net: dsa: Pass a port to get_tag_protocol()
[platform/kernel/linux-rpi.git] / drivers / net / dsa / microchip / ksz_common.c
1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30
31 #include "ksz_priv.h"
32
33 static const struct {
34         int index;
35         char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37         { 0x00, "rx_hi" },
38         { 0x01, "rx_undersize" },
39         { 0x02, "rx_fragments" },
40         { 0x03, "rx_oversize" },
41         { 0x04, "rx_jabbers" },
42         { 0x05, "rx_symbol_err" },
43         { 0x06, "rx_crc_err" },
44         { 0x07, "rx_align_err" },
45         { 0x08, "rx_mac_ctrl" },
46         { 0x09, "rx_pause" },
47         { 0x0A, "rx_bcast" },
48         { 0x0B, "rx_mcast" },
49         { 0x0C, "rx_ucast" },
50         { 0x0D, "rx_64_or_less" },
51         { 0x0E, "rx_65_127" },
52         { 0x0F, "rx_128_255" },
53         { 0x10, "rx_256_511" },
54         { 0x11, "rx_512_1023" },
55         { 0x12, "rx_1024_1522" },
56         { 0x13, "rx_1523_2000" },
57         { 0x14, "rx_2001" },
58         { 0x15, "tx_hi" },
59         { 0x16, "tx_late_col" },
60         { 0x17, "tx_pause" },
61         { 0x18, "tx_bcast" },
62         { 0x19, "tx_mcast" },
63         { 0x1A, "tx_ucast" },
64         { 0x1B, "tx_deferred" },
65         { 0x1C, "tx_total_col" },
66         { 0x1D, "tx_exc_col" },
67         { 0x1E, "tx_single_col" },
68         { 0x1F, "tx_mult_col" },
69         { 0x80, "rx_total" },
70         { 0x81, "tx_total" },
71         { 0x82, "rx_discards" },
72         { 0x83, "tx_discards" },
73 };
74
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77         u8 data;
78
79         ksz_read8(dev, addr, &data);
80         if (set)
81                 data |= bits;
82         else
83                 data &= ~bits;
84         ksz_write8(dev, addr, data);
85 }
86
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89         u32 data;
90
91         ksz_read32(dev, addr, &data);
92         if (set)
93                 data |= bits;
94         else
95                 data &= ~bits;
96         ksz_write32(dev, addr, data);
97 }
98
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100                          bool set)
101 {
102         u32 addr;
103         u8 data;
104
105         addr = PORT_CTRL_ADDR(port, offset);
106         ksz_read8(dev, addr, &data);
107
108         if (set)
109                 data |= bits;
110         else
111                 data &= ~bits;
112
113         ksz_write8(dev, addr, data);
114 }
115
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117                            u32 bits, bool set)
118 {
119         u32 addr;
120         u32 data;
121
122         addr = PORT_CTRL_ADDR(port, offset);
123         ksz_read32(dev, addr, &data);
124
125         if (set)
126                 data |= bits;
127         else
128                 data &= ~bits;
129
130         ksz_write32(dev, addr, data);
131 }
132
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135         u8 data;
136
137         do {
138                 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139                 if (!(data & waiton))
140                         break;
141                 usleep_range(1, 10);
142         } while (timeout-- > 0);
143
144         if (timeout <= 0)
145                 return -ETIMEDOUT;
146
147         return 0;
148 }
149
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152         struct ksz_device *dev = ds->priv;
153         int ret;
154
155         mutex_lock(&dev->vlan_mutex);
156
157         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159
160         /* wait to be cleared */
161         ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162         if (ret < 0) {
163                 dev_dbg(dev->dev, "Failed to read vlan table\n");
164                 goto exit;
165         }
166
167         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170
171         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172
173 exit:
174         mutex_unlock(&dev->vlan_mutex);
175
176         return ret;
177 }
178
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181         struct ksz_device *dev = ds->priv;
182         int ret;
183
184         mutex_lock(&dev->vlan_mutex);
185
186         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189
190         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192
193         /* wait to be cleared */
194         ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195         if (ret < 0) {
196                 dev_dbg(dev->dev, "Failed to write vlan table\n");
197                 goto exit;
198         }
199
200         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201
202         /* update vlan cache table */
203         dev->vlan_cache[vid].table[0] = vlan_table[0];
204         dev->vlan_cache[vid].table[1] = vlan_table[1];
205         dev->vlan_cache[vid].table[2] = vlan_table[2];
206
207 exit:
208         mutex_unlock(&dev->vlan_mutex);
209
210         return ret;
211 }
212
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215         struct ksz_device *dev = ds->priv;
216
217         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225         struct ksz_device *dev = ds->priv;
226
227         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235         u32 data;
236
237         do {
238                 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239                 if (!(data & waiton))
240                         break;
241                 usleep_range(1, 10);
242         } while (timeout-- > 0);
