test: stabilize test_efi_secboot
[platform/kernel/u-boot.git] / drivers / net / e1000.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /**************************************************************************
3 Intel Pro 1000 for ppcboot/das-u-boot
4 Drivers are port from Intel's Linux driver e1000-4.3.15
5 and from Etherboot pro 1000 driver by mrakes at vivato dot net
6 tested on both gig copper and gig fiber boards
7 ***************************************************************************/
8 /*******************************************************************************
9
10
11   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
12
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <cpu_func.h>
34 #include <dm.h>
35 #include <errno.h>
36 #include <malloc.h>
37 #include <memalign.h>
38 #include <pci.h>
39 #include "e1000.h"
40
41 #define TOUT_LOOP   100000
42
43 #ifdef CONFIG_DM_ETH
44 #define virt_to_bus(devno, v)   dm_pci_virt_to_mem(devno, (void *) (v))
45 #define bus_to_phys(devno, a)   dm_pci_mem_to_phys(devno, a)
46 #else
47 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
48 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
49 #endif
50
51 #define E1000_DEFAULT_PCI_PBA   0x00000030
52 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
53
54 /* NIC specific static variables go here */
55
56 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
57 #define E1000_BUFFER_ALIGN      128
58
59 /*
60  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
61  * Concurrent receiving on multiple active Ethernet devices will not work.
62  * Normally U-Boot does not support this anyway. To fix it in this driver,
63  * move these buffers and the tx/rx pointers to struct e1000_hw.
64  */
65 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
66 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
67 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
68
69 static int tx_tail;
70 static int rx_tail, rx_last;
71 #ifdef CONFIG_DM_ETH
72 static int num_cards;   /* Number of E1000 devices seen so far */
73 #endif
74
75 static struct pci_device_id e1000_supported[] = {
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
85         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
88         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
91         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
93         /* E1000 PCIe card */
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
116         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
117         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
118         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
119         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
120         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
121         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
122         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
123         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
124
125         {}
126 };
127
128 /* Function forward declarations */
129 static int e1000_setup_link(struct e1000_hw *hw);
130 static int e1000_setup_fiber_link(struct e1000_hw *hw);
131 static int e1000_setup_copper_link(struct e1000_hw *hw);
132 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
133 static void e1000_config_collision_dist(struct e1000_hw *hw);
134 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
135 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
136 static int e1000_check_for_link(struct e1000_hw *hw);
137 static int e1000_wait_autoneg(struct e1000_hw *hw);
138 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
139                                        uint16_t * duplex);
140 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141                               uint16_t * phy_data);
142 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
143                                uint16_t phy_data);
144 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
145 static int e1000_phy_reset(struct e1000_hw *hw);
146 static int e1000_detect_gig_phy(struct e1000_hw *hw);
147 static void e1000_set_media_type(struct e1000_hw *hw);
148
149 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
150 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
151 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
152
153 #ifndef CONFIG_E1000_NO_NVM
154 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
155 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
156 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
157                 uint16_t words,
158                 uint16_t *data);
159 /******************************************************************************
160  * Raises the EEPROM's clock input.
161  *
162  * hw - Struct containing variables accessed by shared code
163  * eecd - EECD's current value
164  *****************************************************************************/
165 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
166 {
167         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
168          * wait 50 microseconds.
169          */
170         *eecd = *eecd | E1000_EECD_SK;
171         E1000_WRITE_REG(hw, EECD, *eecd);
172         E1000_WRITE_FLUSH(hw);
173         udelay(50);
174 }
175
176 /******************************************************************************
177  * Lowers the EEPROM's clock input.
178  *
179  * hw - Struct containing variables accessed by shared code
180  * eecd - EECD's current value
181  *****************************************************************************/
182 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
183 {
184         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
185          * wait 50 microseconds.
186          */
187         *eecd = *eecd & ~E1000_EECD_SK;
188         E1000_WRITE_REG(hw, EECD, *eecd);
189         E1000_WRITE_FLUSH(hw);
190         udelay(50);
191 }
192
193 /******************************************************************************
194  * Shift data bits out to the EEPROM.
195  *
196  * hw - Struct containing variables accessed by shared code
197  * data - data to send to the EEPROM
198  * count - number of bits to shift out
199  *****************************************************************************/
200 static void
201 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
202 {
203         uint32_t eecd;
204         uint32_t mask;
205
206         /* We need to shift "count" bits out to the EEPROM. So, value in the
207          * "data" parameter will be shifted out to the EEPROM one bit at a time.
208          * In order to do this, "data" must be broken down into bits.
209          */
210         mask = 0x01 << (count - 1);
211         eecd = E1000_READ_REG(hw, EECD);
212         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
213         do {
214                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
215                  * and then raising and then lowering the clock (the SK bit controls
216                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
217                  * by setting "DI" to "0" and then raising and then lowering the clock.
218                  */
219                 eecd &= ~E1000_EECD_DI;
220
221                 if (data & mask)
222                         eecd |= E1000_EECD_DI;
223
224                 E1000_WRITE_REG(hw, EECD, eecd);
225                 E1000_WRITE_FLUSH(hw);
226
227                 udelay(50);
228
229                 e1000_raise_ee_clk(hw, &eecd);
230                 e1000_lower_ee_clk(hw, &eecd);
231
232                 mask = mask >> 1;
233
234         } while (mask);
235
236         /* We leave the "DI" bit set to "0" when we leave this routine. */
237         eecd &= ~E1000_EECD_DI;
238         E1000_WRITE_REG(hw, EECD, eecd);
239 }
240
241 /******************************************************************************
242  * Shift data bits in from the EEPROM
243  *
244  * hw - Struct containing variables accessed by shared code
245  *****************************************************************************/
246 static uint16_t
247 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
248 {
249         uint32_t eecd;
250         uint32_t i;
251         uint16_t data;
252
253         /* In order to read a register from the EEPROM, we need to shift 'count'
254          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
255          * input to the EEPROM (setting the SK bit), and then reading the
256          * value of the "DO" bit.  During this "shifting in" process the
257          * "DI" bit should always be clear.
258          */
259
260         eecd = E1000_READ_REG(hw, EECD);
261
262         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
263         data = 0;
264
265         for (i = 0; i < count; i++) {
266                 data = data << 1;
267                 e1000_raise_ee_clk(hw, &eecd);
268
269                 eecd = E1000_READ_REG(hw, EECD);
270
271                 eecd &= ~(E1000_EECD_DI);
272                 if (eecd & E1000_EECD_DO)
273                         data |= 1;
274
275                 e1000_lower_ee_clk(hw, &eecd);
276         }
277
278         return data;
279 }
280
281 /******************************************************************************
282  * Returns EEPROM to a "standby" state
283  *
284  * hw - Struct containing variables accessed by shared code
285  *****************************************************************************/
286 void e1000_standby_eeprom(struct e1000_hw *hw)
287 {
288         struct e1000_eeprom_info *eeprom = &hw->eeprom;
289         uint32_t eecd;
290
291         eecd = E1000_READ_REG(hw, EECD);
292
293         if (eeprom->type == e1000_eeprom_microwire) {
294                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
295                 E1000_WRITE_REG(hw, EECD, eecd);
296                 E1000_WRITE_FLUSH(hw);
297                 udelay(eeprom->delay_usec);
298
299                 /* Clock high */
300                 eecd |= E1000_EECD_SK;
301                 E1000_WRITE_REG(hw, EECD, eecd);
302                 E1000_WRITE_FLUSH(hw);
303                 udelay(eeprom->delay_usec);
304
305                 /* Select EEPROM */
306                 eecd |= E1000_EECD_CS;
307                 E1000_WRITE_REG(hw, EECD, eecd);
308                 E1000_WRITE_FLUSH(hw);
309                 udelay(eeprom->delay_usec);
310
311                 /* Clock low */
312                 eecd &= ~E1000_EECD_SK;
313                 E1000_WRITE_REG(hw, EECD, eecd);
314                 E1000_WRITE_FLUSH(hw);
315                 udelay(eeprom->delay_usec);
316         } else if (eeprom->type == e1000_eeprom_spi) {
317                 /* Toggle CS to flush commands */
318                 eecd |= E1000_EECD_CS;
319                 E1000_WRITE_REG(hw, EECD, eecd);
320                 E1000_WRITE_FLUSH(hw);
321                 udelay(eeprom->delay_usec);
322                 eecd &= ~E1000_EECD_CS;
323                 E1000_WRITE_REG(hw, EECD, eecd);
324                 E1000_WRITE_FLUSH(hw);
325                 udelay(eeprom->delay_usec);
326         }
327 }
328
329 /***************************************************************************
330 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
331 *
332 * hw - Struct containing variables accessed by shared code
333 ****************************************************************************/
334 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
335 {
336         uint32_t eecd = 0;
337
338         DEBUGFUNC();
339
340         if (hw->mac_type == e1000_ich8lan)
341                 return false;
342
343         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
344                 eecd = E1000_READ_REG(hw, EECD);
345
346                 /* Isolate bits 15 & 16 */
347                 eecd = ((eecd >> 15) & 0x03);
348
349                 /* If both bits are set, device is Flash type */
350                 if (eecd == 0x03)
351                         return false;
352         }
353         return true;
354 }
355
356 /******************************************************************************
357  * Prepares EEPROM for access
358  *
359  * hw - Struct containing variables accessed by shared code
360  *
361  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
362  * function should be called before issuing a command to the EEPROM.
363  *****************************************************************************/
364 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
365 {
366         struct e1000_eeprom_info *eeprom = &hw->eeprom;
367         uint32_t eecd, i = 0;
368
369         DEBUGFUNC();
370
371         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
372                 return -E1000_ERR_SWFW_SYNC;
373         eecd = E1000_READ_REG(hw, EECD);
374
375         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
376                 /* Request EEPROM Access */
377                 if (hw->mac_type > e1000_82544) {
378                         eecd |= E1000_EECD_REQ;
379                         E1000_WRITE_REG(hw, EECD, eecd);
380                         eecd = E1000_READ_REG(hw, EECD);
381                         while ((!(eecd & E1000_EECD_GNT)) &&
382                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
383                                 i++;
384                                 udelay(5);
385                                 eecd = E1000_READ_REG(hw, EECD);
386                         }
387                         if (!(eecd & E1000_EECD_GNT)) {
388                                 eecd &= ~E1000_EECD_REQ;
389                                 E1000_WRITE_REG(hw, EECD, eecd);
390                                 DEBUGOUT("Could not acquire EEPROM grant\n");
391                                 return -E1000_ERR_EEPROM;
392                         }
393                 }
394         }
395
396         /* Setup EEPROM for Read/Write */
397
398         if (eeprom->type == e1000_eeprom_microwire) {
399                 /* Clear SK and DI */
400                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
401                 E1000_WRITE_REG(hw, EECD, eecd);
402
403                 /* Set CS */
404                 eecd |= E1000_EECD_CS;
405                 E1000_WRITE_REG(hw, EECD, eecd);
406         } else if (eeprom->type == e1000_eeprom_spi) {
407                 /* Clear SK and CS */
408                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
409                 E1000_WRITE_REG(hw, EECD, eecd);
410                 udelay(1);
411         }
412
413         return E1000_SUCCESS;
414 }
415
416 /******************************************************************************
417  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
418  * is configured.  Additionally, if this is ICH8, the flash controller GbE
419  * registers must be mapped, or this will crash.
420  *
421  * hw - Struct containing variables accessed by shared code
422  *****************************************************************************/
423 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
424 {
425         struct e1000_eeprom_info *eeprom = &hw->eeprom;
426         uint32_t eecd;
427         int32_t ret_val = E1000_SUCCESS;
428         uint16_t eeprom_size;
429
430         if (hw->mac_type == e1000_igb)
431                 eecd = E1000_READ_REG(hw, I210_EECD);
432         else
433                 eecd = E1000_READ_REG(hw, EECD);
434
435         DEBUGFUNC();
436
437         switch (hw->mac_type) {
438         case e1000_82542_rev2_0:
439         case e1000_82542_rev2_1:
440         case e1000_82543:
441         case e1000_82544:
442                 eeprom->type = e1000_eeprom_microwire;
443                 eeprom->word_size = 64;
444                 eeprom->opcode_bits = 3;
445                 eeprom->address_bits = 6;
446                 eeprom->delay_usec = 50;
447                 eeprom->use_eerd = false;
448                 eeprom->use_eewr = false;
449         break;
450         case e1000_82540:
451         case e1000_82545:
452         case e1000_82545_rev_3:
453         case e1000_82546:
454         case e1000_82546_rev_3:
455                 eeprom->type = e1000_eeprom_microwire;
456                 eeprom->opcode_bits = 3;
457                 eeprom->delay_usec = 50;
458                 if (eecd & E1000_EECD_SIZE) {
459                         eeprom->word_size = 256;
460                         eeprom->address_bits = 8;
461                 } else {
462                         eeprom->word_size = 64;
463                         eeprom->address_bits = 6;
464                 }
465                 eeprom->use_eerd = false;
466                 eeprom->use_eewr = false;
467                 break;
468         case e1000_82541:
469         case e1000_82541_rev_2:
470         case e1000_82547:
471         case e1000_82547_rev_2:
472                 if (eecd & E1000_EECD_TYPE) {
473                         eeprom->type = e1000_eeprom_spi;
474                         eeprom->opcode_bits = 8;
475                         eeprom->delay_usec = 1;
476                         if (eecd & E1000_EECD_ADDR_BITS) {
477                                 eeprom->page_size = 32;
478                                 eeprom->address_bits = 16;
479                         } else {
480                                 eeprom->page_size = 8;
481                                 eeprom->address_bits = 8;
482                         }
483                 } else {
484                         eeprom->type = e1000_eeprom_microwire;
485                         eeprom->opcode_bits = 3;
486                         eeprom->delay_usec = 50;
487                         if (eecd & E1000_EECD_ADDR_BITS) {
488                                 eeprom->word_size = 256;
489                                 eeprom->address_bits = 8;
490                         } else {
491                                 eeprom->word_size = 64;
492                                 eeprom->address_bits = 6;
493                         }
494                 }
495                 eeprom->use_eerd = false;
496                 eeprom->use_eewr = false;
497                 break;
498         case e1000_82571:
499         case e1000_82572:
500                 eeprom->type = e1000_eeprom_spi;
501                 eeprom->opcode_bits = 8;
502                 eeprom->delay_usec = 1;
503                 if (eecd & E1000_EECD_ADDR_BITS) {
504                         eeprom->page_size = 32;
505                         eeprom->address_bits = 16;
506                 } else {
507                         eeprom->page_size = 8;
508                         eeprom->address_bits = 8;
509                 }
510                 eeprom->use_eerd = false;
511                 eeprom->use_eewr = false;
512                 break;
513         case e1000_82573:
514         case e1000_82574:
515                 eeprom->type = e1000_eeprom_spi;
516                 eeprom->opcode_bits = 8;
517                 eeprom->delay_usec = 1;
518                 if (eecd & E1000_EECD_ADDR_BITS) {
519                         eeprom->page_size = 32;
520                         eeprom->address_bits = 16;
521                 } else {
522                         eeprom->page_size = 8;
523                         eeprom->address_bits = 8;
524                 }
525                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
526                         eeprom->use_eerd = true;
527                         eeprom->use_eewr = true;
528
529                         eeprom->type = e1000_eeprom_flash;
530                         eeprom->word_size = 2048;
531
532                 /* Ensure that the Autonomous FLASH update bit is cleared due to
533                  * Flash update issue on parts which use a FLASH for NVM. */
534                         eecd &= ~E1000_EECD_AUPDEN;
535                         E1000_WRITE_REG(hw, EECD, eecd);
536                 }
537                 break;
538         case e1000_80003es2lan:
539                 eeprom->type = e1000_eeprom_spi;
540                 eeprom->opcode_bits = 8;
541                 eeprom->delay_usec = 1;
542                 if (eecd & E1000_EECD_ADDR_BITS) {
543                         eeprom->page_size = 32;
544                         eeprom->address_bits = 16;
545                 } else {
546                         eeprom->page_size = 8;
547                         eeprom->address_bits = 8;
548                 }
549                 eeprom->use_eerd = true;
550                 eeprom->use_eewr = false;
551                 break;
552         case e1000_igb:
553                 /* i210 has 4k of iNVM mapped as EEPROM */
554                 eeprom->type = e1000_eeprom_invm;
555                 eeprom->opcode_bits = 8;
556                 eeprom->delay_usec = 1;
557                 eeprom->page_size = 32;
558                 eeprom->address_bits = 16;
559                 eeprom->use_eerd = true;
560                 eeprom->use_eewr = false;
561                 break;
562         default:
563                 break;
564         }
565
566         if (eeprom->type == e1000_eeprom_spi ||
567             eeprom->type == e1000_eeprom_invm) {
568                 /* eeprom_size will be an enum [0..8] that maps
569                  * to eeprom sizes 128B to
570                  * 32KB (incremented by powers of 2).
571                  */
572                 if (hw->mac_type <= e1000_82547_rev_2) {
573                         /* Set to default value for initial eeprom read. */
574                         eeprom->word_size = 64;
575                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
576                                         &eeprom_size);
577                         if (ret_val)
578                                 return ret_val;
579                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
580                                 >> EEPROM_SIZE_SHIFT;
581                         /* 256B eeprom size was not supported in earlier
582                          * hardware, so we bump eeprom_size up one to
583                          * ensure that "1" (which maps to 256B) is never
584                          * the result used in the shifting logic below. */
585                         if (eeprom_size)
586                                 eeprom_size++;
587                 } else {
588                         eeprom_size = (uint16_t)((eecd &
589                                 E1000_EECD_SIZE_EX_MASK) >>
590                                 E1000_EECD_SIZE_EX_SHIFT);
591                 }
592
593                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
594         }
595         return ret_val;
596 }
597
598 /******************************************************************************
599  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
600  *
601  * hw - Struct containing variables accessed by shared code
602  *****************************************************************************/
603 static int32_t
604 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
605 {
606         uint32_t attempts = 100000;
607         uint32_t i, reg = 0;
608         int32_t done = E1000_ERR_EEPROM;
609
610         for (i = 0; i < attempts; i++) {
611                 if (eerd == E1000_EEPROM_POLL_READ) {
612                         if (hw->mac_type == e1000_igb)
613                                 reg = E1000_READ_REG(hw, I210_EERD);
614                         else
615                                 reg = E1000_READ_REG(hw, EERD);
616                 } else {
617                         if (hw->mac_type == e1000_igb)
618                                 reg = E1000_READ_REG(hw, I210_EEWR);
619                         else
620                                 reg = E1000_READ_REG(hw, EEWR);
621                 }
622
623                 if (reg & E1000_EEPROM_RW_REG_DONE) {
624                         done = E1000_SUCCESS;
625                         break;
626                 }
627                 udelay(5);
628         }
629
630         return done;
631 }
632
633 /******************************************************************************
634  * Reads a 16 bit word from the EEPROM using the EERD register.
635  *
636  * hw - Struct containing variables accessed by shared code
637  * offset - offset of  word in the EEPROM to read
638  * data - word read from the EEPROM
639  * words - number of words to read
640  *****************************************************************************/
641 static int32_t
642 e1000_read_eeprom_eerd(struct e1000_hw *hw,
643                         uint16_t offset,
644                         uint16_t words,
645                         uint16_t *data)
646 {
647         uint32_t i, eerd = 0;
648         int32_t error = 0;
649
650         for (i = 0; i < words; i++) {
651                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
652                         E1000_EEPROM_RW_REG_START;
653
654                 if (hw->mac_type == e1000_igb)
655                         E1000_WRITE_REG(hw, I210_EERD, eerd);
656                 else
657                         E1000_WRITE_REG(hw, EERD, eerd);
658
659                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
660
661                 if (error)
662                         break;
663
664                 if (hw->mac_type == e1000_igb) {
665                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
666                                 E1000_EEPROM_RW_REG_DATA);
667                 } else {
668                         data[i] = (E1000_READ_REG(hw, EERD) >>
669                                 E1000_EEPROM_RW_REG_DATA);
670                 }
671
672         }
673
674         return error;
675 }
676
677 void e1000_release_eeprom(struct e1000_hw *hw)
678 {
679         uint32_t eecd;
680
681         DEBUGFUNC();
682
683         eecd = E1000_READ_REG(hw, EECD);
684
685         if (hw->eeprom.type == e1000_eeprom_spi) {
686                 eecd |= E1000_EECD_CS;  /* Pull CS high */
687                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
688
689                 E1000_WRITE_REG(hw, EECD, eecd);
690
691                 udelay(hw->eeprom.delay_usec);
692         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
693                 /* cleanup eeprom */
694
695                 /* CS on Microwire is active-high */
696                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
697
698                 E1000_WRITE_REG(hw, EECD, eecd);
699
700                 /* Rising edge of clock */
701                 eecd |= E1000_EECD_SK;
702                 E1000_WRITE_REG(hw, EECD, eecd);
703                 E1000_WRITE_FLUSH(hw);
704                 udelay(hw->eeprom.delay_usec);
705
706                 /* Falling edge of clock */
707                 eecd &= ~E1000_EECD_SK;
708                 E1000_WRITE_REG(hw, EECD, eecd);
709                 E1000_WRITE_FLUSH(hw);
710                 udelay(hw->eeprom.delay_usec);
711         }
712
713         /* Stop requesting EEPROM access */
714         if (hw->mac_type > e1000_82544) {
715                 eecd &= ~E1000_EECD_REQ;
716                 E1000_WRITE_REG(hw, EECD, eecd);
717         }
718
719         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
720 }
721
722 /******************************************************************************
723  * Reads a 16 bit word from the EEPROM.
724  *
725  * hw - Struct containing variables accessed by shared code
726  *****************************************************************************/
727 static int32_t
728 e1000_spi_eeprom_ready(struct e1000_hw *hw)
729 {
730         uint16_t retry_count = 0;
731         uint8_t spi_stat_reg;
732
733         DEBUGFUNC();
734
735         /* Read "Status Register" repeatedly until the LSB is cleared.  The
736          * EEPROM will signal that the command has been completed by clearing
737          * bit 0 of the internal status register.  If it's not cleared within
738          * 5 milliseconds, then error out.
739          */
740         retry_count = 0;
741         do {
742                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
743                         hw->eeprom.opcode_bits);
744                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
745                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
746                         break;
747
748                 udelay(5);
749                 retry_count += 5;
750
751                 e1000_standby_eeprom(hw);
752         } while (retry_count < EEPROM_MAX_RETRY_SPI);
753
754         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
755          * only 0-5mSec on 5V devices)
756          */
757         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
758                 DEBUGOUT("SPI EEPROM Status error\n");
759                 return -E1000_ERR_EEPROM;
760         }
761
762         return E1000_SUCCESS;
763 }
764
765 /******************************************************************************
766  * Reads a 16 bit word from the EEPROM.
767  *
768  * hw - Struct containing variables accessed by shared code
769  * offset - offset of  word in the EEPROM to read
770  * data - word read from the EEPROM
771  *****************************************************************************/
772 static int32_t
773 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
774                 uint16_t words, uint16_t *data)
775 {
776         struct e1000_eeprom_info *eeprom = &hw->eeprom;
777         uint32_t i = 0;
778
779         DEBUGFUNC();
780
781         /* If eeprom is not yet detected, do so now */
782         if (eeprom->word_size == 0)
783                 e1000_init_eeprom_params(hw);
784
785         /* A check for invalid values:  offset too large, too many words,
786          * and not enough words.
