Block (MWB) from
1661 * occuring when accessing our register space */
1662 E1000_WRITE_FLUSH(hw);
1665 /* Set the PCI priority bit correctly in the CTRL register. This
1666 * determines if the adapter gives priority to receives, or if it
1667 * gives equal priority to transmits and receives. Valid only on
1668 * 82542 and 82543 silicon.
1670 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
1671 ctrl = E1000_READ_REG(hw, CTRL);
1672 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1675 switch (hw->mac_type) {
1676 case e1000_82545_rev_3:
1677 case e1000_82546_rev_3:
1680 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1681 if (hw->bus_type == e1000_bus_type_pcix) {
1682 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1684 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1685 &pcix_stat_hi_word);
1687 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1688 PCIX_COMMAND_MMRBC_SHIFT;
1690 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1691 PCIX_STATUS_HI_MMRBC_SHIFT;
1692 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1693 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1694 if (cmd_mmrbc > stat_mmrbc) {
1695 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1696 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1697 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1704 /* More time needed for PHY to initialize */
1705 if (hw->mac_type == e1000_ich8lan)
1708 /* Call a subroutine to configure the link and setup flow control. */
1709 ret_val = e1000_setup_link(nic);
1711 /* Set the transmit descriptor write-back policy */
1712 if (hw->mac_type > e1000_82544) {
1713 ctrl = E1000_READ_REG(hw, TXDCTL);
1715 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1716 E1000_TXDCTL_FULL_TX_DESC_WB;
1717 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1720 switch (hw->mac_type) {
1723 case e1000_80003es2lan:
1724 /* Enable retransmit on late collisions */
1725 reg_data = E1000_READ_REG(hw, TCTL);
1726 reg_data |= E1000_TCTL_RTLC;
1727 E1000_WRITE_REG(hw, TCTL, reg_data);
1729 /* Configure Gigabit Carry Extend Padding */
1730 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1731 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1732 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1733 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1735 /* Configure Transmit Inter-Packet Gap */
1736 reg_data = E1000_READ_REG(hw, TIPG);
1737 reg_data &= ~E1000_TIPG_IPGT_MASK;
1738 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1739 E1000_WRITE_REG(hw, TIPG, reg_data);
1741 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1742 reg_data &= ~0x00100000;
1743 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1748 ctrl = E1000_READ_REG(hw, TXDCTL1);
1749 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1750 | E1000_TXDCTL_FULL_TX_DESC_WB;
1751 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1755 reg_data = E1000_READ_REG(hw, GCR);
1756 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1757 E1000_WRITE_REG(hw, GCR, reg_data);
1761 /* Clear all of the statistics registers (clear on read). It is
1762 * important that we do this after we have tried to establish link
1763 * because the symbol error count will increment wildly if there
1766 e1000_clear_hw_cntrs(hw);
1768 /* ICH8 No-snoop bits are opposite polarity.
1769 * Set to snoop by default after reset. */
1770 if (hw->mac_type == e1000_ich8lan)
1771 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1774 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1775 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1776 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1777 /* Relaxed ordering must be disabled to avoid a parity
1778 * error crash in a PCI slot. */
1779 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1780 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1786 /******************************************************************************
1787 * Configures flow control and link settings.
1789 * hw - Struct containing variables accessed by shared code
1791 * Determines which flow control settings to use. Calls the apropriate media-
1792 * specific link configuration function. Configures the flow control settings.
1793 * Assuming the adapter has a valid link partner, a valid link should be
1794 * established. Assumes the hardware has previously been reset and the
1795 * transmitter and receiver are not enabled.
1796 *****************************************************************************/
1798 e1000_setup_link(struct eth_device *nic)
1800 struct e1000_hw *hw = nic->priv;
1803 uint16_t eeprom_data;
1807 /* In the case of the phy reset being blocked, we already have a link.
1808 * We do not have to set it up again. */
1809 if (e1000_check_phy_reset_block(hw))
1810 return E1000_SUCCESS;
1812 #ifndef CONFIG_AP1000
1813 /* Read and store word 0x0F of the EEPROM. This word contains bits
1814 * that determine the hardware's default PAUSE (flow control) mode,
1815 * a bit that determines whether the HW defaults to enabling or
1816 * disabling auto-negotiation, and the direction of the
1817 * SW defined pins. If there is no SW over-ride of the flow
1818 * control setting, then the variable hw->fc will
1819 * be initialized based on a value in the EEPROM.
1821 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1822 &eeprom_data) < 0) {
1823 DEBUGOUT("EEPROM Read Error\n");
1824 return -E1000_ERR_EEPROM;
1827 /* we have to hardcode the proper value for our hardware. */
1828 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1829 eeprom_data = 0xb220;
1832 if (hw->fc == e1000_fc_default) {
1833 switch (hw->mac_type) {
1837 hw->fc = e1000_fc_full;
1840 #ifndef CONFIG_AP1000
1841 ret_val = e1000_read_eeprom(hw,
1842 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1844 DEBUGOUT("EEPROM Read Error\n");
1845 return -E1000_ERR_EEPROM;
1848 eeprom_data = 0xb220;
1850 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1851 hw->fc = e1000_fc_none;
1852 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1853 EEPROM_WORD0F_ASM_DIR)
1854 hw->fc = e1000_fc_tx_pause;
1856 hw->fc = e1000_fc_full;
1861 /* We want to save off the original Flow Control configuration just
1862 * in case we get disconnected and then reconnected into a different
1863 * hub or switch with different Flow Control capabilities.
1865 if (hw->mac_type == e1000_82542_rev2_0)
1866 hw->fc &= (~e1000_fc_tx_pause);
1868 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1869 hw->fc &= (~e1000_fc_rx_pause);
1871 hw->original_fc = hw->fc;
1873 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1875 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1876 * polarity value for the SW controlled pins, and setup the
1877 * Extended Device Control reg with that info.
1878 * This is needed because one of the SW controlled pins is used for
1879 * signal detection. So this should be done before e1000_setup_pcs_link()
1880 * or e1000_phy_setup() is called.
1882 if (hw->mac_type == e1000_82543) {
1883 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1885 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1888 /* Call the necessary subroutine to configure the link. */
1889 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1890 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1895 /* Initialize the flow control address, type, and PAUSE timer
1896 * registers to their default values. This is done even if flow
1897 * control is disabled, because it does not hurt anything to
1898 * initialize these registers.
1900 DEBUGOUT("Initializing the Flow Control address, type"
1901 "and timer regs\n");
1903 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1904 if (hw->mac_type != e1000_ich8lan) {
1905 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1906 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1907 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1910 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1912 /* Set the flow control receive threshold registers. Normally,
1913 * these registers will be set to a default threshold that may be
1914 * adjusted later by the driver's runtime code. However, if the
1915 * ability to transmit pause frames in not enabled, then these
1916 * registers will be set to 0.
1918 if (!(hw->fc & e1000_fc_tx_pause)) {
1919 E1000_WRITE_REG(hw, FCRTL, 0);
1920 E1000_WRITE_REG(hw, FCRTH, 0);
1922 /* We need to set up the Receive Threshold high and low water marks
1923 * as well as (optionally) enabling the transmission of XON frames.
1925 if (hw->fc_send_xon) {
1926 E1000_WRITE_REG(hw, FCRTL,
1927 (hw->fc_low_water | E1000_FCRTL_XONE));
1928 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1930 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1931 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1937 /******************************************************************************
1938 * Sets up link for a fiber based adapter
1940 * hw - Struct containing variables accessed by shared code
1942 * Manipulates Physical Coding Sublayer functions in order to configure
1943 * link. Assumes the hardware has been previously reset and the transmitter
1944 * and receiver are not enabled.
1945 *****************************************************************************/
1947 e1000_setup_fiber_link(struct eth_device *nic)
1949 struct e1000_hw *hw = nic->priv;
1958 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1959 * set when the optics detect a signal. On older adapters, it will be
1960 * cleared when there is a signal
1962 ctrl = E1000_READ_REG(hw, CTRL);
1963 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1964 signal = E1000_CTRL_SWDPIN1;
1968 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1970 /* Take the link out of reset */
1971 ctrl &= ~(E1000_CTRL_LRST);
1973 e1000_config_collision_dist(hw);
1975 /* Check for a software override of the flow control settings, and setup
1976 * the device accordingly. If auto-negotiation is enabled, then software
1977 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1978 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1979 * auto-negotiation is disabled, then software will have to manually
1980 * configure the two flow control enable bits in the CTRL register.
1982 * The possible values of the "fc" parameter are:
1983 * 0: Flow control is completely disabled
1984 * 1: Rx flow control is enabled (we can receive pause frames, but
1985 * not send pause frames).
1986 * 2: Tx flow control is enabled (we can send pause frames but we do
1987 * not support receiving pause frames).
1988 * 3: Both Rx and TX flow control (symmetric) are enabled.
1992 /* Flow control is completely disabled by a software over-ride. */
1993 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1995 case e1000_fc_rx_pause:
1996 /* RX Flow control is enabled and TX Flow control is disabled by a
1997 * software over-ride. Since there really isn't a way to advertise
1998 * that we are capable of RX Pause ONLY, we will advertise that we
1999 * support both symmetric and asymmetric RX PAUSE. Later, we will
2000 * disable the adapter's ability to send PAUSE frames.
2002 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2004 case e1000_fc_tx_pause:
2005 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2006 * software over-ride.
2008 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2011 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2012 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2015 DEBUGOUT("Flow control param set incorrectly\n");
2016 return -E1000_ERR_CONFIG;
2020 /* Since auto-negotiation is enabled, take the link out of reset (the link
2021 * will be in reset, because we previously reset the chip). This will
2022 * restart auto-negotiation. If auto-neogtiation is successful then the
2023 * link-up status bit will be set and the flow control enable bits (RFCE
2024 * and TFCE) will be set according to their negotiated value.
2026 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2028 E1000_WRITE_REG(hw, TXCW, txcw);
2029 E1000_WRITE_REG(hw, CTRL, ctrl);
2030 E1000_WRITE_FLUSH(hw);
2035 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2036 * indication in the Device Status Register. Time-out if a link isn't
2037 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2038 * less than 500 milliseconds even if the other end is doing it in SW).
2040 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2041 DEBUGOUT("Looking for Link\n");
2042 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2044 status = E1000_READ_REG(hw, STATUS);
2045 if (status & E1000_STATUS_LU)
2048 if (i == (LINK_UP_TIMEOUT / 10)) {
2049 /* AutoNeg failed to achieve a link, so we'll call
2050 * e1000_check_for_link. This routine will force the link up if we
2051 * detect a signal. This will allow us to communicate with
2052 * non-autonegotiating link partners.
2054 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2055 hw->autoneg_failed = 1;
2056 ret_val = e1000_check_for_link(nic);
2058 DEBUGOUT("Error while checking for link\n");
2061 hw->autoneg_failed = 0;
2063 hw->autoneg_failed = 0;
2064 DEBUGOUT("Valid Link Found\n");
2067 DEBUGOUT("No Signal Detected\n");
2068 return -E1000_ERR_NOLINK;
2073 /******************************************************************************
2074 * Make sure we have a valid PHY and change PHY mode before link setup.
