Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[platform/kernel/linux-rpi.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k8-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131                                     struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137                                struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140                                struct e1000_rx_ring *rx_ring,
141                                int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143                                      struct e1000_rx_ring *rx_ring,
144                                      int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146                                    struct e1000_rx_ring *rx_ring,
147                                    int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149                                          struct e1000_rx_ring *rx_ring,
150                                          int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153                            int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160                                        struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182         "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185                      pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190         .error_detected = e1000_io_error_detected,
191         .slot_reset = e1000_io_slot_reset,
192         .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196         .name     = e1000_driver_name,
197         .id_table = e1000_pci_tbl,
198         .probe    = e1000_probe,
199         .remove   = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201         /* Power Managment Hooks */
202         .suspend  = e1000_suspend,
203         .resume   = e1000_resume,
204 #endif
205         .shutdown = e1000_shutdown,
206         .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219  * e1000_get_hw_dev - return device
220  * used by hardware layer to print debugging information
221  *
222  **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225         struct e1000_adapter *adapter = hw->back;
226         return adapter->netdev;
227 }
228
229 /**
230  * e1000_init_module - Driver Registration Routine
231  *
232  * e1000_init_module is the first routine called when the driver is
233  * loaded. All it does is register with the PCI subsystem.
234  **/
235
236 static int __init e1000_init_module(void)
237 {
238         int ret;
239         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241         pr_info("%s\n", e1000_copyright);
242
243         ret = pci_register_driver(&e1000_driver);
244         if (copybreak != COPYBREAK_DEFAULT) {
245                 if (copybreak == 0)
246                         pr_info("copybreak disabled\n");
247                 else
248                         pr_info("copybreak enabled for "
249                                    "packets <= %u bytes\n", copybreak);
250         }
251         return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257  * e1000_exit_module - Driver Exit Cleanup Routine
258  *
259  * e1000_exit_module is called just before the driver is removed
260  * from memory.
261  **/
262
263 static void __exit e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         irq_handler_t handler = e1000_intr;
274         int irq_flags = IRQF_SHARED;
275         int err;
276
277         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278                           netdev);
279         if (err) {
280                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281         }
282
283         return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288         struct net_device *netdev = adapter->netdev;
289
290         free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294  * e1000_irq_disable - Mask off interrupt generation on the NIC
295  * @adapter: board private structure
296  **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300         struct e1000_hw *hw = &adapter->hw;
301
302         ew32(IMC, ~0);
303         E1000_WRITE_FLUSH();
304         synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308  * e1000_irq_enable - Enable default interrupt generation settings
309  * @adapter: board private structure
310  **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314         struct e1000_hw *hw = &adapter->hw;
315
316         ew32(IMS, IMS_ENABLE_MASK);
317         E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322         struct e1000_hw *hw = &adapter->hw;
323         struct net_device *netdev = adapter->netdev;
324         u16 vid = hw->mng_cookie.vlan_id;
325         u16 old_vid = adapter->mng_vlan_id;
326         if (adapter->vlgrp) {
327                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328                         if (hw->mng_cookie.status &
329                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330                                 e1000_vlan_rx_add_vid(netdev, vid);
331                                 adapter->mng_vlan_id = vid;
332                         } else
333                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336                                         (vid != old_vid) &&
337                             !vlan_group_get_device(adapter->vlgrp, old_vid))
338                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
339                 } else
340                         adapter->mng_vlan_id = vid;
341         }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347
348         if (adapter->en_mng_pt) {
349                 u32 manc = er32(MANC);
350
351                 /* disable hardware interception of ARP */
352                 manc &= ~(E1000_MANC_ARP_EN);
353
354                 ew32(MANC, manc);
355         }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360         struct e1000_hw *hw = &adapter->hw;
361
362         if (adapter->en_mng_pt) {
363                 u32 manc = er32(MANC);
364
365                 /* re-enable hardware interception of ARP */
366                 manc |= E1000_MANC_ARP_EN;
367
368                 ew32(MANC, manc);
369         }
370 }
371
372 /**
373  * e1000_configure - configure the hardware for RX and TX
374  * @adapter = private board structure
375  **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378         struct net_device *netdev = adapter->netdev;
379         int i;
380
381         e1000_set_rx_mode(netdev);
382
383         e1000_restore_vlan(adapter);
384         e1000_init_manageability(adapter);
385
386         e1000_configure_tx(adapter);
387         e1000_setup_rctl(adapter);
388         e1000_configure_rx(adapter);
389         /* call E1000_DESC_UNUSED which always leaves
390          * at least 1 descriptor unused to make sure
391          * next_to_use != next_to_clean */
392         for (i = 0; i < adapter->num_rx_queues; i++) {
393                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394                 adapter->alloc_rx_buf(adapter, ring,
395                                       E1000_DESC_UNUSED(ring));
396         }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401         struct e1000_hw *hw = &adapter->hw;
402
403         /* hardware has been reset, we need to reload some things */
404         e1000_configure(adapter);
405
406         clear_bit(__E1000_DOWN, &adapter->flags);
407
408         napi_enable(&adapter->napi);
409
410         e1000_irq_enable(adapter);
411
412         netif_wake_queue(adapter->netdev);
413
414         /* fire a link change interrupt to start the watchdog */
415         ew32(ICS, E1000_ICS_LSC);
416         return 0;
417 }
418
419 /**
420  * e1000_power_up_phy - restore link in case the phy was powered down
421  * @adapter: address of board private structure
422  *
423  * The phy may be powered down to save power and turn off link when the
424  * driver is unloaded and wake on lan is not enabled (among others)
425  * *** this routine MUST be followed by a call to e1000_reset ***
426  *
427  **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432         u16 mii_reg = 0;
433
434         /* Just clear the power down bit to wake the phy back up */
435         if (hw->media_type == e1000_media_type_copper) {
436                 /* according to the manual, the phy will retain its
437                  * settings across a power-down/up cycle */
438                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439                 mii_reg &= ~MII_CR_POWER_DOWN;
440                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441         }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446         struct e1000_hw *hw = &adapter->hw;
447
448         /* Power down the PHY so no link is implied when interface is down *
449          * The PHY cannot be powered down if any of the following is true *
450          * (a) WoL is enabled
451          * (b) AMT is active
452          * (c) SoL/IDER session is active */
453         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454            hw->media_type == e1000_media_type_copper) {
455                 u16 mii_reg = 0;
456
457                 switch (hw->mac_type) {
458                 case e1000_82540:
459                 case e1000_82545:
460                 case e1000_82545_rev_3:
461                 case e1000_82546:
462                 case e1000_82546_rev_3:
463                 case e1000_82541:
464                 case e1000_82541_rev_2:
465                 case e1000_82547:
466                 case e1000_82547_rev_2:
467                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
468                                 goto out;
469                         break;
470                 default:
471                         goto out;
472                 }
473                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474                 mii_reg |= MII_CR_POWER_DOWN;
475                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476                 mdelay(1);
477         }
478 out:
479         return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484         struct e1000_hw *hw = &adapter->hw;
485         struct net_device *netdev = adapter->netdev;
486         u32 rctl, tctl;
487
488
489         /* disable receives in the hardware */
490         rctl = er32(RCTL);
491         ew32(RCTL, rctl & ~E1000_RCTL_EN);
492         /* flush and sleep below */
493
494         netif_tx_disable(netdev);
495
496         /* disable transmits in the hardware */
497         tctl = er32(TCTL);
498         tctl &= ~E1000_TCTL_EN;
499         ew32(TCTL, tctl);
500         /* flush both disables and wait for them to finish */
501         E1000_WRITE_FLUSH();
502         msleep(10);
503
504         napi_disable(&adapter->napi);
505
506         e1000_irq_disable(adapter);
507
508         /*
509          * Setting DOWN must be after irq_disable to prevent
510          * a screaming interrupt.  Setting DOWN also prevents
511          * timers and tasks from rescheduling.
512          */
513         set_bit(__E1000_DOWN, &adapter->flags);
514
515         del_timer_sync(&adapter->tx_fifo_stall_timer);
516         del_timer_sync(&adapter->watchdog_timer);
517         del_timer_sync(&adapter->phy_info_timer);
518
519         adapter->link_speed = 0;
520         adapter->link_duplex = 0;
521         netif_carrier_off(netdev);
522
523         e1000_reset(adapter);
524         e1000_clean_all_tx_rings(adapter);
525         e1000_clean_all_rx_rings(adapter);
526 }
527
528 static void e1000_reinit_safe(struct e1000_adapter *adapter)
529 {
530         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
531                 msleep(1);
532         rtnl_lock();
533         e1000_down(adapter);
534         e1000_up(adapter);
535         rtnl_unlock();
536         clear_bit(__E1000_RESETTING, &adapter->flags);
537 }
538
539 void e1000_reinit_locked(struct e1000_adapter *adapter)
540 {
541         /* if rtnl_lock is not held the call path is bogus */
542         ASSERT_RTNL();
543         WARN_ON(in_interrupt());
544         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
545                 msleep(1);
546         e1000_down(adapter);
547         e1000_up(adapter);
548         clear_bit(__E1000_RESETTING, &adapter->flags);
549 }
550
551 void e1000_reset(struct e1000_adapter *adapter)
552 {
553         struct e1000_hw *hw = &adapter->hw;
554         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555         bool legacy_pba_adjust = false;
556         u16 hwm;
557
558         /* Repartition Pba for greater than 9k mtu
559          * To take effect CTRL.RST is required.
560          */
561
562         switch (hw->mac_type) {
563         case e1000_82542_rev2_0:
564         case e1000_82542_rev2_1:
565         case e1000_82543:
566         case e1000_82544:
567         case e1000_82540:
568         case e1000_82541:
569         case e1000_82541_rev_2:
570                 legacy_pba_adjust = true;
571                 pba = E1000_PBA_48K;
572                 break;
573         case e1000_82545:
574         case e1000_82545_rev_3:
575         case e1000_82546:
576         case e1000_82546_rev_3:
577                 pba = E1000_PBA_48K;
578                 break;
579         case e1000_82547:
580         case e1000_82547_rev_2:
581                 legacy_pba_adjust = true;
582                 pba = E1000_PBA_30K;
583                 break;
584         case e1000_undefined:
585         case e1000_num_macs:
586                 break;
587         }
588
589         if (legacy_pba_adjust) {
590                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591                         pba -= 8; /* allocate more FIFO for Tx */
592
593                 if (hw->mac_type == e1000_82547) {
594                         adapter->tx_fifo_head = 0;
595                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596                         adapter->tx_fifo_size =
597                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598                         atomic_set(&adapter->tx_fifo_stall, 0);
599                 }
600         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601                 /* adjust PBA for jumbo frames */
602                 ew32(PBA, pba);
603
604                 /* To maintain wire speed transmits, the Tx FIFO should be
605                  * large enough to accommodate two full transmit packets,
606                  * rounded up to the next 1KB and expressed in KB.  Likewise,
607                  * the Rx FIFO should be large enough to accommodate at least
608                  * one full receive packet and is similarly rounded up and
609                  * expressed in KB. */
610                 pba = er32(PBA);
611                 /* upper 16 bits has Tx packet buffer allocation size in KB */
612                 tx_space = pba >> 16;
613                 /* lower 16 bits has Rx packet buffer allocation size in KB */
614                 pba &= 0xffff;
615                 /*
616                  * the tx fifo also stores 16 bytes of information about the tx
617                  * but don't include ethernet FCS because hardware appends it
618                  */
619                 min_tx_space = (hw->max_frame_size +
620                                 sizeof(struct e1000_tx_desc) -
621                                 ETH_FCS_LEN) * 2;
622                 min_tx_space = ALIGN(min_tx_space, 1024);
623                 min_tx_space >>= 10;
624                 /* software strips receive CRC, so leave room for it */
625                 min_rx_space = hw->max_frame_size;
626                 min_rx_space = ALIGN(min_rx_space, 1024);
627                 min_rx_space >>= 10;
628
629                 /* If current Tx allocation is less than the min Tx FIFO size,
630                  * and the min Tx FIFO size is less than the current Rx FIFO
631                  * allocation, take space away from current Rx allocation */
632                 if (tx_space < min_tx_space &&
633                     ((min_tx_space - tx_space) < pba)) {
634                         pba = pba - (min_tx_space - tx_space);
635
636                         /* PCI/PCIx hardware has PBA alignment constraints */
637                         switch (hw->mac_type) {
638                         case e1000_82545 ... e1000_82546_rev_3:
639                                 pba &= ~(E1000_PBA_8K - 1);
640                                 break;
641                         default:
642                                 break;
643                         }
644
645                         /* if short on rx space, rx wins and must trump tx
646                          * adjustment or use Early Receive if available */
647                         if (pba < min_rx_space)
648                                 pba = min_rx_space;
649                 }
650         }
651
652         ew32(PBA, pba);
653
654         /*
655          * flow control settings:
656          * The high water mark must be low enough to fit one full frame
657          * (or the size used for early receive) above it in the Rx FIFO.
658          * Set it to the lower of:
659          * - 90% of the Rx FIFO size, and
660          * - the full Rx FIFO size minus the early receive size (for parts
661          *   with ERT support assuming ERT set to E1000_ERT_2048), or
662          * - the full Rx FIFO size minus one full frame
663          */
664         hwm = min(((pba << 10) * 9 / 10),
665                   ((pba << 10) - hw->max_frame_size));
666
667         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
668         hw->fc_low_water = hw->fc_high_water - 8;
669         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
670         hw->fc_send_xon = 1;
671         hw->fc = hw->original_fc;
672
673         /* Allow time for pending master requests to run */
674         e1000_reset_hw(hw);
675         if (hw->mac_type >= e1000_82544)
676                 ew32(WUC, 0);
677
678         if (e1000_init_hw(hw))
679                 e_dev_err("Hardware Error\n");
680         e1000_update_mng_vlan(adapter);
681
682         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
683         if (hw->mac_type >= e1000_82544 &&
684             hw->autoneg == 1 &&
685             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
686                 u32 ctrl = er32(CTRL);
687                 /* clear phy power management bit if we are in gig only mode,
688                  * which if enabled will attempt negotiation to 100Mb, which
689                  * can cause a loss of link at power off or driver unload */
690                 ctrl &= ~E1000_CTRL_SWDPIN3;
691                 ew32(CTRL, ctrl);
692         }
693
694         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
695         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
696
697         e1000_reset_adaptive(hw);
698         e1000_phy_get_info(hw, &adapter->phy_info);
699
700         e1000_release_manageability(adapter);
701 }
702
703 /**
704  *  Dump the eeprom for users having checksum issues
705  **/
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708         struct net_device *netdev = adapter->netdev;
709         struct ethtool_eeprom eeprom;
710         const struct ethtool_ops *ops = netdev->ethtool_ops;
711         u8 *data;
712         int i;
713         u16 csum_old, csum_new = 0;
714
715         eeprom.len = ops->get_eeprom_len(netdev);
716         eeprom.offset = 0;
717
718         data = kmalloc(eeprom.len, GFP_KERNEL);
719         if (!data) {
720                 pr_err("Unable to allocate memory to dump EEPROM data\n");
721                 return;
722         }
723
724         ops->get_eeprom(netdev, &eeprom, data);
725
726         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
727                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
728         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
729                 csum_new += data[i] + (data[i + 1] << 8);
730         csum_new = EEPROM_SUM - csum_new;
731
732         pr_err("/*********************/\n");
733         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
734         pr_err("Calculated              : 0x%04x\n", csum_new);
735
736         pr_err("Offset    Values\n");
737         pr_err("========  ======\n");
738         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
739
740         pr_err("Include this output when contacting your support provider.\n");
741         pr_err("This is not a software error! Something bad happened to\n");
742         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
743         pr_err("result in further problems, possibly loss of data,\n");
744         pr_err("corruption or system hangs!\n");
745         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
746         pr_err("which is invalid and requires you to set the proper MAC\n");
747         pr_err("address manually before continuing to enable this network\n");
748         pr_err("device. Please inspect the EEPROM dump and report the\n");
749         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
750         pr_err("/*********************/\n");
751
752         kfree(data);
753 }
754
755 /**
756  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
757  * @pdev: PCI device information struct
758  *
759  * Return true if an adapter needs ioport resources
760  **/
761 static int e1000_is_need_ioport(struct pci_dev *pdev)
762 {
763         switch (pdev->device) {
764         case E1000_DEV_ID_82540EM:
765         case E1000_DEV_ID_82540EM_LOM:
766         case E1000_DEV_ID_82540EP:
767         case E1000_DEV_ID_82540EP_LOM:
768         case E1000_DEV_ID_82540EP_LP:
769         case E1000_DEV_ID_82541EI:
770         case E1000_DEV_ID_82541EI_MOBILE:
771         case E1000_DEV_ID_82541ER:
772         case E1000_DEV_ID_82541ER_LOM:
773         case E1000_DEV_ID_82541GI:
774         case E1000_DEV_ID_82541GI_LF:
775         case E1000_DEV_ID_82541GI_MOBILE:
776         case E1000_DEV_ID_82544EI_COPPER:
777         case E1000_DEV_ID_82544EI_FIBER:
778         case E1000_DEV_ID_82544GC_COPPER:
779         case E1000_DEV_ID_82544GC_LOM:
780         case E1000_DEV_ID_82545EM_COPPER:
781         case E1000_DEV_ID_82545EM_FIBER:
782         case E1000_DEV_ID_82546EB_COPPER:
783         case E1000_DEV_ID_82546EB_FIBER:
784         case E1000_DEV_ID_82546EB_QUAD_COPPER:
785                 return true;
786         default:
787                 return false;
788         }
789 }
790
791 static const struct net_device_ops e1000_netdev_ops = {
792         .ndo_open               = e1000_open,
793         .ndo_stop               = e1000_close,
794         .ndo_start_xmit         = e1000_xmit_frame,
795         .ndo_get_stats          = e1000_get_stats,
796         .ndo_set_rx_mode        = e1000_set_rx_mode,
797         .ndo_set_mac_address    = e1000_set_mac,
798         .ndo_tx_timeout         = e1000_tx_timeout,
799         .ndo_change_mtu         = e1000_change_mtu,
800         .ndo_do_ioctl           = e1000_ioctl,
801         .ndo_validate_addr      = eth_validate_addr,
802
803         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
804         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
805         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
806 #ifdef CONFIG_NET_POLL_CONTROLLER
807         .ndo_poll_controller    = e1000_netpoll,
808 #endif
809 };
810
811 /**
812  * e1000_init_hw_struct - initialize members of hw struct
813  * @adapter: board private struct
814  * @hw: structure used by e1000_hw.c
815  *
816  * Factors out initialization of the e1000_hw struct to its own function
817  * that can be called very early at init (just after struct allocation).
