drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / drivers / net / dsa / microchip / ksz8795.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *      Tristram Ha <Tristram.Ha@microchip.com>
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28
29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31         regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32 }
33
34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35                          bool set)
36 {
37         regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38                            bits, set ? bits : 0);
39 }
40
41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43         const u16 *regs;
44         u16 ctrl_addr;
45         int ret = 0;
46
47         regs = dev->info->regs;
48
49         mutex_lock(&dev->alu_mutex);
50
51         ctrl_addr = IND_ACC_TABLE(table) | addr;
52         ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53         if (!ret)
54                 ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55
56         mutex_unlock(&dev->alu_mutex);
57
58         return ret;
59 }
60
61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63         if (ksz_is_ksz88x3(dev)) {
64                 /* reset switch */
65                 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66                         KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67                 ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68                         KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69         } else {
70                 /* reset switch */
71                 ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72                            SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73                 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74         }
75
76         return 0;
77 }
78
79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81         u8 ctrl2 = 0;
82
83         if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84                 ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85         else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86                 ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87
88         return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89                         KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91
92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94         u8 ctrl1 = 0, ctrl2 = 0;
95         int ret;
96
97         if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98                 ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99         if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100                 ctrl1 |= SW_HUGE_PACKET;
101
102         ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103         if (ret)
104                 return ret;
105
106         return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108
109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111         u16 frame_size;
112
113         if (!dsa_is_cpu_port(dev->ds, port))
114                 return 0;
115
116         frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117
118         switch (dev->chip_id) {
119         case KSZ8795_CHIP_ID:
120         case KSZ8794_CHIP_ID:
121         case KSZ8765_CHIP_ID:
122                 return ksz8795_change_mtu(dev, frame_size);
123         case KSZ8830_CHIP_ID:
124                 return ksz8863_change_mtu(dev, frame_size);
125         }
126
127         return -EOPNOTSUPP;
128 }
129
130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132         u8 hi, lo;
133
134         /* Number of queues can only be 1, 2, or 4. */
135         switch (queue) {
136         case 4:
137         case 3:
138                 queue = PORT_QUEUE_SPLIT_4;
139                 break;
140         case 2:
141                 queue = PORT_QUEUE_SPLIT_2;
142                 break;
143         default:
144                 queue = PORT_QUEUE_SPLIT_1;
145         }
146         ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147         ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148         lo &= ~PORT_QUEUE_SPLIT_L;
149         if (queue & PORT_QUEUE_SPLIT_2)
150                 lo |= PORT_QUEUE_SPLIT_L;
151         hi &= ~PORT_QUEUE_SPLIT_H;
152         if (queue & PORT_QUEUE_SPLIT_4)
153                 hi |= PORT_QUEUE_SPLIT_H;
154         ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155         ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156
157         /* Default is port based for egress rate limit. */
158         if (queue != PORT_QUEUE_SPLIT_1)
159                 ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160                         true);
161 }
162
163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165         const u32 *masks;
166         const u16 *regs;
167         u16 ctrl_addr;
168         u32 data;
169         u8 check;
170         int loop;
171
172         masks = dev->info->masks;
173         regs = dev->info->regs;
174
175         ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176         ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177
178         mutex_lock(&dev->alu_mutex);
179         ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180
181         /* It is almost guaranteed to always read the valid bit because of
182          * slow SPI speed.
183          */
184         for (loop = 2; loop > 0; loop--) {
185                 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186
187                 if (check & masks[MIB_COUNTER_VALID]) {
188                         ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189                         if (check & masks[MIB_COUNTER_OVERFLOW])
190                                 *cnt += MIB_COUNTER_VALUE + 1;
191                         *cnt += data & MIB_COUNTER_VALUE;
192                         break;
193                 }
194         }
195         mutex_unlock(&dev->alu_mutex);
196 }
197
198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199                               u64 *dropped, u64 *cnt)
200 {
201         const u32 *masks;
202         const u16 *regs;
203         u16 ctrl_addr;
204         u32 data;
205         u8 check;
206         int loop;
207
208         masks = dev->info->masks;
209         regs = dev->info->regs;
210
211         addr -= dev->info->reg_mib_cnt;
212         ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213         ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214         ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215
216         mutex_lock(&dev->alu_mutex);
217         ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218
219         /* It is almost guaranteed to always read the valid bit because of
220          * slow SPI speed.
