Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB                 0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
53 #define GSWIP_MDIO_CTRL                 0x08
54 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
60 #define GSWIP_MDIO_READ                 0x09
61 #define GSWIP_MDIO_WRITE                0x0A
62 #define GSWIP_MDIO_MDC_CFG0             0x0B
63 #define GSWIP_MDIO_MDC_CFG1             0x0C
64 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
87 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
88                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
89                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
90                                          GSWIP_MDIO_PHY_LINK_MASK | \
91                                          GSWIP_MDIO_PHY_SPEED_MASK | \
92                                          GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)               (0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET            BIT(15)
97 #define  GSWIP_MII_CFG_EN               BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE          BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS        BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK         BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
107 #define  GSWIP_MII_CFG_MODE_GMII        0x9
108 #define  GSWIP_MII_CFG_MODE_MASK        0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
110 #define  GSWIP_MII_CFG_RATE_M25 0x10
111 #define  GSWIP_MII_CFG_RATE_M125        0x20
112 #define  GSWIP_MII_CFG_RATE_M50 0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
114 #define  GSWIP_MII_CFG_RATE_MASK        0x70
115 #define GSWIP_MII_PCDU0                 0x01
116 #define GSWIP_MII_PCDU1                 0x03
117 #define GSWIP_MII_PCDU5                 0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
120
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES                     0x000
123 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
125 #define GSWIP_VERSION                   0x013
126 #define  GSWIP_VERSION_REV_SHIFT        0
127 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT        8
129 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0             0x100
131 #define   GSWIP_VERSION_2_1             0x021
132 #define   GSWIP_VERSION_2_2             0x122
133 #define   GSWIP_VERSION_2_2_ETC         0x022
134
135 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR               0x044
137 #define GSWIP_BM_RAM_CTRL               0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL            0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
151
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK              0x448
155 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR              0x44E
157 #define GSWIP_PCE_TBL_CTRL              0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
170 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0               0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1               0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
196
197 #define GSWIP_MAC_FLEN                  0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)            (0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN         BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN        BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK     0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO     0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX       0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX       0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX     0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE     0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK     0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO     0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN       0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS      0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK     0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO     0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII      0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII    0x0002
215 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
217
218 /* Ethernet Switch Fetch DMA Port Control Register */
219 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
220 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
221 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
222 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228
229 /* Ethernet Switch Store DMA Port Control Register */
230 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
231 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
232 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
233 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(3)  /* Pause Frame Forwarding */
234
235 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
236 #define GSWIP_TABLE_VLAN_MAPPING        0x02
237 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
238 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
239
240 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
241
242 struct gswip_hw_info {
243         int max_ports;
244         int cpu_port;
245         const struct dsa_switch_ops *ops;
246 };
247
248 struct xway_gphy_match_data {
249         char *fe_firmware_name;
250         char *ge_firmware_name;
251 };
252
253 struct gswip_gphy_fw {
254         struct clk *clk_gate;
255         struct reset_control *reset;
256         u32 fw_addr_offset;
257         char *fw_name;
258 };
259
260 struct gswip_vlan {
261         struct net_device *bridge;
262         u16 vid;
263         u8 fid;
264 };
265
266 struct gswip_priv {
267         __iomem void *gswip;
268         __iomem void *mdio;
269         __iomem void *mii;
270         const struct gswip_hw_info *hw_info;
271         const struct xway_gphy_match_data *gphy_fw_name_cfg;
272         struct dsa_switch *ds;
273         struct device *dev;
274         struct regmap *rcu_regmap;
275         struct gswip_vlan vlans[64];
276         int num_gphy_fw;
277         struct gswip_gphy_fw *gphy_fw;
278         u32 port_vlan_filter;
279 };
280
281 struct gswip_pce_table_entry {
282         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
283         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
284         u16 key[8];
285         u16 val[5];
286         u16 mask;
287         u8 gmap;
288         bool type;
289         bool valid;
290         bool key_mode;
291 };
292
293 struct gswip_rmon_cnt_desc {
294         unsigned int size;
295         unsigned int offset;
296         const char *name;
297 };
298
299 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
300
301 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
302         /** Receive Packet Count (only packets that are accepted and not discarded). */
303         MIB_DESC(1, 0x1F, "RxGoodPkts"),
304         MIB_DESC(1, 0x23, "RxUnicastPkts"),
305         MIB_DESC(1, 0x22, "RxMulticastPkts"),
306         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
307         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
308         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
309         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
310         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
311         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
312         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
313         MIB_DESC(1, 0x12, "Rx64BytePkts"),
314         MIB_DESC(1, 0x13, "Rx127BytePkts"),
315         MIB_DESC(1, 0x14, "Rx255BytePkts"),
316         MIB_DESC(1, 0x15, "Rx511BytePkts"),
317         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
318         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
319         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
320         MIB_DESC(1, 0x18, "RxDroppedPkts"),
321         MIB_DESC(1, 0x19, "RxFilteredPkts"),
322         MIB_DESC(2, 0x24, "RxGoodBytes"),
323         MIB_DESC(2, 0x26, "RxBadBytes"),
324         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
325         MIB_DESC(1, 0x0C, "TxGoodPkts"),
326         MIB_DESC(1, 0x06, "TxUnicastPkts"),
327         MIB_DESC(1, 0x07, "TxMulticastPkts"),
328         MIB_DESC(1, 0x00, "Tx64BytePkts"),
329         MIB_DESC(1, 0x01, "Tx127BytePkts"),
330         MIB_DESC(1, 0x02, "Tx255BytePkts"),
331         MIB_DESC(1, 0x03, "Tx511BytePkts"),
332         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
333         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
334         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
335         MIB_DESC(1, 0x08, "TxSingleCollCount"),
336         MIB_DESC(1, 0x09, "TxMultCollCount"),
337         MIB_DESC(1, 0x0A, "TxLateCollCount"),
338         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
339         MIB_DESC(1, 0x0D, "TxPauseCount"),
340         MIB_DESC(1, 0x10, "TxDroppedPkts"),
341         MIB_DESC(2, 0x0E, "TxGoodBytes"),
342 };
343
344 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
345 {
346         return __raw_readl(priv->gswip + (offset * 4));
347 }
348
349 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
350 {
351         __raw_writel(val, priv->gswip + (offset * 4));
352 }
353
354 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
355                               u32 offset)
356 {
357         u32 val = gswip_switch_r(priv, offset);
358
359         val &= ~(clear);
360         val |= set;
361         gswip_switch_w(priv, val, offset);
362 }
363
364 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
365                                   u32 cleared)
366 {
367         u32 val;
368
369         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
370                                   (val & cleared) == 0, 20, 50000);
371 }
372
373 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
374 {
375         return __raw_readl(priv->mdio + (offset * 4));
376 }
377
378 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
379 {
380         __raw_writel(val, priv->mdio + (offset * 4));
381 }
382
383 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
384                             u32 offset)
385 {
386         u32 val = gswip_mdio_r(priv, offset);
387
388         val &= ~(clear);
389         val |= set;
390         gswip_mdio_w(priv, val, offset);
391 }
392
393 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
394 {
395         return __raw_readl(priv->mii + (offset * 4));
396 }
397
398 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
399 {
400         __raw_writel(val, priv->mii + (offset * 4));
401 }
402
403 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
404                            u32 offset)
405 {
406         u32 val = gswip_mii_r(priv, offset);
407
408         val &= ~(clear);
