Merge tag 'v5.9-rc2' into regulator-5.9
[platform/kernel/linux-starfive.git] / drivers / net / dsa / lantiq_gswip.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27
28 #include <linux/clk.h>
29 #include <linux/etherdevice.h>
30 #include <linux/firmware.h>
31 #include <linux/if_bridge.h>
32 #include <linux/if_vlan.h>
33 #include <linux/iopoll.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/module.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/phy.h>
40 #include <linux/phylink.h>
41 #include <linux/platform_device.h>
42 #include <linux/regmap.h>
43 #include <linux/reset.h>
44 #include <net/dsa.h>
45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
46
47 #include "lantiq_pce.h"
48
49 /* GSWIP MDIO Registers */
50 #define GSWIP_MDIO_GLOB                 0x00
51 #define  GSWIP_MDIO_GLOB_ENABLE         BIT(15)
52 #define GSWIP_MDIO_CTRL                 0x08
53 #define  GSWIP_MDIO_CTRL_BUSY           BIT(12)
54 #define  GSWIP_MDIO_CTRL_RD             BIT(11)
55 #define  GSWIP_MDIO_CTRL_WR             BIT(10)
56 #define  GSWIP_MDIO_CTRL_PHYAD_MASK     0x1f
57 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT    5
58 #define  GSWIP_MDIO_CTRL_REGAD_MASK     0x1f
59 #define GSWIP_MDIO_READ                 0x09
60 #define GSWIP_MDIO_WRITE                0x0A
61 #define GSWIP_MDIO_MDC_CFG0             0x0B
62 #define GSWIP_MDIO_MDC_CFG1             0x0C
63 #define GSWIP_MDIO_PHYp(p)              (0x15 - (p))
64 #define  GSWIP_MDIO_PHY_LINK_MASK       0x6000
65 #define  GSWIP_MDIO_PHY_LINK_AUTO       0x0000
66 #define  GSWIP_MDIO_PHY_LINK_DOWN       0x4000
67 #define  GSWIP_MDIO_PHY_LINK_UP         0x2000
68 #define  GSWIP_MDIO_PHY_SPEED_MASK      0x1800
69 #define  GSWIP_MDIO_PHY_SPEED_AUTO      0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_M10       0x0000
71 #define  GSWIP_MDIO_PHY_SPEED_M100      0x0800
72 #define  GSWIP_MDIO_PHY_SPEED_G1        0x1000
73 #define  GSWIP_MDIO_PHY_FDUP_MASK       0x0600
74 #define  GSWIP_MDIO_PHY_FDUP_AUTO       0x0000
75 #define  GSWIP_MDIO_PHY_FDUP_EN         0x0200
76 #define  GSWIP_MDIO_PHY_FDUP_DIS        0x0600
77 #define  GSWIP_MDIO_PHY_FCONTX_MASK     0x0180
78 #define  GSWIP_MDIO_PHY_FCONTX_AUTO     0x0000
79 #define  GSWIP_MDIO_PHY_FCONTX_EN       0x0100
80 #define  GSWIP_MDIO_PHY_FCONTX_DIS      0x0180
81 #define  GSWIP_MDIO_PHY_FCONRX_MASK     0x0060
82 #define  GSWIP_MDIO_PHY_FCONRX_AUTO     0x0000
83 #define  GSWIP_MDIO_PHY_FCONRX_EN       0x0020
84 #define  GSWIP_MDIO_PHY_FCONRX_DIS      0x0060
85 #define  GSWIP_MDIO_PHY_ADDR_MASK       0x001f
86 #define  GSWIP_MDIO_PHY_MASK            (GSWIP_MDIO_PHY_ADDR_MASK | \
87                                          GSWIP_MDIO_PHY_FCONRX_MASK | \
88                                          GSWIP_MDIO_PHY_FCONTX_MASK | \
89                                          GSWIP_MDIO_PHY_LINK_MASK | \
90                                          GSWIP_MDIO_PHY_SPEED_MASK | \
91                                          GSWIP_MDIO_PHY_FDUP_MASK)
92
93 /* GSWIP MII Registers */
94 #define GSWIP_MII_CFG0                  0x00
95 #define GSWIP_MII_CFG1                  0x02
96 #define GSWIP_MII_CFG5                  0x04
97 #define  GSWIP_MII_CFG_EN               BIT(14)
98 #define  GSWIP_MII_CFG_LDCLKDIS         BIT(12)
99 #define  GSWIP_MII_CFG_MODE_MIIP        0x0
100 #define  GSWIP_MII_CFG_MODE_MIIM        0x1
101 #define  GSWIP_MII_CFG_MODE_RMIIP       0x2
102 #define  GSWIP_MII_CFG_MODE_RMIIM       0x3
103 #define  GSWIP_MII_CFG_MODE_RGMII       0x4
104 #define  GSWIP_MII_CFG_MODE_MASK        0xf
105 #define  GSWIP_MII_CFG_RATE_M2P5        0x00
106 #define  GSWIP_MII_CFG_RATE_M25 0x10
107 #define  GSWIP_MII_CFG_RATE_M125        0x20
108 #define  GSWIP_MII_CFG_RATE_M50 0x30
109 #define  GSWIP_MII_CFG_RATE_AUTO        0x40
110 #define  GSWIP_MII_CFG_RATE_MASK        0x70
111 #define GSWIP_MII_PCDU0                 0x01
112 #define GSWIP_MII_PCDU1                 0x03
113 #define GSWIP_MII_PCDU5                 0x05
114 #define  GSWIP_MII_PCDU_TXDLY_MASK      GENMASK(2, 0)
115 #define  GSWIP_MII_PCDU_RXDLY_MASK      GENMASK(9, 7)
116
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES                     0x000
119 #define  GSWIP_SWRES_R1                 BIT(1)  /* GSWIP Software reset */
120 #define  GSWIP_SWRES_R0                 BIT(0)  /* GSWIP Hardware reset */
121 #define GSWIP_VERSION                   0x013
122 #define  GSWIP_VERSION_REV_SHIFT        0
123 #define  GSWIP_VERSION_REV_MASK         GENMASK(7, 0)
124 #define  GSWIP_VERSION_MOD_SHIFT        8
125 #define  GSWIP_VERSION_MOD_MASK         GENMASK(15, 8)
126 #define   GSWIP_VERSION_2_0             0x100
127 #define   GSWIP_VERSION_2_1             0x021
128 #define   GSWIP_VERSION_2_2             0x122
129 #define   GSWIP_VERSION_2_2_ETC         0x022
130
131 #define GSWIP_BM_RAM_VAL(x)             (0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR               0x044
133 #define GSWIP_BM_RAM_CTRL               0x045
134 #define  GSWIP_BM_RAM_CTRL_BAS          BIT(15)
135 #define  GSWIP_BM_RAM_CTRL_OPMOD        BIT(5)
136 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK    GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL            0x04A
138 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD    BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p)               (0x080 + ((p) * 2))
141 #define  GSWIP_BM_PCFG_CNTEN            BIT(0)  /* RMON Counter Enable */
142 #define  GSWIP_BM_PCFG_IGCNT            BIT(1)  /* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p)          (0x81 + ((p) * 2))
145 #define  GSWIP_BM_CTRL_RMON_RAM1_RES    BIT(0)  /* Software Reset for RMON RAM 1 */
146 #define  GSWIP_BM_CTRL_RMON_RAM2_RES    BIT(1)  /* Software Reset for RMON RAM 2 */
147
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x)            (0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK              0x448
151 #define GSWIP_PCE_TBL_VAL(x)            (0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR              0x44E
153 #define GSWIP_PCE_TBL_CTRL              0x44F
154 #define  GSWIP_PCE_TBL_CTRL_BAS         BIT(15)
155 #define  GSWIP_PCE_TBL_CTRL_TYPE        BIT(13)
156 #define  GSWIP_PCE_TBL_CTRL_VLD         BIT(12)
157 #define  GSWIP_PCE_TBL_CTRL_KEYFORM     BIT(11)
158 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK   GENMASK(10, 7)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK  GENMASK(6, 5)
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD  0x00
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR  0x20
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD  0x40
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR  0x60
164 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK   GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1                 0x453   /* Monitoring port map */
166 #define GSWIP_PCE_PMAP2                 0x454   /* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3                 0x455   /* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0               0x456
169 #define  GSWIP_PCE_GCTRL_0_MTFL         BIT(0)  /* MAC Table Flushing */
170 #define  GSWIP_PCE_GCTRL_0_MC_VALID     BIT(3)
171 #define  GSWIP_PCE_GCTRL_0_VLAN         BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1               0x457
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK    BIT(2)  /* MAC Address table lock */
174 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD        BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p)           (0x480 + ((p) * 0xA))
176 #define  GSWIP_PCE_PCTRL_0_TVM          BIT(5)  /* Transparent VLAN mode */
177 #define  GSWIP_PCE_PCTRL_0_VREP         BIT(6)  /* VLAN Replace Mode */
178 #define  GSWIP_PCE_PCTRL_0_INGRESS      BIT(11) /* Accept special tag in ingress */
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN        0x0
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX            0x1