243
244         if (timeout <= 0)
245                 return -ETIMEDOUT;
246
247         return 0;
248 }
249
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252         u32 data;
253
254         do {
255                 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256                 if (!(data & waiton))
257                         break;
258                 usleep_range(1, 10);
259         } while (timeout-- > 0);
260
261         if (timeout <= 0)
262                 return -ETIMEDOUT;
263
264         return 0;
265 }
266
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269         struct ksz_device *dev = ds->priv;
270         u8 data8;
271         u16 data16;
272         u32 data32;
273
274         /* reset switch */
275         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276
277         /* turn off SPI DO Edge select */
278         ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279         data8 &= ~SPI_AUTO_EDGE_DETECTION;
280         ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281
282         /* default configuration */
283         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287
288         /* disable interrupts */
289         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292
293         /* set broadcast storm protection 10% rate */
294         ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295         data16 &= ~BROADCAST_STORM_RATE;
296         data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297         ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298
299         return 0;
300 }
301
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304         u8 data8;
305         u16 data16;
306
307         /* enable tag tail for host port */
308         if (cpu_port)
309                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310                              true);
311
312         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313
314         /* set back pressure */
315         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316
317         /* set flow control */
318         ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319                      PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320
321         /* enable broadcast storm limit */
322         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323
324         /* disable DiffServ priority */
325         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326
327         /* replace priority */
328         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329                      false);
330         ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331                        MTI_PVID_REPLACE, false);
332
333         /* enable 802.1p priority */
334         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335
336         /* configure MAC to 1G & RGMII mode */
337         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338         data8 |= PORT_RGMII_ID_EG_ENABLE;
339         data8 &= ~PORT_MII_NOT_1GBIT;
340         data8 &= ~PORT_MII_SEL_M;
341         data8 |= PORT_RGMII_SEL;
342         ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343
344         /* clear pending interrupts */
345         ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350         struct ksz_device *dev = ds->priv;
351         int i;
352
353         ds->num_ports = dev->port_cnt;
354
355         for (i = 0; i < ds->num_ports; i++) {
356                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357                         dev->cpu_port = i;
358
359                         /* enable cpu port */
360                         port_setup(dev, i, true);
361                 }
362         }
363 }
364
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367         struct ksz_device *dev = ds->priv;
368         int ret = 0;
369
370         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371                                        dev->num_vlans, GFP_KERNEL);
372         if (!dev->vlan_cache)
373                 return -ENOMEM;
374
375         ret = ksz_reset_switch(ds);
376         if (ret) {
377                 dev_err(ds->dev, "failed to reset switch\n");
378                 return ret;
379         }
380
381         /* accept packet up to 2000bytes */
382         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383
384         ksz_config_cpu_port(ds);
385
386         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387
388         /* queue based egress rate limit */
389         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390
391         /* start switch */
392         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393
394         return 0;
395 }
396
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398                                                   int port)
399 {
400         return DSA_TAG_PROTO_KSZ;
401 }
402
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405         struct ksz_device *dev = ds->priv;
406         u16 val = 0;
407
408         ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409
410         return val;
411 }
412
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415         struct ksz_device *dev = ds->priv;
416
417         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418
419         return 0;
420 }
421
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423                            struct phy_device *phy)
424 {
425         struct ksz_device *dev = ds->priv;
426
427         /* setup slave port */
428         port_setup(dev, port, false);