409         val |= set;
410         gswip_mii_w(priv, val, offset);
411 }
412
413 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
414                                int port)
415 {
416         /* There's no MII_CFG register for the CPU port */
417         if (!dsa_is_cpu_port(priv->ds, port))
418                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
419 }
420
421 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
422                                 int port)
423 {
424         switch (port) {
425         case 0:
426                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
427                 break;
428         case 1:
429                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
430                 break;
431         case 5:
432                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
433                 break;
434         }
435 }
436
437 static int gswip_mdio_poll(struct gswip_priv *priv)
438 {
439         int cnt = 100;
440
441         while (likely(cnt--)) {
442                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
443
444                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
445                         return 0;
446                 usleep_range(20, 40);
447         }
448
449         return -ETIMEDOUT;
450 }
451
452 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
453 {
454         struct gswip_priv *priv = bus->priv;
455         int err;
456
457         err = gswip_mdio_poll(priv);
458         if (err) {
459                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
460                 return err;
461         }
462
463         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
464         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
465                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
466                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
467                 GSWIP_MDIO_CTRL);
468
469         return 0;
470 }
471
472 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
473 {
474         struct gswip_priv *priv = bus->priv;
475         int err;
476
477         err = gswip_mdio_poll(priv);
478         if (err) {
479                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
480                 return err;
481         }
482
483         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
484                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
485                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
486                 GSWIP_MDIO_CTRL);
487
488         err = gswip_mdio_poll(priv);
489         if (err) {
490                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491                 return err;
492         }
493
494         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
495 }
496
497 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
498 {
499         struct dsa_switch *ds = priv->ds;
500
501         ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
502         if (!ds->slave_mii_bus)
503                 return -ENOMEM;
504
505         ds->slave_mii_bus->priv = priv;
506         ds->slave_mii_bus->read = gswip_mdio_rd;
507         ds->slave_mii_bus->write = gswip_mdio_wr;
508         ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
509         snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
510                  dev_name(priv->dev));
511         ds->slave_mii_bus->parent = priv->dev;
512         ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
513
514         return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
515 }
516
517 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
518                                       struct gswip_pce_table_entry *tbl)
519 {
520         int i;
521         int err;
522         u16 crtl;
523         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
524                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
525
526         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
527                                      GSWIP_PCE_TBL_CTRL_BAS);
528         if (err)
529                 return err;
530
531         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
532         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
533                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
534                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
535                           GSWIP_PCE_TBL_CTRL);
536
537         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
538                                      GSWIP_PCE_TBL_CTRL_BAS);
539         if (err)
540                 return err;
541
542         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
543                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
544
545         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
546                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
547
548         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
549
550         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
551
552         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
553         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
554         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
555
556         return 0;
557 }
558
559 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
560                                        struct gswip_pce_table_entry *tbl)
561 {
562         int i;
563         int err;
564         u16 crtl;
565         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
566                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
567
568         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
569                                      GSWIP_PCE_TBL_CTRL_BAS);
570         if (err)
571                 return err;
572
573         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
574         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
575                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
576                           tbl->table | addr_mode,
577                           GSWIP_PCE_TBL_CTRL);
578
579         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
580                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
581
582         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
583                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
584
585         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
586                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
587                           tbl->table | addr_mode,
588                           GSWIP_PCE_TBL_CTRL);
589
590         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
591
592         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
593         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
594                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
595         if (tbl->type)
596                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
597         if (tbl->valid)
598                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
599         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
600         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
601         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
602
603         return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604                                       GSWIP_PCE_TBL_CTRL_BAS);
605 }
606
607 /* Add the LAN port into a bridge with the CPU port by
608  * default. This prevents automatic forwarding of
609  * packages between the LAN ports when no explicit
610  * bridge is configured.
611  */
612 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
613 {
614         struct gswip_pce_table_entry vlan_active = {0,};
615         struct gswip_pce_table_entry vlan_mapping = {0,};
616         unsigned int cpu_port = priv->hw_info->cpu_port;
617         unsigned int max_ports = priv->hw_info->max_ports;
618         int err;
619
620         if (port >= max_ports) {
621                 dev_err(priv->dev, "single port for %i supported\n", port);
622                 return -EIO;
623         }
624
625         vlan_active.index = port + 1;
626         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
627         vlan_active.key[0] = 0; /* vid */
628         vlan_active.val[0] = port + 1 /* fid */;
629         vlan_active.valid = add;
630         err = gswip_pce_table_entry_write(priv, &vlan_active);
631         if (err) {
632                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
633                 return err;
634         }
635
636         if (!add)
637                 return 0;
638
639         vlan_mapping.index = port + 1;
640         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
641         vlan_mapping.val[0] = 0 /* vid */;
642         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
643         vlan_mapping.val[2] = 0;
644         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
645         if (err) {
646                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
647                 return err;
648         }
649
650         return 0;
651 }
652
653 static int gswip_port_enable(struct dsa_switch *ds, int port,
654                              struct phy_device *phydev)
655 {
656         struct gswip_priv *priv = ds->priv;
657         int err;
658
659         if (!dsa_is_user_port(ds, port))
660                 return 0;
661
662         if (!dsa_is_cpu_port(ds, port)) {
663                 err = gswip_add_single_port_br(priv, port, true);
664                 if (err)
665                         return err;
666         }
667
668         /* RMON Counter Enable for port */
669         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
670
671         /* enable port fetch/store dma & VLAN Modification */
672         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
673                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
674                          GSWIP_FDMA_PCTRLp(port));
675         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
676                           GSWIP_SDMA_PCTRLp(port));
677
678         if (!dsa_is_cpu_port(ds, port)) {
679                 u32 mdio_phy = 0;
680
681                 if (phydev)
682                         mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
683
684                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
685                                 GSWIP_MDIO_PHYp(port));
686         }
687
688         return 0;
689 }
690
691 static void gswip_port_disable(struct dsa_switch *ds, int port)
692 {
693         struct gswip_priv *priv = ds->priv;
694
695         if (!dsa_is_user_port(ds, port))
696                 return;
697
