net: Add MSCC Luton networkd driver.
[platform/kernel/u-boot.git] / drivers / net / e1000.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /**************************************************************************
3 Intel Pro 1000 for ppcboot/das-u-boot
4 Drivers are port from Intel's Linux driver e1000-4.3.15
5 and from Etherboot pro 1000 driver by mrakes at vivato dot net
6 tested on both gig copper and gig fiber boards
7 ***************************************************************************/
8 /*******************************************************************************
9
10
11   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38
39 #define TOUT_LOOP   100000
40
41 #ifdef CONFIG_DM_ETH
42 #define virt_to_bus(devno, v)   dm_pci_virt_to_mem(devno, (void *) (v))
43 #define bus_to_phys(devno, a)   dm_pci_mem_to_phys(devno, a)
44 #else
45 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
46 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
47 #endif
48
49 #define E1000_DEFAULT_PCI_PBA   0x00000030
50 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
51
52 /* NIC specific static variables go here */
53
54 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
55 #define E1000_BUFFER_ALIGN      128
56
57 /*
58  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59  * Concurrent receiving on multiple active Ethernet devices will not work.
60  * Normally U-Boot does not support this anyway. To fix it in this driver,
61  * move these buffers and the tx/rx pointers to struct e1000_hw.
62  */
63 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
66
67 static int tx_tail;
68 static int rx_tail, rx_last;
69 #ifdef CONFIG_DM_ETH
70 static int num_cards;   /* Number of E1000 devices seen so far */
71 #endif
72
73 static struct pci_device_id e1000_supported[] = {
74         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
91         /* E1000 PCIe card */
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
122
123         {}
124 };
125
126 /* Function forward declarations */
127 static int e1000_setup_link(struct e1000_hw *hw);
128 static int e1000_setup_fiber_link(struct e1000_hw *hw);
129 static int e1000_setup_copper_link(struct e1000_hw *hw);
130 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131 static void e1000_config_collision_dist(struct e1000_hw *hw);
132 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
134 static int e1000_check_for_link(struct e1000_hw *hw);
135 static int e1000_wait_autoneg(struct e1000_hw *hw);
136 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
137                                        uint16_t * duplex);
138 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139                               uint16_t * phy_data);
140 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141                                uint16_t phy_data);
142 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
143 static int e1000_phy_reset(struct e1000_hw *hw);
144 static int e1000_detect_gig_phy(struct e1000_hw *hw);
145 static void e1000_set_media_type(struct e1000_hw *hw);
146
147 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
148 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
149 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
150
151 #ifndef CONFIG_E1000_NO_NVM
152 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
154 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
155                 uint16_t words,
156                 uint16_t *data);
157 /******************************************************************************
158  * Raises the EEPROM's clock input.
159  *
160  * hw - Struct containing variables accessed by shared code
161  * eecd - EECD's current value
162  *****************************************************************************/
163 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
164 {
165         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
166          * wait 50 microseconds.
167          */
168         *eecd = *eecd | E1000_EECD_SK;
169         E1000_WRITE_REG(hw, EECD, *eecd);
170         E1000_WRITE_FLUSH(hw);
171         udelay(50);
172 }
173
174 /******************************************************************************
175  * Lowers the EEPROM's clock input.
176  *
177  * hw - Struct containing variables accessed by shared code
178  * eecd - EECD's current value
179  *****************************************************************************/
180 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
181 {
182         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
183          * wait 50 microseconds.
184          */
185         *eecd = *eecd & ~E1000_EECD_SK;
186         E1000_WRITE_REG(hw, EECD, *eecd);
187         E1000_WRITE_FLUSH(hw);
188         udelay(50);
189 }
190
191 /******************************************************************************
192  * Shift data bits out to the EEPROM.
193  *
194  * hw - Struct containing variables accessed by shared code
195  * data - data to send to the EEPROM
196  * count - number of bits to shift out
197  *****************************************************************************/
198 static void
199 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
200 {
201         uint32_t eecd;
202         uint32_t mask;
203
204         /* We need to shift "count" bits out to the EEPROM. So, value in the
205          * "data" parameter will be shifted out to the EEPROM one bit at a time.
206          * In order to do this, "data" must be broken down into bits.
207          */
208         mask = 0x01 << (count - 1);
209         eecd = E1000_READ_REG(hw, EECD);
210         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
211         do {
212                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
213                  * and then raising and then lowering the clock (the SK bit controls
214                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
215                  * by setting "DI" to "0" and then raising and then lowering the clock.
216                  */
217                 eecd &= ~E1000_EECD_DI;
218
219                 if (data & mask)
220                         eecd |= E1000_EECD_DI;
221
222                 E1000_WRITE_REG(hw, EECD, eecd);
223                 E1000_WRITE_FLUSH(hw);
224
225                 udelay(50);
226
227                 e1000_raise_ee_clk(hw, &eecd);
228                 e1000_lower_ee_clk(hw, &eecd);
229
230                 mask = mask >> 1;
231
232         } while (mask);
233
234         /* We leave the "DI" bit set to "0" when we leave this routine. */
235         eecd &= ~E1000_EECD_DI;
236         E1000_WRITE_REG(hw, EECD, eecd);
237 }
238
239 /******************************************************************************
240  * Shift data bits in from the EEPROM
241  *
242  * hw - Struct containing variables accessed by shared code
243  *****************************************************************************/
244 static uint16_t
245 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
246 {
247         uint32_t eecd;
248         uint32_t i;
249         uint16_t data;
250
251         /* In order to read a register from the EEPROM, we need to shift 'count'
252          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
253          * input to the EEPROM (setting the SK bit), and then reading the
254          * value of the "DO" bit.  During this "shifting in" process the
255          * "DI" bit should always be clear.
256          */
257
258         eecd = E1000_READ_REG(hw, EECD);
259
260         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
261         data = 0;
262
263         for (i = 0; i < count; i++) {
264                 data = data << 1;
265                 e1000_raise_ee_clk(hw, &eecd);
266
267                 eecd = E1000_READ_REG(hw, EECD);
268
269                 eecd &= ~(E1000_EECD_DI);
270                 if (eecd & E1000_EECD_DO)
271                         data |= 1;
272
273                 e1000_lower_ee_clk(hw, &eecd);
274         }
275
276         return data;
277 }
278
279 /******************************************************************************
280  * Returns EEPROM to a "standby" state
281  *
282  * hw - Struct containing variables accessed by shared code
283  *****************************************************************************/
284 void e1000_standby_eeprom(struct e1000_hw *hw)
285 {
286         struct e1000_eeprom_info *eeprom = &hw->eeprom;
287         uint32_t eecd;
288
289         eecd = E1000_READ_REG(hw, EECD);
290
291         if (eeprom->type == e1000_eeprom_microwire) {
292                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
293                 E1000_WRITE_REG(hw, EECD, eecd);
294                 E1000_WRITE_FLUSH(hw);
295                 udelay(eeprom->delay_usec);
296
297                 /* Clock high */
298                 eecd |= E1000_EECD_SK;
299                 E1000_WRITE_REG(hw, EECD, eecd);
300                 E1000_WRITE_FLUSH(hw);
301                 udelay(eeprom->delay_usec);
302
303                 /* Select EEPROM */
304                 eecd |= E1000_EECD_CS;
305                 E1000_WRITE_REG(hw, EECD, eecd);
306                 E1000_WRITE_FLUSH(hw);
307                 udelay(eeprom->delay_usec);
308
309                 /* Clock low */
310                 eecd &= ~E1000_EECD_SK;
311                 E1000_WRITE_REG(hw, EECD, eecd);
312                 E1000_WRITE_FLUSH(hw);
313                 udelay(eeprom->delay_usec);
314         } else if (eeprom->type == e1000_eeprom_spi) {
315                 /* Toggle CS to flush commands */
316                 eecd |= E1000_EECD_CS;
317                 E1000_WRITE_REG(hw, EECD, eecd);
318                 E1000_WRITE_FLUSH(hw);
319                 udelay(eeprom->delay_usec);
320                 eecd &= ~E1000_EECD_CS;
321                 E1000_WRITE_REG(hw, EECD, eecd);
322                 E1000_WRITE_FLUSH(hw);
323                 udelay(eeprom->delay_usec);
324         }
325 }
326
327 /***************************************************************************
328 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
329 *
330 * hw - Struct containing variables accessed by shared code
331 ****************************************************************************/
332 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
333 {
334         uint32_t eecd = 0;
335
336         DEBUGFUNC();
337
338         if (hw->mac_type == e1000_ich8lan)
339                 return false;
340
341         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
342                 eecd = E1000_READ_REG(hw, EECD);
343
344                 /* Isolate bits 15 & 16 */
345                 eecd = ((eecd >> 15) & 0x03);
346
347                 /* If both bits are set, device is Flash type */
348                 if (eecd == 0x03)
349                         return false;
350         }
351         return true;
352 }
353
354 /******************************************************************************
355  * Prepares EEPROM for access
356  *
357  * hw - Struct containing variables accessed by shared code
358  *
359  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
360  * function should be called before issuing a command to the EEPROM.
361  *****************************************************************************/
362 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
363 {
364         struct e1000_eeprom_info *eeprom = &hw->eeprom;
365         uint32_t eecd, i = 0;
366
367         DEBUGFUNC();
368
369         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
370                 return -E1000_ERR_SWFW_SYNC;
371         eecd = E1000_READ_REG(hw, EECD);
372
373         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
374                 /* Request EEPROM Access */
375                 if (hw->mac_type > e1000_82544) {
376                         eecd |= E1000_EECD_REQ;
377                         E1000_WRITE_REG(hw, EECD, eecd);
378                         eecd = E1000_READ_REG(hw, EECD);
379                         while ((!(eecd & E1000_EECD_GNT)) &&
380                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
381                                 i++;
382                                 udelay(5);
383                                 eecd = E1000_READ_REG(hw, EECD);
384                         }
385                         if (!(eecd & E1000_EECD_GNT)) {
386                                 eecd &= ~E1000_EECD_REQ;
387                                 E1000_WRITE_REG(hw, EECD, eecd);
388                                 DEBUGOUT("Could not acquire EEPROM grant\n");
389                                 return -E1000_ERR_EEPROM;
390                         }
391                 }
392         }
393
394         /* Setup EEPROM for Read/Write */
395
396         if (eeprom->type == e1000_eeprom_microwire) {
397                 /* Clear SK and DI */
398                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
399                 E1000_WRITE_REG(hw, EECD, eecd);
400
401                 /* Set CS */
402                 eecd |= E1000_EECD_CS;
403                 E1000_WRITE_REG(hw, EECD, eecd);
404         } else if (eeprom->type == e1000_eeprom_spi) {
405                 /* Clear SK and CS */
406                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
407                 E1000_WRITE_REG(hw, EECD, eecd);
408                 udelay(1);
409         }
410
411         return E1000_SUCCESS;
412 }
413
414 /******************************************************************************
415  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
416  * is configured.  Additionally, if this is ICH8, the flash controller GbE
417  * registers must be mapped, or this will crash.
418  *
419  * hw - Struct containing variables accessed by shared code
420  *****************************************************************************/
421 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
422 {
423         struct e1000_eeprom_info *eeprom = &hw->eeprom;
424         uint32_t eecd;
425         int32_t ret_val = E1000_SUCCESS;
426         uint16_t eeprom_size;
427
428         if (hw->mac_type == e1000_igb)
429                 eecd = E1000_READ_REG(hw, I210_EECD);
430         else
431                 eecd = E1000_READ_REG(hw, EECD);
432
433         DEBUGFUNC();
434
435         switch (hw->mac_type) {
436         case e1000_82542_rev2_0:
437         case e1000_82542_rev2_1:
438         case e1000_82543:
439         case e1000_82544:
440                 eeprom->type = e1000_eeprom_microwire;
441                 eeprom->word_size = 64;
442                 eeprom->opcode_bits = 3;
443                 eeprom->address_bits = 6;
444                 eeprom->delay_usec = 50;
445                 eeprom->use_eerd = false;
446                 eeprom->use_eewr = false;
447         break;
448         case e1000_82540:
449         case e1000_82545:
450         case e1000_82545_rev_3:
451         case e1000_82546:
452         case e1000_82546_rev_3:
453                 eeprom->type = e1000_eeprom_microwire;
454                 eeprom->opcode_bits = 3;
455                 eeprom->delay_usec = 50;
456                 if (eecd & E1000_EECD_SIZE) {
457                         eeprom->word_size = 256;
458                         eeprom->address_bits = 8;
459                 } else {
460                         eeprom->word_size = 64;
461                         eeprom->address_bits = 6;
462                 }
463                 eeprom->use_eerd = false;
464                 eeprom->use_eewr = false;
465                 break;
466         case e1000_82541:
467         case e1000_82541_rev_2:
468         case e1000_82547:
469         case e1000_82547_rev_2:
470                 if (eecd & E1000_EECD_TYPE) {
471                         eeprom->type = e1000_eeprom_spi;
472                         eeprom->opcode_bits = 8;
473                         eeprom->delay_usec = 1;
474                         if (eecd & E1000_EECD_ADDR_BITS) {
475                                 eeprom->page_size = 32;
476                                 eeprom->address_bits = 16;
477                         } else {
478                                 eeprom->page_size = 8;
479                                 eeprom->address_bits = 8;
480                         }
481                 } else {
482                         eeprom->type = e1000_eeprom_microwire;
483                         eeprom->opcode_bits = 3;
484                         eeprom->delay_usec = 50;
485                         if (eecd & E1000_EECD_ADDR_BITS) {
486                                 eeprom->word_size = 256;
487                                 eeprom->address_bits = 8;
488                         } else {
489                                 eeprom->word_size = 64;
490                                 eeprom->address_bits = 6;
491                         }
492                 }
493                 eeprom->use_eerd = false;
494                 eeprom->use_eewr = false;
495                 break;
496         case e1000_82571:
497         case e1000_82572:
498                 eeprom->type = e1000_eeprom_spi;
499                 eeprom->opcode_bits = 8;
500                 eeprom->delay_usec = 1;
501                 if (eecd & E1000_EECD_ADDR_BITS) {
502                         eeprom->page_size = 32;
503                         eeprom->address_bits = 16;
504                 } else {
505                         eeprom->page_size = 8;
506                         eeprom->address_bits = 8;
507                 }
508                 eeprom->use_eerd = false;
509                 eeprom->use_eewr = false;
510                 break;
511         case e1000_82573:
512         case e1000_82574:
513                 eeprom->type = e1000_eeprom_spi;
514                 eeprom->opcode_bits = 8;
515                 eeprom->delay_usec = 1;
516                 if (eecd & E1000_EECD_ADDR_BITS) {
517                         eeprom->page_size = 32;
518                         eeprom->address_bits = 16;
519                 } else {
520                         eeprom->page_size = 8;
521                         eeprom->address_bits = 8;
522                 }
523                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
524                         eeprom->use_eerd = true;
525                         eeprom->use_eewr = true;
526
527                         eeprom->type = e1000_eeprom_flash;
528                         eeprom->word_size = 2048;
529
530                 /* Ensure that the Autonomous FLASH update bit is cleared due to
531                  * Flash update issue on parts which use a FLASH for NVM. */
532                         eecd &= ~E1000_EECD_AUPDEN;
533                         E1000_WRITE_REG(hw, EECD, eecd);
534                 }
535                 break;
536         case e1000_80003es2lan:
537                 eeprom->type = e1000_eeprom_spi;
538                 eeprom->opcode_bits = 8;
539                 eeprom->delay_usec = 1;
540                 if (eecd & E1000_EECD_ADDR_BITS) {
541                         eeprom->page_size = 32;
542                         eeprom->address_bits = 16;
543                 } else {
544                         eeprom->page_size = 8;
545                         eeprom->address_bits = 8;
546                 }
547                 eeprom->use_eerd = true;
548                 eeprom->use_eewr = false;
549                 break;
550         case e1000_igb:
551                 /* i210 has 4k of iNVM mapped as EEPROM */
552                 eeprom->type = e1000_eeprom_invm;
553                 eeprom->opcode_bits = 8;
554                 eeprom->delay_usec = 1;
555                 eeprom->page_size = 32;
556                 eeprom->address_bits = 16;
557                 eeprom->use_eerd = true;
558                 eeprom->use_eewr = false;
559                 break;
560         default:
561                 break;
562         }
563
564         if (eeprom->type == e1000_eeprom_spi ||
565             eeprom->type == e1000_eeprom_invm) {
566                 /* eeprom_size will be an enum [0..8] that maps
567                  * to eeprom sizes 128B to
568                  * 32KB (incremented by powers of 2).
569                  */
570                 if (hw->mac_type <= e1000_82547_rev_2) {
571                         /* Set to default value for initial eeprom read. */
572                         eeprom->word_size = 64;
573                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
574                                         &eeprom_size);
575                         if (ret_val)
576                                 return ret_val;
577                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
578                                 >> EEPROM_SIZE_SHIFT;
579                         /* 256B eeprom size was not supported in earlier
580                          * hardware, so we bump eeprom_size up one to
581                          * ensure that "1" (which maps to 256B) is never
582                          * the result used in the shifting logic below. */
583                         if (eeprom_size)
584                                 eeprom_size++;
585                 } else {
586                         eeprom_size = (uint16_t)((eecd &
587                                 E1000_EECD_SIZE_EX_MASK) >>
588                                 E1000_EECD_SIZE_EX_SHIFT);
589                 }
590
591                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
592         }
593         return ret_val;
594 }
595
596 /******************************************************************************
597  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
598  *
599  * hw - Struct containing variables accessed by shared code
600  *****************************************************************************/
601 static int32_t
602 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
603 {
604         uint32_t attempts = 100000;
605         uint32_t i, reg = 0;
606         int32_t done = E1000_ERR_EEPROM;
607
608         for (i = 0; i < attempts; i++) {
609                 if (eerd == E1000_EEPROM_POLL_READ) {
610                         if (hw->mac_type == e1000_igb)
611                                 reg = E1000_READ_REG(hw, I210_EERD);
612                         else
613                                 reg = E1000_READ_REG(hw, EERD);
614                 } else {
615                         if (hw->mac_type == e1000_igb)
616                                 reg = E1000_READ_REG(hw, I210_EEWR);
617                         else
618                                 reg = E1000_READ_REG(hw, EEWR);
619                 }
620
621                 if (reg & E1000_EEPROM_RW_REG_DONE) {
622                         done = E1000_SUCCESS;
623                         break;
624                 }
625                 udelay(5);
626         }
627
628         return done;
629 }
630
631 /******************************************************************************
632  * Reads a 16 bit word from the EEPROM using the EERD register.
633  *
634  * hw - Struct containing variables accessed by shared code
635  * offset - offset of  word in the EEPROM to read
636  * data - word read from the EEPROM
637  * words - number of words to read
638  *****************************************************************************/
639 static int32_t
640 e1000_read_eeprom_eerd(struct e1000_hw *hw,
641                         uint16_t offset,
642                         uint16_t words,
643                         uint16_t *data)
644 {
645         uint32_t i, eerd = 0;
646         int32_t error = 0;
647
648         for (i = 0; i < words; i++) {
649                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
650                         E1000_EEPROM_RW_REG_START;
651
652                 if (hw->mac_type == e1000_igb)
653                         E1000_WRITE_REG(hw, I210_EERD, eerd);
654                 else
655                         E1000_WRITE_REG(hw, EERD, eerd);
656
657                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
658
659                 if (error)
660                         break;
661
662                 if (hw->mac_type == e1000_igb) {
663                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
664                                 E1000_EEPROM_RW_REG_DATA);
665                 } else {
666                         data[i] = (E1000_READ_REG(hw, EERD) >>
667                                 E1000_EEPROM_RW_REG_DATA);
668                 }
669
670         }
671
672         return error;
673 }
674
675 void e1000_release_eeprom(struct e1000_hw *hw)
676 {
677         uint32_t eecd;
678
679         DEBUGFUNC();
680
681         eecd = E1000_READ_REG(hw, EECD);
682
683         if (hw->eeprom.type == e1000_eeprom_spi) {
684                 eecd |= E1000_EECD_CS;  /* Pull CS high */
685                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
686
687                 E1000_WRITE_REG(hw, EECD, eecd);
688
689                 udelay(hw->eeprom.delay_usec);
690         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
691                 /* cleanup eeprom */
692
693                 /* CS on Microwire is active-high */
694                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
695
696                 E1000_WRITE_REG(hw, EECD, eecd);
697
698                 /* Rising edge of clock */
699                 eecd |= E1000_EECD_SK;
700                 E1000_WRITE_REG(hw, EECD, eecd);
701                 E1000_WRITE_FLUSH(hw);
702                 udelay(hw->eeprom.delay_usec);
703
704                 /* Falling edge of clock */
705                 eecd &= ~E1000_EECD_SK;
706                 E1000_WRITE_REG(hw, EECD, eecd);
707                 E1000_WRITE_FLUSH(hw);
708                 udelay(hw->eeprom.delay_usec);
709         }
710
711         /* Stop requesting EEPROM access */
712         if (hw->mac_type > e1000_82544) {
713                 eecd &= ~E1000_EECD_REQ;
714                 E1000_WRITE_REG(hw, EECD, eecd);
715         }
716
717         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
718 }
719
720 /******************************************************************************
721  * Reads a 16 bit word from the EEPROM.
722  *
723  * hw - Struct containing variables accessed by shared code
724  *****************************************************************************/
725 static int32_t
726 e1000_spi_eeprom_ready(struct e1000_hw *hw)
727 {
728         uint16_t retry_count = 0;
729         uint8_t spi_stat_reg;
730
731         DEBUGFUNC();
732
733         /* Read "Status Register" repeatedly until the LSB is cleared.  The
734          * EEPROM will signal that the command has been completed by clearing
735          * bit 0 of the internal status register.  If it's not cleared within
736          * 5 milliseconds, then error out.
737          */
738         retry_count = 0;
739         do {
740                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
741                         hw->eeprom.opcode_bits);
742                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
743                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
744                         break;
745
746                 udelay(5);
747                 retry_count += 5;
748
749                 e1000_standby_eeprom(hw);
750         } while (retry_count < EEPROM_MAX_RETRY_SPI);
751
752         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
753          * only 0-5mSec on 5V devices)
754          */
755         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
756                 DEBUGOUT("SPI EEPROM Status error\n");
757                 return -E1000_ERR_EEPROM;
758         }
759
760         return E1000_SUCCESS;
761 }
762
763 /******************************************************************************
764  * Reads a 16 bit word from the EEPROM.
765  *
766  * hw - Struct containing variables accessed by shared code
767  * offset - offset of  word in the EEPROM to read
768  * data - word read from the EEPROM
769  *****************************************************************************/
770 static int32_t
771 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
772                 uint16_t words, uint16_t *data)
773 {
774         struct e1000_eeprom_info *eeprom = &hw->eeprom;
775         uint32_t i = 0;
776
777         DEBUGFUNC();
778
779         /* If eeprom is not yet detected, do so now */
780         if (eeprom->word_size == 0)
781                 e1000_init_eeprom_params(hw);
782
783         /* A check for invalid values:  offset too large, too many words,
784          * and not enough words.