2076 * hw - Struct containing variables accessed by shared code
2077 ******************************************************************************/
2079 e1000_copper_link_preconfig(struct e1000_hw *hw)
2087 ctrl = E1000_READ_REG(hw, CTRL);
2088 /* With 82543, we need to force speed and duplex on the MAC equal to what
2089 * the PHY speed and duplex configuration is. In addition, we need to
2090 * perform a hardware reset on the PHY to take it out of reset.
2092 if (hw->mac_type > e1000_82543) {
2093 ctrl |= E1000_CTRL_SLU;
2094 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2095 E1000_WRITE_REG(hw, CTRL, ctrl);
2097 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2099 E1000_WRITE_REG(hw, CTRL, ctrl);
2100 ret_val = e1000_phy_hw_reset(hw);
2105 /* Make sure we have a valid PHY */
2106 ret_val = e1000_detect_gig_phy(hw);
2108 DEBUGOUT("Error, did not detect valid phy.\n");
2111 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2113 #ifndef CONFIG_AP1000
2114 /* Set PHY to class A mode (if necessary) */
2115 ret_val = e1000_set_phy_mode(hw);
2119 if ((hw->mac_type == e1000_82545_rev_3) ||
2120 (hw->mac_type == e1000_82546_rev_3)) {
2121 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2123 phy_data |= 0x00000008;
2124 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2128 if (hw->mac_type <= e1000_82543 ||
2129 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2130 hw->mac_type == e1000_82541_rev_2
2131 || hw->mac_type == e1000_82547_rev_2)
2132 hw->phy_reset_disable = FALSE;
2134 return E1000_SUCCESS;
2137 /*****************************************************************************
2139 * This function sets the lplu state according to the active flag. When
2140 * activating lplu this function also disables smart speed and vise versa.
2141 * lplu will not be activated unless the device autonegotiation advertisment
2142 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2143 * hw: Struct containing variables accessed by shared code
2144 * active - true to enable lplu false to disable lplu.
2146 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2147 * E1000_SUCCESS at any other case.
2149 ****************************************************************************/
2152 e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2154 uint32_t phy_ctrl = 0;
2159 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2160 && hw->phy_type != e1000_phy_igp_3)
2161 return E1000_SUCCESS;
2163 /* During driver activity LPLU should not be used or it will attain link
2164 * from the lowest speeds starting from 10Mbps. The capability is used
2165 * for Dx transitions and states */
2166 if (hw->mac_type == e1000_82541_rev_2
2167 || hw->mac_type == e1000_82547_rev_2) {
2168 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2172 } else if (hw->mac_type == e1000_ich8lan) {
2173 /* MAC writes into PHY register based on the state transition
2174 * and start auto-negotiation. SW driver can overwrite the
2175 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2176 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2178 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2185 if (hw->mac_type == e1000_82541_rev_2 ||
2186 hw->mac_type == e1000_82547_rev_2) {
2187 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2188 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2193 if (hw->mac_type == e1000_ich8lan) {
2194 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2195 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2197 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2198 ret_val = e1000_write_phy_reg(hw,
2199 IGP02E1000_PHY_POWER_MGMT, phy_data);
2205 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2206 * Dx states where the power conservation is most important. During
2207 * driver activity we should enable SmartSpeed, so performance is
2209 if (hw->smart_speed == e1000_smart_speed_on) {
2210 ret_val = e1000_read_phy_reg(hw,
2211 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2215 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2216 ret_val = e1000_write_phy_reg(hw,
2217 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2220 } else if (hw->smart_speed == e1000_smart_speed_off) {
2221 ret_val = e1000_read_phy_reg(hw,
2222 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2226 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2227 ret_val = e1000_write_phy_reg(hw,
2228 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2233 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2234 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2235 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2237 if (hw->mac_type == e1000_82541_rev_2 ||
2238 hw->mac_type == e1000_82547_rev_2) {
2239 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2240 ret_val = e1000_write_phy_reg(hw,
2241 IGP01E1000_GMII_FIFO, phy_data);
2245 if (hw->mac_type == e1000_ich8lan) {
2246 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2247 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2249 phy_data |= IGP02E1000_PM_D3_LPLU;
2250 ret_val = e1000_write_phy_reg(hw,
2251 IGP02E1000_PHY_POWER_MGMT, phy_data);
2257 /* When LPLU is enabled we should disable SmartSpeed */
2258 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2263 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2264 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2269 return E1000_SUCCESS;
2272 /*****************************************************************************
2274 * This function sets the lplu d0 state according to the active flag. When
2275 * activating lplu this function also disables smart speed and vise versa.
2276 * lplu will not be activated unless the device autonegotiation advertisment
2277 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2278 * hw: Struct containing variables accessed by shared code
2279 * active - true to enable lplu false to disable lplu.
2281 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2282 * E1000_SUCCESS at any other case.
2284 ****************************************************************************/
2287 e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2289 uint32_t phy_ctrl = 0;
2294 if (hw->mac_type <= e1000_82547_rev_2)
2295 return E1000_SUCCESS;
2297 if (hw->mac_type == e1000_ich8lan) {
2298 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2300 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2307 if (hw->mac_type == e1000_ich8lan) {
2308 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2309 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2311 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2312 ret_val = e1000_write_phy_reg(hw,
2313 IGP02E1000_PHY_POWER_MGMT, phy_data);
2318 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2319 * Dx states where the power conservation is most important. During
2320 * driver activity we should enable SmartSpeed, so performance is
2322 if (hw->smart_speed == e1000_smart_speed_on) {
2323 ret_val = e1000_read_phy_reg(hw,
2324 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2328 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2329 ret_val = e1000_write_phy_reg(hw,
2330 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2333 } else if (hw->smart_speed == e1000_smart_speed_off) {
2334 ret_val = e1000_read_phy_reg(hw,
2335 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2339 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2340 ret_val = e1000_write_phy_reg(hw,
2341 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2349 if (hw->mac_type == e1000_ich8lan) {
2350 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2351 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2353 phy_data |= IGP02E1000_PM_D0_LPLU;
2354 ret_val = e1000_write_phy_reg(hw,
2355 IGP02E1000_PHY_POWER_MGMT, phy_data);
2360 /* When LPLU is enabled we should disable SmartSpeed */
2361 ret_val = e1000_read_phy_reg(hw,
2362 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2366 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2367 ret_val = e1000_write_phy_reg(hw,
2368 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2373 return E1000_SUCCESS;
2376 /********************************************************************
2377 * Copper link setup for e1000_phy_igp series.
2379 * hw - Struct containing variables accessed by shared code
2380 *********************************************************************/
2382 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2390 if (hw->phy_reset_disable)
2391 return E1000_SUCCESS;
2393 ret_val = e1000_phy_reset(hw);
2395 DEBUGOUT("Error Resetting the PHY\n");
2399 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2401 if (hw->mac_type != e1000_ich8lan) {
2402 /* Configure activity LED after PHY reset */
2403 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2404 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2405 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2406 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2409 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2410 if (hw->phy_type == e1000_phy_igp) {
2411 /* disable lplu d3 during driver init */
2412 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2414 DEBUGOUT("Error Disabling LPLU D3\n");
2419 /* disable lplu d0 during driver init */
2420 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2422 DEBUGOUT("Error Disabling LPLU D0\n");
2425 /* Configure mdi-mdix settings */
2426 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2430 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2431 hw->dsp_config_state = e1000_dsp_config_disabled;
2432 /* Force MDI for earlier revs of the IGP PHY */
2433 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2434 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2438 hw->dsp_config_state = e1000_dsp_config_enabled;
2439 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2443 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2446 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2450 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2454 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2458 /* set auto-master slave resolution settings */
2460 e1000_ms_type phy_ms_setting = hw->master_slave;
2462 if (hw->ffe_config_state == e1000_ffe_config_active)
2463 hw->ffe_config_state = e1000_ffe_config_enabled;
2465 if (hw->dsp_config_state == e1000_dsp_config_activated)
2466 hw->dsp_config_state = e1000_dsp_config_enabled;
2468 /* when autonegotiation advertisment is only 1000Mbps then we
2469 * should disable SmartSpeed and enable Auto MasterSlave
2470 * resolution as hardware default. */
2471 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2472 /* Disable SmartSpeed */
2473 ret_val = e1000_read_phy_reg(hw,
2474 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2477 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2478 ret_val = e1000_write_phy_reg(hw,
2479 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2482 /* Set auto Master/Slave resolution process */
2483 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2487 phy_data &= ~CR_1000T_MS_ENABLE;
2488 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2494 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2498 /* load defaults for future use */
2499 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2500 ((phy_data & CR_1000T_MS_VALUE) ?
2501 e1000_ms_force_master :
2502 e1000_ms_force_slave) :
2505 switch (phy_ms_setting) {
2506 case e1000_ms_force_master:
2507 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2509 case e1000_ms_force_slave:
2510 phy_data |= CR_1000T_MS_ENABLE;
2511 phy_data &= ~(CR_1000T_MS_VALUE);
2514 phy_data &= ~CR_1000T_MS_ENABLE;
2518 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2523 return E1000_SUCCESS;
2526 /*****************************************************************************
2527 * This function checks the mode of the firmware.
2529 * returns - TRUE when the mode is IAMT or FALSE.
2530 ****************************************************************************/
2532 e1000_check_mng_mode(struct e1000_hw *hw)
2537 fwsm = E1000_READ_REG(hw, FWSM);
2539 if (hw->mac_type == e1000_ich8lan) {
2540 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2541 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2543 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2544 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2551 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2553 uint16_t swfw = E1000_SWFW_PHY0_SM;
2557 if (e1000_is_second_port(hw))
2558 swfw = E1000_SWFW_PHY1_SM;
2560 if (e1000_swfw_sync_acquire(hw, swfw))
2561 return -E1000_ERR_SWFW_SYNC;
2563 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2564 & E1000_KUMCTRLSTA_OFFSET) | data;
2565 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2568 return E1000_SUCCESS;
2572 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2574 uint16_t swfw = E1000_SWFW_PHY0_SM;
2578 if (e1000_is_second_port(hw))
2579 swfw = E1000_SWFW_PHY1_SM;
2581 if (e1000_swfw_sync_acquire(hw, swfw))
2582 return -E1000_ERR_SWFW_SYNC;
2584 /* Write register address */
2585 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2586 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2587 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2590 /* Read the data returned */
2591 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2592 *data = (uint16_t)reg_val;
2594 return E1000_SUCCESS;
2597 /********************************************************************
2598 * Copper link setup for e1000_phy_gg82563 series.