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX            0x2
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING      0x3
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING    0x7
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK  GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p)              (0x485 + ((p) * 0xA))
186 #define  GSWIP_PCE_VCTRL_UVR            BIT(0)  /* Unknown VLAN Rule */
187 #define  GSWIP_PCE_VCTRL_VIMR           BIT(3)  /* VLAN Ingress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VEMR           BIT(4)  /* VLAN Egress Member violation rule */
189 #define  GSWIP_PCE_VCTRL_VSR            BIT(5)  /* VLAN Security */
190 #define  GSWIP_PCE_VCTRL_VID0           BIT(6)  /* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p)            (0x486 + ((p) * 0xA))
192
193 #define GSWIP_MAC_FLEN                  0x8C5
194 #define GSWIP_MAC_CTRL_2p(p)            (0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN           BIT(3) /* Maximum Untagged Frame Lnegth */
196
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p)            (0xA80 + ((p) * 0x6))
199 #define  GSWIP_FDMA_PCTRL_EN            BIT(0)  /* FDMA Port Enable */
200 #define  GSWIP_FDMA_PCTRL_STEN          BIT(1)  /* Special Tag Insertion Enable */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK  GENMASK(4, 3)   /* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3       /* VLAN Modification Control */
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS   (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO  (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID    (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH  (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p)            (0xBC0 + ((p) * 0x6))
210 #define  GSWIP_SDMA_PCTRL_EN            BIT(0)  /* SDMA Port Enable */
211 #define  GSWIP_SDMA_PCTRL_FCEN          BIT(1)  /* Flow Control Enable */
212 #define  GSWIP_SDMA_PCTRL_PAUFWD        BIT(1)  /* Pause Frame Forwarding */
213
214 #define GSWIP_TABLE_ACTIVE_VLAN         0x01
215 #define GSWIP_TABLE_VLAN_MAPPING        0x02
216 #define GSWIP_TABLE_MAC_BRIDGE          0x0b
217 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC  0x01    /* Static not, aging entry */
218
219 #define XRX200_GPHY_FW_ALIGN    (16 * 1024)
220
221 struct gswip_hw_info {
222         int max_ports;
223         int cpu_port;
224 };
225
226 struct xway_gphy_match_data {
227         char *fe_firmware_name;
228         char *ge_firmware_name;
229 };
230
231 struct gswip_gphy_fw {
232         struct clk *clk_gate;
233         struct reset_control *reset;
234         u32 fw_addr_offset;
235         char *fw_name;
236 };
237
238 struct gswip_vlan {
239         struct net_device *bridge;
240         u16 vid;
241         u8 fid;
242 };
243
244 struct gswip_priv {
245         __iomem void *gswip;
246         __iomem void *mdio;
247         __iomem void *mii;
248         const struct gswip_hw_info *hw_info;
249         const struct xway_gphy_match_data *gphy_fw_name_cfg;
250         struct dsa_switch *ds;
251         struct device *dev;
252         struct regmap *rcu_regmap;
253         struct gswip_vlan vlans[64];
254         int num_gphy_fw;
255         struct gswip_gphy_fw *gphy_fw;
256         u32 port_vlan_filter;
257 };
258
259 struct gswip_pce_table_entry {
260         u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
261         u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
262         u16 key[8];
263         u16 val[5];
264         u16 mask;
265         u8 gmap;
266         bool type;
267         bool valid;
268         bool key_mode;
269 };
270
271 struct gswip_rmon_cnt_desc {
272         unsigned int size;
273         unsigned int offset;
274         const char *name;
275 };
276
277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
278
279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
280         /** Receive Packet Count (only packets that are accepted and not discarded). */
281         MIB_DESC(1, 0x1F, "RxGoodPkts"),
282         MIB_DESC(1, 0x23, "RxUnicastPkts"),
283         MIB_DESC(1, 0x22, "RxMulticastPkts"),
284         MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
285         MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
286         MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
287         MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
288         MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
289         MIB_DESC(1, 0x20, "RxGoodPausePkts"),
290         MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
291         MIB_DESC(1, 0x12, "Rx64BytePkts"),
292         MIB_DESC(1, 0x13, "Rx127BytePkts"),
293         MIB_DESC(1, 0x14, "Rx255BytePkts"),
294         MIB_DESC(1, 0x15, "Rx511BytePkts"),
295         MIB_DESC(1, 0x16, "Rx1023BytePkts"),
296         /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
297         MIB_DESC(1, 0x17, "RxMaxBytePkts"),
298         MIB_DESC(1, 0x18, "RxDroppedPkts"),
299         MIB_DESC(1, 0x19, "RxFilteredPkts"),
300         MIB_DESC(2, 0x24, "RxGoodBytes"),
301         MIB_DESC(2, 0x26, "RxBadBytes"),
302         MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
303         MIB_DESC(1, 0x0C, "TxGoodPkts"),
304         MIB_DESC(1, 0x06, "TxUnicastPkts"),
305         MIB_DESC(1, 0x07, "TxMulticastPkts"),
306         MIB_DESC(1, 0x00, "Tx64BytePkts"),
307         MIB_DESC(1, 0x01, "Tx127BytePkts"),
308         MIB_DESC(1, 0x02, "Tx255BytePkts"),
309         MIB_DESC(1, 0x03, "Tx511BytePkts"),
310         MIB_DESC(1, 0x04, "Tx1023BytePkts"),
311         /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
312         MIB_DESC(1, 0x05, "TxMaxBytePkts"),
313         MIB_DESC(1, 0x08, "TxSingleCollCount"),
314         MIB_DESC(1, 0x09, "TxMultCollCount"),
315         MIB_DESC(1, 0x0A, "TxLateCollCount"),
316         MIB_DESC(1, 0x0B, "TxExcessCollCount"),
317         MIB_DESC(1, 0x0D, "TxPauseCount"),
318         MIB_DESC(1, 0x10, "TxDroppedPkts"),
319         MIB_DESC(2, 0x0E, "TxGoodBytes"),
320 };
321
322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
323 {
324         return __raw_readl(priv->gswip + (offset * 4));
325 }
326
327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
328 {
329         __raw_writel(val, priv->gswip + (offset * 4));
330 }
331
332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
333                               u32 offset)
334 {
335         u32 val = gswip_switch_r(priv, offset);
336
337         val &= ~(clear);
338         val |= set;
339         gswip_switch_w(priv, val, offset);
340 }
341
342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
343                                   u32 cleared)
344 {
345         u32 val;
346
347         return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
348                                   (val & cleared) == 0, 20, 50000);
349 }
350
351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
352 {
353         return __raw_readl(priv->mdio + (offset * 4));
354 }
355
356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
357 {
358         __raw_writel(val, priv->mdio + (offset * 4));
359 }
360
361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
362                             u32 offset)
363 {
364         u32 val = gswip_mdio_r(priv, offset);
365
366         val &= ~(clear);
367         val |= set;
368         gswip_mdio_w(priv, val, offset);
369 }
370
371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
372 {
373         return __raw_readl(priv->mii + (offset * 4));
374 }
375
376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378         __raw_writel(val, priv->mii + (offset * 4));
379 }
380
381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
382                            u32 offset)
383 {
384         u32 val = gswip_mii_r(priv, offset);
385
386         val &= ~(clear);