818  * Fields are initialized based on PCI device information and
819  * OS network device settings (MTU size).
820  * Returns negative error codes if MAC type setup fails.
821  */
822 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
823                                 struct e1000_hw *hw)
824 {
825         struct pci_dev *pdev = adapter->pdev;
826
827         /* PCI config space info */
828         hw->vendor_id = pdev->vendor;
829         hw->device_id = pdev->device;
830         hw->subsystem_vendor_id = pdev->subsystem_vendor;
831         hw->subsystem_id = pdev->subsystem_device;
832         hw->revision_id = pdev->revision;
833
834         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
835
836         hw->max_frame_size = adapter->netdev->mtu +
837                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
838         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
839
840         /* identify the MAC */
841         if (e1000_set_mac_type(hw)) {
842                 e_err(probe, "Unknown MAC Type\n");
843                 return -EIO;
844         }
845
846         switch (hw->mac_type) {
847         default:
848                 break;
849         case e1000_82541:
850         case e1000_82547:
851         case e1000_82541_rev_2:
852         case e1000_82547_rev_2:
853                 hw->phy_init_script = 1;
854                 break;
855         }
856
857         e1000_set_media_type(hw);
858         e1000_get_bus_info(hw);
859
860         hw->wait_autoneg_complete = false;
861         hw->tbi_compatibility_en = true;
862         hw->adaptive_ifs = true;
863
864         /* Copper options */
865
866         if (hw->media_type == e1000_media_type_copper) {
867                 hw->mdix = AUTO_ALL_MODES;
868                 hw->disable_polarity_correction = false;
869                 hw->master_slave = E1000_MASTER_SLAVE;
870         }
871
872         return 0;
873 }
874
875 /**
876  * e1000_probe - Device Initialization Routine
877  * @pdev: PCI device information struct
878  * @ent: entry in e1000_pci_tbl
879  *
880  * Returns 0 on success, negative on failure
881  *
882  * e1000_probe initializes an adapter identified by a pci_dev structure.
883  * The OS initialization, configuring of the adapter private structure,
884  * and a hardware reset occur.
885  **/
886 static int __devinit e1000_probe(struct pci_dev *pdev,
887                                  const struct pci_device_id *ent)
888 {
889         struct net_device *netdev;
890         struct e1000_adapter *adapter;
891         struct e1000_hw *hw;
892
893         static int cards_found = 0;
894         static int global_quad_port_a = 0; /* global ksp3 port a indication */
895         int i, err, pci_using_dac;
896         u16 eeprom_data = 0;
897         u16 eeprom_apme_mask = E1000_EEPROM_APME;
898         int bars, need_ioport;
899
900         /* do not allocate ioport bars when not needed */
901         need_ioport = e1000_is_need_ioport(pdev);
902         if (need_ioport) {
903                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
904                 err = pci_enable_device(pdev);
905         } else {
906                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
907                 err = pci_enable_device_mem(pdev);
908         }
909         if (err)
910                 return err;
911
912         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
913         if (err)
914                 goto err_pci_reg;
915
916         pci_set_master(pdev);
917         err = pci_save_state(pdev);
918         if (err)
919                 goto err_alloc_etherdev;
920
921         err = -ENOMEM;
922         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
923         if (!netdev)
924                 goto err_alloc_etherdev;
925
926         SET_NETDEV_DEV(netdev, &pdev->dev);
927
928         pci_set_drvdata(pdev, netdev);
929         adapter = netdev_priv(netdev);
930         adapter->netdev = netdev;
931         adapter->pdev = pdev;
932         adapter->msg_enable = (1 << debug) - 1;
933         adapter->bars = bars;
934         adapter->need_ioport = need_ioport;
935
936         hw = &adapter->hw;
937         hw->back = adapter;
938
939         err = -EIO;
940         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
941         if (!hw->hw_addr)
942                 goto err_ioremap;
943
944         if (adapter->need_ioport) {
945                 for (i = BAR_1; i <= BAR_5; i++) {
946                         if (pci_resource_len(pdev, i) == 0)
947                                 continue;
948                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
949                                 hw->io_base = pci_resource_start(pdev, i);
950                                 break;
951                         }
952                 }
953         }
954
955         /* make ready for any if (hw->...) below */
956         err = e1000_init_hw_struct(adapter, hw);
957         if (err)
958                 goto err_sw_init;
959
960         /*
961          * there is a workaround being applied below that limits
962          * 64-bit DMA addresses to 64-bit hardware.  There are some
963          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
964          */
965         pci_using_dac = 0;
966         if ((hw->bus_type == e1000_bus_type_pcix) &&
967             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
968                 /*
969                  * according to DMA-API-HOWTO, coherent calls will always
970                  * succeed if the set call did
971                  */
972                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
973                 pci_using_dac = 1;
974         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
975                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
976         } else {
977                 pr_err("No usable DMA config, aborting\n");
978                 goto err_dma;
979         }
980
981         netdev->netdev_ops = &e1000_netdev_ops;
982         e1000_set_ethtool_ops(netdev);
983         netdev->watchdog_timeo = 5 * HZ;
984         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
985
986         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
987
988         adapter->bd_number = cards_found;
989
990         /* setup the private structure */
991
992         err = e1000_sw_init(adapter);
993         if (err)
994                 goto err_sw_init;
995
996         err = -EIO;
997
998         if (hw->mac_type >= e1000_82543) {
999                 netdev->features = NETIF_F_SG |
1000                                    NETIF_F_HW_CSUM |
1001                                    NETIF_F_HW_VLAN_TX |
1002                                    NETIF_F_HW_VLAN_RX |
1003                                    NETIF_F_HW_VLAN_FILTER;
1004         }
1005
1006         if ((hw->mac_type >= e1000_82544) &&
1007            (hw->mac_type != e1000_82547))
1008                 netdev->features |= NETIF_F_TSO;
1009
1010         if (pci_using_dac) {
1011                 netdev->features |= NETIF_F_HIGHDMA;
1012                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1013         }
1014
1015         netdev->vlan_features |= NETIF_F_TSO;
1016         netdev->vlan_features |= NETIF_F_HW_CSUM;
1017         netdev->vlan_features |= NETIF_F_SG;
1018
1019         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1020
1021         /* initialize eeprom parameters */
1022         if (e1000_init_eeprom_params(hw)) {
1023                 e_err(probe, "EEPROM initialization failed\n");
1024                 goto err_eeprom;
1025         }
1026
1027         /* before reading the EEPROM, reset the controller to
1028          * put the device in a known good starting state */
1029
1030         e1000_reset_hw(hw);
1031
1032         /* make sure the EEPROM is good */
1033         if (e1000_validate_eeprom_checksum(hw) < 0) {
1034                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1035                 e1000_dump_eeprom(adapter);
1036                 /*
1037                  * set MAC address to all zeroes to invalidate and temporary
1038                  * disable this device for the user. This blocks regular
1039                  * traffic while still permitting ethtool ioctls from reaching
1040                  * the hardware as well as allowing the user to run the
1041                  * interface after manually setting a hw addr using
1042                  * `ip set address`
1043                  */
1044                 memset(hw->mac_addr, 0, netdev->addr_len);
1045         } else {
1046                 /* copy the MAC address out of the EEPROM */
1047                 if (e1000_read_mac_addr(hw))
1048                         e_err(probe, "EEPROM Read Error\n");
1049         }
1050         /* don't block initalization here due to bad MAC address */
1051         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1052         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1053
1054         if (!is_valid_ether_addr(netdev->perm_addr))
1055                 e_err(probe, "Invalid MAC Address\n");
1056
1057         init_timer(&adapter->tx_fifo_stall_timer);
1058         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1059         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1060
1061         init_timer(&adapter->watchdog_timer);
1062         adapter->watchdog_timer.function = e1000_watchdog;
1063         adapter->watchdog_timer.data = (unsigned long) adapter;
1064
1065         init_timer(&adapter->phy_info_timer);
1066         adapter->phy_info_timer.function = e1000_update_phy_info;
1067         adapter->phy_info_timer.data = (unsigned long)adapter;
1068
1069         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1070         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1071         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1072
1073         e1000_check_options(adapter);
1074
1075         /* Initial Wake on LAN setting
1076          * If APM wake is enabled in the EEPROM,
1077          * enable the ACPI Magic Packet filter
1078          */
1079
1080         switch (hw->mac_type) {
1081         case e1000_82542_rev2_0:
1082         case e1000_82542_rev2_1:
1083         case e1000_82543:
1084                 break;
1085         case e1000_82544:
1086                 e1000_read_eeprom(hw,
1087                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1088                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1089                 break;
1090         case e1000_82546:
1091         case e1000_82546_rev_3:
1092                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1093                         e1000_read_eeprom(hw,
1094                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1095                         break;
1096                 }
1097                 /* Fall Through */
1098         default:
1099                 e1000_read_eeprom(hw,
1100                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1101                 break;
1102         }
1103         if (eeprom_data & eeprom_apme_mask)
1104                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1105
1106         /* now that we have the eeprom settings, apply the special cases
1107          * where the eeprom may be wrong or the board simply won't support
1108          * wake on lan on a particular port */
1109         switch (pdev->device) {
1110         case E1000_DEV_ID_82546GB_PCIE:
1111                 adapter->eeprom_wol = 0;
1112                 break;
1113         case E1000_DEV_ID_82546EB_FIBER:
1114         case E1000_DEV_ID_82546GB_FIBER:
1115                 /* Wake events only supported on port A for dual fiber
1116                  * regardless of eeprom setting */
1117                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1118                         adapter->eeprom_wol = 0;
1119                 break;
1120         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1121                 /* if quad port adapter, disable WoL on all but port A */
1122                 if (global_quad_port_a != 0)
1123                         adapter->eeprom_wol = 0;
1124                 else
1125                         adapter->quad_port_a = 1;
1126                 /* Reset for multiple quad port adapters */
1127                 if (++global_quad_port_a == 4)
1128                         global_quad_port_a = 0;
1129                 break;
1130         }
1131
1132         /* initialize the wol settings based on the eeprom settings */
1133         adapter->wol = adapter->eeprom_wol;
1134         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1135
1136         /* reset the hardware with the new settings */
1137         e1000_reset(adapter);
1138
1139         strcpy(netdev->name, "eth%d");
1140         err = register_netdev(netdev);
1141         if (err)
1142                 goto err_register;
1143
1144         /* print bus type/speed/width info */
1145         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1146                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1147                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1148                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1149                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1150                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1151                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1152                netdev->dev_addr);
1153
1154         /* carrier off reporting is important to ethtool even BEFORE open */
1155         netif_carrier_off(netdev);
1156
1157         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1158
1159         cards_found++;
1160         return 0;
1161
1162 err_register:
1163 err_eeprom:
1164         e1000_phy_hw_reset(hw);
1165
1166         if (hw->flash_address)
1167                 iounmap(hw->flash_address);
1168         kfree(adapter->tx_ring);
1169         kfree(adapter->rx_ring);
1170 err_dma:
1171 err_sw_init:
1172         iounmap(hw->hw_addr);
1173 err_ioremap:
1174         free_netdev(netdev);
1175 err_alloc_etherdev:
1176         pci_release_selected_regions(pdev, bars);
1177 err_pci_reg:
1178         pci_disable_device(pdev);
1179         return err;
1180 }
1181
1182 /**
1183  * e1000_remove - Device Removal Routine
1184  * @pdev: PCI device information struct
1185  *
1186  * e1000_remove is called by the PCI subsystem to alert the driver
1187  * that it should release a PCI device.  The could be caused by a
1188  * Hot-Plug event, or because the driver is going to be removed from
1189  * memory.
1190  **/
1191
1192 static void __devexit e1000_remove(struct pci_dev *pdev)
1193 {
1194         struct net_device *netdev = pci_get_drvdata(pdev);
1195         struct e1000_adapter *adapter = netdev_priv(netdev);
1196         struct e1000_hw *hw = &adapter->hw;
1197
1198         set_bit(__E1000_DOWN, &adapter->flags);
1199         del_timer_sync(&adapter->tx_fifo_stall_timer);
1200         del_timer_sync(&adapter->watchdog_timer);
1201         del_timer_sync(&adapter->phy_info_timer);
1202
1203         cancel_work_sync(&adapter->reset_task);
1204
1205         e1000_release_manageability(adapter);
1206
1207         unregister_netdev(netdev);
1208
1209         e1000_phy_hw_reset(hw);
1210
1211         kfree(adapter->tx_ring);
1212         kfree(adapter->rx_ring);
1213
1214         iounmap(hw->hw_addr);
1215         if (hw->flash_address)
1216                 iounmap(hw->flash_address);
1217         pci_release_selected_regions(pdev, adapter->bars);
1218
1219         free_netdev(netdev);
1220
1221         pci_disable_device(pdev);
1222 }
1223
1224 /**
1225  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1226  * @adapter: board private structure to initialize
1227  *
1228  * e1000_sw_init initializes the Adapter private data structure.
1229  * e1000_init_hw_struct MUST be called before this function
1230  **/
1231
1232 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1233 {
1234         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1235
1236         adapter->num_tx_queues = 1;
1237         adapter->num_rx_queues = 1;
1238
1239         if (e1000_alloc_queues(adapter)) {
1240                 e_err(probe, "Unable to allocate memory for queues\n");
1241                 return -ENOMEM;
1242         }
1243
1244         /* Explicitly disable IRQ since the NIC can be in any state. */
1245         e1000_irq_disable(adapter);
1246
1247         spin_lock_init(&adapter->stats_lock);
1248
1249         set_bit(__E1000_DOWN, &adapter->flags);
1250
1251         return 0;
1252 }
1253
1254 /**
1255  * e1000_alloc_queues - Allocate memory for all rings
1256  * @adapter: board private structure to initialize
1257  *
1258  * We allocate one ring per queue at run-time since we don't know the
1259  * number of queues at compile-time.
1260  **/
1261
1262 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1263 {
1264         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1265                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1266         if (!adapter->tx_ring)
1267                 return -ENOMEM;
1268
1269         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1270                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1271         if (!adapter->rx_ring) {
1272                 kfree(adapter->tx_ring);
1273                 return -ENOMEM;
1274         }
1275
1276         return E1000_SUCCESS;
1277 }
1278
1279 /**
1280  * e1000_open - Called when a network interface is made active
1281  * @netdev: network interface device structure
1282  *
1283  * Returns 0 on success, negative value on failure
1284  *
1285  * The open entry point is called when a network interface is made
1286  * active by the system (IFF_UP).  At this point all resources needed
1287  * for transmit and receive operations are allocated, the interrupt
1288  * handler is registered with the OS, the watchdog timer is started,
1289  * and the stack is notified that the interface is ready.
1290  **/
1291
1292 static int e1000_open(struct net_device *netdev)
1293 {
1294         struct e1000_adapter *adapter = netdev_priv(netdev);
1295         struct e1000_hw *hw = &adapter->hw;
1296         int err;
1297
1298         /* disallow open during test */
1299         if (test_bit(__E1000_TESTING, &adapter->flags))
1300                 return -EBUSY;
1301
1302         netif_carrier_off(netdev);
1303
1304         /* allocate transmit descriptors */
1305         err = e1000_setup_all_tx_resources(adapter);
1306         if (err)
1307                 goto err_setup_tx;
1308
1309         /* allocate receive descriptors */
1310         err = e1000_setup_all_rx_resources(adapter);
1311         if (err)
1312                 goto err_setup_rx;
1313
1314         e1000_power_up_phy(adapter);
1315
1316         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1317         if ((hw->mng_cookie.status &
1318                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1319                 e1000_update_mng_vlan(adapter);
1320         }
1321
1322         /* before we allocate an interrupt, we must be ready to handle it.
1323          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1324          * as soon as we call pci_request_irq, so we have to setup our
1325          * clean_rx handler before we do so.  */
1326         e1000_configure(adapter);
1327
1328         err = e1000_request_irq(adapter);
1329         if (err)
1330                 goto err_req_irq;
1331
1332         /* From here on the code is the same as e1000_up() */
1333         clear_bit(__E1000_DOWN, &adapter->flags);
1334
1335         napi_enable(&adapter->napi);
1336
1337         e1000_irq_enable(adapter);
1338
1339         netif_start_queue(netdev);
1340
1341         /* fire a link status change interrupt to start the watchdog */
1342         ew32(ICS, E1000_ICS_LSC);
1343
1344         return E1000_SUCCESS;
1345
1346 err_req_irq:
1347         e1000_power_down_phy(adapter);
1348         e1000_free_all_rx_resources(adapter);
1349 err_setup_rx:
1350         e1000_free_all_tx_resources(adapter);
1351 err_setup_tx:
1352         e1000_reset(adapter);
1353
1354         return err;
1355 }
1356
1357 /**
1358  * e1000_close - Disables a network interface
1359  * @netdev: network interface device structure
1360  *
1361  * Returns 0, this is not allowed to fail
1362  *
1363  * The close entry point is called when an interface is de-activated
1364  * by the OS.  The hardware is still under the drivers control, but
1365  * needs to be disabled.  A global MAC reset is issued to stop the
1366  * hardware, and all transmit and receive resources are freed.
