772e34d5b6b8ad62ecdb8e25fe72f8840179c2cc
[platform/kernel/linux-starfive.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT                    BIT(0)
22 #define NEW_XMII                        BIT(1)
23 #define IS_9893                         BIT(2)
24
25 static const struct {
26         int index;
27         char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29         { 0x00, "rx_hi" },
30         { 0x01, "rx_undersize" },
31         { 0x02, "rx_fragments" },
32         { 0x03, "rx_oversize" },
33         { 0x04, "rx_jabbers" },
34         { 0x05, "rx_symbol_err" },
35         { 0x06, "rx_crc_err" },
36         { 0x07, "rx_align_err" },
37         { 0x08, "rx_mac_ctrl" },
38         { 0x09, "rx_pause" },
39         { 0x0A, "rx_bcast" },
40         { 0x0B, "rx_mcast" },
41         { 0x0C, "rx_ucast" },
42         { 0x0D, "rx_64_or_less" },
43         { 0x0E, "rx_65_127" },
44         { 0x0F, "rx_128_255" },
45         { 0x10, "rx_256_511" },
46         { 0x11, "rx_512_1023" },
47         { 0x12, "rx_1024_1522" },
48         { 0x13, "rx_1523_2000" },
49         { 0x14, "rx_2001" },
50         { 0x15, "tx_hi" },
51         { 0x16, "tx_late_col" },
52         { 0x17, "tx_pause" },
53         { 0x18, "tx_bcast" },
54         { 0x19, "tx_mcast" },
55         { 0x1A, "tx_ucast" },
56         { 0x1B, "tx_deferred" },
57         { 0x1C, "tx_total_col" },
58         { 0x1D, "tx_exc_col" },
59         { 0x1E, "tx_single_col" },
60         { 0x1F, "tx_mult_col" },
61         { 0x80, "rx_total" },
62         { 0x81, "tx_total" },
63         { 0x82, "rx_discards" },
64         { 0x83, "tx_discards" },
65 };
66
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69         regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73                          bool set)
74 {
75         regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76                            bits, set ? bits : 0);
77 }
78
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81         regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85                                u32 bits, bool set)
86 {
87         regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88                            bits, set ? bits : 0);
89 }
90
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93         unsigned int val;
94
95         return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96                                         val, !(val & VLAN_START), 10, 1000);
97 }
98
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100                                   u32 *vlan_table)
101 {
102         int ret;
103
104         mutex_lock(&dev->vlan_mutex);
105
106         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109         /* wait to be cleared */
110         ret = ksz9477_wait_vlan_ctrl_ready(dev);
111         if (ret) {
112                 dev_dbg(dev->dev, "Failed to read vlan table\n");
113                 goto exit;
114         }
115
116         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122 exit:
123         mutex_unlock(&dev->vlan_mutex);
124
125         return ret;
126 }
127
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129                                   u32 *vlan_table)
130 {
131         int ret;
132
133         mutex_lock(&dev->vlan_mutex);
134
135         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142         /* wait to be cleared */
143         ret = ksz9477_wait_vlan_ctrl_ready(dev);
144         if (ret) {
145                 dev_dbg(dev->dev, "Failed to write vlan table\n");
146                 goto exit;
147         }
148
149         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151         /* update vlan cache table */
152         dev->vlan_cache[vid].table[0] = vlan_table[0];
153         dev->vlan_cache[vid].table[1] = vlan_table[1];
154         dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156 exit:
157         mutex_unlock(&dev->vlan_mutex);
158
159         return ret;
160 }
161
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180         unsigned int val;
181
182         return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183                                         val, !(val & ALU_START), 10, 1000);
184 }
185
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188         unsigned int val;
189
190         return regmap_read_poll_timeout(dev->regmap[2],
191                                         REG_SW_ALU_STAT_CTRL__4,
192                                         val, !(val & ALU_STAT_START),
193                                         10, 1000);
194 }
195
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198         u8 data8;
199         u32 data32;
200
201         /* reset switch */
202         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204         /* turn off SPI DO Edge select */
205         regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206                            SPI_AUTO_EDGE_DETECTION, 0);
207
208         /* default configuration */
209         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214         /* disable interrupts */
215         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219         /* set broadcast storm protection 10% rate */
220         regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221                            BROADCAST_STORM_RATE,
222                            (BROADCAST_STORM_VALUE *
223                            BROADCAST_STORM_PROT_RATE) / 100);
224
225         if (dev->synclko_125)
226                 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227                            SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229         return 0;
230 }
231
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233                               u64 *cnt)
234 {
235         struct ksz_port *p = &dev->ports[port];
236         unsigned int val;
237         u32 data;
238         int ret;
239
240         /* retain the flush/freeze bit */
241         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242         data |= MIB_COUNTER_READ;
243         data |= (addr << MIB_COUNTER_INDEX_S);
244         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246         ret = regmap_read_poll_timeout(dev->regmap[2],
247                         PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248                         val, !(val & MIB_COUNTER_READ), 10, 1000);
249         /* failed to read MIB. get out of loop */
250         if (ret) {
251                 dev_dbg(dev->dev, "Failed to get MIB\n");
252                 return;
253         }
254
255         /* count resets upon read */
256         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257         *cnt += data;
258 }
259
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261                               u64 *dropped, u64 *cnt)
262 {
263         addr = ksz9477_mib_names[addr].index;
264         ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270         struct ksz_port *p = &dev->ports[port];
271
272         /* enable/disable the port for flush/freeze function */
273         mutex_lock(&p->mib.cnt_mutex);
274         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276         /* used by MIB counter reading code to know freeze is enabled */
277         p->freeze = freeze;
278         mutex_unlock(&p->mib.cnt_mutex);
279 }
280
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283         struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285         /* flush all enabled port MIB counters */
286         mutex_lock(&mib->cnt_mutex);
287         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288                      MIB_COUNTER_FLUSH_FREEZE);
289         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291         mutex_unlock(&mib->cnt_mutex);
292
293         mib->cnt_ptr = 0;
294         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298                                                       int port,
299                                                       enum dsa_tag_protocol mp)
300 {
301         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302         struct ksz_device *dev = ds->priv;
303
304         if (dev->features & IS_9893)
305                 proto = DSA_TAG_PROTO_KSZ9893;
306         return proto;
307 }
308
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311         struct ksz_device *dev = ds->priv;
312         u16 val = 0xffff;
313
314         /* No real PHY after this. Simulate the PHY.