785          */
786         if ((offset >= eeprom->word_size) ||
787                 (words > eeprom->word_size - offset) ||
788                 (words == 0)) {
789                 DEBUGOUT("\"words\" parameter out of bounds."
790                         "Words = %d, size = %d\n", offset, eeprom->word_size);
791                 return -E1000_ERR_EEPROM;
792         }
793
794         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
795          * directly. In this case, we need to acquire the EEPROM so that
796          * FW or other port software does not interrupt.
797          */
798         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
799                 hw->eeprom.use_eerd == false) {
800
801                 /* Prepare the EEPROM for bit-bang reading */
802                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
803                         return -E1000_ERR_EEPROM;
804         }
805
806         /* Eerd register EEPROM access requires no eeprom aquire/release */
807         if (eeprom->use_eerd == true)
808                 return e1000_read_eeprom_eerd(hw, offset, words, data);
809
810         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
811          * acquired the EEPROM at this point, so any returns should relase it */
812         if (eeprom->type == e1000_eeprom_spi) {
813                 uint16_t word_in;
814                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
815
816                 if (e1000_spi_eeprom_ready(hw)) {
817                         e1000_release_eeprom(hw);
818                         return -E1000_ERR_EEPROM;
819                 }
820
821                 e1000_standby_eeprom(hw);
822
823                 /* Some SPI eeproms use the 8th address bit embedded in
824                  * the opcode */
825                 if ((eeprom->address_bits == 8) && (offset >= 128))
826                         read_opcode |= EEPROM_A8_OPCODE_SPI;
827
828                 /* Send the READ command (opcode + addr)  */
829                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
830                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
831                                 eeprom->address_bits);
832
833                 /* Read the data.  The address of the eeprom internally
834                  * increments with each byte (spi) being read, saving on the
835                  * overhead of eeprom setup and tear-down.  The address
836                  * counter will roll over if reading beyond the size of
837                  * the eeprom, thus allowing the entire memory to be read
838                  * starting from any offset. */
839                 for (i = 0; i < words; i++) {
840                         word_in = e1000_shift_in_ee_bits(hw, 16);
841                         data[i] = (word_in >> 8) | (word_in << 8);
842                 }
843         } else if (eeprom->type == e1000_eeprom_microwire) {
844                 for (i = 0; i < words; i++) {
845                         /* Send the READ command (opcode + addr)  */
846                         e1000_shift_out_ee_bits(hw,
847                                 EEPROM_READ_OPCODE_MICROWIRE,
848                                 eeprom->opcode_bits);
849                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
850                                 eeprom->address_bits);
851
852                         /* Read the data.  For microwire, each word requires
853                          * the overhead of eeprom setup and tear-down. */
854                         data[i] = e1000_shift_in_ee_bits(hw, 16);
855                         e1000_standby_eeprom(hw);
856                 }
857         }
858
859         /* End this read operation */
860         e1000_release_eeprom(hw);
861
862         return E1000_SUCCESS;
863 }
864
865 #ifndef CONFIG_DM_ETH
866 /******************************************************************************
867  *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
868  *  @hw: pointer to the HW structure
869  *  @offset: offset within the Shadow Ram to be written to
870  *  @words: number of words to write
871  *  @data: 16 bit word(s) to be written to the Shadow Ram
872  *
873  *  Writes data to Shadow Ram at offset using EEWR register.
874  *
875  *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
876  *  Shadow Ram will most likely contain an invalid checksum.
877  *****************************************************************************/
878 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
879                                        uint16_t words, uint16_t *data)
880 {
881         struct e1000_eeprom_info *eeprom = &hw->eeprom;
882         uint32_t i, k, eewr = 0;
883         uint32_t attempts = 100000;
884         int32_t ret_val = 0;
885
886         /* A check for invalid values:  offset too large, too many words,
887          * too many words for the offset, and not enough words.
888          */
889         if ((offset >= eeprom->word_size) ||
890             (words > (eeprom->word_size - offset)) || (words == 0)) {
891                 DEBUGOUT("nvm parameter(s) out of bounds\n");
892                 ret_val = -E1000_ERR_EEPROM;
893                 goto out;
894         }
895
896         for (i = 0; i < words; i++) {
897                 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
898                                 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
899                                 E1000_EEPROM_RW_REG_START;
900
901                 E1000_WRITE_REG(hw, I210_EEWR, eewr);
902
903                 for (k = 0; k < attempts; k++) {
904                         if (E1000_EEPROM_RW_REG_DONE &
905                             E1000_READ_REG(hw, I210_EEWR)) {
906                                 ret_val = 0;
907                                 break;
908                         }
909                         udelay(5);
910                 }
911
912                 if (ret_val) {
913                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
914                         break;
915                 }
916         }
917
918 out:
919         return ret_val;
920 }
921
922 /******************************************************************************
923  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
924  *  @hw: pointer to the HW structure
925  *
926  *****************************************************************************/
927 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
928 {
929         int32_t ret_val = -E1000_ERR_EEPROM;
930         uint32_t i, reg;
931
932         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
933                 reg = E1000_READ_REG(hw, EECD);
934                 if (reg & E1000_EECD_FLUDONE_I210) {
935                         ret_val = 0;
936                         break;
937                 }
938                 udelay(5);
939         }
940
941         return ret_val;
942 }
943
944 /******************************************************************************
945  *  e1000_update_flash_i210 - Commit EEPROM to the flash
946  *  @hw: pointer to the HW structure
947  *
948  *****************************************************************************/
949 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
950 {
951         int32_t ret_val = 0;
952         uint32_t flup;
953
954         ret_val = e1000_pool_flash_update_done_i210(hw);
955         if (ret_val == -E1000_ERR_EEPROM) {
956                 DEBUGOUT("Flash update time out\n");
957                 goto out;
958         }
959
960         flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
961         E1000_WRITE_REG(hw, EECD, flup);
962
963         ret_val = e1000_pool_flash_update_done_i210(hw);
964         if (ret_val)
965                 DEBUGOUT("Flash update time out\n");
966         else
967                 DEBUGOUT("Flash update complete\n");
968
969 out:
970         return ret_val;
971 }
972
973 /******************************************************************************
974  *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
975  *  @hw: pointer to the HW structure
976  *
977  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
978  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
979  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
980  *****************************************************************************/
981 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
982 {
983         int32_t ret_val = 0;
984         uint16_t checksum = 0;
985         uint16_t i, nvm_data;
986
987         /* Read the first word from the EEPROM. If this times out or fails, do
988          * not continue or we could be in for a very long wait while every
989          * EEPROM read fails
990          */
991         ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
992         if (ret_val) {
993                 DEBUGOUT("EEPROM read failed\n");
994                 goto out;
995         }
996
997         if (!(e1000_get_hw_eeprom_semaphore(hw))) {
998                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
999                  * because we do not want to take the synchronization
1000                  * semaphores twice here.
1001                  */
1002
1003                 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1004                         ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1005                         if (ret_val) {
1006                                 e1000_put_hw_eeprom_semaphore(hw);
1007                                 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1008                                 goto out;
1009                         }
1010                         checksum += nvm_data;
1011                 }
1012                 checksum = (uint16_t)EEPROM_SUM - checksum;
1013                 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1014                                                   &checksum);
1015                 if (ret_val) {
1016                         e1000_put_hw_eeprom_semaphore(hw);
1017                         DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1018                         goto out;
1019                 }
1020
1021                 e1000_put_hw_eeprom_semaphore(hw);
1022
1023                 ret_val = e1000_update_flash_i210(hw);
1024         } else {
1025                 ret_val = -E1000_ERR_SWFW_SYNC;
1026         }
1027
1028 out:
1029         return ret_val;
1030 }
1031 #endif
1032
1033 /******************************************************************************
1034  * Verifies that the EEPROM has a valid checksum
1035  *
1036  * hw - Struct containing variables accessed by shared code
1037  *
1038  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1039  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1040  * valid.
1041  *****************************************************************************/
1042 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1043 {
1044         uint16_t i, checksum, checksum_reg, *buf;
1045
1046         DEBUGFUNC();
1047
1048         /* Allocate a temporary buffer */
1049         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1050         if (!buf) {
1051                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1052                 return -E1000_ERR_EEPROM;
1053         }
1054
1055         /* Read the EEPROM */
1056         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1057                 E1000_ERR(hw, "Unable to read EEPROM!\n");
1058                 return -E1000_ERR_EEPROM;
1059         }
1060
1061         /* Compute the checksum */
1062         checksum = 0;
1063         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1064                 checksum += buf[i];
1065         checksum = ((uint16_t)EEPROM_SUM) - checksum;
1066         checksum_reg = buf[i];
1067
1068         /* Verify it! */
1069         if (checksum == checksum_reg)
1070                 return 0;
1071
1072         /* Hrm, verification failed, print an error */
1073         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1074         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
1075                   checksum_reg, checksum);
1076
1077         return -E1000_ERR_EEPROM;
1078 }
1079 #endif /* CONFIG_E1000_NO_NVM */
1080
1081 /*****************************************************************************
1082  * Set PHY to class A mode
1083  * Assumes the following operations will follow to enable the new class mode.
1084  *  1. Do a PHY soft reset
1085  *  2. Restart auto-negotiation or force link.
1086  *
1087  * hw - Struct containing variables accessed by shared code
1088  ****************************************************************************/
1089 static int32_t
1090 e1000_set_phy_mode(struct e1000_hw *hw)
1091 {
1092 #ifndef CONFIG_E1000_NO_NVM
1093         int32_t ret_val;
1094         uint16_t eeprom_data;
1095
1096         DEBUGFUNC();
1097
1098         if ((hw->mac_type == e1000_82545_rev_3) &&
1099                 (hw->media_type == e1000_media_type_copper)) {
1100                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1101                                 1, &eeprom_data);
1102                 if (ret_val)
1103                         return ret_val;
1104
1105                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1106                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
1107                         ret_val = e1000_write_phy_reg(hw,
1108                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
1109                         if (ret_val)
1110                                 return ret_val;
1111                         ret_val = e1000_write_phy_reg(hw,
1112                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
1113                         if (ret_val)
1114                                 return ret_val;
1115
1116                         hw->phy_reset_disable = false;
1117                 }
1118         }
1119 #endif
1120         return E1000_SUCCESS;
1121 }
1122
1123 #ifndef CONFIG_E1000_NO_NVM
1124 /***************************************************************************
1125  *
1126  * Obtaining software semaphore bit (SMBI) before resetting PHY.
1127  *
1128  * hw: Struct containing variables accessed by shared code
1129  *
1130  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1131  *            E1000_SUCCESS at any other case.
1132  *
1133  ***************************************************************************/
1134 static int32_t
1135 e1000_get_software_semaphore(struct e1000_hw *hw)
1136 {
1137          int32_t timeout = hw->eeprom.word_size + 1;
1138          uint32_t swsm;
1139
1140         DEBUGFUNC();
1141
1142         if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1143                 return E1000_SUCCESS;
1144
1145         while (timeout) {
1146                 swsm = E1000_READ_REG(hw, SWSM);
1147                 /* If SMBI bit cleared, it is now set and we hold
1148                  * the semaphore */
1149                 if (!(swsm & E1000_SWSM_SMBI))
1150                         break;
1151                 mdelay(1);
1152                 timeout--;
1153         }
1154
1155         if (!timeout) {
1156                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1157                 return -E1000_ERR_RESET;
1158         }
1159
1160         return E1000_SUCCESS;
1161 }
1162 #endif
1163
1164 /***************************************************************************
1165  * This function clears HW semaphore bits.
1166  *
1167  * hw: Struct containing variables accessed by shared code
1168  *
1169  * returns: - None.
1170  *
1171  ***************************************************************************/
1172 static void
1173 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1174 {
1175 #ifndef CONFIG_E1000_NO_NVM
1176          uint32_t swsm;
1177
1178         DEBUGFUNC();
1179
1180         if (!hw->eeprom_semaphore_present)
1181                 return;
1182
1183         swsm = E1000_READ_REG(hw, SWSM);
1184         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1185                 /* Release both semaphores. */
1186                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1187         } else
1188                 swsm &= ~(E1000_SWSM_SWESMBI);
1189         E1000_WRITE_REG(hw, SWSM, swsm);
1190 #endif
1191 }
1192
1193 /***************************************************************************
1194  *
1195  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1196  * adapter or Eeprom access.
1197  *
1198  * hw: Struct containing variables accessed by shared code
1199  *
1200  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1201  *            E1000_SUCCESS at any other case.
1202  *
1203  ***************************************************************************/
1204 static int32_t
1205 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1206 {
1207 #ifndef CONFIG_E1000_NO_NVM
1208         int32_t timeout;
1209         uint32_t swsm;
1210
1211         DEBUGFUNC();
1212
1213         if (!hw->eeprom_semaphore_present)
1214                 return E1000_SUCCESS;
1215
1216         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1217                 /* Get the SW semaphore. */
1218                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1219                         return -E1000_ERR_EEPROM;
1220         }
1221
1222         /* Get the FW semaphore. */
1223         timeout = hw->eeprom.word_size + 1;
1224         while (timeout) {
1225                 swsm = E1000_READ_REG(hw, SWSM);
1226                 swsm |= E1000_SWSM_SWESMBI;
1227                 E1000_WRITE_REG(hw, SWSM, swsm);
1228                 /* if we managed to set the bit we got the semaphore. */
1229                 swsm = E1000_READ_REG(hw, SWSM);
1230                 if (swsm & E1000_SWSM_SWESMBI)
1231                         break;
1232
1233                 udelay(50);
1234                 timeout--;
1235         }
1236
1237         if (!timeout) {
1238                 /* Release semaphores */
1239                 e1000_put_hw_eeprom_semaphore(hw);
1240                 DEBUGOUT("Driver can't access the Eeprom - "
1241                                 "SWESMBI bit is set.\n");
1242                 return -E1000_ERR_EEPROM;
1243         }
1244 #endif
1245         return E1000_SUCCESS;
1246 }
1247
1248 /* Take ownership of the PHY */
1249 static int32_t
1250 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1251 {
1252         uint32_t swfw_sync = 0;
1253         uint32_t swmask = mask;
1254         uint32_t fwmask = mask << 16;
1255         int32_t timeout = 200;
1256
1257         DEBUGFUNC();
1258         while (timeout) {
1259                 if (e1000_get_hw_eeprom_semaphore(hw))
1260                         return -E1000_ERR_SWFW_SYNC;
1261
1262                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1263                 if (!(swfw_sync & (fwmask | swmask)))
1264                         break;
1265
1266                 /* firmware currently using resource (fwmask) */
1267                 /* or other software thread currently using resource (swmask) */
1268                 e1000_put_hw_eeprom_semaphore(hw);
1269                 mdelay(5);
1270                 timeout--;
1271         }
1272
1273         if (!timeout) {
1274                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1275                 return -E1000_ERR_SWFW_SYNC;
1276         }
1277
1278         swfw_sync |= swmask;
1279         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1280
1281         e1000_put_hw_eeprom_semaphore(hw);
1282         return E1000_SUCCESS;
1283 }
1284
1285 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1286 {
1287         uint32_t swfw_sync = 0;
1288
1289         DEBUGFUNC();
1290         while (e1000_get_hw_eeprom_semaphore(hw))
1291                 ; /* Empty */
1292
1293         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1294         swfw_sync &= ~mask;
1295         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1296
1297         e1000_put_hw_eeprom_semaphore(hw);
1298 }
1299
1300 static bool e1000_is_second_port(struct e1000_hw *hw)
1301 {
1302         switch (hw->mac_type) {
1303         case e1000_80003es2lan:
1304         case e1000_82546:
1305         case e1000_82571:
1306                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1307                         return true;
1308                 /* Fallthrough */
1309         default:
1310                 return false;
1311         }
1312 }
1313
1314 #ifndef CONFIG_E1000_NO_NVM
1315 /******************************************************************************
1316  * Reads the adapter's MAC address from the EEPROM
1317  *
1318  * hw - Struct containing variables accessed by shared code
1319  * enetaddr - buffering where the MAC address will be stored
1320  *****************************************************************************/
1321 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1322                                            unsigned char enetaddr[6])
1323 {
1324         uint16_t offset;
1325         uint16_t eeprom_data;
1326         int i;
1327
1328         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1329                 offset = i >> 1;
1330                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1331                         DEBUGOUT("EEPROM Read Error\n");
1332                         return -E1000_ERR_EEPROM;
1333                 }
1334                 enetaddr[i] = eeprom_data & 0xff;
1335                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1336         }
1337
1338         return 0;
1339 }
1340
1341 /******************************************************************************
1342  * Reads the adapter's MAC address from the RAL/RAH registers
1343  *
1344  * hw - Struct containing variables accessed by shared code
1345  * enetaddr - buffering where the MAC address will be stored
1346  *****************************************************************************/
1347 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1348                                          unsigned char enetaddr[6])
1349 {
1350         uint16_t offset, tmp;
1351         uint32_t reg_data = 0;
1352         int i;
1353
1354         if (hw->mac_type != e1000_igb)
1355                 return -E1000_ERR_MAC_TYPE;
1356
1357         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1358                 offset = i >> 1;
1359
1360                 if (offset == 0)
1361                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1362                 else if (offset == 1)
1363                         reg_data >>= 16;
1364                 else if (offset == 2)
1365                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1366                 tmp = reg_data & 0xffff;
1367
1368                 enetaddr[i] = tmp & 0xff;
1369                 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1370         }
1371
1372         return 0;
1373 }
1374
1375 /******************************************************************************
1376  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1377  * second function of dual function devices
1378  *
1379  * hw - Struct containing variables accessed by shared code
1380  * enetaddr - buffering where the MAC address will be stored
1381  *****************************************************************************/
1382 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1383 {
1384         int ret_val;
1385
1386         if (hw->mac_type == e1000_igb) {
1387                 /* i210 preloads MAC address into RAL/RAH registers */
1388                 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1389         } else {
1390                 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1391         }
1392         if (ret_val)
1393                 return ret_val;
1394
1395         /* Invert the last bit if this is the second device */
1396         if (e1000_is_second_port(hw))
1397                 enetaddr[5] ^= 1;
1398
1399         return 0;
1400 }
1401 #endif
1402
1403 /******************************************************************************
1404  * Initializes receive address filters.
1405  *
1406  * hw - Struct containing variables accessed by shared code
1407  *
1408  * Places the MAC address in receive address register 0 and clears the rest
1409  * of the receive addresss registers. Clears the multicast table. Assumes
1410  * the receiver is in reset when the routine is called.
1411  *****************************************************************************/
1412 static void
1413 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1414 {
1415         uint32_t i;
1416         uint32_t addr_low;
1417         uint32_t addr_high;
1418
1419         DEBUGFUNC();
1420
1421         /* Setup the receive address. */
1422         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1423         addr_low = (enetaddr[0] |
1424                     (enetaddr[1] << 8) |
1425                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1426
1427         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1428
1429         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1430         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1431
1432         /* Zero out the other 15 receive addresses. */
1433         DEBUGOUT("Clearing RAR[1-15]\n");
1434         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1435                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1436                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1437         }
1438 }
1439
1440 /******************************************************************************
1441  * Clears the VLAN filer table
1442  *
1443  * hw - Struct containing variables accessed by shared code
1444  *****************************************************************************/
1445 static void
1446 e1000_clear_vfta(struct e1000_hw *hw)
1447 {
1448         uint32_t offset;
1449
1450         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1451                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1452 }
1453
1454 /******************************************************************************
1455  * Set the mac type member in the hw struct.
1456  *
1457  * hw - Struct containing variables accessed by shared code
1458  *****************************************************************************/
1459 int32_t
1460 e1000_set_mac_type(struct e1000_hw *hw)
1461 {
1462         DEBUGFUNC();
1463
1464         switch (hw->device_id) {
1465         case E1000_DEV_ID_82542:
1466                 switch (hw->revision_id) {
1467                 case E1000_82542_2_0_REV_ID:
1468                         hw->mac_type = e1000_82542_rev2_0;
1469                         break;
1470                 case E1000_82542_2_1_REV_ID:
1471                         hw->mac_type = e1000_82542_rev2_1;
1472                         break;
1473                 default:
1474                         /* Invalid 82542 revision ID */
1475                         return -E1000_ERR_MAC_TYPE;
1476                 }
1477                 break;
1478         case E1000_DEV_ID_82543GC_FIBER:
1479         case E1000_DEV_ID_82543GC_COPPER:
1480                 hw->mac_type = e1000_82543;
1481                 break;
1482         case E1000_DEV_ID_82544EI_COPPER:
1483         case E1000_DEV_ID_82544EI_FIBER:
1484         case E1000_DEV_ID_82544GC_COPPER:
1485         case E1000_DEV_ID_82544GC_LOM:
1486                 hw->mac_type = e1000_82544;
1487                 break;
1488         case E1000_DEV_ID_82540EM:
1489         case E1000_DEV_ID_82540EM_LOM:
1490         case E1000_DEV_ID_82540EP:
1491         case E1000_DEV_ID_82540EP_LOM:
1492         case E1000_DEV_ID_82540EP_LP:
1493                 hw->mac_type = e1000_82540;
1494                 break;
1495         case E1000_DEV_ID_82545EM_COPPER:
1496         case E1000_DEV_ID_82545EM_FIBER:
1497                 hw->mac_type = e1000_82545;
1498                 break;
1499         case E1000_DEV_ID_82545GM_COPPER:
1500         case E1000_DEV_ID_82545GM_FIBER:
1501         case E1000_DEV_ID_82545GM_SERDES:
1502                 hw->mac_type = e1000_82545_rev_3;
1503                 break;
1504         case E1000_DEV_ID_82546EB_COPPER:
1505         case E1000_DEV_ID_82546EB_FIBER:
1506         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1507                 hw->mac_type = e1000_82546;
1508                 break;
1509         case E1000_DEV_ID_82546GB_COPPER:
1510         case E1000_DEV_ID_82546GB_FIBER:
1511         case E1000_DEV_ID_82546GB_SERDES:
1512         case E1000_DEV_ID_82546GB_PCIE:
1513         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1514         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1515                 hw->mac_type = e1000_82546_rev_3;
1516                 break;
1517         case E1000_DEV_ID_82541EI:
1518         case E1000_DEV_ID_82541EI_MOBILE:
1519         case E1000_DEV_ID_82541ER_LOM:
1520                 hw->mac_type = e1000_82541;
1521                 break;
1522         case E1000_DEV_ID_82541ER:
1523         case E1000_DEV_ID_82541GI:
1524         case E1000_DEV_ID_82541GI_LF:
1525         case E1000_DEV_ID_82541GI_MOBILE:
1526                 hw->mac_type = e1000_82541_rev_2;
1527                 break;
1528         case E1000_DEV_ID_82547EI:
1529         case E1000_DEV_ID_82547EI_MOBILE:
1530                 hw->mac_type = e1000_82547;
1531                 break;
1532         case E1000_DEV_ID_82547GI:
1533                 hw->mac_type = e1000_82547_rev_2;
1534                 break;
1535         case E1000_DEV_ID_82571EB_COPPER:
1536         case E1000_DEV_ID_82571EB_FIBER:
1537         case E1000_DEV_ID_82571EB_SERDES:
1538         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1539         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1540         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1541         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1542         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1543         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1544                 hw->mac_type = e1000_82571;
1545                 break;
1546         case E1000_DEV_ID_82572EI_COPPER:
1547         case E1000_DEV_ID_82572EI_FIBER:
1548         case E1000_DEV_ID_82572EI_SERDES:
1549         case E1000_DEV_ID_82572EI:
1550                 hw->mac_type = e1000_82572;
1551                 break;
1552         case E1000_DEV_ID_82573E:
1553         case E1000_DEV_ID_82573E_IAMT:
1554         case E1000_DEV_ID_82573L:
1555                 hw->mac_type = e1000_82573;
1556                 break;
1557         case E1000_DEV_ID_82574L:
1558                 hw->mac_type = e1000_82574;
1559                 break;
1560         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1561         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1562         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1563         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1564                 hw->mac_type = e1000_80003es2lan;
1565                 break;
1566         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1567         case E1000_DEV_ID_ICH8_IGP_AMT:
1568         case E1000_DEV_ID_ICH8_IGP_C:
1569         case E1000_DEV_ID_ICH8_IFE:
1570         case E1000_DEV_ID_ICH8_IFE_GT:
1571         case E1000_DEV_ID_ICH8_IFE_G:
1572         case E1000_DEV_ID_ICH8_IGP_M:
1573                 hw->mac_type = e1000_ich8lan;
1574                 break;
1575         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1576         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1577         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1578         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1579         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1580         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1581         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1582         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1583                 hw->mac_type = e1000_igb;
1584                 break;
1585         default:
1586                 /* Should never have loaded on this device */
1587                 return -E1000_ERR_MAC_TYPE;
1588         }
1589         return E1000_SUCCESS;
1590 }
1591
1592 /******************************************************************************
1593  * Reset the transmit and receive units; mask and clear all interrupts.