1367  **/
1368
1369 static int e1000_close(struct net_device *netdev)
1370 {
1371         struct e1000_adapter *adapter = netdev_priv(netdev);
1372         struct e1000_hw *hw = &adapter->hw;
1373
1374         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1375         e1000_down(adapter);
1376         e1000_power_down_phy(adapter);
1377         e1000_free_irq(adapter);
1378
1379         e1000_free_all_tx_resources(adapter);
1380         e1000_free_all_rx_resources(adapter);
1381
1382         /* kill manageability vlan ID if supported, but not if a vlan with
1383          * the same ID is registered on the host OS (let 8021q kill it) */
1384         if ((hw->mng_cookie.status &
1385                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1386              !(adapter->vlgrp &&
1387                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1388                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1389         }
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1396  * @adapter: address of board private structure
1397  * @start: address of beginning of memory
1398  * @len: length of memory
1399  **/
1400 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1401                                   unsigned long len)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         unsigned long begin = (unsigned long)start;
1405         unsigned long end = begin + len;
1406
1407         /* First rev 82545 and 82546 need to not allow any memory
1408          * write location to cross 64k boundary due to errata 23 */
1409         if (hw->mac_type == e1000_82545 ||
1410             hw->mac_type == e1000_82546) {
1411                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1412         }
1413
1414         return true;
1415 }
1416
1417 /**
1418  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1419  * @adapter: board private structure
1420  * @txdr:    tx descriptor ring (for a specific queue) to setup
1421  *
1422  * Return 0 on success, negative on failure
1423  **/
1424
1425 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1426                                     struct e1000_tx_ring *txdr)
1427 {
1428         struct pci_dev *pdev = adapter->pdev;
1429         int size;
1430
1431         size = sizeof(struct e1000_buffer) * txdr->count;
1432         txdr->buffer_info = vzalloc(size);
1433         if (!txdr->buffer_info) {
1434                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1435                       "ring\n");
1436                 return -ENOMEM;
1437         }
1438
1439         /* round up to nearest 4K */
1440
1441         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1442         txdr->size = ALIGN(txdr->size, 4096);
1443
1444         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1445                                         GFP_KERNEL);
1446         if (!txdr->desc) {
1447 setup_tx_desc_die:
1448                 vfree(txdr->buffer_info);
1449                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1450                       "ring\n");
1451                 return -ENOMEM;
1452         }
1453
1454         /* Fix for errata 23, can't cross 64kB boundary */
1455         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1456                 void *olddesc = txdr->desc;
1457                 dma_addr_t olddma = txdr->dma;
1458                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1459                       txdr->size, txdr->desc);
1460                 /* Try again, without freeing the previous */
1461                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1462                                                 &txdr->dma, GFP_KERNEL);
1463                 /* Failed allocation, critical failure */
1464                 if (!txdr->desc) {
1465                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1466                                           olddma);
1467                         goto setup_tx_desc_die;
1468                 }
1469
1470                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1471                         /* give up */
1472                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1473                                           txdr->dma);
1474                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1475                                           olddma);
1476                         e_err(probe, "Unable to allocate aligned memory "
1477                               "for the transmit descriptor ring\n");
1478                         vfree(txdr->buffer_info);
1479                         return -ENOMEM;
1480                 } else {
1481                         /* Free old allocation, new allocation was successful */
1482                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1483                                           olddma);
1484                 }
1485         }
1486         memset(txdr->desc, 0, txdr->size);
1487
1488         txdr->next_to_use = 0;
1489         txdr->next_to_clean = 0;
1490
1491         return 0;
1492 }
1493
1494 /**
1495  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1496  *                                (Descriptors) for all queues
1497  * @adapter: board private structure
1498  *
1499  * Return 0 on success, negative on failure
1500  **/
1501
1502 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1503 {
1504         int i, err = 0;
1505
1506         for (i = 0; i < adapter->num_tx_queues; i++) {
1507                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1508                 if (err) {
1509                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1510                         for (i-- ; i >= 0; i--)
1511                                 e1000_free_tx_resources(adapter,
1512                                                         &adapter->tx_ring[i]);
1513                         break;
1514                 }
1515         }
1516
1517         return err;
1518 }
1519
1520 /**
1521  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1522  * @adapter: board private structure
1523  *
1524  * Configure the Tx unit of the MAC after a reset.
1525  **/
1526
1527 static void e1000_configure_tx(struct e1000_adapter *adapter)
1528 {
1529         u64 tdba;
1530         struct e1000_hw *hw = &adapter->hw;
1531         u32 tdlen, tctl, tipg;
1532         u32 ipgr1, ipgr2;
1533
1534         /* Setup the HW Tx Head and Tail descriptor pointers */
1535
1536         switch (adapter->num_tx_queues) {
1537         case 1:
1538         default:
1539                 tdba = adapter->tx_ring[0].dma;
1540                 tdlen = adapter->tx_ring[0].count *
1541                         sizeof(struct e1000_tx_desc);
1542                 ew32(TDLEN, tdlen);
1543                 ew32(TDBAH, (tdba >> 32));
1544                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1545                 ew32(TDT, 0);
1546                 ew32(TDH, 0);
1547                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1548                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1549                 break;
1550         }
1551
1552         /* Set the default values for the Tx Inter Packet Gap timer */
1553         if ((hw->media_type == e1000_media_type_fiber ||
1554              hw->media_type == e1000_media_type_internal_serdes))
1555                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1556         else
1557                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1558
1559         switch (hw->mac_type) {
1560         case e1000_82542_rev2_0:
1561         case e1000_82542_rev2_1:
1562                 tipg = DEFAULT_82542_TIPG_IPGT;
1563                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1564                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1565                 break;
1566         default:
1567                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1568                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1569                 break;
1570         }
1571         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1572         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1573         ew32(TIPG, tipg);
1574
1575         /* Set the Tx Interrupt Delay register */
1576
1577         ew32(TIDV, adapter->tx_int_delay);
1578         if (hw->mac_type >= e1000_82540)
1579                 ew32(TADV, adapter->tx_abs_int_delay);
1580
1581         /* Program the Transmit Control Register */
1582
1583         tctl = er32(TCTL);
1584         tctl &= ~E1000_TCTL_CT;
1585         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1586                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1587
1588         e1000_config_collision_dist(hw);
1589
1590         /* Setup Transmit Descriptor Settings for eop descriptor */
1591         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1592
1593         /* only set IDE if we are delaying interrupts using the timers */
1594         if (adapter->tx_int_delay)
1595                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1596
1597         if (hw->mac_type < e1000_82543)
1598                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1599         else
1600                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1601
1602         /* Cache if we're 82544 running in PCI-X because we'll
1603          * need this to apply a workaround later in the send path. */
1604         if (hw->mac_type == e1000_82544 &&
1605             hw->bus_type == e1000_bus_type_pcix)
1606                 adapter->pcix_82544 = 1;
1607
1608         ew32(TCTL, tctl);
1609
1610 }
1611
1612 /**
1613  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1614  * @adapter: board private structure
1615  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1616  *
1617  * Returns 0 on success, negative on failure
1618  **/
1619
1620 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1621                                     struct e1000_rx_ring *rxdr)
1622 {
1623         struct pci_dev *pdev = adapter->pdev;
1624         int size, desc_len;
1625
1626         size = sizeof(struct e1000_buffer) * rxdr->count;
1627         rxdr->buffer_info = vzalloc(size);
1628         if (!rxdr->buffer_info) {
1629                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1630                       "ring\n");
1631                 return -ENOMEM;
1632         }
1633
1634         desc_len = sizeof(struct e1000_rx_desc);
1635
1636         /* Round up to nearest 4K */
1637
1638         rxdr->size = rxdr->count * desc_len;
1639         rxdr->size = ALIGN(rxdr->size, 4096);
1640
1641         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1642                                         GFP_KERNEL);
1643
1644         if (!rxdr->desc) {
1645                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1646                       "ring\n");
1647 setup_rx_desc_die:
1648                 vfree(rxdr->buffer_info);
1649                 return -ENOMEM;
1650         }
1651
1652         /* Fix for errata 23, can't cross 64kB boundary */
1653         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1654                 void *olddesc = rxdr->desc;
1655                 dma_addr_t olddma = rxdr->dma;
1656                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1657                       rxdr->size, rxdr->desc);
1658                 /* Try again, without freeing the previous */
1659                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1660                                                 &rxdr->dma, GFP_KERNEL);
1661                 /* Failed allocation, critical failure */
1662                 if (!rxdr->desc) {
1663                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1664                                           olddma);
1665                         e_err(probe, "Unable to allocate memory for the Rx "
1666                               "descriptor ring\n");
1667                         goto setup_rx_desc_die;
1668                 }
1669
1670                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1671                         /* give up */
1672                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1673                                           rxdr->dma);
1674                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1675                                           olddma);
1676                         e_err(probe, "Unable to allocate aligned memory for "
1677                               "the Rx descriptor ring\n");
1678                         goto setup_rx_desc_die;
1679                 } else {
1680                         /* Free old allocation, new allocation was successful */
1681                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1682                                           olddma);
1683                 }
1684         }
1685         memset(rxdr->desc, 0, rxdr->size);
1686
1687         rxdr->next_to_clean = 0;
1688         rxdr->next_to_use = 0;
1689         rxdr->rx_skb_top = NULL;
1690
1691         return 0;
1692 }
1693
1694 /**
1695  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1696  *                                (Descriptors) for all queues
1697  * @adapter: board private structure
1698  *
1699  * Return 0 on success, negative on failure
1700  **/
1701
1702 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1703 {
1704         int i, err = 0;
1705
1706         for (i = 0; i < adapter->num_rx_queues; i++) {
1707                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1708                 if (err) {
1709                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1710                         for (i-- ; i >= 0; i--)
1711                                 e1000_free_rx_resources(adapter,
1712                                                         &adapter->rx_ring[i]);
1713                         break;
1714                 }
1715         }
1716
1717         return err;
1718 }
1719
1720 /**
1721  * e1000_setup_rctl - configure the receive control registers
1722  * @adapter: Board private structure
1723  **/
1724 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1725 {
1726         struct e1000_hw *hw = &adapter->hw;
1727         u32 rctl;
1728
1729         rctl = er32(RCTL);
1730
1731         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1732
1733         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1734                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1735                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1736
1737         if (hw->tbi_compatibility_on == 1)
1738                 rctl |= E1000_RCTL_SBP;
1739         else
1740                 rctl &= ~E1000_RCTL_SBP;
1741
1742         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1743                 rctl &= ~E1000_RCTL_LPE;
1744         else
1745                 rctl |= E1000_RCTL_LPE;
1746
1747         /* Setup buffer sizes */
1748         rctl &= ~E1000_RCTL_SZ_4096;
1749         rctl |= E1000_RCTL_BSEX;
1750         switch (adapter->rx_buffer_len) {
1751                 case E1000_RXBUFFER_2048:
1752                 default:
1753                         rctl |= E1000_RCTL_SZ_2048;
1754                         rctl &= ~E1000_RCTL_BSEX;
1755                         break;
1756                 case E1000_RXBUFFER_4096:
1757                         rctl |= E1000_RCTL_SZ_4096;
1758                         break;
1759                 case E1000_RXBUFFER_8192:
1760                         rctl |= E1000_RCTL_SZ_8192;
1761                         break;
1762                 case E1000_RXBUFFER_16384:
1763                         rctl |= E1000_RCTL_SZ_16384;
1764                         break;
1765         }
1766
1767         ew32(RCTL, rctl);
1768 }
1769
1770 /**
1771  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1772  * @adapter: board private structure
1773  *
1774  * Configure the Rx unit of the MAC after a reset.
1775  **/
1776
1777 static void e1000_configure_rx(struct e1000_adapter *adapter)
1778 {
1779         u64 rdba;
1780         struct e1000_hw *hw = &adapter->hw;
1781         u32 rdlen, rctl, rxcsum;
1782
1783         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1784                 rdlen = adapter->rx_ring[0].count *
1785                         sizeof(struct e1000_rx_desc);
1786                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1787                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1788         } else {
1789                 rdlen = adapter->rx_ring[0].count *
1790                         sizeof(struct e1000_rx_desc);
1791                 adapter->clean_rx = e1000_clean_rx_irq;
1792                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1793         }
1794
1795         /* disable receives while setting up the descriptors */
1796         rctl = er32(RCTL);
1797         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1798
1799         /* set the Receive Delay Timer Register */
1800         ew32(RDTR, adapter->rx_int_delay);
1801
1802         if (hw->mac_type >= e1000_82540) {
1803                 ew32(RADV, adapter->rx_abs_int_delay);
1804                 if (adapter->itr_setting != 0)
1805                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1806         }
1807
1808         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1809          * the Base and Length of the Rx Descriptor Ring */
1810         switch (adapter->num_rx_queues) {
1811         case 1:
1812         default:
1813                 rdba = adapter->rx_ring[0].dma;
1814                 ew32(RDLEN, rdlen);
1815                 ew32(RDBAH, (rdba >> 32));
1816                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1817                 ew32(RDT, 0);
1818                 ew32(RDH, 0);
1819                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1820                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1821                 break;
1822         }
1823
1824         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1825         if (hw->mac_type >= e1000_82543) {
1826                 rxcsum = er32(RXCSUM);
1827                 if (adapter->rx_csum)
1828                         rxcsum |= E1000_RXCSUM_TUOFL;
1829                 else
1830                         /* don't need to clear IPPCSE as it defaults to 0 */
1831                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1832                 ew32(RXCSUM, rxcsum);
1833         }
1834
1835         /* Enable Receives */
1836         ew32(RCTL, rctl);
1837 }
1838
1839 /**
1840  * e1000_free_tx_resources - Free Tx Resources per Queue
1841  * @adapter: board private structure
1842  * @tx_ring: Tx descriptor ring for a specific queue
1843  *
1844  * Free all transmit software resources
1845  **/
1846
1847 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1848                                     struct e1000_tx_ring *tx_ring)
1849 {
1850         struct pci_dev *pdev = adapter->pdev;
1851
1852         e1000_clean_tx_ring(adapter, tx_ring);
1853
1854         vfree(tx_ring->buffer_info);
1855         tx_ring->buffer_info = NULL;
1856
1857         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1858                           tx_ring->dma);
1859
1860         tx_ring->desc = NULL;
1861 }
1862
1863 /**
1864  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1865  * @adapter: board private structure
1866  *
1867  * Free all transmit software resources
1868  **/
1869
1870 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1871 {
1872         int i;
1873
1874         for (i = 0; i < adapter->num_tx_queues; i++)
1875                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1876 }
1877
1878 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1879                                              struct e1000_buffer *buffer_info)
1880 {
1881         if (buffer_info->dma) {
1882                 if (buffer_info->mapped_as_page)
1883                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1884                                        buffer_info->length, DMA_TO_DEVICE);
1885                 else
1886                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1887                                          buffer_info->length,
1888                                          DMA_TO_DEVICE);
1889                 buffer_info->dma = 0;
1890         }
1891         if (buffer_info->skb) {
1892                 dev_kfree_skb_any(buffer_info->skb);
1893                 buffer_info->skb = NULL;
1894         }
1895         buffer_info->time_stamp = 0;
1896         /* buffer_info must be completely set up in the transmit path */
1897 }
1898
1899 /**
1900  * e1000_clean_tx_ring - Free Tx Buffers
1901  * @adapter: board private structure
1902  * @tx_ring: ring to be cleaned
1903  **/
1904
1905 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1906                                 struct e1000_tx_ring *tx_ring)
1907 {
1908         struct e1000_hw *hw = &adapter->hw;
1909         struct e1000_buffer *buffer_info;
1910         unsigned long size;
1911         unsigned int i;
1912
1913         /* Free all the Tx ring sk_buffs */
1914
1915         for (i = 0; i < tx_ring->count; i++) {
1916                 buffer_info = &tx_ring->buffer_info[i];
1917                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1918         }
1919
1920         size = sizeof(struct e1000_buffer) * tx_ring->count;
1921         memset(tx_ring->buffer_info, 0, size);
1922
1923         /* Zero out the descriptor ring */
1924
1925         memset(tx_ring->desc, 0, tx_ring->size);
1926
1927         tx_ring->next_to_use = 0;
1928         tx_ring->next_to_clean = 0;
1929         tx_ring->last_tx_tso = 0;
1930
1931         writel(0, hw->hw_addr + tx_ring->tdh);
1932         writel(0, hw->hw_addr + tx_ring->tdt);
1933 }
1934
1935 /**
1936  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1937  * @adapter: board private structure
1938  **/
1939
1940 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1941 {
1942         int i;
1943
1944         for (i = 0; i < adapter->num_tx_queues; i++)
1945                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1946 }
1947
1948 /**
1949  * e1000_free_rx_resources - Free Rx Resources
1950  * @adapter: board private structure
1951  * @rx_ring: ring to clean the resources from
1952  *
1953  * Free all receive software resources
1954  **/
1955
1956 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1957                                     struct e1000_rx_ring *rx_ring)
1958 {
1959         struct pci_dev *pdev = adapter->pdev;
1960
1961         e1000_clean_rx_ring(adapter, rx_ring);
1962
1963         vfree(rx_ring->buffer_info);
1964         rx_ring->buffer_info = NULL;
1965
1966         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1967                           rx_ring->dma);
1968
1969         rx_ring->desc = NULL;
1970 }
1971
1972 /**
1973  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1974  * @adapter: board private structure
1975  *
1976  * Free all receive software resources
1977  **/
1978
1979 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1980 {
1981         int i;
1982
1983         for (i = 0; i < adapter->num_rx_queues; i++)
1984                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1985 }
1986
1987 /**
1988  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1989  * @adapter: board private structure
1990  * @rx_ring: ring to free buffers from
1991  **/
1992
1993 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1994                                 struct e1000_rx_ring *rx_ring)
1995 {
1996         struct e1000_hw *hw = &adapter->hw;
1997         struct e1000_buffer *buffer_info;
1998         struct pci_dev *pdev = adapter->pdev;
1999         unsigned long size;
2000         unsigned int i;
2001
2002         /* Free all the Rx ring sk_buffs */
2003         for (i = 0; i < rx_ring->count; i++) {
2004                 buffer_info = &rx_ring->buffer_info[i];
2005                 if (buffer_info->dma &&
2006                     adapter->clean_rx == e1000_clean_rx_irq) {
2007                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2008                                          buffer_info->length,
2009                                          DMA_FROM_DEVICE);
2010                 } else if (buffer_info->dma &&
2011                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2012                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2013                                        buffer_info->length,
2014                                        DMA_FROM_DEVICE);
2015                 }
2016
2017                 buffer_info->dma = 0;
2018                 if (buffer_info->page) {
2019                         put_page(buffer_info->page);
2020                         buffer_info->page = NULL;
2021                 }
2022                 if (buffer_info->skb) {
2023                         dev_kfree_skb(buffer_info->skb);
2024                         buffer_info->skb = NULL;
2025                 }
2026         }
2027
2028         /* there also may be some cached data from a chained receive */
2029         if (rx_ring->rx_skb_top) {
2030                 dev_kfree_skb(rx_ring->rx_skb_top);
2031                 rx_ring->rx_skb_top = NULL;
2032         }
2033
2034         size = sizeof(struct e1000_buffer) * rx_ring->count;
2035         memset(rx_ring->buffer_info, 0, size);
2036
2037         /* Zero out the descriptor ring */
2038         memset(rx_ring->desc, 0, rx_ring->size);
2039
2040         rx_ring->next_to_clean = 0;
2041         rx_ring->next_to_use = 0;
2042
2043         writel(0, hw->hw_addr + rx_ring->rdh);
2044         writel(0, hw->hw_addr + rx_ring->rdt);
2045 }
2046
2047 /**
2048  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2049  * @adapter: board private structure
2050  **/
2051
2052 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2053 {
2054         int i;
2055
2056         for (i = 0; i < adapter->num_rx_queues; i++)
2057                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2058 }
2059
2060 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2061  * and memory write and invalidate disabled for certain operations
2062  */
2063 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2064 {
2065         struct e1000_hw *hw = &adapter->hw;
2066         struct net_device *netdev = adapter->netdev;
2067         u32 rctl;
2068
2069         e1000_pci_clear_mwi(hw);
2070
2071         rctl = er32(RCTL);
2072         rctl |= E1000_RCTL_RST;
2073         ew32(RCTL, rctl);
2074         E1000_WRITE_FLUSH();
2075         mdelay(5);
2076
2077         if (netif_running(netdev))
2078                 e1000_clean_all_rx_rings(adapter);
2079 }
2080
2081 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2082 {
2083         struct e1000_hw *hw = &adapter->hw;
2084         struct net_device *netdev = adapter->netdev;
2085         u32 rctl;
2086
2087         rctl = er32(RCTL);
2088         rctl &= ~E1000_RCTL_RST;
2089         ew32(RCTL, rctl);
2090         E1000_WRITE_FLUSH();
2091         mdelay(5);
2092
2093         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2094                 e1000_pci_set_mwi(hw);
2095
2096         if (netif_running(netdev)) {
2097                 /* No need to loop, because 82542 supports only 1 queue */
2098                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2099                 e1000_configure_rx(adapter);
2100                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2101         }
2102 }
2103
2104 /**
2105  * e1000_set_mac - Change the Ethernet Address of the NIC
2106  * @netdev: network interface device structure
2107  * @p: pointer to an address structure
2108  *
2109  * Returns 0 on success, negative on failure
2110  **/
2111
2112 static int e1000_set_mac(struct net_device *netdev, void *p)
2113 {
2114         struct e1000_adapter *adapter = netdev_priv(netdev);
2115         struct e1000_hw *hw = &adapter->hw;
2116         struct sockaddr *addr = p;
2117
2118         if (!is_valid_ether_addr(addr->sa_data))
2119                 return -EADDRNOTAVAIL;
2120
2121         /* 82542 2.0 needs to be in reset to write receive address registers */
2122
2123         if (hw->mac_type == e1000_82542_rev2_0)
2124                 e1000_enter_82542_rst(adapter);
2125
2126         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2127         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2128
2129         e1000_rar_set(hw, hw->mac_addr, 0);
2130
2131         if (hw->mac_type == e1000_82542_rev2_0)
2132                 e1000_leave_82542_rst(adapter);
2133
2134         return 0;
2135 }
2136
2137 /**
2138  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2139  * @netdev: network interface device structure
2140  *
2141  * The set_rx_mode entry point is called whenever the unicast or multicast
2142  * address lists or the network interface flags are updated. This routine is
2143  * responsible for configuring the hardware for proper unicast, multicast,
2144  * promiscuous mode, and all-multi behavior.