221          */
222         for (loop = 2; loop > 0; loop--) {
223                 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224
225                 if (check & masks[MIB_COUNTER_VALID]) {
226                         ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227                         if (addr < 2) {
228                                 u64 total;
229
230                                 total = check & MIB_TOTAL_BYTES_H;
231                                 total <<= 32;
232                                 *cnt += total;
233                                 *cnt += data;
234                                 if (check & masks[MIB_COUNTER_OVERFLOW]) {
235                                         total = MIB_TOTAL_BYTES_H + 1;
236                                         total <<= 32;
237                                         *cnt += total;
238                                 }
239                         } else {
240                                 if (check & masks[MIB_COUNTER_OVERFLOW])
241                                         *cnt += MIB_PACKET_DROPPED + 1;
242                                 *cnt += data & MIB_PACKET_DROPPED;
243                         }
244                         break;
245                 }
246         }
247         mutex_unlock(&dev->alu_mutex);
248 }
249
250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251                               u64 *dropped, u64 *cnt)
252 {
253         u32 *last = (u32 *)dropped;
254         const u16 *regs;
255         u16 ctrl_addr;
256         u32 data;
257         u32 cur;
258
259         regs = dev->info->regs;
260
261         addr -= dev->info->reg_mib_cnt;
262         ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263                            KSZ8863_MIB_PACKET_DROPPED_RX_0;
264         ctrl_addr += port;
265         ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266
267         mutex_lock(&dev->alu_mutex);
268         ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269         ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270         mutex_unlock(&dev->alu_mutex);
271
272         data &= MIB_PACKET_DROPPED;
273         cur = last[addr];
274         if (data != cur) {
275                 last[addr] = data;
276                 if (data < cur)
277                         data += MIB_PACKET_DROPPED + 1;
278                 data -= cur;
279                 *cnt += data;
280         }
281 }
282
283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284                     u64 *dropped, u64 *cnt)
285 {
286         if (ksz_is_ksz88x3(dev))
287                 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288         else
289                 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291
292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294         if (ksz_is_ksz88x3(dev))
295                 return;
296
297         /* enable the port for flush/freeze function */
298         if (freeze)
299                 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300         ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301
302         /* disable the port after freeze is done */
303         if (!freeze)
304                 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306
307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309         struct ksz_port_mib *mib = &dev->ports[port].mib;
310         u64 *dropped;
311
312         if (!ksz_is_ksz88x3(dev)) {
313                 /* flush all enabled port MIB counters */
314                 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315                 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316                 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317         }
318
319         mib->cnt_ptr = 0;
320
321         /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322         while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323                 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324                                         &mib->counters[mib->cnt_ptr]);
325                 ++mib->cnt_ptr;
326         }
327
328         /* last one in storage */
329         dropped = &mib->counters[dev->info->mib_cnt];
330
331         /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332         while (mib->cnt_ptr < dev->info->mib_cnt) {
333                 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334                                         dropped, &mib->counters[mib->cnt_ptr]);
335                 ++mib->cnt_ptr;
336         }
337 }
338
339 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341         const u16 *regs;
342         u16 ctrl_addr;
343         int ret;
344
345         regs = dev->info->regs;
346
347         ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348
349         mutex_lock(&dev->alu_mutex);
350         ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
351         if (ret)
352                 goto unlock_alu;
353
354         ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
355 unlock_alu:
356         mutex_unlock(&dev->alu_mutex);
357
358         return ret;
359 }
360
361 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362 {
363         const u16 *regs;
364         u16 ctrl_addr;
365         int ret;
366
367         regs = dev->info->regs;
368
369         ctrl_addr = IND_ACC_TABLE(table) | addr;
370
371         mutex_lock(&dev->alu_mutex);
372         ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
373         if (ret)
374                 goto unlock_alu;
375
376         ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
377 unlock_alu:
378         mutex_unlock(&dev->alu_mutex);
379
380         return ret;
381 }
382
383 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384 {
385         int timeout = 100;
386         const u32 *masks;
387         const u16 *regs;
388
389         masks = dev->info->masks;
390         regs = dev->info->regs;
391
392         do {
393                 ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394                 timeout--;
395         } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396
397         /* Entry is not ready for accessing. */
398         if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399                 return -EAGAIN;
400         /* Entry is ready for accessing. */
401         } else {
402                 ksz_read8(dev, regs[REG_IND_DATA_8], data);
403
404                 /* There is no valid entry in the table. */
405                 if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406                         return -ENXIO;
407         }
408         return 0;
409 }
410
411 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412                          u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413 {