1594  *
1595  * hw - Struct containing variables accessed by shared code
1596  *****************************************************************************/
1597 void
1598 e1000_reset_hw(struct e1000_hw *hw)
1599 {
1600         uint32_t ctrl;
1601         uint32_t ctrl_ext;
1602         uint32_t manc;
1603         uint32_t pba = 0;
1604         uint32_t reg;
1605
1606         DEBUGFUNC();
1607
1608         /* get the correct pba value for both PCI and PCIe*/
1609         if (hw->mac_type <  e1000_82571)
1610                 pba = E1000_DEFAULT_PCI_PBA;
1611         else
1612                 pba = E1000_DEFAULT_PCIE_PBA;
1613
1614         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1615         if (hw->mac_type == e1000_82542_rev2_0) {
1616                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1617 #ifdef CONFIG_DM_ETH
1618                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1619                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1620 #else
1621                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1622                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1623 #endif
1624         }
1625
1626         /* Clear interrupt mask to stop board from generating interrupts */
1627         DEBUGOUT("Masking off all interrupts\n");
1628         if (hw->mac_type == e1000_igb)
1629                 E1000_WRITE_REG(hw, I210_IAM, 0);
1630         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1631
1632         /* Disable the Transmit and Receive units.  Then delay to allow
1633          * any pending transactions to complete before we hit the MAC with
1634          * the global reset.
1635          */
1636         E1000_WRITE_REG(hw, RCTL, 0);
1637         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1638         E1000_WRITE_FLUSH(hw);
1639
1640         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1641         hw->tbi_compatibility_on = false;
1642
1643         /* Delay to allow any outstanding PCI transactions to complete before
1644          * resetting the device
1645          */
1646         mdelay(10);
1647
1648         /* Issue a global reset to the MAC.  This will reset the chip's
1649          * transmit, receive, DMA, and link units.  It will not effect
1650          * the current PCI configuration.  The global reset bit is self-
1651          * clearing, and should clear within a microsecond.
1652          */
1653         DEBUGOUT("Issuing a global reset to MAC\n");
1654         ctrl = E1000_READ_REG(hw, CTRL);
1655
1656         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1657
1658         /* Force a reload from the EEPROM if necessary */
1659         if (hw->mac_type == e1000_igb) {
1660                 mdelay(20);
1661                 reg = E1000_READ_REG(hw, STATUS);
1662                 if (reg & E1000_STATUS_PF_RST_DONE)
1663                         DEBUGOUT("PF OK\n");
1664                 reg = E1000_READ_REG(hw, I210_EECD);
1665                 if (reg & E1000_EECD_AUTO_RD)
1666                         DEBUGOUT("EEC OK\n");
1667         } else if (hw->mac_type < e1000_82540) {
1668                 /* Wait for reset to complete */
1669                 udelay(10);
1670                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1671                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1672                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1673                 E1000_WRITE_FLUSH(hw);
1674                 /* Wait for EEPROM reload */
1675                 mdelay(2);
1676         } else {
1677                 /* Wait for EEPROM reload (it happens automatically) */
1678                 mdelay(4);
1679                 /* Dissable HW ARPs on ASF enabled adapters */
1680                 manc = E1000_READ_REG(hw, MANC);
1681                 manc &= ~(E1000_MANC_ARP_EN);
1682                 E1000_WRITE_REG(hw, MANC, manc);
1683         }
1684
1685         /* Clear interrupt mask to stop board from generating interrupts */
1686         DEBUGOUT("Masking off all interrupts\n");
1687         if (hw->mac_type == e1000_igb)
1688                 E1000_WRITE_REG(hw, I210_IAM, 0);
1689         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1690
1691         /* Clear any pending interrupt events. */
1692         E1000_READ_REG(hw, ICR);
1693
1694         /* If MWI was previously enabled, reenable it. */
1695         if (hw->mac_type == e1000_82542_rev2_0) {
1696 #ifdef CONFIG_DM_ETH
1697                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1698 #else
1699                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #endif
1701         }
1702         if (hw->mac_type != e1000_igb)
1703                 E1000_WRITE_REG(hw, PBA, pba);
1704 }
1705
1706 /******************************************************************************
1707  *
1708  * Initialize a number of hardware-dependent bits
1709  *
1710  * hw: Struct containing variables accessed by shared code
1711  *
1712  * This function contains hardware limitation workarounds for PCI-E adapters
1713  *
1714  *****************************************************************************/
1715 static void
1716 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1717 {
1718         if ((hw->mac_type >= e1000_82571) &&
1719                         (!hw->initialize_hw_bits_disable)) {
1720                 /* Settings common to all PCI-express silicon */
1721                 uint32_t reg_ctrl, reg_ctrl_ext;
1722                 uint32_t reg_tarc0, reg_tarc1;
1723                 uint32_t reg_tctl;
1724                 uint32_t reg_txdctl, reg_txdctl1;
1725
1726                 /* link autonegotiation/sync workarounds */
1727                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1728                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1729
1730                 /* Enable not-done TX descriptor counting */
1731                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1732                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1733                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1734
1735                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1736                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1737                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1738
1739
1740                 switch (hw->mac_type) {
1741                 case e1000_igb:                 /* IGB is cool */
1742                         return;
1743                 case e1000_82571:
1744                 case e1000_82572:
1745                         /* Clear PHY TX compatible mode bits */
1746                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1747                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1748
1749                         /* link autonegotiation/sync workarounds */
1750                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1751
1752                         /* TX ring control fixes */
1753                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1754
1755                         /* Multiple read bit is reversed polarity */
1756                         reg_tctl = E1000_READ_REG(hw, TCTL);
1757                         if (reg_tctl & E1000_TCTL_MULR)
1758                                 reg_tarc1 &= ~(1 << 28);
1759                         else
1760                                 reg_tarc1 |= (1 << 28);
1761
1762                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1763                         break;
1764                 case e1000_82573:
1765                 case e1000_82574:
1766                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1767                         reg_ctrl_ext &= ~(1 << 23);
1768                         reg_ctrl_ext |= (1 << 22);
1769
1770                         /* TX byte count fix */
1771                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1772                         reg_ctrl &= ~(1 << 29);
1773
1774                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1775                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1776                         break;
1777                 case e1000_80003es2lan:
1778         /* improve small packet performace for fiber/serdes */
1779                         if ((hw->media_type == e1000_media_type_fiber)
1780                         || (hw->media_type ==
1781                                 e1000_media_type_internal_serdes)) {
1782                                 reg_tarc0 &= ~(1 << 20);
1783                         }
1784
1785                 /* Multiple read bit is reversed polarity */
1786                         reg_tctl = E1000_READ_REG(hw, TCTL);
1787                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1788                         if (reg_tctl & E1000_TCTL_MULR)
1789                                 reg_tarc1 &= ~(1 << 28);
1790                         else
1791                                 reg_tarc1 |= (1 << 28);
1792
1793                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1794                         break;
1795                 case e1000_ich8lan:
1796                         /* Reduce concurrent DMA requests to 3 from 4 */
1797                         if ((hw->revision_id < 3) ||
1798                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1799                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1800                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1801
1802                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1803                         reg_ctrl_ext |= (1 << 22);
1804                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1805
1806                         /* workaround TX hang with TSO=on */
1807                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1808
1809                         /* Multiple read bit is reversed polarity */
1810                         reg_tctl = E1000_READ_REG(hw, TCTL);
1811                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1812                         if (reg_tctl & E1000_TCTL_MULR)
1813                                 reg_tarc1 &= ~(1 << 28);
1814                         else
1815                                 reg_tarc1 |= (1 << 28);
1816
1817                         /* workaround TX hang with TSO=on */
1818                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1819
1820                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1821                         break;
1822                 default:
1823                         break;
1824                 }
1825
1826                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1827         }
1828 }
1829
1830 /******************************************************************************
1831  * Performs basic configuration of the adapter.
1832  *
1833  * hw - Struct containing variables accessed by shared code
1834  *
1835  * Assumes that the controller has previously been reset and is in a
1836  * post-reset uninitialized state. Initializes the receive address registers,
1837  * multicast table, and VLAN filter table. Calls routines to setup link
1838  * configuration and flow control settings. Clears all on-chip counters. Leaves
1839  * the transmit and receive units disabled and uninitialized.
1840  *****************************************************************************/
1841 static int
1842 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1843 {
1844         uint32_t ctrl;
1845         uint32_t i;
1846         int32_t ret_val;
1847         uint16_t pcix_cmd_word;
1848         uint16_t pcix_stat_hi_word;
1849         uint16_t cmd_mmrbc;
1850         uint16_t stat_mmrbc;
1851         uint32_t mta_size;
1852         uint32_t reg_data;
1853         uint32_t ctrl_ext;
1854         DEBUGFUNC();
1855         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1856         if ((hw->mac_type == e1000_ich8lan) &&
1857                 ((hw->revision_id < 3) ||
1858                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1859                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1860                         reg_data = E1000_READ_REG(hw, STATUS);
1861                         reg_data &= ~0x80000000;
1862                         E1000_WRITE_REG(hw, STATUS, reg_data);
1863         }
1864         /* Do not need initialize Identification LED */
1865
1866         /* Set the media type and TBI compatibility */
1867         e1000_set_media_type(hw);
1868
1869         /* Must be called after e1000_set_media_type
1870          * because media_type is used */
1871         e1000_initialize_hardware_bits(hw);
1872
1873         /* Disabling VLAN filtering. */
1874         DEBUGOUT("Initializing the IEEE VLAN\n");
1875         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1876         if (hw->mac_type != e1000_ich8lan) {
1877                 if (hw->mac_type < e1000_82545_rev_3)
1878                         E1000_WRITE_REG(hw, VET, 0);
1879                 e1000_clear_vfta(hw);
1880         }
1881
1882         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1883         if (hw->mac_type == e1000_82542_rev2_0) {
1884                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1885 #ifdef CONFIG_DM_ETH
1886                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1887                                       hw->
1888                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1889 #else
1890                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1891                                       hw->
1892                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1893 #endif
1894                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1895                 E1000_WRITE_FLUSH(hw);
1896                 mdelay(5);
1897         }
1898
1899         /* Setup the receive address. This involves initializing all of the Receive
1900          * Address Registers (RARs 0 - 15).
1901          */
1902         e1000_init_rx_addrs(hw, enetaddr);
1903
1904         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1905         if (hw->mac_type == e1000_82542_rev2_0) {
1906                 E1000_WRITE_REG(hw, RCTL, 0);
1907                 E1000_WRITE_FLUSH(hw);
1908                 mdelay(1);
1909 #ifdef CONFIG_DM_ETH
1910                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1911 #else
1912                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913 #endif
1914         }
1915
1916         /* Zero out the Multicast HASH table */
1917         DEBUGOUT("Zeroing the MTA\n");
1918         mta_size = E1000_MC_TBL_SIZE;
1919         if (hw->mac_type == e1000_ich8lan)
1920                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1921         for (i = 0; i < mta_size; i++) {
1922                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1923                 /* use write flush to prevent Memory Write Block (MWB) from
1924                  * occuring when accessing our register space */
1925                 E1000_WRITE_FLUSH(hw);
1926         }
1927
1928         switch (hw->mac_type) {
1929         case e1000_82545_rev_3:
1930         case e1000_82546_rev_3:
1931         case e1000_igb:
1932                 break;
1933         default:
1934         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1935         if (hw->bus_type == e1000_bus_type_pcix) {
1936 #ifdef CONFIG_DM_ETH
1937                 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1938                                      &pcix_cmd_word);
1939                 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1940                                      &pcix_stat_hi_word);
1941 #else
1942                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1943                                      &pcix_cmd_word);
1944                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1945                                      &pcix_stat_hi_word);
1946 #endif
1947                 cmd_mmrbc =
1948                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1949                     PCIX_COMMAND_MMRBC_SHIFT;
1950                 stat_mmrbc =
1951                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1952                     PCIX_STATUS_HI_MMRBC_SHIFT;
1953                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1954                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1955                 if (cmd_mmrbc > stat_mmrbc) {
1956                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1957                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1958 #ifdef CONFIG_DM_ETH
1959                         dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1960                                               pcix_cmd_word);
1961 #else
1962                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1963                                               pcix_cmd_word);
1964 #endif
1965                 }
1966         }
1967                 break;
1968         }
1969
1970         /* More time needed for PHY to initialize */
1971         if (hw->mac_type == e1000_ich8lan)
1972                 mdelay(15);
1973         if (hw->mac_type == e1000_igb)
1974                 mdelay(15);
1975
1976         /* Call a subroutine to configure the link and setup flow control. */
1977         ret_val = e1000_setup_link(hw);
1978
1979         /* Set the transmit descriptor write-back policy */
1980         if (hw->mac_type > e1000_82544) {
1981                 ctrl = E1000_READ_REG(hw, TXDCTL);
1982                 ctrl =
1983                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1984                     E1000_TXDCTL_FULL_TX_DESC_WB;
1985                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1986         }
1987
1988         /* Set the receive descriptor write back policy */
1989         if (hw->mac_type >= e1000_82571) {
1990                 ctrl = E1000_READ_REG(hw, RXDCTL);
1991                 ctrl =
1992                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1993                     E1000_RXDCTL_FULL_RX_DESC_WB;
1994                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1995         }
1996
1997         switch (hw->mac_type) {
1998         default:
1999                 break;
2000         case e1000_80003es2lan:
2001                 /* Enable retransmit on late collisions */
2002                 reg_data = E1000_READ_REG(hw, TCTL);
2003                 reg_data |= E1000_TCTL_RTLC;
2004                 E1000_WRITE_REG(hw, TCTL, reg_data);
2005
2006                 /* Configure Gigabit Carry Extend Padding */
2007                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
2008                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2009                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2010                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2011
2012                 /* Configure Transmit Inter-Packet Gap */
2013                 reg_data = E1000_READ_REG(hw, TIPG);
2014                 reg_data &= ~E1000_TIPG_IPGT_MASK;
2015                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2016                 E1000_WRITE_REG(hw, TIPG, reg_data);
2017
2018                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2019                 reg_data &= ~0x00100000;
2020                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2021                 /* Fall through */
2022         case e1000_82571:
2023         case e1000_82572:
2024         case e1000_ich8lan:
2025                 ctrl = E1000_READ_REG(hw, TXDCTL1);
2026                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2027                         | E1000_TXDCTL_FULL_TX_DESC_WB;
2028                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2029                 break;
2030         case e1000_82573:
2031         case e1000_82574:
2032                 reg_data = E1000_READ_REG(hw, GCR);
2033                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2034                 E1000_WRITE_REG(hw, GCR, reg_data);
2035         case e1000_igb:
2036                 break;
2037         }
2038
2039         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2040                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2041                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2042                 /* Relaxed ordering must be disabled to avoid a parity
2043                  * error crash in a PCI slot. */
2044                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2045                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2046         }
2047
2048         return ret_val;
2049 }
2050
2051 /******************************************************************************
2052  * Configures flow control and link settings.
2053  *
2054  * hw - Struct containing variables accessed by shared code
2055  *
2056  * Determines which flow control settings to use. Calls the apropriate media-
2057  * specific link configuration function. Configures the flow control settings.
2058  * Assuming the adapter has a valid link partner, a valid link should be
2059  * established. Assumes the hardware has previously been reset and the
2060  * transmitter and receiver are not enabled.
2061  *****************************************************************************/
2062 static int
2063 e1000_setup_link(struct e1000_hw *hw)
2064 {
2065         int32_t ret_val;
2066 #ifndef CONFIG_E1000_NO_NVM
2067         uint32_t ctrl_ext;
2068         uint16_t eeprom_data;
2069 #endif
2070
2071         DEBUGFUNC();
2072
2073         /* In the case of the phy reset being blocked, we already have a link.
2074          * We do not have to set it up again. */
2075         if (e1000_check_phy_reset_block(hw))
2076                 return E1000_SUCCESS;
2077
2078 #ifndef CONFIG_E1000_NO_NVM
2079         /* Read and store word 0x0F of the EEPROM. This word contains bits
2080          * that determine the hardware's default PAUSE (flow control) mode,
2081          * a bit that determines whether the HW defaults to enabling or
2082          * disabling auto-negotiation, and the direction of the
2083          * SW defined pins. If there is no SW over-ride of the flow
2084          * control setting, then the variable hw->fc will
2085          * be initialized based on a value in the EEPROM.
2086          */
2087         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2088                                 &eeprom_data) < 0) {
2089                 DEBUGOUT("EEPROM Read Error\n");
2090                 return -E1000_ERR_EEPROM;
2091         }
2092 #endif
2093         if (hw->fc == e1000_fc_default) {
2094                 switch (hw->mac_type) {
2095                 case e1000_ich8lan:
2096                 case e1000_82573:
2097                 case e1000_82574:
2098                 case e1000_igb:
2099                         hw->fc = e1000_fc_full;
2100                         break;
2101                 default:
2102 #ifndef CONFIG_E1000_NO_NVM
2103                         ret_val = e1000_read_eeprom(hw,
2104                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2105                         if (ret_val) {
2106                                 DEBUGOUT("EEPROM Read Error\n");
2107                                 return -E1000_ERR_EEPROM;
2108                         }
2109                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2110                                 hw->fc = e1000_fc_none;
2111                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2112                                     EEPROM_WORD0F_ASM_DIR)
2113                                 hw->fc = e1000_fc_tx_pause;
2114                         else
2115 #endif
2116                                 hw->fc = e1000_fc_full;
2117                         break;
2118                 }
2119         }
2120
2121         /* We want to save off the original Flow Control configuration just
2122          * in case we get disconnected and then reconnected into a different
2123          * hub or switch with different Flow Control capabilities.
2124          */
2125         if (hw->mac_type == e1000_82542_rev2_0)
2126                 hw->fc &= (~e1000_fc_tx_pause);
2127
2128         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2129                 hw->fc &= (~e1000_fc_rx_pause);
2130
2131         hw->original_fc = hw->fc;
2132
2133         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2134
2135 #ifndef CONFIG_E1000_NO_NVM
2136         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2137          * polarity value for the SW controlled pins, and setup the
2138          * Extended Device Control reg with that info.
2139          * This is needed because one of the SW controlled pins is used for
2140          * signal detection.  So this should be done before e1000_setup_pcs_link()
2141          * or e1000_phy_setup() is called.
2142          */
2143         if (hw->mac_type == e1000_82543) {
2144                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2145                             SWDPIO__EXT_SHIFT);
2146                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2147         }
2148 #endif
2149
2150         /* Call the necessary subroutine to configure the link. */
2151         ret_val = (hw->media_type == e1000_media_type_fiber) ?
2152             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2153         if (ret_val < 0) {
2154                 return ret_val;
2155         }
2156
2157         /* Initialize the flow control address, type, and PAUSE timer
2158          * registers to their default values.  This is done even if flow
2159          * control is disabled, because it does not hurt anything to
2160          * initialize these registers.
2161          */
2162         DEBUGOUT("Initializing the Flow Control address, type"
2163                         "and timer regs\n");
2164
2165         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2166         if (hw->mac_type != e1000_ich8lan) {
2167                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2168                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2169                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2170         }
2171
2172         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2173
2174         /* Set the flow control receive threshold registers.  Normally,
2175          * these registers will be set to a default threshold that may be
2176          * adjusted later by the driver's runtime code.  However, if the
2177          * ability to transmit pause frames in not enabled, then these
2178          * registers will be set to 0.
2179          */
2180         if (!(hw->fc & e1000_fc_tx_pause)) {
2181                 E1000_WRITE_REG(hw, FCRTL, 0);
2182                 E1000_WRITE_REG(hw, FCRTH, 0);
2183         } else {
2184                 /* We need to set up the Receive Threshold high and low water marks
2185                  * as well as (optionally) enabling the transmission of XON frames.
2186                  */
2187                 if (hw->fc_send_xon) {
2188                         E1000_WRITE_REG(hw, FCRTL,
2189                                         (hw->fc_low_water | E1000_FCRTL_XONE));
2190                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2191                 } else {
2192                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2193                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2194                 }
2195         }
2196         return ret_val;
2197 }
2198
2199 /******************************************************************************
2200  * Sets up link for a fiber based adapter
2201  *
2202  * hw - Struct containing variables accessed by shared code
2203  *
2204  * Manipulates Physical Coding Sublayer functions in order to configure
2205  * link. Assumes the hardware has been previously reset and the transmitter
2206  * and receiver are not enabled.
2207  *****************************************************************************/
2208 static int
2209 e1000_setup_fiber_link(struct e1000_hw *hw)
2210 {
2211         uint32_t ctrl;
2212         uint32_t status;
2213         uint32_t txcw = 0;
2214         uint32_t i;
2215         uint32_t signal;
2216         int32_t ret_val;
2217
2218         DEBUGFUNC();
2219         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2220          * set when the optics detect a signal. On older adapters, it will be
2221          * cleared when there is a signal
2222          */
2223         ctrl = E1000_READ_REG(hw, CTRL);
2224         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2225                 signal = E1000_CTRL_SWDPIN1;
2226         else
2227                 signal = 0;
2228
2229         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2230                ctrl);
2231         /* Take the link out of reset */
2232         ctrl &= ~(E1000_CTRL_LRST);
2233
2234         e1000_config_collision_dist(hw);
2235
2236         /* Check for a software override of the flow control settings, and setup
2237          * the device accordingly.  If auto-negotiation is enabled, then software
2238          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2239          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2240          * auto-negotiation is disabled, then software will have to manually
2241          * configure the two flow control enable bits in the CTRL register.