2145  **/
2146
2147 static void e1000_set_rx_mode(struct net_device *netdev)
2148 {
2149         struct e1000_adapter *adapter = netdev_priv(netdev);
2150         struct e1000_hw *hw = &adapter->hw;
2151         struct netdev_hw_addr *ha;
2152         bool use_uc = false;
2153         u32 rctl;
2154         u32 hash_value;
2155         int i, rar_entries = E1000_RAR_ENTRIES;
2156         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2157         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2158
2159         if (!mcarray) {
2160                 e_err(probe, "memory allocation failed\n");
2161                 return;
2162         }
2163
2164         /* Check for Promiscuous and All Multicast modes */
2165
2166         rctl = er32(RCTL);
2167
2168         if (netdev->flags & IFF_PROMISC) {
2169                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2170                 rctl &= ~E1000_RCTL_VFE;
2171         } else {
2172                 if (netdev->flags & IFF_ALLMULTI)
2173                         rctl |= E1000_RCTL_MPE;
2174                 else
2175                         rctl &= ~E1000_RCTL_MPE;
2176                 /* Enable VLAN filter if there is a VLAN */
2177                 if (adapter->vlgrp)
2178                         rctl |= E1000_RCTL_VFE;
2179         }
2180
2181         if (netdev_uc_count(netdev) > rar_entries - 1) {
2182                 rctl |= E1000_RCTL_UPE;
2183         } else if (!(netdev->flags & IFF_PROMISC)) {
2184                 rctl &= ~E1000_RCTL_UPE;
2185                 use_uc = true;
2186         }
2187
2188         ew32(RCTL, rctl);
2189
2190         /* 82542 2.0 needs to be in reset to write receive address registers */
2191
2192         if (hw->mac_type == e1000_82542_rev2_0)
2193                 e1000_enter_82542_rst(adapter);
2194
2195         /* load the first 14 addresses into the exact filters 1-14. Unicast
2196          * addresses take precedence to avoid disabling unicast filtering
2197          * when possible.
2198          *
2199          * RAR 0 is used for the station MAC adddress
2200          * if there are not 14 addresses, go ahead and clear the filters
2201          */
2202         i = 1;
2203         if (use_uc)
2204                 netdev_for_each_uc_addr(ha, netdev) {
2205                         if (i == rar_entries)
2206                                 break;
2207                         e1000_rar_set(hw, ha->addr, i++);
2208                 }
2209
2210         netdev_for_each_mc_addr(ha, netdev) {
2211                 if (i == rar_entries) {
2212                         /* load any remaining addresses into the hash table */
2213                         u32 hash_reg, hash_bit, mta;
2214                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2215                         hash_reg = (hash_value >> 5) & 0x7F;
2216                         hash_bit = hash_value & 0x1F;
2217                         mta = (1 << hash_bit);
2218                         mcarray[hash_reg] |= mta;
2219                 } else {
2220                         e1000_rar_set(hw, ha->addr, i++);
2221                 }
2222         }
2223
2224         for (; i < rar_entries; i++) {
2225                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2226                 E1000_WRITE_FLUSH();
2227                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2228                 E1000_WRITE_FLUSH();
2229         }
2230
2231         /* write the hash table completely, write from bottom to avoid
2232          * both stupid write combining chipsets, and flushing each write */
2233         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2234                 /*
2235                  * If we are on an 82544 has an errata where writing odd
2236                  * offsets overwrites the previous even offset, but writing
2237                  * backwards over the range solves the issue by always
2238                  * writing the odd offset first
2239                  */
2240                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2241         }
2242         E1000_WRITE_FLUSH();
2243
2244         if (hw->mac_type == e1000_82542_rev2_0)
2245                 e1000_leave_82542_rst(adapter);
2246
2247         kfree(mcarray);
2248 }
2249
2250 /* Need to wait a few seconds after link up to get diagnostic information from
2251  * the phy */
2252
2253 static void e1000_update_phy_info(unsigned long data)
2254 {
2255         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2256         schedule_work(&adapter->phy_info_task);
2257 }
2258
2259 static void e1000_update_phy_info_task(struct work_struct *work)
2260 {
2261         struct e1000_adapter *adapter = container_of(work,
2262                                                      struct e1000_adapter,
2263                                                      phy_info_task);
2264         struct e1000_hw *hw = &adapter->hw;
2265
2266         rtnl_lock();
2267         e1000_phy_get_info(hw, &adapter->phy_info);
2268         rtnl_unlock();
2269 }
2270
2271 /**
2272  * e1000_82547_tx_fifo_stall - Timer Call-back
2273  * @data: pointer to adapter cast into an unsigned long
2274  **/
2275 static void e1000_82547_tx_fifo_stall(unsigned long data)
2276 {
2277         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2278         schedule_work(&adapter->fifo_stall_task);
2279 }
2280
2281 /**
2282  * e1000_82547_tx_fifo_stall_task - task to complete work
2283  * @work: work struct contained inside adapter struct
2284  **/
2285 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2286 {
2287         struct e1000_adapter *adapter = container_of(work,
2288                                                      struct e1000_adapter,
2289                                                      fifo_stall_task);
2290         struct e1000_hw *hw = &adapter->hw;
2291         struct net_device *netdev = adapter->netdev;
2292         u32 tctl;
2293
2294         rtnl_lock();
2295         if (atomic_read(&adapter->tx_fifo_stall)) {
2296                 if ((er32(TDT) == er32(TDH)) &&
2297                    (er32(TDFT) == er32(TDFH)) &&
2298                    (er32(TDFTS) == er32(TDFHS))) {
2299                         tctl = er32(TCTL);
2300                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2301                         ew32(TDFT, adapter->tx_head_addr);
2302                         ew32(TDFH, adapter->tx_head_addr);
2303                         ew32(TDFTS, adapter->tx_head_addr);
2304                         ew32(TDFHS, adapter->tx_head_addr);
2305                         ew32(TCTL, tctl);
2306                         E1000_WRITE_FLUSH();
2307
2308                         adapter->tx_fifo_head = 0;
2309                         atomic_set(&adapter->tx_fifo_stall, 0);
2310                         netif_wake_queue(netdev);
2311                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2312                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2313                 }
2314         }
2315         rtnl_unlock();
2316 }
2317
2318 bool e1000_has_link(struct e1000_adapter *adapter)
2319 {
2320         struct e1000_hw *hw = &adapter->hw;
2321         bool link_active = false;
2322
2323         /* get_link_status is set on LSC (link status) interrupt or
2324          * rx sequence error interrupt.  get_link_status will stay
2325          * false until the e1000_check_for_link establishes link
2326          * for copper adapters ONLY
2327          */
2328         switch (hw->media_type) {
2329         case e1000_media_type_copper:
2330                 if (hw->get_link_status) {
2331                         e1000_check_for_link(hw);
2332                         link_active = !hw->get_link_status;
2333                 } else {
2334                         link_active = true;
2335                 }
2336                 break;
2337         case e1000_media_type_fiber:
2338                 e1000_check_for_link(hw);
2339                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2340                 break;
2341         case e1000_media_type_internal_serdes:
2342                 e1000_check_for_link(hw);
2343                 link_active = hw->serdes_has_link;
2344                 break;
2345         default:
2346                 break;
2347         }
2348
2349         return link_active;
2350 }
2351
2352 /**
2353  * e1000_watchdog - Timer Call-back
2354  * @data: pointer to adapter cast into an unsigned long
2355  **/
2356 static void e1000_watchdog(unsigned long data)
2357 {
2358         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2359         struct e1000_hw *hw = &adapter->hw;
2360         struct net_device *netdev = adapter->netdev;
2361         struct e1000_tx_ring *txdr = adapter->tx_ring;
2362         u32 link, tctl;
2363
2364         link = e1000_has_link(adapter);
2365         if ((netif_carrier_ok(netdev)) && link)
2366                 goto link_up;
2367
2368         if (link) {
2369                 if (!netif_carrier_ok(netdev)) {
2370                         u32 ctrl;
2371                         bool txb2b = true;
2372                         /* update snapshot of PHY registers on LSC */
2373                         e1000_get_speed_and_duplex(hw,
2374                                                    &adapter->link_speed,
2375                                                    &adapter->link_duplex);
2376
2377                         ctrl = er32(CTRL);
2378                         pr_info("%s NIC Link is Up %d Mbps %s, "
2379                                 "Flow Control: %s\n",
2380                                 netdev->name,
2381                                 adapter->link_speed,
2382                                 adapter->link_duplex == FULL_DUPLEX ?
2383                                 "Full Duplex" : "Half Duplex",
2384                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2385                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2386                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2387                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2388
2389                         /* adjust timeout factor according to speed/duplex */
2390                         adapter->tx_timeout_factor = 1;
2391                         switch (adapter->link_speed) {
2392                         case SPEED_10:
2393                                 txb2b = false;
2394                                 adapter->tx_timeout_factor = 16;
2395                                 break;
2396                         case SPEED_100:
2397                                 txb2b = false;
2398                                 /* maybe add some timeout factor ? */
2399                                 break;
2400                         }
2401
2402                         /* enable transmits in the hardware */
2403                         tctl = er32(TCTL);
2404                         tctl |= E1000_TCTL_EN;
2405                         ew32(TCTL, tctl);
2406
2407                         netif_carrier_on(netdev);
2408                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2409                                 mod_timer(&adapter->phy_info_timer,
2410                                           round_jiffies(jiffies + 2 * HZ));
2411                         adapter->smartspeed = 0;
2412                 }
2413         } else {
2414                 if (netif_carrier_ok(netdev)) {
2415                         adapter->link_speed = 0;
2416                         adapter->link_duplex = 0;
2417                         pr_info("%s NIC Link is Down\n",
2418                                 netdev->name);
2419                         netif_carrier_off(netdev);
2420
2421                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2422                                 mod_timer(&adapter->phy_info_timer,
2423                                           round_jiffies(jiffies + 2 * HZ));
2424                 }
2425
2426                 e1000_smartspeed(adapter);
2427         }
2428
2429 link_up:
2430         e1000_update_stats(adapter);
2431
2432         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2433         adapter->tpt_old = adapter->stats.tpt;
2434         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2435         adapter->colc_old = adapter->stats.colc;
2436
2437         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2438         adapter->gorcl_old = adapter->stats.gorcl;
2439         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2440         adapter->gotcl_old = adapter->stats.gotcl;
2441
2442         e1000_update_adaptive(hw);
2443
2444         if (!netif_carrier_ok(netdev)) {
2445                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2446                         /* We've lost link, so the controller stops DMA,
2447                          * but we've got queued Tx work that's never going
2448                          * to get done, so reset controller to flush Tx.
2449                          * (Do the reset outside of interrupt context). */
2450                         adapter->tx_timeout_count++;
2451                         schedule_work(&adapter->reset_task);
2452                         /* return immediately since reset is imminent */
2453                         return;
2454                 }
2455         }
2456
2457         /* Simple mode for Interrupt Throttle Rate (ITR) */
2458         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2459                 /*
2460                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2461                  * Total asymmetrical Tx or Rx gets ITR=8000;
2462                  * everyone else is between 2000-8000.
2463                  */
2464                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2465                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2466                             adapter->gotcl - adapter->gorcl :
2467                             adapter->gorcl - adapter->gotcl) / 10000;
2468                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2469
2470                 ew32(ITR, 1000000000 / (itr * 256));
2471         }
2472
2473         /* Cause software interrupt to ensure rx ring is cleaned */
2474         ew32(ICS, E1000_ICS_RXDMT0);
2475
2476         /* Force detection of hung controller every watchdog period */
2477         adapter->detect_tx_hung = true;
2478
2479         /* Reset the timer */
2480         if (!test_bit(__E1000_DOWN, &adapter->flags))
2481                 mod_timer(&adapter->watchdog_timer,
2482                           round_jiffies(jiffies + 2 * HZ));
2483 }
2484
2485 enum latency_range {
2486         lowest_latency = 0,
2487         low_latency = 1,
2488         bulk_latency = 2,
2489         latency_invalid = 255
2490 };
2491
2492 /**
2493  * e1000_update_itr - update the dynamic ITR value based on statistics
2494  * @adapter: pointer to adapter
2495  * @itr_setting: current adapter->itr
2496  * @packets: the number of packets during this measurement interval
2497  * @bytes: the number of bytes during this measurement interval
2498  *
2499  *      Stores a new ITR value based on packets and byte
2500  *      counts during the last interrupt.  The advantage of per interrupt
2501  *      computation is faster updates and more accurate ITR for the current
2502  *      traffic pattern.  Constants in this function were computed
2503  *      based on theoretical maximum wire speed and thresholds were set based
2504  *      on testing data as well as attempting to minimize response time
2505  *      while increasing bulk throughput.
2506  *      this functionality is controlled by the InterruptThrottleRate module
2507  *      parameter (see e1000_param.c)
2508  **/
2509 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2510                                      u16 itr_setting, int packets, int bytes)
2511 {
2512         unsigned int retval = itr_setting;
2513         struct e1000_hw *hw = &adapter->hw;
2514
2515         if (unlikely(hw->mac_type < e1000_82540))
2516                 goto update_itr_done;
2517
2518         if (packets == 0)
2519                 goto update_itr_done;
2520
2521         switch (itr_setting) {
2522         case lowest_latency:
2523                 /* jumbo frames get bulk treatment*/
2524                 if (bytes/packets > 8000)
2525                         retval = bulk_latency;
2526                 else if ((packets < 5) && (bytes > 512))
2527                         retval = low_latency;
2528                 break;
2529         case low_latency:  /* 50 usec aka 20000 ints/s */
2530                 if (bytes > 10000) {
2531                         /* jumbo frames need bulk latency setting */
2532                         if (bytes/packets > 8000)
2533                                 retval = bulk_latency;
2534                         else if ((packets < 10) || ((bytes/packets) > 1200))
2535                                 retval = bulk_latency;
2536                         else if ((packets > 35))
2537                                 retval = lowest_latency;
2538                 } else if (bytes/packets > 2000)
2539                         retval = bulk_latency;
2540                 else if (packets <= 2 && bytes < 512)
2541                         retval = lowest_latency;
2542                 break;
2543         case bulk_latency: /* 250 usec aka 4000 ints/s */
2544                 if (bytes > 25000) {
2545                         if (packets > 35)
2546                                 retval = low_latency;
2547                 } else if (bytes < 6000) {
2548                         retval = low_latency;
2549                 }
2550                 break;
2551         }
2552
2553 update_itr_done:
2554         return retval;
2555 }
2556
2557 static void e1000_set_itr(struct e1000_adapter *adapter)
2558 {
2559         struct e1000_hw *hw = &adapter->hw;
2560         u16 current_itr;
2561         u32 new_itr = adapter->itr;
2562
2563         if (unlikely(hw->mac_type < e1000_82540))
2564                 return;
2565
2566         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2567         if (unlikely(adapter->link_speed != SPEED_1000)) {
2568                 current_itr = 0;
2569                 new_itr = 4000;
2570                 goto set_itr_now;
2571         }
2572
2573         adapter->tx_itr = e1000_update_itr(adapter,
2574                                     adapter->tx_itr,
2575                                     adapter->total_tx_packets,
2576                                     adapter->total_tx_bytes);
2577         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2578         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2579                 adapter->tx_itr = low_latency;
2580
2581         adapter->rx_itr = e1000_update_itr(adapter,
2582                                     adapter->rx_itr,
2583                                     adapter->total_rx_packets,
2584                                     adapter->total_rx_bytes);
2585         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2586         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2587                 adapter->rx_itr = low_latency;
2588
2589         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2590
2591         switch (current_itr) {
2592         /* counts and packets in update_itr are dependent on these numbers */
2593         case lowest_latency:
2594                 new_itr = 70000;
2595                 break;
2596         case low_latency:
2597                 new_itr = 20000; /* aka hwitr = ~200 */
2598                 break;
2599         case bulk_latency:
2600                 new_itr = 4000;
2601                 break;
2602         default:
2603                 break;
2604         }
2605
2606 set_itr_now:
2607         if (new_itr != adapter->itr) {
2608                 /* this attempts to bias the interrupt rate towards Bulk
2609                  * by adding intermediate steps when interrupt rate is
2610                  * increasing */
2611                 new_itr = new_itr > adapter->itr ?