315          * A fixed PHY can be setup in the device tree, but this function is
316          * still called for that port during initialization.
317          * For RGMII PHY there is no way to access it so the fixed PHY should
318          * be used.  For SGMII PHY the supporting code will be added later.
319          */
320         if (addr >= dev->phy_port_cnt) {
321                 struct ksz_port *p = &dev->ports[addr];
322
323                 switch (reg) {
324                 case MII_BMCR:
325                         val = 0x1140;
326                         break;
327                 case MII_BMSR:
328                         val = 0x796d;
329                         break;
330                 case MII_PHYSID1:
331                         val = 0x0022;
332                         break;
333                 case MII_PHYSID2:
334                         val = 0x1631;
335                         break;
336                 case MII_ADVERTISE:
337                         val = 0x05e1;
338                         break;
339                 case MII_LPA:
340                         val = 0xc5e1;
341                         break;
342                 case MII_CTRL1000:
343                         val = 0x0700;
344                         break;
345                 case MII_STAT1000:
346                         if (p->phydev.speed == SPEED_1000)
347                                 val = 0x3800;
348                         else
349                                 val = 0;
350                         break;
351                 }
352         } else {
353                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354         }
355
356         return val;
357 }
358
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360                                u16 val)
361 {
362         struct ksz_device *dev = ds->priv;
363
364         /* No real PHY after this. */
365         if (addr >= dev->phy_port_cnt)
366                 return 0;
367
368         /* No gigabit support.  Do not write to this register. */
369         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370                 return 0;
371         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372
373         return 0;
374 }
375
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377                                 u32 stringset, uint8_t *buf)
378 {
379         int i;
380
381         if (stringset != ETH_SS_STATS)
382                 return;
383
384         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386                        ETH_GSTRING_LEN);
387         }
388 }
389
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391                                     u8 member)
392 {
393         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394         dev->ports[port].member = member;
395 }
396
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398                                        u8 state)
399 {
400         struct ksz_device *dev = ds->priv;
401         struct ksz_port *p = &dev->ports[port];
402         u8 data;
403         int member = -1;
404         int forward = dev->member;
405
406         ksz_pread8(dev, port, P_STP_CTRL, &data);
407         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408
409         switch (state) {
410         case BR_STATE_DISABLED:
411                 data |= PORT_LEARN_DISABLE;
412                 if (port != dev->cpu_port)
413                         member = 0;
414                 break;
415         case BR_STATE_LISTENING:
416                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417                 if (port != dev->cpu_port &&
418                     p->stp_state == BR_STATE_DISABLED)
419                         member = dev->host_mask | p->vid_member;
420                 break;
421         case BR_STATE_LEARNING:
422                 data |= PORT_RX_ENABLE;
423                 break;
424         case BR_STATE_FORWARDING:
425                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426
427                 /* This function is also used internally. */
428                 if (port == dev->cpu_port)
429                         break;
430
431                 member = dev->host_mask | p->vid_member;
432                 mutex_lock(&dev->dev_mutex);
433
434                 /* Port is a member of a bridge. */
435                 if (dev->br_member & (1 << port)) {
436                         dev->member |= (1 << port);
437                         member = dev->member;
438                 }
439                 mutex_unlock(&dev->dev_mutex);
440                 break;
441         case BR_STATE_BLOCKING:
442                 data |= PORT_LEARN_DISABLE;
443                 if (port != dev->cpu_port &&
444                     p->stp_state == BR_STATE_DISABLED)
445                         member = dev->host_mask | p->vid_member;
446                 break;
447         default:
448                 dev_err(ds->dev, "invalid STP state: %d\n", state);
449                 return;
450         }
451
452         ksz_pwrite8(dev, port, P_STP_CTRL, data);
453         p->stp_state = state;
454         mutex_lock(&dev->dev_mutex);
455         /* Port membership may share register with STP state. */
456         if (member >= 0 && member != p->member)
457                 ksz9477_cfg_port_member(dev, port, (u8)member);
458
459         /* Check if forwarding needs to be updated. */
460         if (state != BR_STATE_FORWARDING) {
461                 if (dev->br_member & (1 << port))
462                         dev->member &= ~(1 << port);
463         }
464
465         /* When topology has changed the function ksz_update_port_member
466          * should be called to modify port forwarding behavior.