387         val |= set;
388         gswip_mii_w(priv, val, offset);
389 }
390
391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
392                                int port)
393 {
394         switch (port) {
395         case 0:
396                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
397                 break;
398         case 1:
399                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
400                 break;
401         case 5:
402                 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
403                 break;
404         }
405 }
406
407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
408                                 int port)
409 {
410         switch (port) {
411         case 0:
412                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
413                 break;
414         case 1:
415                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
416                 break;
417         case 5:
418                 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
419                 break;
420         }
421 }
422
423 static int gswip_mdio_poll(struct gswip_priv *priv)
424 {
425         int cnt = 100;
426
427         while (likely(cnt--)) {
428                 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
429
430                 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
431                         return 0;
432                 usleep_range(20, 40);
433         }
434
435         return -ETIMEDOUT;
436 }
437
438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
439 {
440         struct gswip_priv *priv = bus->priv;
441         int err;
442
443         err = gswip_mdio_poll(priv);
444         if (err) {
445                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
446                 return err;
447         }
448
449         gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
450         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
451                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
452                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
453                 GSWIP_MDIO_CTRL);
454
455         return 0;
456 }
457
458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
459 {
460         struct gswip_priv *priv = bus->priv;
461         int err;
462
463         err = gswip_mdio_poll(priv);
464         if (err) {
465                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
466                 return err;
467         }
468
469         gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
470                 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
471                 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
472                 GSWIP_MDIO_CTRL);
473
474         err = gswip_mdio_poll(priv);
475         if (err) {
476                 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
477                 return err;
478         }
479
480         return gswip_mdio_r(priv, GSWIP_MDIO_READ);
481 }
482
483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
484 {
485         struct dsa_switch *ds = priv->ds;
486
487         ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
488         if (!ds->slave_mii_bus)
489                 return -ENOMEM;
490
491         ds->slave_mii_bus->priv = priv;
492         ds->slave_mii_bus->read = gswip_mdio_rd;
493         ds->slave_mii_bus->write = gswip_mdio_wr;
494         ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
495         snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
496                  dev_name(priv->dev));
497         ds->slave_mii_bus->parent = priv->dev;
498         ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
499
500         return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
501 }
502
503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
504                                       struct gswip_pce_table_entry *tbl)
505 {
506         int i;
507         int err;
508         u16 crtl;
509         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
510                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
511
512         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
513                                      GSWIP_PCE_TBL_CTRL_BAS);
514         if (err)
515                 return err;
516
517         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
518         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520                           tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
521                           GSWIP_PCE_TBL_CTRL);
522
523         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
524                                      GSWIP_PCE_TBL_CTRL_BAS);
525         if (err)
526                 return err;
527
528         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
529                 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
530
531         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
532                 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
533
534         tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
535
536         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
537
538         tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
539         tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
540         tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
541
542         return 0;
543 }
544
545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
546                                        struct gswip_pce_table_entry *tbl)
547 {
548         int i;
549         int err;
550         u16 crtl;
551         u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
552                                         GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
553
554         err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
555                                      GSWIP_PCE_TBL_CTRL_BAS);
556         if (err)
557                 return err;
558
559         gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
560         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
561                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
562                           tbl->table | addr_mode,
563                           GSWIP_PCE_TBL_CTRL);
564
565         for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
566                 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
567
568         for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
569                 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
570
571         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
572                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
573                           tbl->table | addr_mode,
574                           GSWIP_PCE_TBL_CTRL);
575
576         gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
577
578         crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
579         crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
580                   GSWIP_PCE_TBL_CTRL_GMAP_MASK);
581         if (tbl->type)
582                 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
583         if (tbl->valid)
584                 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
585         crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
586         crtl |= GSWIP_PCE_TBL_CTRL_BAS;
587         gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
588
589         return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
590                                       GSWIP_PCE_TBL_CTRL_BAS);
591 }
592
593 /* Add the LAN port into a bridge with the CPU port by
594  * default. This prevents automatic forwarding of
595  * packages between the LAN ports when no explicit
596  * bridge is configured.