2612                              min(adapter->itr + (new_itr >> 2), new_itr) :
2613                              new_itr;
2614                 adapter->itr = new_itr;
2615                 ew32(ITR, 1000000000 / (new_itr * 256));
2616         }
2617 }
2618
2619 #define E1000_TX_FLAGS_CSUM             0x00000001
2620 #define E1000_TX_FLAGS_VLAN             0x00000002
2621 #define E1000_TX_FLAGS_TSO              0x00000004
2622 #define E1000_TX_FLAGS_IPV4             0x00000008
2623 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2624 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2625
2626 static int e1000_tso(struct e1000_adapter *adapter,
2627                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2628 {
2629         struct e1000_context_desc *context_desc;
2630         struct e1000_buffer *buffer_info;
2631         unsigned int i;
2632         u32 cmd_length = 0;
2633         u16 ipcse = 0, tucse, mss;
2634         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2635         int err;
2636
2637         if (skb_is_gso(skb)) {
2638                 if (skb_header_cloned(skb)) {
2639                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2640                         if (err)
2641                                 return err;
2642                 }
2643
2644                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2645                 mss = skb_shinfo(skb)->gso_size;
2646                 if (skb->protocol == htons(ETH_P_IP)) {
2647                         struct iphdr *iph = ip_hdr(skb);
2648                         iph->tot_len = 0;
2649                         iph->check = 0;
2650                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2651                                                                  iph->daddr, 0,
2652                                                                  IPPROTO_TCP,
2653                                                                  0);
2654                         cmd_length = E1000_TXD_CMD_IP;
2655                         ipcse = skb_transport_offset(skb) - 1;
2656                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2657                         ipv6_hdr(skb)->payload_len = 0;
2658                         tcp_hdr(skb)->check =
2659                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2660                                                  &ipv6_hdr(skb)->daddr,
2661                                                  0, IPPROTO_TCP, 0);
2662                         ipcse = 0;
2663                 }
2664                 ipcss = skb_network_offset(skb);
2665                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2666                 tucss = skb_transport_offset(skb);
2667                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2668                 tucse = 0;
2669
2670                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2671                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2672
2673                 i = tx_ring->next_to_use;
2674                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2675                 buffer_info = &tx_ring->buffer_info[i];
2676
2677                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2678                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2679                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2680                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2681                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2682                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2683                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2684                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2685                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2686
2687                 buffer_info->time_stamp = jiffies;
2688                 buffer_info->next_to_watch = i;
2689
2690                 if (++i == tx_ring->count) i = 0;
2691                 tx_ring->next_to_use = i;
2692
2693                 return true;
2694         }
2695         return false;
2696 }
2697
2698 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2699                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2700 {
2701         struct e1000_context_desc *context_desc;
2702         struct e1000_buffer *buffer_info;
2703         unsigned int i;
2704         u8 css;
2705         u32 cmd_len = E1000_TXD_CMD_DEXT;
2706
2707         if (skb->ip_summed != CHECKSUM_PARTIAL)
2708                 return false;
2709
2710         switch (skb->protocol) {
2711         case cpu_to_be16(ETH_P_IP):
2712                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2713                         cmd_len |= E1000_TXD_CMD_TCP;
2714                 break;
2715         case cpu_to_be16(ETH_P_IPV6):
2716                 /* XXX not handling all IPV6 headers */
2717                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2718                         cmd_len |= E1000_TXD_CMD_TCP;
2719                 break;
2720         default:
2721                 if (unlikely(net_ratelimit()))
2722                         e_warn(drv, "checksum_partial proto=%x!\n",
2723                                skb->protocol);
2724                 break;
2725         }
2726
2727         css = skb_transport_offset(skb);
2728
2729         i = tx_ring->next_to_use;
2730         buffer_info = &tx_ring->buffer_info[i];
2731         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2732
2733         context_desc->lower_setup.ip_config = 0;
2734         context_desc->upper_setup.tcp_fields.tucss = css;
2735         context_desc->upper_setup.tcp_fields.tucso =
2736                 css + skb->csum_offset;
2737         context_desc->upper_setup.tcp_fields.tucse = 0;
2738         context_desc->tcp_seg_setup.data = 0;
2739         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2740
2741         buffer_info->time_stamp = jiffies;
2742         buffer_info->next_to_watch = i;
2743
2744         if (unlikely(++i == tx_ring->count)) i = 0;
2745         tx_ring->next_to_use = i;
2746
2747         return true;
2748 }
2749
2750 #define E1000_MAX_TXD_PWR       12
2751 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2752
2753 static int e1000_tx_map(struct e1000_adapter *adapter,
2754                         struct e1000_tx_ring *tx_ring,
2755                         struct sk_buff *skb, unsigned int first,
2756                         unsigned int max_per_txd, unsigned int nr_frags,
2757                         unsigned int mss)
2758 {
2759         struct e1000_hw *hw = &adapter->hw;
2760         struct pci_dev *pdev = adapter->pdev;
2761         struct e1000_buffer *buffer_info;
2762         unsigned int len = skb_headlen(skb);
2763         unsigned int offset = 0, size, count = 0, i;
2764         unsigned int f;
2765
2766         i = tx_ring->next_to_use;
2767
2768         while (len) {
2769                 buffer_info = &tx_ring->buffer_info[i];
2770                 size = min(len, max_per_txd);
2771                 /* Workaround for Controller erratum --
2772                  * descriptor for non-tso packet in a linear SKB that follows a
2773                  * tso gets written back prematurely before the data is fully
2774                  * DMA'd to the controller */
2775                 if (!skb->data_len && tx_ring->last_tx_tso &&
2776                     !skb_is_gso(skb)) {
2777                         tx_ring->last_tx_tso = 0;
2778                         size -= 4;
2779                 }
2780
2781                 /* Workaround for premature desc write-backs
2782                  * in TSO mode.  Append 4-byte sentinel desc */
2783                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2784                         size -= 4;
2785                 /* work-around for errata 10 and it applies
2786                  * to all controllers in PCI-X mode
2787                  * The fix is to make sure that the first descriptor of a
2788                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2789                  */
2790                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2791                                 (size > 2015) && count == 0))
2792                         size = 2015;
2793
2794                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2795                  * terminating buffers within evenly-aligned dwords. */
2796                 if (unlikely(adapter->pcix_82544 &&
2797                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2798                    size > 4))
2799                         size -= 4;
2800
2801                 buffer_info->length = size;
2802                 /* set time_stamp *before* dma to help avoid a possible race */
2803                 buffer_info->time_stamp = jiffies;
2804                 buffer_info->mapped_as_page = false;
2805                 buffer_info->dma = dma_map_single(&pdev->dev,
2806                                                   skb->data + offset,
2807                                                   size, DMA_TO_DEVICE);
2808                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2809                         goto dma_error;
2810                 buffer_info->next_to_watch = i;
2811
2812                 len -= size;
2813                 offset += size;
2814                 count++;
2815                 if (len) {
2816                         i++;
2817                         if (unlikely(i == tx_ring->count))
2818                                 i = 0;
2819                 }
2820         }
2821
2822         for (f = 0; f < nr_frags; f++) {
2823                 struct skb_frag_struct *frag;
2824
2825                 frag = &skb_shinfo(skb)->frags[f];
2826                 len = frag->size;
2827                 offset = frag->page_offset;
2828
2829                 while (len) {
2830                         i++;
2831                         if (unlikely(i == tx_ring->count))
2832                                 i = 0;
2833
2834                         buffer_info = &tx_ring->buffer_info[i];
2835                         size = min(len, max_per_txd);
2836                         /* Workaround for premature desc write-backs
2837                          * in TSO mode.  Append 4-byte sentinel desc */
2838                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2839                                 size -= 4;
2840                         /* Workaround for potential 82544 hang in PCI-X.
2841                          * Avoid terminating buffers within evenly-aligned
2842                          * dwords. */
2843                         if (unlikely(adapter->pcix_82544 &&
2844                             !((unsigned long)(page_to_phys(frag->page) + offset
2845                                               + size - 1) & 4) &&
2846                             size > 4))
2847                                 size -= 4;
2848
2849                         buffer_info->length = size;
2850                         buffer_info->time_stamp = jiffies;
2851                         buffer_info->mapped_as_page = true;
2852                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2853                                                         offset, size,
2854                                                         DMA_TO_DEVICE);
2855                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2856                                 goto dma_error;
2857                         buffer_info->next_to_watch = i;
2858
2859                         len -= size;
2860                         offset += size;
2861                         count++;
2862                 }
2863         }
2864
2865         tx_ring->buffer_info[i].skb = skb;
2866         tx_ring->buffer_info[first].next_to_watch = i;
2867
2868         return count;
2869
2870 dma_error:
2871         dev_err(&pdev->dev, "TX DMA map failed\n");
2872         buffer_info->dma = 0;
2873         if (count)
2874                 count--;
2875
2876         while (count--) {
2877                 if (i==0)
2878                         i += tx_ring->count;
2879                 i--;
2880                 buffer_info = &tx_ring->buffer_info[i];
2881                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2882         }
2883
2884         return 0;
2885 }
2886
2887 static void e1000_tx_queue(struct e1000_adapter *adapter,
2888                            struct e1000_tx_ring *tx_ring, int tx_flags,
2889                            int count)
2890 {
2891         struct e1000_hw *hw = &adapter->hw;
2892         struct e1000_tx_desc *tx_desc = NULL;
2893         struct e1000_buffer *buffer_info;
2894         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2895         unsigned int i;
2896
2897         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2898                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2899                              E1000_TXD_CMD_TSE;
2900                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2901
2902                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2903                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2904         }
2905
2906         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2907                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2908                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2909         }
2910
2911         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2912                 txd_lower |= E1000_TXD_CMD_VLE;
2913                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2914         }
2915
2916         i = tx_ring->next_to_use;
2917
2918         while (count--) {
2919                 buffer_info = &tx_ring->buffer_info[i];
2920                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2921                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2922                 tx_desc->lower.data =
2923                         cpu_to_le32(txd_lower | buffer_info->length);
2924                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2925                 if (unlikely(++i == tx_ring->count)) i = 0;
2926         }
2927
2928         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2929
2930         /* Force memory writes to complete before letting h/w
2931          * know there are new descriptors to fetch.  (Only
2932          * applicable for weak-ordered memory model archs,
2933          * such as IA-64). */
2934         wmb();
2935
2936         tx_ring->next_to_use = i;
2937         writel(i, hw->hw_addr + tx_ring->tdt);
2938         /* we need this if more than one processor can write to our tail
2939          * at a time, it syncronizes IO on IA64/Altix systems */
2940         mmiowb();
2941 }
2942
2943 /**
2944  * 82547 workaround to avoid controller hang in half-duplex environment.
2945  * The workaround is to avoid queuing a large packet that would span
2946  * the internal Tx FIFO ring boundary by notifying the stack to resend
2947  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2948  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2949  * to the beginning of the Tx FIFO.
2950  **/
2951
2952 #define E1000_FIFO_HDR                  0x10
2953 #define E1000_82547_PAD_LEN             0x3E0
2954
2955 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2956                                        struct sk_buff *skb)
2957 {
2958         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2959         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2960
2961         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2962
2963         if (adapter->link_duplex != HALF_DUPLEX)
2964                 goto no_fifo_stall_required;
2965
2966         if (atomic_read(&adapter->tx_fifo_stall))
2967                 return 1;
2968
2969         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2970                 atomic_set(&adapter->tx_fifo_stall, 1);
2971                 return 1;
2972         }
2973
2974 no_fifo_stall_required:
2975         adapter->tx_fifo_head += skb_fifo_len;
2976         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2977                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2978         return 0;
2979 }
2980
2981 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2982 {
2983         struct e1000_adapter *adapter = netdev_priv(netdev);
2984         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2985
2986         netif_stop_queue(netdev);
2987         /* Herbert's original patch had:
2988          *  smp_mb__after_netif_stop_queue();
2989          * but since that doesn't exist yet, just open code it. */
2990         smp_mb();
2991
2992         /* We need to check again in a case another CPU has just
2993          * made room available. */
2994         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2995                 return -EBUSY;
2996
2997         /* A reprieve! */
2998         netif_start_queue(netdev);
2999         ++adapter->restart_queue;
3000         return 0;
3001 }
3002
3003 static int e1000_maybe_stop_tx(struct net_device *netdev,
3004                                struct e1000_tx_ring *tx_ring, int size)
3005 {
3006         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3007                 return 0;
3008         return __e1000_maybe_stop_tx(netdev, size);
3009 }
3010
3011 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3012 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3013                                     struct net_device *netdev)
3014 {
3015         struct e1000_adapter *adapter = netdev_priv(netdev);
3016         struct e1000_hw *hw = &adapter->hw;
3017         struct e1000_tx_ring *tx_ring;
3018         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3019         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3020         unsigned int tx_flags = 0;
3021         unsigned int len = skb_headlen(skb);
3022         unsigned int nr_frags;
3023         unsigned int mss;
3024         int count = 0;
3025         int tso;
3026         unsigned int f;
3027
3028         /* This goes back to the question of how to logically map a tx queue
3029          * to a flow.  Right now, performance is impacted slightly negatively
3030          * if using multiple tx queues.  If the stack breaks away from a
3031          * single qdisc implementation, we can look at this again. */
3032         tx_ring = adapter->tx_ring;
3033
3034         if (unlikely(skb->len <= 0)) {
3035                 dev_kfree_skb_any(skb);
3036                 return NETDEV_TX_OK;
3037         }
3038
3039         mss = skb_shinfo(skb)->gso_size;
3040         /* The controller does a simple calculation to
3041          * make sure there is enough room in the FIFO before
3042          * initiating the DMA for each buffer.  The calc is:
3043          * 4 = ceil(buffer len/mss).  To make sure we don't
3044          * overrun the FIFO, adjust the max buffer len if mss
3045          * drops. */
3046         if (mss) {
3047                 u8 hdr_len;
3048                 max_per_txd = min(mss << 2, max_per_txd);
3049                 max_txd_pwr = fls(max_per_txd) - 1;
3050
3051                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3052                 if (skb->data_len && hdr_len == len) {
3053                         switch (hw->mac_type) {
3054                                 unsigned int pull_size;
3055                         case e1000_82544:
3056                                 /* Make sure we have room to chop off 4 bytes,
3057                                  * and that the end alignment will work out to
3058                                  * this hardware's requirements
3059                                  * NOTE: this is a TSO only workaround
3060                                  * if end byte alignment not correct move us
3061                                  * into the next dword */
3062                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3063                                         break;
3064                                 /* fall through */
3065                                 pull_size = min((unsigned int)4, skb->data_len);
3066                                 if (!__pskb_pull_tail(skb, pull_size)) {
3067                                         e_err(drv, "__pskb_pull_tail "
3068                                               "failed.\n");
3069                                         dev_kfree_skb_any(skb);
3070                                         return NETDEV_TX_OK;
3071                                 }
3072                                 len = skb_headlen(skb);
3073                                 break;
3074                         default:
3075                                 /* do nothing */
3076                                 break;
3077                         }
3078                 }
3079         }
3080
3081         /* reserve a descriptor for the offload context */
3082         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3083                 count++;
3084         count++;
3085
3086         /* Controller Erratum workaround */
3087         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3088                 count++;
3089
3090         count += TXD_USE_COUNT(len, max_txd_pwr);
3091
3092         if (adapter->pcix_82544)
3093                 count++;
3094
3095         /* work-around for errata 10 and it applies to all controllers
3096          * in PCI-X mode, so add one more descriptor to the count
3097          */
3098         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3099                         (len > 2015)))
3100                 count++;
3101
3102         nr_frags = skb_shinfo(skb)->nr_frags;
3103         for (f = 0; f < nr_frags; f++)
3104                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3105                                        max_txd_pwr);
3106         if (adapter->pcix_82544)
3107                 count += nr_frags;
3108
3109         /* need: count + 2 desc gap to keep tail from touching
3110          * head, otherwise try next time */
3111         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3112                 return NETDEV_TX_BUSY;
3113
3114         if (unlikely(hw->mac_type == e1000_82547)) {
3115                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3116                         netif_stop_queue(netdev);
3117                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3118                                 mod_timer(&adapter->tx_fifo_stall_timer,
3119                                           jiffies + 1);
3120                         return NETDEV_TX_BUSY;
3121                 }
3122         }
3123
3124         if (unlikely(vlan_tx_tag_present(skb))) {
3125                 tx_flags |= E1000_TX_FLAGS_VLAN;
3126                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3127         }
3128
3129         first = tx_ring->next_to_use;
3130
3131         tso = e1000_tso(adapter, tx_ring, skb);
3132         if (tso < 0) {
3133                 dev_kfree_skb_any(skb);
3134                 return NETDEV_TX_OK;
3135         }
3136
3137         if (likely(tso)) {
3138                 if (likely(hw->mac_type != e1000_82544))
3139                         tx_ring->last_tx_tso = 1;
3140                 tx_flags |= E1000_TX_FLAGS_TSO;
3141         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3142                 tx_flags |= E1000_TX_FLAGS_CSUM;
3143
3144         if (likely(skb->protocol == htons(ETH_P_IP)))
3145                 tx_flags |= E1000_TX_FLAGS_IPV4;
3146
3147         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3148                              nr_frags, mss);
3149
3150         if (count) {
3151                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3152                 /* Make sure there is space in the ring for the next send. */
3153                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3154
3155         } else {
3156                 dev_kfree_skb_any(skb);
3157                 tx_ring->buffer_info[first].time_stamp = 0;
3158                 tx_ring->next_to_use = first;
3159         }
3160
3161         return NETDEV_TX_OK;
3162 }
3163
3164 /**
3165  * e1000_tx_timeout - Respond to a Tx Hang
3166  * @netdev: network interface device structure
3167  **/
3168
3169 static void e1000_tx_timeout(struct net_device *netdev)
3170 {
3171         struct e1000_adapter *adapter = netdev_priv(netdev);
3172
3173         /* Do the reset outside of interrupt context */
3174         adapter->tx_timeout_count++;
3175         schedule_work(&adapter->reset_task);
3176 }
3177
3178 static void e1000_reset_task(struct work_struct *work)
3179 {
3180         struct e1000_adapter *adapter =
3181                 container_of(work, struct e1000_adapter, reset_task);
3182
3183         e1000_reinit_safe(adapter);
3184 }
3185
3186 /**
3187  * e1000_get_stats - Get System Network Statistics
3188  * @netdev: network interface device structure
3189  *
3190  * Returns the address of the device statistics structure.