698         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
699                           GSWIP_FDMA_PCTRLp(port));
700         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
701                           GSWIP_SDMA_PCTRLp(port));
702 }
703
704 static int gswip_pce_load_microcode(struct gswip_priv *priv)
705 {
706         int i;
707         int err;
708
709         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
710                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
711                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
712         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
713
714         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
715                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
716                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
717                                GSWIP_PCE_TBL_VAL(0));
718                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
719                                GSWIP_PCE_TBL_VAL(1));
720                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
721                                GSWIP_PCE_TBL_VAL(2));
722                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
723                                GSWIP_PCE_TBL_VAL(3));
724
725                 /* start the table access: */
726                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
727                                   GSWIP_PCE_TBL_CTRL);
728                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
729                                              GSWIP_PCE_TBL_CTRL_BAS);
730                 if (err)
731                         return err;
732         }
733
734         /* tell the switch that the microcode is loaded */
735         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
736                           GSWIP_PCE_GCTRL_0);
737
738         return 0;
739 }
740
741 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
742                                      bool vlan_filtering,
743                                      struct netlink_ext_ack *extack)
744 {
745         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
746         struct gswip_priv *priv = ds->priv;
747
748         /* Do not allow changing the VLAN filtering options while in bridge */
749         if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
750                 NL_SET_ERR_MSG_MOD(extack,
751                                    "Dynamic toggling of vlan_filtering not supported");
752                 return -EIO;
753         }
754
755         if (vlan_filtering) {
756                 /* Use port based VLAN tag */
757                 gswip_switch_mask(priv,
758                                   GSWIP_PCE_VCTRL_VSR,
759                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
760                                   GSWIP_PCE_VCTRL_VEMR,
761                                   GSWIP_PCE_VCTRL(port));
762                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
763                                   GSWIP_PCE_PCTRL_0p(port));
764         } else {
765                 /* Use port based VLAN tag */
766                 gswip_switch_mask(priv,
767                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
768                                   GSWIP_PCE_VCTRL_VEMR,
769                                   GSWIP_PCE_VCTRL_VSR,
770                                   GSWIP_PCE_VCTRL(port));
771                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
772                                   GSWIP_PCE_PCTRL_0p(port));
773         }
774
775         return 0;
776 }
777
778 static int gswip_setup(struct dsa_switch *ds)
779 {
780         struct gswip_priv *priv = ds->priv;
781         unsigned int cpu_port = priv->hw_info->cpu_port;
782         int i;
783         int err;
784
785         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
786         usleep_range(5000, 10000);
787         gswip_switch_w(priv, 0, GSWIP_SWRES);
788
789         /* disable port fetch/store dma on all ports */
790         for (i = 0; i < priv->hw_info->max_ports; i++) {
791                 gswip_port_disable(ds, i);
792                 gswip_port_vlan_filtering(ds, i, false, NULL);
793         }
794
795         /* enable Switch */
796         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
797
798         err = gswip_pce_load_microcode(priv);
799         if (err) {
800                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
801                 return err;
802         }
803
804         /* Default unknown Broadcast/Multicast/Unicast port maps */
805         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
806         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
807         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
808
809         /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
810          * interoperability problem with this auto polling mechanism because
811          * their status registers think that the link is in a different state
812          * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
813          * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
814          * auto polling state machine consider the link being negotiated with
815          * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
816          * to the switch port being completely dead (RX and TX are both not
817          * working).
818          * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
819          * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
820          * it would work fine for a few minutes to hours and then stop, on
821          * other device it would no traffic could be sent or received at all.
822          * Testing shows that when PHY auto polling is disabled these problems
823          * go away.
824          */
825         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
826
827         /* Configure the MDIO Clock 2.5 MHz */
828         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
829
830         /* Disable the xMII interface and clear it's isolation bit */
831         for (i = 0; i < priv->hw_info->max_ports; i++)
832                 gswip_mii_mask_cfg(priv,
833                                    GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
834                                    0, i);
835
836         /* enable special tag insertion on cpu port */
837         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
838                           GSWIP_FDMA_PCTRLp(cpu_port));
839
840         /* accept special tag in ingress direction */
841         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
842                           GSWIP_PCE_PCTRL_0p(cpu_port));
843
844         gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
845                           GSWIP_MAC_CTRL_2p(cpu_port));
846         gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
847                        GSWIP_MAC_FLEN);
848         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
849                           GSWIP_BM_QUEUE_GCTRL);
850
851         /* VLAN aware Switching */
852         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
853
854         /* Flush MAC Table */
855         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
856
857         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
858                                      GSWIP_PCE_GCTRL_0_MTFL);
859         if (err) {
860                 dev_err(priv->dev, "MAC flushing didn't finish\n");
861                 return err;
862         }
863
864         gswip_port_enable(ds, cpu_port, NULL);
865
866         ds->configure_vlan_while_not_filtering = false;
867
868         return 0;
869 }
870
871 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
872                                                     int port,
873                                                     enum dsa_tag_protocol mp)
874 {
875         return DSA_TAG_PROTO_GSWIP;
876 }
877
878 static int gswip_vlan_active_create(struct gswip_priv *priv,
879                                     struct net_device *bridge,
880                                     int fid, u16 vid)
881 {
882         struct gswip_pce_table_entry vlan_active = {0,};
883         unsigned int max_ports = priv->hw_info->max_ports;
884         int idx = -1;
885         int err;
886         int i;
887
888         /* Look for a free slot */
889         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
890                 if (!priv->vlans[i].bridge) {
891                         idx = i;
892                         break;
893                 }
894         }
895
896         if (idx == -1)
897                 return -ENOSPC;
898
899         if (fid == -1)
900                 fid = idx;
901
902         vlan_active.index = idx;
903         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
904         vlan_active.key[0] = vid;
905         vlan_active.val[0] = fid;
906         vlan_active.valid = true;
907
908         err = gswip_pce_table_entry_write(priv, &vlan_active);
909         if (err) {
910                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
911                 return err;
912         }
913
914         priv->vlans[idx].bridge = bridge;
915         priv->vlans[idx].vid = vid;
916         priv->vlans[idx].fid = fid;
917
918         return idx;
919 }
920
921 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
922 {
923         struct gswip_pce_table_entry vlan_active = {0,};
924         int err;
925
926         vlan_active.index = idx;
927         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
928         vlan_active.valid = false;
929         err = gswip_pce_table_entry_write(priv, &vlan_active);
930         if (err)
931                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
932         priv->vlans[idx].bridge = NULL;
933
934         return err;
935 }
936
937 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
938                                   struct net_device *bridge, int port)
939 {
940         struct gswip_pce_table_entry vlan_mapping = {0,};
941         unsigned int max_ports = priv->hw_info->max_ports;
942         unsigned int cpu_port = priv->hw_info->cpu_port;
943         bool active_vlan_created = false;
944         int idx = -1;
945         int i;
946         int err;
947
948         /* Check if there is already a page for this bridge */
949         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
950                 if (priv->vlans[i].bridge == bridge) {
951                         idx = i;
952                         break;
953                 }
954         }
955
956         /* If this bridge is not programmed yet, add a Active VLAN table
957          * entry in a free slot and prepare the VLAN mapping table entry.