467          */
468         if (forward != dev->member)
469                 ksz_update_port_member(dev, port);
470         mutex_unlock(&dev->dev_mutex);
471 }
472
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475         u8 data;
476
477         regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478                            SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479                            SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480
481         if (port < dev->port_cnt) {
482                 /* flush individual port */
483                 ksz_pread8(dev, port, P_STP_CTRL, &data);
484                 if (!(data & PORT_LEARN_DISABLE))
485                         ksz_pwrite8(dev, port, P_STP_CTRL,
486                                     data | PORT_LEARN_DISABLE);
487                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
489         } else {
490                 /* flush all */
491                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492         }
493 }
494
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496                                        bool flag)
497 {
498         struct ksz_device *dev = ds->priv;
499
500         if (flag) {
501                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502                              PORT_VLAN_LOOKUP_VID_0, true);
503                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504         } else {
505                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507                              PORT_VLAN_LOOKUP_VID_0, false);
508         }
509
510         return 0;
511 }
512
513 static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514                                  const struct switchdev_obj_port_vlan *vlan,
515                                  struct netlink_ext_ack *extack)
516 {
517         struct ksz_device *dev = ds->priv;
518         u32 vlan_table[3];
519         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520         int err;
521
522         err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
523         if (err) {
524                 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
525                 return err;
526         }
527
528         vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
529         if (untagged)
530                 vlan_table[1] |= BIT(port);
531         else
532                 vlan_table[1] &= ~BIT(port);
533         vlan_table[1] &= ~(BIT(dev->cpu_port));
534
535         vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
536
537         err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
538         if (err) {
539                 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
540                 return err;
541         }
542
543         /* change PVID */
544         if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
545                 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
546
547         return 0;
548 }
549
550 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
551                                  const struct switchdev_obj_port_vlan *vlan)
552 {
553         struct ksz_device *dev = ds->priv;
554         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
555         u32 vlan_table[3];
556         u16 pvid;
557
558         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
559         pvid = pvid & 0xFFF;
560
561         if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
562                 dev_dbg(dev->dev, "Failed to get vlan table\n");
563                 return -ETIMEDOUT;
564         }
565
566         vlan_table[2] &= ~BIT(port);
567
568         if (pvid == vlan->vid)
569                 pvid = 1;
570
571         if (untagged)
572                 vlan_table[1] &= ~BIT(port);
573
574         if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
575                 dev_dbg(dev->dev, "Failed to set vlan table\n");
576                 return -ETIMEDOUT;
577         }
578
579         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580
581         return 0;
582 }
583
584 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585                                 const unsigned char *addr, u16 vid)
586 {
587         struct ksz_device *dev = ds->priv;
588         u32 alu_table[4];
589         u32 data;
590         int ret = 0;
591
592         mutex_lock(&dev->alu_mutex);
593
594         /* find any entry with mac & vid */
595         data = vid << ALU_FID_INDEX_S;
596         data |= ((addr[0] << 8) | addr[1]);
597         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598
599         data = ((addr[2] << 24) | (addr[3] << 16));
600         data |= ((addr[4] << 8) | addr[5]);
601         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602
603         /* start read operation */
604         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605
606         /* wait to be finished */
607         ret = ksz9477_wait_alu_ready(dev);
608         if (ret) {
609                 dev_dbg(dev->dev, "Failed to read ALU\n");
610                 goto exit;
611         }
612
613         /* read ALU entry */
614         ksz9477_read_table(dev, alu_table);
615
616         /* update ALU entry */
617         alu_table[0] = ALU_V_STATIC_VALID;
618         alu_table[1] |= BIT(port);
619         if (vid)
620                 alu_table[1] |= ALU_V_USE_FID;
621         alu_table[2] = (vid << ALU_V_FID_S);
622         alu_table[2] |= ((addr[0] << 8) | addr[1]);
623         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624         alu_table[3] |= ((addr[4] << 8) | addr[5]);
625
626         ksz9477_write_table(dev, alu_table);
627
628         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629
630         /* wait to be finished */
631         ret = ksz9477_wait_alu_ready(dev);
632         if (ret)
633                 dev_dbg(dev->dev, "Failed to write ALU\n");
634
635 exit:
636         mutex_unlock(&dev->alu_mutex);
637
638         return ret;
639 }
640
641 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642                                 const unsigned char *addr, u16 vid)
643 {
644         struct ksz_device *dev = ds->priv;
645         u32 alu_table[4];
646         u32 data;
647         int ret = 0;
648
649         mutex_lock(&dev->alu_mutex);
650
651         /* read any entry with mac & vid */
652         data = vid << ALU_FID_INDEX_S;
653         data |= ((addr[0] << 8) | addr[1]);
654         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655
656         data = ((addr[2] << 24) | (addr[3] << 16));
657         data |= ((addr[4] << 8) | addr[5]);
658         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659
660         /* start read operation */
661         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662
663         /* wait to be finished */
664         ret = ksz9477_wait_alu_ready(dev);
665         if (ret) {
666                 dev_dbg(dev->dev, "Failed to read ALU\n");
667                 goto exit;
668         }
669
670         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671         if (alu_table[0] & ALU_V_STATIC_VALID) {
672                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675
676                 /* clear forwarding port */
677                 alu_table[2] &= ~BIT(port);
678
679                 /* if there is no port to forward, clear table */
680                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681                         alu_table[0] = 0;
682                         alu_table[1] = 0;
683                         alu_table[2] = 0;
684                         alu_table[3] = 0;
685                 }
686         } else {
687                 alu_table[0] = 0;
688                 alu_table[1] = 0;
689                 alu_table[2] = 0;
690                 alu_table[3] = 0;
691         }
692
693         ksz9477_write_table(dev, alu_table);
694
695         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696
697         /* wait to be finished */
698         ret = ksz9477_wait_alu_ready(dev);
699         if (ret)
700                 dev_dbg(dev->dev, "Failed to write ALU\n");
701
702 exit:
703         mutex_unlock(&dev->alu_mutex);