3191  * The statistics are actually updated from the timer callback.
3192  **/
3193
3194 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3195 {
3196         /* only return the current stats */
3197         return &netdev->stats;
3198 }
3199
3200 /**
3201  * e1000_change_mtu - Change the Maximum Transfer Unit
3202  * @netdev: network interface device structure
3203  * @new_mtu: new value for maximum frame size
3204  *
3205  * Returns 0 on success, negative on failure
3206  **/
3207
3208 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3209 {
3210         struct e1000_adapter *adapter = netdev_priv(netdev);
3211         struct e1000_hw *hw = &adapter->hw;
3212         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3213
3214         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3215             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3216                 e_err(probe, "Invalid MTU setting\n");
3217                 return -EINVAL;
3218         }
3219
3220         /* Adapter-specific max frame size limits. */
3221         switch (hw->mac_type) {
3222         case e1000_undefined ... e1000_82542_rev2_1:
3223                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3224                         e_err(probe, "Jumbo Frames not supported.\n");
3225                         return -EINVAL;
3226                 }
3227                 break;
3228         default:
3229                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3230                 break;
3231         }
3232
3233         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3234                 msleep(1);
3235         /* e1000_down has a dependency on max_frame_size */
3236         hw->max_frame_size = max_frame;
3237         if (netif_running(netdev))
3238                 e1000_down(adapter);
3239
3240         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3241          * means we reserve 2 more, this pushes us to allocate from the next
3242          * larger slab size.
3243          * i.e. RXBUFFER_2048 --> size-4096 slab
3244          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3245          *  fragmented skbs */
3246
3247         if (max_frame <= E1000_RXBUFFER_2048)
3248                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3249         else
3250 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3251                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3252 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3253                 adapter->rx_buffer_len = PAGE_SIZE;
3254 #endif
3255
3256         /* adjust allocation if LPE protects us, and we aren't using SBP */
3257         if (!hw->tbi_compatibility_on &&
3258             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3259              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3260                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3261
3262         pr_info("%s changing MTU from %d to %d\n",
3263                 netdev->name, netdev->mtu, new_mtu);
3264         netdev->mtu = new_mtu;
3265
3266         if (netif_running(netdev))
3267                 e1000_up(adapter);
3268         else
3269                 e1000_reset(adapter);
3270
3271         clear_bit(__E1000_RESETTING, &adapter->flags);
3272
3273         return 0;
3274 }
3275
3276 /**
3277  * e1000_update_stats - Update the board statistics counters
3278  * @adapter: board private structure
3279  **/
3280
3281 void e1000_update_stats(struct e1000_adapter *adapter)
3282 {
3283         struct net_device *netdev = adapter->netdev;
3284         struct e1000_hw *hw = &adapter->hw;
3285         struct pci_dev *pdev = adapter->pdev;
3286         unsigned long flags;
3287         u16 phy_tmp;
3288
3289 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3290
3291         /*
3292          * Prevent stats update while adapter is being reset, or if the pci
3293          * connection is down.
3294          */
3295         if (adapter->link_speed == 0)
3296                 return;
3297         if (pci_channel_offline(pdev))
3298                 return;
3299
3300         spin_lock_irqsave(&adapter->stats_lock, flags);
3301
3302         /* these counters are modified from e1000_tbi_adjust_stats,
3303          * called from the interrupt context, so they must only
3304          * be written while holding adapter->stats_lock
3305          */
3306
3307         adapter->stats.crcerrs += er32(CRCERRS);
3308         adapter->stats.gprc += er32(GPRC);
3309         adapter->stats.gorcl += er32(GORCL);
3310         adapter->stats.gorch += er32(GORCH);
3311         adapter->stats.bprc += er32(BPRC);
3312         adapter->stats.mprc += er32(MPRC);
3313         adapter->stats.roc += er32(ROC);
3314
3315         adapter->stats.prc64 += er32(PRC64);
3316         adapter->stats.prc127 += er32(PRC127);
3317         adapter->stats.prc255 += er32(PRC255);
3318         adapter->stats.prc511 += er32(PRC511);
3319         adapter->stats.prc1023 += er32(PRC1023);
3320         adapter->stats.prc1522 += er32(PRC1522);
3321
3322         adapter->stats.symerrs += er32(SYMERRS);
3323         adapter->stats.mpc += er32(MPC);
3324         adapter->stats.scc += er32(SCC);
3325         adapter->stats.ecol += er32(ECOL);
3326         adapter->stats.mcc += er32(MCC);
3327         adapter->stats.latecol += er32(LATECOL);
3328         adapter->stats.dc += er32(DC);
3329         adapter->stats.sec += er32(SEC);
3330         adapter->stats.rlec += er32(RLEC);
3331         adapter->stats.xonrxc += er32(XONRXC);
3332         adapter->stats.xontxc += er32(XONTXC);
3333         adapter->stats.xoffrxc += er32(XOFFRXC);
3334         adapter->stats.xofftxc += er32(XOFFTXC);
3335         adapter->stats.fcruc += er32(FCRUC);
3336         adapter->stats.gptc += er32(GPTC);
3337         adapter->stats.gotcl += er32(GOTCL);
3338         adapter->stats.gotch += er32(GOTCH);
3339         adapter->stats.rnbc += er32(RNBC);
3340         adapter->stats.ruc += er32(RUC);
3341         adapter->stats.rfc += er32(RFC);
3342         adapter->stats.rjc += er32(RJC);
3343         adapter->stats.torl += er32(TORL);
3344         adapter->stats.torh += er32(TORH);
3345         adapter->stats.totl += er32(TOTL);
3346         adapter->stats.toth += er32(TOTH);
3347         adapter->stats.tpr += er32(TPR);
3348
3349         adapter->stats.ptc64 += er32(PTC64);
3350         adapter->stats.ptc127 += er32(PTC127);
3351         adapter->stats.ptc255 += er32(PTC255);
3352         adapter->stats.ptc511 += er32(PTC511);
3353         adapter->stats.ptc1023 += er32(PTC1023);
3354         adapter->stats.ptc1522 += er32(PTC1522);
3355
3356         adapter->stats.mptc += er32(MPTC);
3357         adapter->stats.bptc += er32(BPTC);
3358
3359         /* used for adaptive IFS */
3360
3361         hw->tx_packet_delta = er32(TPT);
3362         adapter->stats.tpt += hw->tx_packet_delta;
3363         hw->collision_delta = er32(COLC);
3364         adapter->stats.colc += hw->collision_delta;
3365
3366         if (hw->mac_type >= e1000_82543) {
3367                 adapter->stats.algnerrc += er32(ALGNERRC);
3368                 adapter->stats.rxerrc += er32(RXERRC);
3369                 adapter->stats.tncrs += er32(TNCRS);
3370                 adapter->stats.cexterr += er32(CEXTERR);
3371                 adapter->stats.tsctc += er32(TSCTC);
3372                 adapter->stats.tsctfc += er32(TSCTFC);
3373         }
3374
3375         /* Fill out the OS statistics structure */
3376         netdev->stats.multicast = adapter->stats.mprc;
3377         netdev->stats.collisions = adapter->stats.colc;
3378
3379         /* Rx Errors */
3380
3381         /* RLEC on some newer hardware can be incorrect so build
3382         * our own version based on RUC and ROC */
3383         netdev->stats.rx_errors = adapter->stats.rxerrc +
3384                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3385                 adapter->stats.ruc + adapter->stats.roc +
3386                 adapter->stats.cexterr;
3387         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3388         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3389         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3390         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3391         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3392
3393         /* Tx Errors */
3394         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3395         netdev->stats.tx_errors = adapter->stats.txerrc;
3396         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3397         netdev->stats.tx_window_errors = adapter->stats.latecol;
3398         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3399         if (hw->bad_tx_carr_stats_fd &&
3400             adapter->link_duplex == FULL_DUPLEX) {
3401                 netdev->stats.tx_carrier_errors = 0;
3402                 adapter->stats.tncrs = 0;
3403         }
3404
3405         /* Tx Dropped needs to be maintained elsewhere */
3406
3407         /* Phy Stats */
3408         if (hw->media_type == e1000_media_type_copper) {
3409                 if ((adapter->link_speed == SPEED_1000) &&
3410                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3411                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3412                         adapter->phy_stats.idle_errors += phy_tmp;
3413                 }
3414
3415                 if ((hw->mac_type <= e1000_82546) &&
3416                    (hw->phy_type == e1000_phy_m88) &&
3417                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3418                         adapter->phy_stats.receive_errors += phy_tmp;
3419         }
3420
3421         /* Management Stats */
3422         if (hw->has_smbus) {
3423                 adapter->stats.mgptc += er32(MGTPTC);
3424                 adapter->stats.mgprc += er32(MGTPRC);
3425                 adapter->stats.mgpdc += er32(MGTPDC);
3426         }
3427
3428         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3429 }
3430
3431 /**
3432  * e1000_intr - Interrupt Handler
3433  * @irq: interrupt number
3434  * @data: pointer to a network interface device structure
3435  **/
3436
3437 static irqreturn_t e1000_intr(int irq, void *data)
3438 {
3439         struct net_device *netdev = data;
3440         struct e1000_adapter *adapter = netdev_priv(netdev);
3441         struct e1000_hw *hw = &adapter->hw;
3442         u32 icr = er32(ICR);
3443
3444         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3445                 return IRQ_NONE;  /* Not our interrupt */
3446
3447         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3448                 hw->get_link_status = 1;
3449                 /* guard against interrupt when we're going down */
3450                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3451                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3452         }
3453
3454         /* disable interrupts, without the synchronize_irq bit */
3455         ew32(IMC, ~0);
3456         E1000_WRITE_FLUSH();
3457
3458         if (likely(napi_schedule_prep(&adapter->napi))) {
3459                 adapter->total_tx_bytes = 0;
3460                 adapter->total_tx_packets = 0;
3461                 adapter->total_rx_bytes = 0;
3462                 adapter->total_rx_packets = 0;
3463                 __napi_schedule(&adapter->napi);
3464         } else {
3465                 /* this really should not happen! if it does it is basically a
3466                  * bug, but not a hard error, so enable ints and continue */
3467                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3468                         e1000_irq_enable(adapter);
3469         }
3470
3471         return IRQ_HANDLED;
3472 }
3473
3474 /**
3475  * e1000_clean - NAPI Rx polling callback
3476  * @adapter: board private structure
3477  **/
3478 static int e1000_clean(struct napi_struct *napi, int budget)
3479 {
3480         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3481         int tx_clean_complete = 0, work_done = 0;
3482
3483         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3484
3485         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3486
3487         if (!tx_clean_complete)
3488                 work_done = budget;
3489
3490         /* If budget not fully consumed, exit the polling mode */
3491         if (work_done < budget) {
3492                 if (likely(adapter->itr_setting & 3))
3493                         e1000_set_itr(adapter);
3494                 napi_complete(napi);
3495                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3496                         e1000_irq_enable(adapter);
3497         }
3498
3499         return work_done;
3500 }
3501
3502 /**
3503  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3504  * @adapter: board private structure
3505  **/
3506 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3507                                struct e1000_tx_ring *tx_ring)
3508 {
3509         struct e1000_hw *hw = &adapter->hw;
3510         struct net_device *netdev = adapter->netdev;
3511         struct e1000_tx_desc *tx_desc, *eop_desc;
3512         struct e1000_buffer *buffer_info;
3513         unsigned int i, eop;
3514         unsigned int count = 0;
3515         unsigned int total_tx_bytes=0, total_tx_packets=0;
3516
3517         i = tx_ring->next_to_clean;
3518         eop = tx_ring->buffer_info[i].next_to_watch;
3519         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3520
3521         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3522                (count < tx_ring->count)) {
3523                 bool cleaned = false;
3524                 rmb();  /* read buffer_info after eop_desc */
3525                 for ( ; !cleaned; count++) {
3526                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3527                         buffer_info = &tx_ring->buffer_info[i];
3528                         cleaned = (i == eop);
3529
3530                         if (cleaned) {
3531                                 struct sk_buff *skb = buffer_info->skb;
3532                                 unsigned int segs, bytecount;
3533                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3534                                 /* multiply data chunks by size of headers */
3535                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3536                                             skb->len;
3537                                 total_tx_packets += segs;
3538                                 total_tx_bytes += bytecount;
3539                         }
3540                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3541                         tx_desc->upper.data = 0;
3542
3543                         if (unlikely(++i == tx_ring->count)) i = 0;
3544                 }
3545
3546                 eop = tx_ring->buffer_info[i].next_to_watch;
3547                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3548         }
3549
3550         tx_ring->next_to_clean = i;
3551
3552 #define TX_WAKE_THRESHOLD 32
3553         if (unlikely(count && netif_carrier_ok(netdev) &&
3554                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3555                 /* Make sure that anybody stopping the queue after this
3556                  * sees the new next_to_clean.
3557                  */
3558                 smp_mb();
3559
3560                 if (netif_queue_stopped(netdev) &&
3561                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3562                         netif_wake_queue(netdev);
3563                         ++adapter->restart_queue;
3564                 }
3565         }
3566
3567         if (adapter->detect_tx_hung) {
3568                 /* Detect a transmit hang in hardware, this serializes the
3569                  * check with the clearing of time_stamp and movement of i */
3570                 adapter->detect_tx_hung = false;
3571                 if (tx_ring->buffer_info[eop].time_stamp &&
3572                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3573                                (adapter->tx_timeout_factor * HZ)) &&
3574                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3575
3576                         /* detected Tx unit hang */
3577                         e_err(drv, "Detected Tx Unit Hang\n"
3578                               "  Tx Queue             <%lu>\n"
3579                               "  TDH                  <%x>\n"
3580                               "  TDT                  <%x>\n"
3581                               "  next_to_use          <%x>\n"
3582                               "  next_to_clean        <%x>\n"
3583                               "buffer_info[next_to_clean]\n"
3584                               "  time_stamp           <%lx>\n"
3585                               "  next_to_watch        <%x>\n"
3586                               "  jiffies              <%lx>\n"
3587                               "  next_to_watch.status <%x>\n",
3588                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3589                                         sizeof(struct e1000_tx_ring)),
3590                                 readl(hw->hw_addr + tx_ring->tdh),
3591                                 readl(hw->hw_addr + tx_ring->tdt),
3592                                 tx_ring->next_to_use,
3593                                 tx_ring->next_to_clean,
3594                                 tx_ring->buffer_info[eop].time_stamp,
3595                                 eop,
3596                                 jiffies,
3597                                 eop_desc->upper.fields.status);
3598                         netif_stop_queue(netdev);
3599                 }
3600         }
3601         adapter->total_tx_bytes += total_tx_bytes;
3602         adapter->total_tx_packets += total_tx_packets;
3603         netdev->stats.tx_bytes += total_tx_bytes;
3604         netdev->stats.tx_packets += total_tx_packets;
3605         return count < tx_ring->count;
3606 }
3607
3608 /**
3609  * e1000_rx_checksum - Receive Checksum Offload for 82543
3610  * @adapter:     board private structure
3611  * @status_err:  receive descriptor status and error fields
3612  * @csum:        receive descriptor csum field
3613  * @sk_buff:     socket buffer with received data
3614  **/
3615
3616 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3617                               u32 csum, struct sk_buff *skb)
3618 {
3619         struct e1000_hw *hw = &adapter->hw;
3620         u16 status = (u16)status_err;
3621         u8 errors = (u8)(status_err >> 24);
3622
3623         skb_checksum_none_assert(skb);
3624
3625         /* 82543 or newer only */
3626         if (unlikely(hw->mac_type < e1000_82543)) return;
3627         /* Ignore Checksum bit is set */
3628         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3629         /* TCP/UDP checksum error bit is set */
3630         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3631                 /* let the stack verify checksum errors */
3632                 adapter->hw_csum_err++;
3633                 return;
3634         }
3635         /* TCP/UDP Checksum has not been calculated */
3636         if (!(status & E1000_RXD_STAT_TCPCS))
3637                 return;
3638
3639         /* It must be a TCP or UDP packet with a valid checksum */
3640         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3641                 /* TCP checksum is good */
3642                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3643         }
3644         adapter->hw_csum_good++;
3645 }
3646
3647 /**
3648  * e1000_consume_page - helper function
3649  **/
3650 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3651                                u16 length)
3652 {
3653         bi->page = NULL;
3654         skb->len += length;
3655         skb->data_len += length;
3656         skb->truesize += length;
3657 }
3658
3659 /**
3660  * e1000_receive_skb - helper function to handle rx indications
3661  * @adapter: board private structure
3662  * @status: descriptor status field as written by hardware
3663  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3664  * @skb: pointer to sk_buff to be indicated to stack
3665  */
3666 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3667                               __le16 vlan, struct sk_buff *skb)
3668 {
3669         skb->protocol = eth_type_trans(skb, adapter->netdev);
3670
3671         if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3672                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3673                                  le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3674                                  skb);
3675         else
3676                 napi_gro_receive(&adapter->napi, skb);
3677 }
3678
3679 /**
3680  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3681  * @adapter: board private structure
3682  * @rx_ring: ring to clean
3683  * @work_done: amount of napi work completed this call
3684  * @work_to_do: max amount of work allowed for this call to do
3685  *
3686  * the return value indicates whether actual cleaning was done, there
3687  * is no guarantee that everything was cleaned
3688  */
3689 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3690                                      struct e1000_rx_ring *rx_ring,
3691                                      int *work_done, int work_to_do)
3692 {
3693         struct e1000_hw *hw = &adapter->hw;
3694         struct net_device *netdev = adapter->netdev;
3695         struct pci_dev *pdev = adapter->pdev;
3696         struct e1000_rx_desc *rx_desc, *next_rxd;
3697         struct e1000_buffer *buffer_info, *next_buffer;
3698         unsigned long irq_flags;
3699         u32 length;
3700         unsigned int i;
3701         int cleaned_count = 0;
3702         bool cleaned = false;
3703         unsigned int total_rx_bytes=0, total_rx_packets=0;
3704
3705         i = rx_ring->next_to_clean;
3706         rx_desc = E1000_RX_DESC(*rx_ring, i);
3707         buffer_info = &rx_ring->buffer_info[i];
3708
3709         while (rx_desc->status & E1000_RXD_STAT_DD) {
3710                 struct sk_buff *skb;
3711                 u8 status;
3712
3713                 if (*work_done >= work_to_do)
3714                         break;
3715                 (*work_done)++;
3716                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3717
3718                 status = rx_desc->status;
3719                 skb = buffer_info->skb;
3720                 buffer_info->skb = NULL;
3721
3722                 if (++i == rx_ring->count) i = 0;
3723                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3724                 prefetch(next_rxd);
3725
3726                 next_buffer = &rx_ring->buffer_info[i];
3727
3728                 cleaned = true;
3729                 cleaned_count++;
3730                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3731                                buffer_info->length, DMA_FROM_DEVICE);
3732                 buffer_info->dma = 0;
3733
3734                 length = le16_to_cpu(rx_desc->length);
3735
3736                 /* errors is only valid for DD + EOP descriptors */
3737                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3738                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3739                         u8 last_byte = *(skb->data + length - 1);