787          */
788         if ((offset >= eeprom->word_size) ||
789                 (words > eeprom->word_size - offset) ||
790                 (words == 0)) {
791                 DEBUGOUT("\"words\" parameter out of bounds."
792                         "Words = %d, size = %d\n", offset, eeprom->word_size);
793                 return -E1000_ERR_EEPROM;
794         }
795
796         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
797          * directly. In this case, we need to acquire the EEPROM so that
798          * FW or other port software does not interrupt.
799          */
800         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
801                 hw->eeprom.use_eerd == false) {
802
803                 /* Prepare the EEPROM for bit-bang reading */
804                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
805                         return -E1000_ERR_EEPROM;
806         }
807
808         /* Eerd register EEPROM access requires no eeprom aquire/release */
809         if (eeprom->use_eerd == true)
810                 return e1000_read_eeprom_eerd(hw, offset, words, data);
811
812         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
813          * acquired the EEPROM at this point, so any returns should relase it */
814         if (eeprom->type == e1000_eeprom_spi) {
815                 uint16_t word_in;
816                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
817
818                 if (e1000_spi_eeprom_ready(hw)) {
819                         e1000_release_eeprom(hw);
820                         return -E1000_ERR_EEPROM;
821                 }
822
823                 e1000_standby_eeprom(hw);
824
825                 /* Some SPI eeproms use the 8th address bit embedded in
826                  * the opcode */
827                 if ((eeprom->address_bits == 8) && (offset >= 128))
828                         read_opcode |= EEPROM_A8_OPCODE_SPI;
829
830                 /* Send the READ command (opcode + addr)  */
831                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
832                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
833                                 eeprom->address_bits);
834
835                 /* Read the data.  The address of the eeprom internally
836                  * increments with each byte (spi) being read, saving on the
837                  * overhead of eeprom setup and tear-down.  The address
838                  * counter will roll over if reading beyond the size of
839                  * the eeprom, thus allowing the entire memory to be read
840                  * starting from any offset. */
841                 for (i = 0; i < words; i++) {
842                         word_in = e1000_shift_in_ee_bits(hw, 16);
843                         data[i] = (word_in >> 8) | (word_in << 8);
844                 }
845         } else if (eeprom->type == e1000_eeprom_microwire) {
846                 for (i = 0; i < words; i++) {
847                         /* Send the READ command (opcode + addr)  */
848                         e1000_shift_out_ee_bits(hw,
849                                 EEPROM_READ_OPCODE_MICROWIRE,
850                                 eeprom->opcode_bits);
851                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
852                                 eeprom->address_bits);
853
854                         /* Read the data.  For microwire, each word requires
855                          * the overhead of eeprom setup and tear-down. */
856                         data[i] = e1000_shift_in_ee_bits(hw, 16);
857                         e1000_standby_eeprom(hw);
858                 }
859         }
860
861         /* End this read operation */
862         e1000_release_eeprom(hw);
863
864         return E1000_SUCCESS;
865 }
866
867 #ifndef CONFIG_DM_ETH
868 /******************************************************************************
869  *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
870  *  @hw: pointer to the HW structure
871  *  @offset: offset within the Shadow Ram to be written to
872  *  @words: number of words to write
873  *  @data: 16 bit word(s) to be written to the Shadow Ram
874  *
875  *  Writes data to Shadow Ram at offset using EEWR register.
876  *
877  *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
878  *  Shadow Ram will most likely contain an invalid checksum.
879  *****************************************************************************/
880 static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
881                                        uint16_t words, uint16_t *data)
882 {
883         struct e1000_eeprom_info *eeprom = &hw->eeprom;
884         uint32_t i, k, eewr = 0;
885         uint32_t attempts = 100000;
886         int32_t ret_val = 0;
887
888         /* A check for invalid values:  offset too large, too many words,
889          * too many words for the offset, and not enough words.
890          */
891         if ((offset >= eeprom->word_size) ||
892             (words > (eeprom->word_size - offset)) || (words == 0)) {
893                 DEBUGOUT("nvm parameter(s) out of bounds\n");
894                 ret_val = -E1000_ERR_EEPROM;
895                 goto out;
896         }
897
898         for (i = 0; i < words; i++) {
899                 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
900                                 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
901                                 E1000_EEPROM_RW_REG_START;
902
903                 E1000_WRITE_REG(hw, I210_EEWR, eewr);
904
905                 for (k = 0; k < attempts; k++) {
906                         if (E1000_EEPROM_RW_REG_DONE &
907                             E1000_READ_REG(hw, I210_EEWR)) {
908                                 ret_val = 0;
909                                 break;
910                         }
911                         udelay(5);
912                 }
913
914                 if (ret_val) {
915                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
916                         break;
917                 }
918         }
919
920 out:
921         return ret_val;
922 }
923
924 /******************************************************************************
925  *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
926  *  @hw: pointer to the HW structure
927  *
928  *****************************************************************************/
929 static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
930 {
931         int32_t ret_val = -E1000_ERR_EEPROM;
932         uint32_t i, reg;
933
934         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
935                 reg = E1000_READ_REG(hw, EECD);
936                 if (reg & E1000_EECD_FLUDONE_I210) {
937                         ret_val = 0;
938                         break;
939                 }
940                 udelay(5);
941         }
942
943         return ret_val;
944 }
945
946 /******************************************************************************
947  *  e1000_update_flash_i210 - Commit EEPROM to the flash
948  *  @hw: pointer to the HW structure
949  *
950  *****************************************************************************/
951 static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
952 {
953         int32_t ret_val = 0;
954         uint32_t flup;
955
956         ret_val = e1000_pool_flash_update_done_i210(hw);
957         if (ret_val == -E1000_ERR_EEPROM) {
958                 DEBUGOUT("Flash update time out\n");
959                 goto out;
960         }
961
962         flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
963         E1000_WRITE_REG(hw, EECD, flup);
964
965         ret_val = e1000_pool_flash_update_done_i210(hw);
966         if (ret_val)
967                 DEBUGOUT("Flash update time out\n");
968         else
969                 DEBUGOUT("Flash update complete\n");
970
971 out:
972         return ret_val;
973 }
974
975 /******************************************************************************
976  *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
977  *  @hw: pointer to the HW structure
978  *
979  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
980  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
981  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
982  *****************************************************************************/
983 static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
984 {
985         int32_t ret_val = 0;
986         uint16_t checksum = 0;
987         uint16_t i, nvm_data;
988
989         /* Read the first word from the EEPROM. If this times out or fails, do
990          * not continue or we could be in for a very long wait while every
991          * EEPROM read fails
992          */
993         ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
994         if (ret_val) {
995                 DEBUGOUT("EEPROM read failed\n");
996                 goto out;
997         }
998
999         if (!(e1000_get_hw_eeprom_semaphore(hw))) {
1000                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
1001                  * because we do not want to take the synchronization
1002                  * semaphores twice here.
1003                  */
1004
1005                 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1006                         ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1007                         if (ret_val) {
1008                                 e1000_put_hw_eeprom_semaphore(hw);
1009                                 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1010                                 goto out;
1011                         }
1012                         checksum += nvm_data;
1013                 }
1014                 checksum = (uint16_t)EEPROM_SUM - checksum;
1015                 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1016                                                   &checksum);
1017                 if (ret_val) {
1018                         e1000_put_hw_eeprom_semaphore(hw);
1019                         DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1020                         goto out;
1021                 }
1022
1023                 e1000_put_hw_eeprom_semaphore(hw);
1024
1025                 ret_val = e1000_update_flash_i210(hw);
1026         } else {
1027                 ret_val = -E1000_ERR_SWFW_SYNC;
1028         }
1029
1030 out:
1031         return ret_val;
1032 }
1033 #endif
1034
1035 /******************************************************************************
1036  * Verifies that the EEPROM has a valid checksum
1037  *
1038  * hw - Struct containing variables accessed by shared code
1039  *
1040  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1041  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1042  * valid.
1043  *****************************************************************************/
1044 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
1045 {
1046         uint16_t i, checksum, checksum_reg, *buf;
1047
1048         DEBUGFUNC();
1049
1050         /* Allocate a temporary buffer */
1051         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1052         if (!buf) {
1053                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
1054                 return -E1000_ERR_EEPROM;
1055         }
1056
1057         /* Read the EEPROM */
1058         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
1059                 E1000_ERR(hw, "Unable to read EEPROM!\n");
1060                 return -E1000_ERR_EEPROM;
1061         }
1062
1063         /* Compute the checksum */
1064         checksum = 0;
1065         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1066                 checksum += buf[i];
1067         checksum = ((uint16_t)EEPROM_SUM) - checksum;
1068         checksum_reg = buf[i];
1069
1070         /* Verify it! */
1071         if (checksum == checksum_reg)
1072                 return 0;
1073
1074         /* Hrm, verification failed, print an error */
1075         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1076         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
1077                   checksum_reg, checksum);
1078
1079         return -E1000_ERR_EEPROM;
1080 }
1081 #endif /* CONFIG_E1000_NO_NVM */
1082
1083 /*****************************************************************************
1084  * Set PHY to class A mode
1085  * Assumes the following operations will follow to enable the new class mode.
1086  *  1. Do a PHY soft reset
1087  *  2. Restart auto-negotiation or force link.
1088  *
1089  * hw - Struct containing variables accessed by shared code
1090  ****************************************************************************/
1091 static int32_t
1092 e1000_set_phy_mode(struct e1000_hw *hw)
1093 {
1094 #ifndef CONFIG_E1000_NO_NVM
1095         int32_t ret_val;
1096         uint16_t eeprom_data;
1097
1098         DEBUGFUNC();
1099
1100         if ((hw->mac_type == e1000_82545_rev_3) &&
1101                 (hw->media_type == e1000_media_type_copper)) {
1102                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1103                                 1, &eeprom_data);
1104                 if (ret_val)
1105                         return ret_val;
1106
1107                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1108                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
1109                         ret_val = e1000_write_phy_reg(hw,
1110                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
1111                         if (ret_val)
1112                                 return ret_val;
1113                         ret_val = e1000_write_phy_reg(hw,
1114                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
1115                         if (ret_val)
1116                                 return ret_val;
1117
1118                         hw->phy_reset_disable = false;
1119                 }
1120         }
1121 #endif
1122         return E1000_SUCCESS;
1123 }
1124
1125 #ifndef CONFIG_E1000_NO_NVM
1126 /***************************************************************************
1127  *
1128  * Obtaining software semaphore bit (SMBI) before resetting PHY.
1129  *
1130  * hw: Struct containing variables accessed by shared code
1131  *
1132  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1133  *            E1000_SUCCESS at any other case.
1134  *
1135  ***************************************************************************/
1136 static int32_t
1137 e1000_get_software_semaphore(struct e1000_hw *hw)
1138 {
1139          int32_t timeout = hw->eeprom.word_size + 1;
1140          uint32_t swsm;
1141
1142         DEBUGFUNC();
1143
1144         if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
1145                 return E1000_SUCCESS;
1146
1147         while (timeout) {
1148                 swsm = E1000_READ_REG(hw, SWSM);
1149                 /* If SMBI bit cleared, it is now set and we hold
1150                  * the semaphore */
1151                 if (!(swsm & E1000_SWSM_SMBI))
1152                         break;
1153                 mdelay(1);
1154                 timeout--;
1155         }
1156
1157         if (!timeout) {
1158                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1159                 return -E1000_ERR_RESET;
1160         }
1161
1162         return E1000_SUCCESS;
1163 }
1164 #endif
1165
1166 /***************************************************************************
1167  * This function clears HW semaphore bits.
1168  *
1169  * hw: Struct containing variables accessed by shared code
1170  *
1171  * returns: - None.
1172  *
1173  ***************************************************************************/
1174 static void
1175 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1176 {
1177 #ifndef CONFIG_E1000_NO_NVM
1178          uint32_t swsm;
1179
1180         DEBUGFUNC();
1181
1182         if (!hw->eeprom_semaphore_present)
1183                 return;
1184
1185         swsm = E1000_READ_REG(hw, SWSM);
1186         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1187                 /* Release both semaphores. */
1188                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1189         } else
1190                 swsm &= ~(E1000_SWSM_SWESMBI);
1191         E1000_WRITE_REG(hw, SWSM, swsm);
1192 #endif
1193 }
1194
1195 /***************************************************************************
1196  *
1197  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1198  * adapter or Eeprom access.
1199  *
1200  * hw: Struct containing variables accessed by shared code
1201  *
1202  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1203  *            E1000_SUCCESS at any other case.
1204  *
1205  ***************************************************************************/
1206 static int32_t
1207 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1208 {
1209 #ifndef CONFIG_E1000_NO_NVM
1210         int32_t timeout;
1211         uint32_t swsm;
1212
1213         DEBUGFUNC();
1214
1215         if (!hw->eeprom_semaphore_present)
1216                 return E1000_SUCCESS;
1217
1218         if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
1219                 /* Get the SW semaphore. */
1220                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1221                         return -E1000_ERR_EEPROM;
1222         }
1223
1224         /* Get the FW semaphore. */
1225         timeout = hw->eeprom.word_size + 1;
1226         while (timeout) {
1227                 swsm = E1000_READ_REG(hw, SWSM);
1228                 swsm |= E1000_SWSM_SWESMBI;
1229                 E1000_WRITE_REG(hw, SWSM, swsm);
1230                 /* if we managed to set the bit we got the semaphore. */
1231                 swsm = E1000_READ_REG(hw, SWSM);
1232                 if (swsm & E1000_SWSM_SWESMBI)
1233                         break;
1234
1235                 udelay(50);
1236                 timeout--;
1237         }
1238
1239         if (!timeout) {
1240                 /* Release semaphores */
1241                 e1000_put_hw_eeprom_semaphore(hw);
1242                 DEBUGOUT("Driver can't access the Eeprom - "
1243                                 "SWESMBI bit is set.\n");
1244                 return -E1000_ERR_EEPROM;
1245         }
1246 #endif
1247         return E1000_SUCCESS;
1248 }
1249
1250 /* Take ownership of the PHY */
1251 static int32_t
1252 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1253 {
1254         uint32_t swfw_sync = 0;
1255         uint32_t swmask = mask;
1256         uint32_t fwmask = mask << 16;
1257         int32_t timeout = 200;
1258
1259         DEBUGFUNC();
1260         while (timeout) {
1261                 if (e1000_get_hw_eeprom_semaphore(hw))
1262                         return -E1000_ERR_SWFW_SYNC;
1263
1264                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1265                 if (!(swfw_sync & (fwmask | swmask)))
1266                         break;
1267
1268                 /* firmware currently using resource (fwmask) */
1269                 /* or other software thread currently using resource (swmask) */
1270                 e1000_put_hw_eeprom_semaphore(hw);
1271                 mdelay(5);
1272                 timeout--;
1273         }
1274
1275         if (!timeout) {
1276                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1277                 return -E1000_ERR_SWFW_SYNC;
1278         }
1279
1280         swfw_sync |= swmask;
1281         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1282
1283         e1000_put_hw_eeprom_semaphore(hw);
1284         return E1000_SUCCESS;
1285 }
1286
1287 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1288 {
1289         uint32_t swfw_sync = 0;
1290
1291         DEBUGFUNC();
1292         while (e1000_get_hw_eeprom_semaphore(hw))
1293                 ; /* Empty */
1294
1295         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1296         swfw_sync &= ~mask;
1297         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1298
1299         e1000_put_hw_eeprom_semaphore(hw);
1300 }
1301
1302 static bool e1000_is_second_port(struct e1000_hw *hw)
1303 {
1304         switch (hw->mac_type) {
1305         case e1000_80003es2lan:
1306         case e1000_82546:
1307         case e1000_82571:
1308                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1309                         return true;
1310                 /* Fallthrough */
1311         default:
1312                 return false;
1313         }
1314 }
1315
1316 #ifndef CONFIG_E1000_NO_NVM
1317 /******************************************************************************
1318  * Reads the adapter's MAC address from the EEPROM
1319  *
1320  * hw - Struct containing variables accessed by shared code
1321  * enetaddr - buffering where the MAC address will be stored
1322  *****************************************************************************/
1323 static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1324                                            unsigned char enetaddr[6])
1325 {
1326         uint16_t offset;
1327         uint16_t eeprom_data;
1328         int i;
1329
1330         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1331                 offset = i >> 1;
1332                 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1333                         DEBUGOUT("EEPROM Read Error\n");
1334                         return -E1000_ERR_EEPROM;
1335                 }
1336                 enetaddr[i] = eeprom_data & 0xff;
1337                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1338         }
1339
1340         return 0;
1341 }
1342
1343 /******************************************************************************
1344  * Reads the adapter's MAC address from the RAL/RAH registers
1345  *
1346  * hw - Struct containing variables accessed by shared code
1347  * enetaddr - buffering where the MAC address will be stored
1348  *****************************************************************************/
1349 static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1350                                          unsigned char enetaddr[6])
1351 {
1352         uint16_t offset, tmp;
1353         uint32_t reg_data = 0;
1354         int i;
1355
1356         if (hw->mac_type != e1000_igb)
1357                 return -E1000_ERR_MAC_TYPE;
1358
1359         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1360                 offset = i >> 1;
1361
1362                 if (offset == 0)
1363                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1364                 else if (offset == 1)
1365                         reg_data >>= 16;
1366                 else if (offset == 2)
1367                         reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1368                 tmp = reg_data & 0xffff;
1369
1370                 enetaddr[i] = tmp & 0xff;
1371                 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1372         }
1373
1374         return 0;
1375 }
1376
1377 /******************************************************************************
1378  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1379  * second function of dual function devices
1380  *
1381  * hw - Struct containing variables accessed by shared code
1382  * enetaddr - buffering where the MAC address will be stored
1383  *****************************************************************************/
1384 static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1385 {
1386         int ret_val;
1387
1388         if (hw->mac_type == e1000_igb) {
1389                 /* i210 preloads MAC address into RAL/RAH registers */
1390                 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1391         } else {
1392                 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1393         }
1394         if (ret_val)
1395                 return ret_val;
1396
1397         /* Invert the last bit if this is the second device */
1398         if (e1000_is_second_port(hw))
1399                 enetaddr[5] ^= 1;
1400
1401         return 0;
1402 }
1403 #endif
1404
1405 /******************************************************************************
1406  * Initializes receive address filters.
1407  *
1408  * hw - Struct containing variables accessed by shared code
1409  *
1410  * Places the MAC address in receive address register 0 and clears the rest
1411  * of the receive addresss registers. Clears the multicast table. Assumes
1412  * the receiver is in reset when the routine is called.
1413  *****************************************************************************/
1414 static void
1415 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1416 {
1417         uint32_t i;
1418         uint32_t addr_low;
1419         uint32_t addr_high;
1420
1421         DEBUGFUNC();
1422
1423         /* Setup the receive address. */
1424         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1425         addr_low = (enetaddr[0] |
1426                     (enetaddr[1] << 8) |
1427                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1428
1429         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1430
1431         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1432         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1433
1434         /* Zero out the other 15 receive addresses. */
1435         DEBUGOUT("Clearing RAR[1-15]\n");
1436         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1437                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1438                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1439         }
1440 }
1441
1442 /******************************************************************************
1443  * Clears the VLAN filer table
1444  *
1445  * hw - Struct containing variables accessed by shared code
1446  *****************************************************************************/
1447 static void
1448 e1000_clear_vfta(struct e1000_hw *hw)
1449 {
1450         uint32_t offset;
1451
1452         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1453                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1454 }
1455
1456 /******************************************************************************
1457  * Set the mac type member in the hw struct.
1458  *
1459  * hw - Struct containing variables accessed by shared code
1460  *****************************************************************************/
1461 int32_t
1462 e1000_set_mac_type(struct e1000_hw *hw)
1463 {
1464         DEBUGFUNC();
1465
1466         switch (hw->device_id) {
1467         case E1000_DEV_ID_82542:
1468                 switch (hw->revision_id) {
1469                 case E1000_82542_2_0_REV_ID:
1470                         hw->mac_type = e1000_82542_rev2_0;
1471                         break;
1472                 case E1000_82542_2_1_REV_ID:
1473                         hw->mac_type = e1000_82542_rev2_1;
1474                         break;
1475                 default:
1476                         /* Invalid 82542 revision ID */
1477                         return -E1000_ERR_MAC_TYPE;
1478                 }
1479                 break;
1480         case E1000_DEV_ID_82543GC_FIBER:
1481         case E1000_DEV_ID_82543GC_COPPER:
1482                 hw->mac_type = e1000_82543;
1483                 break;
1484         case E1000_DEV_ID_82544EI_COPPER:
1485         case E1000_DEV_ID_82544EI_FIBER:
1486         case E1000_DEV_ID_82544GC_COPPER:
1487         case E1000_DEV_ID_82544GC_LOM:
1488                 hw->mac_type = e1000_82544;
1489                 break;
1490         case E1000_DEV_ID_82540EM:
1491         case E1000_DEV_ID_82540EM_LOM:
1492         case E1000_DEV_ID_82540EP:
1493         case E1000_DEV_ID_82540EP_LOM:
1494         case E1000_DEV_ID_82540EP_LP:
1495                 hw->mac_type = e1000_82540;
1496                 break;
1497         case E1000_DEV_ID_82545EM_COPPER:
1498         case E1000_DEV_ID_82545EM_FIBER:
1499                 hw->mac_type = e1000_82545;
1500                 break;
1501         case E1000_DEV_ID_82545GM_COPPER:
1502         case E1000_DEV_ID_82545GM_FIBER:
1503         case E1000_DEV_ID_82545GM_SERDES:
1504                 hw->mac_type = e1000_82545_rev_3;
1505                 break;
1506         case E1000_DEV_ID_82546EB_COPPER:
1507         case E1000_DEV_ID_82546EB_FIBER:
1508         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1509                 hw->mac_type = e1000_82546;
1510                 break;
1511         case E1000_DEV_ID_82546GB_COPPER:
1512         case E1000_DEV_ID_82546GB_FIBER:
1513         case E1000_DEV_ID_82546GB_SERDES:
1514         case E1000_DEV_ID_82546GB_PCIE:
1515         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1516         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1517                 hw->mac_type = e1000_82546_rev_3;
1518                 break;
1519         case E1000_DEV_ID_82541EI:
1520         case E1000_DEV_ID_82541EI_MOBILE:
1521         case E1000_DEV_ID_82541ER_LOM:
1522                 hw->mac_type = e1000_82541;
1523                 break;
1524         case E1000_DEV_ID_82541ER:
1525         case E1000_DEV_ID_82541GI:
1526         case E1000_DEV_ID_82541GI_LF:
1527         case E1000_DEV_ID_82541GI_MOBILE:
1528                 hw->mac_type = e1000_82541_rev_2;
1529                 break;
1530         case E1000_DEV_ID_82547EI:
1531         case E1000_DEV_ID_82547EI_MOBILE:
1532                 hw->mac_type = e1000_82547;
1533                 break;
1534         case E1000_DEV_ID_82547GI:
1535                 hw->mac_type = e1000_82547_rev_2;
1536                 break;
1537         case E1000_DEV_ID_82571EB_COPPER:
1538         case E1000_DEV_ID_82571EB_FIBER:
1539         case E1000_DEV_ID_82571EB_SERDES:
1540         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1541         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1542         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1543         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1544         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1545         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1546                 hw->mac_type = e1000_82571;
1547                 break;
1548         case E1000_DEV_ID_82572EI_COPPER:
1549         case E1000_DEV_ID_82572EI_FIBER:
1550         case E1000_DEV_ID_82572EI_SERDES:
1551         case E1000_DEV_ID_82572EI:
1552                 hw->mac_type = e1000_82572;
1553                 break;
1554         case E1000_DEV_ID_82573E:
1555         case E1000_DEV_ID_82573E_IAMT:
1556         case E1000_DEV_ID_82573L:
1557                 hw->mac_type = e1000_82573;
1558                 break;
1559         case E1000_DEV_ID_82574L:
1560                 hw->mac_type = e1000_82574;
1561                 break;
1562         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1563         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1564         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1565         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1566                 hw->mac_type = e1000_80003es2lan;
1567                 break;
1568         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1569         case E1000_DEV_ID_ICH8_IGP_AMT:
1570         case E1000_DEV_ID_ICH8_IGP_C:
1571         case E1000_DEV_ID_ICH8_IFE:
1572         case E1000_DEV_ID_ICH8_IFE_GT:
1573         case E1000_DEV_ID_ICH8_IFE_G:
1574         case E1000_DEV_ID_ICH8_IGP_M:
1575                 hw->mac_type = e1000_ich8lan;
1576                 break;
1577         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1578         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1579         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1580         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1581         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1582         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1583         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1584         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1585                 hw->mac_type = e1000_igb;
1586                 break;
1587         default:
1588                 /* Should never have loaded on this device */
1589                 return -E1000_ERR_MAC_TYPE;
1590         }
1591         return E1000_SUCCESS;
1592 }
1593
1594 /******************************************************************************
1595  * Reset the transmit and receive units; mask and clear all interrupts.