414         u32 data_hi, data_lo;
415         const u8 *shifts;
416         const u32 *masks;
417         const u16 *regs;
418         u16 ctrl_addr;
419         u8 data;
420         int rc;
421
422         shifts = dev->info->shifts;
423         masks = dev->info->masks;
424         regs = dev->info->regs;
425
426         ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427
428         mutex_lock(&dev->alu_mutex);
429         ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
430
431         rc = ksz8_valid_dyn_entry(dev, &data);
432         if (rc == -EAGAIN) {
433                 if (addr == 0)
434                         *entries = 0;
435         } else if (rc == -ENXIO) {
436                 *entries = 0;
437         /* At least one valid entry in the table. */
438         } else {
439                 u64 buf = 0;
440                 int cnt;
441
442                 ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
443                 data_hi = (u32)(buf >> 32);
444                 data_lo = (u32)buf;
445
446                 /* Check out how many valid entry in the table. */
447                 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448                 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449                 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450                         shifts[DYNAMIC_MAC_ENTRIES];
451                 *entries = cnt + 1;
452
453                 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454                         shifts[DYNAMIC_MAC_FID];
455                 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456                         shifts[DYNAMIC_MAC_SRC_PORT];
457                 *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458                         shifts[DYNAMIC_MAC_TIMESTAMP];
459
460                 mac_addr[5] = (u8)data_lo;
461                 mac_addr[4] = (u8)(data_lo >> 8);
462                 mac_addr[3] = (u8)(data_lo >> 16);
463                 mac_addr[2] = (u8)(data_lo >> 24);
464
465                 mac_addr[1] = (u8)data_hi;
466                 mac_addr[0] = (u8)(data_hi >> 8);
467                 rc = 0;
468         }
469         mutex_unlock(&dev->alu_mutex);
470
471         return rc;
472 }
473
474 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475                                 struct alu_struct *alu, bool *valid)
476 {
477         u32 data_hi, data_lo;
478         const u8 *shifts;
479         const u32 *masks;
480         u64 data;
481         int ret;
482
483         shifts = dev->info->shifts;
484         masks = dev->info->masks;
485
486         ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
487         if (ret)
488                 return ret;
489
490         data_hi = data >> 32;
491         data_lo = (u32)data;
492
493         if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494                          masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495                 *valid = false;
496                 return 0;
497         }
498
499         alu->mac[5] = (u8)data_lo;
500         alu->mac[4] = (u8)(data_lo >> 8);
501         alu->mac[3] = (u8)(data_lo >> 16);
502         alu->mac[2] = (u8)(data_lo >> 24);
503         alu->mac[1] = (u8)data_hi;
504         alu->mac[0] = (u8)(data_hi >> 8);
505         alu->port_forward =
506                 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507                         shifts[STATIC_MAC_FWD_PORTS];
508         alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509         data_hi >>= 1;
510         alu->is_static = true;
511         alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
512         alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
513                 shifts[STATIC_MAC_FID];
514
515         *valid = true;
516
517         return 0;
518 }
519
520 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
521                                 struct alu_struct *alu)
522 {
523         u32 data_hi, data_lo;
524         const u8 *shifts;
525         const u32 *masks;
526         u64 data;
527
528         shifts = dev->info->shifts;
529         masks = dev->info->masks;
530
531         data_lo = ((u32)alu->mac[2] << 24) |
532                 ((u32)alu->mac[3] << 16) |
533                 ((u32)alu->mac[4] << 8) | alu->mac[5];
534         data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
535         data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
536
537         if (alu->is_override)
538                 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
539         if (alu->is_use_fid) {
540                 data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
541                 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
542         }
543         if (alu->is_static)
544                 data_hi |= masks[STATIC_MAC_TABLE_VALID];
545         else
546                 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
547
548         data = (u64)data_hi << 32 | data_lo;
549
550         return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
551 }
552
553 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
554                            u8 *member, u8 *valid)
555 {
556         const u8 *shifts;
557         const u32 *masks;
558
559         shifts = dev->info->shifts;
560         masks = dev->info->masks;
561
562         *fid = vlan & masks[VLAN_TABLE_FID];
563         *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
564                         shifts[VLAN_TABLE_MEMBERSHIP_S];
565         *valid = !!(vlan & masks[VLAN_TABLE_VALID]);
566 }
567
568 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
569                          u16 *vlan)
570 {
571         const u8 *shifts;
572         const u32 *masks;
573
574         shifts = dev->info->shifts;
575         masks = dev->info->masks;
576
577         *vlan = fid;
578         *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
579         if (valid)
580                 *vlan |= masks[VLAN_TABLE_VALID];
581 }
582
583 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
584 {
585         const u8 *shifts;
586         u64 data;
587         int i;
588
589         shifts = dev->info->shifts;
590
591         ksz8_r_table(dev, TABLE_VLAN, addr, &data);
592         addr *= 4;
593         for (i = 0; i < 4; i++) {
594                 dev->vlan_cache[addr + i].table[0] = (u16)data;
595                 data >>= shifts[VLAN_TABLE];
596         }
597 }
598
599 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
600 {
601         int index;
602         u16 *data;
603         u16 addr;
604         u64 buf;
605
606         data = (u16 *)&buf;
607         addr = vid / 4;
608         index = vid & 3;