704
705         return ret;
706 }
707
708 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709 {
710         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714                         ALU_V_PRIO_AGE_CNT_M;
715         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716
717         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720
721         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722
723         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724         alu->mac[1] = alu_table[2] & 0xFF;
725         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728         alu->mac[5] = alu_table[3] & 0xFF;
729 }
730
731 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732                                  dsa_fdb_dump_cb_t *cb, void *data)
733 {
734         struct ksz_device *dev = ds->priv;
735         int ret = 0;
736         u32 ksz_data;
737         u32 alu_table[4];
738         struct alu_struct alu;
739         int timeout;
740
741         mutex_lock(&dev->alu_mutex);
742
743         /* start ALU search */
744         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745
746         do {
747                 timeout = 1000;
748                 do {
749                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751                                 break;
752                         usleep_range(1, 10);
753                 } while (timeout-- > 0);
754
755                 if (!timeout) {
756                         dev_dbg(dev->dev, "Failed to search ALU\n");
757                         ret = -ETIMEDOUT;
758                         goto exit;
759                 }
760
761                 /* read ALU table */
762                 ksz9477_read_table(dev, alu_table);
763
764                 ksz9477_convert_alu(&alu, alu_table);
765
766                 if (alu.port_forward & BIT(port)) {
767                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
768                         if (ret)
769                                 goto exit;
770                 }
771         } while (ksz_data & ALU_START);
772
773 exit:
774
775         /* stop ALU search */
776         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777
778         mutex_unlock(&dev->alu_mutex);
779
780         return ret;
781 }
782
783 static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784                                 const struct switchdev_obj_port_mdb *mdb)
785 {
786         struct ksz_device *dev = ds->priv;
787         u32 static_table[4];
788         u32 data;
789         int index;
790         u32 mac_hi, mac_lo;
791         int err = 0;
792
793         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
794         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
795         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
796
797         mutex_lock(&dev->alu_mutex);
798
799         for (index = 0; index < dev->num_statics; index++) {
800                 /* find empty slot first */
801                 data = (index << ALU_STAT_INDEX_S) |
802                         ALU_STAT_READ | ALU_STAT_START;
803                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
804
805                 /* wait to be finished */
806                 err = ksz9477_wait_alu_sta_ready(dev);
807                 if (err) {
808                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
809                         goto exit;
810                 }
811
812                 /* read ALU static table */
813                 ksz9477_read_table(dev, static_table);
814
815                 if (static_table[0] & ALU_V_STATIC_VALID) {
816                         /* check this has same vid & mac address */
817                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
818                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
819                             static_table[3] == mac_lo) {
820                                 /* found matching one */
821                                 break;
822                         }
823                 } else {
824                         /* found empty one */
825                         break;
826                 }
827         }
828
829         /* no available entry */
830         if (index == dev->num_statics) {
831                 err = -ENOSPC;
832                 goto exit;
833         }
834
835         /* add entry */
836         static_table[0] = ALU_V_STATIC_VALID;
837         static_table[1] |= BIT(port);
838         if (mdb->vid)
839                 static_table[1] |= ALU_V_USE_FID;
840         static_table[2] = (mdb->vid << ALU_V_FID_S);
841         static_table[2] |= mac_hi;
842         static_table[3] = mac_lo;
843
844         ksz9477_write_table(dev, static_table);
845
846         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
847         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
848
849         /* wait to be finished */
850         if (ksz9477_wait_alu_sta_ready(dev))
851                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
852
853 exit:
854         mutex_unlock(&dev->alu_mutex);
855         return err;
856 }
857
858 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
859                                 const struct switchdev_obj_port_mdb *mdb)
860 {
861         struct ksz_device *dev = ds->priv;
862         u32 static_table[4];
863         u32 data;
864         int index;
865         int ret = 0;
866         u32 mac_hi, mac_lo;
867
868         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
869         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
870         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
871
872         mutex_lock(&dev->alu_mutex);
873
874         for (index = 0; index < dev->num_statics; index++) {
875                 /* find empty slot first */
876                 data = (index << ALU_STAT_INDEX_S) |
877                         ALU_STAT_READ | ALU_STAT_START;
878                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
879
880                 /* wait to be finished */
881                 ret = ksz9477_wait_alu_sta_ready(dev);
882                 if (ret) {
883                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
884                         goto exit;
885                 }
886
887                 /* read ALU static table */
888                 ksz9477_read_table(dev, static_table);
889
890                 if (static_table[0] & ALU_V_STATIC_VALID) {
891                         /* check this has same vid & mac address */
892
893                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
894                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
895                             static_table[3] == mac_lo) {
896                                 /* found matching one */
897                                 break;
898                         }
899                 }
900         }
901
902         /* no available entry */
903         if (index == dev->num_statics)
904                 goto exit;
905
906         /* clear port */
907         static_table[1] &= ~BIT(port);
908
909         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
910                 /* delete entry */
911                 static_table[0] = 0;
912                 static_table[1] = 0;
913                 static_table[2] = 0;
914                 static_table[3] = 0;
915         }
916
917         ksz9477_write_table(dev, static_table);
918
919         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
920         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
921
922         /* wait to be finished */
923         ret = ksz9477_wait_alu_sta_ready(dev);
924         if (ret)
925                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
926
927 exit:
928         mutex_unlock(&dev->alu_mutex);
929
930         return ret;
931 }
932
933 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
934                                    struct dsa_mall_mirror_tc_entry *mirror,
935                                    bool ingress)
936 {
937         struct ksz_device *dev = ds->priv;
938
939         if (ingress)
940                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