2242          *
2243          * The possible values of the "fc" parameter are:
2244          *      0:  Flow control is completely disabled
2245          *      1:  Rx flow control is enabled (we can receive pause frames, but
2246          *          not send pause frames).
2247          *      2:  Tx flow control is enabled (we can send pause frames but we do
2248          *          not support receiving pause frames).
2249          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2250          */
2251         switch (hw->fc) {
2252         case e1000_fc_none:
2253                 /* Flow control is completely disabled by a software over-ride. */
2254                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2255                 break;
2256         case e1000_fc_rx_pause:
2257                 /* RX Flow control is enabled and TX Flow control is disabled by a
2258                  * software over-ride. Since there really isn't a way to advertise
2259                  * that we are capable of RX Pause ONLY, we will advertise that we
2260                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2261                  *  disable the adapter's ability to send PAUSE frames.
2262                  */
2263                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2264                 break;
2265         case e1000_fc_tx_pause:
2266                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2267                  * software over-ride.
2268                  */
2269                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2270                 break;
2271         case e1000_fc_full:
2272                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2273                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2274                 break;
2275         default:
2276                 DEBUGOUT("Flow control param set incorrectly\n");
2277                 return -E1000_ERR_CONFIG;
2278                 break;
2279         }
2280
2281         /* Since auto-negotiation is enabled, take the link out of reset (the link
2282          * will be in reset, because we previously reset the chip). This will
2283          * restart auto-negotiation.  If auto-neogtiation is successful then the
2284          * link-up status bit will be set and the flow control enable bits (RFCE
2285          * and TFCE) will be set according to their negotiated value.
2286          */
2287         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2288
2289         E1000_WRITE_REG(hw, TXCW, txcw);
2290         E1000_WRITE_REG(hw, CTRL, ctrl);
2291         E1000_WRITE_FLUSH(hw);
2292
2293         hw->txcw = txcw;
2294         mdelay(1);
2295
2296         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2297          * indication in the Device Status Register.  Time-out if a link isn't
2298          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2299          * less than 500 milliseconds even if the other end is doing it in SW).
2300          */
2301         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2302                 DEBUGOUT("Looking for Link\n");
2303                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2304                         mdelay(10);
2305                         status = E1000_READ_REG(hw, STATUS);
2306                         if (status & E1000_STATUS_LU)
2307                                 break;
2308                 }
2309                 if (i == (LINK_UP_TIMEOUT / 10)) {
2310                         /* AutoNeg failed to achieve a link, so we'll call
2311                          * e1000_check_for_link. This routine will force the link up if we
2312                          * detect a signal. This will allow us to communicate with
2313                          * non-autonegotiating link partners.
2314                          */
2315                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2316                         hw->autoneg_failed = 1;
2317                         ret_val = e1000_check_for_link(hw);
2318                         if (ret_val < 0) {
2319                                 DEBUGOUT("Error while checking for link\n");
2320                                 return ret_val;
2321                         }
2322                         hw->autoneg_failed = 0;
2323                 } else {
2324                         hw->autoneg_failed = 0;
2325                         DEBUGOUT("Valid Link Found\n");
2326                 }
2327         } else {
2328                 DEBUGOUT("No Signal Detected\n");
2329                 return -E1000_ERR_NOLINK;
2330         }
2331         return 0;
2332 }
2333
2334 /******************************************************************************
2335 * Make sure we have a valid PHY and change PHY mode before link setup.
2336 *
2337 * hw - Struct containing variables accessed by shared code
2338 ******************************************************************************/
2339 static int32_t
2340 e1000_copper_link_preconfig(struct e1000_hw *hw)
2341 {
2342         uint32_t ctrl;
2343         int32_t ret_val;
2344         uint16_t phy_data;
2345
2346         DEBUGFUNC();
2347
2348         ctrl = E1000_READ_REG(hw, CTRL);
2349         /* With 82543, we need to force speed and duplex on the MAC equal to what
2350          * the PHY speed and duplex configuration is. In addition, we need to
2351          * perform a hardware reset on the PHY to take it out of reset.
2352          */
2353         if (hw->mac_type > e1000_82543) {
2354                 ctrl |= E1000_CTRL_SLU;
2355                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2356                 E1000_WRITE_REG(hw, CTRL, ctrl);
2357         } else {
2358                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2359                                 | E1000_CTRL_SLU);
2360                 E1000_WRITE_REG(hw, CTRL, ctrl);
2361                 ret_val = e1000_phy_hw_reset(hw);
2362                 if (ret_val)
2363                         return ret_val;
2364         }
2365
2366         /* Make sure we have a valid PHY */
2367         ret_val = e1000_detect_gig_phy(hw);
2368         if (ret_val) {
2369                 DEBUGOUT("Error, did not detect valid phy.\n");
2370                 return ret_val;
2371         }
2372         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2373
2374         /* Set PHY to class A mode (if necessary) */
2375         ret_val = e1000_set_phy_mode(hw);
2376         if (ret_val)
2377                 return ret_val;
2378         if ((hw->mac_type == e1000_82545_rev_3) ||
2379                 (hw->mac_type == e1000_82546_rev_3)) {
2380                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2381                                 &phy_data);
2382                 phy_data |= 0x00000008;
2383                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2384                                 phy_data);
2385         }
2386
2387         if (hw->mac_type <= e1000_82543 ||
2388                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2389                 hw->mac_type == e1000_82541_rev_2
2390                 || hw->mac_type == e1000_82547_rev_2)
2391                         hw->phy_reset_disable = false;
2392
2393         return E1000_SUCCESS;
2394 }
2395
2396 /*****************************************************************************
2397  *
2398  * This function sets the lplu state according to the active flag.  When
2399  * activating lplu this function also disables smart speed and vise versa.
2400  * lplu will not be activated unless the device autonegotiation advertisment
2401  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2402  * hw: Struct containing variables accessed by shared code
2403  * active - true to enable lplu false to disable lplu.
2404  *
2405  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2406  *            E1000_SUCCESS at any other case.
2407  *
2408  ****************************************************************************/
2409
2410 static int32_t
2411 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2412 {
2413         uint32_t phy_ctrl = 0;
2414         int32_t ret_val;
2415         uint16_t phy_data;
2416         DEBUGFUNC();
2417
2418         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2419             && hw->phy_type != e1000_phy_igp_3)
2420                 return E1000_SUCCESS;
2421
2422         /* During driver activity LPLU should not be used or it will attain link
2423          * from the lowest speeds starting from 10Mbps. The capability is used
2424          * for Dx transitions and states */
2425         if (hw->mac_type == e1000_82541_rev_2
2426                         || hw->mac_type == e1000_82547_rev_2) {
2427                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2428                                 &phy_data);
2429                 if (ret_val)
2430                         return ret_val;
2431         } else if (hw->mac_type == e1000_ich8lan) {
2432                 /* MAC writes into PHY register based on the state transition
2433                  * and start auto-negotiation. SW driver can overwrite the
2434                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2435                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2436         } else {
2437                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2438                                 &phy_data);
2439                 if (ret_val)
2440                         return ret_val;
2441         }
2442
2443         if (!active) {
2444                 if (hw->mac_type == e1000_82541_rev_2 ||
2445                         hw->mac_type == e1000_82547_rev_2) {
2446                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2447                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2448                                         phy_data);
2449                         if (ret_val)
2450                                 return ret_val;
2451                 } else {
2452                         if (hw->mac_type == e1000_ich8lan) {
2453                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2454                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2455                         } else {
2456                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2457                                 ret_val = e1000_write_phy_reg(hw,
2458                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2459                                 if (ret_val)
2460                                         return ret_val;
2461                         }
2462                 }
2463
2464         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2465          * Dx states where the power conservation is most important.  During
2466          * driver activity we should enable SmartSpeed, so performance is
2467          * maintained. */
2468                 if (hw->smart_speed == e1000_smart_speed_on) {
2469                         ret_val = e1000_read_phy_reg(hw,
2470                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2471                         if (ret_val)
2472                                 return ret_val;
2473
2474                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2475                         ret_val = e1000_write_phy_reg(hw,
2476                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2477                         if (ret_val)
2478                                 return ret_val;
2479                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2480                         ret_val = e1000_read_phy_reg(hw,
2481                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2482                         if (ret_val)
2483                                 return ret_val;
2484
2485                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2486                         ret_val = e1000_write_phy_reg(hw,
2487                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2488                         if (ret_val)
2489                                 return ret_val;
2490                 }
2491
2492         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2493                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2494                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2495
2496                 if (hw->mac_type == e1000_82541_rev_2 ||
2497                     hw->mac_type == e1000_82547_rev_2) {
2498                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2499                         ret_val = e1000_write_phy_reg(hw,
2500                                         IGP01E1000_GMII_FIFO, phy_data);
2501                         if (ret_val)
2502                                 return ret_val;
2503                 } else {
2504                         if (hw->mac_type == e1000_ich8lan) {
2505                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2506                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2507                         } else {
2508                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2509                                 ret_val = e1000_write_phy_reg(hw,
2510                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2511                                 if (ret_val)
2512                                         return ret_val;
2513                         }
2514                 }
2515
2516                 /* When LPLU is enabled we should disable SmartSpeed */
2517                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2518                                 &phy_data);
2519                 if (ret_val)
2520                         return ret_val;
2521
2522                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2523                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2524                                 phy_data);
2525                 if (ret_val)
2526                         return ret_val;
2527         }
2528         return E1000_SUCCESS;
2529 }
2530
2531 /*****************************************************************************
2532  *
2533  * This function sets the lplu d0 state according to the active flag.  When
2534  * activating lplu this function also disables smart speed and vise versa.
2535  * lplu will not be activated unless the device autonegotiation advertisment
2536  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2537  * hw: Struct containing variables accessed by shared code
2538  * active - true to enable lplu false to disable lplu.
2539  *
2540  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2541  *            E1000_SUCCESS at any other case.
2542  *
2543  ****************************************************************************/
2544
2545 static int32_t
2546 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2547 {
2548         uint32_t phy_ctrl = 0;
2549         int32_t ret_val;
2550         uint16_t phy_data;
2551         DEBUGFUNC();
2552
2553         if (hw->mac_type <= e1000_82547_rev_2)
2554                 return E1000_SUCCESS;
2555
2556         if (hw->mac_type == e1000_ich8lan) {
2557                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2558         } else if (hw->mac_type == e1000_igb) {
2559                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2560         } else {
2561                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2562                                 &phy_data);
2563                 if (ret_val)
2564                         return ret_val;
2565         }
2566
2567         if (!active) {
2568                 if (hw->mac_type == e1000_ich8lan) {
2569                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2570                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2571                 } else if (hw->mac_type == e1000_igb) {
2572                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2573                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2574                 } else {
2575                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2576                         ret_val = e1000_write_phy_reg(hw,
2577                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2578                         if (ret_val)
2579                                 return ret_val;
2580                 }
2581
2582                 if (hw->mac_type == e1000_igb)
2583                         return E1000_SUCCESS;
2584
2585         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2586          * Dx states where the power conservation is most important.  During
2587          * driver activity we should enable SmartSpeed, so performance is
2588          * maintained. */
2589                 if (hw->smart_speed == e1000_smart_speed_on) {
2590                         ret_val = e1000_read_phy_reg(hw,
2591                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2592                         if (ret_val)
2593                                 return ret_val;
2594
2595                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2596                         ret_val = e1000_write_phy_reg(hw,
2597                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2598                         if (ret_val)
2599                                 return ret_val;
2600                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2601                         ret_val = e1000_read_phy_reg(hw,
2602                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2603                         if (ret_val)
2604                                 return ret_val;
2605
2606                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2607                         ret_val = e1000_write_phy_reg(hw,
2608                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2609                         if (ret_val)
2610                                 return ret_val;
2611                 }
2612
2613
2614         } else {
2615
2616                 if (hw->mac_type == e1000_ich8lan) {
2617                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2618                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2619                 } else if (hw->mac_type == e1000_igb) {
2620                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2621                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2622                 } else {
2623                         phy_data |= IGP02E1000_PM_D0_LPLU;
2624                         ret_val = e1000_write_phy_reg(hw,
2625                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2626                         if (ret_val)
2627                                 return ret_val;
2628                 }
2629
2630                 if (hw->mac_type == e1000_igb)
2631                         return E1000_SUCCESS;
2632
2633                 /* When LPLU is enabled we should disable SmartSpeed */
2634                 ret_val = e1000_read_phy_reg(hw,
2635                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2636                 if (ret_val)
2637                         return ret_val;
2638
2639                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2640                 ret_val = e1000_write_phy_reg(hw,
2641                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2642                 if (ret_val)
2643                         return ret_val;
2644
2645         }
2646         return E1000_SUCCESS;
2647 }
2648
2649 /********************************************************************
2650 * Copper link setup for e1000_phy_igp series.
2651 *
2652 * hw - Struct containing variables accessed by shared code
2653 *********************************************************************/
2654 static int32_t
2655 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2656 {
2657         uint32_t led_ctrl;
2658         int32_t ret_val;
2659         uint16_t phy_data;
2660
2661         DEBUGFUNC();
2662
2663         if (hw->phy_reset_disable)
2664                 return E1000_SUCCESS;
2665
2666         ret_val = e1000_phy_reset(hw);
2667         if (ret_val) {
2668                 DEBUGOUT("Error Resetting the PHY\n");
2669                 return ret_val;
2670         }
2671
2672         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2673         mdelay(15);
2674         if (hw->mac_type != e1000_ich8lan) {
2675                 /* Configure activity LED after PHY reset */
2676                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2677                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2678                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2679                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2680         }
2681
2682         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2683         if (hw->phy_type == e1000_phy_igp) {
2684                 /* disable lplu d3 during driver init */
2685                 ret_val = e1000_set_d3_lplu_state(hw, false);
2686                 if (ret_val) {
2687                         DEBUGOUT("Error Disabling LPLU D3\n");
2688                         return ret_val;
2689                 }
2690         }
2691
2692         /* disable lplu d0 during driver init */
2693         ret_val = e1000_set_d0_lplu_state(hw, false);
2694         if (ret_val) {
2695                 DEBUGOUT("Error Disabling LPLU D0\n");
2696                 return ret_val;
2697         }
2698         /* Configure mdi-mdix settings */
2699         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2700         if (ret_val)
2701                 return ret_val;
2702
2703         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2704                 hw->dsp_config_state = e1000_dsp_config_disabled;
2705                 /* Force MDI for earlier revs of the IGP PHY */
2706                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2707                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2708                 hw->mdix = 1;
2709
2710         } else {
2711                 hw->dsp_config_state = e1000_dsp_config_enabled;
2712                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2713
2714                 switch (hw->mdix) {
2715                 case 1:
2716                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2717                         break;
2718                 case 2:
2719                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2720                         break;
2721                 case 0:
2722                 default:
2723                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2724                         break;
2725                 }
2726         }
2727         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2728         if (ret_val)
2729                 return ret_val;
2730
2731         /* set auto-master slave resolution settings */
2732         if (hw->autoneg) {
2733                 e1000_ms_type phy_ms_setting = hw->master_slave;
2734
2735                 if (hw->ffe_config_state == e1000_ffe_config_active)
2736                         hw->ffe_config_state = e1000_ffe_config_enabled;
2737
2738                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2739                         hw->dsp_config_state = e1000_dsp_config_enabled;
2740
2741                 /* when autonegotiation advertisment is only 1000Mbps then we
2742                   * should disable SmartSpeed and enable Auto MasterSlave
2743                   * resolution as hardware default. */
2744                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2745                         /* Disable SmartSpeed */
2746                         ret_val = e1000_read_phy_reg(hw,
2747                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2748                         if (ret_val)
2749                                 return ret_val;
2750                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2751                         ret_val = e1000_write_phy_reg(hw,
2752                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2753                         if (ret_val)
2754                                 return ret_val;
2755                         /* Set auto Master/Slave resolution process */
2756                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2757                                         &phy_data);
2758                         if (ret_val)
2759                                 return ret_val;
2760                         phy_data &= ~CR_1000T_MS_ENABLE;
2761                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2762                                         phy_data);
2763                         if (ret_val)
2764                                 return ret_val;
2765                 }
2766
2767                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2768                 if (ret_val)
2769                         return ret_val;
2770
2771                 /* load defaults for future use */
2772                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2773                                 ((phy_data & CR_1000T_MS_VALUE) ?
2774                                 e1000_ms_force_master :
2775                                 e1000_ms_force_slave) :
2776                                 e1000_ms_auto;
2777
2778                 switch (phy_ms_setting) {
2779                 case e1000_ms_force_master:
2780                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2781                         break;
2782                 case e1000_ms_force_slave:
2783                         phy_data |= CR_1000T_MS_ENABLE;
2784                         phy_data &= ~(CR_1000T_MS_VALUE);
2785                         break;
2786                 case e1000_ms_auto:
2787                         phy_data &= ~CR_1000T_MS_ENABLE;
2788                 default:
2789                         break;
2790                 }
2791                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2792                 if (ret_val)
2793                         return ret_val;
2794         }
2795
2796         return E1000_SUCCESS;
2797 }
2798
2799 /*****************************************************************************
2800  * This function checks the mode of the firmware.
2801  *
2802  * returns  - true when the mode is IAMT or false.
2803  ****************************************************************************/
2804 bool
2805 e1000_check_mng_mode(struct e1000_hw *hw)
2806 {
2807         uint32_t fwsm;
2808         DEBUGFUNC();
2809
2810         fwsm = E1000_READ_REG(hw, FWSM);
2811
2812         if (hw->mac_type == e1000_ich8lan) {
2813                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2814                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2815                         return true;
2816         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2817                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2818                         return true;
2819
2820         return false;
2821 }
2822
2823 static int32_t
2824 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2825 {
2826         uint16_t swfw = E1000_SWFW_PHY0_SM;
2827         uint32_t reg_val;
2828         DEBUGFUNC();
2829
2830         if (e1000_is_second_port(hw))
2831                 swfw = E1000_SWFW_PHY1_SM;
2832
2833         if (e1000_swfw_sync_acquire(hw, swfw))
2834                 return -E1000_ERR_SWFW_SYNC;
2835
2836         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2837                         & E1000_KUMCTRLSTA_OFFSET) | data;
2838         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2839         udelay(2);
2840
2841         return E1000_SUCCESS;
2842 }
2843
2844 static int32_t
2845 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2846 {
2847         uint16_t swfw = E1000_SWFW_PHY0_SM;
2848         uint32_t reg_val;
2849         DEBUGFUNC();
2850
2851         if (e1000_is_second_port(hw))
2852                 swfw = E1000_SWFW_PHY1_SM;
2853
2854         if (e1000_swfw_sync_acquire(hw, swfw)) {
2855                 debug("%s[%i]\n", __func__, __LINE__);
2856                 return -E1000_ERR_SWFW_SYNC;
2857         }
2858
2859         /* Write register address */
2860         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2861                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2862         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2863         udelay(2);
2864
2865         /* Read the data returned */
2866         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2867         *data = (uint16_t)reg_val;
2868
2869         return E1000_SUCCESS;
2870 }
2871
2872 /********************************************************************
2873 * Copper link setup for e1000_phy_gg82563 series.
2874 *
2875 * hw - Struct containing variables accessed by shared code
2876 *********************************************************************/
2877 static int32_t
2878 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2879 {
2880         int32_t ret_val;
2881         uint16_t phy_data;
2882         uint32_t reg_data;
2883
2884         DEBUGFUNC();
2885
2886         if (!hw->phy_reset_disable) {
2887                 /* Enable CRS on TX for half-duplex operation. */
2888                 ret_val = e1000_read_phy_reg(hw,
2889                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2890                 if (ret_val)
2891                         return ret_val;
2892
2893                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2894                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2895                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2896
2897                 ret_val = e1000_write_phy_reg(hw,
2898                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2899                 if (ret_val)
2900                         return ret_val;
2901
2902                 /* Options:
2903                  *   MDI/MDI-X = 0 (default)
2904                  *   0 - Auto for all speeds
2905                  *   1 - MDI mode
2906                  *   2 - MDI-X mode
2907                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2908                  */
2909                 ret_val = e1000_read_phy_reg(hw,
2910                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2911                 if (ret_val)
2912                         return ret_val;
2913
2914                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2915
2916                 switch (hw->mdix) {
2917                 case 1:
2918                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2919                         break;
2920                 case 2:
2921                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2922                         break;
2923                 case 0:
2924                 default:
2925                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2926                         break;
2927                 }
2928
2929                 /* Options:
2930                  *   disable_polarity_correction = 0 (default)
2931                  *       Automatic Correction for Reversed Cable Polarity
2932                  *   0 - Disabled
2933                  *   1 - Enabled
2934                  */
2935                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2936                 ret_val = e1000_write_phy_reg(hw,
2937                                 GG82563_PHY_SPEC_CTRL, phy_data);
2938
2939                 if (ret_val)
2940                         return ret_val;
2941
2942                 /* SW Reset the PHY so all changes take effect */
2943                 ret_val = e1000_phy_reset(hw);
2944                 if (ret_val) {
2945                         DEBUGOUT("Error Resetting the PHY\n");
2946                         return ret_val;
2947                 }
2948         } /* phy_reset_disable */
2949
2950         if (hw->mac_type == e1000_80003es2lan) {
2951                 /* Bypass RX and TX FIFO's */
2952                 ret_val = e1000_write_kmrn_reg(hw,
2953                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2954                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2955                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2956                 if (ret_val)
2957                         return ret_val;
2958
2959                 ret_val = e1000_read_phy_reg(hw,
2960                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2961                 if (ret_val)
2962                         return ret_val;
2963
2964                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2965                 ret_val = e1000_write_phy_reg(hw,
2966                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2967
2968                 if (ret_val)
2969                         return ret_val;
2970
2971                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2972                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2973                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2974
2975                 ret_val = e1000_read_phy_reg(hw,
2976                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2977                 if (ret_val)
2978                         return ret_val;
2979
2980         /* Do not init these registers when the HW is in IAMT mode, since the
2981          * firmware will have already initialized them.  We only initialize
2982          * them if the HW is not in IAMT mode.
2983          */
2984                 if (e1000_check_mng_mode(hw) == false) {
2985                         /* Enable Electrical Idle on the PHY */
2986                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2987                         ret_val = e1000_write_phy_reg(hw,
2988                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2989                         if (ret_val)
2990                                 return ret_val;
2991
2992                         ret_val = e1000_read_phy_reg(hw,
2993                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2994                         if (ret_val)
2995                                 return ret_val;
2996
2997                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2998                         ret_val = e1000_write_phy_reg(hw,
2999                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3000
3001                         if (ret_val)
3002                                 return ret_val;
3003                 }
3004
3005                 /* Workaround: Disable padding in Kumeran interface in the MAC
3006                  * and in the PHY to avoid CRC errors.
3007                  */
3008                 ret_val = e1000_read_phy_reg(hw,
3009                                 GG82563_PHY_INBAND_CTRL, &phy_data);
3010                 if (ret_val)
3011                         return ret_val;
3012                 phy_data |= GG82563_ICR_DIS_PADDING;
3013                 ret_val = e1000_write_phy_reg(hw,
3014                                 GG82563_PHY_INBAND_CTRL, phy_data);
3015                 if (ret_val)
3016                         return ret_val;
3017         }
3018         return E1000_SUCCESS;
3019 }
3020
3021 /********************************************************************
3022 * Copper link setup for e1000_phy_m88 series.