2600 * hw - Struct containing variables accessed by shared code
2601 *********************************************************************/
2603 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2611 if (!hw->phy_reset_disable) {
2612 /* Enable CRS on TX for half-duplex operation. */
2613 ret_val = e1000_read_phy_reg(hw,
2614 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2618 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2619 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2620 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2622 ret_val = e1000_write_phy_reg(hw,
2623 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2628 * MDI/MDI-X = 0 (default)
2629 * 0 - Auto for all speeds
2632 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2634 ret_val = e1000_read_phy_reg(hw,
2635 GG82563_PHY_SPEC_CTRL, &phy_data);
2639 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2643 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2646 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2650 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2655 * disable_polarity_correction = 0 (default)
2656 * Automatic Correction for Reversed Cable Polarity
2660 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2661 ret_val = e1000_write_phy_reg(hw,
2662 GG82563_PHY_SPEC_CTRL, phy_data);
2667 /* SW Reset the PHY so all changes take effect */
2668 ret_val = e1000_phy_reset(hw);
2670 DEBUGOUT("Error Resetting the PHY\n");
2673 } /* phy_reset_disable */
2675 if (hw->mac_type == e1000_80003es2lan) {
2676 /* Bypass RX and TX FIFO's */
2677 ret_val = e1000_write_kmrn_reg(hw,
2678 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2679 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2680 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2684 ret_val = e1000_read_phy_reg(hw,
2685 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2689 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2690 ret_val = e1000_write_phy_reg(hw,
2691 GG82563_PHY_SPEC_CTRL_2, phy_data);
2696 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2697 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2698 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2700 ret_val = e1000_read_phy_reg(hw,
2701 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2705 /* Do not init these registers when the HW is in IAMT mode, since the
2706 * firmware will have already initialized them. We only initialize
2707 * them if the HW is not in IAMT mode.
2709 if (e1000_check_mng_mode(hw) == FALSE) {
2710 /* Enable Electrical Idle on the PHY */
2711 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2712 ret_val = e1000_write_phy_reg(hw,
2713 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2717 ret_val = e1000_read_phy_reg(hw,
2718 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2722 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2723 ret_val = e1000_write_phy_reg(hw,
2724 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2730 /* Workaround: Disable padding in Kumeran interface in the MAC
2731 * and in the PHY to avoid CRC errors.
2733 ret_val = e1000_read_phy_reg(hw,
2734 GG82563_PHY_INBAND_CTRL, &phy_data);
2737 phy_data |= GG82563_ICR_DIS_PADDING;
2738 ret_val = e1000_write_phy_reg(hw,
2739 GG82563_PHY_INBAND_CTRL, phy_data);
2743 return E1000_SUCCESS;
2746 /********************************************************************
2747 * Copper link setup for e1000_phy_m88 series.
2749 * hw - Struct containing variables accessed by shared code
2750 *********************************************************************/
2752 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2759 if (hw->phy_reset_disable)
2760 return E1000_SUCCESS;
2762 /* Enable CRS on TX. This must be set for half-duplex operation. */
2763 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2767 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2770 * MDI/MDI-X = 0 (default)
2771 * 0 - Auto for all speeds
2774 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2776 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2780 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2783 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2786 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2790 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2795 * disable_polarity_correction = 0 (default)
2796 * Automatic Correction for Reversed Cable Polarity
2800 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2801 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2805 if (hw->phy_revision < M88E1011_I_REV_4) {
2806 /* Force TX_CLK in the Extended PHY Specific Control Register
2809 ret_val = e1000_read_phy_reg(hw,
2810 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2814 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2816 if ((hw->phy_revision == E1000_REVISION_2) &&
2817 (hw->phy_id == M88E1111_I_PHY_ID)) {
2818 /* Vidalia Phy, set the downshift counter to 5x */
2819 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2820 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2821 ret_val = e1000_write_phy_reg(hw,
2822 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2826 /* Configure Master and Slave downshift values */
2827 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2828 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2829 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2830 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2831 ret_val = e1000_write_phy_reg(hw,
2832 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2838 /* SW Reset the PHY so all changes take effect */
2839 ret_val = e1000_phy_reset(hw);
2841 DEBUGOUT("Error Resetting the PHY\n");
2845 return E1000_SUCCESS;
2848 /********************************************************************
2849 * Setup auto-negotiation and flow control advertisements,
2850 * and then perform auto-negotiation.
2852 * hw - Struct containing variables accessed by shared code
2853 *********************************************************************/
2855 e1000_copper_link_autoneg(struct e1000_hw *hw)
2862 /* Perform some bounds checking on the hw->autoneg_advertised
2863 * parameter. If this variable is zero, then set it to the default.
2865 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2867 /* If autoneg_advertised is zero, we assume it was not defaulted
2868 * by the calling code so we set to advertise full capability.
2870 if (hw->autoneg_advertised == 0)
2871 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2873 /* IFE phy only supports 10/100 */
2874 if (hw->phy_type == e1000_phy_ife)
2875 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2877 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2878 ret_val = e1000_phy_setup_autoneg(hw);
2880 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2883 DEBUGOUT("Restarting Auto-Neg\n");
2885 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2886 * the Auto Neg Restart bit in the PHY control register.
2888 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2892 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2893 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2897 /* Does the user want to wait for Auto-Neg to complete here, or
2898 * check at a later time (for example, callback routine).
2900 /* If we do not wait for autonegtation to complete I
2901 * do not see a valid link status.
2902 * wait_autoneg_complete = 1 .
2904 if (hw->wait_autoneg_complete) {
2905 ret_val = e1000_wait_autoneg(hw);
2907 DEBUGOUT("Error while waiting for autoneg"
2913 hw->get_link_status = TRUE;
2915 return E1000_SUCCESS;
2918 /******************************************************************************
2919 * Config the MAC and the PHY after link is up.
2920 * 1) Set up the MAC to the current PHY speed/duplex
2921 * if we are on 82543. If we
2922 * are on newer silicon, we only need to configure
2923 * collision distance in the Transmit Control Register.
2924 * 2) Set up flow control on the MAC to that established with
2926 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2928 * hw - Struct containing variables accessed by shared code
2929 ******************************************************************************/
2931 e1000_copper_link_postconfig(struct e1000_hw *hw)
2936 if (hw->mac_type >= e1000_82544) {
2937 e1000_config_collision_dist(hw);
2939 ret_val = e1000_config_mac_to_phy(hw);
2941 DEBUGOUT("Error configuring MAC to PHY settings\n");
2945 ret_val = e1000_config_fc_after_link_up(hw);
2947 DEBUGOUT("Error Configuring Flow Control\n");
2950 return E1000_SUCCESS;
2953 /******************************************************************************
2954 * Detects which PHY is present and setup the speed and duplex
2956 * hw - Struct containing variables accessed by shared code
2957 ******************************************************************************/
2959 e1000_setup_copper_link(struct eth_device *nic)
2961 struct e1000_hw *hw = nic->priv;
2969 switch (hw->mac_type) {
2970 case e1000_80003es2lan:
2972 /* Set the mac to wait the maximum time between each
2973 * iteration and increase the max iterations when
2974 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2975 ret_val = e1000_write_kmrn_reg(hw,
2976 GG82563_REG(0x34, 4), 0xFFFF);
2979 ret_val = e1000_read_kmrn_reg(hw,
2980 GG82563_REG(0x34, 9), ®_data);
2984 ret_val = e1000_write_kmrn_reg(hw,
2985 GG82563_REG(0x34, 9), reg_data);
2992 /* Check if it is a valid PHY and set PHY mode if necessary. */
2993 ret_val = e1000_copper_link_preconfig(hw);
2996 switch (hw->mac_type) {
2997 case e1000_80003es2lan:
2998 /* Kumeran registers are written-only */
3000 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3001 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3002 ret_val = e1000_write_kmrn_reg(hw,
3003 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3011 if (hw->phy_type == e1000_phy_igp ||
3012 hw->phy_type == e1000_phy_igp_3 ||
3013 hw->phy_type == e1000_phy_igp_2) {
3014 ret_val = e1000_copper_link_igp_setup(hw);
3017 } else if (hw->phy_type == e1000_phy_m88) {
3018 ret_val = e1000_copper_link_mgp_setup(hw);
3021 } else if (hw->phy_type == e1000_phy_gg82563) {
3022 ret_val = e1000_copper_link_ggp_setup(hw);
3028 /* Setup autoneg and flow control advertisement
3029 * and perform autonegotiation */
3030 ret_val = e1000_copper_link_autoneg(hw);
3034 /* Check link status. Wait up to 100 microseconds for link to become
3037 for (i = 0; i < 10; i++) {
3038 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3041 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3045 if (phy_data & MII_SR_LINK_STATUS) {
3046 /* Config the MAC and PHY after link is up */
3047 ret_val = e1000_copper_link_postconfig(hw);
3051 DEBUGOUT("Valid link established!!!\n");
3052 return E1000_SUCCESS;
3057 DEBUGOUT("Unable to establish link!!!\n");
3058 return E1000_SUCCESS;
3061 /******************************************************************************
3062 * Configures PHY autoneg and flow control advertisement settings
3064 * hw - Struct containing variables accessed by shared code
3065 ******************************************************************************/
3067 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3070 uint16_t mii_autoneg_adv_reg;
3071 uint16_t mii_1000t_ctrl_reg;
3075 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3076 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3080 if (hw->phy_type != e1000_phy_ife) {
3081 /* Read the MII 1000Base-T Control Register (Address 9). */
3082 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3083 &mii_1000t_ctrl_reg);
3087 mii_1000t_ctrl_reg = 0;
3089 /* Need to parse both autoneg_advertised and fc and set up
3090 * the appropriate PHY registers. First we will parse for
3091 * autoneg_advertised software override. Since we can advertise
3092 * a plethora of combinations, we need to check each bit
3096 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3097 * Advertisement Register (Address 4) and the 1000 mb speed bits in
3098 * the 1000Base-T Control Register (Address 9).
3100 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3101 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3103 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3105 /* Do we want to advertise 10 Mb Half Duplex? */
3106 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3107 DEBUGOUT("Advertise 10mb Half duplex\n");
3108 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3111 /* Do we want to advertise 10 Mb Full Duplex? */
3112 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3113 DEBUGOUT("Advertise 10mb Full duplex\n");
3114 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3117 /* Do we want to advertise 100 Mb Half Duplex? */
3118 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3119 DEBUGOUT("Advertise 100mb Half duplex\n");
3120 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3123 /* Do we want to advertise 100 Mb Full Duplex? */
3124 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3125 DEBUGOUT("Advertise 100mb Full duplex\n");
3126 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3129 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3130 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3132 ("Advertise 1000mb Half duplex requested, request denied!\n");
3135 /* Do we want to advertise 1000 Mb Full Duplex? */
3136 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3137 DEBUGOUT("Advertise 1000mb Full duplex\n");
3138 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3141 /* Check for a software override of the flow control settings, and
3142 * setup the PHY advertisement registers accordingly. If
3143 * auto-negotiation is enabled, then software will have to set the
3144 * "PAUSE" bits to the correct value in the Auto-Negotiation
3145 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3147 * The possible values of the "fc" parameter are:
3148 * 0: Flow control is completely disabled
3149 * 1: Rx flow control is enabled (we can receive pause frames
3150 * but not send pause frames).
3151 * 2: Tx flow control is enabled (we can send pause frames
3152 * but we do not support receiving pause frames).
3153 * 3: Both Rx and TX flow control (symmetric) are enabled.
3154 * other: No software override. The flow control configuration
3155 * in the EEPROM is used.