958          */
959         if (idx == -1) {
960                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
961                 if (idx < 0)
962                         return idx;
963                 active_vlan_created = true;
964
965                 vlan_mapping.index = idx;
966                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
967                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
968                 vlan_mapping.val[0] = 0;
969         } else {
970                 /* Read the existing VLAN mapping entry from the switch */
971                 vlan_mapping.index = idx;
972                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
973                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
974                 if (err) {
975                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
976                                 err);
977                         return err;
978                 }
979         }
980
981         /* Update the VLAN mapping entry and write it to the switch */
982         vlan_mapping.val[1] |= BIT(cpu_port);
983         vlan_mapping.val[1] |= BIT(port);
984         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
985         if (err) {
986                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
987                 /* In case an Active VLAN was creaetd delete it again */
988                 if (active_vlan_created)
989                         gswip_vlan_active_remove(priv, idx);
990                 return err;
991         }
992
993         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
994         return 0;
995 }
996
997 static int gswip_vlan_add_aware(struct gswip_priv *priv,
998                                 struct net_device *bridge, int port,
999                                 u16 vid, bool untagged,
1000                                 bool pvid)
1001 {
1002         struct gswip_pce_table_entry vlan_mapping = {0,};
1003         unsigned int max_ports = priv->hw_info->max_ports;
1004         unsigned int cpu_port = priv->hw_info->cpu_port;
1005         bool active_vlan_created = false;
1006         int idx = -1;
1007         int fid = -1;
1008         int i;
1009         int err;
1010
1011         /* Check if there is already a page for this bridge */
1012         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1013                 if (priv->vlans[i].bridge == bridge) {
1014                         if (fid != -1 && fid != priv->vlans[i].fid)
1015                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1016                         fid = priv->vlans[i].fid;
1017                         if (priv->vlans[i].vid == vid) {
1018                                 idx = i;
1019                                 break;
1020                         }
1021                 }
1022         }
1023
1024         /* If this bridge is not programmed yet, add a Active VLAN table
1025          * entry in a free slot and prepare the VLAN mapping table entry.
1026          */
1027         if (idx == -1) {
1028                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1029                 if (idx < 0)
1030                         return idx;
1031                 active_vlan_created = true;
1032
1033                 vlan_mapping.index = idx;
1034                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1035                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1036                 vlan_mapping.val[0] = vid;
1037         } else {
1038                 /* Read the existing VLAN mapping entry from the switch */
1039                 vlan_mapping.index = idx;
1040                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1041                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1042                 if (err) {
1043                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1044                                 err);
1045                         return err;
1046                 }
1047         }
1048
1049         vlan_mapping.val[0] = vid;
1050         /* Update the VLAN mapping entry and write it to the switch */
1051         vlan_mapping.val[1] |= BIT(cpu_port);
1052         vlan_mapping.val[2] |= BIT(cpu_port);
1053         vlan_mapping.val[1] |= BIT(port);
1054         if (untagged)
1055                 vlan_mapping.val[2] &= ~BIT(port);
1056         else
1057                 vlan_mapping.val[2] |= BIT(port);
1058         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1059         if (err) {
1060                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1061                 /* In case an Active VLAN was creaetd delete it again */
1062                 if (active_vlan_created)
1063                         gswip_vlan_active_remove(priv, idx);
1064                 return err;
1065         }
1066
1067         if (pvid)
1068                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1069
1070         return 0;
1071 }
1072
1073 static int gswip_vlan_remove(struct gswip_priv *priv,
1074                              struct net_device *bridge, int port,
1075                              u16 vid, bool pvid, bool vlan_aware)
1076 {
1077         struct gswip_pce_table_entry vlan_mapping = {0,};
1078         unsigned int max_ports = priv->hw_info->max_ports;
1079         unsigned int cpu_port = priv->hw_info->cpu_port;
1080         int idx = -1;
1081         int i;
1082         int err;
1083
1084         /* Check if there is already a page for this bridge */
1085         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1086                 if (priv->vlans[i].bridge == bridge &&
1087                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1088                         idx = i;
1089                         break;
1090                 }
1091         }
1092
1093         if (idx == -1) {
1094                 dev_err(priv->dev, "bridge to leave does not exists\n");
1095                 return -ENOENT;
1096         }
1097
1098         vlan_mapping.index = idx;
1099         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1100         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1101         if (err) {
1102                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1103                 return err;
1104         }
1105
1106         vlan_mapping.val[1] &= ~BIT(port);
1107         vlan_mapping.val[2] &= ~BIT(port);
1108         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1109         if (err) {
1110                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1111                 return err;
1112         }
1113
1114         /* In case all ports are removed from the bridge, remove the VLAN */
1115         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1116                 err = gswip_vlan_active_remove(priv, idx);
1117                 if (err) {
1118                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1119                                 err);
1120                         return err;
1121                 }
1122         }
1123
1124         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1125         if (pvid)
1126                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1127
1128         return 0;
1129 }
1130
1131 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1132                                   struct net_device *bridge)
1133 {
1134         struct gswip_priv *priv = ds->priv;
1135         int err;
1136
1137         /* When the bridge uses VLAN filtering we have to configure VLAN
1138          * specific bridges. No bridge is configured here.
1139          */
1140         if (!br_vlan_enabled(bridge)) {
1141                 err = gswip_vlan_add_unaware(priv, bridge, port);
1142                 if (err)
1143                         return err;
1144                 priv->port_vlan_filter &= ~BIT(port);
1145         } else {
1146                 priv->port_vlan_filter |= BIT(port);
1147         }
1148         return gswip_add_single_port_br(priv, port, false);
1149 }
1150
1151 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1152                                     struct net_device *bridge)
1153 {
1154         struct gswip_priv *priv = ds->priv;
1155
1156         gswip_add_single_port_br(priv, port, true);
1157
1158         /* When the bridge uses VLAN filtering we have to configure VLAN
1159          * specific bridges. No bridge is configured here.
1160          */
1161         if (!br_vlan_enabled(bridge))
1162                 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1163 }
1164
1165 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1166                                    const struct switchdev_obj_port_vlan *vlan,
1167                                    struct netlink_ext_ack *extack)
1168 {
1169         struct gswip_priv *priv = ds->priv;
1170         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1171         unsigned int max_ports = priv->hw_info->max_ports;
1172         int pos = max_ports;
1173         int i, idx = -1;
1174
1175         /* We only support VLAN filtering on bridges */
1176         if (!dsa_is_cpu_port(ds, port) && !bridge)
1177                 return -EOPNOTSUPP;
1178
1179         /* Check if there is already a page for this VLAN */
1180         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1181                 if (priv->vlans[i].bridge == bridge &&
1182                     priv->vlans[i].vid == vlan->vid) {
1183                         idx = i;
1184                         break;
1185                 }
1186         }
1187
1188         /* If this VLAN is not programmed yet, we have to reserve
1189          * one entry in the VLAN table. Make sure we start at the
1190          * next position round.
1191          */
1192         if (idx == -1) {
1193                 /* Look for a free slot */
1194                 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1195                         if (!priv->vlans[pos].bridge) {
1196                                 idx = pos;
1197                                 pos++;
1198                                 break;
1199                         }
1200                 }
1201
1202                 if (idx == -1) {
1203                         NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1204                         return -ENOSPC;
1205                 }
1206         }
1207
1208         return 0;
1209 }
1210
1211 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1212                                const struct switchdev_obj_port_vlan *vlan,
1213                                struct netlink_ext_ack *extack)
1214 {
1215         struct gswip_priv *priv = ds->priv;
1216         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1217         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1218         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1219         int err;
1220
1221         err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1222         if (err)
1223                 return err;
1224
1225         /* We have to receive all packets on the CPU port and should not
1226          * do any VLAN filtering here. This is also called with bridge
1227          * NULL and then we do not know for which bridge to configure
1228          * this.
1229          */
1230         if (dsa_is_cpu_port(ds, port))
1231                 return 0;
1232
1233         return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1234                                     untagged, pvid);
1235 }
1236
1237 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1238                                const struct switchdev_obj_port_vlan *vlan)
1239 {
1240         struct gswip_priv *priv = ds->priv;
1241         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1242         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1243
1244         /* We have to receive all packets on the CPU port and should not
1245          * do any VLAN filtering here. This is also called with bridge
1246          * NULL and then we do not know for which bridge to configure
1247          * this.