3023 *
3024 * hw - Struct containing variables accessed by shared code
3025 *********************************************************************/
3026 static int32_t
3027 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3028 {
3029         int32_t ret_val;
3030         uint16_t phy_data;
3031
3032         DEBUGFUNC();
3033
3034         if (hw->phy_reset_disable)
3035                 return E1000_SUCCESS;
3036
3037         /* Enable CRS on TX. This must be set for half-duplex operation. */
3038         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3039         if (ret_val)
3040                 return ret_val;
3041
3042         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3043
3044         /* Options:
3045          *   MDI/MDI-X = 0 (default)
3046          *   0 - Auto for all speeds
3047          *   1 - MDI mode
3048          *   2 - MDI-X mode
3049          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3050          */
3051         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3052
3053         switch (hw->mdix) {
3054         case 1:
3055                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3056                 break;
3057         case 2:
3058                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3059                 break;
3060         case 3:
3061                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3062                 break;
3063         case 0:
3064         default:
3065                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3066                 break;
3067         }
3068
3069         /* Options:
3070          *   disable_polarity_correction = 0 (default)
3071          *       Automatic Correction for Reversed Cable Polarity
3072          *   0 - Disabled
3073          *   1 - Enabled
3074          */
3075         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3076         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3077         if (ret_val)
3078                 return ret_val;
3079
3080         if (hw->phy_revision < M88E1011_I_REV_4) {
3081                 /* Force TX_CLK in the Extended PHY Specific Control Register
3082                  * to 25MHz clock.
3083                  */
3084                 ret_val = e1000_read_phy_reg(hw,
3085                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3086                 if (ret_val)
3087                         return ret_val;
3088
3089                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3090
3091                 if ((hw->phy_revision == E1000_REVISION_2) &&
3092                         (hw->phy_id == M88E1111_I_PHY_ID)) {
3093                         /* Vidalia Phy, set the downshift counter to 5x */
3094                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3095                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3096                         ret_val = e1000_write_phy_reg(hw,
3097                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3098                         if (ret_val)
3099                                 return ret_val;
3100                 } else {
3101                         /* Configure Master and Slave downshift values */
3102                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3103                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3104                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3105                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3106                         ret_val = e1000_write_phy_reg(hw,
3107                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3108                         if (ret_val)
3109                                 return ret_val;
3110                 }
3111         }
3112
3113         /* SW Reset the PHY so all changes take effect */
3114         ret_val = e1000_phy_reset(hw);
3115         if (ret_val) {
3116                 DEBUGOUT("Error Resetting the PHY\n");
3117                 return ret_val;
3118         }
3119
3120         return E1000_SUCCESS;
3121 }
3122
3123 /********************************************************************
3124 * Setup auto-negotiation and flow control advertisements,
3125 * and then perform auto-negotiation.
3126 *
3127 * hw - Struct containing variables accessed by shared code
3128 *********************************************************************/
3129 static int32_t
3130 e1000_copper_link_autoneg(struct e1000_hw *hw)
3131 {
3132         int32_t ret_val;
3133         uint16_t phy_data;
3134
3135         DEBUGFUNC();
3136
3137         /* Perform some bounds checking on the hw->autoneg_advertised
3138          * parameter.  If this variable is zero, then set it to the default.
3139          */
3140         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3141
3142         /* If autoneg_advertised is zero, we assume it was not defaulted
3143          * by the calling code so we set to advertise full capability.
3144          */
3145         if (hw->autoneg_advertised == 0)
3146                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3147
3148         /* IFE phy only supports 10/100 */
3149         if (hw->phy_type == e1000_phy_ife)
3150                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3151
3152         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3153         ret_val = e1000_phy_setup_autoneg(hw);
3154         if (ret_val) {
3155                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3156                 return ret_val;
3157         }
3158         DEBUGOUT("Restarting Auto-Neg\n");
3159
3160         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3161          * the Auto Neg Restart bit in the PHY control register.
3162          */
3163         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3164         if (ret_val)
3165                 return ret_val;
3166
3167         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3168         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3169         if (ret_val)
3170                 return ret_val;
3171
3172         /* Does the user want to wait for Auto-Neg to complete here, or
3173          * check at a later time (for example, callback routine).
3174          */
3175         /* If we do not wait for autonegtation to complete I
3176          * do not see a valid link status.
3177          * wait_autoneg_complete = 1 .
3178          */
3179         if (hw->wait_autoneg_complete) {
3180                 ret_val = e1000_wait_autoneg(hw);
3181                 if (ret_val) {
3182                         DEBUGOUT("Error while waiting for autoneg"
3183                                         "to complete\n");
3184                         return ret_val;
3185                 }
3186         }
3187
3188         hw->get_link_status = true;
3189
3190         return E1000_SUCCESS;
3191 }
3192
3193 /******************************************************************************
3194 * Config the MAC and the PHY after link is up.
3195 *   1) Set up the MAC to the current PHY speed/duplex
3196 *      if we are on 82543.  If we
3197 *      are on newer silicon, we only need to configure
3198 *      collision distance in the Transmit Control Register.
3199 *   2) Set up flow control on the MAC to that established with
3200 *      the link partner.
3201 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3202 *
3203 * hw - Struct containing variables accessed by shared code
3204 ******************************************************************************/
3205 static int32_t
3206 e1000_copper_link_postconfig(struct e1000_hw *hw)
3207 {
3208         int32_t ret_val;
3209         DEBUGFUNC();
3210
3211         if (hw->mac_type >= e1000_82544) {
3212                 e1000_config_collision_dist(hw);
3213         } else {
3214                 ret_val = e1000_config_mac_to_phy(hw);
3215                 if (ret_val) {
3216                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3217                         return ret_val;
3218                 }
3219         }
3220         ret_val = e1000_config_fc_after_link_up(hw);
3221         if (ret_val) {
3222                 DEBUGOUT("Error Configuring Flow Control\n");
3223                 return ret_val;
3224         }
3225         return E1000_SUCCESS;
3226 }
3227
3228 /******************************************************************************
3229 * Detects which PHY is present and setup the speed and duplex
3230 *
3231 * hw - Struct containing variables accessed by shared code
3232 ******************************************************************************/
3233 static int
3234 e1000_setup_copper_link(struct e1000_hw *hw)
3235 {
3236         int32_t ret_val;
3237         uint16_t i;
3238         uint16_t phy_data;
3239         uint16_t reg_data;
3240
3241         DEBUGFUNC();
3242
3243         switch (hw->mac_type) {
3244         case e1000_80003es2lan:
3245         case e1000_ich8lan:
3246                 /* Set the mac to wait the maximum time between each
3247                  * iteration and increase the max iterations when
3248                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3249                 ret_val = e1000_write_kmrn_reg(hw,
3250                                 GG82563_REG(0x34, 4), 0xFFFF);
3251                 if (ret_val)
3252                         return ret_val;
3253                 ret_val = e1000_read_kmrn_reg(hw,
3254                                 GG82563_REG(0x34, 9), &reg_data);
3255                 if (ret_val)
3256                         return ret_val;
3257                 reg_data |= 0x3F;
3258                 ret_val = e1000_write_kmrn_reg(hw,
3259                                 GG82563_REG(0x34, 9), reg_data);
3260                 if (ret_val)
3261                         return ret_val;
3262         default:
3263                 break;
3264         }
3265
3266         /* Check if it is a valid PHY and set PHY mode if necessary. */
3267         ret_val = e1000_copper_link_preconfig(hw);
3268         if (ret_val)
3269                 return ret_val;
3270         switch (hw->mac_type) {
3271         case e1000_80003es2lan:
3272                 /* Kumeran registers are written-only */
3273                 reg_data =
3274                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3275                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3276                 ret_val = e1000_write_kmrn_reg(hw,
3277                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3278                 if (ret_val)
3279                         return ret_val;
3280                 break;
3281         default:
3282                 break;
3283         }
3284
3285         if (hw->phy_type == e1000_phy_igp ||
3286                 hw->phy_type == e1000_phy_igp_3 ||
3287                 hw->phy_type == e1000_phy_igp_2) {
3288                 ret_val = e1000_copper_link_igp_setup(hw);
3289                 if (ret_val)
3290                         return ret_val;
3291         } else if (hw->phy_type == e1000_phy_m88 ||
3292                 hw->phy_type == e1000_phy_igb) {
3293                 ret_val = e1000_copper_link_mgp_setup(hw);
3294                 if (ret_val)
3295                         return ret_val;
3296         } else if (hw->phy_type == e1000_phy_gg82563) {
3297                 ret_val = e1000_copper_link_ggp_setup(hw);
3298                 if (ret_val)
3299                         return ret_val;
3300         }
3301
3302         /* always auto */
3303         /* Setup autoneg and flow control advertisement
3304           * and perform autonegotiation */
3305         ret_val = e1000_copper_link_autoneg(hw);
3306         if (ret_val)
3307                 return ret_val;
3308
3309         /* Check link status. Wait up to 100 microseconds for link to become
3310          * valid.
3311          */
3312         for (i = 0; i < 10; i++) {
3313                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3314                 if (ret_val)
3315                         return ret_val;
3316                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3317                 if (ret_val)
3318                         return ret_val;
3319
3320                 if (phy_data & MII_SR_LINK_STATUS) {
3321                         /* Config the MAC and PHY after link is up */
3322                         ret_val = e1000_copper_link_postconfig(hw);
3323                         if (ret_val)
3324                                 return ret_val;
3325
3326                         DEBUGOUT("Valid link established!!!\n");
3327                         return E1000_SUCCESS;
3328                 }
3329                 udelay(10);
3330         }
3331
3332         DEBUGOUT("Unable to establish link!!!\n");
3333         return E1000_SUCCESS;
3334 }
3335
3336 /******************************************************************************
3337 * Configures PHY autoneg and flow control advertisement settings
3338 *
3339 * hw - Struct containing variables accessed by shared code
3340 ******************************************************************************/
3341 int32_t
3342 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3343 {
3344         int32_t ret_val;
3345         uint16_t mii_autoneg_adv_reg;
3346         uint16_t mii_1000t_ctrl_reg;
3347
3348         DEBUGFUNC();
3349
3350         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3351         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3352         if (ret_val)
3353                 return ret_val;
3354
3355         if (hw->phy_type != e1000_phy_ife) {
3356                 /* Read the MII 1000Base-T Control Register (Address 9). */
3357                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3358                                 &mii_1000t_ctrl_reg);
3359                 if (ret_val)
3360                         return ret_val;
3361         } else
3362                 mii_1000t_ctrl_reg = 0;
3363
3364         /* Need to parse both autoneg_advertised and fc and set up
3365          * the appropriate PHY registers.  First we will parse for
3366          * autoneg_advertised software override.  Since we can advertise
3367          * a plethora of combinations, we need to check each bit
3368          * individually.
3369          */
3370
3371         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3372          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3373          * the  1000Base-T Control Register (Address 9).
3374          */
3375         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3376         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3377
3378         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3379
3380         /* Do we want to advertise 10 Mb Half Duplex? */
3381         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3382                 DEBUGOUT("Advertise 10mb Half duplex\n");
3383                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3384         }
3385
3386         /* Do we want to advertise 10 Mb Full Duplex? */
3387         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3388                 DEBUGOUT("Advertise 10mb Full duplex\n");
3389                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3390         }
3391
3392         /* Do we want to advertise 100 Mb Half Duplex? */
3393         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3394                 DEBUGOUT("Advertise 100mb Half duplex\n");
3395                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3396         }
3397
3398         /* Do we want to advertise 100 Mb Full Duplex? */
3399         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3400                 DEBUGOUT("Advertise 100mb Full duplex\n");
3401                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3402         }
3403
3404         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3405         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3406                 DEBUGOUT
3407                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3408         }
3409
3410         /* Do we want to advertise 1000 Mb Full Duplex? */
3411         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3412                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3413                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3414         }
3415
3416         /* Check for a software override of the flow control settings, and
3417          * setup the PHY advertisement registers accordingly.  If
3418          * auto-negotiation is enabled, then software will have to set the
3419          * "PAUSE" bits to the correct value in the Auto-Negotiation
3420          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3421          *
3422          * The possible values of the "fc" parameter are:
3423          *      0:  Flow control is completely disabled
3424          *      1:  Rx flow control is enabled (we can receive pause frames
3425          *          but not send pause frames).
3426          *      2:  Tx flow control is enabled (we can send pause frames
3427          *          but we do not support receiving pause frames).
3428          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3429          *  other:  No software override.  The flow control configuration
3430          *          in the EEPROM is used.
3431          */
3432         switch (hw->fc) {
3433         case e1000_fc_none:     /* 0 */
3434                 /* Flow control (RX & TX) is completely disabled by a
3435                  * software over-ride.
3436                  */
3437                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3438                 break;
3439         case e1000_fc_rx_pause: /* 1 */
3440                 /* RX Flow control is enabled, and TX Flow control is
3441                  * disabled, by a software over-ride.
3442                  */
3443                 /* Since there really isn't a way to advertise that we are
3444                  * capable of RX Pause ONLY, we will advertise that we
3445                  * support both symmetric and asymmetric RX PAUSE.  Later
3446                  * (in e1000_config_fc_after_link_up) we will disable the
3447                  *hw's ability to send PAUSE frames.
3448                  */
3449                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3450                 break;
3451         case e1000_fc_tx_pause: /* 2 */
3452                 /* TX Flow control is enabled, and RX Flow control is
3453                  * disabled, by a software over-ride.
3454                  */
3455                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3456                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3457                 break;
3458         case e1000_fc_full:     /* 3 */
3459                 /* Flow control (both RX and TX) is enabled by a software
3460                  * over-ride.
3461                  */
3462                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3463                 break;
3464         default:
3465                 DEBUGOUT("Flow control param set incorrectly\n");
3466                 return -E1000_ERR_CONFIG;
3467         }
3468
3469         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3470         if (ret_val)
3471                 return ret_val;
3472
3473         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3474
3475         if (hw->phy_type != e1000_phy_ife) {
3476                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3477                                 mii_1000t_ctrl_reg);
3478                 if (ret_val)
3479                         return ret_val;
3480         }
3481
3482         return E1000_SUCCESS;
3483 }
3484
3485 /******************************************************************************
3486 * Sets the collision distance in the Transmit Control register
3487 *
3488 * hw - Struct containing variables accessed by shared code
3489 *
3490 * Link should have been established previously. Reads the speed and duplex
3491 * information from the Device Status register.
3492 ******************************************************************************/
3493 static void
3494 e1000_config_collision_dist(struct e1000_hw *hw)
3495 {
3496         uint32_t tctl, coll_dist;
3497
3498         DEBUGFUNC();
3499
3500         if (hw->mac_type < e1000_82543)
3501                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3502         else
3503                 coll_dist = E1000_COLLISION_DISTANCE;
3504
3505         tctl = E1000_READ_REG(hw, TCTL);
3506
3507         tctl &= ~E1000_TCTL_COLD;
3508         tctl |= coll_dist << E1000_COLD_SHIFT;
3509
3510         E1000_WRITE_REG(hw, TCTL, tctl);
3511         E1000_WRITE_FLUSH(hw);
3512 }
3513
3514 /******************************************************************************
3515 * Sets MAC speed and duplex settings to reflect the those in the PHY
3516 *
3517 * hw - Struct containing variables accessed by shared code
3518 * mii_reg - data to write to the MII control register
3519 *
3520 * The contents of the PHY register containing the needed information need to
3521 * be passed in.
3522 ******************************************************************************/
3523 static int
3524 e1000_config_mac_to_phy(struct e1000_hw *hw)
3525 {
3526         uint32_t ctrl;
3527         uint16_t phy_data;
3528
3529         DEBUGFUNC();
3530
3531         /* Read the Device Control Register and set the bits to Force Speed
3532          * and Duplex.
3533          */
3534         ctrl = E1000_READ_REG(hw, CTRL);
3535         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3536         ctrl &= ~(E1000_CTRL_ILOS);
3537         ctrl |= (E1000_CTRL_SPD_SEL);
3538
3539         /* Set up duplex in the Device Control and Transmit Control
3540          * registers depending on negotiated values.
3541          */
3542         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3543                 DEBUGOUT("PHY Read Error\n");
3544                 return -E1000_ERR_PHY;
3545         }
3546         if (phy_data & M88E1000_PSSR_DPLX)
3547                 ctrl |= E1000_CTRL_FD;
3548         else
3549                 ctrl &= ~E1000_CTRL_FD;
3550
3551         e1000_config_collision_dist(hw);
3552
3553         /* Set up speed in the Device Control register depending on
3554          * negotiated values.
3555          */
3556         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3557                 ctrl |= E1000_CTRL_SPD_1000;
3558         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3559                 ctrl |= E1000_CTRL_SPD_100;
3560         /* Write the configured values back to the Device Control Reg. */
3561         E1000_WRITE_REG(hw, CTRL, ctrl);
3562         return 0;
3563 }
3564
3565 /******************************************************************************
3566  * Forces the MAC's flow control settings.
3567  *
3568  * hw - Struct containing variables accessed by shared code
3569  *
3570  * Sets the TFCE and RFCE bits in the device control register to reflect
3571  * the adapter settings. TFCE and RFCE need to be explicitly set by
3572  * software when a Copper PHY is used because autonegotiation is managed
3573  * by the PHY rather than the MAC. Software must also configure these
3574  * bits when link is forced on a fiber connection.
3575  *****************************************************************************/
3576 static int
3577 e1000_force_mac_fc(struct e1000_hw *hw)
3578 {
3579         uint32_t ctrl;
3580
3581         DEBUGFUNC();
3582
3583         /* Get the current configuration of the Device Control Register */
3584         ctrl = E1000_READ_REG(hw, CTRL);
3585
3586         /* Because we didn't get link via the internal auto-negotiation
3587          * mechanism (we either forced link or we got link via PHY
3588          * auto-neg), we have to manually enable/disable transmit an
3589          * receive flow control.
3590          *
3591          * The "Case" statement below enables/disable flow control
3592          * according to the "hw->fc" parameter.
3593          *
3594          * The possible values of the "fc" parameter are:
3595          *      0:  Flow control is completely disabled
3596          *      1:  Rx flow control is enabled (we can receive pause
3597          *          frames but not send pause frames).
3598          *      2:  Tx flow control is enabled (we can send pause frames
3599          *          frames but we do not receive pause frames).
3600          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3601          *  other:  No other values should be possible at this point.
3602          */
3603
3604         switch (hw->fc) {
3605         case e1000_fc_none:
3606                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3607                 break;
3608         case e1000_fc_rx_pause:
3609                 ctrl &= (~E1000_CTRL_TFCE);
3610                 ctrl |= E1000_CTRL_RFCE;
3611                 break;
3612         case e1000_fc_tx_pause:
3613                 ctrl &= (~E1000_CTRL_RFCE);
3614                 ctrl |= E1000_CTRL_TFCE;
3615                 break;
3616         case e1000_fc_full:
3617                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3618                 break;
3619         default:
3620                 DEBUGOUT("Flow control param set incorrectly\n");
3621                 return -E1000_ERR_CONFIG;
3622         }
3623
3624         /* Disable TX Flow Control for 82542 (rev 2.0) */
3625         if (hw->mac_type == e1000_82542_rev2_0)
3626                 ctrl &= (~E1000_CTRL_TFCE);
3627
3628         E1000_WRITE_REG(hw, CTRL, ctrl);
3629         return 0;
3630 }
3631
3632 /******************************************************************************
3633  * Configures flow control settings after link is established
3634  *
3635  * hw - Struct containing variables accessed by shared code
3636  *
3637  * Should be called immediately after a valid link has been established.
3638  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3639  * and autonegotiation is enabled, the MAC flow control settings will be set
3640  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3641  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3642  *****************************************************************************/
3643 static int32_t
3644 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3645 {
3646         int32_t ret_val;
3647         uint16_t mii_status_reg;
3648         uint16_t mii_nway_adv_reg;
3649         uint16_t mii_nway_lp_ability_reg;
3650         uint16_t speed;
3651         uint16_t duplex;
3652
3653         DEBUGFUNC();
3654
3655         /* Check for the case where we have fiber media and auto-neg failed
3656          * so we had to force link.  In this case, we need to force the
3657          * configuration of the MAC to match the "fc" parameter.
3658          */
3659         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3660                 || ((hw->media_type == e1000_media_type_internal_serdes)
3661                 && (hw->autoneg_failed))
3662                 || ((hw->media_type == e1000_media_type_copper)
3663                 && (!hw->autoneg))) {
3664                 ret_val = e1000_force_mac_fc(hw);
3665                 if (ret_val < 0) {
3666                         DEBUGOUT("Error forcing flow control settings\n");
3667                         return ret_val;
3668                 }
3669         }
3670
3671         /* Check for the case where we have copper media and auto-neg is
3672          * enabled.  In this case, we need to check and see if Auto-Neg
3673          * has completed, and if so, how the PHY and link partner has
3674          * flow control configured.
3675          */
3676         if (hw->media_type == e1000_media_type_copper) {
3677                 /* Read the MII Status Register and check to see if AutoNeg
3678                  * has completed.  We read this twice because this reg has
3679                  * some "sticky" (latched) bits.
3680                  */
3681                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3682                         DEBUGOUT("PHY Read Error\n");
3683                         return -E1000_ERR_PHY;
3684                 }
3685                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3686                         DEBUGOUT("PHY Read Error\n");
3687                         return -E1000_ERR_PHY;
3688                 }
3689
3690                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3691                         /* The AutoNeg process has completed, so we now need to
3692                          * read both the Auto Negotiation Advertisement Register
3693                          * (Address 4) and the Auto_Negotiation Base Page Ability
3694                          * Register (Address 5) to determine how flow control was
3695                          * negotiated.
3696                          */
3697                         if (e1000_read_phy_reg
3698                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3699                                 DEBUGOUT("PHY Read Error\n");
3700                                 return -E1000_ERR_PHY;
3701                         }
3702                         if (e1000_read_phy_reg
3703                             (hw, PHY_LP_ABILITY,
3704                              &mii_nway_lp_ability_reg) < 0) {
3705                                 DEBUGOUT("PHY Read Error\n");
3706                                 return -E1000_ERR_PHY;
3707                         }
3708
3709                         /* Two bits in the Auto Negotiation Advertisement Register
3710                          * (Address 4) and two bits in the Auto Negotiation Base
3711                          * Page Ability Register (Address 5) determine flow control
3712                          * for both the PHY and the link partner.  The following
3713                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3714                          * 1999, describes these PAUSE resolution bits and how flow
3715                          * control is determined based upon these settings.
3716                          * NOTE:  DC = Don't Care
3717                          *
3718                          *   LOCAL DEVICE  |   LINK PARTNER
3719                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3720                          *-------|---------|-------|---------|--------------------
3721                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3722                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3723                          *   0   |    1    |   1   |    0    | e1000_fc_none
3724                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3725                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3726                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3727                          *   1   |    1    |   0   |    0    | e1000_fc_none
3728                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3729                          *
3730                          */
3731                         /* Are both PAUSE bits set to 1?  If so, this implies
3732                          * Symmetric Flow Control is enabled at both ends.  The
3733                          * ASM_DIR bits are irrelevant per the spec.