941         else
942                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
943
944         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
945
946         /* configure mirror port */
947         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
948                      PORT_MIRROR_SNIFFER, true);
949
950         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
951
952         return 0;
953 }
954
955 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
956                                     struct dsa_mall_mirror_tc_entry *mirror)
957 {
958         struct ksz_device *dev = ds->priv;
959         u8 data;
960
961         if (mirror->ingress)
962                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
963         else
964                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
965
966         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
967
968         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
969                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
970                              PORT_MIRROR_SNIFFER, false);
971 }
972
973 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
974 {
975         bool gbit;
976
977         if (dev->features & NEW_XMII)
978                 gbit = !(data & PORT_MII_NOT_1GBIT);
979         else
980                 gbit = !!(data & PORT_MII_1000MBIT_S1);
981         return gbit;
982 }
983
984 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
985 {
986         if (dev->features & NEW_XMII) {
987                 if (gbit)
988                         *data &= ~PORT_MII_NOT_1GBIT;
989                 else
990                         *data |= PORT_MII_NOT_1GBIT;
991         } else {
992                 if (gbit)
993                         *data |= PORT_MII_1000MBIT_S1;
994                 else
995                         *data &= ~PORT_MII_1000MBIT_S1;
996         }
997 }
998
999 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1000 {
1001         int mode;
1002
1003         if (dev->features & NEW_XMII) {
1004                 switch (data & PORT_MII_SEL_M) {
1005                 case PORT_MII_SEL:
1006                         mode = 0;
1007                         break;
1008                 case PORT_RMII_SEL:
1009                         mode = 1;
1010                         break;
1011                 case PORT_GMII_SEL:
1012                         mode = 2;
1013                         break;
1014                 default:
1015                         mode = 3;
1016                 }
1017         } else {
1018                 switch (data & PORT_MII_SEL_M) {
1019                 case PORT_MII_SEL_S1:
1020                         mode = 0;
1021                         break;
1022                 case PORT_RMII_SEL_S1:
1023                         mode = 1;
1024                         break;
1025                 case PORT_GMII_SEL_S1:
1026                         mode = 2;
1027                         break;
1028                 default:
1029                         mode = 3;
1030                 }
1031         }
1032         return mode;
1033 }
1034
1035 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1036 {
1037         u8 xmii;
1038
1039         if (dev->features & NEW_XMII) {
1040                 switch (mode) {
1041                 case 0:
1042                         xmii = PORT_MII_SEL;
1043                         break;
1044                 case 1:
1045                         xmii = PORT_RMII_SEL;
1046                         break;
1047                 case 2:
1048                         xmii = PORT_GMII_SEL;
1049                         break;
1050                 default:
1051                         xmii = PORT_RGMII_SEL;
1052                         break;
1053                 }
1054         } else {
1055                 switch (mode) {
1056                 case 0:
1057                         xmii = PORT_MII_SEL_S1;
1058                         break;
1059                 case 1:
1060                         xmii = PORT_RMII_SEL_S1;
1061                         break;
1062                 case 2:
1063                         xmii = PORT_GMII_SEL_S1;
1064                         break;
1065                 default:
1066                         xmii = PORT_RGMII_SEL_S1;
1067                         break;
1068                 }
1069         }
1070         *data &= ~PORT_MII_SEL_M;
1071         *data |= xmii;
1072 }
1073
1074 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1075 {
1076         phy_interface_t interface;
1077         bool gbit;
1078         int mode;
1079         u8 data8;
1080
1081         if (port < dev->phy_port_cnt)
1082                 return PHY_INTERFACE_MODE_NA;
1083         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1084         gbit = ksz9477_get_gbit(dev, data8);
1085         mode = ksz9477_get_xmii(dev, data8);
1086         switch (mode) {
1087         case 2:
1088                 interface = PHY_INTERFACE_MODE_GMII;
1089                 if (gbit)
1090                         break;
1091                 fallthrough;
1092         case 0:
1093                 interface = PHY_INTERFACE_MODE_MII;
1094                 break;
1095         case 1:
1096                 interface = PHY_INTERFACE_MODE_RMII;
1097                 break;
1098         default:
1099                 interface = PHY_INTERFACE_MODE_RGMII;
1100                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1101                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1102                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1103                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1104                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1105                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1106                 }
1107                 break;
1108         }
1109         return interface;
1110 }
1111
1112 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1113                                    u8 dev_addr, u16 reg_addr, u16 val)
1114 {
1115         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1116                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1117         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1118         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1119                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1120         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1121 }
1122
1123 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1124 {
1125         /* Apply PHY settings to address errata listed in
1126          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1127          * Silicon Errata and Data Sheet Clarification documents:
1128          *
1129          * Register settings are needed to improve PHY receive performance
1130          */
1131         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1132         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1133         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1134         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1135         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1136         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1137         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1138
1139         /* Transmit waveform amplitude can be improved
1140          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1141          */
1142         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1143
1144         /* Energy Efficient Ethernet (EEE) feature select must
1145          * be manually disabled (except on KSZ8565 which is 100Mbit)
1146          */
1147         if (dev->features & GBIT_SUPPORT)
1148                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1149
1150         /* Register settings are required to meet data sheet
1151          * supply current specifications
1152          */