1248          */
1249         if (dsa_is_cpu_port(ds, port))
1250                 return 0;
1251
1252         return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1253 }
1254
1255 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1256 {
1257         struct gswip_priv *priv = ds->priv;
1258         struct gswip_pce_table_entry mac_bridge = {0,};
1259         int i;
1260         int err;
1261
1262         for (i = 0; i < 2048; i++) {
1263                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1264                 mac_bridge.index = i;
1265
1266                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1267                 if (err) {
1268                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1269                                 err);
1270                         return;
1271                 }
1272
1273                 if (!mac_bridge.valid)
1274                         continue;
1275
1276                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1277                         continue;
1278
1279                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1280                         continue;
1281
1282                 mac_bridge.valid = false;
1283                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1284                 if (err) {
1285                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1286                                 err);
1287                         return;
1288                 }
1289         }
1290 }
1291
1292 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1293 {
1294         struct gswip_priv *priv = ds->priv;
1295         u32 stp_state;
1296
1297         switch (state) {
1298         case BR_STATE_DISABLED:
1299                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1300                                   GSWIP_SDMA_PCTRLp(port));
1301                 return;
1302         case BR_STATE_BLOCKING:
1303         case BR_STATE_LISTENING:
1304                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1305                 break;
1306         case BR_STATE_LEARNING:
1307                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1308                 break;
1309         case BR_STATE_FORWARDING:
1310                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1311                 break;
1312         default:
1313                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1314                 return;
1315         }
1316
1317         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1318                           GSWIP_SDMA_PCTRLp(port));
1319         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1320                           GSWIP_PCE_PCTRL_0p(port));
1321 }
1322
1323 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1324                           const unsigned char *addr, u16 vid, bool add)
1325 {
1326         struct gswip_priv *priv = ds->priv;
1327         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1328         struct gswip_pce_table_entry mac_bridge = {0,};
1329         unsigned int cpu_port = priv->hw_info->cpu_port;
1330         int fid = -1;
1331         int i;
1332         int err;
1333
1334         if (!bridge)
1335                 return -EINVAL;
1336
1337         for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1338                 if (priv->vlans[i].bridge == bridge) {
1339                         fid = priv->vlans[i].fid;
1340                         break;
1341                 }
1342         }
1343
1344         if (fid == -1) {
1345                 dev_err(priv->dev, "Port not part of a bridge\n");
1346                 return -EINVAL;
1347         }
1348
1349         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1350         mac_bridge.key_mode = true;
1351         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1352         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1353         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1354         mac_bridge.key[3] = fid;
1355         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1356         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1357         mac_bridge.valid = add;
1358
1359         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1360         if (err)
1361                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1362
1363         return err;
1364 }
1365
1366 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1367                               const unsigned char *addr, u16 vid)
1368 {
1369         return gswip_port_fdb(ds, port, addr, vid, true);
1370 }
1371
1372 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1373                               const unsigned char *addr, u16 vid)
1374 {
1375         return gswip_port_fdb(ds, port, addr, vid, false);
1376 }
1377
1378 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1379                                dsa_fdb_dump_cb_t *cb, void *data)
1380 {
1381         struct gswip_priv *priv = ds->priv;
1382         struct gswip_pce_table_entry mac_bridge = {0,};
1383         unsigned char addr[6];
1384         int i;
1385         int err;
1386
1387         for (i = 0; i < 2048; i++) {
1388                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1389                 mac_bridge.index = i;
1390
1391                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1392                 if (err) {
1393                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1394                                 err);
1395                         return err;
1396                 }
1397
1398                 if (!mac_bridge.valid)
1399                         continue;
1400
1401                 addr[5] = mac_bridge.key[0] & 0xff;
1402                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1403                 addr[3] = mac_bridge.key[1] & 0xff;
1404                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1405                 addr[1] = mac_bridge.key[2] & 0xff;
1406                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1407                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1408                         if (mac_bridge.val[0] & BIT(port)) {
1409                                 err = cb(addr, 0, true, data);
1410                                 if (err)
1411                                         return err;
1412                         }
1413                 } else {
1414                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1415                                 err = cb(addr, 0, false, data);
1416                                 if (err)
1417                                         return err;
1418                         }
1419                 }
1420         }
1421         return 0;
1422 }
1423
1424 static void gswip_phylink_set_capab(unsigned long *supported,
1425                                     struct phylink_link_state *state)
1426 {
1427         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1428
1429         /* Allow all the expected bits */
1430         phylink_set(mask, Autoneg);
1431         phylink_set_port_modes(mask);
1432         phylink_set(mask, Pause);
1433         phylink_set(mask, Asym_Pause);
1434
1435         /* With the exclusion of MII, Reverse MII and Reduced MII, we
1436          * support Gigabit, including Half duplex
1437          */
1438         if (state->interface != PHY_INTERFACE_MODE_MII &&
1439             state->interface != PHY_INTERFACE_MODE_REVMII &&
1440             state->interface != PHY_INTERFACE_MODE_RMII) {
1441                 phylink_set(mask, 1000baseT_Full);
1442                 phylink_set(mask, 1000baseT_Half);
1443         }
1444
1445         phylink_set(mask, 10baseT_Half);
1446         phylink_set(mask, 10baseT_Full);
1447         phylink_set(mask, 100baseT_Half);
1448         phylink_set(mask, 100baseT_Full);
1449
1450         bitmap_and(supported, supported, mask,
1451                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1452         bitmap_and(state->advertising, state->advertising, mask,
1453                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1454 }
1455
1456 static void gswip_xrx200_phylink_validate(struct dsa_switch *ds, int port,
1457                                           unsigned long *supported,
1458                                           struct phylink_link_state *state)
1459 {
1460         switch (port) {
1461         case 0:
1462         case 1:
1463                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1464                     state->interface != PHY_INTERFACE_MODE_MII &&
1465                     state->interface != PHY_INTERFACE_MODE_REVMII &&
1466                     state->interface != PHY_INTERFACE_MODE_RMII)
1467                         goto unsupported;
1468                 break;
1469         case 2:
1470         case 3:
1471         case 4:
1472                 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1473                         goto unsupported;
1474                 break;
1475         case 5:
1476                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1477                     state->interface != PHY_INTERFACE_MODE_INTERNAL)
1478                         goto unsupported;
1479                 break;
1480         default:
1481                 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1482                 dev_err(ds->dev, "Unsupported port: %i\n", port);
1483                 return;
1484         }
1485
1486         gswip_phylink_set_capab(supported, state);
1487
1488         return;
1489
1490 unsupported:
1491         bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1492         dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1493                 phy_modes(state->interface), port);
1494 }
1495
1496 static void gswip_xrx300_phylink_validate(struct dsa_switch *ds, int port,
1497                                           unsigned long *supported,
1498                                           struct phylink_link_state *state)
1499 {
1500         switch (port) {
1501         case 0:
1502                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1503                     state->interface != PHY_INTERFACE_MODE_GMII &&