3158 case e1000_fc_none: /* 0 */
3159 /* Flow control (RX & TX) is completely disabled by a
3160 * software over-ride.
3162 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3164 case e1000_fc_rx_pause: /* 1 */
3165 /* RX Flow control is enabled, and TX Flow control is
3166 * disabled, by a software over-ride.
3168 /* Since there really isn't a way to advertise that we are
3169 * capable of RX Pause ONLY, we will advertise that we
3170 * support both symmetric and asymmetric RX PAUSE. Later
3171 * (in e1000_config_fc_after_link_up) we will disable the
3172 *hw's ability to send PAUSE frames.
3174 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3176 case e1000_fc_tx_pause: /* 2 */
3177 /* TX Flow control is enabled, and RX Flow control is
3178 * disabled, by a software over-ride.
3180 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3181 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3183 case e1000_fc_full: /* 3 */
3184 /* Flow control (both RX and TX) is enabled by a software
3187 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3190 DEBUGOUT("Flow control param set incorrectly\n");
3191 return -E1000_ERR_CONFIG;
3194 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3198 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3200 if (hw->phy_type != e1000_phy_ife) {
3201 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3202 mii_1000t_ctrl_reg);
3207 return E1000_SUCCESS;
3210 /******************************************************************************
3211 * Sets the collision distance in the Transmit Control register
3213 * hw - Struct containing variables accessed by shared code
3215 * Link should have been established previously. Reads the speed and duplex
3216 * information from the Device Status register.
3217 ******************************************************************************/
3219 e1000_config_collision_dist(struct e1000_hw *hw)
3221 uint32_t tctl, coll_dist;
3225 if (hw->mac_type < e1000_82543)
3226 coll_dist = E1000_COLLISION_DISTANCE_82542;
3228 coll_dist = E1000_COLLISION_DISTANCE;
3230 tctl = E1000_READ_REG(hw, TCTL);
3232 tctl &= ~E1000_TCTL_COLD;
3233 tctl |= coll_dist << E1000_COLD_SHIFT;
3235 E1000_WRITE_REG(hw, TCTL, tctl);
3236 E1000_WRITE_FLUSH(hw);
3239 /******************************************************************************
3240 * Sets MAC speed and duplex settings to reflect the those in the PHY
3242 * hw - Struct containing variables accessed by shared code
3243 * mii_reg - data to write to the MII control register
3245 * The contents of the PHY register containing the needed information need to
3247 ******************************************************************************/
3249 e1000_config_mac_to_phy(struct e1000_hw *hw)
3256 /* Read the Device Control Register and set the bits to Force Speed
3259 ctrl = E1000_READ_REG(hw, CTRL);
3260 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3261 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3263 /* Set up duplex in the Device Control and Transmit Control
3264 * registers depending on negotiated values.
3266 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3267 DEBUGOUT("PHY Read Error\n");
3268 return -E1000_ERR_PHY;
3270 if (phy_data & M88E1000_PSSR_DPLX)
3271 ctrl |= E1000_CTRL_FD;
3273 ctrl &= ~E1000_CTRL_FD;
3275 e1000_config_collision_dist(hw);
3277 /* Set up speed in the Device Control register depending on
3278 * negotiated values.
3280 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3281 ctrl |= E1000_CTRL_SPD_1000;
3282 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3283 ctrl |= E1000_CTRL_SPD_100;
3284 /* Write the configured values back to the Device Control Reg. */
3285 E1000_WRITE_REG(hw, CTRL, ctrl);
3289 /******************************************************************************
3290 * Forces the MAC's flow control settings.
3292 * hw - Struct containing variables accessed by shared code
3294 * Sets the TFCE and RFCE bits in the device control register to reflect
3295 * the adapter settings. TFCE and RFCE need to be explicitly set by
3296 * software when a Copper PHY is used because autonegotiation is managed
3297 * by the PHY rather than the MAC. Software must also configure these
3298 * bits when link is forced on a fiber connection.
3299 *****************************************************************************/
3301 e1000_force_mac_fc(struct e1000_hw *hw)
3307 /* Get the current configuration of the Device Control Register */
3308 ctrl = E1000_READ_REG(hw, CTRL);
3310 /* Because we didn't get link via the internal auto-negotiation
3311 * mechanism (we either forced link or we got link via PHY
3312 * auto-neg), we have to manually enable/disable transmit an
3313 * receive flow control.
3315 * The "Case" statement below enables/disable flow control
3316 * according to the "hw->fc" parameter.
3318 * The possible values of the "fc" parameter are:
3319 * 0: Flow control is completely disabled
3320 * 1: Rx flow control is enabled (we can receive pause
3321 * frames but not send pause frames).
3322 * 2: Tx flow control is enabled (we can send pause frames
3323 * frames but we do not receive pause frames).
3324 * 3: Both Rx and TX flow control (symmetric) is enabled.
3325 * other: No other values should be possible at this point.
3330 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3332 case e1000_fc_rx_pause:
3333 ctrl &= (~E1000_CTRL_TFCE);
3334 ctrl |= E1000_CTRL_RFCE;
3336 case e1000_fc_tx_pause:
3337 ctrl &= (~E1000_CTRL_RFCE);
3338 ctrl |= E1000_CTRL_TFCE;
3341 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3344 DEBUGOUT("Flow control param set incorrectly\n");
3345 return -E1000_ERR_CONFIG;
3348 /* Disable TX Flow Control for 82542 (rev 2.0) */
3349 if (hw->mac_type == e1000_82542_rev2_0)
3350 ctrl &= (~E1000_CTRL_TFCE);
3352 E1000_WRITE_REG(hw, CTRL, ctrl);
3356 /******************************************************************************
3357 * Configures flow control settings after link is established
3359 * hw - Struct containing variables accessed by shared code
3361 * Should be called immediately after a valid link has been established.
3362 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3363 * and autonegotiation is enabled, the MAC flow control settings will be set
3364 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3365 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3366 *****************************************************************************/
3368 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3371 uint16_t mii_status_reg;
3372 uint16_t mii_nway_adv_reg;
3373 uint16_t mii_nway_lp_ability_reg;
3379 /* Check for the case where we have fiber media and auto-neg failed
3380 * so we had to force link. In this case, we need to force the
3381 * configuration of the MAC to match the "fc" parameter.
3383 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3384 || ((hw->media_type == e1000_media_type_internal_serdes)
3385 && (hw->autoneg_failed))
3386 || ((hw->media_type == e1000_media_type_copper)
3387 && (!hw->autoneg))) {
3388 ret_val = e1000_force_mac_fc(hw);
3390 DEBUGOUT("Error forcing flow control settings\n");
3395 /* Check for the case where we have copper media and auto-neg is
3396 * enabled. In this case, we need to check and see if Auto-Neg
3397 * has completed, and if so, how the PHY and link partner has
3398 * flow control configured.
3400 if (hw->media_type == e1000_media_type_copper) {
3401 /* Read the MII Status Register and check to see if AutoNeg
3402 * has completed. We read this twice because this reg has
3403 * some "sticky" (latched) bits.
3405 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3406 DEBUGOUT("PHY Read Error \n");
3407 return -E1000_ERR_PHY;
3409 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3410 DEBUGOUT("PHY Read Error \n");
3411 return -E1000_ERR_PHY;
3414 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3415 /* The AutoNeg process has completed, so we now need to
3416 * read both the Auto Negotiation Advertisement Register
3417 * (Address 4) and the Auto_Negotiation Base Page Ability
3418 * Register (Address 5) to determine how flow control was
3421 if (e1000_read_phy_reg
3422 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3423 DEBUGOUT("PHY Read Error\n");
3424 return -E1000_ERR_PHY;
3426 if (e1000_read_phy_reg
3427 (hw, PHY_LP_ABILITY,
3428 &mii_nway_lp_ability_reg) < 0) {
3429 DEBUGOUT("PHY Read Error\n");
3430 return -E1000_ERR_PHY;
3433 /* Two bits in the Auto Negotiation Advertisement Register
3434 * (Address 4) and two bits in the Auto Negotiation Base
3435 * Page Ability Register (Address 5) determine flow control
3436 * for both the PHY and the link partner. The following
3437 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3438 * 1999, describes these PAUSE resolution bits and how flow
3439 * control is determined based upon these settings.
3440 * NOTE: DC = Don't Care
3442 * LOCAL DEVICE | LINK PARTNER
3443 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3444 *-------|---------|-------|---------|--------------------
3445 * 0 | 0 | DC | DC | e1000_fc_none
3446 * 0 | 1 | 0 | DC | e1000_fc_none
3447 * 0 | 1 | 1 | 0 | e1000_fc_none
3448 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3449 * 1 | 0 | 0 | DC | e1000_fc_none
3450 * 1 | DC | 1 | DC | e1000_fc_full
3451 * 1 | 1 | 0 | 0 | e1000_fc_none
3452 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3455 /* Are both PAUSE bits set to 1? If so, this implies
3456 * Symmetric Flow Control is enabled at both ends. The
3457 * ASM_DIR bits are irrelevant per the spec.
3459 * For Symmetric Flow Control:
3461 * LOCAL DEVICE | LINK PARTNER
3462 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3463 *-------|---------|-------|---------|--------------------
3464 * 1 | DC | 1 | DC | e1000_fc_full
3467 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3468 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3469 /* Now we need to check if the user selected RX ONLY
3470 * of pause frames. In this case, we had to advertise
3471 * FULL flow control because we could not advertise RX
3472 * ONLY. Hence, we must now check to see if we need to
3473 * turn OFF the TRANSMISSION of PAUSE frames.
3475 if (hw->original_fc == e1000_fc_full) {
3476 hw->fc = e1000_fc_full;
3477 DEBUGOUT("Flow Control = FULL.\r\n");
3479 hw->fc = e1000_fc_rx_pause;
3481 ("Flow Control = RX PAUSE frames only.\r\n");
3484 /* For receiving PAUSE frames ONLY.
3486 * LOCAL DEVICE | LINK PARTNER
3487 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3488 *-------|---------|-------|---------|--------------------
3489 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3492 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3493 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3494 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3495 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3497 hw->fc = e1000_fc_tx_pause;
3499 ("Flow Control = TX PAUSE frames only.\r\n");
3501 /* For transmitting PAUSE frames ONLY.
3503 * LOCAL DEVICE | LINK PARTNER
3504 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3505 *-------|---------|-------|---------|--------------------
3506 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
3509 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3510 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3511 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3512 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3514 hw->fc = e1000_fc_rx_pause;
3516 ("Flow Control = RX PAUSE frames only.\r\n");
3518 /* Per the IEEE spec, at this point flow control should be
3519 * disabled. However, we want to consider that we could
3520 * be connected to a legacy switch that doesn't advertise
3521 * desired flow control, but can be forced on the link
3522 * partner. So if we advertised no flow control, that is
3523 * what we will resolve to. If we advertised some kind of
3524 * receive capability (Rx Pause Only or Full Flow Control)
3525 * and the link partner advertised none, we will configure
3526 * ourselves to enable Rx Flow Control only. We can do
3527 * this safely for two reasons: If the link partner really
3528 * didn't want flow control enabled, and we enable Rx, no
3529 * harm done since we won't be receiving any PAUSE frames
3530 * anyway. If the intent on the link partner was to have
3531 * flow control enabled, then by us enabling RX only, we
3532 * can at least receive pause frames and process them.