597  */
598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
599 {
600         struct gswip_pce_table_entry vlan_active = {0,};
601         struct gswip_pce_table_entry vlan_mapping = {0,};
602         unsigned int cpu_port = priv->hw_info->cpu_port;
603         unsigned int max_ports = priv->hw_info->max_ports;
604         int err;
605
606         if (port >= max_ports) {
607                 dev_err(priv->dev, "single port for %i supported\n", port);
608                 return -EIO;
609         }
610
611         vlan_active.index = port + 1;
612         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
613         vlan_active.key[0] = 0; /* vid */
614         vlan_active.val[0] = port + 1 /* fid */;
615         vlan_active.valid = add;
616         err = gswip_pce_table_entry_write(priv, &vlan_active);
617         if (err) {
618                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
619                 return err;
620         }
621
622         if (!add)
623                 return 0;
624
625         vlan_mapping.index = port + 1;
626         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
627         vlan_mapping.val[0] = 0 /* vid */;
628         vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
629         vlan_mapping.val[2] = 0;
630         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
631         if (err) {
632                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
633                 return err;
634         }
635
636         return 0;
637 }
638
639 static int gswip_port_enable(struct dsa_switch *ds, int port,
640                              struct phy_device *phydev)
641 {
642         struct gswip_priv *priv = ds->priv;
643         int err;
644
645         if (!dsa_is_user_port(ds, port))
646                 return 0;
647
648         if (!dsa_is_cpu_port(ds, port)) {
649                 err = gswip_add_single_port_br(priv, port, true);
650                 if (err)
651                         return err;
652         }
653
654         /* RMON Counter Enable for port */
655         gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
656
657         /* enable port fetch/store dma & VLAN Modification */
658         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
659                                    GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
660                          GSWIP_FDMA_PCTRLp(port));
661         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
662                           GSWIP_SDMA_PCTRLp(port));
663
664         if (!dsa_is_cpu_port(ds, port)) {
665                 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
666                               GSWIP_MDIO_PHY_SPEED_AUTO |
667                               GSWIP_MDIO_PHY_FDUP_AUTO |
668                               GSWIP_MDIO_PHY_FCONTX_AUTO |
669                               GSWIP_MDIO_PHY_FCONRX_AUTO |
670                               (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
671
672                 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
673                 /* Activate MDIO auto polling */
674                 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
675         }
676
677         return 0;
678 }
679
680 static void gswip_port_disable(struct dsa_switch *ds, int port)
681 {
682         struct gswip_priv *priv = ds->priv;
683
684         if (!dsa_is_user_port(ds, port))
685                 return;
686
687         if (!dsa_is_cpu_port(ds, port)) {
688                 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
689                                 GSWIP_MDIO_PHY_LINK_MASK,
690                                 GSWIP_MDIO_PHYp(port));
691                 /* Deactivate MDIO auto polling */
692                 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
693         }
694
695         gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
696                           GSWIP_FDMA_PCTRLp(port));
697         gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
698                           GSWIP_SDMA_PCTRLp(port));
699 }
700
701 static int gswip_pce_load_microcode(struct gswip_priv *priv)
702 {
703         int i;
704         int err;
705
706         gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
707                                 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
708                           GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
709         gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
710
711         for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
712                 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
713                 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
714                                GSWIP_PCE_TBL_VAL(0));
715                 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
716                                GSWIP_PCE_TBL_VAL(1));
717                 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
718                                GSWIP_PCE_TBL_VAL(2));
719                 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
720                                GSWIP_PCE_TBL_VAL(3));
721
722                 /* start the table access: */
723                 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
724                                   GSWIP_PCE_TBL_CTRL);
725                 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
726                                              GSWIP_PCE_TBL_CTRL_BAS);
727                 if (err)
728                         return err;
729         }
730
731         /* tell the switch that the microcode is loaded */
732         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
733                           GSWIP_PCE_GCTRL_0);
734
735         return 0;
736 }
737
738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
739                                      bool vlan_filtering)
740 {
741         struct gswip_priv *priv = ds->priv;
742         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
743
744         /* Do not allow changing the VLAN filtering options while in bridge */
745         if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
746                 return -EIO;
747
748         if (vlan_filtering) {
749                 /* Use port based VLAN tag */
750                 gswip_switch_mask(priv,
751                                   GSWIP_PCE_VCTRL_VSR,
752                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
753                                   GSWIP_PCE_VCTRL_VEMR,
754                                   GSWIP_PCE_VCTRL(port));
755                 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
756                                   GSWIP_PCE_PCTRL_0p(port));
757         } else {
758                 /* Use port based VLAN tag */
759                 gswip_switch_mask(priv,
760                                   GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
761                                   GSWIP_PCE_VCTRL_VEMR,
762                                   GSWIP_PCE_VCTRL_VSR,
763                                   GSWIP_PCE_VCTRL(port));
764                 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
765                                   GSWIP_PCE_PCTRL_0p(port));
766         }
767
768         return 0;
769 }
770
771 static int gswip_setup(struct dsa_switch *ds)
772 {
773         struct gswip_priv *priv = ds->priv;
774         unsigned int cpu_port = priv->hw_info->cpu_port;
775         int i;
776         int err;
777
778         gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
779         usleep_range(5000, 10000);
780         gswip_switch_w(priv, 0, GSWIP_SWRES);
781
782         /* disable port fetch/store dma on all ports */
783         for (i = 0; i < priv->hw_info->max_ports; i++) {
784                 gswip_port_disable(ds, i);
785                 gswip_port_vlan_filtering(ds, i, false);
786         }
787
788         /* enable Switch */
789         gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
790
791         err = gswip_pce_load_microcode(priv);
792         if (err) {
793                 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
794                 return err;
795         }
796
797         /* Default unknown Broadcast/Multicast/Unicast port maps */
798         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
799         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
800         gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
801
802         /* disable PHY auto polling */
803         gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
804         /* Configure the MDIO Clock 2.5 MHz */
805         gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
806
807         /* Disable the xMII link */
808         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
809         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
810         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
811
812         /* enable special tag insertion on cpu port */
813         gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
814                           GSWIP_FDMA_PCTRLp(cpu_port));
815
816         /* accept special tag in ingress direction */
817         gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
818                           GSWIP_PCE_PCTRL_0p(cpu_port));
819
820         gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
821                           GSWIP_MAC_CTRL_2p(cpu_port));
822         gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
823         gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
824                           GSWIP_BM_QUEUE_GCTRL);
825
826         /* VLAN aware Switching */
827         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
828
829         /* Flush MAC Table */
830         gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
831
832         err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
833                                      GSWIP_PCE_GCTRL_0_MTFL);
834         if (err) {
835                 dev_err(priv->dev, "MAC flushing didn't finish\n");
836                 return err;
837         }
838
839         gswip_port_enable(ds, cpu_port, NULL);
840         return 0;
841 }
842
843 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
844                                                     int port,
845                                                     enum dsa_tag_protocol mp)
846 {
847         return DSA_TAG_PROTO_GSWIP;
848 }
849
850 static int gswip_vlan_active_create(struct gswip_priv *priv,
851                                     struct net_device *bridge,
852                                     int fid, u16 vid)
853 {
854         struct gswip_pce_table_entry vlan_active = {0,};
855         unsigned int max_ports = priv->hw_info->max_ports;
856         int idx = -1;
857         int err;
858         int i;
859
860         /* Look for a free slot */
861         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
862                 if (!priv->vlans[i].bridge) {
863                         idx = i;
864                         break;
865                 }
866         }
867
868         if (idx == -1)
869                 return -ENOSPC;
870
871         if (fid == -1)
872                 fid = idx;
873
874         vlan_active.index = idx;
875         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
876         vlan_active.key[0] = vid;
877         vlan_active.val[0] = fid;
878         vlan_active.valid = true;
879
880         err = gswip_pce_table_entry_write(priv, &vlan_active);
881         if (err) {
882                 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
883                 return err;
884         }
885
886         priv->vlans[idx].bridge = bridge;
887         priv->vlans[idx].vid = vid;
888         priv->vlans[idx].fid = fid;
889
890         return idx;
891 }
892
893 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
894 {
895         struct gswip_pce_table_entry vlan_active = {0,};
896         int err;
897
898         vlan_active.index = idx;
899         vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
900         vlan_active.valid = false;
901         err = gswip_pce_table_entry_write(priv, &vlan_active);
902         if (err)
903                 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
904         priv->vlans[idx].bridge = NULL;
905
906         return err;
907 }
908
909 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
910                                   struct net_device *bridge, int port)
911 {
912         struct gswip_pce_table_entry vlan_mapping = {0,};
913         unsigned int max_ports = priv->hw_info->max_ports;
914         unsigned int cpu_port = priv->hw_info->cpu_port;
915         bool active_vlan_created = false;
916         int idx = -1;
917         int i;
918         int err;
919
920         /* Check if there is already a page for this bridge */
921         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
922                 if (priv->vlans[i].bridge == bridge) {
923                         idx = i;
924                         break;
925                 }
926         }
927
928         /* If this bridge is not programmed yet, add a Active VLAN table
929          * entry in a free slot and prepare the VLAN mapping table entry.