3734                          *
3735                          * For Symmetric Flow Control:
3736                          *
3737                          *   LOCAL DEVICE  |   LINK PARTNER
3738                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3739                          *-------|---------|-------|---------|--------------------
3740                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3741                          *
3742                          */
3743                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3744                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3745                                 /* Now we need to check if the user selected RX ONLY
3746                                  * of pause frames.  In this case, we had to advertise
3747                                  * FULL flow control because we could not advertise RX
3748                                  * ONLY. Hence, we must now check to see if we need to
3749                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3750                                  */
3751                                 if (hw->original_fc == e1000_fc_full) {
3752                                         hw->fc = e1000_fc_full;
3753                                         DEBUGOUT("Flow Control = FULL.\r\n");
3754                                 } else {
3755                                         hw->fc = e1000_fc_rx_pause;
3756                                         DEBUGOUT
3757                                             ("Flow Control = RX PAUSE frames only.\r\n");
3758                                 }
3759                         }
3760                         /* For receiving PAUSE frames ONLY.
3761                          *
3762                          *   LOCAL DEVICE  |   LINK PARTNER
3763                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3764                          *-------|---------|-------|---------|--------------------
3765                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3766                          *
3767                          */
3768                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3769                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3770                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3771                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3772                         {
3773                                 hw->fc = e1000_fc_tx_pause;
3774                                 DEBUGOUT
3775                                     ("Flow Control = TX PAUSE frames only.\r\n");
3776                         }
3777                         /* For transmitting PAUSE frames ONLY.
3778                          *
3779                          *   LOCAL DEVICE  |   LINK PARTNER
3780                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3781                          *-------|---------|-------|---------|--------------------
3782                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3783                          *
3784                          */
3785                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3786                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3787                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3788                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3789                         {
3790                                 hw->fc = e1000_fc_rx_pause;
3791                                 DEBUGOUT
3792                                     ("Flow Control = RX PAUSE frames only.\r\n");
3793                         }
3794                         /* Per the IEEE spec, at this point flow control should be
3795                          * disabled.  However, we want to consider that we could
3796                          * be connected to a legacy switch that doesn't advertise
3797                          * desired flow control, but can be forced on the link
3798                          * partner.  So if we advertised no flow control, that is
3799                          * what we will resolve to.  If we advertised some kind of
3800                          * receive capability (Rx Pause Only or Full Flow Control)
3801                          * and the link partner advertised none, we will configure
3802                          * ourselves to enable Rx Flow Control only.  We can do
3803                          * this safely for two reasons:  If the link partner really
3804                          * didn't want flow control enabled, and we enable Rx, no
3805                          * harm done since we won't be receiving any PAUSE frames
3806                          * anyway.  If the intent on the link partner was to have
3807                          * flow control enabled, then by us enabling RX only, we
3808                          * can at least receive pause frames and process them.
3809                          * This is a good idea because in most cases, since we are
3810                          * predominantly a server NIC, more times than not we will
3811                          * be asked to delay transmission of packets than asking
3812                          * our link partner to pause transmission of frames.
3813                          */
3814                         else if (hw->original_fc == e1000_fc_none ||
3815                                  hw->original_fc == e1000_fc_tx_pause) {
3816                                 hw->fc = e1000_fc_none;
3817                                 DEBUGOUT("Flow Control = NONE.\r\n");
3818                         } else {
3819                                 hw->fc = e1000_fc_rx_pause;
3820                                 DEBUGOUT
3821                                     ("Flow Control = RX PAUSE frames only.\r\n");
3822                         }
3823
3824                         /* Now we need to do one last check...  If we auto-
3825                          * negotiated to HALF DUPLEX, flow control should not be
3826                          * enabled per IEEE 802.3 spec.
3827                          */
3828                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3829
3830                         if (duplex == HALF_DUPLEX)
3831                                 hw->fc = e1000_fc_none;
3832
3833                         /* Now we call a subroutine to actually force the MAC
3834                          * controller to use the correct flow control settings.
3835                          */
3836                         ret_val = e1000_force_mac_fc(hw);
3837                         if (ret_val < 0) {
3838                                 DEBUGOUT
3839                                     ("Error forcing flow control settings\n");
3840                                 return ret_val;
3841                         }
3842                 } else {
3843                         DEBUGOUT
3844                             ("Copper PHY and Auto Neg has not completed.\r\n");
3845                 }
3846         }
3847         return E1000_SUCCESS;
3848 }
3849
3850 /******************************************************************************
3851  * Checks to see if the link status of the hardware has changed.
3852  *
3853  * hw - Struct containing variables accessed by shared code
3854  *
3855  * Called by any function that needs to check the link status of the adapter.
3856  *****************************************************************************/
3857 static int
3858 e1000_check_for_link(struct e1000_hw *hw)
3859 {
3860         uint32_t rxcw;
3861         uint32_t ctrl;
3862         uint32_t status;
3863         uint32_t rctl;
3864         uint32_t signal;
3865         int32_t ret_val;
3866         uint16_t phy_data;
3867         uint16_t lp_capability;
3868
3869         DEBUGFUNC();
3870
3871         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3872          * set when the optics detect a signal. On older adapters, it will be
3873          * cleared when there is a signal
3874          */
3875         ctrl = E1000_READ_REG(hw, CTRL);
3876         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3877                 signal = E1000_CTRL_SWDPIN1;
3878         else
3879                 signal = 0;
3880
3881         status = E1000_READ_REG(hw, STATUS);
3882         rxcw = E1000_READ_REG(hw, RXCW);
3883         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3884
3885         /* If we have a copper PHY then we only want to go out to the PHY
3886          * registers to see if Auto-Neg has completed and/or if our link
3887          * status has changed.  The get_link_status flag will be set if we
3888          * receive a Link Status Change interrupt or we have Rx Sequence
3889          * Errors.
3890          */
3891         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3892                 /* First we want to see if the MII Status Register reports
3893                  * link.  If so, then we want to get the current speed/duplex
3894                  * of the PHY.
3895                  * Read the register twice since the link bit is sticky.
3896                  */
3897                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3898                         DEBUGOUT("PHY Read Error\n");
3899                         return -E1000_ERR_PHY;
3900                 }
3901                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3902                         DEBUGOUT("PHY Read Error\n");
3903                         return -E1000_ERR_PHY;
3904                 }
3905
3906                 if (phy_data & MII_SR_LINK_STATUS) {
3907                         hw->get_link_status = false;
3908                 } else {
3909                         /* No link detected */
3910                         return -E1000_ERR_NOLINK;
3911                 }
3912
3913                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3914                  * have Si on board that is 82544 or newer, Auto
3915                  * Speed Detection takes care of MAC speed/duplex
3916                  * configuration.  So we only need to configure Collision
3917                  * Distance in the MAC.  Otherwise, we need to force
3918                  * speed/duplex on the MAC to the current PHY speed/duplex
3919                  * settings.
3920                  */
3921                 if (hw->mac_type >= e1000_82544)
3922                         e1000_config_collision_dist(hw);
3923                 else {
3924                         ret_val = e1000_config_mac_to_phy(hw);
3925                         if (ret_val < 0) {
3926                                 DEBUGOUT
3927                                     ("Error configuring MAC to PHY settings\n");
3928                                 return ret_val;
3929                         }
3930                 }
3931
3932                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3933                  * need to restore the desired flow control settings because we may
3934                  * have had to re-autoneg with a different link partner.
3935                  */
3936                 ret_val = e1000_config_fc_after_link_up(hw);
3937                 if (ret_val < 0) {
3938                         DEBUGOUT("Error configuring flow control\n");
3939                         return ret_val;
3940                 }
3941
3942                 /* At this point we know that we are on copper and we have
3943                  * auto-negotiated link.  These are conditions for checking the link
3944                  * parter capability register.  We use the link partner capability to
3945                  * determine if TBI Compatibility needs to be turned on or off.  If
3946                  * the link partner advertises any speed in addition to Gigabit, then
3947                  * we assume that they are GMII-based, and TBI compatibility is not
3948                  * needed. If no other speeds are advertised, we assume the link
3949                  * partner is TBI-based, and we turn on TBI Compatibility.
3950                  */
3951                 if (hw->tbi_compatibility_en) {
3952                         if (e1000_read_phy_reg
3953                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3954                                 DEBUGOUT("PHY Read Error\n");
3955                                 return -E1000_ERR_PHY;
3956                         }
3957                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3958                                              NWAY_LPAR_10T_FD_CAPS |
3959                                              NWAY_LPAR_100TX_HD_CAPS |
3960                                              NWAY_LPAR_100TX_FD_CAPS |
3961                                              NWAY_LPAR_100T4_CAPS)) {
3962                                 /* If our link partner advertises anything in addition to
3963                                  * gigabit, we do not need to enable TBI compatibility.
3964                                  */
3965                                 if (hw->tbi_compatibility_on) {
3966                                         /* If we previously were in the mode, turn it off. */
3967                                         rctl = E1000_READ_REG(hw, RCTL);
3968                                         rctl &= ~E1000_RCTL_SBP;
3969                                         E1000_WRITE_REG(hw, RCTL, rctl);
3970                                         hw->tbi_compatibility_on = false;
3971                                 }
3972                         } else {
3973                                 /* If TBI compatibility is was previously off, turn it on. For
3974                                  * compatibility with a TBI link partner, we will store bad
3975                                  * packets. Some frames have an additional byte on the end and
3976                                  * will look like CRC errors to to the hardware.
3977                                  */
3978                                 if (!hw->tbi_compatibility_on) {
3979                                         hw->tbi_compatibility_on = true;
3980                                         rctl = E1000_READ_REG(hw, RCTL);
3981                                         rctl |= E1000_RCTL_SBP;
3982                                         E1000_WRITE_REG(hw, RCTL, rctl);
3983                                 }
3984                         }
3985                 }
3986         }
3987         /* If we don't have link (auto-negotiation failed or link partner cannot
3988          * auto-negotiate), the cable is plugged in (we have signal), and our
3989          * link partner is not trying to auto-negotiate with us (we are receiving
3990          * idles or data), we need to force link up. We also need to give
3991          * auto-negotiation time to complete, in case the cable was just plugged
3992          * in. The autoneg_failed flag does this.
3993          */
3994         else if ((hw->media_type == e1000_media_type_fiber) &&
3995                  (!(status & E1000_STATUS_LU)) &&
3996                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3997                  (!(rxcw & E1000_RXCW_C))) {
3998                 if (hw->autoneg_failed == 0) {
3999                         hw->autoneg_failed = 1;
4000                         return 0;
4001                 }
4002                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4003
4004                 /* Disable auto-negotiation in the TXCW register */
4005                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4006
4007                 /* Force link-up and also force full-duplex. */
4008                 ctrl = E1000_READ_REG(hw, CTRL);
4009                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4010                 E1000_WRITE_REG(hw, CTRL, ctrl);
4011
4012                 /* Configure Flow Control after forcing link up. */
4013                 ret_val = e1000_config_fc_after_link_up(hw);
4014                 if (ret_val < 0) {
4015                         DEBUGOUT("Error configuring flow control\n");
4016                         return ret_val;
4017                 }
4018         }
4019         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4020          * auto-negotiation in the TXCW register and disable forced link in the
4021          * Device Control register in an attempt to auto-negotiate with our link
4022          * partner.
4023          */
4024         else if ((hw->media_type == e1000_media_type_fiber) &&
4025                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4026                 DEBUGOUT
4027                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4028                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
4029                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4030         }
4031         return 0;
4032 }
4033
4034 /******************************************************************************
4035 * Configure the MAC-to-PHY interface for 10/100Mbps
4036 *
4037 * hw - Struct containing variables accessed by shared code
4038 ******************************************************************************/
4039 static int32_t
4040 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4041 {
4042         int32_t ret_val = E1000_SUCCESS;
4043         uint32_t tipg;
4044         uint16_t reg_data;
4045
4046         DEBUGFUNC();
4047
4048         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4049         ret_val = e1000_write_kmrn_reg(hw,
4050                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4051         if (ret_val)
4052                 return ret_val;
4053
4054         /* Configure Transmit Inter-Packet Gap */
4055         tipg = E1000_READ_REG(hw, TIPG);
4056         tipg &= ~E1000_TIPG_IPGT_MASK;
4057         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4058         E1000_WRITE_REG(hw, TIPG, tipg);
4059
4060         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4061
4062         if (ret_val)
4063                 return ret_val;
4064
4065         if (duplex == HALF_DUPLEX)
4066                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4067         else
4068                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4069
4070         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4071
4072         return ret_val;
4073 }
4074
4075 static int32_t
4076 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4077 {
4078         int32_t ret_val = E1000_SUCCESS;
4079         uint16_t reg_data;
4080         uint32_t tipg;
4081
4082         DEBUGFUNC();
4083
4084         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4085         ret_val = e1000_write_kmrn_reg(hw,
4086                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4087         if (ret_val)
4088                 return ret_val;
4089
4090         /* Configure Transmit Inter-Packet Gap */
4091         tipg = E1000_READ_REG(hw, TIPG);
4092         tipg &= ~E1000_TIPG_IPGT_MASK;
4093         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4094         E1000_WRITE_REG(hw, TIPG, tipg);
4095
4096         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4097
4098         if (ret_val)
4099                 return ret_val;
4100
4101         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4102         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4103
4104         return ret_val;
4105 }
4106
4107 /******************************************************************************
4108  * Detects the current speed and duplex settings of the hardware.
4109  *
4110  * hw - Struct containing variables accessed by shared code
4111  * speed - Speed of the connection
4112  * duplex - Duplex setting of the connection
4113  *****************************************************************************/
4114 static int
4115 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4116                 uint16_t *duplex)
4117 {
4118         uint32_t status;
4119         int32_t ret_val;
4120         uint16_t phy_data;
4121
4122         DEBUGFUNC();
4123
4124         if (hw->mac_type >= e1000_82543) {
4125                 status = E1000_READ_REG(hw, STATUS);
4126                 if (status & E1000_STATUS_SPEED_1000) {
4127                         *speed = SPEED_1000;
4128                         DEBUGOUT("1000 Mbs, ");
4129                 } else if (status & E1000_STATUS_SPEED_100) {
4130                         *speed = SPEED_100;
4131                         DEBUGOUT("100 Mbs, ");
4132                 } else {
4133                         *speed = SPEED_10;
4134                         DEBUGOUT("10 Mbs, ");
4135                 }
4136
4137                 if (status & E1000_STATUS_FD) {
4138                         *duplex = FULL_DUPLEX;
4139                         DEBUGOUT("Full Duplex\r\n");
4140                 } else {
4141                         *duplex = HALF_DUPLEX;
4142                         DEBUGOUT(" Half Duplex\r\n");
4143                 }
4144         } else {
4145                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4146                 *speed = SPEED_1000;
4147                 *duplex = FULL_DUPLEX;
4148         }
4149
4150         /* IGP01 PHY may advertise full duplex operation after speed downgrade
4151          * even if it is operating at half duplex.  Here we set the duplex
4152          * settings to match the duplex in the link partner's capabilities.
4153          */
4154         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4155                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4156                 if (ret_val)
4157                         return ret_val;
4158
4159                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4160                         *duplex = HALF_DUPLEX;
4161                 else {
4162                         ret_val = e1000_read_phy_reg(hw,
4163                                         PHY_LP_ABILITY, &phy_data);
4164                         if (ret_val)
4165                                 return ret_val;
4166                         if ((*speed == SPEED_100 &&
4167                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4168                                 || (*speed == SPEED_10
4169                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4170                                 *duplex = HALF_DUPLEX;
4171                 }
4172         }
4173
4174         if ((hw->mac_type == e1000_80003es2lan) &&
4175                 (hw->media_type == e1000_media_type_copper)) {
4176                 if (*speed == SPEED_1000)
4177                         ret_val = e1000_configure_kmrn_for_1000(hw);
4178                 else
4179                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4180                 if (ret_val)
4181                         return ret_val;
4182         }
4183         return E1000_SUCCESS;
4184 }
4185
4186 /******************************************************************************
4187 * Blocks until autoneg completes or times out (~4.5 seconds)
4188 *
4189 * hw - Struct containing variables accessed by shared code
4190 ******************************************************************************/
4191 static int
4192 e1000_wait_autoneg(struct e1000_hw *hw)
4193 {
4194         uint16_t i;
4195         uint16_t phy_data;
4196
4197         DEBUGFUNC();
4198         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4199
4200         /* We will wait for autoneg to complete or timeout to expire. */
4201         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4202                 /* Read the MII Status Register and wait for Auto-Neg
4203                  * Complete bit to be set.
4204                  */
4205                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4206                         DEBUGOUT("PHY Read Error\n");
4207                         return -E1000_ERR_PHY;
4208                 }
4209                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4210                         DEBUGOUT("PHY Read Error\n");
4211                         return -E1000_ERR_PHY;
4212                 }
4213                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4214                         DEBUGOUT("Auto-Neg complete.\n");
4215                         return 0;
4216                 }
4217                 mdelay(100);
4218         }
4219         DEBUGOUT("Auto-Neg timedout.\n");
4220         return -E1000_ERR_TIMEOUT;
4221 }
4222
4223 /******************************************************************************
4224 * Raises the Management Data Clock
4225 *
4226 * hw - Struct containing variables accessed by shared code
4227 * ctrl - Device control register's current value
4228 ******************************************************************************/
4229 static void
4230 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4231 {
4232         /* Raise the clock input to the Management Data Clock (by setting the MDC
4233          * bit), and then delay 2 microseconds.
4234          */
4235         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4236         E1000_WRITE_FLUSH(hw);
4237         udelay(2);
4238 }
4239
4240 /******************************************************************************
4241 * Lowers the Management Data Clock
4242 *
4243 * hw - Struct containing variables accessed by shared code
4244 * ctrl - Device control register's current value
4245 ******************************************************************************/
4246 static void
4247 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4248 {
4249         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4250          * bit), and then delay 2 microseconds.
4251          */
4252         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4253         E1000_WRITE_FLUSH(hw);
4254         udelay(2);
4255 }
4256
4257 /******************************************************************************
4258 * Shifts data bits out to the PHY
4259 *
4260 * hw - Struct containing variables accessed by shared code
4261 * data - Data to send out to the PHY
4262 * count - Number of bits to shift out
4263 *
4264 * Bits are shifted out in MSB to LSB order.
4265 ******************************************************************************/
4266 static void
4267 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4268 {
4269         uint32_t ctrl;
4270         uint32_t mask;
4271
4272         /* We need to shift "count" number of bits out to the PHY. So, the value
4273          * in the "data" parameter will be shifted out to the PHY one bit at a
4274          * time. In order to do this, "data" must be broken down into bits.
4275          */
4276         mask = 0x01;
4277         mask <<= (count - 1);
4278
4279         ctrl = E1000_READ_REG(hw, CTRL);
4280
4281         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4282         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4283
4284         while (mask) {
4285                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4286                  * then raising and lowering the Management Data Clock. A "0" is
4287                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4288                  * raising and lowering the clock.
4289                  */
4290                 if (data & mask)
4291                         ctrl |= E1000_CTRL_MDIO;
4292                 else
4293                         ctrl &= ~E1000_CTRL_MDIO;
4294
4295                 E1000_WRITE_REG(hw, CTRL, ctrl);
4296                 E1000_WRITE_FLUSH(hw);
4297
4298                 udelay(2);
4299
4300                 e1000_raise_mdi_clk(hw, &ctrl);
4301                 e1000_lower_mdi_clk(hw, &ctrl);
4302
4303                 mask = mask >> 1;
4304         }
4305 }
4306
4307 /******************************************************************************
4308 * Shifts data bits in from the PHY
4309 *
4310 * hw - Struct containing variables accessed by shared code
4311 *
4312 * Bits are shifted in in MSB to LSB order.
4313 ******************************************************************************/
4314 static uint16_t
4315 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4316 {
4317         uint32_t ctrl;
4318         uint16_t data = 0;
4319         uint8_t i;
4320
4321         /* In order to read a register from the PHY, we need to shift in a total
4322          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4323          * to avoid contention on the MDIO pin when a read operation is performed.
4324          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4325          * by raising the input to the Management Data Clock (setting the MDC bit),
4326          * and then reading the value of the MDIO bit.
4327          */
4328         ctrl = E1000_READ_REG(hw, CTRL);
4329
4330         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4331         ctrl &= ~E1000_CTRL_MDIO_DIR;
4332         ctrl &= ~E1000_CTRL_MDIO;
4333
4334         E1000_WRITE_REG(hw, CTRL, ctrl);
4335         E1000_WRITE_FLUSH(hw);
4336
4337         /* Raise and Lower the clock before reading in the data. This accounts for
4338          * the turnaround bits. The first clock occurred when we clocked out the
4339          * last bit of the Register Address.
4340          */
4341         e1000_raise_mdi_clk(hw, &ctrl);
4342         e1000_lower_mdi_clk(hw, &ctrl);
4343
4344         for (data = 0, i = 0; i < 16; i++) {
4345                 data = data << 1;
4346                 e1000_raise_mdi_clk(hw, &ctrl);
4347                 ctrl = E1000_READ_REG(hw, CTRL);
4348                 /* Check to see if we shifted in a "1". */
4349                 if (ctrl & E1000_CTRL_MDIO)
4350                         data |= 1;
4351                 e1000_lower_mdi_clk(hw, &ctrl);
4352         }
4353
4354         e1000_raise_mdi_clk(hw, &ctrl);
4355         e1000_lower_mdi_clk(hw, &ctrl);
4356
4357         return data;
4358 }
4359
4360 /*****************************************************************************
4361 * Reads the value from a PHY register
4362 *
4363 * hw - Struct containing variables accessed by shared code
4364 * reg_addr - address of the PHY register to read
4365 ******************************************************************************/
4366 static int
4367 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4368 {
4369         uint32_t i;
4370         uint32_t mdic = 0;
4371         const uint32_t phy_addr = 1;
4372
4373         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4374                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4375                 return -E1000_ERR_PARAM;
4376         }
4377
4378         if (hw->mac_type > e1000_82543) {
4379                 /* Set up Op-code, Phy Address, and register address in the MDI
4380                  * Control register.  The MAC will take care of interfacing with the
4381                  * PHY to retrieve the desired data.
4382                  */
4383                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4384                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4385                         (E1000_MDIC_OP_READ));
4386
4387                 E1000_WRITE_REG(hw, MDIC, mdic);
4388
4389                 /* Poll the ready bit to see if the MDI read completed */
4390                 for (i = 0; i < 64; i++) {
4391                         udelay(10);
4392                         mdic = E1000_READ_REG(hw, MDIC);
4393                         if (mdic & E1000_MDIC_READY)
4394                                 break;
4395                 }
4396                 if (!(mdic & E1000_MDIC_READY)) {
4397                         DEBUGOUT("MDI Read did not complete\n");
4398                         return -E1000_ERR_PHY;
4399                 }
4400                 if (mdic & E1000_MDIC_ERROR) {
4401                         DEBUGOUT("MDI Error\n");
4402                         return -E1000_ERR_PHY;
4403                 }
4404                 *phy_data = (uint16_t) mdic;
4405         } else {
4406                 /* We must first send a preamble through the MDIO pin to signal the
4407                  * beginning of an MII instruction.  This is done by sending 32
4408                  * consecutive "1" bits.