3533 * This is a good idea because in most cases, since we are
3534 * predominantly a server NIC, more times than not we will
3535 * be asked to delay transmission of packets than asking
3536 * our link partner to pause transmission of frames.
3538 else if (hw->original_fc == e1000_fc_none ||
3539 hw->original_fc == e1000_fc_tx_pause) {
3540 hw->fc = e1000_fc_none;
3541 DEBUGOUT("Flow Control = NONE.\r\n");
3543 hw->fc = e1000_fc_rx_pause;
3545 ("Flow Control = RX PAUSE frames only.\r\n");
3548 /* Now we need to do one last check... If we auto-
3549 * negotiated to HALF DUPLEX, flow control should not be
3550 * enabled per IEEE 802.3 spec.
3552 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3554 if (duplex == HALF_DUPLEX)
3555 hw->fc = e1000_fc_none;
3557 /* Now we call a subroutine to actually force the MAC
3558 * controller to use the correct flow control settings.
3560 ret_val = e1000_force_mac_fc(hw);
3563 ("Error forcing flow control settings\n");
3568 ("Copper PHY and Auto Neg has not completed.\r\n");
3571 return E1000_SUCCESS;
3574 /******************************************************************************
3575 * Checks to see if the link status of the hardware has changed.
3577 * hw - Struct containing variables accessed by shared code
3579 * Called by any function that needs to check the link status of the adapter.
3580 *****************************************************************************/
3582 e1000_check_for_link(struct eth_device *nic)
3584 struct e1000_hw *hw = nic->priv;
3592 uint16_t lp_capability;
3596 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3597 * set when the optics detect a signal. On older adapters, it will be
3598 * cleared when there is a signal
3600 ctrl = E1000_READ_REG(hw, CTRL);
3601 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3602 signal = E1000_CTRL_SWDPIN1;
3606 status = E1000_READ_REG(hw, STATUS);
3607 rxcw = E1000_READ_REG(hw, RXCW);
3608 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3610 /* If we have a copper PHY then we only want to go out to the PHY
3611 * registers to see if Auto-Neg has completed and/or if our link
3612 * status has changed. The get_link_status flag will be set if we
3613 * receive a Link Status Change interrupt or we have Rx Sequence
3616 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3617 /* First we want to see if the MII Status Register reports
3618 * link. If so, then we want to get the current speed/duplex
3620 * Read the register twice since the link bit is sticky.
3622 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3623 DEBUGOUT("PHY Read Error\n");
3624 return -E1000_ERR_PHY;
3626 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3627 DEBUGOUT("PHY Read Error\n");
3628 return -E1000_ERR_PHY;
3631 if (phy_data & MII_SR_LINK_STATUS) {
3632 hw->get_link_status = FALSE;
3634 /* No link detected */
3635 return -E1000_ERR_NOLINK;
3638 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3639 * have Si on board that is 82544 or newer, Auto
3640 * Speed Detection takes care of MAC speed/duplex
3641 * configuration. So we only need to configure Collision
3642 * Distance in the MAC. Otherwise, we need to force
3643 * speed/duplex on the MAC to the current PHY speed/duplex
3646 if (hw->mac_type >= e1000_82544)
3647 e1000_config_collision_dist(hw);
3649 ret_val = e1000_config_mac_to_phy(hw);
3652 ("Error configuring MAC to PHY settings\n");
3657 /* Configure Flow Control now that Auto-Neg has completed. First, we
3658 * need to restore the desired flow control settings because we may
3659 * have had to re-autoneg with a different link partner.
3661 ret_val = e1000_config_fc_after_link_up(hw);
3663 DEBUGOUT("Error configuring flow control\n");
3667 /* At this point we know that we are on copper and we have
3668 * auto-negotiated link. These are conditions for checking the link
3669 * parter capability register. We use the link partner capability to
3670 * determine if TBI Compatibility needs to be turned on or off. If
3671 * the link partner advertises any speed in addition to Gigabit, then
3672 * we assume that they are GMII-based, and TBI compatibility is not
3673 * needed. If no other speeds are advertised, we assume the link
3674 * partner is TBI-based, and we turn on TBI Compatibility.
3676 if (hw->tbi_compatibility_en) {
3677 if (e1000_read_phy_reg
3678 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3679 DEBUGOUT("PHY Read Error\n");
3680 return -E1000_ERR_PHY;
3682 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3683 NWAY_LPAR_10T_FD_CAPS |
3684 NWAY_LPAR_100TX_HD_CAPS |
3685 NWAY_LPAR_100TX_FD_CAPS |
3686 NWAY_LPAR_100T4_CAPS)) {
3687 /* If our link partner advertises anything in addition to
3688 * gigabit, we do not need to enable TBI compatibility.
3690 if (hw->tbi_compatibility_on) {
3691 /* If we previously were in the mode, turn it off. */
3692 rctl = E1000_READ_REG(hw, RCTL);
3693 rctl &= ~E1000_RCTL_SBP;
3694 E1000_WRITE_REG(hw, RCTL, rctl);
3695 hw->tbi_compatibility_on = FALSE;
3698 /* If TBI compatibility is was previously off, turn it on. For
3699 * compatibility with a TBI link partner, we will store bad
3700 * packets. Some frames have an additional byte on the end and
3701 * will look like CRC errors to to the hardware.
3703 if (!hw->tbi_compatibility_on) {
3704 hw->tbi_compatibility_on = TRUE;
3705 rctl = E1000_READ_REG(hw, RCTL);
3706 rctl |= E1000_RCTL_SBP;
3707 E1000_WRITE_REG(hw, RCTL, rctl);
3712 /* If we don't have link (auto-negotiation failed or link partner cannot
3713 * auto-negotiate), the cable is plugged in (we have signal), and our
3714 * link partner is not trying to auto-negotiate with us (we are receiving
3715 * idles or data), we need to force link up. We also need to give
3716 * auto-negotiation time to complete, in case the cable was just plugged
3717 * in. The autoneg_failed flag does this.
3719 else if ((hw->media_type == e1000_media_type_fiber) &&
3720 (!(status & E1000_STATUS_LU)) &&
3721 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3722 (!(rxcw & E1000_RXCW_C))) {
3723 if (hw->autoneg_failed == 0) {
3724 hw->autoneg_failed = 1;
3727 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3729 /* Disable auto-negotiation in the TXCW register */
3730 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3732 /* Force link-up and also force full-duplex. */
3733 ctrl = E1000_READ_REG(hw, CTRL);
3734 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3735 E1000_WRITE_REG(hw, CTRL, ctrl);
3737 /* Configure Flow Control after forcing link up. */
3738 ret_val = e1000_config_fc_after_link_up(hw);
3740 DEBUGOUT("Error configuring flow control\n");
3744 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3745 * auto-negotiation in the TXCW register and disable forced link in the
3746 * Device Control register in an attempt to auto-negotiate with our link
3749 else if ((hw->media_type == e1000_media_type_fiber) &&
3750 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3752 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3753 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3754 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3759 /******************************************************************************
3760 * Configure the MAC-to-PHY interface for 10/100Mbps
3762 * hw - Struct containing variables accessed by shared code
3763 ******************************************************************************/
3765 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3767 int32_t ret_val = E1000_SUCCESS;
3773 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3774 ret_val = e1000_write_kmrn_reg(hw,
3775 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3779 /* Configure Transmit Inter-Packet Gap */
3780 tipg = E1000_READ_REG(hw, TIPG);
3781 tipg &= ~E1000_TIPG_IPGT_MASK;
3782 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3783 E1000_WRITE_REG(hw, TIPG, tipg);
3785 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
3790 if (duplex == HALF_DUPLEX)
3791 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3793 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3795 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3801 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3803 int32_t ret_val = E1000_SUCCESS;
3809 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3810 ret_val = e1000_write_kmrn_reg(hw,
3811 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3815 /* Configure Transmit Inter-Packet Gap */
3816 tipg = E1000_READ_REG(hw, TIPG);
3817 tipg &= ~E1000_TIPG_IPGT_MASK;
3818 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3819 E1000_WRITE_REG(hw, TIPG, tipg);
3821 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
3826 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3827 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3832 /******************************************************************************
3833 * Detects the current speed and duplex settings of the hardware.
3835 * hw - Struct containing variables accessed by shared code
3836 * speed - Speed of the connection
3837 * duplex - Duplex setting of the connection
3838 *****************************************************************************/
3840 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3849 if (hw->mac_type >= e1000_82543) {
3850 status = E1000_READ_REG(hw, STATUS);
3851 if (status & E1000_STATUS_SPEED_1000) {
3852 *speed = SPEED_1000;
3853 DEBUGOUT("1000 Mbs, ");
3854 } else if (status & E1000_STATUS_SPEED_100) {
3856 DEBUGOUT("100 Mbs, ");
3859 DEBUGOUT("10 Mbs, ");
3862 if (status & E1000_STATUS_FD) {
3863 *duplex = FULL_DUPLEX;
3864 DEBUGOUT("Full Duplex\r\n");
3866 *duplex = HALF_DUPLEX;
3867 DEBUGOUT(" Half Duplex\r\n");
3870 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3871 *speed = SPEED_1000;
3872 *duplex = FULL_DUPLEX;
3875 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3876 * even if it is operating at half duplex. Here we set the duplex
3877 * settings to match the duplex in the link partner's capabilities.
3879 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3880 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3884 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3885 *duplex = HALF_DUPLEX;
3887 ret_val = e1000_read_phy_reg(hw,
3888 PHY_LP_ABILITY, &phy_data);
3891 if ((*speed == SPEED_100 &&
3892 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3893 || (*speed == SPEED_10
3894 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3895 *duplex = HALF_DUPLEX;
3899 if ((hw->mac_type == e1000_80003es2lan) &&
3900 (hw->media_type == e1000_media_type_copper)) {
3901 if (*speed == SPEED_1000)
3902 ret_val = e1000_configure_kmrn_for_1000(hw);
3904 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3908 return E1000_SUCCESS;
3911 /******************************************************************************
3912 * Blocks until autoneg completes or times out (~4.5 seconds)
3914 * hw - Struct containing variables accessed by shared code
3915 ******************************************************************************/
3917 e1000_wait_autoneg(struct e1000_hw *hw)
3923 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3925 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3926 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3927 /* Read the MII Status Register and wait for Auto-Neg
3928 * Complete bit to be set.
3930 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3931 DEBUGOUT("PHY Read Error\n");
3932 return -E1000_ERR_PHY;
3934 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3935 DEBUGOUT("PHY Read Error\n");
3936 return -E1000_ERR_PHY;
3938 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3939 DEBUGOUT("Auto-Neg complete.\n");
3944 DEBUGOUT("Auto-Neg timedout.\n");
3945 return -E1000_ERR_TIMEOUT;
3948 /******************************************************************************
3949 * Raises the Management Data Clock
3951 * hw - Struct containing variables accessed by shared code
3952 * ctrl - Device control register's current value
3953 ******************************************************************************/
3955 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3957 /* Raise the clock input to the Management Data Clock (by setting the MDC
3958 * bit), and then delay 2 microseconds.