1504                     state->interface != PHY_INTERFACE_MODE_RMII)
1505                         goto unsupported;
1506                 break;
1507         case 1:
1508         case 2:
1509         case 3:
1510         case 4:
1511                 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1512                         goto unsupported;
1513                 break;
1514         case 5:
1515                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1516                     state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1517                     state->interface != PHY_INTERFACE_MODE_RMII)
1518                         goto unsupported;
1519                 break;
1520         default:
1521                 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1522                 dev_err(ds->dev, "Unsupported port: %i\n", port);
1523                 return;
1524         }
1525
1526         gswip_phylink_set_capab(supported, state);
1527
1528         return;
1529
1530 unsupported:
1531         bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1532         dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1533                 phy_modes(state->interface), port);
1534 }
1535
1536 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1537 {
1538         u32 mdio_phy;
1539
1540         if (link)
1541                 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1542         else
1543                 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1544
1545         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1546                         GSWIP_MDIO_PHYp(port));
1547 }
1548
1549 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1550                                  phy_interface_t interface)
1551 {
1552         u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1553
1554         switch (speed) {
1555         case SPEED_10:
1556                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1557
1558                 if (interface == PHY_INTERFACE_MODE_RMII)
1559                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1560                 else
1561                         mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1562
1563                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1564                 break;
1565
1566         case SPEED_100:
1567                 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1568
1569                 if (interface == PHY_INTERFACE_MODE_RMII)
1570                         mii_cfg = GSWIP_MII_CFG_RATE_M50;
1571                 else
1572                         mii_cfg = GSWIP_MII_CFG_RATE_M25;
1573
1574                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1575                 break;
1576
1577         case SPEED_1000:
1578                 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1579
1580                 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1581
1582                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1583                 break;
1584         }
1585
1586         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1587                         GSWIP_MDIO_PHYp(port));
1588         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1589         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1590                           GSWIP_MAC_CTRL_0p(port));
1591 }
1592
1593 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1594 {
1595         u32 mac_ctrl_0, mdio_phy;
1596
1597         if (duplex == DUPLEX_FULL) {
1598                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1599                 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1600         } else {
1601                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1602                 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1603         }
1604
1605         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1606                           GSWIP_MAC_CTRL_0p(port));
1607         gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1608                         GSWIP_MDIO_PHYp(port));
1609 }
1610
1611 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1612                                  bool tx_pause, bool rx_pause)
1613 {
1614         u32 mac_ctrl_0, mdio_phy;
1615
1616         if (tx_pause && rx_pause) {
1617                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1618                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1619                            GSWIP_MDIO_PHY_FCONRX_EN;
1620         } else if (tx_pause) {
1621                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1622                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1623                            GSWIP_MDIO_PHY_FCONRX_DIS;
1624         } else if (rx_pause) {
1625                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1626                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1627                            GSWIP_MDIO_PHY_FCONRX_EN;
1628         } else {
1629                 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1630                 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1631                            GSWIP_MDIO_PHY_FCONRX_DIS;
1632         }
1633
1634         gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1635                           mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1636         gswip_mdio_mask(priv,
1637                         GSWIP_MDIO_PHY_FCONTX_MASK |
1638                         GSWIP_MDIO_PHY_FCONRX_MASK,
1639                         mdio_phy, GSWIP_MDIO_PHYp(port));
1640 }
1641
1642 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1643                                      unsigned int mode,
1644                                      const struct phylink_link_state *state)
1645 {
1646         struct gswip_priv *priv = ds->priv;
1647         u32 miicfg = 0;
1648
1649         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1650
1651         switch (state->interface) {
1652         case PHY_INTERFACE_MODE_MII:
1653         case PHY_INTERFACE_MODE_INTERNAL:
1654                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1655                 break;
1656         case PHY_INTERFACE_MODE_REVMII:
1657                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1658                 break;
1659         case PHY_INTERFACE_MODE_RMII:
1660                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1661
1662                 /* Configure the RMII clock as output: */
1663                 miicfg |= GSWIP_MII_CFG_RMII_CLK;
1664                 break;
1665         case PHY_INTERFACE_MODE_RGMII:
1666         case PHY_INTERFACE_MODE_RGMII_ID:
1667         case PHY_INTERFACE_MODE_RGMII_RXID:
1668         case PHY_INTERFACE_MODE_RGMII_TXID:
1669                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1670                 break;
1671         case PHY_INTERFACE_MODE_GMII:
1672                 miicfg |= GSWIP_MII_CFG_MODE_GMII;
1673                 break;
1674         default:
1675                 dev_err(ds->dev,
1676                         "Unsupported interface: %d\n", state->interface);
1677                 return;
1678         }
1679
1680         gswip_mii_mask_cfg(priv,
1681                            GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1682                            GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1683                            miicfg, port);
1684
1685         switch (state->interface) {
1686         case PHY_INTERFACE_MODE_RGMII_ID:
1687                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1688                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1689                 break;
1690         case PHY_INTERFACE_MODE_RGMII_RXID:
1691                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1692                 break;
1693         case PHY_INTERFACE_MODE_RGMII_TXID:
1694                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1695                 break;
1696         default:
1697                 break;
1698         }
1699 }
1700
1701 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1702                                         unsigned int mode,
1703                                         phy_interface_t interface)
1704 {
1705         struct gswip_priv *priv = ds->priv;
1706
1707         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1708
1709         if (!dsa_is_cpu_port(ds, port))
1710                 gswip_port_set_link(priv, port, false);
1711 }
1712
1713 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1714                                       unsigned int mode,
1715                                       phy_interface_t interface,
1716                                       struct phy_device *phydev,
1717                                       int speed, int duplex,
1718                                       bool tx_pause, bool rx_pause)
1719 {
1720         struct gswip_priv *priv = ds->priv;
1721
1722         if (!dsa_is_cpu_port(ds, port)) {
1723                 gswip_port_set_link(priv, port, true);
1724                 gswip_port_set_speed(priv, port, speed, interface);
1725                 gswip_port_set_duplex(priv, port, duplex);
1726                 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1727         }
1728
1729         gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1730 }
1731
1732 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1733                               uint8_t *data)
1734 {
1735         int i;
1736
1737         if (stringset != ETH_SS_STATS)
1738                 return;
1739
1740         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1741                 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1742                         ETH_GSTRING_LEN);
1743 }
1744
1745 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1746                                     u32 index)
1747 {
1748         u32 result;
1749         int err;
1750
1751         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1752         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1753                                 GSWIP_BM_RAM_CTRL_OPMOD,
1754                               table | GSWIP_BM_RAM_CTRL_BAS,