1596  *
1597  * hw - Struct containing variables accessed by shared code
1598  *****************************************************************************/
1599 void
1600 e1000_reset_hw(struct e1000_hw *hw)
1601 {
1602         uint32_t ctrl;
1603         uint32_t ctrl_ext;
1604         uint32_t manc;
1605         uint32_t pba = 0;
1606         uint32_t reg;
1607
1608         DEBUGFUNC();
1609
1610         /* get the correct pba value for both PCI and PCIe*/
1611         if (hw->mac_type <  e1000_82571)
1612                 pba = E1000_DEFAULT_PCI_PBA;
1613         else
1614                 pba = E1000_DEFAULT_PCIE_PBA;
1615
1616         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1617         if (hw->mac_type == e1000_82542_rev2_0) {
1618                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1619 #ifdef CONFIG_DM_ETH
1620                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1621                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1622 #else
1623                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1624                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1625 #endif
1626         }
1627
1628         /* Clear interrupt mask to stop board from generating interrupts */
1629         DEBUGOUT("Masking off all interrupts\n");
1630         if (hw->mac_type == e1000_igb)
1631                 E1000_WRITE_REG(hw, I210_IAM, 0);
1632         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1633
1634         /* Disable the Transmit and Receive units.  Then delay to allow
1635          * any pending transactions to complete before we hit the MAC with
1636          * the global reset.
1637          */
1638         E1000_WRITE_REG(hw, RCTL, 0);
1639         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1640         E1000_WRITE_FLUSH(hw);
1641
1642         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1643         hw->tbi_compatibility_on = false;
1644
1645         /* Delay to allow any outstanding PCI transactions to complete before
1646          * resetting the device
1647          */
1648         mdelay(10);
1649
1650         /* Issue a global reset to the MAC.  This will reset the chip's
1651          * transmit, receive, DMA, and link units.  It will not effect
1652          * the current PCI configuration.  The global reset bit is self-
1653          * clearing, and should clear within a microsecond.
1654          */
1655         DEBUGOUT("Issuing a global reset to MAC\n");
1656         ctrl = E1000_READ_REG(hw, CTRL);
1657
1658         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1659
1660         /* Force a reload from the EEPROM if necessary */
1661         if (hw->mac_type == e1000_igb) {
1662                 mdelay(20);
1663                 reg = E1000_READ_REG(hw, STATUS);
1664                 if (reg & E1000_STATUS_PF_RST_DONE)
1665                         DEBUGOUT("PF OK\n");
1666                 reg = E1000_READ_REG(hw, I210_EECD);
1667                 if (reg & E1000_EECD_AUTO_RD)
1668                         DEBUGOUT("EEC OK\n");
1669         } else if (hw->mac_type < e1000_82540) {
1670                 /* Wait for reset to complete */
1671                 udelay(10);
1672                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1673                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1674                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1675                 E1000_WRITE_FLUSH(hw);
1676                 /* Wait for EEPROM reload */
1677                 mdelay(2);
1678         } else {
1679                 /* Wait for EEPROM reload (it happens automatically) */
1680                 mdelay(4);
1681                 /* Dissable HW ARPs on ASF enabled adapters */
1682                 manc = E1000_READ_REG(hw, MANC);
1683                 manc &= ~(E1000_MANC_ARP_EN);
1684                 E1000_WRITE_REG(hw, MANC, manc);
1685         }
1686
1687         /* Clear interrupt mask to stop board from generating interrupts */
1688         DEBUGOUT("Masking off all interrupts\n");
1689         if (hw->mac_type == e1000_igb)
1690                 E1000_WRITE_REG(hw, I210_IAM, 0);
1691         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1692
1693         /* Clear any pending interrupt events. */
1694         E1000_READ_REG(hw, ICR);
1695
1696         /* If MWI was previously enabled, reenable it. */
1697         if (hw->mac_type == e1000_82542_rev2_0) {
1698 #ifdef CONFIG_DM_ETH
1699                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #else
1701                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1702 #endif
1703         }
1704         if (hw->mac_type != e1000_igb)
1705                 E1000_WRITE_REG(hw, PBA, pba);
1706 }
1707
1708 /******************************************************************************
1709  *
1710  * Initialize a number of hardware-dependent bits
1711  *
1712  * hw: Struct containing variables accessed by shared code
1713  *
1714  * This function contains hardware limitation workarounds for PCI-E adapters
1715  *
1716  *****************************************************************************/
1717 static void
1718 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1719 {
1720         if ((hw->mac_type >= e1000_82571) &&
1721                         (!hw->initialize_hw_bits_disable)) {
1722                 /* Settings common to all PCI-express silicon */
1723                 uint32_t reg_ctrl, reg_ctrl_ext;
1724                 uint32_t reg_tarc0, reg_tarc1;
1725                 uint32_t reg_tctl;
1726                 uint32_t reg_txdctl, reg_txdctl1;
1727
1728                 /* link autonegotiation/sync workarounds */
1729                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1730                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1731
1732                 /* Enable not-done TX descriptor counting */
1733                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1734                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1735                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1736
1737                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1738                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1739                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1740
1741
1742                 switch (hw->mac_type) {
1743                 case e1000_igb:                 /* IGB is cool */
1744                         return;
1745                 case e1000_82571:
1746                 case e1000_82572:
1747                         /* Clear PHY TX compatible mode bits */
1748                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1749                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1750
1751                         /* link autonegotiation/sync workarounds */
1752                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1753
1754                         /* TX ring control fixes */
1755                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1756
1757                         /* Multiple read bit is reversed polarity */
1758                         reg_tctl = E1000_READ_REG(hw, TCTL);
1759                         if (reg_tctl & E1000_TCTL_MULR)
1760                                 reg_tarc1 &= ~(1 << 28);
1761                         else
1762                                 reg_tarc1 |= (1 << 28);
1763
1764                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1765                         break;
1766                 case e1000_82573:
1767                 case e1000_82574:
1768                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1769                         reg_ctrl_ext &= ~(1 << 23);
1770                         reg_ctrl_ext |= (1 << 22);
1771
1772                         /* TX byte count fix */
1773                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1774                         reg_ctrl &= ~(1 << 29);
1775
1776                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1777                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1778                         break;
1779                 case e1000_80003es2lan:
1780         /* improve small packet performace for fiber/serdes */
1781                         if ((hw->media_type == e1000_media_type_fiber)
1782                         || (hw->media_type ==
1783                                 e1000_media_type_internal_serdes)) {
1784                                 reg_tarc0 &= ~(1 << 20);
1785                         }
1786
1787                 /* Multiple read bit is reversed polarity */
1788                         reg_tctl = E1000_READ_REG(hw, TCTL);
1789                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1790                         if (reg_tctl & E1000_TCTL_MULR)
1791                                 reg_tarc1 &= ~(1 << 28);
1792                         else
1793                                 reg_tarc1 |= (1 << 28);
1794
1795                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1796                         break;
1797                 case e1000_ich8lan:
1798                         /* Reduce concurrent DMA requests to 3 from 4 */
1799                         if ((hw->revision_id < 3) ||
1800                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1801                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1802                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1803
1804                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1805                         reg_ctrl_ext |= (1 << 22);
1806                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1807
1808                         /* workaround TX hang with TSO=on */
1809                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1810
1811                         /* Multiple read bit is reversed polarity */
1812                         reg_tctl = E1000_READ_REG(hw, TCTL);
1813                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1814                         if (reg_tctl & E1000_TCTL_MULR)
1815                                 reg_tarc1 &= ~(1 << 28);
1816                         else
1817                                 reg_tarc1 |= (1 << 28);
1818
1819                         /* workaround TX hang with TSO=on */
1820                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1821
1822                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1823                         break;
1824                 default:
1825                         break;
1826                 }
1827
1828                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1829         }
1830 }
1831
1832 /******************************************************************************
1833  * Performs basic configuration of the adapter.
1834  *
1835  * hw - Struct containing variables accessed by shared code
1836  *
1837  * Assumes that the controller has previously been reset and is in a
1838  * post-reset uninitialized state. Initializes the receive address registers,
1839  * multicast table, and VLAN filter table. Calls routines to setup link
1840  * configuration and flow control settings. Clears all on-chip counters. Leaves
1841  * the transmit and receive units disabled and uninitialized.
1842  *****************************************************************************/
1843 static int
1844 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1845 {
1846         uint32_t ctrl;
1847         uint32_t i;
1848         int32_t ret_val;
1849         uint16_t pcix_cmd_word;
1850         uint16_t pcix_stat_hi_word;
1851         uint16_t cmd_mmrbc;
1852         uint16_t stat_mmrbc;
1853         uint32_t mta_size;
1854         uint32_t reg_data;
1855         uint32_t ctrl_ext;
1856         DEBUGFUNC();
1857         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1858         if ((hw->mac_type == e1000_ich8lan) &&
1859                 ((hw->revision_id < 3) ||
1860                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1861                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1862                         reg_data = E1000_READ_REG(hw, STATUS);
1863                         reg_data &= ~0x80000000;
1864                         E1000_WRITE_REG(hw, STATUS, reg_data);
1865         }
1866         /* Do not need initialize Identification LED */
1867
1868         /* Set the media type and TBI compatibility */
1869         e1000_set_media_type(hw);
1870
1871         /* Must be called after e1000_set_media_type
1872          * because media_type is used */
1873         e1000_initialize_hardware_bits(hw);
1874
1875         /* Disabling VLAN filtering. */
1876         DEBUGOUT("Initializing the IEEE VLAN\n");
1877         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1878         if (hw->mac_type != e1000_ich8lan) {
1879                 if (hw->mac_type < e1000_82545_rev_3)
1880                         E1000_WRITE_REG(hw, VET, 0);
1881                 e1000_clear_vfta(hw);
1882         }
1883
1884         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1885         if (hw->mac_type == e1000_82542_rev2_0) {
1886                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1887 #ifdef CONFIG_DM_ETH
1888                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1889                                       hw->
1890                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1891 #else
1892                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1893                                       hw->
1894                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1895 #endif
1896                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1897                 E1000_WRITE_FLUSH(hw);
1898                 mdelay(5);
1899         }
1900
1901         /* Setup the receive address. This involves initializing all of the Receive
1902          * Address Registers (RARs 0 - 15).
1903          */
1904         e1000_init_rx_addrs(hw, enetaddr);
1905
1906         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1907         if (hw->mac_type == e1000_82542_rev2_0) {
1908                 E1000_WRITE_REG(hw, RCTL, 0);
1909                 E1000_WRITE_FLUSH(hw);
1910                 mdelay(1);
1911 #ifdef CONFIG_DM_ETH
1912                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913 #else
1914                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1915 #endif
1916         }
1917
1918         /* Zero out the Multicast HASH table */
1919         DEBUGOUT("Zeroing the MTA\n");
1920         mta_size = E1000_MC_TBL_SIZE;
1921         if (hw->mac_type == e1000_ich8lan)
1922                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1923         for (i = 0; i < mta_size; i++) {
1924                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1925                 /* use write flush to prevent Memory Write Block (MWB) from
1926                  * occuring when accessing our register space */
1927                 E1000_WRITE_FLUSH(hw);
1928         }
1929
1930         switch (hw->mac_type) {
1931         case e1000_82545_rev_3:
1932         case e1000_82546_rev_3:
1933         case e1000_igb:
1934                 break;
1935         default:
1936         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1937         if (hw->bus_type == e1000_bus_type_pcix) {
1938 #ifdef CONFIG_DM_ETH
1939                 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1940                                      &pcix_cmd_word);
1941                 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1942                                      &pcix_stat_hi_word);
1943 #else
1944                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1945                                      &pcix_cmd_word);
1946                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1947                                      &pcix_stat_hi_word);
1948 #endif
1949                 cmd_mmrbc =
1950                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1951                     PCIX_COMMAND_MMRBC_SHIFT;
1952                 stat_mmrbc =
1953                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1954                     PCIX_STATUS_HI_MMRBC_SHIFT;
1955                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1956                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1957                 if (cmd_mmrbc > stat_mmrbc) {
1958                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1959                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1960 #ifdef CONFIG_DM_ETH
1961                         dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1962                                               pcix_cmd_word);
1963 #else
1964                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1965                                               pcix_cmd_word);
1966 #endif
1967                 }
1968         }
1969                 break;
1970         }
1971
1972         /* More time needed for PHY to initialize */
1973         if (hw->mac_type == e1000_ich8lan)
1974                 mdelay(15);
1975         if (hw->mac_type == e1000_igb)
1976                 mdelay(15);
1977
1978         /* Call a subroutine to configure the link and setup flow control. */
1979         ret_val = e1000_setup_link(hw);
1980
1981         /* Set the transmit descriptor write-back policy */
1982         if (hw->mac_type > e1000_82544) {
1983                 ctrl = E1000_READ_REG(hw, TXDCTL);
1984                 ctrl =
1985                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1986                     E1000_TXDCTL_FULL_TX_DESC_WB;
1987                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1988         }
1989
1990         /* Set the receive descriptor write back policy */
1991         if (hw->mac_type >= e1000_82571) {
1992                 ctrl = E1000_READ_REG(hw, RXDCTL);
1993                 ctrl =
1994                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1995                     E1000_RXDCTL_FULL_RX_DESC_WB;
1996                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1997         }
1998
1999         switch (hw->mac_type) {
2000         default:
2001                 break;
2002         case e1000_80003es2lan:
2003                 /* Enable retransmit on late collisions */
2004                 reg_data = E1000_READ_REG(hw, TCTL);
2005                 reg_data |= E1000_TCTL_RTLC;
2006                 E1000_WRITE_REG(hw, TCTL, reg_data);
2007
2008                 /* Configure Gigabit Carry Extend Padding */
2009                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
2010                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2011                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2012                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2013
2014                 /* Configure Transmit Inter-Packet Gap */
2015                 reg_data = E1000_READ_REG(hw, TIPG);
2016                 reg_data &= ~E1000_TIPG_IPGT_MASK;
2017                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2018                 E1000_WRITE_REG(hw, TIPG, reg_data);
2019
2020                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2021                 reg_data &= ~0x00100000;
2022                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2023                 /* Fall through */
2024         case e1000_82571:
2025         case e1000_82572:
2026         case e1000_ich8lan:
2027                 ctrl = E1000_READ_REG(hw, TXDCTL1);
2028                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2029                         | E1000_TXDCTL_FULL_TX_DESC_WB;
2030                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2031                 break;
2032         case e1000_82573:
2033         case e1000_82574:
2034                 reg_data = E1000_READ_REG(hw, GCR);
2035                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2036                 E1000_WRITE_REG(hw, GCR, reg_data);
2037         case e1000_igb:
2038                 break;
2039         }
2040
2041         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2042                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2043                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2044                 /* Relaxed ordering must be disabled to avoid a parity
2045                  * error crash in a PCI slot. */
2046                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2047                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2048         }
2049
2050         return ret_val;
2051 }
2052
2053 /******************************************************************************
2054  * Configures flow control and link settings.
2055  *
2056  * hw - Struct containing variables accessed by shared code
2057  *
2058  * Determines which flow control settings to use. Calls the apropriate media-
2059  * specific link configuration function. Configures the flow control settings.
2060  * Assuming the adapter has a valid link partner, a valid link should be
2061  * established. Assumes the hardware has previously been reset and the
2062  * transmitter and receiver are not enabled.
2063  *****************************************************************************/
2064 static int
2065 e1000_setup_link(struct e1000_hw *hw)
2066 {
2067         int32_t ret_val;
2068 #ifndef CONFIG_E1000_NO_NVM
2069         uint32_t ctrl_ext;
2070         uint16_t eeprom_data;
2071 #endif
2072
2073         DEBUGFUNC();
2074
2075         /* In the case of the phy reset being blocked, we already have a link.
2076          * We do not have to set it up again. */
2077         if (e1000_check_phy_reset_block(hw))
2078                 return E1000_SUCCESS;
2079
2080 #ifndef CONFIG_E1000_NO_NVM
2081         /* Read and store word 0x0F of the EEPROM. This word contains bits
2082          * that determine the hardware's default PAUSE (flow control) mode,
2083          * a bit that determines whether the HW defaults to enabling or
2084          * disabling auto-negotiation, and the direction of the
2085          * SW defined pins. If there is no SW over-ride of the flow
2086          * control setting, then the variable hw->fc will
2087          * be initialized based on a value in the EEPROM.
2088          */
2089         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2090                                 &eeprom_data) < 0) {
2091                 DEBUGOUT("EEPROM Read Error\n");
2092                 return -E1000_ERR_EEPROM;
2093         }
2094 #endif
2095         if (hw->fc == e1000_fc_default) {
2096                 switch (hw->mac_type) {
2097                 case e1000_ich8lan:
2098                 case e1000_82573:
2099                 case e1000_82574:
2100                 case e1000_igb:
2101                         hw->fc = e1000_fc_full;
2102                         break;
2103                 default:
2104 #ifndef CONFIG_E1000_NO_NVM
2105                         ret_val = e1000_read_eeprom(hw,
2106                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2107                         if (ret_val) {
2108                                 DEBUGOUT("EEPROM Read Error\n");
2109                                 return -E1000_ERR_EEPROM;
2110                         }
2111                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2112                                 hw->fc = e1000_fc_none;
2113                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2114                                     EEPROM_WORD0F_ASM_DIR)
2115                                 hw->fc = e1000_fc_tx_pause;
2116                         else
2117 #endif
2118                                 hw->fc = e1000_fc_full;
2119                         break;
2120                 }
2121         }
2122
2123         /* We want to save off the original Flow Control configuration just
2124          * in case we get disconnected and then reconnected into a different
2125          * hub or switch with different Flow Control capabilities.
2126          */
2127         if (hw->mac_type == e1000_82542_rev2_0)
2128                 hw->fc &= (~e1000_fc_tx_pause);
2129
2130         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2131                 hw->fc &= (~e1000_fc_rx_pause);
2132
2133         hw->original_fc = hw->fc;
2134
2135         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2136
2137 #ifndef CONFIG_E1000_NO_NVM
2138         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2139          * polarity value for the SW controlled pins, and setup the
2140          * Extended Device Control reg with that info.
2141          * This is needed because one of the SW controlled pins is used for
2142          * signal detection.  So this should be done before e1000_setup_pcs_link()
2143          * or e1000_phy_setup() is called.
2144          */
2145         if (hw->mac_type == e1000_82543) {
2146                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2147                             SWDPIO__EXT_SHIFT);
2148                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2149         }
2150 #endif
2151
2152         /* Call the necessary subroutine to configure the link. */
2153         ret_val = (hw->media_type == e1000_media_type_fiber) ?
2154             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
2155         if (ret_val < 0) {
2156                 return ret_val;
2157         }
2158
2159         /* Initialize the flow control address, type, and PAUSE timer
2160          * registers to their default values.  This is done even if flow
2161          * control is disabled, because it does not hurt anything to
2162          * initialize these registers.
2163          */
2164         DEBUGOUT("Initializing the Flow Control address, type"
2165                         "and timer regs\n");
2166
2167         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2168         if (hw->mac_type != e1000_ich8lan) {
2169                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2170                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2171                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2172         }
2173
2174         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2175
2176         /* Set the flow control receive threshold registers.  Normally,
2177          * these registers will be set to a default threshold that may be
2178          * adjusted later by the driver's runtime code.  However, if the
2179          * ability to transmit pause frames in not enabled, then these
2180          * registers will be set to 0.
2181          */
2182         if (!(hw->fc & e1000_fc_tx_pause)) {
2183                 E1000_WRITE_REG(hw, FCRTL, 0);
2184                 E1000_WRITE_REG(hw, FCRTH, 0);
2185         } else {
2186                 /* We need to set up the Receive Threshold high and low water marks
2187                  * as well as (optionally) enabling the transmission of XON frames.
2188                  */
2189                 if (hw->fc_send_xon) {
2190                         E1000_WRITE_REG(hw, FCRTL,
2191                                         (hw->fc_low_water | E1000_FCRTL_XONE));
2192                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2193                 } else {
2194                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2195                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2196                 }
2197         }
2198         return ret_val;
2199 }
2200
2201 /******************************************************************************
2202  * Sets up link for a fiber based adapter
2203  *
2204  * hw - Struct containing variables accessed by shared code
2205  *
2206  * Manipulates Physical Coding Sublayer functions in order to configure
2207  * link. Assumes the hardware has been previously reset and the transmitter
2208  * and receiver are not enabled.
2209  *****************************************************************************/
2210 static int
2211 e1000_setup_fiber_link(struct e1000_hw *hw)
2212 {
2213         uint32_t ctrl;
2214         uint32_t status;
2215         uint32_t txcw = 0;
2216         uint32_t i;
2217         uint32_t signal;
2218         int32_t ret_val;
2219
2220         DEBUGFUNC();
2221         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2222          * set when the optics detect a signal. On older adapters, it will be
2223          * cleared when there is a signal
2224          */
2225         ctrl = E1000_READ_REG(hw, CTRL);
2226         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2227                 signal = E1000_CTRL_SWDPIN1;
2228         else
2229                 signal = 0;
2230
2231         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2232                ctrl);
2233         /* Take the link out of reset */
2234         ctrl &= ~(E1000_CTRL_LRST);
2235
2236         e1000_config_collision_dist(hw);
2237
2238         /* Check for a software override of the flow control settings, and setup
2239          * the device accordingly.  If auto-negotiation is enabled, then software
2240          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2241          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2242          * auto-negotiation is disabled, then software will have to manually
2243          * configure the two flow control enable bits in the CTRL register.