3960 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3961 E1000_WRITE_FLUSH(hw);
3965 /******************************************************************************
3966 * Lowers the Management Data Clock
3968 * hw - Struct containing variables accessed by shared code
3969 * ctrl - Device control register's current value
3970 ******************************************************************************/
3972 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3974 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3975 * bit), and then delay 2 microseconds.
3977 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3978 E1000_WRITE_FLUSH(hw);
3982 /******************************************************************************
3983 * Shifts data bits out to the PHY
3985 * hw - Struct containing variables accessed by shared code
3986 * data - Data to send out to the PHY
3987 * count - Number of bits to shift out
3989 * Bits are shifted out in MSB to LSB order.
3990 ******************************************************************************/
3992 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3997 /* We need to shift "count" number of bits out to the PHY. So, the value
3998 * in the "data" parameter will be shifted out to the PHY one bit at a
3999 * time. In order to do this, "data" must be broken down into bits.
4002 mask <<= (count - 1);
4004 ctrl = E1000_READ_REG(hw, CTRL);
4006 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4007 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4010 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4011 * then raising and lowering the Management Data Clock. A "0" is
4012 * shifted out to the PHY by setting the MDIO bit to "0" and then
4013 * raising and lowering the clock.
4016 ctrl |= E1000_CTRL_MDIO;
4018 ctrl &= ~E1000_CTRL_MDIO;
4020 E1000_WRITE_REG(hw, CTRL, ctrl);
4021 E1000_WRITE_FLUSH(hw);
4025 e1000_raise_mdi_clk(hw, &ctrl);
4026 e1000_lower_mdi_clk(hw, &ctrl);
4032 /******************************************************************************
4033 * Shifts data bits in from the PHY
4035 * hw - Struct containing variables accessed by shared code
4037 * Bits are shifted in in MSB to LSB order.
4038 ******************************************************************************/
4040 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4046 /* In order to read a register from the PHY, we need to shift in a total
4047 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4048 * to avoid contention on the MDIO pin when a read operation is performed.
4049 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4050 * by raising the input to the Management Data Clock (setting the MDC bit),
4051 * and then reading the value of the MDIO bit.
4053 ctrl = E1000_READ_REG(hw, CTRL);
4055 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4056 ctrl &= ~E1000_CTRL_MDIO_DIR;
4057 ctrl &= ~E1000_CTRL_MDIO;
4059 E1000_WRITE_REG(hw, CTRL, ctrl);
4060 E1000_WRITE_FLUSH(hw);
4062 /* Raise and Lower the clock before reading in the data. This accounts for
4063 * the turnaround bits. The first clock occurred when we clocked out the
4064 * last bit of the Register Address.
4066 e1000_raise_mdi_clk(hw, &ctrl);
4067 e1000_lower_mdi_clk(hw, &ctrl);
4069 for (data = 0, i = 0; i < 16; i++) {
4071 e1000_raise_mdi_clk(hw, &ctrl);
4072 ctrl = E1000_READ_REG(hw, CTRL);
4073 /* Check to see if we shifted in a "1". */
4074 if (ctrl & E1000_CTRL_MDIO)
4076 e1000_lower_mdi_clk(hw, &ctrl);
4079 e1000_raise_mdi_clk(hw, &ctrl);
4080 e1000_lower_mdi_clk(hw, &ctrl);
4085 /*****************************************************************************
4086 * Reads the value from a PHY register
4088 * hw - Struct containing variables accessed by shared code
4089 * reg_addr - address of the PHY register to read
4090 ******************************************************************************/
4092 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4096 const uint32_t phy_addr = 1;
4098 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4099 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4100 return -E1000_ERR_PARAM;
4103 if (hw->mac_type > e1000_82543) {
4104 /* Set up Op-code, Phy Address, and register address in the MDI
4105 * Control register. The MAC will take care of interfacing with the
4106 * PHY to retrieve the desired data.
4108 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4109 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4110 (E1000_MDIC_OP_READ));
4112 E1000_WRITE_REG(hw, MDIC, mdic);
4114 /* Poll the ready bit to see if the MDI read completed */
4115 for (i = 0; i < 64; i++) {
4117 mdic = E1000_READ_REG(hw, MDIC);
4118 if (mdic & E1000_MDIC_READY)
4121 if (!(mdic & E1000_MDIC_READY)) {
4122 DEBUGOUT("MDI Read did not complete\n");
4123 return -E1000_ERR_PHY;
4125 if (mdic & E1000_MDIC_ERROR) {
4126 DEBUGOUT("MDI Error\n");
4127 return -E1000_ERR_PHY;
4129 *phy_data = (uint16_t) mdic;
4131 /* We must first send a preamble through the MDIO pin to signal the
4132 * beginning of an MII instruction. This is done by sending 32
4133 * consecutive "1" bits.
4135 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4137 /* Now combine the next few fields that are required for a read
4138 * operation. We use this method instead of calling the
4139 * e1000_shift_out_mdi_bits routine five different times. The format of
4140 * a MII read instruction consists of a shift out of 14 bits and is
4141 * defined as follows:
4142 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4143 * followed by a shift in of 18 bits. This first two bits shifted in
4144 * are TurnAround bits used to avoid contention on the MDIO pin when a
4145 * READ operation is performed. These two bits are thrown away
4146 * followed by a shift in of 16 bits which contains the desired data.
4148 mdic = ((reg_addr) | (phy_addr << 5) |
4149 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4151 e1000_shift_out_mdi_bits(hw, mdic, 14);
4153 /* Now that we've shifted out the read command to the MII, we need to
4154 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4157 *phy_data = e1000_shift_in_mdi_bits(hw);
4162 /******************************************************************************
4163 * Writes a value to a PHY register
4165 * hw - Struct containing variables accessed by shared code
4166 * reg_addr - address of the PHY register to write
4167 * data - data to write to the PHY
4168 ******************************************************************************/
4170 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4174 const uint32_t phy_addr = 1;
4176 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4177 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4178 return -E1000_ERR_PARAM;
4181 if (hw->mac_type > e1000_82543) {
4182 /* Set up Op-code, Phy Address, register address, and data intended
4183 * for the PHY register in the MDI Control register. The MAC will take
4184 * care of interfacing with the PHY to send the desired data.
4186 mdic = (((uint32_t) phy_data) |
4187 (reg_addr << E1000_MDIC_REG_SHIFT) |
4188 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4189 (E1000_MDIC_OP_WRITE));
4191 E1000_WRITE_REG(hw, MDIC, mdic);
4193 /* Poll the ready bit to see if the MDI read completed */
4194 for (i = 0; i < 64; i++) {
4196 mdic = E1000_READ_REG(hw, MDIC);
4197 if (mdic & E1000_MDIC_READY)
4200 if (!(mdic & E1000_MDIC_READY)) {
4201 DEBUGOUT("MDI Write did not complete\n");
4202 return -E1000_ERR_PHY;
4205 /* We'll need to use the SW defined pins to shift the write command
4206 * out to the PHY. We first send a preamble to the PHY to signal the
4207 * beginning of the MII instruction. This is done by sending 32
4208 * consecutive "1" bits.
4210 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4212 /* Now combine the remaining required fields that will indicate a
4213 * write operation. We use this method instead of calling the
4214 * e1000_shift_out_mdi_bits routine for each field in the command. The
4215 * format of a MII write instruction is as follows:
4216 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4218 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4219 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4221 mdic |= (uint32_t) phy_data;
4223 e1000_shift_out_mdi_bits(hw, mdic, 32);
4228 /******************************************************************************
4229 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4230 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4231 * the caller to figure out how to deal with it.
4233 * hw - Struct containing variables accessed by shared code
4235 * returns: - E1000_BLK_PHY_RESET
4238 *****************************************************************************/
4240 e1000_check_phy_reset_block(struct e1000_hw *hw)
4245 if (hw->mac_type == e1000_ich8lan) {
4246 fwsm = E1000_READ_REG(hw, FWSM);
4247 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4248 : E1000_BLK_PHY_RESET;
4251 if (hw->mac_type > e1000_82547_rev_2)
4252 manc = E1000_READ_REG(hw, MANC);
4253 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4254 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4257 /***************************************************************************
4258 * Checks if the PHY configuration is done
4260 * hw: Struct containing variables accessed by shared code
4262 * returns: - E1000_ERR_RESET if fail to reset MAC
4263 * E1000_SUCCESS at any other case.
4265 ***************************************************************************/
4267 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4269 int32_t timeout = PHY_CFG_TIMEOUT;
4270 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4274 switch (hw->mac_type) {
4279 case e1000_80003es2lan:
4280 /* Separate *_CFG_DONE_* bit for each port */
4281 if (e1000_is_second_port(hw))
4282 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4288 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4295 DEBUGOUT("MNG configuration cycle has not "
4297 return -E1000_ERR_RESET;
4302 return E1000_SUCCESS;
4305 /******************************************************************************
4306 * Returns the PHY to the power-on reset state
4308 * hw - Struct containing variables accessed by shared code
4309 ******************************************************************************/
4311 e1000_phy_hw_reset(struct e1000_hw *hw)
4313 uint16_t swfw = E1000_SWFW_PHY0_SM;
4314 uint32_t ctrl, ctrl_ext;
4320 /* In the case of the phy reset being blocked, it's not an error, we
4321 * simply return success without performing the reset. */
4322 ret_val = e1000_check_phy_reset_block(hw);
4324 return E1000_SUCCESS;
4326 DEBUGOUT("Resetting Phy...\n");
4328 if (hw->mac_type > e1000_82543) {
4329 if (e1000_is_second_port(hw))
4330 swfw = E1000_SWFW_PHY1_SM;
4332 if (e1000_swfw_sync_acquire(hw, swfw)) {
4333 DEBUGOUT("Unable to acquire swfw sync\n");
4334 return -E1000_ERR_SWFW_SYNC;
4337 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4338 * bit. Then, take it out of reset.
4340 ctrl = E1000_READ_REG(hw, CTRL);
4341 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4342 E1000_WRITE_FLUSH(hw);
4344 if (hw->mac_type < e1000_82571)
4349 E1000_WRITE_REG(hw, CTRL, ctrl);
4350 E1000_WRITE_FLUSH(hw);
4352 if (hw->mac_type >= e1000_82571)
4356 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4357 * bit to put the PHY into reset. Then, take it out of reset.