429
430         return 0;
431 }
432
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434                              struct phy_device *phy)
435 {
436         struct ksz_device *dev = ds->priv;
437
438         /* there is no port disable */
439         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441
442 static int ksz_sset_count(struct dsa_switch *ds)
443 {
444         return TOTAL_SWITCH_COUNTER_NUM;
445 }
446
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
448 {
449         int i;
450
451         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452                 memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453                        ETH_GSTRING_LEN);
454         }
455 }
456
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458                                   uint64_t *buf)
459 {
460         struct ksz_device *dev = ds->priv;
461         int i;
462         u32 data;
463         int timeout;
464
465         mutex_lock(&dev->stats_mutex);
466
467         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468                 data = MIB_COUNTER_READ;
469                 data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470                 ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
471
472                 timeout = 1000;
473                 do {
474                         ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475                                     &data);
476                         usleep_range(1, 10);
477                         if (!(data & MIB_COUNTER_READ))
478                                 break;
479                 } while (timeout-- > 0);
480
481                 /* failed to read MIB. get out of loop */
482                 if (!timeout) {
483                         dev_dbg(dev->dev, "Failed to get MIB\n");
484                         break;
485                 }
486
487                 /* count resets upon read */
488                 ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
489
490                 dev->mib_value[i] += (uint64_t)data;
491                 buf[i] = dev->mib_value[i];
492         }
493
494         mutex_unlock(&dev->stats_mutex);
495 }
496
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
498 {
499         struct ksz_device *dev = ds->priv;
500         u8 data;
501
502         ksz_pread8(dev, port, P_STP_CTRL, &data);
503         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
504
505         switch (state) {
506         case BR_STATE_DISABLED:
507                 data |= PORT_LEARN_DISABLE;
508                 break;
509         case BR_STATE_LISTENING:
510                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511                 break;
512         case BR_STATE_LEARNING:
513                 data |= PORT_RX_ENABLE;
514                 break;
515         case BR_STATE_FORWARDING:
516                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517                 break;
518         case BR_STATE_BLOCKING:
519                 data |= PORT_LEARN_DISABLE;
520                 break;
521         default:
522                 dev_err(ds->dev, "invalid STP state: %d\n", state);
523                 return;
524         }
525
526         ksz_pwrite8(dev, port, P_STP_CTRL, data);
527 }
528
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
530 {
531         struct ksz_device *dev = ds->priv;
532         u8 data8;
533
534         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535         data8 |= SW_FAST_AGING;
536         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
537
538         data8 &= ~SW_FAST_AGING;
539         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
540 }
541
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
543 {
544         struct ksz_device *dev = ds->priv;
545
546         if (flag) {
547                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548                              PORT_VLAN_LOOKUP_VID_0, true);
549                 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551         } else {
552                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553                 ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555                              PORT_VLAN_LOOKUP_VID_0, false);
556         }
557
558         return 0;
559 }
560
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562                                  const struct switchdev_obj_port_vlan *vlan,
563                                  struct switchdev_trans *trans)
564 {
565         /* nothing needed */
566
567         return 0;
568 }
569
570 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
571                               const struct switchdev_obj_port_vlan *vlan,
572                               struct switchdev_trans *trans)
573 {
574         struct ksz_device *dev = ds->priv;
575         u32 vlan_table[3];
576         u16 vid;
577         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
578
579         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
580                 if (get_vlan_table(ds, vid, vlan_table)) {
581                         dev_dbg(dev->dev, "Failed to get vlan table\n");
582                         return;
583                 }
584
585                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
586                 if (untagged)
587                         vlan_table[1] |= BIT(port);
588                 else
589                         vlan_table[1] &= ~BIT(port);
590                 vlan_table[1] &= ~(BIT(dev->cpu_port));
591