930          */
931         if (idx == -1) {
932                 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
933                 if (idx < 0)
934                         return idx;
935                 active_vlan_created = true;
936
937                 vlan_mapping.index = idx;
938                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
939                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
940                 vlan_mapping.val[0] = 0;
941         } else {
942                 /* Read the existing VLAN mapping entry from the switch */
943                 vlan_mapping.index = idx;
944                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
945                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
946                 if (err) {
947                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
948                                 err);
949                         return err;
950                 }
951         }
952
953         /* Update the VLAN mapping entry and write it to the switch */
954         vlan_mapping.val[1] |= BIT(cpu_port);
955         vlan_mapping.val[1] |= BIT(port);
956         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
957         if (err) {
958                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
959                 /* In case an Active VLAN was creaetd delete it again */
960                 if (active_vlan_created)
961                         gswip_vlan_active_remove(priv, idx);
962                 return err;
963         }
964
965         gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
966         return 0;
967 }
968
969 static int gswip_vlan_add_aware(struct gswip_priv *priv,
970                                 struct net_device *bridge, int port,
971                                 u16 vid, bool untagged,
972                                 bool pvid)
973 {
974         struct gswip_pce_table_entry vlan_mapping = {0,};
975         unsigned int max_ports = priv->hw_info->max_ports;
976         unsigned int cpu_port = priv->hw_info->cpu_port;
977         bool active_vlan_created = false;
978         int idx = -1;
979         int fid = -1;
980         int i;
981         int err;
982
983         /* Check if there is already a page for this bridge */
984         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
985                 if (priv->vlans[i].bridge == bridge) {
986                         if (fid != -1 && fid != priv->vlans[i].fid)
987                                 dev_err(priv->dev, "one bridge with multiple flow ids\n");
988                         fid = priv->vlans[i].fid;
989                         if (priv->vlans[i].vid == vid) {
990                                 idx = i;
991                                 break;
992                         }
993                 }
994         }
995
996         /* If this bridge is not programmed yet, add a Active VLAN table
997          * entry in a free slot and prepare the VLAN mapping table entry.
998          */
999         if (idx == -1) {
1000                 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1001                 if (idx < 0)
1002                         return idx;
1003                 active_vlan_created = true;
1004
1005                 vlan_mapping.index = idx;
1006                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1007                 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1008                 vlan_mapping.val[0] = vid;
1009         } else {
1010                 /* Read the existing VLAN mapping entry from the switch */
1011                 vlan_mapping.index = idx;
1012                 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1013                 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1014                 if (err) {
1015                         dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1016                                 err);
1017                         return err;
1018                 }
1019         }
1020
1021         vlan_mapping.val[0] = vid;
1022         /* Update the VLAN mapping entry and write it to the switch */
1023         vlan_mapping.val[1] |= BIT(cpu_port);
1024         vlan_mapping.val[2] |= BIT(cpu_port);
1025         vlan_mapping.val[1] |= BIT(port);
1026         if (untagged)
1027                 vlan_mapping.val[2] &= ~BIT(port);
1028         else
1029                 vlan_mapping.val[2] |= BIT(port);
1030         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1031         if (err) {
1032                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1033                 /* In case an Active VLAN was creaetd delete it again */
1034                 if (active_vlan_created)
1035                         gswip_vlan_active_remove(priv, idx);
1036                 return err;
1037         }
1038
1039         if (pvid)
1040                 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1041
1042         return 0;
1043 }
1044
1045 static int gswip_vlan_remove(struct gswip_priv *priv,
1046                              struct net_device *bridge, int port,
1047                              u16 vid, bool pvid, bool vlan_aware)
1048 {
1049         struct gswip_pce_table_entry vlan_mapping = {0,};
1050         unsigned int max_ports = priv->hw_info->max_ports;
1051         unsigned int cpu_port = priv->hw_info->cpu_port;
1052         int idx = -1;
1053         int i;
1054         int err;
1055
1056         /* Check if there is already a page for this bridge */
1057         for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1058                 if (priv->vlans[i].bridge == bridge &&
1059                     (!vlan_aware || priv->vlans[i].vid == vid)) {
1060                         idx = i;
1061                         break;
1062                 }
1063         }
1064
1065         if (idx == -1) {
1066                 dev_err(priv->dev, "bridge to leave does not exists\n");
1067                 return -ENOENT;
1068         }
1069
1070         vlan_mapping.index = idx;
1071         vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072         err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1073         if (err) {
1074                 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1075                 return err;
1076         }
1077
1078         vlan_mapping.val[1] &= ~BIT(port);
1079         vlan_mapping.val[2] &= ~BIT(port);
1080         err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1081         if (err) {
1082                 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1083                 return err;
1084         }
1085
1086         /* In case all ports are removed from the bridge, remove the VLAN */
1087         if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1088                 err = gswip_vlan_active_remove(priv, idx);
1089                 if (err) {
1090                         dev_err(priv->dev, "failed to write active VLAN: %d\n",
1091                                 err);
1092                         return err;
1093                 }
1094         }
1095
1096         /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1097         if (pvid)
1098                 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1099
1100         return 0;
1101 }
1102
1103 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1104                                   struct net_device *bridge)
1105 {
1106         struct gswip_priv *priv = ds->priv;
1107         int err;
1108
1109         /* When the bridge uses VLAN filtering we have to configure VLAN
1110          * specific bridges. No bridge is configured here.
1111          */
1112         if (!br_vlan_enabled(bridge)) {
1113                 err = gswip_vlan_add_unaware(priv, bridge, port);
1114                 if (err)
1115                         return err;
1116                 priv->port_vlan_filter &= ~BIT(port);
1117         } else {
1118                 priv->port_vlan_filter |= BIT(port);
1119         }
1120         return gswip_add_single_port_br(priv, port, false);
1121 }
1122
1123 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1124                                     struct net_device *bridge)
1125 {
1126         struct gswip_priv *priv = ds->priv;
1127
1128         gswip_add_single_port_br(priv, port, true);
1129
1130         /* When the bridge uses VLAN filtering we have to configure VLAN
1131          * specific bridges. No bridge is configured here.