2244          *
2245          * The possible values of the "fc" parameter are:
2246          *      0:  Flow control is completely disabled
2247          *      1:  Rx flow control is enabled (we can receive pause frames, but
2248          *          not send pause frames).
2249          *      2:  Tx flow control is enabled (we can send pause frames but we do
2250          *          not support receiving pause frames).
2251          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2252          */
2253         switch (hw->fc) {
2254         case e1000_fc_none:
2255                 /* Flow control is completely disabled by a software over-ride. */
2256                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2257                 break;
2258         case e1000_fc_rx_pause:
2259                 /* RX Flow control is enabled and TX Flow control is disabled by a
2260                  * software over-ride. Since there really isn't a way to advertise
2261                  * that we are capable of RX Pause ONLY, we will advertise that we
2262                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2263                  *  disable the adapter's ability to send PAUSE frames.
2264                  */
2265                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2266                 break;
2267         case e1000_fc_tx_pause:
2268                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2269                  * software over-ride.
2270                  */
2271                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2272                 break;
2273         case e1000_fc_full:
2274                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2275                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2276                 break;
2277         default:
2278                 DEBUGOUT("Flow control param set incorrectly\n");
2279                 return -E1000_ERR_CONFIG;
2280                 break;
2281         }
2282
2283         /* Since auto-negotiation is enabled, take the link out of reset (the link
2284          * will be in reset, because we previously reset the chip). This will
2285          * restart auto-negotiation.  If auto-neogtiation is successful then the
2286          * link-up status bit will be set and the flow control enable bits (RFCE
2287          * and TFCE) will be set according to their negotiated value.
2288          */
2289         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2290
2291         E1000_WRITE_REG(hw, TXCW, txcw);
2292         E1000_WRITE_REG(hw, CTRL, ctrl);
2293         E1000_WRITE_FLUSH(hw);
2294
2295         hw->txcw = txcw;
2296         mdelay(1);
2297
2298         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2299          * indication in the Device Status Register.  Time-out if a link isn't
2300          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2301          * less than 500 milliseconds even if the other end is doing it in SW).
2302          */
2303         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2304                 DEBUGOUT("Looking for Link\n");
2305                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2306                         mdelay(10);
2307                         status = E1000_READ_REG(hw, STATUS);
2308                         if (status & E1000_STATUS_LU)
2309                                 break;
2310                 }
2311                 if (i == (LINK_UP_TIMEOUT / 10)) {
2312                         /* AutoNeg failed to achieve a link, so we'll call
2313                          * e1000_check_for_link. This routine will force the link up if we
2314                          * detect a signal. This will allow us to communicate with
2315                          * non-autonegotiating link partners.
2316                          */
2317                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2318                         hw->autoneg_failed = 1;
2319                         ret_val = e1000_check_for_link(hw);
2320                         if (ret_val < 0) {
2321                                 DEBUGOUT("Error while checking for link\n");
2322                                 return ret_val;
2323                         }
2324                         hw->autoneg_failed = 0;
2325                 } else {
2326                         hw->autoneg_failed = 0;
2327                         DEBUGOUT("Valid Link Found\n");
2328                 }
2329         } else {
2330                 DEBUGOUT("No Signal Detected\n");
2331                 return -E1000_ERR_NOLINK;
2332         }
2333         return 0;
2334 }
2335
2336 /******************************************************************************
2337 * Make sure we have a valid PHY and change PHY mode before link setup.
2338 *
2339 * hw - Struct containing variables accessed by shared code
2340 ******************************************************************************/
2341 static int32_t
2342 e1000_copper_link_preconfig(struct e1000_hw *hw)
2343 {
2344         uint32_t ctrl;
2345         int32_t ret_val;
2346         uint16_t phy_data;
2347
2348         DEBUGFUNC();
2349
2350         ctrl = E1000_READ_REG(hw, CTRL);
2351         /* With 82543, we need to force speed and duplex on the MAC equal to what
2352          * the PHY speed and duplex configuration is. In addition, we need to
2353          * perform a hardware reset on the PHY to take it out of reset.
2354          */
2355         if (hw->mac_type > e1000_82543) {
2356                 ctrl |= E1000_CTRL_SLU;
2357                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2358                 E1000_WRITE_REG(hw, CTRL, ctrl);
2359         } else {
2360                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2361                                 | E1000_CTRL_SLU);
2362                 E1000_WRITE_REG(hw, CTRL, ctrl);
2363                 ret_val = e1000_phy_hw_reset(hw);
2364                 if (ret_val)
2365                         return ret_val;
2366         }
2367
2368         /* Make sure we have a valid PHY */
2369         ret_val = e1000_detect_gig_phy(hw);
2370         if (ret_val) {
2371                 DEBUGOUT("Error, did not detect valid phy.\n");
2372                 return ret_val;
2373         }
2374         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2375
2376         /* Set PHY to class A mode (if necessary) */
2377         ret_val = e1000_set_phy_mode(hw);
2378         if (ret_val)
2379                 return ret_val;
2380         if ((hw->mac_type == e1000_82545_rev_3) ||
2381                 (hw->mac_type == e1000_82546_rev_3)) {
2382                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2383                                 &phy_data);
2384                 phy_data |= 0x00000008;
2385                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2386                                 phy_data);
2387         }
2388
2389         if (hw->mac_type <= e1000_82543 ||
2390                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2391                 hw->mac_type == e1000_82541_rev_2
2392                 || hw->mac_type == e1000_82547_rev_2)
2393                         hw->phy_reset_disable = false;
2394
2395         return E1000_SUCCESS;
2396 }
2397
2398 /*****************************************************************************
2399  *
2400  * This function sets the lplu state according to the active flag.  When
2401  * activating lplu this function also disables smart speed and vise versa.
2402  * lplu will not be activated unless the device autonegotiation advertisment
2403  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2404  * hw: Struct containing variables accessed by shared code
2405  * active - true to enable lplu false to disable lplu.
2406  *
2407  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2408  *            E1000_SUCCESS at any other case.
2409  *
2410  ****************************************************************************/
2411
2412 static int32_t
2413 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2414 {
2415         uint32_t phy_ctrl = 0;
2416         int32_t ret_val;
2417         uint16_t phy_data;
2418         DEBUGFUNC();
2419
2420         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2421             && hw->phy_type != e1000_phy_igp_3)
2422                 return E1000_SUCCESS;
2423
2424         /* During driver activity LPLU should not be used or it will attain link
2425          * from the lowest speeds starting from 10Mbps. The capability is used
2426          * for Dx transitions and states */
2427         if (hw->mac_type == e1000_82541_rev_2
2428                         || hw->mac_type == e1000_82547_rev_2) {
2429                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2430                                 &phy_data);
2431                 if (ret_val)
2432                         return ret_val;
2433         } else if (hw->mac_type == e1000_ich8lan) {
2434                 /* MAC writes into PHY register based on the state transition
2435                  * and start auto-negotiation. SW driver can overwrite the
2436                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2437                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2438         } else {
2439                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2440                                 &phy_data);
2441                 if (ret_val)
2442                         return ret_val;
2443         }
2444
2445         if (!active) {
2446                 if (hw->mac_type == e1000_82541_rev_2 ||
2447                         hw->mac_type == e1000_82547_rev_2) {
2448                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2449                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2450                                         phy_data);
2451                         if (ret_val)
2452                                 return ret_val;
2453                 } else {
2454                         if (hw->mac_type == e1000_ich8lan) {
2455                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2456                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2457                         } else {
2458                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2459                                 ret_val = e1000_write_phy_reg(hw,
2460                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2461                                 if (ret_val)
2462                                         return ret_val;
2463                         }
2464                 }
2465
2466         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2467          * Dx states where the power conservation is most important.  During
2468          * driver activity we should enable SmartSpeed, so performance is
2469          * maintained. */
2470                 if (hw->smart_speed == e1000_smart_speed_on) {
2471                         ret_val = e1000_read_phy_reg(hw,
2472                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2473                         if (ret_val)
2474                                 return ret_val;
2475
2476                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2477                         ret_val = e1000_write_phy_reg(hw,
2478                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479                         if (ret_val)
2480                                 return ret_val;
2481                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2482                         ret_val = e1000_read_phy_reg(hw,
2483                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2484                         if (ret_val)
2485                                 return ret_val;
2486
2487                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2488                         ret_val = e1000_write_phy_reg(hw,
2489                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2490                         if (ret_val)
2491                                 return ret_val;
2492                 }
2493
2494         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2495                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2496                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2497
2498                 if (hw->mac_type == e1000_82541_rev_2 ||
2499                     hw->mac_type == e1000_82547_rev_2) {
2500                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2501                         ret_val = e1000_write_phy_reg(hw,
2502                                         IGP01E1000_GMII_FIFO, phy_data);
2503                         if (ret_val)
2504                                 return ret_val;
2505                 } else {
2506                         if (hw->mac_type == e1000_ich8lan) {
2507                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2508                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2509                         } else {
2510                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2511                                 ret_val = e1000_write_phy_reg(hw,
2512                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2513                                 if (ret_val)
2514                                         return ret_val;
2515                         }
2516                 }
2517
2518                 /* When LPLU is enabled we should disable SmartSpeed */
2519                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2520                                 &phy_data);
2521                 if (ret_val)
2522                         return ret_val;
2523
2524                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2525                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2526                                 phy_data);
2527                 if (ret_val)
2528                         return ret_val;
2529         }
2530         return E1000_SUCCESS;
2531 }
2532
2533 /*****************************************************************************
2534  *
2535  * This function sets the lplu d0 state according to the active flag.  When
2536  * activating lplu this function also disables smart speed and vise versa.
2537  * lplu will not be activated unless the device autonegotiation advertisment
2538  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2539  * hw: Struct containing variables accessed by shared code
2540  * active - true to enable lplu false to disable lplu.
2541  *
2542  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2543  *            E1000_SUCCESS at any other case.
2544  *
2545  ****************************************************************************/
2546
2547 static int32_t
2548 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2549 {
2550         uint32_t phy_ctrl = 0;
2551         int32_t ret_val;
2552         uint16_t phy_data;
2553         DEBUGFUNC();
2554
2555         if (hw->mac_type <= e1000_82547_rev_2)
2556                 return E1000_SUCCESS;
2557
2558         if (hw->mac_type == e1000_ich8lan) {
2559                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2560         } else if (hw->mac_type == e1000_igb) {
2561                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2562         } else {
2563                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2564                                 &phy_data);
2565                 if (ret_val)
2566                         return ret_val;
2567         }
2568
2569         if (!active) {
2570                 if (hw->mac_type == e1000_ich8lan) {
2571                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2572                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2573                 } else if (hw->mac_type == e1000_igb) {
2574                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2575                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2576                 } else {
2577                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2578                         ret_val = e1000_write_phy_reg(hw,
2579                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2580                         if (ret_val)
2581                                 return ret_val;
2582                 }
2583
2584                 if (hw->mac_type == e1000_igb)
2585                         return E1000_SUCCESS;
2586
2587         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2588          * Dx states where the power conservation is most important.  During
2589          * driver activity we should enable SmartSpeed, so performance is
2590          * maintained. */
2591                 if (hw->smart_speed == e1000_smart_speed_on) {
2592                         ret_val = e1000_read_phy_reg(hw,
2593                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2594                         if (ret_val)
2595                                 return ret_val;
2596
2597                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2598                         ret_val = e1000_write_phy_reg(hw,
2599                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2600                         if (ret_val)
2601                                 return ret_val;
2602                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2603                         ret_val = e1000_read_phy_reg(hw,
2604                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2605                         if (ret_val)
2606                                 return ret_val;
2607
2608                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2609                         ret_val = e1000_write_phy_reg(hw,
2610                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2611                         if (ret_val)
2612                                 return ret_val;
2613                 }
2614
2615
2616         } else {
2617
2618                 if (hw->mac_type == e1000_ich8lan) {
2619                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2620                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2621                 } else if (hw->mac_type == e1000_igb) {
2622                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2623                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2624                 } else {
2625                         phy_data |= IGP02E1000_PM_D0_LPLU;
2626                         ret_val = e1000_write_phy_reg(hw,
2627                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2628                         if (ret_val)
2629                                 return ret_val;
2630                 }
2631
2632                 if (hw->mac_type == e1000_igb)
2633                         return E1000_SUCCESS;
2634
2635                 /* When LPLU is enabled we should disable SmartSpeed */
2636                 ret_val = e1000_read_phy_reg(hw,
2637                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2638                 if (ret_val)
2639                         return ret_val;
2640
2641                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2642                 ret_val = e1000_write_phy_reg(hw,
2643                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2644                 if (ret_val)
2645                         return ret_val;
2646
2647         }
2648         return E1000_SUCCESS;
2649 }
2650
2651 /********************************************************************
2652 * Copper link setup for e1000_phy_igp series.
2653 *
2654 * hw - Struct containing variables accessed by shared code
2655 *********************************************************************/
2656 static int32_t
2657 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2658 {
2659         uint32_t led_ctrl;
2660         int32_t ret_val;
2661         uint16_t phy_data;
2662
2663         DEBUGFUNC();
2664
2665         if (hw->phy_reset_disable)
2666                 return E1000_SUCCESS;
2667
2668         ret_val = e1000_phy_reset(hw);
2669         if (ret_val) {
2670                 DEBUGOUT("Error Resetting the PHY\n");
2671                 return ret_val;
2672         }
2673
2674         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2675         mdelay(15);
2676         if (hw->mac_type != e1000_ich8lan) {
2677                 /* Configure activity LED after PHY reset */
2678                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2679                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2680                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2681                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2682         }
2683
2684         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2685         if (hw->phy_type == e1000_phy_igp) {
2686                 /* disable lplu d3 during driver init */
2687                 ret_val = e1000_set_d3_lplu_state(hw, false);
2688                 if (ret_val) {
2689                         DEBUGOUT("Error Disabling LPLU D3\n");
2690                         return ret_val;
2691                 }
2692         }
2693
2694         /* disable lplu d0 during driver init */
2695         ret_val = e1000_set_d0_lplu_state(hw, false);
2696         if (ret_val) {
2697                 DEBUGOUT("Error Disabling LPLU D0\n");
2698                 return ret_val;
2699         }
2700         /* Configure mdi-mdix settings */
2701         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2702         if (ret_val)
2703                 return ret_val;
2704
2705         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2706                 hw->dsp_config_state = e1000_dsp_config_disabled;
2707                 /* Force MDI for earlier revs of the IGP PHY */
2708                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2709                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2710                 hw->mdix = 1;
2711
2712         } else {
2713                 hw->dsp_config_state = e1000_dsp_config_enabled;
2714                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2715
2716                 switch (hw->mdix) {
2717                 case 1:
2718                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2719                         break;
2720                 case 2:
2721                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2722                         break;
2723                 case 0:
2724                 default:
2725                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2726                         break;
2727                 }
2728         }
2729         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2730         if (ret_val)
2731                 return ret_val;
2732
2733         /* set auto-master slave resolution settings */
2734         if (hw->autoneg) {
2735                 e1000_ms_type phy_ms_setting = hw->master_slave;
2736
2737                 if (hw->ffe_config_state == e1000_ffe_config_active)
2738                         hw->ffe_config_state = e1000_ffe_config_enabled;
2739
2740                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2741                         hw->dsp_config_state = e1000_dsp_config_enabled;
2742
2743                 /* when autonegotiation advertisment is only 1000Mbps then we
2744                   * should disable SmartSpeed and enable Auto MasterSlave
2745                   * resolution as hardware default. */
2746                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2747                         /* Disable SmartSpeed */
2748                         ret_val = e1000_read_phy_reg(hw,
2749                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2750                         if (ret_val)
2751                                 return ret_val;
2752                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2753                         ret_val = e1000_write_phy_reg(hw,
2754                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2755                         if (ret_val)
2756                                 return ret_val;
2757                         /* Set auto Master/Slave resolution process */
2758                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2759                                         &phy_data);
2760                         if (ret_val)
2761                                 return ret_val;
2762                         phy_data &= ~CR_1000T_MS_ENABLE;
2763                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2764                                         phy_data);
2765                         if (ret_val)
2766                                 return ret_val;
2767                 }
2768
2769                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2770                 if (ret_val)
2771                         return ret_val;
2772
2773                 /* load defaults for future use */
2774                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2775                                 ((phy_data & CR_1000T_MS_VALUE) ?
2776                                 e1000_ms_force_master :
2777                                 e1000_ms_force_slave) :
2778                                 e1000_ms_auto;
2779
2780                 switch (phy_ms_setting) {
2781                 case e1000_ms_force_master:
2782                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2783                         break;
2784                 case e1000_ms_force_slave:
2785                         phy_data |= CR_1000T_MS_ENABLE;
2786                         phy_data &= ~(CR_1000T_MS_VALUE);
2787                         break;
2788                 case e1000_ms_auto:
2789                         phy_data &= ~CR_1000T_MS_ENABLE;
2790                 default:
2791                         break;
2792                 }
2793                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2794                 if (ret_val)
2795                         return ret_val;
2796         }
2797
2798         return E1000_SUCCESS;
2799 }
2800
2801 /*****************************************************************************
2802  * This function checks the mode of the firmware.
2803  *
2804  * returns  - true when the mode is IAMT or false.
2805  ****************************************************************************/
2806 bool
2807 e1000_check_mng_mode(struct e1000_hw *hw)
2808 {
2809         uint32_t fwsm;
2810         DEBUGFUNC();
2811
2812         fwsm = E1000_READ_REG(hw, FWSM);
2813
2814         if (hw->mac_type == e1000_ich8lan) {
2815                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2816                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2817                         return true;
2818         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2819                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2820                         return true;
2821
2822         return false;
2823 }
2824
2825 static int32_t
2826 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2827 {
2828         uint16_t swfw = E1000_SWFW_PHY0_SM;
2829         uint32_t reg_val;
2830         DEBUGFUNC();
2831
2832         if (e1000_is_second_port(hw))
2833                 swfw = E1000_SWFW_PHY1_SM;
2834
2835         if (e1000_swfw_sync_acquire(hw, swfw))
2836                 return -E1000_ERR_SWFW_SYNC;
2837
2838         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2839                         & E1000_KUMCTRLSTA_OFFSET) | data;
2840         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2841         udelay(2);
2842
2843         return E1000_SUCCESS;
2844 }
2845
2846 static int32_t
2847 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2848 {
2849         uint16_t swfw = E1000_SWFW_PHY0_SM;
2850         uint32_t reg_val;
2851         DEBUGFUNC();
2852
2853         if (e1000_is_second_port(hw))
2854                 swfw = E1000_SWFW_PHY1_SM;
2855
2856         if (e1000_swfw_sync_acquire(hw, swfw)) {
2857                 debug("%s[%i]\n", __func__, __LINE__);
2858                 return -E1000_ERR_SWFW_SYNC;
2859         }
2860
2861         /* Write register address */
2862         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2863                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2864         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2865         udelay(2);
2866
2867         /* Read the data returned */
2868         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2869         *data = (uint16_t)reg_val;
2870
2871         return E1000_SUCCESS;
2872 }
2873
2874 /********************************************************************
2875 * Copper link setup for e1000_phy_gg82563 series.
2876 *
2877 * hw - Struct containing variables accessed by shared code
2878 *********************************************************************/
2879 static int32_t
2880 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2881 {
2882         int32_t ret_val;
2883         uint16_t phy_data;
2884         uint32_t reg_data;
2885
2886         DEBUGFUNC();
2887
2888         if (!hw->phy_reset_disable) {
2889                 /* Enable CRS on TX for half-duplex operation. */
2890                 ret_val = e1000_read_phy_reg(hw,
2891                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2892                 if (ret_val)
2893                         return ret_val;
2894
2895                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2896                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2897                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2898
2899                 ret_val = e1000_write_phy_reg(hw,
2900                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2901                 if (ret_val)
2902                         return ret_val;
2903
2904                 /* Options:
2905                  *   MDI/MDI-X = 0 (default)
2906                  *   0 - Auto for all speeds
2907                  *   1 - MDI mode
2908                  *   2 - MDI-X mode
2909                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2910                  */
2911                 ret_val = e1000_read_phy_reg(hw,
2912                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2913                 if (ret_val)
2914                         return ret_val;
2915
2916                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2917
2918                 switch (hw->mdix) {
2919                 case 1:
2920                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2921                         break;
2922                 case 2:
2923                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2924                         break;
2925                 case 0:
2926                 default:
2927                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2928                         break;
2929                 }
2930
2931                 /* Options:
2932                  *   disable_polarity_correction = 0 (default)
2933                  *       Automatic Correction for Reversed Cable Polarity
2934                  *   0 - Disabled
2935                  *   1 - Enabled
2936                  */
2937                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2938                 ret_val = e1000_write_phy_reg(hw,
2939                                 GG82563_PHY_SPEC_CTRL, phy_data);
2940
2941                 if (ret_val)
2942                         return ret_val;
2943
2944                 /* SW Reset the PHY so all changes take effect */
2945                 ret_val = e1000_phy_reset(hw);
2946                 if (ret_val) {
2947                         DEBUGOUT("Error Resetting the PHY\n");
2948                         return ret_val;
2949                 }
2950         } /* phy_reset_disable */
2951
2952         if (hw->mac_type == e1000_80003es2lan) {
2953                 /* Bypass RX and TX FIFO's */
2954                 ret_val = e1000_write_kmrn_reg(hw,
2955                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2956                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2957                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2958                 if (ret_val)
2959                         return ret_val;
2960
2961                 ret_val = e1000_read_phy_reg(hw,
2962                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2963                 if (ret_val)
2964                         return ret_val;
2965
2966                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2967                 ret_val = e1000_write_phy_reg(hw,
2968                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2969
2970                 if (ret_val)
2971                         return ret_val;
2972
2973                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2974                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2975                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2976
2977                 ret_val = e1000_read_phy_reg(hw,
2978                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2979                 if (ret_val)
2980                         return ret_val;
2981
2982         /* Do not init these registers when the HW is in IAMT mode, since the
2983          * firmware will have already initialized them.  We only initialize
2984          * them if the HW is not in IAMT mode.
2985          */
2986                 if (e1000_check_mng_mode(hw) == false) {
2987                         /* Enable Electrical Idle on the PHY */
2988                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2989                         ret_val = e1000_write_phy_reg(hw,
2990                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2991                         if (ret_val)
2992                                 return ret_val;
2993
2994                         ret_val = e1000_read_phy_reg(hw,
2995                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2996                         if (ret_val)
2997                                 return ret_val;
2998
2999                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3000                         ret_val = e1000_write_phy_reg(hw,
3001                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3002
3003                         if (ret_val)
3004                                 return ret_val;
3005                 }
3006
3007                 /* Workaround: Disable padding in Kumeran interface in the MAC
3008                  * and in the PHY to avoid CRC errors.