592                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
593
594                 if (set_vlan_table(ds, vid, vlan_table)) {
595                         dev_dbg(dev->dev, "Failed to set vlan table\n");
596                         return;
597                 }
598
599                 /* change PVID */
600                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
601                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
602         }
603 }
604
605 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
606                              const struct switchdev_obj_port_vlan *vlan)
607 {
608         struct ksz_device *dev = ds->priv;
609         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
610         u32 vlan_table[3];
611         u16 vid;
612         u16 pvid;
613
614         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
615         pvid = pvid & 0xFFF;
616
617         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
618                 if (get_vlan_table(ds, vid, vlan_table)) {
619                         dev_dbg(dev->dev, "Failed to get vlan table\n");
620                         return -ETIMEDOUT;
621                 }
622
623                 vlan_table[2] &= ~BIT(port);
624
625                 if (pvid == vid)
626                         pvid = 1;
627
628                 if (untagged)
629                         vlan_table[1] &= ~BIT(port);
630
631                 if (set_vlan_table(ds, vid, vlan_table)) {
632                         dev_dbg(dev->dev, "Failed to set vlan table\n");
633                         return -ETIMEDOUT;
634                 }
635         }
636
637         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
638
639         return 0;
640 }
641
642 struct alu_struct {
643         /* entry 1 */
644         u8      is_static:1;
645         u8      is_src_filter:1;
646         u8      is_dst_filter:1;
647         u8      prio_age:3;
648         u32     _reserv_0_1:23;
649         u8      mstp:3;
650         /* entry 2 */
651         u8      is_override:1;
652         u8      is_use_fid:1;
653         u32     _reserv_1_1:23;
654         u8      port_forward:7;
655         /* entry 3 & 4*/
656         u32     _reserv_2_1:9;
657         u8      fid:7;
658         u8      mac[ETH_ALEN];
659 };
660
661 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
662                             const unsigned char *addr, u16 vid)
663 {
664         struct ksz_device *dev = ds->priv;
665         u32 alu_table[4];
666         u32 data;
667         int ret = 0;
668
669         mutex_lock(&dev->alu_mutex);
670
671         /* find any entry with mac & vid */
672         data = vid << ALU_FID_INDEX_S;
673         data |= ((addr[0] << 8) | addr[1]);
674         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
675
676         data = ((addr[2] << 24) | (addr[3] << 16));
677         data |= ((addr[4] << 8) | addr[5]);
678         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
679
680         /* start read operation */
681         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
682
683         /* wait to be finished */
684         ret = wait_alu_ready(dev, ALU_START, 1000);
685         if (ret < 0) {
686                 dev_dbg(dev->dev, "Failed to read ALU\n");
687                 goto exit;
688         }
689
690         /* read ALU entry */
691         read_table(ds, alu_table);
692
693         /* update ALU entry */
694         alu_table[0] = ALU_V_STATIC_VALID;
695         alu_table[1] |= BIT(port);
696         if (vid)
697                 alu_table[1] |= ALU_V_USE_FID;
698         alu_table[2] = (vid << ALU_V_FID_S);
699         alu_table[2] |= ((addr[0] << 8) | addr[1]);
700         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
701         alu_table[3] |= ((addr[4] << 8) | addr[5]);
702
703         write_table(ds, alu_table);
704
705         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
706
707         /* wait to be finished */
708         ret = wait_alu_ready(dev, ALU_START, 1000);
709         if (ret < 0)
710                 dev_dbg(dev->dev, "Failed to write ALU\n");
711
712 exit:
713         mutex_unlock(&dev->alu_mutex);
714
715         return ret;
716 }
717
718 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
719                             const unsigned char *addr, u16 vid)
720 {
721         struct ksz_device *dev = ds->priv;
722         u32 alu_table[4];
723         u32 data;
724         int ret = 0;
725
726         mutex_lock(&dev->alu_mutex);
727
728         /* read any entry with mac & vid */
729         data = vid << ALU_FID_INDEX_S;
730         data |= ((addr[0] << 8) | addr[1]);
731         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
732
733         data = ((addr[2] << 24) | (addr[3] << 16));
734         data |= ((addr[4] << 8) | addr[5]);
735         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
736
737         /* start read operation */
738         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
739
740         /* wait to be finished */
741         ret = wait_alu_ready(dev, ALU_START, 1000);
742         if (ret < 0) {
743                 dev_dbg(dev->dev, "Failed to read ALU\n");
744                 goto exit;
745         }
746
747         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
748         if (alu_table[0] & ALU_V_STATIC_VALID) {
749                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
750                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
751                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
752