4359 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4360 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4361 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4362 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4363 E1000_WRITE_FLUSH(hw);
4365 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4366 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4367 E1000_WRITE_FLUSH(hw);
4371 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4372 /* Configure activity LED after PHY reset */
4373 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4374 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4375 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4376 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4379 /* Wait for FW to finish PHY configuration. */
4380 ret_val = e1000_get_phy_cfg_done(hw);
4381 if (ret_val != E1000_SUCCESS)
4387 /******************************************************************************
4388 * IGP phy init script - initializes the GbE PHY
4390 * hw - Struct containing variables accessed by shared code
4391 *****************************************************************************/
4393 e1000_phy_init_script(struct e1000_hw *hw)
4396 uint16_t phy_saved_data;
4399 if (hw->phy_init_script) {
4402 /* Save off the current value of register 0x2F5B to be
4403 * restored at the end of this routine. */
4404 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4406 /* Disabled the PHY transmitter */
4407 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4411 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4415 switch (hw->mac_type) {
4418 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4420 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4422 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4424 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4426 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4428 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4430 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4432 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4434 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4437 case e1000_82541_rev_2:
4438 case e1000_82547_rev_2:
4439 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4445 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4449 /* Now enable the transmitter */
4450 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4452 if (hw->mac_type == e1000_82547) {
4453 uint16_t fused, fine, coarse;
4455 /* Move to analog registers page */
4456 e1000_read_phy_reg(hw,
4457 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4459 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4460 e1000_read_phy_reg(hw,
4461 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4463 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4465 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4468 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4470 IGP01E1000_ANALOG_FUSE_COARSE_10;
4471 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4473 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4474 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4477 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4479 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4481 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4483 e1000_write_phy_reg(hw,
4484 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4485 e1000_write_phy_reg(hw,
4486 IGP01E1000_ANALOG_FUSE_BYPASS,
4487 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4493 /******************************************************************************
4496 * hw - Struct containing variables accessed by shared code
4498 * Sets bit 15 of the MII Control register
4499 ******************************************************************************/
4501 e1000_phy_reset(struct e1000_hw *hw)
4508 /* In the case of the phy reset being blocked, it's not an error, we
4509 * simply return success without performing the reset. */
4510 ret_val = e1000_check_phy_reset_block(hw);
4512 return E1000_SUCCESS;
4514 switch (hw->phy_type) {
4516 case e1000_phy_igp_2:
4517 case e1000_phy_igp_3:
4519 ret_val = e1000_phy_hw_reset(hw);
4524 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4528 phy_data |= MII_CR_RESET;
4529 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4537 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4538 e1000_phy_init_script(hw);
4540 return E1000_SUCCESS;
4543 static int e1000_set_phy_type (struct e1000_hw *hw)
4547 if (hw->mac_type == e1000_undefined)
4548 return -E1000_ERR_PHY_TYPE;
4550 switch (hw->phy_id) {
4551 case M88E1000_E_PHY_ID:
4552 case M88E1000_I_PHY_ID:
4553 case M88E1011_I_PHY_ID:
4554 case M88E1111_I_PHY_ID:
4555 hw->phy_type = e1000_phy_m88;
4557 case IGP01E1000_I_PHY_ID:
4558 if (hw->mac_type == e1000_82541 ||
4559 hw->mac_type == e1000_82541_rev_2 ||
4560 hw->mac_type == e1000_82547 ||
4561 hw->mac_type == e1000_82547_rev_2) {
4562 hw->phy_type = e1000_phy_igp;
4563 hw->phy_type = e1000_phy_igp;
4566 case IGP03E1000_E_PHY_ID:
4567 hw->phy_type = e1000_phy_igp_3;
4570 case IFE_PLUS_E_PHY_ID:
4571 case IFE_C_E_PHY_ID:
4572 hw->phy_type = e1000_phy_ife;
4574 case GG82563_E_PHY_ID:
4575 if (hw->mac_type == e1000_80003es2lan) {
4576 hw->phy_type = e1000_phy_gg82563;
4579 case BME1000_E_PHY_ID:
4580 hw->phy_type = e1000_phy_bm;
4584 /* Should never have loaded on this device */
4585 hw->phy_type = e1000_phy_undefined;
4586 return -E1000_ERR_PHY_TYPE;
4589 return E1000_SUCCESS;
4592 /******************************************************************************
4593 * Probes the expected PHY address for known PHY IDs
4595 * hw - Struct containing variables accessed by shared code
4596 ******************************************************************************/
4598 e1000_detect_gig_phy(struct e1000_hw *hw)
4600 int32_t phy_init_status, ret_val;
4601 uint16_t phy_id_high, phy_id_low;
4602 boolean_t match = FALSE;
4606 /* The 82571 firmware may still be configuring the PHY. In this
4607 * case, we cannot access the PHY until the configuration is done. So
4608 * we explicitly set the PHY values. */
4609 if (hw->mac_type == e1000_82571 ||
4610 hw->mac_type == e1000_82572) {
4611 hw->phy_id = IGP01E1000_I_PHY_ID;
4612 hw->phy_type = e1000_phy_igp_2;
4613 return E1000_SUCCESS;
4616 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4617 * work- around that forces PHY page 0 to be set or the reads fail.
4618 * The rest of the code in this routine uses e1000_read_phy_reg to
4619 * read the PHY ID. So for ESB-2 we need to have this set so our
4620 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4621 * the routines below will figure this out as well. */
4622 if (hw->mac_type == e1000_80003es2lan)
4623 hw->phy_type = e1000_phy_gg82563;
4625 /* Read the PHY ID Registers to identify which PHY is onboard. */
4626 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4630 hw->phy_id = (uint32_t) (phy_id_high << 16);
4632 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4636 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4637 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4639 switch (hw->mac_type) {
4641 if (hw->phy_id == M88E1000_E_PHY_ID)
4645 if (hw->phy_id == M88E1000_I_PHY_ID)
4650 case e1000_82545_rev_3:
4652 case e1000_82546_rev_3:
4653 if (hw->phy_id == M88E1011_I_PHY_ID)
4657 case e1000_82541_rev_2:
4659 case e1000_82547_rev_2:
4660 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4665 if (hw->phy_id == M88E1111_I_PHY_ID)
4669 if (hw->phy_id == BME1000_E_PHY_ID)
4672 case e1000_80003es2lan:
4673 if (hw->phy_id == GG82563_E_PHY_ID)
4677 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4679 if (hw->phy_id == IFE_E_PHY_ID)
4681 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4683 if (hw->phy_id == IFE_C_E_PHY_ID)
4687 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4688 return -E1000_ERR_CONFIG;
4691 phy_init_status = e1000_set_phy_type(hw);
4693 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4694 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4697 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4698 return -E1000_ERR_PHY;
4701 /*****************************************************************************
4702 * Set media type and TBI compatibility.
4704 * hw - Struct containing variables accessed by shared code
4705 * **************************************************************************/
4707 e1000_set_media_type(struct e1000_hw *hw)
4713 if (hw->mac_type != e1000_82543) {
4714 /* tbi_compatibility is only valid on 82543 */
4715 hw->tbi_compatibility_en = FALSE;
4718 switch (hw->device_id) {
4719 case E1000_DEV_ID_82545GM_SERDES:
4720 case E1000_DEV_ID_82546GB_SERDES:
4721 case E1000_DEV_ID_82571EB_SERDES:
4722 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4723 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4724 case E1000_DEV_ID_82572EI_SERDES:
4725 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4726 hw->media_type = e1000_media_type_internal_serdes;
4729 switch (hw->mac_type) {
4730 case e1000_82542_rev2_0:
4731 case e1000_82542_rev2_1:
4732 hw->media_type = e1000_media_type_fiber;
4737 /* The STATUS_TBIMODE bit is reserved or reused
4738 * for the this device.
4740 hw->media_type = e1000_media_type_copper;
4743 status = E1000_READ_REG(hw, STATUS);
4744 if (status & E1000_STATUS_TBIMODE) {
4745 hw->media_type = e1000_media_type_fiber;
4746 /* tbi_compatibility not valid on fiber */
4747 hw->tbi_compatibility_en = FALSE;
4749 hw->media_type = e1000_media_type_copper;
4757 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4759 * e1000_sw_init initializes the Adapter private data structure.
4760 * Fields are initialized based on PCI device information and
4761 * OS network device settings (MTU size).
4765 e1000_sw_init(struct eth_device *nic)
4767 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4770 /* PCI config space info */
4771 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4772 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4773 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4774 &hw->subsystem_vendor_id);
4775 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4777 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4778 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4780 /* identify the MAC */
4781 result = e1000_set_mac_type(hw);
4783 E1000_ERR(hw->nic, "Unknown MAC Type\n");
4787 switch (hw->mac_type) {
4792 case e1000_82541_rev_2:
4793 case e1000_82547_rev_2:
4794 hw->phy_init_script = 1;
4798 /* flow control settings */
4799 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4800 hw->fc_low_water = E1000_FC_LOW_THRESH;
4801 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4802 hw->fc_send_xon = 1;
4804 /* Media type - copper or fiber */
4805 e1000_set_media_type(hw);
4807 if (hw->mac_type >= e1000_82543) {
4808 uint32_t status = E1000_READ_REG(hw, STATUS);
4810 if (status & E1000_STATUS_TBIMODE) {
4811 DEBUGOUT("fiber interface\n");
4812 hw->media_type = e1000_media_type_fiber;
4814 DEBUGOUT("copper interface\n");
4815 hw->media_type = e1000_media_type_copper;
4818 hw->media_type = e1000_media_type_fiber;
4821 hw->tbi_compatibility_en = TRUE;
4822 hw->wait_autoneg_complete = TRUE;
4823 if (hw->mac_type < e1000_82543)
4824 hw->report_tx_early = 0;
4826 hw->report_tx_early = 1;
4828 return E1000_SUCCESS;
4832 fill_rx(struct e1000_hw *hw)
4834 struct e1000_rx_desc *rd;
4837 rd = rx_base + rx_tail;
4838 rx_tail = (rx_tail + 1) % 8;
4840 rd->buffer_addr = cpu_to_le64((u32) & packet);
4841 E1000_WRITE_REG(hw, RDT, rx_tail);
4845 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4846 * @adapter: board private structure
4848 * Configure the Tx unit of the MAC after a reset.