1153         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1154         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1155         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1156         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1157         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1158         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1159         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1160         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1161         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1162         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1163         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1164         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1165         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1166 }
1167
1168 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1169 {
1170         u8 data8;
1171         u8 member;
1172         u16 data16;
1173         struct ksz_port *p = &dev->ports[port];
1174
1175         /* enable tag tail for host port */
1176         if (cpu_port)
1177                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1178                              true);
1179
1180         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1181
1182         /* set back pressure */
1183         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1184
1185         /* enable broadcast storm limit */
1186         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1187
1188         /* disable DiffServ priority */
1189         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1190
1191         /* replace priority */
1192         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1193                      false);
1194         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1195                            MTI_PVID_REPLACE, false);
1196
1197         /* enable 802.1p priority */
1198         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1199
1200         if (port < dev->phy_port_cnt) {
1201                 /* do not force flow control */
1202                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1203                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1204                              false);
1205
1206                 if (dev->phy_errata_9477)
1207                         ksz9477_phy_errata_setup(dev, port);
1208         } else {
1209                 /* force flow control */
1210                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1211                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1212                              true);
1213
1214                 /* configure MAC to 1G & RGMII mode */
1215                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1216                 switch (p->interface) {
1217                 case PHY_INTERFACE_MODE_MII:
1218                         ksz9477_set_xmii(dev, 0, &data8);
1219                         ksz9477_set_gbit(dev, false, &data8);
1220                         p->phydev.speed = SPEED_100;
1221                         break;
1222                 case PHY_INTERFACE_MODE_RMII:
1223                         ksz9477_set_xmii(dev, 1, &data8);
1224                         ksz9477_set_gbit(dev, false, &data8);
1225                         p->phydev.speed = SPEED_100;
1226                         break;
1227                 case PHY_INTERFACE_MODE_GMII:
1228                         ksz9477_set_xmii(dev, 2, &data8);
1229                         ksz9477_set_gbit(dev, true, &data8);
1230                         p->phydev.speed = SPEED_1000;
1231                         break;
1232                 default:
1233                         ksz9477_set_xmii(dev, 3, &data8);
1234                         ksz9477_set_gbit(dev, true, &data8);
1235                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1236                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1237                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1238                             p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1239                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1240                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1241                             p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1242                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1243                         /* On KSZ9893, disable RGMII in-band status support */
1244                         if (dev->features & IS_9893)
1245                                 data8 &= ~PORT_MII_MAC_MODE;
1246                         p->phydev.speed = SPEED_1000;
1247                         break;
1248                 }
1249                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1250                 p->phydev.duplex = 1;
1251         }
1252         mutex_lock(&dev->dev_mutex);
1253         if (cpu_port)
1254                 member = dev->port_mask;
1255         else
1256                 member = dev->host_mask | p->vid_member;
1257         mutex_unlock(&dev->dev_mutex);
1258         ksz9477_cfg_port_member(dev, port, member);
1259
1260         /* clear pending interrupts */
1261         if (port < dev->phy_port_cnt)
1262                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1263 }
1264
1265 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1266 {
1267         struct ksz_device *dev = ds->priv;
1268         struct ksz_port *p;
1269         int i;
1270
1271         for (i = 0; i < dev->port_cnt; i++) {
1272                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1273                         phy_interface_t interface;
1274                         const char *prev_msg;
1275                         const char *prev_mode;
1276
1277                         dev->cpu_port = i;
1278                         dev->host_mask = (1 << dev->cpu_port);
1279                         dev->port_mask |= dev->host_mask;
1280                         p = &dev->ports[i];
1281
1282                         /* Read from XMII register to determine host port
1283                          * interface.  If set specifically in device tree
1284                          * note the difference to help debugging.
1285                          */
1286                         interface = ksz9477_get_interface(dev, i);
1287                         if (!p->interface) {
1288                                 if (dev->compat_interface) {
1289                                         dev_warn(dev->dev,
1290                                                  "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1291                                                  "Please update your device tree.\n",
1292                                                  i);
1293                                         p->interface = dev->compat_interface;
1294                                 } else {
1295                                         p->interface = interface;
1296                                 }
1297                         }
1298                         if (interface && interface != p->interface) {
1299                                 prev_msg = " instead of ";
1300                                 prev_mode = phy_modes(interface);
1301                         } else {
1302                                 prev_msg = "";
1303                                 prev_mode = "";
1304                         }
1305                         dev_info(dev->dev,
1306                                  "Port%d: using phy mode %s%s%s\n",
1307                                  i,
1308                                  phy_modes(p->interface),
1309                                  prev_msg,
1310                                  prev_mode);
1311
1312                         /* enable cpu port */
1313                         ksz9477_port_setup(dev, i, true);
1314                         p->vid_member = dev->port_mask;
1315                         p->on = 1;
1316                 }
1317         }
1318
1319         dev->member = dev->host_mask;
1320
1321         for (i = 0; i < dev->port_cnt; i++) {
1322                 if (i == dev->cpu_port)
1323                         continue;
1324                 p = &dev->ports[i];
1325
1326                 /* Initialize to non-zero so that ksz_cfg_port_member() will
1327                  * be called.