1132          */
1133         if (!br_vlan_enabled(bridge))
1134                 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1135 }
1136
1137 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1138                                    const struct switchdev_obj_port_vlan *vlan)
1139 {
1140         struct gswip_priv *priv = ds->priv;
1141         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1142         unsigned int max_ports = priv->hw_info->max_ports;
1143         u16 vid;
1144         int i;
1145         int pos = max_ports;
1146
1147         /* We only support VLAN filtering on bridges */
1148         if (!dsa_is_cpu_port(ds, port) && !bridge)
1149                 return -EOPNOTSUPP;
1150
1151         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1152                 int idx = -1;
1153
1154                 /* Check if there is already a page for this VLAN */
1155                 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1156                         if (priv->vlans[i].bridge == bridge &&
1157                             priv->vlans[i].vid == vid) {
1158                                 idx = i;
1159                                 break;
1160                         }
1161                 }
1162
1163                 /* If this VLAN is not programmed yet, we have to reserve
1164                  * one entry in the VLAN table. Make sure we start at the
1165                  * next position round.
1166                  */
1167                 if (idx == -1) {
1168                         /* Look for a free slot */
1169                         for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1170                                 if (!priv->vlans[pos].bridge) {
1171                                         idx = pos;
1172                                         pos++;
1173                                         break;
1174                                 }
1175                         }
1176
1177                         if (idx == -1)
1178                                 return -ENOSPC;
1179                 }
1180         }
1181
1182         return 0;
1183 }
1184
1185 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1186                                 const struct switchdev_obj_port_vlan *vlan)
1187 {
1188         struct gswip_priv *priv = ds->priv;
1189         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1190         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1191         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1192         u16 vid;
1193
1194         /* We have to receive all packets on the CPU port and should not
1195          * do any VLAN filtering here. This is also called with bridge
1196          * NULL and then we do not know for which bridge to configure
1197          * this.
1198          */
1199         if (dsa_is_cpu_port(ds, port))
1200                 return;
1201
1202         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1203                 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1204 }
1205
1206 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1207                                const struct switchdev_obj_port_vlan *vlan)
1208 {
1209         struct gswip_priv *priv = ds->priv;
1210         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1211         bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1212         u16 vid;
1213         int err;
1214
1215         /* We have to receive all packets on the CPU port and should not
1216          * do any VLAN filtering here. This is also called with bridge
1217          * NULL and then we do not know for which bridge to configure
1218          * this.
1219          */
1220         if (dsa_is_cpu_port(ds, port))
1221                 return 0;
1222
1223         for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1224                 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1225                 if (err)
1226                         return err;
1227         }
1228
1229         return 0;
1230 }
1231
1232 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1233 {
1234         struct gswip_priv *priv = ds->priv;
1235         struct gswip_pce_table_entry mac_bridge = {0,};
1236         int i;
1237         int err;
1238
1239         for (i = 0; i < 2048; i++) {
1240                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1241                 mac_bridge.index = i;
1242
1243                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1244                 if (err) {
1245                         dev_err(priv->dev, "failed to read mac bridge: %d\n",
1246                                 err);
1247                         return;
1248                 }
1249
1250                 if (!mac_bridge.valid)
1251                         continue;
1252
1253                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1254                         continue;
1255
1256                 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1257                         continue;
1258
1259                 mac_bridge.valid = false;
1260                 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1261                 if (err) {
1262                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1263                                 err);
1264                         return;
1265                 }
1266         }
1267 }
1268
1269 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1270 {
1271         struct gswip_priv *priv = ds->priv;
1272         u32 stp_state;
1273
1274         switch (state) {
1275         case BR_STATE_DISABLED:
1276                 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1277                                   GSWIP_SDMA_PCTRLp(port));
1278                 return;
1279         case BR_STATE_BLOCKING:
1280         case BR_STATE_LISTENING:
1281                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1282                 break;
1283         case BR_STATE_LEARNING:
1284                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1285                 break;
1286         case BR_STATE_FORWARDING:
1287                 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1288                 break;
1289         default:
1290                 dev_err(priv->dev, "invalid STP state: %d\n", state);
1291                 return;
1292         }
1293
1294         gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1295                           GSWIP_SDMA_PCTRLp(port));
1296         gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1297                           GSWIP_PCE_PCTRL_0p(port));
1298 }
1299
1300 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1301                           const unsigned char *addr, u16 vid, bool add)
1302 {
1303         struct gswip_priv *priv = ds->priv;
1304         struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1305         struct gswip_pce_table_entry mac_bridge = {0,};
1306         unsigned int cpu_port = priv->hw_info->cpu_port;
1307         int fid = -1;
1308         int i;
1309         int err;
1310
1311         if (!bridge)
1312                 return -EINVAL;
1313
1314         for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1315                 if (priv->vlans[i].bridge == bridge) {
1316                         fid = priv->vlans[i].fid;
1317                         break;
1318                 }
1319         }
1320
1321         if (fid == -1) {
1322                 dev_err(priv->dev, "Port not part of a bridge\n");
1323                 return -EINVAL;
1324         }
1325
1326         mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1327         mac_bridge.key_mode = true;
1328         mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1329         mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1330         mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1331         mac_bridge.key[3] = fid;
1332         mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1333         mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1334         mac_bridge.valid = add;
1335
1336         err = gswip_pce_table_entry_write(priv, &mac_bridge);
1337         if (err)
1338                 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1339
1340         return err;
1341 }
1342
1343 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1344                               const unsigned char *addr, u16 vid)
1345 {
1346         return gswip_port_fdb(ds, port, addr, vid, true);
1347 }
1348
1349 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1350                               const unsigned char *addr, u16 vid)
1351 {
1352         return gswip_port_fdb(ds, port, addr, vid, false);
1353 }
1354
1355 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1356                                dsa_fdb_dump_cb_t *cb, void *data)
1357 {
1358         struct gswip_priv *priv = ds->priv;
1359         struct gswip_pce_table_entry mac_bridge = {0,};
1360         unsigned char addr[6];
1361         int i;
1362         int err;
1363
1364         for (i = 0; i < 2048; i++) {
1365                 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1366                 mac_bridge.index = i;
1367
1368                 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1369                 if (err) {
1370                         dev_err(priv->dev, "failed to write mac bridge: %d\n",
1371                                 err);
1372                         return err;
1373                 }
1374
1375                 if (!mac_bridge.valid)
1376                         continue;
1377
1378                 addr[5] = mac_bridge.key[0] & 0xff;
1379                 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1380                 addr[3] = mac_bridge.key[1] & 0xff;
1381                 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1382                 addr[1] = mac_bridge.key[2] & 0xff;
1383                 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1384                 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1385                         if (mac_bridge.val[0] & BIT(port))
1386                                 cb(addr, 0, true, data);
1387                 } else {
1388                         if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1389                                 cb(addr, 0, false, data);
1390                 }
1391         }
1392         return 0;
1393 }
1394
1395 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1396                                    unsigned long *supported,
1397                                    struct phylink_link_state *state)
1398 {
1399         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1400
1401         switch (port) {
1402         case 0:
1403         case 1:
1404                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1405                     state->interface != PHY_INTERFACE_MODE_MII &&
1406                     state->interface != PHY_INTERFACE_MODE_REVMII &&