609         ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
610         *vlan = data[index];
611 }
612
613 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
614 {
615         int index;
616         u16 *data;
617         u16 addr;
618         u64 buf;
619
620         data = (u16 *)&buf;
621         addr = vid / 4;
622         index = vid & 3;
623         ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
624         data[index] = vlan;
625         dev->vlan_cache[vid].table[0] = vlan;
626         ksz8_w_table(dev, TABLE_VLAN, addr, buf);
627 }
628
629 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
630 {
631         u8 restart, speed, ctrl, link;
632         int processed = true;
633         const u16 *regs;
634         u8 val1, val2;
635         u16 data = 0;
636         u8 p = phy;
637         int ret;
638
639         regs = dev->info->regs;
640
641         switch (reg) {
642         case MII_BMCR:
643                 ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
644                 if (ret)
645                         return ret;
646
647                 ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
648                 if (ret)
649                         return ret;
650
651                 ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
652                 if (ret)
653                         return ret;
654
655                 if (restart & PORT_PHY_LOOPBACK)
656                         data |= BMCR_LOOPBACK;
657                 if (ctrl & PORT_FORCE_100_MBIT)
658                         data |= BMCR_SPEED100;
659                 if (ksz_is_ksz88x3(dev)) {
660                         if ((ctrl & PORT_AUTO_NEG_ENABLE))
661                                 data |= BMCR_ANENABLE;
662                 } else {
663                         if (!(ctrl & PORT_AUTO_NEG_DISABLE))
664                                 data |= BMCR_ANENABLE;
665                 }
666                 if (restart & PORT_POWER_DOWN)
667                         data |= BMCR_PDOWN;
668                 if (restart & PORT_AUTO_NEG_RESTART)
669                         data |= BMCR_ANRESTART;
670                 if (ctrl & PORT_FORCE_FULL_DUPLEX)
671                         data |= BMCR_FULLDPLX;
672                 if (speed & PORT_HP_MDIX)
673                         data |= KSZ886X_BMCR_HP_MDIX;
674                 if (restart & PORT_FORCE_MDIX)
675                         data |= KSZ886X_BMCR_FORCE_MDI;
676                 if (restart & PORT_AUTO_MDIX_DISABLE)
677                         data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
678                 if (restart & PORT_TX_DISABLE)
679                         data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
680                 if (restart & PORT_LED_OFF)
681                         data |= KSZ886X_BMCR_DISABLE_LED;
682                 break;
683         case MII_BMSR:
684                 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
685                 if (ret)
686                         return ret;
687
688                 data = BMSR_100FULL |
689                        BMSR_100HALF |
690                        BMSR_10FULL |
691                        BMSR_10HALF |
692                        BMSR_ANEGCAPABLE;
693                 if (link & PORT_AUTO_NEG_COMPLETE)
694                         data |= BMSR_ANEGCOMPLETE;
695                 if (link & PORT_STAT_LINK_GOOD)
696                         data |= BMSR_LSTATUS;
697                 break;
698         case MII_PHYSID1:
699                 data = KSZ8795_ID_HI;
700                 break;
701         case MII_PHYSID2:
702                 if (ksz_is_ksz88x3(dev))
703                         data = KSZ8863_ID_LO;
704                 else
705                         data = KSZ8795_ID_LO;
706                 break;
707         case MII_ADVERTISE:
708                 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
709                 if (ret)
710                         return ret;
711
712                 data = ADVERTISE_CSMA;
713                 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
714                         data |= ADVERTISE_PAUSE_CAP;
715                 if (ctrl & PORT_AUTO_NEG_100BTX_FD)
716                         data |= ADVERTISE_100FULL;
717                 if (ctrl & PORT_AUTO_NEG_100BTX)
718                         data |= ADVERTISE_100HALF;
719                 if (ctrl & PORT_AUTO_NEG_10BT_FD)
720                         data |= ADVERTISE_10FULL;
721                 if (ctrl & PORT_AUTO_NEG_10BT)
722                         data |= ADVERTISE_10HALF;
723                 break;
724         case MII_LPA:
725                 ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
726                 if (ret)
727                         return ret;
728
729                 data = LPA_SLCT;
730                 if (link & PORT_REMOTE_SYM_PAUSE)
731                         data |= LPA_PAUSE_CAP;
732                 if (link & PORT_REMOTE_100BTX_FD)
733                         data |= LPA_100FULL;
734                 if (link & PORT_REMOTE_100BTX)
735                         data |= LPA_100HALF;
736                 if (link & PORT_REMOTE_10BT_FD)
737                         data |= LPA_10FULL;
738                 if (link & PORT_REMOTE_10BT)
739                         data |= LPA_10HALF;
740                 if (data & ~LPA_SLCT)
741                         data |= LPA_LPACK;
742                 break;
743         case PHY_REG_LINK_MD:
744                 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
745                 if (ret)
746                         return ret;
747
748                 ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
749                 if (ret)
750                         return ret;
751
752                 if (val1 & PORT_START_CABLE_DIAG)
753                         data |= PHY_START_CABLE_DIAG;
754
755                 if (val1 & PORT_CABLE_10M_SHORT)
756                         data |= PHY_CABLE_10M_SHORT;
757
758                 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
759                                 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
760
761                 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
762                                 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
763                                 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
764                 break;
765         case PHY_REG_PHY_CTRL:
766                 ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
767                 if (ret)
768                         return ret;
769
770                 if (link & PORT_MDIX_STATUS)
771                         data |= KSZ886X_CTRL_MDIX_STAT;
772                 break;
773         default:
774                 processed = false;
775                 break;
776         }
777         if (processed)
778                 *val = data;
779
780         return 0;
781 }
782
783 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
784 {
785         u8 restart, speed, ctrl, data;
786         const u16 *regs;
787         u8 p = phy;
788         int ret;
789
790         regs = dev->info->regs;
791
792         switch (reg) {
793         case MII_BMCR:
794
795                 /* Do not support PHY reset function. */
796                 if (val & BMCR_RESET)
797                         break;
798                 ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
799                 if (ret)
800                         return ret;
801
802                 data = speed;
803                 if (val & KSZ886X_BMCR_HP_MDIX)
804                         data |= PORT_HP_MDIX;
805                 else
806                         data &= ~PORT_HP_MDIX;
807
808                 if (data != speed) {
809                         ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
810                         if (ret)
811                                 return ret;
812                 }
813
814                 ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
815                 if (ret)
816                         return ret;
817
818                 data = ctrl;
819                 if (ksz_is_ksz88x3(dev)) {
820                         if ((val & BMCR_ANENABLE))
821                                 data |= PORT_AUTO_NEG_ENABLE;
822                         else
823                                 data &= ~PORT_AUTO_NEG_ENABLE;
824                 } else {
825                         if (!(val & BMCR_ANENABLE))
826                                 data |= PORT_AUTO_NEG_DISABLE;
827                         else
828                                 data &= ~PORT_AUTO_NEG_DISABLE;
829
830                         /* Fiber port does not support auto-negotiation. */
831                         if (dev->ports[p].fiber)
832                                 data |= PORT_AUTO_NEG_DISABLE;
833                 }
834
835                 if (val & BMCR_SPEED100)
836                         data |= PORT_FORCE_100_MBIT;
837                 else
838                         data &= ~PORT_FORCE_100_MBIT;
839                 if (val & BMCR_FULLDPLX)
840                         data |= PORT_FORCE_FULL_DUPLEX;
841                 else
842                         data &= ~PORT_FORCE_FULL_DUPLEX;
843
844                 if (data != ctrl) {
845                         ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
846                         if (ret)
847                                 return ret;
848                 }
849
850                 ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
851                 if (ret)
852                         return ret;
853
854                 data = restart;
855                 if (val & KSZ886X_BMCR_DISABLE_LED)
856                         data |= PORT_LED_OFF;
857                 else
858                         data &= ~PORT_LED_OFF;
859                 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
860                         data |= PORT_TX_DISABLE;
861                 else
862                         data &= ~PORT_TX_DISABLE;
863                 if (val & BMCR_ANRESTART)
864                         data |= PORT_AUTO_NEG_RESTART;
865                 else
866                         data &= ~(PORT_AUTO_NEG_RESTART);
867                 if (val & BMCR_PDOWN)
868                         data |= PORT_POWER_DOWN;
869                 else
870                         data &= ~PORT_POWER_DOWN;
871                 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
872                         data |= PORT_AUTO_MDIX_DISABLE;
873                 else
874                         data &= ~PORT_AUTO_MDIX_DISABLE;
875                 if (val & KSZ886X_BMCR_FORCE_MDI)
876                         data |= PORT_FORCE_MDIX;
877                 else
878                         data &= ~PORT_FORCE_MDIX;
879                 if (val & BMCR_LOOPBACK)
880                         data |= PORT_PHY_LOOPBACK;
881                 else
882                         data &= ~PORT_PHY_LOOPBACK;
883
884                 if (data != restart) {
885                         ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
886                                           data);
887                         if (ret)
888                                 return ret;
889                 }
890                 break;
891         case MII_ADVERTISE:
892                 ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
893                 if (ret)
894                         return ret;
895
896                 data = ctrl;
897                 data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
898                           PORT_AUTO_NEG_100BTX_FD |
899                           PORT_AUTO_NEG_100BTX |
900                           PORT_AUTO_NEG_10BT_FD |
901                           PORT_AUTO_NEG_10BT);
902                 if (val & ADVERTISE_PAUSE_CAP)
903                         data |= PORT_AUTO_NEG_SYM_PAUSE;
904                 if (val & ADVERTISE_100FULL)
905                         data |= PORT_AUTO_NEG_100BTX_FD;
906                 if (val & ADVERTISE_100HALF)
907                         data |= PORT_AUTO_NEG_100BTX;
908                 if (val & ADVERTISE_10FULL)
909                         data |= PORT_AUTO_NEG_10BT_FD;
910                 if (val & ADVERTISE_10HALF)
911                         data |= PORT_AUTO_NEG_10BT;
912
913                 if (data != ctrl) {
914                         ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
915                         if (ret)
916                                 return ret;
917                 }
918                 break;
919         case PHY_REG_LINK_MD:
920                 if (val & PHY_START_CABLE_DIAG)
921                         ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
922                 break;
923         default:
924                 break;
925         }
926
927         return 0;
928 }
929
930 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
931 {
932         u8 data;
933
934         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
935         data &= ~PORT_VLAN_MEMBERSHIP;
936         data |= (member & dev->port_mask);
937         ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
938 }
939
940 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
941 {
942         u8 learn[DSA_MAX_PORTS];
943         int first, index, cnt;
944         const u16 *regs;
945
946         regs = dev->info->regs;
947
948         if ((uint)port < dev->info->port_cnt) {
949                 first = port;