1328                  */
1329                 p->vid_member = (1 << i);
1330                 p->member = dev->port_mask;
1331                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1332                 p->on = 1;
1333                 if (i < dev->phy_port_cnt)
1334                         p->phy = 1;
1335                 if (dev->chip_id == 0x00947700 && i == 6) {
1336                         p->sgmii = 1;
1337
1338                         /* SGMII PHY detection code is not implemented yet. */
1339                         p->phy = 0;
1340                 }
1341         }
1342 }
1343
1344 static int ksz9477_setup(struct dsa_switch *ds)
1345 {
1346         struct ksz_device *dev = ds->priv;
1347         int ret = 0;
1348
1349         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1350                                        dev->num_vlans, GFP_KERNEL);
1351         if (!dev->vlan_cache)
1352                 return -ENOMEM;
1353
1354         ret = ksz9477_reset_switch(dev);
1355         if (ret) {
1356                 dev_err(ds->dev, "failed to reset switch\n");
1357                 return ret;
1358         }
1359
1360         /* Required for port partitioning. */
1361         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1362                       true);
1363
1364         /* Do not work correctly with tail tagging. */
1365         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1366
1367         /* accept packet up to 2000bytes */
1368         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1369
1370         ksz9477_config_cpu_port(ds);
1371
1372         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1373
1374         /* queue based egress rate limit */
1375         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1376
1377         /* enable global MIB counter freeze function */
1378         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1379
1380         /* start switch */
1381         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1382
1383         ksz_init_mib_timer(dev);
1384
1385         ds->configure_vlan_while_not_filtering = false;
1386
1387         return 0;
1388 }
1389
1390 static const struct dsa_switch_ops ksz9477_switch_ops = {
1391         .get_tag_protocol       = ksz9477_get_tag_protocol,
1392         .setup                  = ksz9477_setup,
1393         .phy_read               = ksz9477_phy_read16,
1394         .phy_write              = ksz9477_phy_write16,
1395         .phylink_mac_link_down  = ksz_mac_link_down,
1396         .port_enable            = ksz_enable_port,
1397         .get_strings            = ksz9477_get_strings,
1398         .get_ethtool_stats      = ksz_get_ethtool_stats,
1399         .get_sset_count         = ksz_sset_count,
1400         .port_bridge_join       = ksz_port_bridge_join,
1401         .port_bridge_leave      = ksz_port_bridge_leave,
1402         .port_stp_state_set     = ksz9477_port_stp_state_set,
1403         .port_fast_age          = ksz_port_fast_age,
1404         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1405         .port_vlan_add          = ksz9477_port_vlan_add,
1406         .port_vlan_del          = ksz9477_port_vlan_del,
1407         .port_fdb_dump          = ksz9477_port_fdb_dump,
1408         .port_fdb_add           = ksz9477_port_fdb_add,
1409         .port_fdb_del           = ksz9477_port_fdb_del,
1410         .port_mdb_add           = ksz9477_port_mdb_add,
1411         .port_mdb_del           = ksz9477_port_mdb_del,
1412         .port_mirror_add        = ksz9477_port_mirror_add,
1413         .port_mirror_del        = ksz9477_port_mirror_del,
1414 };
1415
1416 static u32 ksz9477_get_port_addr(int port, int offset)
1417 {
1418         return PORT_CTRL_ADDR(port, offset);
1419 }
1420
1421 static int ksz9477_switch_detect(struct ksz_device *dev)
1422 {
1423         u8 data8;
1424         u8 id_hi;
1425         u8 id_lo;
1426         u32 id32;
1427         int ret;
1428
1429         /* turn off SPI DO Edge select */
1430         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1431         if (ret)
1432                 return ret;
1433
1434         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1435         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1436         if (ret)
1437                 return ret;
1438
1439         /* read chip id */
1440         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1441         if (ret)
1442                 return ret;
1443         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1444         if (ret)
1445                 return ret;
1446
1447         /* Number of ports can be reduced depending on chip. */
1448         dev->phy_port_cnt = 5;
1449
1450         /* Default capability is gigabit capable. */
1451         dev->features = GBIT_SUPPORT;
1452
1453         dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1454         id_hi = (u8)(id32 >> 16);
1455         id_lo = (u8)(id32 >> 8);
1456         if ((id_lo & 0xf) == 3) {
1457                 /* Chip is from KSZ9893 design. */
1458                 dev_info(dev->dev, "Found KSZ9893\n");
1459                 dev->features |= IS_9893;
1460
1461                 /* Chip does not support gigabit. */
1462                 if (data8 & SW_QW_ABLE)
1463                         dev->features &= ~GBIT_SUPPORT;
1464                 dev->phy_port_cnt = 2;
1465         } else {
1466                 dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1467                 /* Chip uses new XMII register definitions. */
1468                 dev->features |= NEW_XMII;
1469
1470                 /* Chip does not support gigabit. */
1471                 if (!(data8 & SW_GIGABIT_ABLE))
1472                         dev->features &= ~GBIT_SUPPORT;
1473         }
1474
1475         /* Change chip id to known ones so it can be matched against them. */
1476         id32 = (id_hi << 16) | (id_lo << 8);
1477
1478         dev->chip_id = id32;
1479
1480         return 0;
1481 }
1482
1483 struct ksz_chip_data {
1484         u32 chip_id;