1407                     state->interface != PHY_INTERFACE_MODE_RMII)
1408                         goto unsupported;
1409                 break;
1410         case 2:
1411         case 3:
1412         case 4:
1413                 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1414                         goto unsupported;
1415                 break;
1416         case 5:
1417                 if (!phy_interface_mode_is_rgmii(state->interface) &&
1418                     state->interface != PHY_INTERFACE_MODE_INTERNAL)
1419                         goto unsupported;
1420                 break;
1421         default:
1422                 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1423                 dev_err(ds->dev, "Unsupported port: %i\n", port);
1424                 return;
1425         }
1426
1427         /* Allow all the expected bits */
1428         phylink_set(mask, Autoneg);
1429         phylink_set_port_modes(mask);
1430         phylink_set(mask, Pause);
1431         phylink_set(mask, Asym_Pause);
1432
1433         /* With the exclusion of MII and Reverse MII, we support Gigabit,
1434          * including Half duplex
1435          */
1436         if (state->interface != PHY_INTERFACE_MODE_MII &&
1437             state->interface != PHY_INTERFACE_MODE_REVMII) {
1438                 phylink_set(mask, 1000baseT_Full);
1439                 phylink_set(mask, 1000baseT_Half);
1440         }
1441
1442         phylink_set(mask, 10baseT_Half);
1443         phylink_set(mask, 10baseT_Full);
1444         phylink_set(mask, 100baseT_Half);
1445         phylink_set(mask, 100baseT_Full);
1446
1447         bitmap_and(supported, supported, mask,
1448                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1449         bitmap_and(state->advertising, state->advertising, mask,
1450                    __ETHTOOL_LINK_MODE_MASK_NBITS);
1451         return;
1452
1453 unsupported:
1454         bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1455         dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1456                 phy_modes(state->interface), port);
1457         return;
1458 }
1459
1460 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1461                                      unsigned int mode,
1462                                      const struct phylink_link_state *state)
1463 {
1464         struct gswip_priv *priv = ds->priv;
1465         u32 miicfg = 0;
1466
1467         miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1468
1469         switch (state->interface) {
1470         case PHY_INTERFACE_MODE_MII:
1471         case PHY_INTERFACE_MODE_INTERNAL:
1472                 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1473                 break;
1474         case PHY_INTERFACE_MODE_REVMII:
1475                 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1476                 break;
1477         case PHY_INTERFACE_MODE_RMII:
1478                 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1479                 break;
1480         case PHY_INTERFACE_MODE_RGMII:
1481         case PHY_INTERFACE_MODE_RGMII_ID:
1482         case PHY_INTERFACE_MODE_RGMII_RXID:
1483         case PHY_INTERFACE_MODE_RGMII_TXID:
1484                 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1485                 break;
1486         default:
1487                 dev_err(ds->dev,
1488                         "Unsupported interface: %d\n", state->interface);
1489                 return;
1490         }
1491         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1492
1493         switch (state->interface) {
1494         case PHY_INTERFACE_MODE_RGMII_ID:
1495                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1496                                           GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1497                 break;
1498         case PHY_INTERFACE_MODE_RGMII_RXID:
1499                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1500                 break;
1501         case PHY_INTERFACE_MODE_RGMII_TXID:
1502                 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1503                 break;
1504         default:
1505                 break;
1506         }
1507 }
1508
1509 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1510                                         unsigned int mode,
1511                                         phy_interface_t interface)
1512 {
1513         struct gswip_priv *priv = ds->priv;
1514
1515         gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1516 }
1517
1518 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1519                                       unsigned int mode,
1520                                       phy_interface_t interface,
1521                                       struct phy_device *phydev,
1522                                       int speed, int duplex,
1523                                       bool tx_pause, bool rx_pause)
1524 {
1525         struct gswip_priv *priv = ds->priv;
1526
1527         /* Enable the xMII interface only for the external PHY */
1528         if (interface != PHY_INTERFACE_MODE_INTERNAL)
1529                 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1530 }
1531
1532 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1533                               uint8_t *data)
1534 {
1535         int i;
1536
1537         if (stringset != ETH_SS_STATS)
1538                 return;
1539
1540         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1541                 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1542                         ETH_GSTRING_LEN);
1543 }
1544
1545 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1546                                     u32 index)
1547 {
1548         u32 result;
1549         int err;
1550
1551         gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1552         gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1553                                 GSWIP_BM_RAM_CTRL_OPMOD,
1554                               table | GSWIP_BM_RAM_CTRL_BAS,
1555                               GSWIP_BM_RAM_CTRL);
1556
1557         err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1558                                      GSWIP_BM_RAM_CTRL_BAS);
1559         if (err) {
1560                 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1561                         table, index);
1562                 return 0;
1563         }
1564
1565         result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1566         result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1567
1568         return result;
1569 }
1570
1571 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1572                                     uint64_t *data)
1573 {
1574         struct gswip_priv *priv = ds->priv;
1575         const struct gswip_rmon_cnt_desc *rmon_cnt;
1576         int i;
1577         u64 high;
1578
1579         for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1580                 rmon_cnt = &gswip_rmon_cnt[i];
1581
1582                 data[i] = gswip_bcm_ram_entry_read(priv, port,
1583                                                    rmon_cnt->offset);
1584                 if (rmon_cnt->size == 2) {
1585                         high = gswip_bcm_ram_entry_read(priv, port,
1586                                                         rmon_cnt->offset + 1);
1587                         data[i] |= high << 32;
1588                 }
1589         }
1590 }
1591
1592 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1593 {
1594         if (sset != ETH_SS_STATS)
1595                 return 0;
1596
1597         return ARRAY_SIZE(gswip_rmon_cnt);
1598 }
1599
1600 static const struct dsa_switch_ops gswip_switch_ops = {
1601         .get_tag_protocol       = gswip_get_tag_protocol,
1602         .setup                  = gswip_setup,
1603         .port_enable            = gswip_port_enable,
1604         .port_disable           = gswip_port_disable,
1605         .port_bridge_join       = gswip_port_bridge_join,
1606         .port_bridge_leave      = gswip_port_bridge_leave,
1607         .port_fast_age          = gswip_port_fast_age,
1608         .port_vlan_filtering    = gswip_port_vlan_filtering,
1609         .port_vlan_prepare      = gswip_port_vlan_prepare,
1610         .port_vlan_add          = gswip_port_vlan_add,
1611         .port_vlan_del          = gswip_port_vlan_del,
1612         .port_stp_state_set     = gswip_port_stp_state_set,
1613         .port_fdb_add           = gswip_port_fdb_add,
1614         .port_fdb_del           = gswip_port_fdb_del,
1615         .port_fdb_dump          = gswip_port_fdb_dump,
1616         .phylink_validate       = gswip_phylink_validate,
1617         .phylink_mac_config     = gswip_phylink_mac_config,
1618         .phylink_mac_link_down  = gswip_phylink_mac_link_down,
1619         .phylink_mac_link_up    = gswip_phylink_mac_link_up,
1620         .get_strings            = gswip_get_strings,
1621         .get_ethtool_stats      = gswip_get_ethtool_stats,
1622         .get_sset_count         = gswip_get_sset_count,
1623 };
1624
1625 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1626         .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1627         .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1628 };
1629
1630 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1631         .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1632         .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1633 };
1634
1635 static const struct xway_gphy_match_data xrx300_gphy_data = {
1636         .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1637         .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1638 };
1639
1640 static const struct of_device_id xway_gphy_match[] = {
1641         { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1642         { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1643         { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1644         { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1645         { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1646         {},
1647 };
1648
1649 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1650 {
1651         struct device *dev = priv->dev;
1652         const struct firmware *fw;
1653         void *fw_addr;
1654         dma_addr_t dma_addr;
1655         dma_addr_t dev_addr;
1656         size_t size;
1657         int ret;
1658
1659         ret = clk_prepare_enable(gphy_fw->clk_gate);
1660         if (ret)
1661                 return ret;
1662
1663         reset_control_assert(gphy_fw->reset);
1664
1665         ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1666         if (ret) {
1667                 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1668                         gphy_fw->fw_name, ret);
1669                 return ret;
1670         }
1671
1672         /* GPHY cores need the firmware code in a persistent and contiguous
1673          * memory area with a 16 kB boundary aligned start address.