950                 cnt = port + 1;
951         } else {
952                 /* Flush all ports. */
953                 first = 0;
954                 cnt = dev->info->port_cnt;
955         }
956         for (index = first; index < cnt; index++) {
957                 ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
958                 if (!(learn[index] & PORT_LEARN_DISABLE))
959                         ksz_pwrite8(dev, index, regs[P_STP_CTRL],
960                                     learn[index] | PORT_LEARN_DISABLE);
961         }
962         ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
963         for (index = first; index < cnt; index++) {
964                 if (!(learn[index] & PORT_LEARN_DISABLE))
965                         ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
966         }
967 }
968
969 int ksz8_fdb_dump(struct ksz_device *dev, int port,
970                   dsa_fdb_dump_cb_t *cb, void *data)
971 {
972         int ret = 0;
973         u16 i = 0;
974         u16 entries = 0;
975         u8 timestamp = 0;
976         u8 fid;
977         u8 src_port;
978         u8 mac[ETH_ALEN];
979
980         do {
981                 ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
982                                            &timestamp, &entries);
983                 if (!ret && port == src_port) {
984                         ret = cb(mac, fid, false, data);
985                         if (ret)
986                                 break;
987                 }
988                 i++;
989         } while (i < entries);
990         if (i >= entries)
991                 ret = 0;
992
993         return ret;
994 }
995
996 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
997                             const unsigned char *addr, u16 vid)
998 {
999         struct alu_struct alu;
1000         int index, ret;
1001         int empty = 0;
1002
1003         alu.port_forward = 0;
1004         for (index = 0; index < dev->info->num_statics; index++) {
1005                 bool valid;
1006
1007                 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1008                 if (ret)
1009                         return ret;
1010                 if (!valid) {
1011                         /* Remember the first empty entry. */
1012                         if (!empty)
1013                                 empty = index + 1;
1014                         continue;
1015                 }
1016
1017                 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1018                         break;
1019         }
1020
1021         /* no available entry */
1022         if (index == dev->info->num_statics && !empty)
1023                 return -ENOSPC;
1024
1025         /* add entry */
1026         if (index == dev->info->num_statics) {
1027                 index = empty - 1;
1028                 memset(&alu, 0, sizeof(alu));
1029                 memcpy(alu.mac, addr, ETH_ALEN);
1030                 alu.is_static = true;
1031         }
1032         alu.port_forward |= BIT(port);
1033         if (vid) {
1034                 alu.is_use_fid = true;
1035
1036                 /* Need a way to map VID to FID. */
1037                 alu.fid = vid;
1038         }
1039
1040         return ksz8_w_sta_mac_table(dev, index, &alu);
1041 }
1042
1043 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1044                             const unsigned char *addr, u16 vid)
1045 {
1046         struct alu_struct alu;
1047         int index, ret;
1048
1049         for (index = 0; index < dev->info->num_statics; index++) {
1050                 bool valid;
1051
1052                 ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1053                 if (ret)
1054                         return ret;
1055                 if (!valid)
1056                         continue;
1057
1058                 if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1059                         break;
1060         }
1061
1062         /* no available entry */
1063         if (index == dev->info->num_statics)
1064                 return 0;
1065
1066         /* clear port */
1067         alu.port_forward &= ~BIT(port);
1068         if (!alu.port_forward)
1069                 alu.is_static = false;
1070
1071         return ksz8_w_sta_mac_table(dev, index, &alu);
1072 }
1073
1074 int ksz8_mdb_add(struct ksz_device *dev, int port,
1075                  const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1076 {
1077         return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1078 }
1079
1080 int ksz8_mdb_del(struct ksz_device *dev, int port,
1081                  const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1082 {
1083         return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1084 }
1085
1086 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1087                  u16 vid, struct dsa_db db)
1088 {
1089         return ksz8_add_sta_mac(dev, port, addr, vid);
1090 }
1091
1092 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1093                  u16 vid, struct dsa_db db)
1094 {
1095         return ksz8_del_sta_mac(dev, port, addr, vid);
1096 }
1097
1098 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1099                              struct netlink_ext_ack *extack)
1100 {
1101         if (ksz_is_ksz88x3(dev))
1102                 return -ENOTSUPP;
1103
1104         /* Discard packets with VID not enabled on the switch */
1105         ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1106
1107         /* Discard packets with VID not enabled on the ingress port */
1108         for (port = 0; port < dev->phy_port_cnt; ++port)
1109                 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1110                              flag);
1111
1112         return 0;
1113 }
1114
1115 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1116 {
1117         if (ksz_is_ksz88x3(dev)) {
1118                 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1119                         0x03 << (4 - 2 * port), state);
1120         } else {
1121                 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1122         }
1123 }
1124
1125 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1126                        const struct switchdev_obj_port_vlan *vlan,
1127                        struct netlink_ext_ack *extack)
1128 {
1129         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1130         struct ksz_port *p = &dev->ports[port];
1131         u16 data, new_pvid = 0;
1132         u8 fid, member, valid;
1133
1134         if (ksz_is_ksz88x3(dev))
1135                 return -ENOTSUPP;
1136
1137         /* If a VLAN is added with untagged flag different from the
1138          * port's Remove Tag flag, we need to change the latter.