753                 /* clear forwarding port */
754                 alu_table[2] &= ~BIT(port);
755
756                 /* if there is no port to forward, clear table */
757                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
758                         alu_table[0] = 0;
759                         alu_table[1] = 0;
760                         alu_table[2] = 0;
761                         alu_table[3] = 0;
762                 }
763         } else {
764                 alu_table[0] = 0;
765                 alu_table[1] = 0;
766                 alu_table[2] = 0;
767                 alu_table[3] = 0;
768         }
769
770         write_table(ds, alu_table);
771
772         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
773
774         /* wait to be finished */
775         ret = wait_alu_ready(dev, ALU_START, 1000);
776         if (ret < 0)
777                 dev_dbg(dev->dev, "Failed to write ALU\n");
778
779 exit:
780         mutex_unlock(&dev->alu_mutex);
781
782         return ret;
783 }
784
785 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
786 {
787         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
788         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
789         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
790         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
791                         ALU_V_PRIO_AGE_CNT_M;
792         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
793
794         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
795         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
796         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
797
798         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
799
800         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
801         alu->mac[1] = alu_table[2] & 0xFF;
802         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
803         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
804         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
805         alu->mac[5] = alu_table[3] & 0xFF;
806 }
807
808 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
809                              dsa_fdb_dump_cb_t *cb, void *data)
810 {
811         struct ksz_device *dev = ds->priv;
812         int ret = 0;
813         u32 ksz_data;
814         u32 alu_table[4];
815         struct alu_struct alu;
816         int timeout;
817
818         mutex_lock(&dev->alu_mutex);
819
820         /* start ALU search */
821         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
822
823         do {
824                 timeout = 1000;
825                 do {
826                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
827                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
828                                 break;
829                         usleep_range(1, 10);
830                 } while (timeout-- > 0);
831
832                 if (!timeout) {
833                         dev_dbg(dev->dev, "Failed to search ALU\n");
834                         ret = -ETIMEDOUT;
835                         goto exit;
836                 }
837
838                 /* read ALU table */
839                 read_table(ds, alu_table);
840
841                 convert_alu(&alu, alu_table);
842
843                 if (alu.port_forward & BIT(port)) {
844                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
845                         if (ret)
846                                 goto exit;
847                 }
848         } while (ksz_data & ALU_START);
849
850 exit:
851
852         /* stop ALU search */
853         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
854
855         mutex_unlock(&dev->alu_mutex);
856
857         return ret;
858 }
859
860 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
861                                 const struct switchdev_obj_port_mdb *mdb,
862                                 struct switchdev_trans *trans)
863 {
864         /* nothing to do */
865         return 0;
866 }
867
868 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
869                              const struct switchdev_obj_port_mdb *mdb,
870                              struct switchdev_trans *trans)
871 {
872         struct ksz_device *dev = ds->priv;
873         u32 static_table[4];
874         u32 data;
875         int index;
876         u32 mac_hi, mac_lo;
877
878         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
879         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
880         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
881
882         mutex_lock(&dev->alu_mutex);
883
884         for (index = 0; index < dev->num_statics; index++) {
885                 /* find empty slot first */
886                 data = (index << ALU_STAT_INDEX_S) |
887                         ALU_STAT_READ | ALU_STAT_START;
888                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
889
890                 /* wait to be finished */
891                 if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
892                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
893                         goto exit;
894                 }
895
896                 /* read ALU static table */
897                 read_table(ds, static_table);
898
899                 if (static_table[0] & ALU_V_STATIC_VALID) {
900                         /* check this has same vid & mac address */
901                         if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