4409                  */
4410                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4411
4412                 /* Now combine the next few fields that are required for a read
4413                  * operation.  We use this method instead of calling the
4414                  * e1000_shift_out_mdi_bits routine five different times. The format of
4415                  * a MII read instruction consists of a shift out of 14 bits and is
4416                  * defined as follows:
4417                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4418                  * followed by a shift in of 18 bits.  This first two bits shifted in
4419                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4420                  * READ operation is performed.  These two bits are thrown away
4421                  * followed by a shift in of 16 bits which contains the desired data.
4422                  */
4423                 mdic = ((reg_addr) | (phy_addr << 5) |
4424                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4425
4426                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4427
4428                 /* Now that we've shifted out the read command to the MII, we need to
4429                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4430                  * register address.
4431                  */
4432                 *phy_data = e1000_shift_in_mdi_bits(hw);
4433         }
4434         return 0;
4435 }
4436
4437 /******************************************************************************
4438 * Writes a value to a PHY register
4439 *
4440 * hw - Struct containing variables accessed by shared code
4441 * reg_addr - address of the PHY register to write
4442 * data - data to write to the PHY
4443 ******************************************************************************/
4444 static int
4445 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4446 {
4447         uint32_t i;
4448         uint32_t mdic = 0;
4449         const uint32_t phy_addr = 1;
4450
4451         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4452                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4453                 return -E1000_ERR_PARAM;
4454         }
4455
4456         if (hw->mac_type > e1000_82543) {
4457                 /* Set up Op-code, Phy Address, register address, and data intended
4458                  * for the PHY register in the MDI Control register.  The MAC will take
4459                  * care of interfacing with the PHY to send the desired data.
4460                  */
4461                 mdic = (((uint32_t) phy_data) |
4462                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4463                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4464                         (E1000_MDIC_OP_WRITE));
4465
4466                 E1000_WRITE_REG(hw, MDIC, mdic);
4467
4468                 /* Poll the ready bit to see if the MDI read completed */
4469                 for (i = 0; i < 64; i++) {
4470                         udelay(10);
4471                         mdic = E1000_READ_REG(hw, MDIC);
4472                         if (mdic & E1000_MDIC_READY)
4473                                 break;
4474                 }
4475                 if (!(mdic & E1000_MDIC_READY)) {
4476                         DEBUGOUT("MDI Write did not complete\n");
4477                         return -E1000_ERR_PHY;
4478                 }
4479         } else {
4480                 /* We'll need to use the SW defined pins to shift the write command
4481                  * out to the PHY. We first send a preamble to the PHY to signal the
4482                  * beginning of the MII instruction.  This is done by sending 32
4483                  * consecutive "1" bits.
4484                  */
4485                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4486
4487                 /* Now combine the remaining required fields that will indicate a
4488                  * write operation. We use this method instead of calling the
4489                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4490                  * format of a MII write instruction is as follows:
4491                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4492                  */
4493                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4494                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4495                 mdic <<= 16;
4496                 mdic |= (uint32_t) phy_data;
4497
4498                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4499         }
4500         return 0;
4501 }
4502
4503 /******************************************************************************
4504  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4505  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4506  * the caller to figure out how to deal with it.
4507  *
4508  * hw - Struct containing variables accessed by shared code
4509  *
4510  * returns: - E1000_BLK_PHY_RESET
4511  *            E1000_SUCCESS
4512  *
4513  *****************************************************************************/
4514 int32_t
4515 e1000_check_phy_reset_block(struct e1000_hw *hw)
4516 {
4517         uint32_t manc = 0;
4518         uint32_t fwsm = 0;
4519
4520         if (hw->mac_type == e1000_ich8lan) {
4521                 fwsm = E1000_READ_REG(hw, FWSM);
4522                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4523                                                 : E1000_BLK_PHY_RESET;
4524         }
4525
4526         if (hw->mac_type > e1000_82547_rev_2)
4527                 manc = E1000_READ_REG(hw, MANC);
4528         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4529                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4530 }
4531
4532 /***************************************************************************
4533  * Checks if the PHY configuration is done
4534  *
4535  * hw: Struct containing variables accessed by shared code
4536  *
4537  * returns: - E1000_ERR_RESET if fail to reset MAC
4538  *            E1000_SUCCESS at any other case.
4539  *
4540  ***************************************************************************/
4541 static int32_t
4542 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4543 {
4544         int32_t timeout = PHY_CFG_TIMEOUT;
4545         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4546
4547         DEBUGFUNC();
4548
4549         switch (hw->mac_type) {
4550         default:
4551                 mdelay(10);
4552                 break;
4553
4554         case e1000_80003es2lan:
4555                 /* Separate *_CFG_DONE_* bit for each port */
4556                 if (e1000_is_second_port(hw))
4557                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4558                 /* Fall Through */
4559
4560         case e1000_82571:
4561         case e1000_82572:
4562         case e1000_igb:
4563                 while (timeout) {
4564                         if (hw->mac_type == e1000_igb) {
4565                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4566                                         break;
4567                         } else {
4568                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4569                                         break;
4570                         }
4571                         mdelay(1);
4572                         timeout--;
4573                 }
4574                 if (!timeout) {
4575                         DEBUGOUT("MNG configuration cycle has not "
4576                                         "completed.\n");
4577                         return -E1000_ERR_RESET;
4578                 }
4579                 break;
4580         }
4581
4582         return E1000_SUCCESS;
4583 }
4584
4585 /******************************************************************************
4586 * Returns the PHY to the power-on reset state
4587 *
4588 * hw - Struct containing variables accessed by shared code
4589 ******************************************************************************/
4590 int32_t
4591 e1000_phy_hw_reset(struct e1000_hw *hw)
4592 {
4593         uint16_t swfw = E1000_SWFW_PHY0_SM;
4594         uint32_t ctrl, ctrl_ext;
4595         uint32_t led_ctrl;
4596         int32_t ret_val;
4597
4598         DEBUGFUNC();
4599
4600         /* In the case of the phy reset being blocked, it's not an error, we
4601          * simply return success without performing the reset. */
4602         ret_val = e1000_check_phy_reset_block(hw);
4603         if (ret_val)
4604                 return E1000_SUCCESS;
4605
4606         DEBUGOUT("Resetting Phy...\n");
4607
4608         if (hw->mac_type > e1000_82543) {
4609                 if (e1000_is_second_port(hw))
4610                         swfw = E1000_SWFW_PHY1_SM;
4611
4612                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4613                         DEBUGOUT("Unable to acquire swfw sync\n");
4614                         return -E1000_ERR_SWFW_SYNC;
4615                 }
4616
4617                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4618                  * bit. Then, take it out of reset.
4619                  */
4620                 ctrl = E1000_READ_REG(hw, CTRL);
4621                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4622                 E1000_WRITE_FLUSH(hw);
4623
4624                 if (hw->mac_type < e1000_82571)
4625                         udelay(10);
4626                 else
4627                         udelay(100);
4628
4629                 E1000_WRITE_REG(hw, CTRL, ctrl);
4630                 E1000_WRITE_FLUSH(hw);
4631
4632                 if (hw->mac_type >= e1000_82571)
4633                         mdelay(10);
4634
4635         } else {
4636                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4637                  * bit to put the PHY into reset. Then, take it out of reset.
4638                  */
4639                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4640                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4641                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4642                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4643                 E1000_WRITE_FLUSH(hw);
4644                 mdelay(10);
4645                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4646                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4647                 E1000_WRITE_FLUSH(hw);
4648         }
4649         udelay(150);
4650
4651         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4652                 /* Configure activity LED after PHY reset */
4653                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4654                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4655                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4656                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4657         }
4658
4659         e1000_swfw_sync_release(hw, swfw);
4660
4661         /* Wait for FW to finish PHY configuration. */
4662         ret_val = e1000_get_phy_cfg_done(hw);
4663         if (ret_val != E1000_SUCCESS)
4664                 return ret_val;
4665
4666         return ret_val;
4667 }
4668
4669 /******************************************************************************
4670  * IGP phy init script - initializes the GbE PHY
4671  *
4672  * hw - Struct containing variables accessed by shared code
4673  *****************************************************************************/
4674 static void
4675 e1000_phy_init_script(struct e1000_hw *hw)
4676 {
4677         uint32_t ret_val;
4678         uint16_t phy_saved_data;
4679         DEBUGFUNC();
4680
4681         if (hw->phy_init_script) {
4682                 mdelay(20);
4683
4684                 /* Save off the current value of register 0x2F5B to be
4685                  * restored at the end of this routine. */
4686                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4687
4688                 /* Disabled the PHY transmitter */
4689                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4690
4691                 mdelay(20);
4692
4693                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4694
4695                 mdelay(5);
4696
4697                 switch (hw->mac_type) {
4698                 case e1000_82541:
4699                 case e1000_82547:
4700                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4701
4702                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4703
4704                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4705
4706                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4707
4708                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4709
4710                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4711
4712                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4713
4714                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4715
4716                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4717                         break;
4718
4719                 case e1000_82541_rev_2:
4720                 case e1000_82547_rev_2:
4721                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4722                         break;
4723                 default:
4724                         break;
4725                 }
4726
4727                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4728
4729                 mdelay(20);
4730
4731                 /* Now enable the transmitter */
4732                 if (!ret_val)
4733                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4734
4735                 if (hw->mac_type == e1000_82547) {
4736                         uint16_t fused, fine, coarse;
4737
4738                         /* Move to analog registers page */
4739                         e1000_read_phy_reg(hw,
4740                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4741
4742                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4743                                 e1000_read_phy_reg(hw,
4744                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4745
4746                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4747                                 coarse = fused
4748                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4749
4750                                 if (coarse >
4751                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4752                                         coarse -=
4753                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4754                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4755                                 } else if (coarse
4756                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4757                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4758
4759                                 fused = (fused
4760                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4761                                         (fine
4762                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4763                                         (coarse
4764                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4765
4766                                 e1000_write_phy_reg(hw,
4767                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4768                                 e1000_write_phy_reg(hw,
4769                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4770                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4771                         }
4772                 }
4773         }
4774 }
4775
4776 /******************************************************************************
4777 * Resets the PHY
4778 *
4779 * hw - Struct containing variables accessed by shared code
4780 *
4781 * Sets bit 15 of the MII Control register
4782 ******************************************************************************/
4783 int32_t
4784 e1000_phy_reset(struct e1000_hw *hw)
4785 {
4786         int32_t ret_val;
4787         uint16_t phy_data;
4788
4789         DEBUGFUNC();
4790
4791         /* In the case of the phy reset being blocked, it's not an error, we
4792          * simply return success without performing the reset. */
4793         ret_val = e1000_check_phy_reset_block(hw);
4794         if (ret_val)
4795                 return E1000_SUCCESS;
4796
4797         switch (hw->phy_type) {
4798         case e1000_phy_igp:
4799         case e1000_phy_igp_2:
4800         case e1000_phy_igp_3:
4801         case e1000_phy_ife:
4802         case e1000_phy_igb:
4803                 ret_val = e1000_phy_hw_reset(hw);
4804                 if (ret_val)
4805                         return ret_val;
4806                 break;
4807         default:
4808                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4809                 if (ret_val)
4810                         return ret_val;
4811
4812                 phy_data |= MII_CR_RESET;
4813                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4814                 if (ret_val)
4815                         return ret_val;
4816
4817                 udelay(1);
4818                 break;
4819         }
4820
4821         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4822                 e1000_phy_init_script(hw);
4823
4824         return E1000_SUCCESS;
4825 }
4826
4827 static int e1000_set_phy_type (struct e1000_hw *hw)
4828 {
4829         DEBUGFUNC ();
4830
4831         if (hw->mac_type == e1000_undefined)
4832                 return -E1000_ERR_PHY_TYPE;
4833
4834         switch (hw->phy_id) {
4835         case M88E1000_E_PHY_ID:
4836         case M88E1000_I_PHY_ID:
4837         case M88E1011_I_PHY_ID:
4838         case M88E1111_I_PHY_ID:
4839                 hw->phy_type = e1000_phy_m88;
4840                 break;
4841         case IGP01E1000_I_PHY_ID:
4842                 if (hw->mac_type == e1000_82541 ||
4843                         hw->mac_type == e1000_82541_rev_2 ||
4844                         hw->mac_type == e1000_82547 ||
4845                         hw->mac_type == e1000_82547_rev_2) {
4846                         hw->phy_type = e1000_phy_igp;
4847                         break;
4848                 }
4849         case IGP03E1000_E_PHY_ID:
4850                 hw->phy_type = e1000_phy_igp_3;
4851                 break;
4852         case IFE_E_PHY_ID:
4853         case IFE_PLUS_E_PHY_ID:
4854         case IFE_C_E_PHY_ID:
4855                 hw->phy_type = e1000_phy_ife;
4856                 break;
4857         case GG82563_E_PHY_ID:
4858                 if (hw->mac_type == e1000_80003es2lan) {
4859                         hw->phy_type = e1000_phy_gg82563;
4860                         break;
4861                 }
4862         case BME1000_E_PHY_ID:
4863                 hw->phy_type = e1000_phy_bm;
4864                 break;
4865         case I210_I_PHY_ID:
4866                 hw->phy_type = e1000_phy_igb;
4867                 break;
4868                 /* Fall Through */
4869         default:
4870                 /* Should never have loaded on this device */
4871                 hw->phy_type = e1000_phy_undefined;
4872                 return -E1000_ERR_PHY_TYPE;
4873         }
4874
4875         return E1000_SUCCESS;
4876 }
4877
4878 /******************************************************************************
4879 * Probes the expected PHY address for known PHY IDs
4880 *
4881 * hw - Struct containing variables accessed by shared code
4882 ******************************************************************************/
4883 static int32_t
4884 e1000_detect_gig_phy(struct e1000_hw *hw)
4885 {
4886         int32_t phy_init_status, ret_val;
4887         uint16_t phy_id_high, phy_id_low;
4888         bool match = false;
4889
4890         DEBUGFUNC();
4891
4892         /* The 82571 firmware may still be configuring the PHY.  In this
4893          * case, we cannot access the PHY until the configuration is done.  So
4894          * we explicitly set the PHY values. */
4895         if (hw->mac_type == e1000_82571 ||
4896                 hw->mac_type == e1000_82572) {
4897                 hw->phy_id = IGP01E1000_I_PHY_ID;
4898                 hw->phy_type = e1000_phy_igp_2;
4899                 return E1000_SUCCESS;
4900         }
4901
4902         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4903          * work- around that forces PHY page 0 to be set or the reads fail.
4904          * The rest of the code in this routine uses e1000_read_phy_reg to
4905          * read the PHY ID.  So for ESB-2 we need to have this set so our
4906          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4907          * the routines below will figure this out as well. */
4908         if (hw->mac_type == e1000_80003es2lan)
4909                 hw->phy_type = e1000_phy_gg82563;
4910
4911         /* Read the PHY ID Registers to identify which PHY is onboard. */
4912         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4913         if (ret_val)
4914                 return ret_val;
4915
4916         hw->phy_id = (uint32_t) (phy_id_high << 16);
4917         udelay(20);
4918         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4919         if (ret_val)
4920                 return ret_val;
4921
4922         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4923         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4924
4925         switch (hw->mac_type) {
4926         case e1000_82543:
4927                 if (hw->phy_id == M88E1000_E_PHY_ID)
4928                         match = true;
4929                 break;
4930         case e1000_82544:
4931                 if (hw->phy_id == M88E1000_I_PHY_ID)
4932                         match = true;
4933                 break;
4934         case e1000_82540:
4935         case e1000_82545:
4936         case e1000_82545_rev_3:
4937         case e1000_82546:
4938         case e1000_82546_rev_3:
4939                 if (hw->phy_id == M88E1011_I_PHY_ID)
4940                         match = true;
4941                 break;
4942         case e1000_82541:
4943         case e1000_82541_rev_2:
4944         case e1000_82547:
4945         case e1000_82547_rev_2:
4946                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4947                         match = true;
4948
4949                 break;
4950         case e1000_82573:
4951                 if (hw->phy_id == M88E1111_I_PHY_ID)
4952                         match = true;
4953                 break;
4954         case e1000_82574:
4955                 if (hw->phy_id == BME1000_E_PHY_ID)
4956                         match = true;
4957                 break;
4958         case e1000_80003es2lan:
4959                 if (hw->phy_id == GG82563_E_PHY_ID)
4960                         match = true;
4961                 break;
4962         case e1000_ich8lan:
4963                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4964                         match = true;
4965                 if (hw->phy_id == IFE_E_PHY_ID)
4966                         match = true;
4967                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4968                         match = true;
4969                 if (hw->phy_id == IFE_C_E_PHY_ID)
4970                         match = true;
4971                 break;
4972         case e1000_igb:
4973                 if (hw->phy_id == I210_I_PHY_ID)
4974                         match = true;
4975                 break;
4976         default:
4977                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4978                 return -E1000_ERR_CONFIG;
4979         }
4980
4981         phy_init_status = e1000_set_phy_type(hw);
4982
4983         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4984                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4985                 return 0;
4986         }
4987         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4988         return -E1000_ERR_PHY;
4989 }
4990
4991 /*****************************************************************************
4992  * Set media type and TBI compatibility.
4993  *
4994  * hw - Struct containing variables accessed by shared code
4995  * **************************************************************************/
4996 void
4997 e1000_set_media_type(struct e1000_hw *hw)
4998 {
4999         uint32_t status;
5000
5001         DEBUGFUNC();
5002
5003         if (hw->mac_type != e1000_82543) {
5004                 /* tbi_compatibility is only valid on 82543 */
5005                 hw->tbi_compatibility_en = false;
5006         }
5007
5008         switch (hw->device_id) {
5009         case E1000_DEV_ID_82545GM_SERDES:
5010         case E1000_DEV_ID_82546GB_SERDES:
5011         case E1000_DEV_ID_82571EB_SERDES:
5012         case E1000_DEV_ID_82571EB_SERDES_DUAL:
5013         case E1000_DEV_ID_82571EB_SERDES_QUAD:
5014         case E1000_DEV_ID_82572EI_SERDES:
5015         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5016                 hw->media_type = e1000_media_type_internal_serdes;
5017                 break;
5018         default:
5019                 switch (hw->mac_type) {
5020                 case e1000_82542_rev2_0:
5021                 case e1000_82542_rev2_1:
5022                         hw->media_type = e1000_media_type_fiber;
5023                         break;
5024                 case e1000_ich8lan:
5025                 case e1000_82573:
5026                 case e1000_82574:
5027                 case e1000_igb:
5028                         /* The STATUS_TBIMODE bit is reserved or reused
5029                          * for the this device.
5030                          */
5031                         hw->media_type = e1000_media_type_copper;
5032                         break;
5033                 default:
5034                         status = E1000_READ_REG(hw, STATUS);
5035                         if (status & E1000_STATUS_TBIMODE) {
5036                                 hw->media_type = e1000_media_type_fiber;
5037                                 /* tbi_compatibility not valid on fiber */
5038                                 hw->tbi_compatibility_en = false;
5039                         } else {
5040                                 hw->media_type = e1000_media_type_copper;
5041                         }
5042                         break;
5043                 }
5044         }
5045 }
5046
5047 /**
5048  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5049  *
5050  * e1000_sw_init initializes the Adapter private data structure.
5051  * Fields are initialized based on PCI device information and
5052  * OS network device settings (MTU size).
5053  **/
5054
5055 static int
5056 e1000_sw_init(struct e1000_hw *hw)
5057 {
5058         int result;
5059
5060         /* PCI config space info */
5061 #ifdef CONFIG_DM_ETH
5062         dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5063         dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5064         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5065                              &hw->subsystem_vendor_id);
5066         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5067
5068         dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5069         dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5070 #else
5071         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5072         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5073         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5074                              &hw->subsystem_vendor_id);
5075         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5076
5077         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5078         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5079 #endif
5080
5081         /* identify the MAC */
5082         result = e1000_set_mac_type(hw);
5083         if (result) {
5084                 E1000_ERR(hw, "Unknown MAC Type\n");
5085                 return result;
5086         }
5087
5088         switch (hw->mac_type) {
5089         default:
5090                 break;
5091         case e1000_82541:
5092         case e1000_82547:
5093         case e1000_82541_rev_2:
5094         case e1000_82547_rev_2:
5095                 hw->phy_init_script = 1;
5096                 break;
5097         }
5098
5099         /* flow control settings */
5100         hw->fc_high_water = E1000_FC_HIGH_THRESH;
5101         hw->fc_low_water = E1000_FC_LOW_THRESH;
5102         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5103         hw->fc_send_xon = 1;
5104
5105         /* Media type - copper or fiber */
5106         hw->tbi_compatibility_en = true;
5107         e1000_set_media_type(hw);
5108
5109         if (hw->mac_type >= e1000_82543) {
5110                 uint32_t status = E1000_READ_REG(hw, STATUS);
5111
5112                 if (status & E1000_STATUS_TBIMODE) {
5113                         DEBUGOUT("fiber interface\n");
5114                         hw->media_type = e1000_media_type_fiber;
5115                 } else {
5116                         DEBUGOUT("copper interface\n");
5117                         hw->media_type = e1000_media_type_copper;
5118                 }
5119         } else {
5120                 hw->media_type = e1000_media_type_fiber;
5121         }
5122
5123         hw->wait_autoneg_complete = true;
5124         if (hw->mac_type < e1000_82543)
5125                 hw->report_tx_early = 0;
5126         else
5127                 hw->report_tx_early = 1;
5128
5129         return E1000_SUCCESS;
5130 }
5131
5132 void
5133 fill_rx(struct e1000_hw *hw)
5134 {
5135         struct e1000_rx_desc *rd;
5136         unsigned long flush_start, flush_end;
5137
5138         rx_last = rx_tail;
5139         rd = rx_base + rx_tail;
5140         rx_tail = (rx_tail + 1) % 8;
5141         memset(rd, 0, 16);
5142         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
5143
5144         /*
5145          * Make sure there are no stale data in WB over this area, which
5146          * might get written into the memory while the e1000 also writes
5147          * into the same memory area.
5148          */
5149         invalidate_dcache_range((unsigned long)packet,
5150                                 (unsigned long)packet + 4096);
5151         /* Dump the DMA descriptor into RAM. */
5152         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5153         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5154         flush_dcache_range(flush_start, flush_end);
5155
5156         E1000_WRITE_REG(hw, RDT, rx_tail);
5157 }
5158
5159 /**
5160  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5161  * @adapter: board private structure
5162  *
5163  * Configure the Tx unit of the MAC after a reset.