4852 e1000_configure_tx(struct e1000_hw *hw)
4856 unsigned long tipg, tarc;
4857 uint32_t ipgr1, ipgr2;
4859 ptr = (u32) tx_pool;
4861 ptr = (ptr + 0x10) & (~0xf);
4863 tx_base = (typeof(tx_base)) ptr;
4865 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4866 E1000_WRITE_REG(hw, TDBAH, 0);
4868 E1000_WRITE_REG(hw, TDLEN, 128);
4870 /* Setup the HW Tx Head and Tail descriptor pointers */
4871 E1000_WRITE_REG(hw, TDH, 0);
4872 E1000_WRITE_REG(hw, TDT, 0);
4875 /* Set the default values for the Tx Inter Packet Gap timer */
4876 if (hw->mac_type <= e1000_82547_rev_2 &&
4877 (hw->media_type == e1000_media_type_fiber ||
4878 hw->media_type == e1000_media_type_internal_serdes))
4879 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4881 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4883 /* Set the default values for the Tx Inter Packet Gap timer */
4884 switch (hw->mac_type) {
4885 case e1000_82542_rev2_0:
4886 case e1000_82542_rev2_1:
4887 tipg = DEFAULT_82542_TIPG_IPGT;
4888 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4889 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4891 case e1000_80003es2lan:
4892 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4893 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4896 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4897 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4900 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4901 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4902 E1000_WRITE_REG(hw, TIPG, tipg);
4903 /* Program the Transmit Control Register */
4904 tctl = E1000_READ_REG(hw, TCTL);
4905 tctl &= ~E1000_TCTL_CT;
4906 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4907 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4909 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4910 tarc = E1000_READ_REG(hw, TARC0);
4911 /* set the speed mode bit, we'll clear it if we're not at
4912 * gigabit link later */
4913 /* git bit can be set to 1*/
4914 } else if (hw->mac_type == e1000_80003es2lan) {
4915 tarc = E1000_READ_REG(hw, TARC0);
4917 E1000_WRITE_REG(hw, TARC0, tarc);
4918 tarc = E1000_READ_REG(hw, TARC1);
4920 E1000_WRITE_REG(hw, TARC1, tarc);
4924 e1000_config_collision_dist(hw);
4925 /* Setup Transmit Descriptor Settings for eop descriptor */
4926 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
4928 /* Need to set up RS bit */
4929 if (hw->mac_type < e1000_82543)
4930 hw->txd_cmd |= E1000_TXD_CMD_RPS;
4932 hw->txd_cmd |= E1000_TXD_CMD_RS;
4933 E1000_WRITE_REG(hw, TCTL, tctl);
4937 * e1000_setup_rctl - configure the receive control register
4938 * @adapter: Board private structure
4941 e1000_setup_rctl(struct e1000_hw *hw)
4945 rctl = E1000_READ_REG(hw, RCTL);
4947 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4949 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4950 | E1000_RCTL_RDMTS_HALF; /* |
4951 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
4953 if (hw->tbi_compatibility_on == 1)
4954 rctl |= E1000_RCTL_SBP;
4956 rctl &= ~E1000_RCTL_SBP;
4958 rctl &= ~(E1000_RCTL_SZ_4096);
4959 rctl |= E1000_RCTL_SZ_2048;
4960 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
4961 E1000_WRITE_REG(hw, RCTL, rctl);
4965 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4966 * @adapter: board private structure
4968 * Configure the Rx unit of the MAC after a reset.
4971 e1000_configure_rx(struct e1000_hw *hw)
4974 unsigned long rctl, ctrl_ext;
4976 /* make sure receives are disabled while setting up the descriptors */
4977 rctl = E1000_READ_REG(hw, RCTL);
4978 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
4979 if (hw->mac_type >= e1000_82540) {
4980 /* Set the interrupt throttling rate. Value is calculated
4981 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
4982 #define MAX_INTS_PER_SEC 8000
4983 #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
4984 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4987 if (hw->mac_type >= e1000_82571) {
4988 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4989 /* Reset delay timers after every interrupt */
4990 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4991 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4992 E1000_WRITE_FLUSH(hw);
4994 /* Setup the Base and Length of the Rx Descriptor Ring */
4995 ptr = (u32) rx_pool;
4997 ptr = (ptr + 0x10) & (~0xf);
4998 rx_base = (typeof(rx_base)) ptr;
4999 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5000 E1000_WRITE_REG(hw, RDBAH, 0);
5002 E1000_WRITE_REG(hw, RDLEN, 128);
5004 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5005 E1000_WRITE_REG(hw, RDH, 0);
5006 E1000_WRITE_REG(hw, RDT, 0);
5007 /* Enable Receives */
5009 E1000_WRITE_REG(hw, RCTL, rctl);
5013 /**************************************************************************
5014 POLL - Wait for a frame
5015 ***************************************************************************/
5017 e1000_poll(struct eth_device *nic)
5019 struct e1000_hw *hw = nic->priv;
5020 struct e1000_rx_desc *rd;
5021 /* return true if there's an ethernet packet ready to read */
5022 rd = rx_base + rx_last;
5023 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5025 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
5026 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
5031 /**************************************************************************
5032 TRANSMIT - Transmit a frame
5033 ***************************************************************************/
5035 e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5037 void * nv_packet = (void *)packet;
5038 struct e1000_hw *hw = nic->priv;
5039 struct e1000_tx_desc *txp;
5042 txp = tx_base + tx_tail;
5043 tx_tail = (tx_tail + 1) % 8;
5045 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5046 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5047 txp->upper.data = 0;
5048 E1000_WRITE_REG(hw, TDT, tx_tail);
5050 E1000_WRITE_FLUSH(hw);
5051 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5052 if (i++ > TOUT_LOOP) {
5053 DEBUGOUT("e1000: tx timeout\n");
5056 udelay(10); /* give the nic a chance to write to the register */
5063 e1000_reset(struct eth_device *nic)
5065 struct e1000_hw *hw = nic->priv;
5068 if (hw->mac_type >= e1000_82544) {
5069 E1000_WRITE_REG(hw, WUC, 0);
5071 return e1000_init_hw(nic);
5074 /**************************************************************************
5075 DISABLE - Turn off ethernet interface
5076 ***************************************************************************/
5078 e1000_disable(struct eth_device *nic)
5080 struct e1000_hw *hw = nic->priv;
5082 /* Turn off the ethernet interface */
5083 E1000_WRITE_REG(hw, RCTL, 0);
5084 E1000_WRITE_REG(hw, TCTL, 0);
5086 /* Clear the transmit ring */
5087 E1000_WRITE_REG(hw, TDH, 0);
5088 E1000_WRITE_REG(hw, TDT, 0);
5090 /* Clear the receive ring */
5091 E1000_WRITE_REG(hw, RDH, 0);
5092 E1000_WRITE_REG(hw, RDT, 0);
5094 /* put the card in its initial state */
5096 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5102 /**************************************************************************
5103 INIT - set up ethernet interface(s)
5104 ***************************************************************************/
5106 e1000_init(struct eth_device *nic, bd_t * bis)
5108 struct e1000_hw *hw = nic->priv;
5111 ret_val = e1000_reset(nic);
5113 if ((ret_val == -E1000_ERR_NOLINK) ||
5114 (ret_val == -E1000_ERR_TIMEOUT)) {
5115 E1000_ERR(hw->nic, "Valid Link not detected\n");
5117 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
5121 e1000_configure_tx(hw);
5122 e1000_setup_rctl(hw);
5123 e1000_configure_rx(hw);
5127 /******************************************************************************
5128 * Gets the current PCI bus type of hardware
5130 * hw - Struct containing variables accessed by shared code
5131 *****************************************************************************/
5132 void e1000_get_bus_type(struct e1000_hw *hw)
5136 switch (hw->mac_type) {
5137 case e1000_82542_rev2_0:
5138 case e1000_82542_rev2_1:
5139 hw->bus_type = e1000_bus_type_pci;
5145 case e1000_80003es2lan:
5146 hw->bus_type = e1000_bus_type_pci_express;
5149 hw->bus_type = e1000_bus_type_pci_express;
5152 status = E1000_READ_REG(hw, STATUS);
5153 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5154 e1000_bus_type_pcix : e1000_bus_type_pci;
5159 /* A list of all registered e1000 devices */
5160 static LIST_HEAD(e1000_hw_list);
5162 /**************************************************************************
5163 PROBE - Look for an adapter, this routine's visible to the outside
5164 You should omit the last argument struct pci_device * for a non-PCI NIC
5165 ***************************************************************************/
5167 e1000_initialize(bd_t * bis)
5174 /* Find and probe all the matching PCI devices */
5175 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5179 * These will never get freed due to errors, this allows us to
5180 * perform SPI EEPROM programming from U-boot, for example.
5182 struct eth_device *nic = malloc(sizeof(*nic));
5183 struct e1000_hw *hw = malloc(sizeof(*hw));
5185 printf("e1000#%u: Out of Memory!\n", i);
5191 /* Make sure all of the fields are initially zeroed */
5192 memset(nic, 0, sizeof(*nic));
5193 memset(hw, 0, sizeof(*hw));
5195 /* Assign the passed-in values */
5201 /* Generate a card name */
5202 sprintf(nic->name, "e1000#%u", hw->cardnum);
5204 /* Print a debug message with the IO base address */
5205 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5206 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5208 /* Try to enable I/O accesses and bus-mastering */
5209 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5210 pci_write_config_dword(devno, PCI_COMMAND, val);
5212 /* Make sure it worked */
5213 pci_read_config_dword(devno, PCI_COMMAND, &val);
5214 if (!(val & PCI_COMMAND_MEMORY)) {
5215 E1000_ERR(nic, "Can't enable I/O memory\n");
5218 if (!(val & PCI_COMMAND_MASTER)) {
5219 E1000_ERR(nic, "Can't enable bus-mastering\n");
5223 /* Are these variables needed? */
5224 hw->fc = e1000_fc_default;
5225 hw->original_fc = e1000_fc_default;
5226 hw->autoneg_failed = 0;
5228 hw->get_link_status = TRUE;
5229 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5231 hw->mac_type = e1000_undefined;
5233 /* MAC and Phy settings */
5234 if (e1000_sw_init(nic) < 0) {
5235 E1000_ERR(nic, "Software init failed\n");
5238 if (e1000_check_phy_reset_block(hw))
5239 E1000_ERR(nic, "PHY Reset is blocked!\n");
5241 /* Basic init was OK, reset the hardware and allow SPI access */
5243 list_add_tail(&hw->list_node, &e1000_hw_list);
5245 /* Validate the EEPROM and get chipset information */
5246 #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
5247 if (e1000_init_eeprom_params(hw)) {
5248 E1000_ERR(nic, "EEPROM is invalid!\n");
5251 if (e1000_validate_eeprom_checksum(hw))
5254 e1000_read_mac_addr(nic);
5255 e1000_get_bus_type(hw);
5257 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5258 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5259 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5261 /* Set up the function pointers and register the device */
5262 nic->init = e1000_init;
5263 nic->recv = e1000_poll;
5264 nic->send = e1000_transmit;
5265 nic->halt = e1000_disable;
5272 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5274 struct e1000_hw *hw;
5276 list_for_each_entry(hw, &e1000_hw_list, list_node)
5277 if (hw->cardnum == cardnum)
5283 #ifdef CONFIG_CMD_E1000
5284 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5285 int argc, char * const argv[])
5287 struct e1000_hw *hw;
5294 /* Make sure we can find the requested e1000 card */
5295 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5297 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5301 if (!strcmp(argv[2], "print-mac-address")) {
5302 unsigned char *mac = hw->nic->enetaddr;
5303 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5304 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5308 #ifdef CONFIG_E1000_SPI
5309 /* Handle the "SPI" subcommand */
5310 if (!strcmp(argv[2], "spi"))
5311 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5319 e1000, 7, 0, do_e1000,
5320 "Intel e1000 controller management",
5321 /* */"<card#> print-mac-address\n"
5322 #ifdef CONFIG_E1000_SPI
5323 "e1000 <card#> spi show [<offset> [<length>]]\n"
5324 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5325 "e1000 <card#> spi program <addr> <offset> <length>\n"
5326 "e1000 <card#> spi checksum [update]\n"
5328 " - Manage the Intel E1000 PCI device"
5330 #endif /* not CONFIG_CMD_E1000 */