902                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
903                             (static_table[3] == mac_lo)) {
904                                 /* found matching one */
905                                 break;
906                         }
907                 } else {
908                         /* found empty one */
909                         break;
910                 }
911         }
912
913         /* no available entry */
914         if (index == dev->num_statics)
915                 goto exit;
916
917         /* add entry */
918         static_table[0] = ALU_V_STATIC_VALID;
919         static_table[1] |= BIT(port);
920         if (mdb->vid)
921                 static_table[1] |= ALU_V_USE_FID;
922         static_table[2] = (mdb->vid << ALU_V_FID_S);
923         static_table[2] |= mac_hi;
924         static_table[3] = mac_lo;
925
926         write_table(ds, static_table);
927
928         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
929         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
930
931         /* wait to be finished */
932         if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
933                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
934
935 exit:
936         mutex_unlock(&dev->alu_mutex);
937 }
938
939 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
940                             const struct switchdev_obj_port_mdb *mdb)
941 {
942         struct ksz_device *dev = ds->priv;
943         u32 static_table[4];
944         u32 data;
945         int index;
946         int ret = 0;
947         u32 mac_hi, mac_lo;
948
949         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
950         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
951         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
952
953         mutex_lock(&dev->alu_mutex);
954
955         for (index = 0; index < dev->num_statics; index++) {
956                 /* find empty slot first */
957                 data = (index << ALU_STAT_INDEX_S) |
958                         ALU_STAT_READ | ALU_STAT_START;
959                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
960
961                 /* wait to be finished */
962                 ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
963                 if (ret < 0) {
964                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
965                         goto exit;
966                 }
967
968                 /* read ALU static table */
969                 read_table(ds, static_table);
970
971                 if (static_table[0] & ALU_V_STATIC_VALID) {
972                         /* check this has same vid & mac address */
973
974                         if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
975                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
976                             (static_table[3] == mac_lo)) {
977                                 /* found matching one */
978                                 break;
979                         }
980                 }
981         }
982
983         /* no available entry */
984         if (index == dev->num_statics) {
985                 ret = -EINVAL;
986                 goto exit;
987         }
988
989         /* clear port */
990         static_table[1] &= ~BIT(port);
991
992         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
993                 /* delete entry */
994                 static_table[0] = 0;
995                 static_table[1] = 0;
996                 static_table[2] = 0;
997                 static_table[3] = 0;
998         }
999
1000         write_table(ds, static_table);
1001
1002         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1003         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1004
1005         /* wait to be finished */
1006         ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1007         if (ret < 0)
1008                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1009
1010 exit:
1011         mutex_unlock(&dev->alu_mutex);
1012
1013         return ret;
1014 }
1015
1016 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1017                                struct dsa_mall_mirror_tc_entry *mirror,
1018                                bool ingress)
1019 {
1020         struct ksz_device *dev = ds->priv;
1021
1022         if (ingress)
1023                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1024         else
1025                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1026
1027         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1028
1029         /* configure mirror port */
1030         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1031                      PORT_MIRROR_SNIFFER, true);
1032
1033         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1034
1035         return 0;
1036 }
1037
1038 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1039                                 struct dsa_mall_mirror_tc_entry *mirror)
1040 {
1041         struct ksz_device *dev = ds->priv;
1042         u8 data;
1043
1044         if (mirror->ingress)
1045                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1046         else
1047                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1048
1049         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1050
1051         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1052                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1053                              PORT_MIRROR_SNIFFER, false);