3009                  */
3010                 ret_val = e1000_read_phy_reg(hw,
3011                                 GG82563_PHY_INBAND_CTRL, &phy_data);
3012                 if (ret_val)
3013                         return ret_val;
3014                 phy_data |= GG82563_ICR_DIS_PADDING;
3015                 ret_val = e1000_write_phy_reg(hw,
3016                                 GG82563_PHY_INBAND_CTRL, phy_data);
3017                 if (ret_val)
3018                         return ret_val;
3019         }
3020         return E1000_SUCCESS;
3021 }
3022
3023 /********************************************************************
3024 * Copper link setup for e1000_phy_m88 series.
3025 *
3026 * hw - Struct containing variables accessed by shared code
3027 *********************************************************************/
3028 static int32_t
3029 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3030 {
3031         int32_t ret_val;
3032         uint16_t phy_data;
3033
3034         DEBUGFUNC();
3035
3036         if (hw->phy_reset_disable)
3037                 return E1000_SUCCESS;
3038
3039         /* Enable CRS on TX. This must be set for half-duplex operation. */
3040         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3041         if (ret_val)
3042                 return ret_val;
3043
3044         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3045
3046         /* Options:
3047          *   MDI/MDI-X = 0 (default)
3048          *   0 - Auto for all speeds
3049          *   1 - MDI mode
3050          *   2 - MDI-X mode
3051          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3052          */
3053         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
3054
3055         switch (hw->mdix) {
3056         case 1:
3057                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3058                 break;
3059         case 2:
3060                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3061                 break;
3062         case 3:
3063                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3064                 break;
3065         case 0:
3066         default:
3067                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3068                 break;
3069         }
3070
3071         /* Options:
3072          *   disable_polarity_correction = 0 (default)
3073          *       Automatic Correction for Reversed Cable Polarity
3074          *   0 - Disabled
3075          *   1 - Enabled
3076          */
3077         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
3078         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3079         if (ret_val)
3080                 return ret_val;
3081
3082         if (hw->phy_revision < M88E1011_I_REV_4) {
3083                 /* Force TX_CLK in the Extended PHY Specific Control Register
3084                  * to 25MHz clock.
3085                  */
3086                 ret_val = e1000_read_phy_reg(hw,
3087                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3088                 if (ret_val)
3089                         return ret_val;
3090
3091                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3092
3093                 if ((hw->phy_revision == E1000_REVISION_2) &&
3094                         (hw->phy_id == M88E1111_I_PHY_ID)) {
3095                         /* Vidalia Phy, set the downshift counter to 5x */
3096                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3097                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3098                         ret_val = e1000_write_phy_reg(hw,
3099                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3100                         if (ret_val)
3101                                 return ret_val;
3102                 } else {
3103                         /* Configure Master and Slave downshift values */
3104                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3105                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3106                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3107                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3108                         ret_val = e1000_write_phy_reg(hw,
3109                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3110                         if (ret_val)
3111                                 return ret_val;
3112                 }
3113         }
3114
3115         /* SW Reset the PHY so all changes take effect */
3116         ret_val = e1000_phy_reset(hw);
3117         if (ret_val) {
3118                 DEBUGOUT("Error Resetting the PHY\n");
3119                 return ret_val;
3120         }
3121
3122         return E1000_SUCCESS;
3123 }
3124
3125 /********************************************************************
3126 * Setup auto-negotiation and flow control advertisements,
3127 * and then perform auto-negotiation.
3128 *
3129 * hw - Struct containing variables accessed by shared code
3130 *********************************************************************/
3131 static int32_t
3132 e1000_copper_link_autoneg(struct e1000_hw *hw)
3133 {
3134         int32_t ret_val;
3135         uint16_t phy_data;
3136
3137         DEBUGFUNC();
3138
3139         /* Perform some bounds checking on the hw->autoneg_advertised
3140          * parameter.  If this variable is zero, then set it to the default.
3141          */
3142         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3143
3144         /* If autoneg_advertised is zero, we assume it was not defaulted
3145          * by the calling code so we set to advertise full capability.
3146          */
3147         if (hw->autoneg_advertised == 0)
3148                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3149
3150         /* IFE phy only supports 10/100 */
3151         if (hw->phy_type == e1000_phy_ife)
3152                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3153
3154         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3155         ret_val = e1000_phy_setup_autoneg(hw);
3156         if (ret_val) {
3157                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3158                 return ret_val;
3159         }
3160         DEBUGOUT("Restarting Auto-Neg\n");
3161
3162         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3163          * the Auto Neg Restart bit in the PHY control register.
3164          */
3165         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3166         if (ret_val)
3167                 return ret_val;
3168
3169         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
3170         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3171         if (ret_val)
3172                 return ret_val;
3173
3174         /* Does the user want to wait for Auto-Neg to complete here, or
3175          * check at a later time (for example, callback routine).
3176          */
3177         /* If we do not wait for autonegtation to complete I
3178          * do not see a valid link status.
3179          * wait_autoneg_complete = 1 .
3180          */
3181         if (hw->wait_autoneg_complete) {
3182                 ret_val = e1000_wait_autoneg(hw);
3183                 if (ret_val) {
3184                         DEBUGOUT("Error while waiting for autoneg"
3185                                         "to complete\n");
3186                         return ret_val;
3187                 }
3188         }
3189
3190         hw->get_link_status = true;
3191
3192         return E1000_SUCCESS;
3193 }
3194
3195 /******************************************************************************
3196 * Config the MAC and the PHY after link is up.
3197 *   1) Set up the MAC to the current PHY speed/duplex
3198 *      if we are on 82543.  If we
3199 *      are on newer silicon, we only need to configure
3200 *      collision distance in the Transmit Control Register.
3201 *   2) Set up flow control on the MAC to that established with
3202 *      the link partner.
3203 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
3204 *
3205 * hw - Struct containing variables accessed by shared code
3206 ******************************************************************************/
3207 static int32_t
3208 e1000_copper_link_postconfig(struct e1000_hw *hw)
3209 {
3210         int32_t ret_val;
3211         DEBUGFUNC();
3212
3213         if (hw->mac_type >= e1000_82544) {
3214                 e1000_config_collision_dist(hw);
3215         } else {
3216                 ret_val = e1000_config_mac_to_phy(hw);
3217                 if (ret_val) {
3218                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3219                         return ret_val;
3220                 }
3221         }
3222         ret_val = e1000_config_fc_after_link_up(hw);
3223         if (ret_val) {
3224                 DEBUGOUT("Error Configuring Flow Control\n");
3225                 return ret_val;
3226         }
3227         return E1000_SUCCESS;
3228 }
3229
3230 /******************************************************************************
3231 * Detects which PHY is present and setup the speed and duplex
3232 *
3233 * hw - Struct containing variables accessed by shared code
3234 ******************************************************************************/
3235 static int
3236 e1000_setup_copper_link(struct e1000_hw *hw)
3237 {
3238         int32_t ret_val;
3239         uint16_t i;
3240         uint16_t phy_data;
3241         uint16_t reg_data;
3242
3243         DEBUGFUNC();
3244
3245         switch (hw->mac_type) {
3246         case e1000_80003es2lan:
3247         case e1000_ich8lan:
3248                 /* Set the mac to wait the maximum time between each
3249                  * iteration and increase the max iterations when
3250                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3251                 ret_val = e1000_write_kmrn_reg(hw,
3252                                 GG82563_REG(0x34, 4), 0xFFFF);
3253                 if (ret_val)
3254                         return ret_val;
3255                 ret_val = e1000_read_kmrn_reg(hw,
3256                                 GG82563_REG(0x34, 9), &reg_data);
3257                 if (ret_val)
3258                         return ret_val;
3259                 reg_data |= 0x3F;
3260                 ret_val = e1000_write_kmrn_reg(hw,
3261                                 GG82563_REG(0x34, 9), reg_data);
3262                 if (ret_val)
3263                         return ret_val;
3264         default:
3265                 break;
3266         }
3267
3268         /* Check if it is a valid PHY and set PHY mode if necessary. */
3269         ret_val = e1000_copper_link_preconfig(hw);
3270         if (ret_val)
3271                 return ret_val;
3272         switch (hw->mac_type) {
3273         case e1000_80003es2lan:
3274                 /* Kumeran registers are written-only */
3275                 reg_data =
3276                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3277                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3278                 ret_val = e1000_write_kmrn_reg(hw,
3279                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3280                 if (ret_val)
3281                         return ret_val;
3282                 break;
3283         default:
3284                 break;
3285         }
3286
3287         if (hw->phy_type == e1000_phy_igp ||
3288                 hw->phy_type == e1000_phy_igp_3 ||
3289                 hw->phy_type == e1000_phy_igp_2) {
3290                 ret_val = e1000_copper_link_igp_setup(hw);
3291                 if (ret_val)
3292                         return ret_val;
3293         } else if (hw->phy_type == e1000_phy_m88 ||
3294                 hw->phy_type == e1000_phy_igb) {
3295                 ret_val = e1000_copper_link_mgp_setup(hw);
3296                 if (ret_val)
3297                         return ret_val;
3298         } else if (hw->phy_type == e1000_phy_gg82563) {
3299                 ret_val = e1000_copper_link_ggp_setup(hw);
3300                 if (ret_val)
3301                         return ret_val;
3302         }
3303
3304         /* always auto */
3305         /* Setup autoneg and flow control advertisement
3306           * and perform autonegotiation */
3307         ret_val = e1000_copper_link_autoneg(hw);
3308         if (ret_val)
3309                 return ret_val;
3310
3311         /* Check link status. Wait up to 100 microseconds for link to become
3312          * valid.
3313          */
3314         for (i = 0; i < 10; i++) {
3315                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3316                 if (ret_val)
3317                         return ret_val;
3318                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3319                 if (ret_val)
3320                         return ret_val;
3321
3322                 if (phy_data & MII_SR_LINK_STATUS) {
3323                         /* Config the MAC and PHY after link is up */
3324                         ret_val = e1000_copper_link_postconfig(hw);
3325                         if (ret_val)
3326                                 return ret_val;
3327
3328                         DEBUGOUT("Valid link established!!!\n");
3329                         return E1000_SUCCESS;
3330                 }
3331                 udelay(10);
3332         }
3333
3334         DEBUGOUT("Unable to establish link!!!\n");
3335         return E1000_SUCCESS;
3336 }
3337
3338 /******************************************************************************
3339 * Configures PHY autoneg and flow control advertisement settings
3340 *
3341 * hw - Struct containing variables accessed by shared code
3342 ******************************************************************************/
3343 int32_t
3344 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3345 {
3346         int32_t ret_val;
3347         uint16_t mii_autoneg_adv_reg;
3348         uint16_t mii_1000t_ctrl_reg;
3349
3350         DEBUGFUNC();
3351
3352         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3353         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3354         if (ret_val)
3355                 return ret_val;
3356
3357         if (hw->phy_type != e1000_phy_ife) {
3358                 /* Read the MII 1000Base-T Control Register (Address 9). */
3359                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3360                                 &mii_1000t_ctrl_reg);
3361                 if (ret_val)
3362                         return ret_val;
3363         } else
3364                 mii_1000t_ctrl_reg = 0;
3365
3366         /* Need to parse both autoneg_advertised and fc and set up
3367          * the appropriate PHY registers.  First we will parse for
3368          * autoneg_advertised software override.  Since we can advertise
3369          * a plethora of combinations, we need to check each bit
3370          * individually.
3371          */
3372
3373         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3374          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3375          * the  1000Base-T Control Register (Address 9).
3376          */
3377         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3378         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3379
3380         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3381
3382         /* Do we want to advertise 10 Mb Half Duplex? */
3383         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3384                 DEBUGOUT("Advertise 10mb Half duplex\n");
3385                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3386         }
3387
3388         /* Do we want to advertise 10 Mb Full Duplex? */
3389         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3390                 DEBUGOUT("Advertise 10mb Full duplex\n");
3391                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3392         }
3393
3394         /* Do we want to advertise 100 Mb Half Duplex? */
3395         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3396                 DEBUGOUT("Advertise 100mb Half duplex\n");
3397                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3398         }
3399
3400         /* Do we want to advertise 100 Mb Full Duplex? */
3401         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3402                 DEBUGOUT("Advertise 100mb Full duplex\n");
3403                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3404         }
3405
3406         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3407         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3408                 DEBUGOUT
3409                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3410         }
3411
3412         /* Do we want to advertise 1000 Mb Full Duplex? */
3413         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3414                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3415                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3416         }
3417
3418         /* Check for a software override of the flow control settings, and
3419          * setup the PHY advertisement registers accordingly.  If
3420          * auto-negotiation is enabled, then software will have to set the
3421          * "PAUSE" bits to the correct value in the Auto-Negotiation
3422          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3423          *
3424          * The possible values of the "fc" parameter are:
3425          *      0:  Flow control is completely disabled
3426          *      1:  Rx flow control is enabled (we can receive pause frames
3427          *          but not send pause frames).
3428          *      2:  Tx flow control is enabled (we can send pause frames
3429          *          but we do not support receiving pause frames).
3430          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3431          *  other:  No software override.  The flow control configuration
3432          *          in the EEPROM is used.
3433          */
3434         switch (hw->fc) {
3435         case e1000_fc_none:     /* 0 */
3436                 /* Flow control (RX & TX) is completely disabled by a
3437                  * software over-ride.
3438                  */
3439                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3440                 break;
3441         case e1000_fc_rx_pause: /* 1 */
3442                 /* RX Flow control is enabled, and TX Flow control is
3443                  * disabled, by a software over-ride.
3444                  */
3445                 /* Since there really isn't a way to advertise that we are
3446                  * capable of RX Pause ONLY, we will advertise that we
3447                  * support both symmetric and asymmetric RX PAUSE.  Later
3448                  * (in e1000_config_fc_after_link_up) we will disable the
3449                  *hw's ability to send PAUSE frames.
3450                  */
3451                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3452                 break;
3453         case e1000_fc_tx_pause: /* 2 */
3454                 /* TX Flow control is enabled, and RX Flow control is
3455                  * disabled, by a software over-ride.
3456                  */
3457                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3458                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3459                 break;
3460         case e1000_fc_full:     /* 3 */
3461                 /* Flow control (both RX and TX) is enabled by a software
3462                  * over-ride.
3463                  */
3464                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3465                 break;
3466         default:
3467                 DEBUGOUT("Flow control param set incorrectly\n");
3468                 return -E1000_ERR_CONFIG;
3469         }
3470
3471         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3472         if (ret_val)
3473                 return ret_val;
3474
3475         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3476
3477         if (hw->phy_type != e1000_phy_ife) {
3478                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3479                                 mii_1000t_ctrl_reg);
3480                 if (ret_val)
3481                         return ret_val;
3482         }
3483
3484         return E1000_SUCCESS;
3485 }
3486
3487 /******************************************************************************
3488 * Sets the collision distance in the Transmit Control register
3489 *
3490 * hw - Struct containing variables accessed by shared code
3491 *
3492 * Link should have been established previously. Reads the speed and duplex
3493 * information from the Device Status register.
3494 ******************************************************************************/
3495 static void
3496 e1000_config_collision_dist(struct e1000_hw *hw)
3497 {
3498         uint32_t tctl, coll_dist;
3499
3500         DEBUGFUNC();
3501
3502         if (hw->mac_type < e1000_82543)
3503                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3504         else
3505                 coll_dist = E1000_COLLISION_DISTANCE;
3506
3507         tctl = E1000_READ_REG(hw, TCTL);
3508
3509         tctl &= ~E1000_TCTL_COLD;
3510         tctl |= coll_dist << E1000_COLD_SHIFT;
3511
3512         E1000_WRITE_REG(hw, TCTL, tctl);
3513         E1000_WRITE_FLUSH(hw);
3514 }
3515
3516 /******************************************************************************
3517 * Sets MAC speed and duplex settings to reflect the those in the PHY
3518 *
3519 * hw - Struct containing variables accessed by shared code
3520 * mii_reg - data to write to the MII control register
3521 *
3522 * The contents of the PHY register containing the needed information need to
3523 * be passed in.
3524 ******************************************************************************/
3525 static int
3526 e1000_config_mac_to_phy(struct e1000_hw *hw)
3527 {
3528         uint32_t ctrl;
3529         uint16_t phy_data;
3530
3531         DEBUGFUNC();
3532
3533         /* Read the Device Control Register and set the bits to Force Speed
3534          * and Duplex.
3535          */
3536         ctrl = E1000_READ_REG(hw, CTRL);
3537         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3538         ctrl &= ~(E1000_CTRL_ILOS);
3539         ctrl |= (E1000_CTRL_SPD_SEL);
3540
3541         /* Set up duplex in the Device Control and Transmit Control
3542          * registers depending on negotiated values.
3543          */
3544         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3545                 DEBUGOUT("PHY Read Error\n");
3546                 return -E1000_ERR_PHY;
3547         }
3548         if (phy_data & M88E1000_PSSR_DPLX)
3549                 ctrl |= E1000_CTRL_FD;
3550         else
3551                 ctrl &= ~E1000_CTRL_FD;
3552
3553         e1000_config_collision_dist(hw);
3554
3555         /* Set up speed in the Device Control register depending on
3556          * negotiated values.
3557          */
3558         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3559                 ctrl |= E1000_CTRL_SPD_1000;
3560         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3561                 ctrl |= E1000_CTRL_SPD_100;
3562         /* Write the configured values back to the Device Control Reg. */
3563         E1000_WRITE_REG(hw, CTRL, ctrl);
3564         return 0;
3565 }
3566
3567 /******************************************************************************
3568  * Forces the MAC's flow control settings.
3569  *
3570  * hw - Struct containing variables accessed by shared code
3571  *
3572  * Sets the TFCE and RFCE bits in the device control register to reflect
3573  * the adapter settings. TFCE and RFCE need to be explicitly set by
3574  * software when a Copper PHY is used because autonegotiation is managed
3575  * by the PHY rather than the MAC. Software must also configure these
3576  * bits when link is forced on a fiber connection.
3577  *****************************************************************************/
3578 static int
3579 e1000_force_mac_fc(struct e1000_hw *hw)
3580 {
3581         uint32_t ctrl;
3582
3583         DEBUGFUNC();
3584
3585         /* Get the current configuration of the Device Control Register */
3586         ctrl = E1000_READ_REG(hw, CTRL);
3587
3588         /* Because we didn't get link via the internal auto-negotiation
3589          * mechanism (we either forced link or we got link via PHY
3590          * auto-neg), we have to manually enable/disable transmit an
3591          * receive flow control.
3592          *
3593          * The "Case" statement below enables/disable flow control
3594          * according to the "hw->fc" parameter.
3595          *
3596          * The possible values of the "fc" parameter are:
3597          *      0:  Flow control is completely disabled
3598          *      1:  Rx flow control is enabled (we can receive pause
3599          *          frames but not send pause frames).
3600          *      2:  Tx flow control is enabled (we can send pause frames
3601          *          frames but we do not receive pause frames).
3602          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3603          *  other:  No other values should be possible at this point.
3604          */
3605
3606         switch (hw->fc) {
3607         case e1000_fc_none:
3608                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3609                 break;
3610         case e1000_fc_rx_pause:
3611                 ctrl &= (~E1000_CTRL_TFCE);
3612                 ctrl |= E1000_CTRL_RFCE;
3613                 break;
3614         case e1000_fc_tx_pause:
3615                 ctrl &= (~E1000_CTRL_RFCE);
3616                 ctrl |= E1000_CTRL_TFCE;
3617                 break;
3618         case e1000_fc_full:
3619                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3620                 break;
3621         default:
3622                 DEBUGOUT("Flow control param set incorrectly\n");
3623                 return -E1000_ERR_CONFIG;
3624         }
3625
3626         /* Disable TX Flow Control for 82542 (rev 2.0) */
3627         if (hw->mac_type == e1000_82542_rev2_0)
3628                 ctrl &= (~E1000_CTRL_TFCE);
3629
3630         E1000_WRITE_REG(hw, CTRL, ctrl);
3631         return 0;
3632 }
3633
3634 /******************************************************************************
3635  * Configures flow control settings after link is established
3636  *
3637  * hw - Struct containing variables accessed by shared code
3638  *
3639  * Should be called immediately after a valid link has been established.
3640  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3641  * and autonegotiation is enabled, the MAC flow control settings will be set
3642  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3643  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3644  *****************************************************************************/
3645 static int32_t
3646 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3647 {
3648         int32_t ret_val;
3649         uint16_t mii_status_reg;
3650         uint16_t mii_nway_adv_reg;
3651         uint16_t mii_nway_lp_ability_reg;
3652         uint16_t speed;
3653         uint16_t duplex;
3654
3655         DEBUGFUNC();
3656
3657         /* Check for the case where we have fiber media and auto-neg failed
3658          * so we had to force link.  In this case, we need to force the
3659          * configuration of the MAC to match the "fc" parameter.
3660          */
3661         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3662                 || ((hw->media_type == e1000_media_type_internal_serdes)
3663                 && (hw->autoneg_failed))
3664                 || ((hw->media_type == e1000_media_type_copper)
3665                 && (!hw->autoneg))) {
3666                 ret_val = e1000_force_mac_fc(hw);
3667                 if (ret_val < 0) {
3668                         DEBUGOUT("Error forcing flow control settings\n");
3669                         return ret_val;
3670                 }
3671         }
3672
3673         /* Check for the case where we have copper media and auto-neg is
3674          * enabled.  In this case, we need to check and see if Auto-Neg
3675          * has completed, and if so, how the PHY and link partner has
3676          * flow control configured.
3677          */
3678         if (hw->media_type == e1000_media_type_copper) {
3679                 /* Read the MII Status Register and check to see if AutoNeg
3680                  * has completed.  We read this twice because this reg has
3681                  * some "sticky" (latched) bits.
3682                  */
3683                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3684                         DEBUGOUT("PHY Read Error\n");
3685                         return -E1000_ERR_PHY;
3686                 }
3687                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3688                         DEBUGOUT("PHY Read Error\n");
3689                         return -E1000_ERR_PHY;
3690                 }
3691
3692                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3693                         /* The AutoNeg process has completed, so we now need to
3694                          * read both the Auto Negotiation Advertisement Register
3695                          * (Address 4) and the Auto_Negotiation Base Page Ability
3696                          * Register (Address 5) to determine how flow control was
3697                          * negotiated.
3698                          */
3699                         if (e1000_read_phy_reg
3700                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3701                                 DEBUGOUT("PHY Read Error\n");
3702                                 return -E1000_ERR_PHY;
3703                         }
3704                         if (e1000_read_phy_reg
3705                             (hw, PHY_LP_ABILITY,
3706                              &mii_nway_lp_ability_reg) < 0) {
3707                                 DEBUGOUT("PHY Read Error\n");
3708                                 return -E1000_ERR_PHY;
3709                         }
3710
3711                         /* Two bits in the Auto Negotiation Advertisement Register
3712                          * (Address 4) and two bits in the Auto Negotiation Base
3713                          * Page Ability Register (Address 5) determine flow control
3714                          * for both the PHY and the link partner.  The following
3715                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3716                          * 1999, describes these PAUSE resolution bits and how flow
3717                          * control is determined based upon these settings.
3718                          * NOTE:  DC = Don't Care
3719                          *
3720                          *   LOCAL DEVICE  |   LINK PARTNER
3721                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3722                          *-------|---------|-------|---------|--------------------
3723                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3724                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3725                          *   0   |    1    |   1   |    0    | e1000_fc_none
3726                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3727                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3728                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3729                          *   1   |    1    |   0   |    0    | e1000_fc_none
3730                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3731                          *
3732                          */
3733                         /* Are both PAUSE bits set to 1?  If so, this implies
3734                          * Symmetric Flow Control is enabled at both ends.  The
3735                          * ASM_DIR bits are irrelevant per the spec.