1139          * Ignore VID 0, which is always untagged.
1140          * Ignore CPU port, which will always be tagged.
1141          */
1142         if (untagged != p->remove_tag && vlan->vid != 0 &&
1143             port != dev->cpu_port) {
1144                 unsigned int vid;
1145
1146                 /* Reject attempts to add a VLAN that requires the
1147                  * Remove Tag flag to be changed, unless there are no
1148                  * other VLANs currently configured.
1149                  */
1150                 for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1151                         /* Skip the VID we are going to add or reconfigure */
1152                         if (vid == vlan->vid)
1153                                 continue;
1154
1155                         ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1156                                        &fid, &member, &valid);
1157                         if (valid && (member & BIT(port)))
1158                                 return -EINVAL;
1159                 }
1160
1161                 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1162                 p->remove_tag = untagged;
1163         }
1164
1165         ksz8_r_vlan_table(dev, vlan->vid, &data);
1166         ksz8_from_vlan(dev, data, &fid, &member, &valid);
1167
1168         /* First time to setup the VLAN entry. */
1169         if (!valid) {
1170                 /* Need to find a way to map VID to FID. */
1171                 fid = 1;
1172                 valid = 1;
1173         }
1174         member |= BIT(port);
1175
1176         ksz8_to_vlan(dev, fid, member, valid, &data);
1177         ksz8_w_vlan_table(dev, vlan->vid, data);
1178
1179         /* change PVID */
1180         if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1181                 new_pvid = vlan->vid;
1182
1183         if (new_pvid) {
1184                 u16 vid;
1185
1186                 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1187                 vid &= ~VLAN_VID_MASK;
1188                 vid |= new_pvid;
1189                 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1190
1191                 ksz8_port_enable_pvid(dev, port, true);
1192         }
1193
1194         return 0;
1195 }
1196
1197 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1198                        const struct switchdev_obj_port_vlan *vlan)
1199 {
1200         u16 data, pvid;
1201         u8 fid, member, valid;
1202
1203         if (ksz_is_ksz88x3(dev))
1204                 return -ENOTSUPP;
1205
1206         ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1207         pvid = pvid & 0xFFF;
1208
1209         ksz8_r_vlan_table(dev, vlan->vid, &data);
1210         ksz8_from_vlan(dev, data, &fid, &member, &valid);
1211
1212         member &= ~BIT(port);
1213
1214         /* Invalidate the entry if no more member. */
1215         if (!member) {
1216                 fid = 0;
1217                 valid = 0;
1218         }
1219
1220         ksz8_to_vlan(dev, fid, member, valid, &data);
1221         ksz8_w_vlan_table(dev, vlan->vid, data);
1222
1223         if (pvid == vlan->vid)
1224                 ksz8_port_enable_pvid(dev, port, false);
1225
1226         return 0;
1227 }
1228
1229 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1230                          struct dsa_mall_mirror_tc_entry *mirror,
1231                          bool ingress, struct netlink_ext_ack *extack)
1232 {
1233         if (ingress) {
1234                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1235                 dev->mirror_rx |= BIT(port);
1236         } else {
1237                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1238                 dev->mirror_tx |= BIT(port);
1239         }
1240
1241         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1242
1243         /* configure mirror port */
1244         if (dev->mirror_rx || dev->mirror_tx)
1245                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1246                              PORT_MIRROR_SNIFFER, true);
1247
1248         return 0;
1249 }
1250
1251 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1252                           struct dsa_mall_mirror_tc_entry *mirror)
1253 {
1254         u8 data;
1255
1256         if (mirror->ingress) {
1257                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1258                 dev->mirror_rx &= ~BIT(port);
1259         } else {
1260                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1261                 dev->mirror_tx &= ~BIT(port);
1262         }
1263
1264         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1265
1266         if (!dev->mirror_rx && !dev->mirror_tx)
1267                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1268                              PORT_MIRROR_SNIFFER, false);
1269 }
1270
1271 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1272 {
1273         struct ksz_port *p = &dev->ports[port];
1274
1275         if (!p->interface && dev->compat_interface) {
1276                 dev_warn(dev->dev,
1277                          "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1278                          "Please update your device tree.\n",
1279                          port);
1280                 p->interface = dev->compat_interface;
1281         }
1282 }
1283
1284 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1285 {
1286         struct dsa_switch *ds = dev->ds;
1287         const u32 *masks;
1288         u8 member;
1289
1290         masks = dev->info->masks;
1291
1292         /* enable broadcast storm limit */
1293         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1294
1295         if (!ksz_is_ksz88x3(dev))
1296                 ksz8795_set_prio_queue(dev, port, 4);
1297
1298         /* disable DiffServ priority */
1299         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1300
1301         /* replace priority */
1302         ksz_port_cfg(dev, port, P_802_1P_CTRL,
1303                      masks[PORT_802_1P_REMAPPING], false);
1304
1305         /* enable 802.1p priority */