1485         const char *dev_name;
1486         int num_vlans;
1487         int num_alus;
1488         int num_statics;
1489         int cpu_ports;
1490         int port_cnt;
1491         bool phy_errata_9477;
1492 };
1493
1494 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1495         {
1496                 .chip_id = 0x00947700,
1497                 .dev_name = "KSZ9477",
1498                 .num_vlans = 4096,
1499                 .num_alus = 4096,
1500                 .num_statics = 16,
1501                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1502                 .port_cnt = 7,          /* total physical port count */
1503                 .phy_errata_9477 = true,
1504         },
1505         {
1506                 .chip_id = 0x00989700,
1507                 .dev_name = "KSZ9897",
1508                 .num_vlans = 4096,
1509                 .num_alus = 4096,
1510                 .num_statics = 16,
1511                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1512                 .port_cnt = 7,          /* total physical port count */
1513                 .phy_errata_9477 = true,
1514         },
1515         {
1516                 .chip_id = 0x00989300,
1517                 .dev_name = "KSZ9893",
1518                 .num_vlans = 4096,
1519                 .num_alus = 4096,
1520                 .num_statics = 16,
1521                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1522                 .port_cnt = 3,          /* total port count */
1523         },
1524         {
1525                 .chip_id = 0x00956700,
1526                 .dev_name = "KSZ9567",
1527                 .num_vlans = 4096,
1528                 .num_alus = 4096,
1529                 .num_statics = 16,
1530                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1531                 .port_cnt = 7,          /* total physical port count */
1532         },
1533 };
1534
1535 static int ksz9477_switch_init(struct ksz_device *dev)
1536 {
1537         int i;
1538
1539         dev->ds->ops = &ksz9477_switch_ops;
1540
1541         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1542                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1543
1544                 if (dev->chip_id == chip->chip_id) {
1545                         dev->name = chip->dev_name;
1546                         dev->num_vlans = chip->num_vlans;
1547                         dev->num_alus = chip->num_alus;
1548                         dev->num_statics = chip->num_statics;
1549                         dev->port_cnt = chip->port_cnt;
1550                         dev->cpu_ports = chip->cpu_ports;
1551                         dev->phy_errata_9477 = chip->phy_errata_9477;
1552
1553                         break;
1554                 }
1555         }
1556
1557         /* no switch found */
1558         if (!dev->port_cnt)
1559                 return -ENODEV;
1560
1561         dev->port_mask = (1 << dev->port_cnt) - 1;
1562
1563         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1564         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1565
1566         dev->ports = devm_kzalloc(dev->dev,
1567                                   dev->port_cnt * sizeof(struct ksz_port),
1568                                   GFP_KERNEL);
1569         if (!dev->ports)
1570                 return -ENOMEM;
1571         for (i = 0; i < dev->port_cnt; i++) {
1572                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1573                 dev->ports[i].mib.counters =
1574                         devm_kzalloc(dev->dev,
1575                                      sizeof(u64) *
1576                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1577                                      GFP_KERNEL);
1578                 if (!dev->ports[i].mib.counters)
1579                         return -ENOMEM;
1580         }
1581
1582         /* set the real number of ports */
1583         dev->ds->num_ports = dev->port_cnt;
1584
1585         return 0;
1586 }
1587
1588 static void ksz9477_switch_exit(struct ksz_device *dev)
1589 {
1590         ksz9477_reset_switch(dev);
1591 }
1592
1593 static const struct ksz_dev_ops ksz9477_dev_ops = {
1594         .get_port_addr = ksz9477_get_port_addr,
1595         .cfg_port_member = ksz9477_cfg_port_member,
1596         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1597         .port_setup = ksz9477_port_setup,
1598         .r_mib_cnt = ksz9477_r_mib_cnt,
1599         .r_mib_pkt = ksz9477_r_mib_pkt,
1600         .freeze_mib = ksz9477_freeze_mib,
1601         .port_init_cnt = ksz9477_port_init_cnt,
1602         .shutdown = ksz9477_reset_switch,
1603         .detect = ksz9477_switch_detect,
1604         .init = ksz9477_switch_init,
1605         .exit = ksz9477_switch_exit,
1606 };
1607
1608 int ksz9477_switch_register(struct ksz_device *dev)
1609 {
1610         int ret, i;
1611         struct phy_device *phydev;
1612
1613         ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1614         if (ret)
1615                 return ret;
1616
1617         for (i = 0; i < dev->phy_port_cnt; ++i) {
1618                 if (!dsa_is_user_port(dev->ds, i))
1619                         continue;
1620
1621                 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1622
1623                 /* The MAC actually cannot run in 1000 half-duplex mode. */
1624                 phy_remove_link_mode(phydev,
1625                                      ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1626
1627                 /* PHY does not support gigabit. */
1628                 if (!(dev->features & GBIT_SUPPORT))
1629                         phy_remove_link_mode(phydev,
1630                                              ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1631         }
1632         return ret;
1633 }
1634 EXPORT_SYMBOL(ksz9477_switch_register);
1635
1636 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1637 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1638 MODULE_LICENSE("GPL");