3736                          *
3737                          * For Symmetric Flow Control:
3738                          *
3739                          *   LOCAL DEVICE  |   LINK PARTNER
3740                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3741                          *-------|---------|-------|---------|--------------------
3742                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3743                          *
3744                          */
3745                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3746                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3747                                 /* Now we need to check if the user selected RX ONLY
3748                                  * of pause frames.  In this case, we had to advertise
3749                                  * FULL flow control because we could not advertise RX
3750                                  * ONLY. Hence, we must now check to see if we need to
3751                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3752                                  */
3753                                 if (hw->original_fc == e1000_fc_full) {
3754                                         hw->fc = e1000_fc_full;
3755                                         DEBUGOUT("Flow Control = FULL.\r\n");
3756                                 } else {
3757                                         hw->fc = e1000_fc_rx_pause;
3758                                         DEBUGOUT
3759                                             ("Flow Control = RX PAUSE frames only.\r\n");
3760                                 }
3761                         }
3762                         /* For receiving PAUSE frames ONLY.
3763                          *
3764                          *   LOCAL DEVICE  |   LINK PARTNER
3765                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3766                          *-------|---------|-------|---------|--------------------
3767                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3768                          *
3769                          */
3770                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3771                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3772                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3773                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3774                         {
3775                                 hw->fc = e1000_fc_tx_pause;
3776                                 DEBUGOUT
3777                                     ("Flow Control = TX PAUSE frames only.\r\n");
3778                         }
3779                         /* For transmitting PAUSE frames ONLY.
3780                          *
3781                          *   LOCAL DEVICE  |   LINK PARTNER
3782                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3783                          *-------|---------|-------|---------|--------------------
3784                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3785                          *
3786                          */
3787                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3788                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3789                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3790                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3791                         {
3792                                 hw->fc = e1000_fc_rx_pause;
3793                                 DEBUGOUT
3794                                     ("Flow Control = RX PAUSE frames only.\r\n");
3795                         }
3796                         /* Per the IEEE spec, at this point flow control should be
3797                          * disabled.  However, we want to consider that we could
3798                          * be connected to a legacy switch that doesn't advertise
3799                          * desired flow control, but can be forced on the link
3800                          * partner.  So if we advertised no flow control, that is
3801                          * what we will resolve to.  If we advertised some kind of
3802                          * receive capability (Rx Pause Only or Full Flow Control)
3803                          * and the link partner advertised none, we will configure
3804                          * ourselves to enable Rx Flow Control only.  We can do
3805                          * this safely for two reasons:  If the link partner really
3806                          * didn't want flow control enabled, and we enable Rx, no
3807                          * harm done since we won't be receiving any PAUSE frames
3808                          * anyway.  If the intent on the link partner was to have
3809                          * flow control enabled, then by us enabling RX only, we
3810                          * can at least receive pause frames and process them.
3811                          * This is a good idea because in most cases, since we are
3812                          * predominantly a server NIC, more times than not we will
3813                          * be asked to delay transmission of packets than asking
3814                          * our link partner to pause transmission of frames.
3815                          */
3816                         else if (hw->original_fc == e1000_fc_none ||
3817                                  hw->original_fc == e1000_fc_tx_pause) {
3818                                 hw->fc = e1000_fc_none;
3819                                 DEBUGOUT("Flow Control = NONE.\r\n");
3820                         } else {
3821                                 hw->fc = e1000_fc_rx_pause;
3822                                 DEBUGOUT
3823                                     ("Flow Control = RX PAUSE frames only.\r\n");
3824                         }
3825
3826                         /* Now we need to do one last check...  If we auto-
3827                          * negotiated to HALF DUPLEX, flow control should not be
3828                          * enabled per IEEE 802.3 spec.
3829                          */
3830                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3831
3832                         if (duplex == HALF_DUPLEX)
3833                                 hw->fc = e1000_fc_none;
3834
3835                         /* Now we call a subroutine to actually force the MAC
3836                          * controller to use the correct flow control settings.
3837                          */
3838                         ret_val = e1000_force_mac_fc(hw);
3839                         if (ret_val < 0) {
3840                                 DEBUGOUT
3841                                     ("Error forcing flow control settings\n");
3842                                 return ret_val;
3843                         }
3844                 } else {
3845                         DEBUGOUT
3846                             ("Copper PHY and Auto Neg has not completed.\r\n");
3847                 }
3848         }
3849         return E1000_SUCCESS;
3850 }
3851
3852 /******************************************************************************
3853  * Checks to see if the link status of the hardware has changed.
3854  *
3855  * hw - Struct containing variables accessed by shared code
3856  *
3857  * Called by any function that needs to check the link status of the adapter.
3858  *****************************************************************************/
3859 static int
3860 e1000_check_for_link(struct e1000_hw *hw)
3861 {
3862         uint32_t rxcw;
3863         uint32_t ctrl;
3864         uint32_t status;
3865         uint32_t rctl;
3866         uint32_t signal;
3867         int32_t ret_val;
3868         uint16_t phy_data;
3869         uint16_t lp_capability;
3870
3871         DEBUGFUNC();
3872
3873         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3874          * set when the optics detect a signal. On older adapters, it will be
3875          * cleared when there is a signal
3876          */
3877         ctrl = E1000_READ_REG(hw, CTRL);
3878         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3879                 signal = E1000_CTRL_SWDPIN1;
3880         else
3881                 signal = 0;
3882
3883         status = E1000_READ_REG(hw, STATUS);
3884         rxcw = E1000_READ_REG(hw, RXCW);
3885         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3886
3887         /* If we have a copper PHY then we only want to go out to the PHY
3888          * registers to see if Auto-Neg has completed and/or if our link
3889          * status has changed.  The get_link_status flag will be set if we
3890          * receive a Link Status Change interrupt or we have Rx Sequence
3891          * Errors.
3892          */
3893         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3894                 /* First we want to see if the MII Status Register reports
3895                  * link.  If so, then we want to get the current speed/duplex
3896                  * of the PHY.
3897                  * Read the register twice since the link bit is sticky.
3898                  */
3899                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3900                         DEBUGOUT("PHY Read Error\n");
3901                         return -E1000_ERR_PHY;
3902                 }
3903                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3904                         DEBUGOUT("PHY Read Error\n");
3905                         return -E1000_ERR_PHY;
3906                 }
3907
3908                 if (phy_data & MII_SR_LINK_STATUS) {
3909                         hw->get_link_status = false;
3910                 } else {
3911                         /* No link detected */
3912                         return -E1000_ERR_NOLINK;
3913                 }
3914
3915                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3916                  * have Si on board that is 82544 or newer, Auto
3917                  * Speed Detection takes care of MAC speed/duplex
3918                  * configuration.  So we only need to configure Collision
3919                  * Distance in the MAC.  Otherwise, we need to force
3920                  * speed/duplex on the MAC to the current PHY speed/duplex
3921                  * settings.
3922                  */
3923                 if (hw->mac_type >= e1000_82544)
3924                         e1000_config_collision_dist(hw);
3925                 else {
3926                         ret_val = e1000_config_mac_to_phy(hw);
3927                         if (ret_val < 0) {
3928                                 DEBUGOUT
3929                                     ("Error configuring MAC to PHY settings\n");
3930                                 return ret_val;
3931                         }
3932                 }
3933
3934                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3935                  * need to restore the desired flow control settings because we may
3936                  * have had to re-autoneg with a different link partner.
3937                  */
3938                 ret_val = e1000_config_fc_after_link_up(hw);
3939                 if (ret_val < 0) {
3940                         DEBUGOUT("Error configuring flow control\n");
3941                         return ret_val;
3942                 }
3943
3944                 /* At this point we know that we are on copper and we have
3945                  * auto-negotiated link.  These are conditions for checking the link
3946                  * parter capability register.  We use the link partner capability to
3947                  * determine if TBI Compatibility needs to be turned on or off.  If
3948                  * the link partner advertises any speed in addition to Gigabit, then
3949                  * we assume that they are GMII-based, and TBI compatibility is not
3950                  * needed. If no other speeds are advertised, we assume the link
3951                  * partner is TBI-based, and we turn on TBI Compatibility.
3952                  */
3953                 if (hw->tbi_compatibility_en) {
3954                         if (e1000_read_phy_reg
3955                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3956                                 DEBUGOUT("PHY Read Error\n");
3957                                 return -E1000_ERR_PHY;
3958                         }
3959                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3960                                              NWAY_LPAR_10T_FD_CAPS |
3961                                              NWAY_LPAR_100TX_HD_CAPS |
3962                                              NWAY_LPAR_100TX_FD_CAPS |
3963                                              NWAY_LPAR_100T4_CAPS)) {
3964                                 /* If our link partner advertises anything in addition to
3965                                  * gigabit, we do not need to enable TBI compatibility.
3966                                  */
3967                                 if (hw->tbi_compatibility_on) {
3968                                         /* If we previously were in the mode, turn it off. */
3969                                         rctl = E1000_READ_REG(hw, RCTL);
3970                                         rctl &= ~E1000_RCTL_SBP;
3971                                         E1000_WRITE_REG(hw, RCTL, rctl);
3972                                         hw->tbi_compatibility_on = false;
3973                                 }
3974                         } else {
3975                                 /* If TBI compatibility is was previously off, turn it on. For
3976                                  * compatibility with a TBI link partner, we will store bad
3977                                  * packets. Some frames have an additional byte on the end and
3978                                  * will look like CRC errors to to the hardware.
3979                                  */
3980                                 if (!hw->tbi_compatibility_on) {
3981                                         hw->tbi_compatibility_on = true;
3982                                         rctl = E1000_READ_REG(hw, RCTL);
3983                                         rctl |= E1000_RCTL_SBP;
3984                                         E1000_WRITE_REG(hw, RCTL, rctl);
3985                                 }
3986                         }
3987                 }
3988         }
3989         /* If we don't have link (auto-negotiation failed or link partner cannot
3990          * auto-negotiate), the cable is plugged in (we have signal), and our
3991          * link partner is not trying to auto-negotiate with us (we are receiving
3992          * idles or data), we need to force link up. We also need to give
3993          * auto-negotiation time to complete, in case the cable was just plugged
3994          * in. The autoneg_failed flag does this.
3995          */
3996         else if ((hw->media_type == e1000_media_type_fiber) &&
3997                  (!(status & E1000_STATUS_LU)) &&
3998                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3999                  (!(rxcw & E1000_RXCW_C))) {
4000                 if (hw->autoneg_failed == 0) {
4001                         hw->autoneg_failed = 1;
4002                         return 0;
4003                 }
4004                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4005
4006                 /* Disable auto-negotiation in the TXCW register */
4007                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4008
4009                 /* Force link-up and also force full-duplex. */
4010                 ctrl = E1000_READ_REG(hw, CTRL);
4011                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4012                 E1000_WRITE_REG(hw, CTRL, ctrl);
4013
4014                 /* Configure Flow Control after forcing link up. */
4015                 ret_val = e1000_config_fc_after_link_up(hw);
4016                 if (ret_val < 0) {
4017                         DEBUGOUT("Error configuring flow control\n");
4018                         return ret_val;
4019                 }
4020         }
4021         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4022          * auto-negotiation in the TXCW register and disable forced link in the
4023          * Device Control register in an attempt to auto-negotiate with our link
4024          * partner.
4025          */
4026         else if ((hw->media_type == e1000_media_type_fiber) &&
4027                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4028                 DEBUGOUT
4029                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4030                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
4031                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4032         }
4033         return 0;
4034 }
4035
4036 /******************************************************************************
4037 * Configure the MAC-to-PHY interface for 10/100Mbps
4038 *
4039 * hw - Struct containing variables accessed by shared code
4040 ******************************************************************************/
4041 static int32_t
4042 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4043 {
4044         int32_t ret_val = E1000_SUCCESS;
4045         uint32_t tipg;
4046         uint16_t reg_data;
4047
4048         DEBUGFUNC();
4049
4050         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4051         ret_val = e1000_write_kmrn_reg(hw,
4052                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4053         if (ret_val)
4054                 return ret_val;
4055
4056         /* Configure Transmit Inter-Packet Gap */
4057         tipg = E1000_READ_REG(hw, TIPG);
4058         tipg &= ~E1000_TIPG_IPGT_MASK;
4059         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4060         E1000_WRITE_REG(hw, TIPG, tipg);
4061
4062         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4063
4064         if (ret_val)
4065                 return ret_val;
4066
4067         if (duplex == HALF_DUPLEX)
4068                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4069         else
4070                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4071
4072         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4073
4074         return ret_val;
4075 }
4076
4077 static int32_t
4078 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4079 {
4080         int32_t ret_val = E1000_SUCCESS;
4081         uint16_t reg_data;
4082         uint32_t tipg;
4083
4084         DEBUGFUNC();
4085
4086         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4087         ret_val = e1000_write_kmrn_reg(hw,
4088                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4089         if (ret_val)
4090                 return ret_val;
4091
4092         /* Configure Transmit Inter-Packet Gap */
4093         tipg = E1000_READ_REG(hw, TIPG);
4094         tipg &= ~E1000_TIPG_IPGT_MASK;
4095         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4096         E1000_WRITE_REG(hw, TIPG, tipg);
4097
4098         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4099
4100         if (ret_val)
4101                 return ret_val;
4102
4103         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4104         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4105
4106         return ret_val;
4107 }
4108
4109 /******************************************************************************
4110  * Detects the current speed and duplex settings of the hardware.
4111  *
4112  * hw - Struct containing variables accessed by shared code
4113  * speed - Speed of the connection
4114  * duplex - Duplex setting of the connection
4115  *****************************************************************************/
4116 static int
4117 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4118                 uint16_t *duplex)
4119 {
4120         uint32_t status;
4121         int32_t ret_val;
4122         uint16_t phy_data;
4123
4124         DEBUGFUNC();
4125
4126         if (hw->mac_type >= e1000_82543) {
4127                 status = E1000_READ_REG(hw, STATUS);
4128                 if (status & E1000_STATUS_SPEED_1000) {
4129                         *speed = SPEED_1000;
4130                         DEBUGOUT("1000 Mbs, ");
4131                 } else if (status & E1000_STATUS_SPEED_100) {
4132                         *speed = SPEED_100;
4133                         DEBUGOUT("100 Mbs, ");
4134                 } else {
4135                         *speed = SPEED_10;
4136                         DEBUGOUT("10 Mbs, ");
4137                 }
4138
4139                 if (status & E1000_STATUS_FD) {
4140                         *duplex = FULL_DUPLEX;
4141                         DEBUGOUT("Full Duplex\r\n");
4142                 } else {
4143                         *duplex = HALF_DUPLEX;
4144                         DEBUGOUT(" Half Duplex\r\n");
4145                 }
4146         } else {
4147                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4148                 *speed = SPEED_1000;
4149                 *duplex = FULL_DUPLEX;
4150         }
4151
4152         /* IGP01 PHY may advertise full duplex operation after speed downgrade
4153          * even if it is operating at half duplex.  Here we set the duplex
4154          * settings to match the duplex in the link partner's capabilities.
4155          */
4156         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4157                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4158                 if (ret_val)
4159                         return ret_val;
4160
4161                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4162                         *duplex = HALF_DUPLEX;
4163                 else {
4164                         ret_val = e1000_read_phy_reg(hw,
4165                                         PHY_LP_ABILITY, &phy_data);
4166                         if (ret_val)
4167                                 return ret_val;
4168                         if ((*speed == SPEED_100 &&
4169                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4170                                 || (*speed == SPEED_10
4171                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4172                                 *duplex = HALF_DUPLEX;
4173                 }
4174         }
4175
4176         if ((hw->mac_type == e1000_80003es2lan) &&
4177                 (hw->media_type == e1000_media_type_copper)) {
4178                 if (*speed == SPEED_1000)
4179                         ret_val = e1000_configure_kmrn_for_1000(hw);
4180                 else
4181                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4182                 if (ret_val)
4183                         return ret_val;
4184         }
4185         return E1000_SUCCESS;
4186 }
4187
4188 /******************************************************************************
4189 * Blocks until autoneg completes or times out (~4.5 seconds)
4190 *
4191 * hw - Struct containing variables accessed by shared code
4192 ******************************************************************************/
4193 static int
4194 e1000_wait_autoneg(struct e1000_hw *hw)
4195 {
4196         uint16_t i;
4197         uint16_t phy_data;
4198
4199         DEBUGFUNC();
4200         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4201
4202         /* We will wait for autoneg to complete or timeout to expire. */
4203         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4204                 /* Read the MII Status Register and wait for Auto-Neg
4205                  * Complete bit to be set.
4206                  */
4207                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4208                         DEBUGOUT("PHY Read Error\n");
4209                         return -E1000_ERR_PHY;
4210                 }
4211                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4212                         DEBUGOUT("PHY Read Error\n");
4213                         return -E1000_ERR_PHY;
4214                 }
4215                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4216                         DEBUGOUT("Auto-Neg complete.\n");
4217                         return 0;
4218                 }
4219                 mdelay(100);
4220         }
4221         DEBUGOUT("Auto-Neg timedout.\n");
4222         return -E1000_ERR_TIMEOUT;
4223 }
4224
4225 /******************************************************************************
4226 * Raises the Management Data Clock
4227 *
4228 * hw - Struct containing variables accessed by shared code
4229 * ctrl - Device control register's current value
4230 ******************************************************************************/
4231 static void
4232 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4233 {
4234         /* Raise the clock input to the Management Data Clock (by setting the MDC
4235          * bit), and then delay 2 microseconds.
4236          */
4237         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4238         E1000_WRITE_FLUSH(hw);
4239         udelay(2);
4240 }
4241
4242 /******************************************************************************
4243 * Lowers the Management Data Clock
4244 *
4245 * hw - Struct containing variables accessed by shared code
4246 * ctrl - Device control register's current value
4247 ******************************************************************************/
4248 static void
4249 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4250 {
4251         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4252          * bit), and then delay 2 microseconds.
4253          */
4254         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4255         E1000_WRITE_FLUSH(hw);
4256         udelay(2);
4257 }
4258
4259 /******************************************************************************
4260 * Shifts data bits out to the PHY
4261 *
4262 * hw - Struct containing variables accessed by shared code
4263 * data - Data to send out to the PHY
4264 * count - Number of bits to shift out
4265 *
4266 * Bits are shifted out in MSB to LSB order.
4267 ******************************************************************************/
4268 static void
4269 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4270 {
4271         uint32_t ctrl;
4272         uint32_t mask;
4273
4274         /* We need to shift "count" number of bits out to the PHY. So, the value
4275          * in the "data" parameter will be shifted out to the PHY one bit at a
4276          * time. In order to do this, "data" must be broken down into bits.
4277          */
4278         mask = 0x01;
4279         mask <<= (count - 1);
4280
4281         ctrl = E1000_READ_REG(hw, CTRL);
4282
4283         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4284         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4285
4286         while (mask) {
4287                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4288                  * then raising and lowering the Management Data Clock. A "0" is
4289                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4290                  * raising and lowering the clock.
4291                  */
4292                 if (data & mask)
4293                         ctrl |= E1000_CTRL_MDIO;
4294                 else
4295                         ctrl &= ~E1000_CTRL_MDIO;
4296
4297                 E1000_WRITE_REG(hw, CTRL, ctrl);
4298                 E1000_WRITE_FLUSH(hw);
4299
4300                 udelay(2);
4301
4302                 e1000_raise_mdi_clk(hw, &ctrl);
4303                 e1000_lower_mdi_clk(hw, &ctrl);
4304
4305                 mask = mask >> 1;
4306         }
4307 }
4308
4309 /******************************************************************************
4310 * Shifts data bits in from the PHY
4311 *
4312 * hw - Struct containing variables accessed by shared code
4313 *
4314 * Bits are shifted in in MSB to LSB order.
4315 ******************************************************************************/
4316 static uint16_t
4317 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4318 {
4319         uint32_t ctrl;
4320         uint16_t data = 0;
4321         uint8_t i;
4322
4323         /* In order to read a register from the PHY, we need to shift in a total
4324          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4325          * to avoid contention on the MDIO pin when a read operation is performed.
4326          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4327          * by raising the input to the Management Data Clock (setting the MDC bit),
4328          * and then reading the value of the MDIO bit.
4329          */
4330         ctrl = E1000_READ_REG(hw, CTRL);
4331
4332         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4333         ctrl &= ~E1000_CTRL_MDIO_DIR;
4334         ctrl &= ~E1000_CTRL_MDIO;
4335
4336         E1000_WRITE_REG(hw, CTRL, ctrl);
4337         E1000_WRITE_FLUSH(hw);
4338
4339         /* Raise and Lower the clock before reading in the data. This accounts for
4340          * the turnaround bits. The first clock occurred when we clocked out the
4341          * last bit of the Register Address.
4342          */
4343         e1000_raise_mdi_clk(hw, &ctrl);
4344         e1000_lower_mdi_clk(hw, &ctrl);
4345
4346         for (data = 0, i = 0; i < 16; i++) {
4347                 data = data << 1;
4348                 e1000_raise_mdi_clk(hw, &ctrl);
4349                 ctrl = E1000_READ_REG(hw, CTRL);
4350                 /* Check to see if we shifted in a "1". */
4351                 if (ctrl & E1000_CTRL_MDIO)
4352                         data |= 1;
4353                 e1000_lower_mdi_clk(hw, &ctrl);
4354         }
4355
4356         e1000_raise_mdi_clk(hw, &ctrl);
4357         e1000_lower_mdi_clk(hw, &ctrl);
4358
4359         return data;
4360 }
4361
4362 /*****************************************************************************
4363 * Reads the value from a PHY register
4364 *
4365 * hw - Struct containing variables accessed by shared code
4366 * reg_addr - address of the PHY register to read
4367 ******************************************************************************/
4368 static int
4369 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4370 {
4371         uint32_t i;
4372         uint32_t mdic = 0;
4373         const uint32_t phy_addr = 1;
4374
4375         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4376                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4377                 return -E1000_ERR_PARAM;
4378         }
4379
4380         if (hw->mac_type > e1000_82543) {
4381                 /* Set up Op-code, Phy Address, and register address in the MDI
4382                  * Control register.  The MAC will take care of interfacing with the
4383                  * PHY to retrieve the desired data.
4384                  */
4385                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4386                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4387                         (E1000_MDIC_OP_READ));
4388
4389                 E1000_WRITE_REG(hw, MDIC, mdic);
4390
4391                 /* Poll the ready bit to see if the MDI read completed */
4392                 for (i = 0; i < 64; i++) {
4393                         udelay(10);
4394                         mdic = E1000_READ_REG(hw, MDIC);
4395                         if (mdic & E1000_MDIC_READY)
4396                                 break;
4397                 }
4398                 if (!(mdic & E1000_MDIC_READY)) {
4399                         DEBUGOUT("MDI Read did not complete\n");
4400                         return -E1000_ERR_PHY;
4401                 }
4402                 if (mdic & E1000_MDIC_ERROR) {
4403                         DEBUGOUT("MDI Error\n");
4404                         return -E1000_ERR_PHY;
4405                 }
4406                 *phy_data = (uint16_t) mdic;
4407         } else {
4408                 /* We must first send a preamble through the MDIO pin to signal the
4409                  * beginning of an MII instruction.  This is done by sending 32
4410                  * consecutive "1" bits.