1306         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1307
1308         if (cpu_port) {
1309                 if (!ksz_is_ksz88x3(dev))
1310                         ksz8795_cpu_interface_select(dev, port);
1311
1312                 member = dsa_user_ports(ds);
1313         } else {
1314                 member = BIT(dsa_upstream_port(ds, port));
1315         }
1316
1317         ksz8_cfg_port_member(dev, port, member);
1318 }
1319
1320 void ksz8_config_cpu_port(struct dsa_switch *ds)
1321 {
1322         struct ksz_device *dev = ds->priv;
1323         struct ksz_port *p;
1324         const u32 *masks;
1325         const u16 *regs;
1326         u8 remote;
1327         int i;
1328
1329         masks = dev->info->masks;
1330         regs = dev->info->regs;
1331
1332         ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1333
1334         ksz8_port_setup(dev, dev->cpu_port, true);
1335
1336         for (i = 0; i < dev->phy_port_cnt; i++) {
1337                 ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1338         }
1339         for (i = 0; i < dev->phy_port_cnt; i++) {
1340                 p = &dev->ports[i];
1341
1342                 if (!ksz_is_ksz88x3(dev)) {
1343                         ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1344                         if (remote & KSZ8_PORT_FIBER_MODE)
1345                                 p->fiber = 1;
1346                 }
1347                 if (p->fiber)
1348                         ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1349                                      PORT_FORCE_FLOW_CTRL, true);
1350                 else
1351                         ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1352                                      PORT_FORCE_FLOW_CTRL, false);
1353         }
1354 }
1355
1356 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1357 {
1358         struct ksz_device *dev = ds->priv;
1359         int ret = 0;
1360
1361         /* KSZ87xx Errata DS80000687C.
1362          * Module 2: Link drops with some EEE link partners.
1363          *   An issue with the EEE next page exchange between the
1364          *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1365          *   the link dropping.
1366          */
1367         if (dev->info->ksz87xx_eee_link_erratum)
1368                 ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1369
1370         return ret;
1371 }
1372
1373 int ksz8_enable_stp_addr(struct ksz_device *dev)
1374 {
1375         struct alu_struct alu;
1376
1377         /* Setup STP address for STP operation. */
1378         memset(&alu, 0, sizeof(alu));
1379         ether_addr_copy(alu.mac, eth_stp_addr);
1380         alu.is_static = true;
1381         alu.is_override = true;
1382         alu.port_forward = dev->info->cpu_ports;
1383
1384         return ksz8_w_sta_mac_table(dev, 0, &alu);
1385 }
1386
1387 int ksz8_setup(struct dsa_switch *ds)
1388 {
1389         struct ksz_device *dev = ds->priv;
1390         int i;
1391
1392         ds->mtu_enforcement_ingress = true;
1393
1394         /* We rely on software untagging on the CPU port, so that we
1395          * can support both tagged and untagged VLANs
1396          */
1397         ds->untag_bridge_pvid = true;
1398
1399         /* VLAN filtering is partly controlled by the global VLAN
1400          * Enable flag
1401          */
1402         ds->vlan_filtering_is_global = true;
1403
1404         ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1405
1406         /* Enable automatic fast aging when link changed detected. */
1407         ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1408
1409         /* Enable aggressive back off algorithm in half duplex mode. */
1410         regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1411                            SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1412
1413         /*
1414          * Make sure unicast VLAN boundary is set as default and
1415          * enable no excessive collision drop.
1416          */
1417         regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1418                            UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1419                            UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1420
1421         ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1422
1423         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1424
1425         if (!ksz_is_ksz88x3(dev))
1426                 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1427
1428         for (i = 0; i < (dev->info->num_vlans / 4); i++)
1429                 ksz8_r_vlan_entries(dev, i);
1430
1431         return ksz8_handle_global_errata(ds);
1432 }
1433
1434 void ksz8_get_caps(struct ksz_device *dev, int port,
1435                    struct phylink_config *config)
1436 {
1437         config->mac_capabilities = MAC_10 | MAC_100;
1438
1439         /* Silicon Errata Sheet (DS80000830A):
1440          * "Port 1 does not respond to received flow control PAUSE frames"
1441          * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1442          * switches.
1443          */
1444         if (!ksz_is_ksz88x3(dev) || port)
1445                 config->mac_capabilities |= MAC_SYM_PAUSE;
1446
1447         /* Asym pause is not supported on KSZ8863 and KSZ8873 */
1448         if (!ksz_is_ksz88x3(dev))
1449                 config->mac_capabilities |= MAC_ASYM_PAUSE;
1450 }
1451
1452 u32 ksz8_get_port_addr(int port, int offset)
1453 {
1454         return PORT_CTRL_ADDR(port, offset);
1455 }
1456
1457 int ksz8_switch_init(struct ksz_device *dev)
1458 {
1459         dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1460         dev->phy_port_cnt = dev->info->port_cnt - 1;
1461         dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1462
1463         return 0;
1464 }
1465
1466 void ksz8_switch_exit(struct ksz_device *dev)
1467 {
1468         ksz8_reset_switch(dev);
1469 }
1470
1471 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1472 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1473 MODULE_LICENSE("GPL");