5164  **/
5165
5166 static void
5167 e1000_configure_tx(struct e1000_hw *hw)
5168 {
5169         unsigned long tctl;
5170         unsigned long tipg, tarc;
5171         uint32_t ipgr1, ipgr2;
5172
5173         E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
5174         E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
5175
5176         E1000_WRITE_REG(hw, TDLEN, 128);
5177
5178         /* Setup the HW Tx Head and Tail descriptor pointers */
5179         E1000_WRITE_REG(hw, TDH, 0);
5180         E1000_WRITE_REG(hw, TDT, 0);
5181         tx_tail = 0;
5182
5183         /* Set the default values for the Tx Inter Packet Gap timer */
5184         if (hw->mac_type <= e1000_82547_rev_2 &&
5185             (hw->media_type == e1000_media_type_fiber ||
5186              hw->media_type == e1000_media_type_internal_serdes))
5187                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5188         else
5189                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5190
5191         /* Set the default values for the Tx Inter Packet Gap timer */
5192         switch (hw->mac_type) {
5193         case e1000_82542_rev2_0:
5194         case e1000_82542_rev2_1:
5195                 tipg = DEFAULT_82542_TIPG_IPGT;
5196                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5197                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5198                 break;
5199         case e1000_80003es2lan:
5200                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5201                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5202                 break;
5203         default:
5204                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5205                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5206                 break;
5207         }
5208         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5209         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5210         E1000_WRITE_REG(hw, TIPG, tipg);
5211         /* Program the Transmit Control Register */
5212         tctl = E1000_READ_REG(hw, TCTL);
5213         tctl &= ~E1000_TCTL_CT;
5214         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5215             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5216
5217         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5218                 tarc = E1000_READ_REG(hw, TARC0);
5219                 /* set the speed mode bit, we'll clear it if we're not at
5220                  * gigabit link later */
5221                 /* git bit can be set to 1*/
5222         } else if (hw->mac_type == e1000_80003es2lan) {
5223                 tarc = E1000_READ_REG(hw, TARC0);
5224                 tarc |= 1;
5225                 E1000_WRITE_REG(hw, TARC0, tarc);
5226                 tarc = E1000_READ_REG(hw, TARC1);
5227                 tarc |= 1;
5228                 E1000_WRITE_REG(hw, TARC1, tarc);
5229         }
5230
5231
5232         e1000_config_collision_dist(hw);
5233         /* Setup Transmit Descriptor Settings for eop descriptor */
5234         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5235
5236         /* Need to set up RS bit */
5237         if (hw->mac_type < e1000_82543)
5238                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5239         else
5240                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5241
5242
5243         if (hw->mac_type == e1000_igb) {
5244                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5245
5246                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5247                 reg_txdctl |= 1 << 25;
5248                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5249                 mdelay(20);
5250         }
5251
5252
5253
5254         E1000_WRITE_REG(hw, TCTL, tctl);
5255
5256
5257 }
5258
5259 /**
5260  * e1000_setup_rctl - configure the receive control register
5261  * @adapter: Board private structure
5262  **/
5263 static void
5264 e1000_setup_rctl(struct e1000_hw *hw)
5265 {
5266         uint32_t rctl;
5267
5268         rctl = E1000_READ_REG(hw, RCTL);
5269
5270         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5271
5272         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5273                 | E1000_RCTL_RDMTS_HALF;        /* |
5274                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5275
5276         if (hw->tbi_compatibility_on == 1)
5277                 rctl |= E1000_RCTL_SBP;
5278         else
5279                 rctl &= ~E1000_RCTL_SBP;
5280
5281         rctl &= ~(E1000_RCTL_SZ_4096);
5282                 rctl |= E1000_RCTL_SZ_2048;
5283                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5284         E1000_WRITE_REG(hw, RCTL, rctl);
5285 }
5286
5287 /**
5288  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5289  * @adapter: board private structure
5290  *
5291  * Configure the Rx unit of the MAC after a reset.
5292  **/
5293 static void
5294 e1000_configure_rx(struct e1000_hw *hw)
5295 {
5296         unsigned long rctl, ctrl_ext;
5297         rx_tail = 0;
5298
5299         /* make sure receives are disabled while setting up the descriptors */
5300         rctl = E1000_READ_REG(hw, RCTL);
5301         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5302         if (hw->mac_type >= e1000_82540) {
5303                 /* Set the interrupt throttling rate.  Value is calculated
5304                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5305 #define MAX_INTS_PER_SEC        8000
5306 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5307                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5308         }
5309
5310         if (hw->mac_type >= e1000_82571) {
5311                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5312                 /* Reset delay timers after every interrupt */
5313                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5314                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5315                 E1000_WRITE_FLUSH(hw);
5316         }
5317         /* Setup the Base and Length of the Rx Descriptor Ring */
5318         E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5319         E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5320
5321         E1000_WRITE_REG(hw, RDLEN, 128);
5322
5323         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5324         E1000_WRITE_REG(hw, RDH, 0);
5325         E1000_WRITE_REG(hw, RDT, 0);
5326         /* Enable Receives */
5327
5328         if (hw->mac_type == e1000_igb) {
5329
5330                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5331                 reg_rxdctl |= 1 << 25;
5332                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5333                 mdelay(20);
5334         }
5335
5336         E1000_WRITE_REG(hw, RCTL, rctl);
5337
5338         fill_rx(hw);
5339 }
5340
5341 /**************************************************************************
5342 POLL - Wait for a frame
5343 ***************************************************************************/
5344 static int
5345 _e1000_poll(struct e1000_hw *hw)
5346 {
5347         struct e1000_rx_desc *rd;
5348         unsigned long inval_start, inval_end;
5349         uint32_t len;
5350
5351         /* return true if there's an ethernet packet ready to read */
5352         rd = rx_base + rx_last;
5353
5354         /* Re-load the descriptor from RAM. */
5355         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5356         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5357         invalidate_dcache_range(inval_start, inval_end);
5358
5359         if (!(rd->status & E1000_RXD_STAT_DD))
5360                 return 0;
5361         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5362         /* Packet received, make sure the data are re-loaded from RAM. */
5363         len = le16_to_cpu(rd->length);
5364         invalidate_dcache_range((unsigned long)packet,
5365                                 (unsigned long)packet +
5366                                 roundup(len, ARCH_DMA_MINALIGN));
5367         return len;
5368 }
5369
5370 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5371 {
5372         void *nv_packet = (void *)txpacket;
5373         struct e1000_tx_desc *txp;
5374         int i = 0;
5375         unsigned long flush_start, flush_end;
5376
5377         txp = tx_base + tx_tail;
5378         tx_tail = (tx_tail + 1) % 8;
5379
5380         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5381         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5382         txp->upper.data = 0;
5383
5384         /* Dump the packet into RAM so e1000 can pick them. */
5385         flush_dcache_range((unsigned long)nv_packet,
5386                            (unsigned long)nv_packet +
5387                            roundup(length, ARCH_DMA_MINALIGN));
5388         /* Dump the descriptor into RAM as well. */
5389         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5390         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5391         flush_dcache_range(flush_start, flush_end);
5392
5393         E1000_WRITE_REG(hw, TDT, tx_tail);
5394
5395         E1000_WRITE_FLUSH(hw);
5396         while (1) {
5397                 invalidate_dcache_range(flush_start, flush_end);
5398                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5399                         break;
5400                 if (i++ > TOUT_LOOP) {
5401                         DEBUGOUT("e1000: tx timeout\n");
5402                         return 0;
5403                 }
5404                 udelay(10);     /* give the nic a chance to write to the register */
5405         }
5406         return 1;
5407 }
5408
5409 static void
5410 _e1000_disable(struct e1000_hw *hw)
5411 {
5412         /* Turn off the ethernet interface */
5413         E1000_WRITE_REG(hw, RCTL, 0);
5414         E1000_WRITE_REG(hw, TCTL, 0);
5415
5416         /* Clear the transmit ring */
5417         E1000_WRITE_REG(hw, TDH, 0);
5418         E1000_WRITE_REG(hw, TDT, 0);
5419
5420         /* Clear the receive ring */
5421         E1000_WRITE_REG(hw, RDH, 0);
5422         E1000_WRITE_REG(hw, RDT, 0);
5423
5424         mdelay(10);
5425 }
5426
5427 /*reset function*/
5428 static inline int
5429 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5430 {
5431         e1000_reset_hw(hw);
5432         if (hw->mac_type >= e1000_82544)
5433                 E1000_WRITE_REG(hw, WUC, 0);
5434
5435         return e1000_init_hw(hw, enetaddr);
5436 }
5437
5438 static int
5439 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5440 {
5441         int ret_val = 0;
5442
5443         ret_val = e1000_reset(hw, enetaddr);
5444         if (ret_val < 0) {
5445                 if ((ret_val == -E1000_ERR_NOLINK) ||
5446                     (ret_val == -E1000_ERR_TIMEOUT)) {
5447                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5448                 } else {
5449                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5450                 }
5451                 return ret_val;
5452         }
5453         e1000_configure_tx(hw);
5454         e1000_setup_rctl(hw);
5455         e1000_configure_rx(hw);
5456         return 0;
5457 }
5458
5459 /******************************************************************************
5460  * Gets the current PCI bus type of hardware
5461  *
5462  * hw - Struct containing variables accessed by shared code
5463  *****************************************************************************/
5464 void e1000_get_bus_type(struct e1000_hw *hw)
5465 {
5466         uint32_t status;
5467
5468         switch (hw->mac_type) {
5469         case e1000_82542_rev2_0:
5470         case e1000_82542_rev2_1:
5471                 hw->bus_type = e1000_bus_type_pci;
5472                 break;
5473         case e1000_82571:
5474         case e1000_82572:
5475         case e1000_82573:
5476         case e1000_82574:
5477         case e1000_80003es2lan:
5478         case e1000_ich8lan:
5479         case e1000_igb:
5480                 hw->bus_type = e1000_bus_type_pci_express;
5481                 break;
5482         default:
5483                 status = E1000_READ_REG(hw, STATUS);
5484                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5485                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5486                 break;
5487         }
5488 }
5489
5490 #ifndef CONFIG_DM_ETH
5491 /* A list of all registered e1000 devices */
5492 static LIST_HEAD(e1000_hw_list);
5493 #endif
5494
5495 #ifdef CONFIG_DM_ETH
5496 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5497                           struct udevice *devno, unsigned char enetaddr[6])
5498 #else
5499 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5500                           unsigned char enetaddr[6])
5501 #endif
5502 {
5503         u32 val;
5504
5505         /* Assign the passed-in values */
5506 #ifdef CONFIG_DM_ETH
5507         hw->pdev = devno;
5508 #else
5509         hw->pdev = devno;
5510 #endif
5511         hw->cardnum = cardnum;
5512
5513         /* Print a debug message with the IO base address */
5514 #ifdef CONFIG_DM_ETH
5515         dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5516 #else
5517         pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5518 #endif
5519         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5520
5521         /* Try to enable I/O accesses and bus-mastering */
5522         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5523 #ifdef CONFIG_DM_ETH
5524         dm_pci_write_config32(devno, PCI_COMMAND, val);
5525 #else
5526         pci_write_config_dword(devno, PCI_COMMAND, val);
5527 #endif
5528
5529         /* Make sure it worked */
5530 #ifdef CONFIG_DM_ETH
5531         dm_pci_read_config32(devno, PCI_COMMAND, &val);
5532 #else
5533         pci_read_config_dword(devno, PCI_COMMAND, &val);
5534 #endif
5535         if (!(val & PCI_COMMAND_MEMORY)) {
5536                 E1000_ERR(hw, "Can't enable I/O memory\n");
5537                 return -ENOSPC;
5538         }
5539         if (!(val & PCI_COMMAND_MASTER)) {
5540                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5541                 return -EPERM;
5542         }
5543
5544         /* Are these variables needed? */
5545         hw->fc = e1000_fc_default;
5546         hw->original_fc = e1000_fc_default;
5547         hw->autoneg_failed = 0;
5548         hw->autoneg = 1;
5549         hw->get_link_status = true;
5550 #ifndef CONFIG_E1000_NO_NVM
5551         hw->eeprom_semaphore_present = true;
5552 #endif
5553 #ifdef CONFIG_DM_ETH
5554         hw->hw_addr = dm_pci_map_bar(devno,     PCI_BASE_ADDRESS_0,
5555                                                 PCI_REGION_MEM);
5556 #else
5557         hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5558                                                 PCI_REGION_MEM);
5559 #endif
5560         hw->mac_type = e1000_undefined;
5561
5562         /* MAC and Phy settings */
5563         if (e1000_sw_init(hw) < 0) {
5564                 E1000_ERR(hw, "Software init failed\n");
5565                 return -EIO;
5566         }
5567         if (e1000_check_phy_reset_block(hw))
5568                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5569
5570         /* Basic init was OK, reset the hardware and allow SPI access */
5571         e1000_reset_hw(hw);
5572
5573 #ifndef CONFIG_E1000_NO_NVM
5574         /* Validate the EEPROM and get chipset information */
5575         if (e1000_init_eeprom_params(hw)) {
5576                 E1000_ERR(hw, "EEPROM is invalid!\n");
5577                 return -EINVAL;
5578         }
5579         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5580             e1000_validate_eeprom_checksum(hw))
5581                 return -ENXIO;
5582         e1000_read_mac_addr(hw, enetaddr);
5583 #endif
5584         e1000_get_bus_type(hw);
5585
5586 #ifndef CONFIG_E1000_NO_NVM
5587         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5588                enetaddr[0], enetaddr[1], enetaddr[2],
5589                enetaddr[3], enetaddr[4], enetaddr[5]);
5590 #else
5591         memset(enetaddr, 0, 6);
5592         printf("e1000: no NVM\n");
5593 #endif
5594
5595         return 0;
5596 }
5597
5598 /* Put the name of a device in a string */
5599 static void e1000_name(char *str, int cardnum)
5600 {
5601         sprintf(str, "e1000#%u", cardnum);
5602 }
5603
5604 #ifndef CONFIG_DM_ETH
5605 /**************************************************************************
5606 TRANSMIT - Transmit a frame
5607 ***************************************************************************/
5608 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5609 {
5610         struct e1000_hw *hw = nic->priv;
5611
5612         return _e1000_transmit(hw, txpacket, length);
5613 }
5614
5615 /**************************************************************************
5616 DISABLE - Turn off ethernet interface
5617 ***************************************************************************/
5618 static void
5619 e1000_disable(struct eth_device *nic)
5620 {
5621         struct e1000_hw *hw = nic->priv;
5622
5623         _e1000_disable(hw);
5624 }
5625
5626 /**************************************************************************
5627 INIT - set up ethernet interface(s)
5628 ***************************************************************************/
5629 static int
5630 e1000_init(struct eth_device *nic, bd_t *bis)
5631 {
5632         struct e1000_hw *hw = nic->priv;
5633
5634         return _e1000_init(hw, nic->enetaddr);
5635 }
5636
5637 static int
5638 e1000_poll(struct eth_device *nic)
5639 {
5640         struct e1000_hw *hw = nic->priv;
5641         int len;
5642
5643         len = _e1000_poll(hw);
5644         if (len) {
5645                 net_process_received_packet((uchar *)packet, len);
5646                 fill_rx(hw);
5647         }
5648
5649         return len ? 1 : 0;
5650 }
5651
5652 static int e1000_write_hwaddr(struct eth_device *dev)
5653 {
5654 #ifndef CONFIG_E1000_NO_NVM
5655         unsigned char *mac = dev->enetaddr;
5656         unsigned char current_mac[6];
5657         struct e1000_hw *hw = dev->priv;
5658         uint16_t data[3];
5659         int ret_val, i;
5660
5661         DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5662
5663         memset(current_mac, 0, 6);
5664
5665         /* Read from EEPROM, not from registers, to make sure
5666          * the address is persistently configured
5667          */
5668         ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5669         DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5670
5671         /* Only write to EEPROM if the given address is different or
5672          * reading the current address failed
5673          */
5674         if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5675                 return 0;
5676
5677         for (i = 0; i < 3; ++i)
5678                 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5679
5680         ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5681
5682         if (!ret_val)
5683                 ret_val = e1000_update_eeprom_checksum_i210(hw);
5684
5685         return ret_val;
5686 #else
5687         return 0;
5688 #endif
5689 }
5690
5691 /**************************************************************************
5692 PROBE - Look for an adapter, this routine's visible to the outside
5693 You should omit the last argument struct pci_device * for a non-PCI NIC
5694 ***************************************************************************/
5695 int
5696 e1000_initialize(bd_t * bis)
5697 {
5698         unsigned int i;
5699         pci_dev_t devno;
5700         int ret;
5701
5702         DEBUGFUNC();
5703
5704         /* Find and probe all the matching PCI devices */
5705         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5706                 /*
5707                  * These will never get freed due to errors, this allows us to
5708                  * perform SPI EEPROM programming from U-Boot, for example.
5709                  */
5710                 struct eth_device *nic = malloc(sizeof(*nic));
5711                 struct e1000_hw *hw = malloc(sizeof(*hw));
5712                 if (!nic || !hw) {
5713                         printf("e1000#%u: Out of Memory!\n", i);
5714                         free(nic);
5715                         free(hw);
5716                         continue;
5717                 }
5718
5719                 /* Make sure all of the fields are initially zeroed */
5720                 memset(nic, 0, sizeof(*nic));
5721                 memset(hw, 0, sizeof(*hw));
5722                 nic->priv = hw;
5723
5724                 /* Generate a card name */
5725                 e1000_name(nic->name, i);
5726                 hw->name = nic->name;
5727
5728                 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5729                 if (ret)
5730                         continue;
5731                 list_add_tail(&hw->list_node, &e1000_hw_list);
5732
5733                 hw->nic = nic;
5734
5735                 /* Set up the function pointers and register the device */
5736                 nic->init = e1000_init;
5737                 nic->recv = e1000_poll;
5738                 nic->send = e1000_transmit;
5739                 nic->halt = e1000_disable;
5740                 nic->write_hwaddr = e1000_write_hwaddr;
5741                 eth_register(nic);
5742         }
5743
5744         return i;
5745 }
5746
5747 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5748 {
5749         struct e1000_hw *hw;
5750
5751         list_for_each_entry(hw, &e1000_hw_list, list_node)
5752                 if (hw->cardnum == cardnum)
5753                         return hw;
5754
5755         return NULL;
5756 }
5757 #endif /* !CONFIG_DM_ETH */
5758
5759 #ifdef CONFIG_CMD_E1000
5760 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5761                 int argc, char * const argv[])
5762 {
5763         unsigned char *mac = NULL;
5764 #ifdef CONFIG_DM_ETH
5765         struct eth_pdata *plat;
5766         struct udevice *dev;
5767         char name[30];
5768         int ret;
5769 #endif
5770 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5771         struct e1000_hw *hw;
5772 #endif
5773         int cardnum;
5774
5775         if (argc < 3) {
5776                 cmd_usage(cmdtp);
5777                 return 1;
5778         }
5779
5780         /* Make sure we can find the requested e1000 card */
5781         cardnum = simple_strtoul(argv[1], NULL, 10);
5782 #ifdef CONFIG_DM_ETH
5783         e1000_name(name, cardnum);
5784         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5785         if (!ret) {
5786                 plat = dev_get_platdata(dev);
5787                 mac = plat->enetaddr;
5788         }
5789 #else
5790         hw = e1000_find_card(cardnum);
5791         if (hw)
5792                 mac = hw->nic->enetaddr;
5793 #endif
5794         if (!mac) {
5795                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5796                 return 1;
5797         }
5798
5799         if (!strcmp(argv[2], "print-mac-address")) {
5800                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5801                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5802                 return 0;
5803         }
5804
5805 #ifdef CONFIG_E1000_SPI
5806 #ifdef CONFIG_DM_ETH
5807         hw = dev_get_priv(dev);
5808 #endif
5809         /* Handle the "SPI" subcommand */
5810         if (!strcmp(argv[2], "spi"))
5811                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5812 #endif
5813
5814         cmd_usage(cmdtp);
5815         return 1;
5816 }
5817
5818 U_BOOT_CMD(
5819         e1000, 7, 0, do_e1000,
5820         "Intel e1000 controller management",
5821         /*  */"<card#> print-mac-address\n"
5822 #ifdef CONFIG_E1000_SPI
5823         "e1000 <card#> spi show [<offset> [<length>]]\n"
5824         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5825         "e1000 <card#> spi program <addr> <offset> <length>\n"
5826         "e1000 <card#> spi checksum [update]\n"
5827 #endif
5828         "       - Manage the Intel E1000 PCI device"
5829 );
5830 #endif /* not CONFIG_CMD_E1000 */
5831
5832 #ifdef CONFIG_DM_ETH
5833 static int e1000_eth_start(struct udevice *dev)
5834 {
5835         struct eth_pdata *plat = dev_get_platdata(dev);
5836         struct e1000_hw *hw = dev_get_priv(dev);
5837
5838         return _e1000_init(hw, plat->enetaddr);
5839 }
5840
5841 static void e1000_eth_stop(struct udevice *dev)
5842 {
5843         struct e1000_hw *hw = dev_get_priv(dev);
5844
5845         _e1000_disable(hw);
5846 }
5847
5848 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5849 {
5850         struct e1000_hw *hw = dev_get_priv(dev);
5851         int ret;
5852
5853         ret = _e1000_transmit(hw, packet, length);
5854
5855         return ret ? 0 : -ETIMEDOUT;
5856 }
5857
5858 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5859 {
5860         struct e1000_hw *hw = dev_get_priv(dev);
5861         int len;
5862
5863         len = _e1000_poll(hw);
5864         if (len)
5865                 *packetp = packet;
5866
5867         return len ? len : -EAGAIN;
5868 }
5869
5870 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5871 {
5872         struct e1000_hw *hw = dev_get_priv(dev);
5873
5874         fill_rx(hw);
5875
5876         return 0;
5877 }
5878
5879 static int e1000_eth_probe(struct udevice *dev)
5880 {
5881         struct eth_pdata *plat = dev_get_platdata(dev);
5882         struct e1000_hw *hw = dev_get_priv(dev);
5883         int ret;
5884
5885         hw->name = dev->name;
5886         ret = e1000_init_one(hw, trailing_strtol(dev->name),
5887                              dev, plat->enetaddr);
5888         if (ret < 0) {
5889                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5890                 return ret;
5891         }
5892
5893         return 0;
5894 }
5895
5896 static int e1000_eth_bind(struct udevice *dev)
5897 {
5898         char name[20];
5899
5900         /*
5901          * A simple way to number the devices. When device tree is used this
5902          * is unnecessary, but when the device is just discovered on the PCI
5903          * bus we need a name. We could instead have the uclass figure out
5904          * which devices are different and number them.
5905          */
5906         e1000_name(name, num_cards++);
5907
5908         return device_set_name(dev, name);
5909 }
5910
5911 static const struct eth_ops e1000_eth_ops = {
5912         .start  = e1000_eth_start,
5913         .send   = e1000_eth_send,
5914         .recv   = e1000_eth_recv,
5915         .stop   = e1000_eth_stop,
5916         .free_pkt = e1000_free_pkt,
5917 };
5918
5919 static const struct udevice_id e1000_eth_ids[] = {
5920         { .compatible = "intel,e1000" },
5921         { }
5922 };
5923
5924 U_BOOT_DRIVER(eth_e1000) = {
5925         .name   = "eth_e1000",
5926         .id     = UCLASS_ETH,
5927         .of_match = e1000_eth_ids,
5928         .bind   = e1000_eth_bind,
5929         .probe  = e1000_eth_probe,
5930         .ops    = &e1000_eth_ops,
5931         .priv_auto_alloc_size = sizeof(struct e1000_hw),
5932         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5933 };
5934
5935 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5936 #endif