4411                  */
4412                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4413
4414                 /* Now combine the next few fields that are required for a read
4415                  * operation.  We use this method instead of calling the
4416                  * e1000_shift_out_mdi_bits routine five different times. The format of
4417                  * a MII read instruction consists of a shift out of 14 bits and is
4418                  * defined as follows:
4419                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4420                  * followed by a shift in of 18 bits.  This first two bits shifted in
4421                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4422                  * READ operation is performed.  These two bits are thrown away
4423                  * followed by a shift in of 16 bits which contains the desired data.
4424                  */
4425                 mdic = ((reg_addr) | (phy_addr << 5) |
4426                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4427
4428                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4429
4430                 /* Now that we've shifted out the read command to the MII, we need to
4431                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4432                  * register address.
4433                  */
4434                 *phy_data = e1000_shift_in_mdi_bits(hw);
4435         }
4436         return 0;
4437 }
4438
4439 /******************************************************************************
4440 * Writes a value to a PHY register
4441 *
4442 * hw - Struct containing variables accessed by shared code
4443 * reg_addr - address of the PHY register to write
4444 * data - data to write to the PHY
4445 ******************************************************************************/
4446 static int
4447 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4448 {
4449         uint32_t i;
4450         uint32_t mdic = 0;
4451         const uint32_t phy_addr = 1;
4452
4453         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4454                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4455                 return -E1000_ERR_PARAM;
4456         }
4457
4458         if (hw->mac_type > e1000_82543) {
4459                 /* Set up Op-code, Phy Address, register address, and data intended
4460                  * for the PHY register in the MDI Control register.  The MAC will take
4461                  * care of interfacing with the PHY to send the desired data.
4462                  */
4463                 mdic = (((uint32_t) phy_data) |
4464                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4465                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4466                         (E1000_MDIC_OP_WRITE));
4467
4468                 E1000_WRITE_REG(hw, MDIC, mdic);
4469
4470                 /* Poll the ready bit to see if the MDI read completed */
4471                 for (i = 0; i < 64; i++) {
4472                         udelay(10);
4473                         mdic = E1000_READ_REG(hw, MDIC);
4474                         if (mdic & E1000_MDIC_READY)
4475                                 break;
4476                 }
4477                 if (!(mdic & E1000_MDIC_READY)) {
4478                         DEBUGOUT("MDI Write did not complete\n");
4479                         return -E1000_ERR_PHY;
4480                 }
4481         } else {
4482                 /* We'll need to use the SW defined pins to shift the write command
4483                  * out to the PHY. We first send a preamble to the PHY to signal the
4484                  * beginning of the MII instruction.  This is done by sending 32
4485                  * consecutive "1" bits.
4486                  */
4487                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4488
4489                 /* Now combine the remaining required fields that will indicate a
4490                  * write operation. We use this method instead of calling the
4491                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4492                  * format of a MII write instruction is as follows:
4493                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4494                  */
4495                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4496                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4497                 mdic <<= 16;
4498                 mdic |= (uint32_t) phy_data;
4499
4500                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4501         }
4502         return 0;
4503 }
4504
4505 /******************************************************************************
4506  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4507  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4508  * the caller to figure out how to deal with it.
4509  *
4510  * hw - Struct containing variables accessed by shared code
4511  *
4512  * returns: - E1000_BLK_PHY_RESET
4513  *            E1000_SUCCESS
4514  *
4515  *****************************************************************************/
4516 int32_t
4517 e1000_check_phy_reset_block(struct e1000_hw *hw)
4518 {
4519         uint32_t manc = 0;
4520         uint32_t fwsm = 0;
4521
4522         if (hw->mac_type == e1000_ich8lan) {
4523                 fwsm = E1000_READ_REG(hw, FWSM);
4524                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4525                                                 : E1000_BLK_PHY_RESET;
4526         }
4527
4528         if (hw->mac_type > e1000_82547_rev_2)
4529                 manc = E1000_READ_REG(hw, MANC);
4530         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4531                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4532 }
4533
4534 /***************************************************************************
4535  * Checks if the PHY configuration is done
4536  *
4537  * hw: Struct containing variables accessed by shared code
4538  *
4539  * returns: - E1000_ERR_RESET if fail to reset MAC
4540  *            E1000_SUCCESS at any other case.
4541  *
4542  ***************************************************************************/
4543 static int32_t
4544 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4545 {
4546         int32_t timeout = PHY_CFG_TIMEOUT;
4547         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4548
4549         DEBUGFUNC();
4550
4551         switch (hw->mac_type) {
4552         default:
4553                 mdelay(10);
4554                 break;
4555
4556         case e1000_80003es2lan:
4557                 /* Separate *_CFG_DONE_* bit for each port */
4558                 if (e1000_is_second_port(hw))
4559                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4560                 /* Fall Through */
4561
4562         case e1000_82571:
4563         case e1000_82572:
4564         case e1000_igb:
4565                 while (timeout) {
4566                         if (hw->mac_type == e1000_igb) {
4567                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4568                                         break;
4569                         } else {
4570                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4571                                         break;
4572                         }
4573                         mdelay(1);
4574                         timeout--;
4575                 }
4576                 if (!timeout) {
4577                         DEBUGOUT("MNG configuration cycle has not "
4578                                         "completed.\n");
4579                         return -E1000_ERR_RESET;
4580                 }
4581                 break;
4582         }
4583
4584         return E1000_SUCCESS;
4585 }
4586
4587 /******************************************************************************
4588 * Returns the PHY to the power-on reset state
4589 *
4590 * hw - Struct containing variables accessed by shared code
4591 ******************************************************************************/
4592 int32_t
4593 e1000_phy_hw_reset(struct e1000_hw *hw)
4594 {
4595         uint16_t swfw = E1000_SWFW_PHY0_SM;
4596         uint32_t ctrl, ctrl_ext;
4597         uint32_t led_ctrl;
4598         int32_t ret_val;
4599
4600         DEBUGFUNC();
4601
4602         /* In the case of the phy reset being blocked, it's not an error, we
4603          * simply return success without performing the reset. */
4604         ret_val = e1000_check_phy_reset_block(hw);
4605         if (ret_val)
4606                 return E1000_SUCCESS;
4607
4608         DEBUGOUT("Resetting Phy...\n");
4609
4610         if (hw->mac_type > e1000_82543) {
4611                 if (e1000_is_second_port(hw))
4612                         swfw = E1000_SWFW_PHY1_SM;
4613
4614                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4615                         DEBUGOUT("Unable to acquire swfw sync\n");
4616                         return -E1000_ERR_SWFW_SYNC;
4617                 }
4618
4619                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4620                  * bit. Then, take it out of reset.
4621                  */
4622                 ctrl = E1000_READ_REG(hw, CTRL);
4623                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4624                 E1000_WRITE_FLUSH(hw);
4625
4626                 if (hw->mac_type < e1000_82571)
4627                         udelay(10);
4628                 else
4629                         udelay(100);
4630
4631                 E1000_WRITE_REG(hw, CTRL, ctrl);
4632                 E1000_WRITE_FLUSH(hw);
4633
4634                 if (hw->mac_type >= e1000_82571)
4635                         mdelay(10);
4636
4637         } else {
4638                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4639                  * bit to put the PHY into reset. Then, take it out of reset.
4640                  */
4641                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4642                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4643                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4644                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4645                 E1000_WRITE_FLUSH(hw);
4646                 mdelay(10);
4647                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4648                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4649                 E1000_WRITE_FLUSH(hw);
4650         }
4651         udelay(150);
4652
4653         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4654                 /* Configure activity LED after PHY reset */
4655                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4656                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4657                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4658                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4659         }
4660
4661         e1000_swfw_sync_release(hw, swfw);
4662
4663         /* Wait for FW to finish PHY configuration. */
4664         ret_val = e1000_get_phy_cfg_done(hw);
4665         if (ret_val != E1000_SUCCESS)
4666                 return ret_val;
4667
4668         return ret_val;
4669 }
4670
4671 /******************************************************************************
4672  * IGP phy init script - initializes the GbE PHY
4673  *
4674  * hw - Struct containing variables accessed by shared code
4675  *****************************************************************************/
4676 static void
4677 e1000_phy_init_script(struct e1000_hw *hw)
4678 {
4679         uint32_t ret_val;
4680         uint16_t phy_saved_data;
4681         DEBUGFUNC();
4682
4683         if (hw->phy_init_script) {
4684                 mdelay(20);
4685
4686                 /* Save off the current value of register 0x2F5B to be
4687                  * restored at the end of this routine. */
4688                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4689
4690                 /* Disabled the PHY transmitter */
4691                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4692
4693                 mdelay(20);
4694
4695                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4696
4697                 mdelay(5);
4698
4699                 switch (hw->mac_type) {
4700                 case e1000_82541:
4701                 case e1000_82547:
4702                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4703
4704                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4705
4706                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4707
4708                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4709
4710                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4711
4712                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4713
4714                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4715
4716                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4717
4718                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4719                         break;
4720
4721                 case e1000_82541_rev_2:
4722                 case e1000_82547_rev_2:
4723                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4724                         break;
4725                 default:
4726                         break;
4727                 }
4728
4729                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4730
4731                 mdelay(20);
4732
4733                 /* Now enable the transmitter */
4734                 if (!ret_val)
4735                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4736
4737                 if (hw->mac_type == e1000_82547) {
4738                         uint16_t fused, fine, coarse;
4739
4740                         /* Move to analog registers page */
4741                         e1000_read_phy_reg(hw,
4742                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4743
4744                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4745                                 e1000_read_phy_reg(hw,
4746                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4747
4748                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4749                                 coarse = fused
4750                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4751
4752                                 if (coarse >
4753                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4754                                         coarse -=
4755                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4756                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4757                                 } else if (coarse
4758                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4759                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4760
4761                                 fused = (fused
4762                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4763                                         (fine
4764                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4765                                         (coarse
4766                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4767
4768                                 e1000_write_phy_reg(hw,
4769                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4770                                 e1000_write_phy_reg(hw,
4771                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4772                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4773                         }
4774                 }
4775         }
4776 }
4777
4778 /******************************************************************************
4779 * Resets the PHY
4780 *
4781 * hw - Struct containing variables accessed by shared code
4782 *
4783 * Sets bit 15 of the MII Control register
4784 ******************************************************************************/
4785 int32_t
4786 e1000_phy_reset(struct e1000_hw *hw)
4787 {
4788         int32_t ret_val;
4789         uint16_t phy_data;
4790
4791         DEBUGFUNC();
4792
4793         /* In the case of the phy reset being blocked, it's not an error, we
4794          * simply return success without performing the reset. */
4795         ret_val = e1000_check_phy_reset_block(hw);
4796         if (ret_val)
4797                 return E1000_SUCCESS;
4798
4799         switch (hw->phy_type) {
4800         case e1000_phy_igp:
4801         case e1000_phy_igp_2:
4802         case e1000_phy_igp_3:
4803         case e1000_phy_ife:
4804         case e1000_phy_igb:
4805                 ret_val = e1000_phy_hw_reset(hw);
4806                 if (ret_val)
4807                         return ret_val;
4808                 break;
4809         default:
4810                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4811                 if (ret_val)
4812                         return ret_val;
4813
4814                 phy_data |= MII_CR_RESET;
4815                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4816                 if (ret_val)
4817                         return ret_val;
4818
4819                 udelay(1);
4820                 break;
4821         }
4822
4823         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4824                 e1000_phy_init_script(hw);
4825
4826         return E1000_SUCCESS;
4827 }
4828
4829 static int e1000_set_phy_type (struct e1000_hw *hw)
4830 {
4831         DEBUGFUNC ();
4832
4833         if (hw->mac_type == e1000_undefined)
4834                 return -E1000_ERR_PHY_TYPE;
4835
4836         switch (hw->phy_id) {
4837         case M88E1000_E_PHY_ID:
4838         case M88E1000_I_PHY_ID:
4839         case M88E1011_I_PHY_ID:
4840         case M88E1111_I_PHY_ID:
4841                 hw->phy_type = e1000_phy_m88;
4842                 break;
4843         case IGP01E1000_I_PHY_ID:
4844                 if (hw->mac_type == e1000_82541 ||
4845                         hw->mac_type == e1000_82541_rev_2 ||
4846                         hw->mac_type == e1000_82547 ||
4847                         hw->mac_type == e1000_82547_rev_2) {
4848                         hw->phy_type = e1000_phy_igp;
4849                         break;
4850                 }
4851         case IGP03E1000_E_PHY_ID:
4852                 hw->phy_type = e1000_phy_igp_3;
4853                 break;
4854         case IFE_E_PHY_ID:
4855         case IFE_PLUS_E_PHY_ID:
4856         case IFE_C_E_PHY_ID:
4857                 hw->phy_type = e1000_phy_ife;
4858                 break;
4859         case GG82563_E_PHY_ID:
4860                 if (hw->mac_type == e1000_80003es2lan) {
4861                         hw->phy_type = e1000_phy_gg82563;
4862                         break;
4863                 }
4864         case BME1000_E_PHY_ID:
4865                 hw->phy_type = e1000_phy_bm;
4866                 break;
4867         case I210_I_PHY_ID:
4868                 hw->phy_type = e1000_phy_igb;
4869                 break;
4870                 /* Fall Through */
4871         default:
4872                 /* Should never have loaded on this device */
4873                 hw->phy_type = e1000_phy_undefined;
4874                 return -E1000_ERR_PHY_TYPE;
4875         }
4876
4877         return E1000_SUCCESS;
4878 }
4879
4880 /******************************************************************************
4881 * Probes the expected PHY address for known PHY IDs
4882 *
4883 * hw - Struct containing variables accessed by shared code
4884 ******************************************************************************/
4885 static int32_t
4886 e1000_detect_gig_phy(struct e1000_hw *hw)
4887 {
4888         int32_t phy_init_status, ret_val;
4889         uint16_t phy_id_high, phy_id_low;
4890         bool match = false;
4891
4892         DEBUGFUNC();
4893
4894         /* The 82571 firmware may still be configuring the PHY.  In this
4895          * case, we cannot access the PHY until the configuration is done.  So
4896          * we explicitly set the PHY values. */
4897         if (hw->mac_type == e1000_82571 ||
4898                 hw->mac_type == e1000_82572) {
4899                 hw->phy_id = IGP01E1000_I_PHY_ID;
4900                 hw->phy_type = e1000_phy_igp_2;
4901                 return E1000_SUCCESS;
4902         }
4903
4904         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4905          * work- around that forces PHY page 0 to be set or the reads fail.
4906          * The rest of the code in this routine uses e1000_read_phy_reg to
4907          * read the PHY ID.  So for ESB-2 we need to have this set so our
4908          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4909          * the routines below will figure this out as well. */
4910         if (hw->mac_type == e1000_80003es2lan)
4911                 hw->phy_type = e1000_phy_gg82563;
4912
4913         /* Read the PHY ID Registers to identify which PHY is onboard. */
4914         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4915         if (ret_val)
4916                 return ret_val;
4917
4918         hw->phy_id = (uint32_t) (phy_id_high << 16);
4919         udelay(20);
4920         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4921         if (ret_val)
4922                 return ret_val;
4923
4924         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4925         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4926
4927         switch (hw->mac_type) {
4928         case e1000_82543:
4929                 if (hw->phy_id == M88E1000_E_PHY_ID)
4930                         match = true;
4931                 break;
4932         case e1000_82544:
4933                 if (hw->phy_id == M88E1000_I_PHY_ID)
4934                         match = true;
4935                 break;
4936         case e1000_82540:
4937         case e1000_82545:
4938         case e1000_82545_rev_3:
4939         case e1000_82546:
4940         case e1000_82546_rev_3:
4941                 if (hw->phy_id == M88E1011_I_PHY_ID)
4942                         match = true;
4943                 break;
4944         case e1000_82541:
4945         case e1000_82541_rev_2:
4946         case e1000_82547:
4947         case e1000_82547_rev_2:
4948                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4949                         match = true;
4950
4951                 break;
4952         case e1000_82573:
4953                 if (hw->phy_id == M88E1111_I_PHY_ID)
4954                         match = true;
4955                 break;
4956         case e1000_82574:
4957                 if (hw->phy_id == BME1000_E_PHY_ID)
4958                         match = true;
4959                 break;
4960         case e1000_80003es2lan:
4961                 if (hw->phy_id == GG82563_E_PHY_ID)
4962                         match = true;
4963                 break;
4964         case e1000_ich8lan:
4965                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4966                         match = true;
4967                 if (hw->phy_id == IFE_E_PHY_ID)
4968                         match = true;
4969                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4970                         match = true;
4971                 if (hw->phy_id == IFE_C_E_PHY_ID)
4972                         match = true;
4973                 break;
4974         case e1000_igb:
4975                 if (hw->phy_id == I210_I_PHY_ID)
4976                         match = true;
4977                 break;
4978         default:
4979                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4980                 return -E1000_ERR_CONFIG;
4981         }
4982
4983         phy_init_status = e1000_set_phy_type(hw);
4984
4985         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4986                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4987                 return 0;
4988         }
4989         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4990         return -E1000_ERR_PHY;
4991 }
4992
4993 /*****************************************************************************
4994  * Set media type and TBI compatibility.
4995  *
4996  * hw - Struct containing variables accessed by shared code
4997  * **************************************************************************/
4998 void
4999 e1000_set_media_type(struct e1000_hw *hw)
5000 {
5001         uint32_t status;
5002
5003         DEBUGFUNC();
5004
5005         if (hw->mac_type != e1000_82543) {
5006                 /* tbi_compatibility is only valid on 82543 */
5007                 hw->tbi_compatibility_en = false;
5008         }
5009
5010         switch (hw->device_id) {
5011         case E1000_DEV_ID_82545GM_SERDES:
5012         case E1000_DEV_ID_82546GB_SERDES:
5013         case E1000_DEV_ID_82571EB_SERDES:
5014         case E1000_DEV_ID_82571EB_SERDES_DUAL:
5015         case E1000_DEV_ID_82571EB_SERDES_QUAD:
5016         case E1000_DEV_ID_82572EI_SERDES:
5017         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5018                 hw->media_type = e1000_media_type_internal_serdes;
5019                 break;
5020         default:
5021                 switch (hw->mac_type) {
5022                 case e1000_82542_rev2_0:
5023                 case e1000_82542_rev2_1:
5024                         hw->media_type = e1000_media_type_fiber;
5025                         break;
5026                 case e1000_ich8lan:
5027                 case e1000_82573:
5028                 case e1000_82574:
5029                 case e1000_igb:
5030                         /* The STATUS_TBIMODE bit is reserved or reused
5031                          * for the this device.
5032                          */
5033                         hw->media_type = e1000_media_type_copper;
5034                         break;
5035                 default:
5036                         status = E1000_READ_REG(hw, STATUS);
5037                         if (status & E1000_STATUS_TBIMODE) {
5038                                 hw->media_type = e1000_media_type_fiber;
5039                                 /* tbi_compatibility not valid on fiber */
5040                                 hw->tbi_compatibility_en = false;
5041                         } else {
5042                                 hw->media_type = e1000_media_type_copper;
5043                         }
5044                         break;
5045                 }
5046         }
5047 }
5048
5049 /**
5050  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5051  *
5052  * e1000_sw_init initializes the Adapter private data structure.
5053  * Fields are initialized based on PCI device information and
5054  * OS network device settings (MTU size).
5055  **/
5056
5057 static int
5058 e1000_sw_init(struct e1000_hw *hw)
5059 {
5060         int result;
5061
5062         /* PCI config space info */
5063 #ifdef CONFIG_DM_ETH
5064         dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5065         dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5066         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5067                              &hw->subsystem_vendor_id);
5068         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5069
5070         dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5071         dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5072 #else
5073         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5074         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5075         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5076                              &hw->subsystem_vendor_id);
5077         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5078
5079         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5080         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5081 #endif
5082
5083         /* identify the MAC */
5084         result = e1000_set_mac_type(hw);
5085         if (result) {
5086                 E1000_ERR(hw, "Unknown MAC Type\n");
5087                 return result;
5088         }
5089
5090         switch (hw->mac_type) {
5091         default:
5092                 break;
5093         case e1000_82541:
5094         case e1000_82547:
5095         case e1000_82541_rev_2:
5096         case e1000_82547_rev_2:
5097                 hw->phy_init_script = 1;
5098                 break;
5099         }
5100
5101         /* flow control settings */
5102         hw->fc_high_water = E1000_FC_HIGH_THRESH;
5103         hw->fc_low_water = E1000_FC_LOW_THRESH;
5104         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5105         hw->fc_send_xon = 1;
5106
5107         /* Media type - copper or fiber */
5108         hw->tbi_compatibility_en = true;
5109         e1000_set_media_type(hw);
5110
5111         if (hw->mac_type >= e1000_82543) {
5112                 uint32_t status = E1000_READ_REG(hw, STATUS);
5113
5114                 if (status & E1000_STATUS_TBIMODE) {
5115                         DEBUGOUT("fiber interface\n");
5116                         hw->media_type = e1000_media_type_fiber;
5117                 } else {
5118                         DEBUGOUT("copper interface\n");
5119                         hw->media_type = e1000_media_type_copper;
5120                 }
5121         } else {
5122                 hw->media_type = e1000_media_type_fiber;
5123         }
5124
5125         hw->wait_autoneg_complete = true;
5126         if (hw->mac_type < e1000_82543)
5127                 hw->report_tx_early = 0;
5128         else
5129                 hw->report_tx_early = 1;
5130
5131         return E1000_SUCCESS;
5132 }
5133
5134 void
5135 fill_rx(struct e1000_hw *hw)
5136 {
5137         struct e1000_rx_desc *rd;
5138         unsigned long flush_start, flush_end;
5139
5140         rx_last = rx_tail;
5141         rd = rx_base + rx_tail;
5142         rx_tail = (rx_tail + 1) % 8;
5143         memset(rd, 0, 16);
5144         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
5145
5146         /*
5147          * Make sure there are no stale data in WB over this area, which
5148          * might get written into the memory while the e1000 also writes
5149          * into the same memory area.
5150          */
5151         invalidate_dcache_range((unsigned long)packet,
5152                                 (unsigned long)packet + 4096);
5153         /* Dump the DMA descriptor into RAM. */
5154         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5155         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5156         flush_dcache_range(flush_start, flush_end);
5157
5158         E1000_WRITE_REG(hw, RDT, rx_tail);
5159 }
5160
5161 /**
5162  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5163  * @adapter: board private structure
5164  *
5165  * Configure the Tx unit of the MAC after a reset.