3740                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3741                                        last_byte)) {
3742                                 spin_lock_irqsave(&adapter->stats_lock,
3743                                                   irq_flags);
3744                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3745                                                        length, skb->data);
3746                                 spin_unlock_irqrestore(&adapter->stats_lock,
3747                                                        irq_flags);
3748                                 length--;
3749                         } else {
3750                                 /* recycle both page and skb */
3751                                 buffer_info->skb = skb;
3752                                 /* an error means any chain goes out the window
3753                                  * too */
3754                                 if (rx_ring->rx_skb_top)
3755                                         dev_kfree_skb(rx_ring->rx_skb_top);
3756                                 rx_ring->rx_skb_top = NULL;
3757                                 goto next_desc;
3758                         }
3759                 }
3760
3761 #define rxtop rx_ring->rx_skb_top
3762                 if (!(status & E1000_RXD_STAT_EOP)) {
3763                         /* this descriptor is only the beginning (or middle) */
3764                         if (!rxtop) {
3765                                 /* this is the beginning of a chain */
3766                                 rxtop = skb;
3767                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3768                                                    0, length);
3769                         } else {
3770                                 /* this is the middle of a chain */
3771                                 skb_fill_page_desc(rxtop,
3772                                     skb_shinfo(rxtop)->nr_frags,
3773                                     buffer_info->page, 0, length);
3774                                 /* re-use the skb, only consumed the page */
3775                                 buffer_info->skb = skb;
3776                         }
3777                         e1000_consume_page(buffer_info, rxtop, length);
3778                         goto next_desc;
3779                 } else {
3780                         if (rxtop) {
3781                                 /* end of the chain */
3782                                 skb_fill_page_desc(rxtop,
3783                                     skb_shinfo(rxtop)->nr_frags,
3784                                     buffer_info->page, 0, length);
3785                                 /* re-use the current skb, we only consumed the
3786                                  * page */
3787                                 buffer_info->skb = skb;
3788                                 skb = rxtop;
3789                                 rxtop = NULL;
3790                                 e1000_consume_page(buffer_info, skb, length);
3791                         } else {
3792                                 /* no chain, got EOP, this buf is the packet
3793                                  * copybreak to save the put_page/alloc_page */
3794                                 if (length <= copybreak &&
3795                                     skb_tailroom(skb) >= length) {
3796                                         u8 *vaddr;
3797                                         vaddr = kmap_atomic(buffer_info->page,
3798                                                             KM_SKB_DATA_SOFTIRQ);
3799                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3800                                         kunmap_atomic(vaddr,
3801                                                       KM_SKB_DATA_SOFTIRQ);
3802                                         /* re-use the page, so don't erase
3803                                          * buffer_info->page */
3804                                         skb_put(skb, length);
3805                                 } else {
3806                                         skb_fill_page_desc(skb, 0,
3807                                                            buffer_info->page, 0,
3808                                                            length);
3809                                         e1000_consume_page(buffer_info, skb,
3810                                                            length);
3811                                 }
3812                         }
3813                 }
3814
3815                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3816                 e1000_rx_checksum(adapter,
3817                                   (u32)(status) |
3818                                   ((u32)(rx_desc->errors) << 24),
3819                                   le16_to_cpu(rx_desc->csum), skb);
3820
3821                 pskb_trim(skb, skb->len - 4);
3822
3823                 /* probably a little skewed due to removing CRC */
3824                 total_rx_bytes += skb->len;
3825                 total_rx_packets++;
3826
3827                 /* eth type trans needs skb->data to point to something */
3828                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3829                         e_err(drv, "pskb_may_pull failed.\n");
3830                         dev_kfree_skb(skb);
3831                         goto next_desc;
3832                 }
3833
3834                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3835
3836 next_desc:
3837                 rx_desc->status = 0;
3838
3839                 /* return some buffers to hardware, one at a time is too slow */
3840                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3841                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3842                         cleaned_count = 0;
3843                 }
3844
3845                 /* use prefetched values */
3846                 rx_desc = next_rxd;
3847                 buffer_info = next_buffer;
3848         }
3849         rx_ring->next_to_clean = i;
3850
3851         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3852         if (cleaned_count)
3853                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3854
3855         adapter->total_rx_packets += total_rx_packets;
3856         adapter->total_rx_bytes += total_rx_bytes;
3857         netdev->stats.rx_bytes += total_rx_bytes;
3858         netdev->stats.rx_packets += total_rx_packets;
3859         return cleaned;
3860 }
3861
3862 /*
3863  * this should improve performance for small packets with large amounts
3864  * of reassembly being done in the stack
3865  */
3866 static void e1000_check_copybreak(struct net_device *netdev,
3867                                  struct e1000_buffer *buffer_info,
3868                                  u32 length, struct sk_buff **skb)
3869 {
3870         struct sk_buff *new_skb;
3871
3872         if (length > copybreak)
3873                 return;
3874
3875         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3876         if (!new_skb)
3877                 return;
3878
3879         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3880                                        (*skb)->data - NET_IP_ALIGN,
3881                                        length + NET_IP_ALIGN);
3882         /* save the skb in buffer_info as good */
3883         buffer_info->skb = *skb;
3884         *skb = new_skb;
3885 }
3886
3887 /**
3888  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3889  * @adapter: board private structure
3890  * @rx_ring: ring to clean
3891  * @work_done: amount of napi work completed this call
3892  * @work_to_do: max amount of work allowed for this call to do
3893  */
3894 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3895                                struct e1000_rx_ring *rx_ring,
3896                                int *work_done, int work_to_do)
3897 {
3898         struct e1000_hw *hw = &adapter->hw;
3899         struct net_device *netdev = adapter->netdev;
3900         struct pci_dev *pdev = adapter->pdev;
3901         struct e1000_rx_desc *rx_desc, *next_rxd;
3902         struct e1000_buffer *buffer_info, *next_buffer;
3903         unsigned long flags;
3904         u32 length;
3905         unsigned int i;
3906         int cleaned_count = 0;
3907         bool cleaned = false;
3908         unsigned int total_rx_bytes=0, total_rx_packets=0;
3909
3910         i = rx_ring->next_to_clean;
3911         rx_desc = E1000_RX_DESC(*rx_ring, i);
3912         buffer_info = &rx_ring->buffer_info[i];
3913
3914         while (rx_desc->status & E1000_RXD_STAT_DD) {
3915                 struct sk_buff *skb;
3916                 u8 status;
3917
3918                 if (*work_done >= work_to_do)
3919                         break;
3920                 (*work_done)++;
3921                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3922
3923                 status = rx_desc->status;
3924                 skb = buffer_info->skb;
3925                 buffer_info->skb = NULL;
3926
3927                 prefetch(skb->data - NET_IP_ALIGN);
3928
3929                 if (++i == rx_ring->count) i = 0;
3930                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3931                 prefetch(next_rxd);
3932
3933                 next_buffer = &rx_ring->buffer_info[i];
3934
3935                 cleaned = true;
3936                 cleaned_count++;
3937                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3938                                  buffer_info->length, DMA_FROM_DEVICE);
3939                 buffer_info->dma = 0;
3940
3941                 length = le16_to_cpu(rx_desc->length);
3942                 /* !EOP means multiple descriptors were used to store a single
3943                  * packet, if thats the case we need to toss it.  In fact, we
3944                  * to toss every packet with the EOP bit clear and the next
3945                  * frame that _does_ have the EOP bit set, as it is by
3946                  * definition only a frame fragment
3947                  */
3948                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3949                         adapter->discarding = true;
3950
3951                 if (adapter->discarding) {
3952                         /* All receives must fit into a single buffer */
3953                         e_dbg("Receive packet consumed multiple buffers\n");
3954                         /* recycle */
3955                         buffer_info->skb = skb;
3956                         if (status & E1000_RXD_STAT_EOP)
3957                                 adapter->discarding = false;
3958                         goto next_desc;
3959                 }
3960
3961                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3962                         u8 last_byte = *(skb->data + length - 1);
3963                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3964                                        last_byte)) {
3965                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3966                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3967                                                        length, skb->data);
3968                                 spin_unlock_irqrestore(&adapter->stats_lock,
3969                                                        flags);
3970                                 length--;
3971                         } else {
3972                                 /* recycle */
3973                                 buffer_info->skb = skb;
3974                                 goto next_desc;
3975                         }
3976                 }
3977
3978                 /* adjust length to remove Ethernet CRC, this must be
3979                  * done after the TBI_ACCEPT workaround above */
3980                 length -= 4;
3981
3982                 /* probably a little skewed due to removing CRC */
3983                 total_rx_bytes += length;
3984                 total_rx_packets++;
3985
3986                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3987
3988                 skb_put(skb, length);
3989
3990                 /* Receive Checksum Offload */
3991                 e1000_rx_checksum(adapter,
3992                                   (u32)(status) |
3993                                   ((u32)(rx_desc->errors) << 24),
3994                                   le16_to_cpu(rx_desc->csum), skb);
3995
3996                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3997
3998 next_desc:
3999                 rx_desc->status = 0;
4000
4001                 /* return some buffers to hardware, one at a time is too slow */
4002                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4003                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4004                         cleaned_count = 0;
4005                 }
4006
4007                 /* use prefetched values */
4008                 rx_desc = next_rxd;
4009                 buffer_info = next_buffer;
4010         }
4011         rx_ring->next_to_clean = i;
4012
4013         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4014         if (cleaned_count)
4015                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4016
4017         adapter->total_rx_packets += total_rx_packets;
4018         adapter->total_rx_bytes += total_rx_bytes;
4019         netdev->stats.rx_bytes += total_rx_bytes;
4020         netdev->stats.rx_packets += total_rx_packets;
4021         return cleaned;
4022 }
4023
4024 /**
4025  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4026  * @adapter: address of board private structure
4027  * @rx_ring: pointer to receive ring structure
4028  * @cleaned_count: number of buffers to allocate this pass
4029  **/
4030
4031 static void
4032 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4033                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4034 {
4035         struct net_device *netdev = adapter->netdev;
4036         struct pci_dev *pdev = adapter->pdev;
4037         struct e1000_rx_desc *rx_desc;
4038         struct e1000_buffer *buffer_info;
4039         struct sk_buff *skb;
4040         unsigned int i;
4041         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4042
4043         i = rx_ring->next_to_use;
4044         buffer_info = &rx_ring->buffer_info[i];
4045
4046         while (cleaned_count--) {
4047                 skb = buffer_info->skb;
4048                 if (skb) {
4049                         skb_trim(skb, 0);
4050                         goto check_page;
4051                 }
4052
4053                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4054                 if (unlikely(!skb)) {
4055                         /* Better luck next round */
4056                         adapter->alloc_rx_buff_failed++;
4057                         break;
4058                 }
4059
4060                 /* Fix for errata 23, can't cross 64kB boundary */
4061                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4062                         struct sk_buff *oldskb = skb;
4063                         e_err(rx_err, "skb align check failed: %u bytes at "
4064                               "%p\n", bufsz, skb->data);
4065                         /* Try again, without freeing the previous */
4066                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4067                         /* Failed allocation, critical failure */
4068                         if (!skb) {
4069                                 dev_kfree_skb(oldskb);
4070                                 adapter->alloc_rx_buff_failed++;
4071                                 break;
4072                         }
4073
4074                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4075                                 /* give up */
4076                                 dev_kfree_skb(skb);
4077                                 dev_kfree_skb(oldskb);
4078                                 break; /* while (cleaned_count--) */
4079                         }
4080
4081                         /* Use new allocation */
4082                         dev_kfree_skb(oldskb);
4083                 }
4084                 buffer_info->skb = skb;
4085                 buffer_info->length = adapter->rx_buffer_len;
4086 check_page:
4087                 /* allocate a new page if necessary */
4088                 if (!buffer_info->page) {
4089                         buffer_info->page = alloc_page(GFP_ATOMIC);
4090                         if (unlikely(!buffer_info->page)) {
4091                                 adapter->alloc_rx_buff_failed++;
4092                                 break;
4093                         }
4094                 }
4095
4096                 if (!buffer_info->dma) {
4097                         buffer_info->dma = dma_map_page(&pdev->dev,
4098                                                         buffer_info->page, 0,
4099                                                         buffer_info->length,
4100                                                         DMA_FROM_DEVICE);
4101                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4102                                 put_page(buffer_info->page);
4103                                 dev_kfree_skb(skb);
4104                                 buffer_info->page = NULL;
4105                                 buffer_info->skb = NULL;
4106                                 buffer_info->dma = 0;
4107                                 adapter->alloc_rx_buff_failed++;
4108                                 break; /* while !buffer_info->skb */
4109                         }
4110                 }
4111
4112                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4113                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4114
4115                 if (unlikely(++i == rx_ring->count))
4116                         i = 0;
4117                 buffer_info = &rx_ring->buffer_info[i];
4118         }
4119
4120         if (likely(rx_ring->next_to_use != i)) {
4121                 rx_ring->next_to_use = i;
4122                 if (unlikely(i-- == 0))
4123                         i = (rx_ring->count - 1);
4124
4125                 /* Force memory writes to complete before letting h/w
4126                  * know there are new descriptors to fetch.  (Only
4127                  * applicable for weak-ordered memory model archs,
4128                  * such as IA-64). */
4129                 wmb();
4130                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4131         }
4132 }
4133
4134 /**
4135  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4136  * @adapter: address of board private structure
4137  **/
4138
4139 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4140                                    struct e1000_rx_ring *rx_ring,
4141                                    int cleaned_count)
4142 {
4143         struct e1000_hw *hw = &adapter->hw;
4144         struct net_device *netdev = adapter->netdev;
4145         struct pci_dev *pdev = adapter->pdev;
4146         struct e1000_rx_desc *rx_desc;
4147         struct e1000_buffer *buffer_info;
4148         struct sk_buff *skb;
4149         unsigned int i;
4150         unsigned int bufsz = adapter->rx_buffer_len;
4151
4152         i = rx_ring->next_to_use;
4153         buffer_info = &rx_ring->buffer_info[i];
4154
4155         while (cleaned_count--) {
4156                 skb = buffer_info->skb;
4157                 if (skb) {
4158                         skb_trim(skb, 0);
4159                         goto map_skb;
4160                 }
4161
4162                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4163                 if (unlikely(!skb)) {
4164                         /* Better luck next round */
4165                         adapter->alloc_rx_buff_failed++;
4166                         break;
4167                 }
4168
4169                 /* Fix for errata 23, can't cross 64kB boundary */
4170                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4171                         struct sk_buff *oldskb = skb;
4172                         e_err(rx_err, "skb align check failed: %u bytes at "
4173                               "%p\n", bufsz, skb->data);
4174                         /* Try again, without freeing the previous */
4175                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4176                         /* Failed allocation, critical failure */
4177                         if (!skb) {
4178                                 dev_kfree_skb(oldskb);
4179                                 adapter->alloc_rx_buff_failed++;
4180                                 break;
4181                         }
4182
4183                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4184                                 /* give up */
4185                                 dev_kfree_skb(skb);
4186                                 dev_kfree_skb(oldskb);
4187                                 adapter->alloc_rx_buff_failed++;
4188                                 break; /* while !buffer_info->skb */
4189                         }
4190
4191                         /* Use new allocation */
4192                         dev_kfree_skb(oldskb);
4193                 }
4194                 buffer_info->skb = skb;
4195                 buffer_info->length = adapter->rx_buffer_len;
4196 map_skb:
4197                 buffer_info->dma = dma_map_single(&pdev->dev,
4198                                                   skb->data,
4199                                                   buffer_info->length,
4200                                                   DMA_FROM_DEVICE);
4201                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4202                         dev_kfree_skb(skb);
4203                         buffer_info->skb = NULL;
4204                         buffer_info->dma = 0;
4205                         adapter->alloc_rx_buff_failed++;
4206                         break; /* while !buffer_info->skb */
4207                 }
4208
4209                 /*
4210                  * XXX if it was allocated cleanly it will never map to a
4211                  * boundary crossing
4212                  */
4213
4214                 /* Fix for errata 23, can't cross 64kB boundary */
4215                 if (!e1000_check_64k_bound(adapter,
4216                                         (void *)(unsigned long)buffer_info->dma,
4217                                         adapter->rx_buffer_len)) {
4218                         e_err(rx_err, "dma align check failed: %u bytes at "
4219                               "%p\n", adapter->rx_buffer_len,
4220                               (void *)(unsigned long)buffer_info->dma);
4221                         dev_kfree_skb(skb);
4222                         buffer_info->skb = NULL;
4223
4224                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4225                                          adapter->rx_buffer_len,
4226                                          DMA_FROM_DEVICE);
4227                         buffer_info->dma = 0;
4228
4229                         adapter->alloc_rx_buff_failed++;
4230                         break; /* while !buffer_info->skb */
4231                 }
4232                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4233                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4234