1054 }
1055
1056 static const struct dsa_switch_ops ksz_switch_ops = {
1057         .get_tag_protocol       = ksz_get_tag_protocol,
1058         .setup                  = ksz_setup,
1059         .phy_read               = ksz_phy_read16,
1060         .phy_write              = ksz_phy_write16,
1061         .port_enable            = ksz_enable_port,
1062         .port_disable           = ksz_disable_port,
1063         .get_strings            = ksz_get_strings,
1064         .get_ethtool_stats      = ksz_get_ethtool_stats,
1065         .get_sset_count         = ksz_sset_count,
1066         .port_stp_state_set     = ksz_port_stp_state_set,
1067         .port_fast_age          = ksz_port_fast_age,
1068         .port_vlan_filtering    = ksz_port_vlan_filtering,
1069         .port_vlan_prepare      = ksz_port_vlan_prepare,
1070         .port_vlan_add          = ksz_port_vlan_add,
1071         .port_vlan_del          = ksz_port_vlan_del,
1072         .port_fdb_dump          = ksz_port_fdb_dump,
1073         .port_fdb_add           = ksz_port_fdb_add,
1074         .port_fdb_del           = ksz_port_fdb_del,
1075         .port_mdb_prepare       = ksz_port_mdb_prepare,
1076         .port_mdb_add           = ksz_port_mdb_add,
1077         .port_mdb_del           = ksz_port_mdb_del,
1078         .port_mirror_add        = ksz_port_mirror_add,
1079         .port_mirror_del        = ksz_port_mirror_del,
1080 };
1081
1082 struct ksz_chip_data {
1083         u32 chip_id;
1084         const char *dev_name;
1085         int num_vlans;
1086         int num_alus;
1087         int num_statics;
1088         int cpu_ports;
1089         int port_cnt;
1090 };
1091
1092 static const struct ksz_chip_data ksz_switch_chips[] = {
1093         {
1094                 .chip_id = 0x00947700,
1095                 .dev_name = "KSZ9477",
1096                 .num_vlans = 4096,
1097                 .num_alus = 4096,
1098                 .num_statics = 16,
1099                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1100                 .port_cnt = 7,          /* total physical port count */
1101         },
1102 };
1103
1104 static int ksz_switch_init(struct ksz_device *dev)
1105 {
1106         int i;
1107
1108         mutex_init(&dev->reg_mutex);
1109         mutex_init(&dev->stats_mutex);
1110         mutex_init(&dev->alu_mutex);
1111         mutex_init(&dev->vlan_mutex);
1112
1113         dev->ds->ops = &ksz_switch_ops;
1114
1115         for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1116                 const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1117
1118                 if (dev->chip_id == chip->chip_id) {
1119                         dev->name = chip->dev_name;
1120                         dev->num_vlans = chip->num_vlans;
1121                         dev->num_alus = chip->num_alus;
1122                         dev->num_statics = chip->num_statics;
1123                         dev->port_cnt = chip->port_cnt;
1124                         dev->cpu_ports = chip->cpu_ports;
1125
1126                         break;
1127                 }
1128         }
1129
1130         /* no switch found */
1131         if (!dev->port_cnt)
1132                 return -ENODEV;
1133
1134         return 0;
1135 }
1136
1137 struct ksz_device *ksz_switch_alloc(struct device *base,
1138                                     const struct ksz_io_ops *ops,
1139                                     void *priv)
1140 {
1141         struct dsa_switch *ds;
1142         struct ksz_device *swdev;
1143
1144         ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1145         if (!ds)
1146                 return NULL;
1147
1148         swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1149         if (!swdev)
1150                 return NULL;
1151
1152         ds->priv = swdev;
1153         swdev->dev = base;
1154
1155         swdev->ds = ds;
1156         swdev->priv = priv;
1157         swdev->ops = ops;
1158
1159         return swdev;
1160 }
1161 EXPORT_SYMBOL(ksz_switch_alloc);
1162
1163 int ksz_switch_detect(struct ksz_device *dev)
1164 {
1165         u8 data8;
1166         u32 id32;
1167         int ret;
1168
1169         /* turn off SPI DO Edge select */
1170         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1171         if (ret)
1172                 return ret;
1173
1174         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1175         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1176         if (ret)
1177                 return ret;
1178
1179         /* read chip id */
1180         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1181         if (ret)
1182                 return ret;
1183
1184         dev->chip_id = id32;
1185
1186         return 0;
1187 }
1188 EXPORT_SYMBOL(ksz_switch_detect);
1189
1190 int ksz_switch_register(struct ksz_device *dev)
1191 {
1192         int ret;
1193
1194         if (dev->pdata)
1195                 dev->chip_id = dev->pdata->chip_id;
1196
1197         if (ksz_switch_detect(dev))
1198                 return -EINVAL;
1199
1200         ret = ksz_switch_init(dev);
1201         if (ret)
1202                 return ret;
1203
1204         return dsa_register_switch(dev->ds);
1205 }
1206 EXPORT_SYMBOL(ksz_switch_register);
1207
1208 void ksz_switch_remove(struct ksz_device *dev)
1209 {
1210         dsa_unregister_switch(dev->ds);
1211 }
1212 EXPORT_SYMBOL(ksz_switch_remove);
1213
1214 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1215 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1216 MODULE_LICENSE("GPL");