5166  **/
5167
5168 static void
5169 e1000_configure_tx(struct e1000_hw *hw)
5170 {
5171         unsigned long tctl;
5172         unsigned long tipg, tarc;
5173         uint32_t ipgr1, ipgr2;
5174
5175         E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
5176         E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
5177
5178         E1000_WRITE_REG(hw, TDLEN, 128);
5179
5180         /* Setup the HW Tx Head and Tail descriptor pointers */
5181         E1000_WRITE_REG(hw, TDH, 0);
5182         E1000_WRITE_REG(hw, TDT, 0);
5183         tx_tail = 0;
5184
5185         /* Set the default values for the Tx Inter Packet Gap timer */
5186         if (hw->mac_type <= e1000_82547_rev_2 &&
5187             (hw->media_type == e1000_media_type_fiber ||
5188              hw->media_type == e1000_media_type_internal_serdes))
5189                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5190         else
5191                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5192
5193         /* Set the default values for the Tx Inter Packet Gap timer */
5194         switch (hw->mac_type) {
5195         case e1000_82542_rev2_0:
5196         case e1000_82542_rev2_1:
5197                 tipg = DEFAULT_82542_TIPG_IPGT;
5198                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5199                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5200                 break;
5201         case e1000_80003es2lan:
5202                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5203                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
5204                 break;
5205         default:
5206                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5207                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5208                 break;
5209         }
5210         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5211         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
5212         E1000_WRITE_REG(hw, TIPG, tipg);
5213         /* Program the Transmit Control Register */
5214         tctl = E1000_READ_REG(hw, TCTL);
5215         tctl &= ~E1000_TCTL_CT;
5216         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5217             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5218
5219         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5220                 tarc = E1000_READ_REG(hw, TARC0);
5221                 /* set the speed mode bit, we'll clear it if we're not at
5222                  * gigabit link later */
5223                 /* git bit can be set to 1*/
5224         } else if (hw->mac_type == e1000_80003es2lan) {
5225                 tarc = E1000_READ_REG(hw, TARC0);
5226                 tarc |= 1;
5227                 E1000_WRITE_REG(hw, TARC0, tarc);
5228                 tarc = E1000_READ_REG(hw, TARC1);
5229                 tarc |= 1;
5230                 E1000_WRITE_REG(hw, TARC1, tarc);
5231         }
5232
5233
5234         e1000_config_collision_dist(hw);
5235         /* Setup Transmit Descriptor Settings for eop descriptor */
5236         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5237
5238         /* Need to set up RS bit */
5239         if (hw->mac_type < e1000_82543)
5240                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5241         else
5242                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5243
5244
5245         if (hw->mac_type == e1000_igb) {
5246                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5247
5248                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5249                 reg_txdctl |= 1 << 25;
5250                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5251                 mdelay(20);
5252         }
5253
5254
5255
5256         E1000_WRITE_REG(hw, TCTL, tctl);
5257
5258
5259 }
5260
5261 /**
5262  * e1000_setup_rctl - configure the receive control register
5263  * @adapter: Board private structure
5264  **/
5265 static void
5266 e1000_setup_rctl(struct e1000_hw *hw)
5267 {
5268         uint32_t rctl;
5269
5270         rctl = E1000_READ_REG(hw, RCTL);
5271
5272         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5273
5274         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5275                 | E1000_RCTL_RDMTS_HALF;        /* |
5276                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5277
5278         if (hw->tbi_compatibility_on == 1)
5279                 rctl |= E1000_RCTL_SBP;
5280         else
5281                 rctl &= ~E1000_RCTL_SBP;
5282
5283         rctl &= ~(E1000_RCTL_SZ_4096);
5284                 rctl |= E1000_RCTL_SZ_2048;
5285                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5286         E1000_WRITE_REG(hw, RCTL, rctl);
5287 }
5288
5289 /**
5290  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5291  * @adapter: board private structure
5292  *
5293  * Configure the Rx unit of the MAC after a reset.
5294  **/
5295 static void
5296 e1000_configure_rx(struct e1000_hw *hw)
5297 {
5298         unsigned long rctl, ctrl_ext;
5299         rx_tail = 0;
5300
5301         /* make sure receives are disabled while setting up the descriptors */
5302         rctl = E1000_READ_REG(hw, RCTL);
5303         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5304         if (hw->mac_type >= e1000_82540) {
5305                 /* Set the interrupt throttling rate.  Value is calculated
5306                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5307 #define MAX_INTS_PER_SEC        8000
5308 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5309                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5310         }
5311
5312         if (hw->mac_type >= e1000_82571) {
5313                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5314                 /* Reset delay timers after every interrupt */
5315                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5316                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5317                 E1000_WRITE_FLUSH(hw);
5318         }
5319         /* Setup the Base and Length of the Rx Descriptor Ring */
5320         E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5321         E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5322
5323         E1000_WRITE_REG(hw, RDLEN, 128);
5324
5325         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5326         E1000_WRITE_REG(hw, RDH, 0);
5327         E1000_WRITE_REG(hw, RDT, 0);
5328         /* Enable Receives */
5329
5330         if (hw->mac_type == e1000_igb) {
5331
5332                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5333                 reg_rxdctl |= 1 << 25;
5334                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5335                 mdelay(20);
5336         }
5337
5338         E1000_WRITE_REG(hw, RCTL, rctl);
5339
5340         fill_rx(hw);
5341 }
5342
5343 /**************************************************************************
5344 POLL - Wait for a frame
5345 ***************************************************************************/
5346 static int
5347 _e1000_poll(struct e1000_hw *hw)
5348 {
5349         struct e1000_rx_desc *rd;
5350         unsigned long inval_start, inval_end;
5351         uint32_t len;
5352
5353         /* return true if there's an ethernet packet ready to read */
5354         rd = rx_base + rx_last;
5355
5356         /* Re-load the descriptor from RAM. */
5357         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5358         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5359         invalidate_dcache_range(inval_start, inval_end);
5360
5361         if (!(rd->status & E1000_RXD_STAT_DD))
5362                 return 0;
5363         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5364         /* Packet received, make sure the data are re-loaded from RAM. */
5365         len = le16_to_cpu(rd->length);
5366         invalidate_dcache_range((unsigned long)packet,
5367                                 (unsigned long)packet +
5368                                 roundup(len, ARCH_DMA_MINALIGN));
5369         return len;
5370 }
5371
5372 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5373 {
5374         void *nv_packet = (void *)txpacket;
5375         struct e1000_tx_desc *txp;
5376         int i = 0;
5377         unsigned long flush_start, flush_end;
5378
5379         txp = tx_base + tx_tail;
5380         tx_tail = (tx_tail + 1) % 8;
5381
5382         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5383         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5384         txp->upper.data = 0;
5385
5386         /* Dump the packet into RAM so e1000 can pick them. */
5387         flush_dcache_range((unsigned long)nv_packet,
5388                            (unsigned long)nv_packet +
5389                            roundup(length, ARCH_DMA_MINALIGN));
5390         /* Dump the descriptor into RAM as well. */
5391         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5392         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5393         flush_dcache_range(flush_start, flush_end);
5394
5395         E1000_WRITE_REG(hw, TDT, tx_tail);
5396
5397         E1000_WRITE_FLUSH(hw);
5398         while (1) {
5399                 invalidate_dcache_range(flush_start, flush_end);
5400                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5401                         break;
5402                 if (i++ > TOUT_LOOP) {
5403                         DEBUGOUT("e1000: tx timeout\n");
5404                         return 0;
5405                 }
5406                 udelay(10);     /* give the nic a chance to write to the register */
5407         }
5408         return 1;
5409 }
5410
5411 static void
5412 _e1000_disable(struct e1000_hw *hw)
5413 {
5414         /* Turn off the ethernet interface */
5415         E1000_WRITE_REG(hw, RCTL, 0);
5416         E1000_WRITE_REG(hw, TCTL, 0);
5417
5418         /* Clear the transmit ring */
5419         E1000_WRITE_REG(hw, TDH, 0);
5420         E1000_WRITE_REG(hw, TDT, 0);
5421
5422         /* Clear the receive ring */
5423         E1000_WRITE_REG(hw, RDH, 0);
5424         E1000_WRITE_REG(hw, RDT, 0);
5425
5426         mdelay(10);
5427 }
5428
5429 /*reset function*/
5430 static inline int
5431 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5432 {
5433         e1000_reset_hw(hw);
5434         if (hw->mac_type >= e1000_82544)
5435                 E1000_WRITE_REG(hw, WUC, 0);
5436
5437         return e1000_init_hw(hw, enetaddr);
5438 }
5439
5440 static int
5441 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5442 {
5443         int ret_val = 0;
5444
5445         ret_val = e1000_reset(hw, enetaddr);
5446         if (ret_val < 0) {
5447                 if ((ret_val == -E1000_ERR_NOLINK) ||
5448                     (ret_val == -E1000_ERR_TIMEOUT)) {
5449                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5450                 } else {
5451                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5452                 }
5453                 return ret_val;
5454         }
5455         e1000_configure_tx(hw);
5456         e1000_setup_rctl(hw);
5457         e1000_configure_rx(hw);
5458         return 0;
5459 }
5460
5461 /******************************************************************************
5462  * Gets the current PCI bus type of hardware
5463  *
5464  * hw - Struct containing variables accessed by shared code
5465  *****************************************************************************/
5466 void e1000_get_bus_type(struct e1000_hw *hw)
5467 {
5468         uint32_t status;
5469
5470         switch (hw->mac_type) {
5471         case e1000_82542_rev2_0:
5472         case e1000_82542_rev2_1:
5473                 hw->bus_type = e1000_bus_type_pci;
5474                 break;
5475         case e1000_82571:
5476         case e1000_82572:
5477         case e1000_82573:
5478         case e1000_82574:
5479         case e1000_80003es2lan:
5480         case e1000_ich8lan:
5481         case e1000_igb:
5482                 hw->bus_type = e1000_bus_type_pci_express;
5483                 break;
5484         default:
5485                 status = E1000_READ_REG(hw, STATUS);
5486                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5487                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5488                 break;
5489         }
5490 }
5491
5492 #ifndef CONFIG_DM_ETH
5493 /* A list of all registered e1000 devices */
5494 static LIST_HEAD(e1000_hw_list);
5495 #endif
5496
5497 #ifdef CONFIG_DM_ETH
5498 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5499                           struct udevice *devno, unsigned char enetaddr[6])
5500 #else
5501 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5502                           unsigned char enetaddr[6])
5503 #endif
5504 {
5505         u32 val;
5506
5507         /* Assign the passed-in values */
5508 #ifdef CONFIG_DM_ETH
5509         hw->pdev = devno;
5510 #else
5511         hw->pdev = devno;
5512 #endif
5513         hw->cardnum = cardnum;
5514
5515         /* Print a debug message with the IO base address */
5516 #ifdef CONFIG_DM_ETH
5517         dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5518 #else
5519         pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5520 #endif
5521         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5522
5523         /* Try to enable I/O accesses and bus-mastering */
5524         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5525 #ifdef CONFIG_DM_ETH
5526         dm_pci_write_config32(devno, PCI_COMMAND, val);
5527 #else
5528         pci_write_config_dword(devno, PCI_COMMAND, val);
5529 #endif
5530
5531         /* Make sure it worked */
5532 #ifdef CONFIG_DM_ETH
5533         dm_pci_read_config32(devno, PCI_COMMAND, &val);
5534 #else
5535         pci_read_config_dword(devno, PCI_COMMAND, &val);
5536 #endif
5537         if (!(val & PCI_COMMAND_MEMORY)) {
5538                 E1000_ERR(hw, "Can't enable I/O memory\n");
5539                 return -ENOSPC;
5540         }
5541         if (!(val & PCI_COMMAND_MASTER)) {
5542                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5543                 return -EPERM;
5544         }
5545
5546         /* Are these variables needed? */
5547         hw->fc = e1000_fc_default;
5548         hw->original_fc = e1000_fc_default;
5549         hw->autoneg_failed = 0;
5550         hw->autoneg = 1;
5551         hw->get_link_status = true;
5552 #ifndef CONFIG_E1000_NO_NVM
5553         hw->eeprom_semaphore_present = true;
5554 #endif
5555 #ifdef CONFIG_DM_ETH
5556         hw->hw_addr = dm_pci_map_bar(devno,     PCI_BASE_ADDRESS_0,
5557                                                 PCI_REGION_MEM);
5558 #else
5559         hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5560                                                 PCI_REGION_MEM);
5561 #endif
5562         hw->mac_type = e1000_undefined;
5563
5564         /* MAC and Phy settings */
5565         if (e1000_sw_init(hw) < 0) {
5566                 E1000_ERR(hw, "Software init failed\n");
5567                 return -EIO;
5568         }
5569         if (e1000_check_phy_reset_block(hw))
5570                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5571
5572         /* Basic init was OK, reset the hardware and allow SPI access */
5573         e1000_reset_hw(hw);
5574
5575 #ifndef CONFIG_E1000_NO_NVM
5576         /* Validate the EEPROM and get chipset information */
5577         if (e1000_init_eeprom_params(hw)) {
5578                 E1000_ERR(hw, "EEPROM is invalid!\n");
5579                 return -EINVAL;
5580         }
5581         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5582             e1000_validate_eeprom_checksum(hw))
5583                 return -ENXIO;
5584         e1000_read_mac_addr(hw, enetaddr);
5585 #endif
5586         e1000_get_bus_type(hw);
5587
5588 #ifndef CONFIG_E1000_NO_NVM
5589         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5590                enetaddr[0], enetaddr[1], enetaddr[2],
5591                enetaddr[3], enetaddr[4], enetaddr[5]);
5592 #else
5593         memset(enetaddr, 0, 6);
5594         printf("e1000: no NVM\n");
5595 #endif
5596
5597         return 0;
5598 }
5599
5600 /* Put the name of a device in a string */
5601 static void e1000_name(char *str, int cardnum)
5602 {
5603         sprintf(str, "e1000#%u", cardnum);
5604 }
5605
5606 #ifndef CONFIG_DM_ETH
5607 /**************************************************************************
5608 TRANSMIT - Transmit a frame
5609 ***************************************************************************/
5610 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5611 {
5612         struct e1000_hw *hw = nic->priv;
5613
5614         return _e1000_transmit(hw, txpacket, length);
5615 }
5616
5617 /**************************************************************************
5618 DISABLE - Turn off ethernet interface
5619 ***************************************************************************/
5620 static void
5621 e1000_disable(struct eth_device *nic)
5622 {
5623         struct e1000_hw *hw = nic->priv;
5624
5625         _e1000_disable(hw);
5626 }
5627
5628 /**************************************************************************
5629 INIT - set up ethernet interface(s)
5630 ***************************************************************************/
5631 static int
5632 e1000_init(struct eth_device *nic, bd_t *bis)
5633 {
5634         struct e1000_hw *hw = nic->priv;
5635
5636         return _e1000_init(hw, nic->enetaddr);
5637 }
5638
5639 static int
5640 e1000_poll(struct eth_device *nic)
5641 {
5642         struct e1000_hw *hw = nic->priv;
5643         int len;
5644
5645         len = _e1000_poll(hw);
5646         if (len) {
5647                 net_process_received_packet((uchar *)packet, len);
5648                 fill_rx(hw);
5649         }
5650
5651         return len ? 1 : 0;
5652 }
5653
5654 static int e1000_write_hwaddr(struct eth_device *dev)
5655 {
5656 #ifndef CONFIG_E1000_NO_NVM
5657         unsigned char *mac = dev->enetaddr;
5658         unsigned char current_mac[6];
5659         struct e1000_hw *hw = dev->priv;
5660         uint16_t data[3];
5661         int ret_val, i;
5662
5663         DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5664
5665         memset(current_mac, 0, 6);
5666
5667         /* Read from EEPROM, not from registers, to make sure
5668          * the address is persistently configured
5669          */
5670         ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5671         DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5672
5673         /* Only write to EEPROM if the given address is different or
5674          * reading the current address failed
5675          */
5676         if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5677                 return 0;
5678
5679         for (i = 0; i < 3; ++i)
5680                 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5681
5682         ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5683
5684         if (!ret_val)
5685                 ret_val = e1000_update_eeprom_checksum_i210(hw);
5686
5687         return ret_val;
5688 #else
5689         return 0;
5690 #endif
5691 }
5692
5693 /**************************************************************************
5694 PROBE - Look for an adapter, this routine's visible to the outside
5695 You should omit the last argument struct pci_device * for a non-PCI NIC
5696 ***************************************************************************/
5697 int
5698 e1000_initialize(bd_t * bis)
5699 {
5700         unsigned int i;
5701         pci_dev_t devno;
5702         int ret;
5703
5704         DEBUGFUNC();
5705
5706         /* Find and probe all the matching PCI devices */
5707         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5708                 /*
5709                  * These will never get freed due to errors, this allows us to
5710                  * perform SPI EEPROM programming from U-Boot, for example.
5711                  */
5712                 struct eth_device *nic = malloc(sizeof(*nic));
5713                 struct e1000_hw *hw = malloc(sizeof(*hw));
5714                 if (!nic || !hw) {
5715                         printf("e1000#%u: Out of Memory!\n", i);
5716                         free(nic);
5717                         free(hw);
5718                         continue;
5719                 }
5720
5721                 /* Make sure all of the fields are initially zeroed */
5722                 memset(nic, 0, sizeof(*nic));
5723                 memset(hw, 0, sizeof(*hw));
5724                 nic->priv = hw;
5725
5726                 /* Generate a card name */
5727                 e1000_name(nic->name, i);
5728                 hw->name = nic->name;
5729
5730                 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5731                 if (ret)
5732                         continue;
5733                 list_add_tail(&hw->list_node, &e1000_hw_list);
5734
5735                 hw->nic = nic;
5736
5737                 /* Set up the function pointers and register the device */
5738                 nic->init = e1000_init;
5739                 nic->recv = e1000_poll;
5740                 nic->send = e1000_transmit;
5741                 nic->halt = e1000_disable;
5742                 nic->write_hwaddr = e1000_write_hwaddr;
5743                 eth_register(nic);
5744         }
5745
5746         return i;
5747 }
5748
5749 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5750 {
5751         struct e1000_hw *hw;
5752
5753         list_for_each_entry(hw, &e1000_hw_list, list_node)
5754                 if (hw->cardnum == cardnum)
5755                         return hw;
5756
5757         return NULL;
5758 }
5759 #endif /* !CONFIG_DM_ETH */
5760
5761 #ifdef CONFIG_CMD_E1000
5762 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5763                 int argc, char * const argv[])
5764 {
5765         unsigned char *mac = NULL;
5766 #ifdef CONFIG_DM_ETH
5767         struct eth_pdata *plat;
5768         struct udevice *dev;
5769         char name[30];
5770         int ret;
5771 #endif
5772 #if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
5773         struct e1000_hw *hw;
5774 #endif
5775         int cardnum;
5776
5777         if (argc < 3) {
5778                 cmd_usage(cmdtp);
5779                 return 1;
5780         }
5781
5782         /* Make sure we can find the requested e1000 card */
5783         cardnum = simple_strtoul(argv[1], NULL, 10);
5784 #ifdef CONFIG_DM_ETH
5785         e1000_name(name, cardnum);
5786         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5787         if (!ret) {
5788                 plat = dev_get_platdata(dev);
5789                 mac = plat->enetaddr;
5790         }
5791 #else
5792         hw = e1000_find_card(cardnum);
5793         if (hw)
5794                 mac = hw->nic->enetaddr;
5795 #endif
5796         if (!mac) {
5797                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5798                 return 1;
5799         }
5800
5801         if (!strcmp(argv[2], "print-mac-address")) {
5802                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5803                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5804                 return 0;
5805         }
5806
5807 #ifdef CONFIG_E1000_SPI
5808 #ifdef CONFIG_DM_ETH
5809         hw = dev_get_priv(dev);
5810 #endif
5811         /* Handle the "SPI" subcommand */
5812         if (!strcmp(argv[2], "spi"))
5813                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5814 #endif
5815
5816         cmd_usage(cmdtp);
5817         return 1;
5818 }
5819
5820 U_BOOT_CMD(
5821         e1000, 7, 0, do_e1000,
5822         "Intel e1000 controller management",
5823         /*  */"<card#> print-mac-address\n"
5824 #ifdef CONFIG_E1000_SPI
5825         "e1000 <card#> spi show [<offset> [<length>]]\n"
5826         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5827         "e1000 <card#> spi program <addr> <offset> <length>\n"
5828         "e1000 <card#> spi checksum [update]\n"
5829 #endif
5830         "       - Manage the Intel E1000 PCI device"
5831 );
5832 #endif /* not CONFIG_CMD_E1000 */
5833
5834 #ifdef CONFIG_DM_ETH
5835 static int e1000_eth_start(struct udevice *dev)
5836 {
5837         struct eth_pdata *plat = dev_get_platdata(dev);
5838         struct e1000_hw *hw = dev_get_priv(dev);
5839
5840         return _e1000_init(hw, plat->enetaddr);
5841 }
5842
5843 static void e1000_eth_stop(struct udevice *dev)
5844 {
5845         struct e1000_hw *hw = dev_get_priv(dev);
5846
5847         _e1000_disable(hw);
5848 }
5849
5850 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5851 {
5852         struct e1000_hw *hw = dev_get_priv(dev);
5853         int ret;
5854
5855         ret = _e1000_transmit(hw, packet, length);
5856
5857         return ret ? 0 : -ETIMEDOUT;
5858 }
5859
5860 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5861 {
5862         struct e1000_hw *hw = dev_get_priv(dev);
5863         int len;
5864
5865         len = _e1000_poll(hw);
5866         if (len)
5867                 *packetp = packet;
5868
5869         return len ? len : -EAGAIN;
5870 }
5871
5872 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5873 {
5874         struct e1000_hw *hw = dev_get_priv(dev);
5875
5876         fill_rx(hw);
5877
5878         return 0;
5879 }
5880
5881 static int e1000_eth_probe(struct udevice *dev)
5882 {
5883         struct eth_pdata *plat = dev_get_platdata(dev);
5884         struct e1000_hw *hw = dev_get_priv(dev);
5885         int ret;
5886
5887         hw->name = dev->name;
5888         ret = e1000_init_one(hw, trailing_strtol(dev->name),
5889                              dev, plat->enetaddr);
5890         if (ret < 0) {
5891                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5892                 return ret;
5893         }
5894
5895         return 0;
5896 }
5897
5898 static int e1000_eth_bind(struct udevice *dev)
5899 {
5900         char name[20];
5901
5902         /*
5903          * A simple way to number the devices. When device tree is used this
5904          * is unnecessary, but when the device is just discovered on the PCI
5905          * bus we need a name. We could instead have the uclass figure out
5906          * which devices are different and number them.
5907          */
5908         e1000_name(name, num_cards++);
5909
5910         return device_set_name(dev, name);
5911 }
5912
5913 static const struct eth_ops e1000_eth_ops = {
5914         .start  = e1000_eth_start,
5915         .send   = e1000_eth_send,
5916         .recv   = e1000_eth_recv,
5917         .stop   = e1000_eth_stop,
5918         .free_pkt = e1000_free_pkt,
5919 };
5920
5921 static const struct udevice_id e1000_eth_ids[] = {
5922         { .compatible = "intel,e1000" },
5923         { }
5924 };
5925
5926 U_BOOT_DRIVER(eth_e1000) = {
5927         .name   = "eth_e1000",
5928         .id     = UCLASS_ETH,
5929         .of_match = e1000_eth_ids,
5930         .bind   = e1000_eth_bind,
5931         .probe  = e1000_eth_probe,
5932         .ops    = &e1000_eth_ops,
5933         .priv_auto_alloc_size = sizeof(struct e1000_hw),
5934         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5935 };
5936
5937 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5938 #endif