1755                               GSWIP_BM_RAM_CTRL);
1756
1757         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1758                                      GSWIP_BM_RAM_CTRL_BAS);
1759         if (err) {
1760                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1761                         table, index);
1762                 return 0;
1763         }
1764
1765         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1766         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1767
1768         return result;
1769 }
1770
1771 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1772                                     uint64_t *data)
1773 {
1774         struct gswip_priv *priv = ds->priv;
1775         const struct gswip_rmon_cnt_desc *rmon_cnt;
1776         int i;
1777         u64 high;
1778
1779         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1780                 rmon_cnt = &gswip_rmon_cnt[i];
1781
1782                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1783                                                    rmon_cnt->offset);
1784                 if (rmon_cnt->size == 2) {
1785                         high = gswip_bcm_ram_entry_read(priv, port,
1786                                                         rmon_cnt->offset + 1);
1787                         data[i] |= high << 32;
1788                 }
1789         }
1790 }
1791
1792 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1793 {
1794         if (sset != ETH_SS_STATS)
1795                 return 0;
1796
1797         return ARRAY_SIZE(gswip_rmon_cnt);
1798 }
1799
1800 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1801         .get_tag_protocol       = gswip_get_tag_protocol,
1802         .setup                  = gswip_setup,
1803         .port_enable            = gswip_port_enable,
1804         .port_disable           = gswip_port_disable,
1805         .port_bridge_join       = gswip_port_bridge_join,
1806         .port_bridge_leave      = gswip_port_bridge_leave,
1807         .port_fast_age          = gswip_port_fast_age,
1808         .port_vlan_filtering    = gswip_port_vlan_filtering,
1809         .port_vlan_add          = gswip_port_vlan_add,
1810         .port_vlan_del          = gswip_port_vlan_del,
1811         .port_stp_state_set     = gswip_port_stp_state_set,
1812         .port_fdb_add           = gswip_port_fdb_add,
1813         .port_fdb_del           = gswip_port_fdb_del,
1814         .port_fdb_dump          = gswip_port_fdb_dump,
1815         .phylink_validate       = gswip_xrx200_phylink_validate,
1816         .phylink_mac_config     = gswip_phylink_mac_config,
1817         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1818         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1819         .get_strings            = gswip_get_strings,
1820         .get_ethtool_stats      = gswip_get_ethtool_stats,
1821         .get_sset_count         = gswip_get_sset_count,
1822 };
1823
1824 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1825         .get_tag_protocol       = gswip_get_tag_protocol,
1826         .setup                  = gswip_setup,
1827         .port_enable            = gswip_port_enable,
1828         .port_disable           = gswip_port_disable,
1829         .port_bridge_join       = gswip_port_bridge_join,
1830         .port_bridge_leave      = gswip_port_bridge_leave,
1831         .port_fast_age          = gswip_port_fast_age,
1832         .port_vlan_filtering    = gswip_port_vlan_filtering,
1833         .port_vlan_add          = gswip_port_vlan_add,
1834         .port_vlan_del          = gswip_port_vlan_del,
1835         .port_stp_state_set     = gswip_port_stp_state_set,
1836         .port_fdb_add           = gswip_port_fdb_add,
1837         .port_fdb_del           = gswip_port_fdb_del,
1838         .port_fdb_dump          = gswip_port_fdb_dump,
1839         .phylink_validate       = gswip_xrx300_phylink_validate,
1840         .phylink_mac_config     = gswip_phylink_mac_config,
1841         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1842         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1843         .get_strings            = gswip_get_strings,
1844         .get_ethtool_stats      = gswip_get_ethtool_stats,
1845         .get_sset_count         = gswip_get_sset_count,
1846 };
1847
1848 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1849         .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1850         .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1851 };
1852
1853 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1854         .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1855         .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1856 };
1857
1858 static const struct xway_gphy_match_data xrx300_gphy_data = {
1859         .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1860         .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1861 };
1862
1863 static const struct of_device_id xway_gphy_match[] = {
1864         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1865         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1866         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1867         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1868         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1869         {},
1870 };
1871
1872 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1873 {
1874         struct device *dev = priv->dev;
1875         const struct firmware *fw;
1876         void *fw_addr;
1877         dma_addr_t dma_addr;
1878         dma_addr_t dev_addr;
1879         size_t size;
1880         int ret;
1881
1882         ret = clk_prepare_enable(gphy_fw->clk_gate);
1883         if (ret)
1884                 return ret;
1885
1886         reset_control_assert(gphy_fw->reset);
1887
1888         /* The vendor BSP uses a 200ms delay after asserting the reset line.
1889          * Without this some users are observing that the PHY is not coming up
1890          * on the MDIO bus.
1891          */
1892         msleep(200);
1893
1894         ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1895         if (ret) {
1896                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1897                         gphy_fw->fw_name, ret);
1898                 return ret;
1899         }
1900
1901         /* GPHY cores need the firmware code in a persistent and contiguous
1902          * memory area with a 16 kB boundary aligned start address.
1903          */
1904         size = fw->size + XRX200_GPHY_FW_ALIGN;
1905
1906         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1907         if (fw_addr) {
1908                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1909                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1910                 memcpy(fw_addr, fw->data, fw->size);
1911         } else {
1912                 dev_err(dev, "failed to alloc firmware memory\n");
1913                 release_firmware(fw);
1914                 return -ENOMEM;
1915         }
1916
1917         release_firmware(fw);
1918
1919         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1920         if (ret)
1921                 return ret;
1922
1923         reset_control_deassert(gphy_fw->reset);
1924
1925         return ret;
1926 }
1927
1928 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1929                                struct gswip_gphy_fw *gphy_fw,
1930                                struct device_node *gphy_fw_np, int i)
1931 {
1932         struct device *dev = priv->dev;
1933         u32 gphy_mode;
1934         int ret;
1935         char gphyname[10];
1936
1937         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1938
1939         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1940         if (IS_ERR(gphy_fw->clk_gate)) {
1941                 dev_err(dev, "Failed to lookup gate clock\n");
1942                 return PTR_ERR(gphy_fw->clk_gate);
1943         }
1944
1945         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1946         if (ret)
1947                 return ret;
1948
1949         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1950         /* Default to GE mode */
1951         if (ret)
1952                 gphy_mode = GPHY_MODE_GE;
1953
1954         switch (gphy_mode) {
1955         case GPHY_MODE_FE:
1956                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1957                 break;
1958         case GPHY_MODE_GE:
1959                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1960                 break;
1961         default:
1962                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1963                 return -EINVAL;
1964         }
1965
1966         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1967         if (IS_ERR(gphy_fw->reset)) {
1968                 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1969                         dev_err(dev, "Failed to lookup gphy reset\n");
1970                 return PTR_ERR(gphy_fw->reset);
1971         }
1972
1973         return gswip_gphy_fw_load(priv, gphy_fw);
1974 }
1975
1976 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1977                                  struct gswip_gphy_fw *gphy_fw)
1978 {
1979         int ret;
1980
1981         /* check if the device was fully probed */
1982         if (!gphy_fw->fw_name)
1983                 return;
1984
1985         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1986         if (ret)
1987                 dev_err(priv->dev, "can not reset GPHY FW pointer");
1988
1989         clk_disable_unprepare(gphy_fw->clk_gate);
1990
1991         reset_control_put(gphy_fw->reset);
1992 }
1993
1994 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1995                               struct device_node *gphy_fw_list_np, u32 version)
1996 {
1997         struct device *dev = priv->dev;
1998         struct device_node *gphy_fw_np;
1999         const struct of_device_id *match;
2000         int err;
2001         int i = 0;
2002
2003         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2004          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2005          * needs a different GPHY firmware.