4235                 if (unlikely(++i == rx_ring->count))
4236                         i = 0;
4237                 buffer_info = &rx_ring->buffer_info[i];
4238         }
4239
4240         if (likely(rx_ring->next_to_use != i)) {
4241                 rx_ring->next_to_use = i;
4242                 if (unlikely(i-- == 0))
4243                         i = (rx_ring->count - 1);
4244
4245                 /* Force memory writes to complete before letting h/w
4246                  * know there are new descriptors to fetch.  (Only
4247                  * applicable for weak-ordered memory model archs,
4248                  * such as IA-64). */
4249                 wmb();
4250                 writel(i, hw->hw_addr + rx_ring->rdt);
4251         }
4252 }
4253
4254 /**
4255  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4256  * @adapter:
4257  **/
4258
4259 static void e1000_smartspeed(struct e1000_adapter *adapter)
4260 {
4261         struct e1000_hw *hw = &adapter->hw;
4262         u16 phy_status;
4263         u16 phy_ctrl;
4264
4265         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4266            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4267                 return;
4268
4269         if (adapter->smartspeed == 0) {
4270                 /* If Master/Slave config fault is asserted twice,
4271                  * we assume back-to-back */
4272                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4273                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4274                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4275                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4276                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4277                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4278                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4279                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4280                                             phy_ctrl);
4281                         adapter->smartspeed++;
4282                         if (!e1000_phy_setup_autoneg(hw) &&
4283                            !e1000_read_phy_reg(hw, PHY_CTRL,
4284                                                &phy_ctrl)) {
4285                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4286                                              MII_CR_RESTART_AUTO_NEG);
4287                                 e1000_write_phy_reg(hw, PHY_CTRL,
4288                                                     phy_ctrl);
4289                         }
4290                 }
4291                 return;
4292         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4293                 /* If still no link, perhaps using 2/3 pair cable */
4294                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4295                 phy_ctrl |= CR_1000T_MS_ENABLE;
4296                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4297                 if (!e1000_phy_setup_autoneg(hw) &&
4298                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4299                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4300                                      MII_CR_RESTART_AUTO_NEG);
4301                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4302                 }
4303         }
4304         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4305         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4306                 adapter->smartspeed = 0;
4307 }
4308
4309 /**
4310  * e1000_ioctl -
4311  * @netdev:
4312  * @ifreq:
4313  * @cmd:
4314  **/
4315
4316 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4317 {
4318         switch (cmd) {
4319         case SIOCGMIIPHY:
4320         case SIOCGMIIREG:
4321         case SIOCSMIIREG:
4322                 return e1000_mii_ioctl(netdev, ifr, cmd);
4323         default:
4324                 return -EOPNOTSUPP;
4325         }
4326 }
4327
4328 /**
4329  * e1000_mii_ioctl -
4330  * @netdev:
4331  * @ifreq:
4332  * @cmd:
4333  **/
4334
4335 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4336                            int cmd)
4337 {
4338         struct e1000_adapter *adapter = netdev_priv(netdev);
4339         struct e1000_hw *hw = &adapter->hw;
4340         struct mii_ioctl_data *data = if_mii(ifr);
4341         int retval;
4342         u16 mii_reg;
4343         u16 spddplx;
4344         unsigned long flags;
4345
4346         if (hw->media_type != e1000_media_type_copper)
4347                 return -EOPNOTSUPP;
4348
4349         switch (cmd) {
4350         case SIOCGMIIPHY:
4351                 data->phy_id = hw->phy_addr;
4352                 break;
4353         case SIOCGMIIREG:
4354                 spin_lock_irqsave(&adapter->stats_lock, flags);
4355                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4356                                    &data->val_out)) {
4357                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4358                         return -EIO;
4359                 }
4360                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4361                 break;
4362         case SIOCSMIIREG:
4363                 if (data->reg_num & ~(0x1F))
4364                         return -EFAULT;
4365                 mii_reg = data->val_in;
4366                 spin_lock_irqsave(&adapter->stats_lock, flags);
4367                 if (e1000_write_phy_reg(hw, data->reg_num,
4368                                         mii_reg)) {
4369                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4370                         return -EIO;
4371                 }
4372                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4373                 if (hw->media_type == e1000_media_type_copper) {
4374                         switch (data->reg_num) {
4375                         case PHY_CTRL:
4376                                 if (mii_reg & MII_CR_POWER_DOWN)
4377                                         break;
4378                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4379                                         hw->autoneg = 1;
4380                                         hw->autoneg_advertised = 0x2F;
4381                                 } else {
4382                                         if (mii_reg & 0x40)
4383                                                 spddplx = SPEED_1000;
4384                                         else if (mii_reg & 0x2000)
4385                                                 spddplx = SPEED_100;
4386                                         else
4387                                                 spddplx = SPEED_10;
4388                                         spddplx += (mii_reg & 0x100)
4389                                                    ? DUPLEX_FULL :
4390                                                    DUPLEX_HALF;
4391                                         retval = e1000_set_spd_dplx(adapter,
4392                                                                     spddplx);
4393                                         if (retval)
4394                                                 return retval;
4395                                 }
4396                                 if (netif_running(adapter->netdev))
4397                                         e1000_reinit_locked(adapter);
4398                                 else
4399                                         e1000_reset(adapter);
4400                                 break;
4401                         case M88E1000_PHY_SPEC_CTRL:
4402                         case M88E1000_EXT_PHY_SPEC_CTRL:
4403                                 if (e1000_phy_reset(hw))
4404                                         return -EIO;
4405                                 break;
4406                         }
4407                 } else {
4408                         switch (data->reg_num) {
4409                         case PHY_CTRL:
4410                                 if (mii_reg & MII_CR_POWER_DOWN)
4411                                         break;
4412                                 if (netif_running(adapter->netdev))
4413                                         e1000_reinit_locked(adapter);
4414                                 else
4415                                         e1000_reset(adapter);
4416                                 break;
4417                         }
4418                 }
4419                 break;
4420         default:
4421                 return -EOPNOTSUPP;
4422         }
4423         return E1000_SUCCESS;
4424 }
4425
4426 void e1000_pci_set_mwi(struct e1000_hw *hw)
4427 {
4428         struct e1000_adapter *adapter = hw->back;
4429         int ret_val = pci_set_mwi(adapter->pdev);
4430
4431         if (ret_val)
4432                 e_err(probe, "Error in setting MWI\n");
4433 }
4434
4435 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4436 {
4437         struct e1000_adapter *adapter = hw->back;
4438
4439         pci_clear_mwi(adapter->pdev);
4440 }
4441
4442 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4443 {
4444         struct e1000_adapter *adapter = hw->back;
4445         return pcix_get_mmrbc(adapter->pdev);
4446 }
4447
4448 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4449 {
4450         struct e1000_adapter *adapter = hw->back;
4451         pcix_set_mmrbc(adapter->pdev, mmrbc);
4452 }
4453
4454 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4455 {
4456         outl(value, port);
4457 }
4458
4459 static void e1000_vlan_rx_register(struct net_device *netdev,
4460                                    struct vlan_group *grp)
4461 {
4462         struct e1000_adapter *adapter = netdev_priv(netdev);
4463         struct e1000_hw *hw = &adapter->hw;
4464         u32 ctrl, rctl;
4465
4466         if (!test_bit(__E1000_DOWN, &adapter->flags))
4467                 e1000_irq_disable(adapter);
4468         adapter->vlgrp = grp;
4469
4470         if (grp) {
4471                 /* enable VLAN tag insert/strip */
4472                 ctrl = er32(CTRL);
4473                 ctrl |= E1000_CTRL_VME;
4474                 ew32(CTRL, ctrl);
4475
4476                 /* enable VLAN receive filtering */
4477                 rctl = er32(RCTL);
4478                 rctl &= ~E1000_RCTL_CFIEN;
4479                 if (!(netdev->flags & IFF_PROMISC))
4480                         rctl |= E1000_RCTL_VFE;
4481                 ew32(RCTL, rctl);
4482                 e1000_update_mng_vlan(adapter);
4483         } else {
4484                 /* disable VLAN tag insert/strip */
4485                 ctrl = er32(CTRL);
4486                 ctrl &= ~E1000_CTRL_VME;
4487                 ew32(CTRL, ctrl);
4488
4489                 /* disable VLAN receive filtering */
4490                 rctl = er32(RCTL);
4491                 rctl &= ~E1000_RCTL_VFE;
4492                 ew32(RCTL, rctl);
4493
4494                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4495                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4496                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4497                 }
4498         }
4499
4500         if (!test_bit(__E1000_DOWN, &adapter->flags))
4501                 e1000_irq_enable(adapter);
4502 }
4503
4504 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4505 {
4506         struct e1000_adapter *adapter = netdev_priv(netdev);
4507         struct e1000_hw *hw = &adapter->hw;
4508         u32 vfta, index;
4509
4510         if ((hw->mng_cookie.status &
4511              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4512             (vid == adapter->mng_vlan_id))
4513                 return;
4514         /* add VID to filter table */
4515         index = (vid >> 5) & 0x7F;
4516         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4517         vfta |= (1 << (vid & 0x1F));
4518         e1000_write_vfta(hw, index, vfta);
4519 }
4520
4521 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4522 {
4523         struct e1000_adapter *adapter = netdev_priv(netdev);
4524         struct e1000_hw *hw = &adapter->hw;
4525         u32 vfta, index;
4526
4527         if (!test_bit(__E1000_DOWN, &adapter->flags))
4528                 e1000_irq_disable(adapter);
4529         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4530         if (!test_bit(__E1000_DOWN, &adapter->flags))
4531                 e1000_irq_enable(adapter);
4532
4533         /* remove VID from filter table */
4534         index = (vid >> 5) & 0x7F;
4535         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4536         vfta &= ~(1 << (vid & 0x1F));
4537         e1000_write_vfta(hw, index, vfta);
4538 }
4539
4540 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4541 {
4542         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4543
4544         if (adapter->vlgrp) {
4545                 u16 vid;
4546                 for (vid = 0; vid < VLAN_N_VID; vid++) {
4547                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4548                                 continue;
4549                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4550                 }
4551         }
4552 }
4553
4554 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4555 {
4556         struct e1000_hw *hw = &adapter->hw;
4557
4558         hw->autoneg = 0;
4559
4560         /* Fiber NICs only allow 1000 gbps Full duplex */
4561         if ((hw->media_type == e1000_media_type_fiber) &&
4562                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4563                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4564                 return -EINVAL;
4565         }
4566
4567         switch (spddplx) {
4568         case SPEED_10 + DUPLEX_HALF:
4569                 hw->forced_speed_duplex = e1000_10_half;
4570                 break;
4571         case SPEED_10 + DUPLEX_FULL:
4572                 hw->forced_speed_duplex = e1000_10_full;
4573                 break;
4574         case SPEED_100 + DUPLEX_HALF:
4575                 hw->forced_speed_duplex = e1000_100_half;
4576                 break;
4577         case SPEED_100 + DUPLEX_FULL:
4578                 hw->forced_speed_duplex = e1000_100_full;
4579                 break;
4580         case SPEED_1000 + DUPLEX_FULL:
4581                 hw->autoneg = 1;
4582                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4583                 break;
4584         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4585         default:
4586                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4587                 return -EINVAL;
4588         }
4589         return 0;
4590 }
4591
4592 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4593 {
4594         struct net_device *netdev = pci_get_drvdata(pdev);
4595         struct e1000_adapter *adapter = netdev_priv(netdev);
4596         struct e1000_hw *hw = &adapter->hw;
4597         u32 ctrl, ctrl_ext, rctl, status;
4598         u32 wufc = adapter->wol;
4599 #ifdef CONFIG_PM
4600         int retval = 0;
4601 #endif
4602
4603         netif_device_detach(netdev);
4604
4605         if (netif_running(netdev)) {
4606                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4607                 e1000_down(adapter);
4608         }
4609
4610 #ifdef CONFIG_PM
4611         retval = pci_save_state(pdev);
4612         if (retval)
4613                 return retval;
4614 #endif
4615
4616         status = er32(STATUS);
4617         if (status & E1000_STATUS_LU)
4618                 wufc &= ~E1000_WUFC_LNKC;
4619
4620         if (wufc) {
4621                 e1000_setup_rctl(adapter);
4622                 e1000_set_rx_mode(netdev);
4623
4624                 /* turn on all-multi mode if wake on multicast is enabled */
4625                 if (wufc & E1000_WUFC_MC) {
4626                         rctl = er32(RCTL);
4627                         rctl |= E1000_RCTL_MPE;
4628                         ew32(RCTL, rctl);
4629                 }
4630
4631                 if (hw->mac_type >= e1000_82540) {
4632                         ctrl = er32(CTRL);
4633                         /* advertise wake from D3Cold */
4634                         #define E1000_CTRL_ADVD3WUC 0x00100000
4635                         /* phy power management enable */
4636                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4637                         ctrl |= E1000_CTRL_ADVD3WUC |
4638                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4639                         ew32(CTRL, ctrl);
4640                 }
4641
4642                 if (hw->media_type == e1000_media_type_fiber ||
4643                     hw->media_type == e1000_media_type_internal_serdes) {
4644                         /* keep the laser running in D3 */
4645                         ctrl_ext = er32(CTRL_EXT);
4646                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4647                         ew32(CTRL_EXT, ctrl_ext);
4648                 }
4649
4650                 ew32(WUC, E1000_WUC_PME_EN);
4651                 ew32(WUFC, wufc);
4652         } else {
4653                 ew32(WUC, 0);
4654                 ew32(WUFC, 0);
4655         }
4656
4657         e1000_release_manageability(adapter);
4658
4659         *enable_wake = !!wufc;
4660
4661         /* make sure adapter isn't asleep if manageability is enabled */
4662         if (adapter->en_mng_pt)
4663                 *enable_wake = true;
4664
4665         if (netif_running(netdev))
4666                 e1000_free_irq(adapter);
4667
4668         pci_disable_device(pdev);
4669
4670         return 0;
4671 }
4672
4673 #ifdef CONFIG_PM
4674 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4675 {
4676         int retval;
4677         bool wake;
4678
4679         retval = __e1000_shutdown(pdev, &wake);
4680         if (retval)
4681                 return retval;
4682
4683         if (wake) {
4684                 pci_prepare_to_sleep(pdev);
4685         } else {
4686                 pci_wake_from_d3(pdev, false);
4687                 pci_set_power_state(pdev, PCI_D3hot);
4688         }
4689
4690         return 0;
4691 }
4692
4693 static int e1000_resume(struct pci_dev *pdev)
4694 {
4695         struct net_device *netdev = pci_get_drvdata(pdev);
4696         struct e1000_adapter *adapter = netdev_priv(netdev);
4697         struct e1000_hw *hw = &adapter->hw;
4698         u32 err;
4699
4700         pci_set_power_state(pdev, PCI_D0);
4701         pci_restore_state(pdev);
4702         pci_save_state(pdev);
4703
4704         if (adapter->need_ioport)
4705                 err = pci_enable_device(pdev);
4706         else
4707                 err = pci_enable_device_mem(pdev);
4708         if (err) {
4709                 pr_err("Cannot enable PCI device from suspend\n");
4710                 return err;
4711         }
4712         pci_set_master(pdev);
4713
4714         pci_enable_wake(pdev, PCI_D3hot, 0);
4715         pci_enable_wake(pdev, PCI_D3cold, 0);
4716
4717         if (netif_running(netdev)) {
4718                 err = e1000_request_irq(adapter);
4719                 if (err)
4720                         return err;
4721         }
4722
4723         e1000_power_up_phy(adapter);
4724         e1000_reset(adapter);
4725         ew32(WUS, ~0);
4726
4727         e1000_init_manageability(adapter);
4728
4729         if (netif_running(netdev))
4730                 e1000_up(adapter);
4731
4732         netif_device_attach(netdev);
4733
4734         return 0;
4735 }
4736 #endif
4737
4738 static void e1000_shutdown(struct pci_dev *pdev)
4739 {
4740         bool wake;
4741
4742         __e1000_shutdown(pdev, &wake);
4743
4744         if (system_state == SYSTEM_POWER_OFF) {
4745                 pci_wake_from_d3(pdev, wake);
4746                 pci_set_power_state(pdev, PCI_D3hot);
4747         }
4748 }
4749
4750 #ifdef CONFIG_NET_POLL_CONTROLLER
4751 /*
4752  * Polling 'interrupt' - used by things like netconsole to send skbs
4753  * without having to re-enable interrupts. It's not called while
4754  * the interrupt routine is executing.
4755  */
4756 static void e1000_netpoll(struct net_device *netdev)
4757 {
4758         struct e1000_adapter *adapter = netdev_priv(netdev);
4759
4760         disable_irq(adapter->pdev->irq);
4761         e1000_intr(adapter->pdev->irq, netdev);
4762         enable_irq(adapter->pdev->irq);
4763 }
4764 #endif
4765
4766 /**
4767  * e1000_io_error_detected - called when PCI error is detected
4768  * @pdev: Pointer to PCI device
4769  * @state: The current pci connection state
4770  *
4771  * This function is called after a PCI bus error affecting
4772  * this device has been detected.
4773  */
4774 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4775                                                 pci_channel_state_t state)
4776 {
4777         struct net_device *netdev = pci_get_drvdata(pdev);
4778         struct e1000_adapter *adapter = netdev_priv(netdev);
4779
4780         netif_device_detach(netdev);
4781
4782         if (state == pci_channel_io_perm_failure)
4783                 return PCI_ERS_RESULT_DISCONNECT;
4784
4785         if (netif_running(netdev))
4786                 e1000_down(adapter);
4787         pci_disable_device(pdev);
4788
4789         /* Request a slot slot reset. */
4790         return PCI_ERS_RESULT_NEED_RESET;
4791 }
4792
4793 /**
4794  * e1000_io_slot_reset - called after the pci bus has been reset.
4795  * @pdev: Pointer to PCI device
4796  *
4797  * Restart the card from scratch, as if from a cold-boot. Implementation
4798  * resembles the first-half of the e1000_resume routine.
4799  */
4800 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4801 {
4802         struct net_device *netdev = pci_get_drvdata(pdev);
4803         struct e1000_adapter *adapter = netdev_priv(netdev);
4804         struct e1000_hw *hw = &adapter->hw;
4805         int err;
4806
4807         if (adapter->need_ioport)
4808                 err = pci_enable_device(pdev);
4809         else
4810                 err = pci_enable_device_mem(pdev);
4811         if (err) {
4812                 pr_err("Cannot re-enable PCI device after reset.\n");
4813                 return PCI_ERS_RESULT_DISCONNECT;
4814         }
4815         pci_set_master(pdev);
4816
4817         pci_enable_wake(pdev, PCI_D3hot, 0);
4818         pci_enable_wake(pdev, PCI_D3cold, 0);
4819
4820         e1000_reset(adapter);
4821         ew32(WUS, ~0);
4822
4823         return PCI_ERS_RESULT_RECOVERED;
4824 }
4825
4826 /**
4827  * e1000_io_resume - called when traffic can start flowing again.
4828  * @pdev: Pointer to PCI device
4829  *
4830  * This callback is called when the error recovery driver tells us that
4831  * its OK to resume normal operation. Implementation resembles the
4832  * second-half of the e1000_resume routine.
4833  */
4834 static void e1000_io_resume(struct pci_dev *pdev)
4835 {
4836         struct net_device *netdev = pci_get_drvdata(pdev);
4837         struct e1000_adapter *adapter = netdev_priv(netdev);
4838
4839         e1000_init_manageability(adapter);
4840
4841         if (netif_running(netdev)) {
4842                 if (e1000_up(adapter)) {
4843                         pr_info("can't bring device back up after reset\n");
4844                         return;
4845                 }
4846         }
4847
4848         netif_device_attach(netdev);
4849 }
4850
4851 /* e1000_main.c */