2006          */
2007         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2008                 switch (version) {
2009                 case GSWIP_VERSION_2_0:
2010                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2011                         break;
2012                 case GSWIP_VERSION_2_1:
2013                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2014                         break;
2015                 default:
2016                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
2017                         return -ENOENT;
2018                 }
2019         }
2020
2021         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2022         if (match && match->data)
2023                 priv->gphy_fw_name_cfg = match->data;
2024
2025         if (!priv->gphy_fw_name_cfg) {
2026                 dev_err(dev, "GPHY compatible type not supported");
2027                 return -ENOENT;
2028         }
2029
2030         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2031         if (!priv->num_gphy_fw)
2032                 return -ENOENT;
2033
2034         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2035                                                            "lantiq,rcu");
2036         if (IS_ERR(priv->rcu_regmap))
2037                 return PTR_ERR(priv->rcu_regmap);
2038
2039         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2040                                            sizeof(*priv->gphy_fw),
2041                                            GFP_KERNEL | __GFP_ZERO);
2042         if (!priv->gphy_fw)
2043                 return -ENOMEM;
2044
2045         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2046                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2047                                           gphy_fw_np, i);
2048                 if (err)
2049                         goto remove_gphy;
2050                 i++;
2051         }
2052
2053         /* The standalone PHY11G requires 300ms to be fully
2054          * initialized and ready for any MDIO communication after being
2055          * taken out of reset. For the SoC-internal GPHY variant there
2056          * is no (known) documentation for the minimum time after a
2057          * reset. Use the same value as for the standalone variant as
2058          * some users have reported internal PHYs not being detected
2059          * without any delay.
2060          */
2061         msleep(300);
2062
2063         return 0;
2064
2065 remove_gphy:
2066         for (i = 0; i < priv->num_gphy_fw; i++)
2067                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2068         return err;
2069 }
2070
2071 static int gswip_probe(struct platform_device *pdev)
2072 {
2073         struct gswip_priv *priv;
2074         struct device_node *np, *mdio_np, *gphy_fw_np;
2075         struct device *dev = &pdev->dev;
2076         int err;
2077         int i;
2078         u32 version;
2079
2080         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2081         if (!priv)
2082                 return -ENOMEM;
2083
2084         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2085         if (IS_ERR(priv->gswip))
2086                 return PTR_ERR(priv->gswip);
2087
2088         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2089         if (IS_ERR(priv->mdio))
2090                 return PTR_ERR(priv->mdio);
2091
2092         priv->mii = devm_platform_ioremap_resource(pdev, 2);
2093         if (IS_ERR(priv->mii))
2094                 return PTR_ERR(priv->mii);
2095
2096         priv->hw_info = of_device_get_match_data(dev);
2097         if (!priv->hw_info)
2098                 return -EINVAL;
2099
2100         priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2101         if (!priv->ds)
2102                 return -ENOMEM;
2103
2104         priv->ds->dev = dev;
2105         priv->ds->num_ports = priv->hw_info->max_ports;
2106         priv->ds->priv = priv;
2107         priv->ds->ops = priv->hw_info->ops;
2108         priv->dev = dev;
2109         version = gswip_switch_r(priv, GSWIP_VERSION);
2110
2111         np = dev->of_node;
2112         switch (version) {
2113         case GSWIP_VERSION_2_0:
2114         case GSWIP_VERSION_2_1:
2115                 if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2116                         return -EINVAL;
2117                 break;
2118         case GSWIP_VERSION_2_2:
2119         case GSWIP_VERSION_2_2_ETC:
2120                 if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2121                     !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2122                         return -EINVAL;
2123                 break;
2124         default:
2125                 dev_err(dev, "unknown GSWIP version: 0x%x", version);
2126                 return -ENOENT;
2127         }
2128
2129         /* bring up the mdio bus */
2130         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2131         if (gphy_fw_np) {
2132                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2133                 of_node_put(gphy_fw_np);
2134                 if (err) {
2135                         dev_err(dev, "gphy fw probe failed\n");
2136                         return err;
2137                 }
2138         }
2139
2140         /* bring up the mdio bus */
2141         mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2142         if (mdio_np) {
2143                 err = gswip_mdio(priv, mdio_np);
2144                 if (err) {
2145                         dev_err(dev, "mdio probe failed\n");
2146                         goto put_mdio_node;
2147                 }
2148         }
2149
2150         err = dsa_register_switch(priv->ds);
2151         if (err) {
2152                 dev_err(dev, "dsa switch register failed: %i\n", err);
2153                 goto mdio_bus;
2154         }
2155         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2156                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2157                         priv->hw_info->cpu_port);
2158                 err = -EINVAL;
2159                 goto disable_switch;
2160         }
2161
2162         platform_set_drvdata(pdev, priv);
2163
2164         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2165                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2166                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2167         return 0;
2168
2169 disable_switch:
2170         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2171         dsa_unregister_switch(priv->ds);
2172 mdio_bus:
2173         if (mdio_np)
2174                 mdiobus_unregister(priv->ds->slave_mii_bus);
2175 put_mdio_node:
2176         of_node_put(mdio_np);
2177         for (i = 0; i < priv->num_gphy_fw; i++)
2178                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2179         return err;
2180 }
2181
2182 static int gswip_remove(struct platform_device *pdev)
2183 {
2184         struct gswip_priv *priv = platform_get_drvdata(pdev);
2185         int i;
2186
2187         if (!priv)
2188                 return 0;
2189
2190         /* disable the switch */
2191         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2192
2193         dsa_unregister_switch(priv->ds);
2194
2195         if (priv->ds->slave_mii_bus) {
2196                 mdiobus_unregister(priv->ds->slave_mii_bus);
2197                 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2198         }
2199
2200         for (i = 0; i < priv->num_gphy_fw; i++)
2201                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2202
2203         platform_set_drvdata(pdev, NULL);
2204
2205         return 0;
2206 }
2207
2208 static void gswip_shutdown(struct platform_device *pdev)
2209 {
2210         struct gswip_priv *priv = platform_get_drvdata(pdev);
2211
2212         if (!priv)
2213                 return;
2214
2215         dsa_switch_shutdown(priv->ds);
2216
2217         platform_set_drvdata(pdev, NULL);
2218 }
2219
2220 static const struct gswip_hw_info gswip_xrx200 = {
2221         .max_ports = 7,
2222         .cpu_port = 6,
2223         .ops = &gswip_xrx200_switch_ops,
2224 };
2225
2226 static const struct gswip_hw_info gswip_xrx300 = {
2227         .max_ports = 7,
2228         .cpu_port = 6,
2229         .ops = &gswip_xrx300_switch_ops,
2230 };
2231
2232 static const struct of_device_id gswip_of_match[] = {
2233         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2234         { .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2235         { .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2236         {},
2237 };
2238 MODULE_DEVICE_TABLE(of, gswip_of_match);
2239
2240 static struct platform_driver gswip_driver = {
2241         .probe = gswip_probe,
2242         .remove = gswip_remove,
2243         .shutdown = gswip_shutdown,
2244         .driver = {
2245                 .name = "gswip",
2246                 .of_match_table = gswip_of_match,
2247         },
2248 };
2249
2250 module_platform_driver(gswip_driver);
2251
2252 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2253 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2254 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2255 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2256 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2257 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2258 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2259 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2260 MODULE_LICENSE("GPL v2");