1674          */
1675         size = fw->size + XRX200_GPHY_FW_ALIGN;
1676
1677         fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1678         if (fw_addr) {
1679                 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1680                 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1681                 memcpy(fw_addr, fw->data, fw->size);
1682         } else {
1683                 dev_err(dev, "failed to alloc firmware memory\n");
1684                 release_firmware(fw);
1685                 return -ENOMEM;
1686         }
1687
1688         release_firmware(fw);
1689
1690         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1691         if (ret)
1692                 return ret;
1693
1694         reset_control_deassert(gphy_fw->reset);
1695
1696         return ret;
1697 }
1698
1699 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1700                                struct gswip_gphy_fw *gphy_fw,
1701                                struct device_node *gphy_fw_np, int i)
1702 {
1703         struct device *dev = priv->dev;
1704         u32 gphy_mode;
1705         int ret;
1706         char gphyname[10];
1707
1708         snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1709
1710         gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1711         if (IS_ERR(gphy_fw->clk_gate)) {
1712                 dev_err(dev, "Failed to lookup gate clock\n");
1713                 return PTR_ERR(gphy_fw->clk_gate);
1714         }
1715
1716         ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1717         if (ret)
1718                 return ret;
1719
1720         ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1721         /* Default to GE mode */
1722         if (ret)
1723                 gphy_mode = GPHY_MODE_GE;
1724
1725         switch (gphy_mode) {
1726         case GPHY_MODE_FE:
1727                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1728                 break;
1729         case GPHY_MODE_GE:
1730                 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1731                 break;
1732         default:
1733                 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1734                 return -EINVAL;
1735         }
1736
1737         gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1738         if (IS_ERR(gphy_fw->reset)) {
1739                 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1740                         dev_err(dev, "Failed to lookup gphy reset\n");
1741                 return PTR_ERR(gphy_fw->reset);
1742         }
1743
1744         return gswip_gphy_fw_load(priv, gphy_fw);
1745 }
1746
1747 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1748                                  struct gswip_gphy_fw *gphy_fw)
1749 {
1750         int ret;
1751
1752         /* check if the device was fully probed */
1753         if (!gphy_fw->fw_name)
1754                 return;
1755
1756         ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1757         if (ret)
1758                 dev_err(priv->dev, "can not reset GPHY FW pointer");
1759
1760         clk_disable_unprepare(gphy_fw->clk_gate);
1761
1762         reset_control_put(gphy_fw->reset);
1763 }
1764
1765 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1766                               struct device_node *gphy_fw_list_np, u32 version)
1767 {
1768         struct device *dev = priv->dev;
1769         struct device_node *gphy_fw_np;
1770         const struct of_device_id *match;
1771         int err;
1772         int i = 0;
1773
1774         /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1775          * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1776          * needs a different GPHY firmware.
1777          */
1778         if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1779                 switch (version) {
1780                 case GSWIP_VERSION_2_0:
1781                         priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1782                         break;
1783                 case GSWIP_VERSION_2_1:
1784                         priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1785                         break;
1786                 default:
1787                         dev_err(dev, "unknown GSWIP version: 0x%x", version);
1788                         return -ENOENT;
1789                 }
1790         }
1791
1792         match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1793         if (match && match->data)
1794                 priv->gphy_fw_name_cfg = match->data;
1795
1796         if (!priv->gphy_fw_name_cfg) {
1797                 dev_err(dev, "GPHY compatible type not supported");
1798                 return -ENOENT;
1799         }
1800
1801         priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1802         if (!priv->num_gphy_fw)
1803                 return -ENOENT;
1804
1805         priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1806                                                            "lantiq,rcu");
1807         if (IS_ERR(priv->rcu_regmap))
1808                 return PTR_ERR(priv->rcu_regmap);
1809
1810         priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1811                                            sizeof(*priv->gphy_fw),
1812                                            GFP_KERNEL | __GFP_ZERO);
1813         if (!priv->gphy_fw)
1814                 return -ENOMEM;
1815
1816         for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1817                 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1818                                           gphy_fw_np, i);
1819                 if (err)
1820                         goto remove_gphy;
1821                 i++;
1822         }
1823
1824         return 0;
1825
1826 remove_gphy:
1827         for (i = 0; i < priv->num_gphy_fw; i++)
1828                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1829         return err;
1830 }
1831
1832 static int gswip_probe(struct platform_device *pdev)
1833 {
1834         struct gswip_priv *priv;
1835         struct device_node *mdio_np, *gphy_fw_np;
1836         struct device *dev = &pdev->dev;
1837         int err;
1838         int i;
1839         u32 version;
1840
1841         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1842         if (!priv)
1843                 return -ENOMEM;
1844
1845         priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1846         if (IS_ERR(priv->gswip))
1847                 return PTR_ERR(priv->gswip);
1848
1849         priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1850         if (IS_ERR(priv->mdio))
1851                 return PTR_ERR(priv->mdio);
1852
1853         priv->mii = devm_platform_ioremap_resource(pdev, 2);
1854         if (IS_ERR(priv->mii))
1855                 return PTR_ERR(priv->mii);
1856
1857         priv->hw_info = of_device_get_match_data(dev);
1858         if (!priv->hw_info)
1859                 return -EINVAL;
1860
1861         priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1862         if (!priv->ds)
1863                 return -ENOMEM;
1864
1865         priv->ds->dev = dev;
1866         priv->ds->num_ports = priv->hw_info->max_ports;
1867         priv->ds->priv = priv;
1868         priv->ds->ops = &gswip_switch_ops;
1869         priv->dev = dev;
1870         version = gswip_switch_r(priv, GSWIP_VERSION);
1871
1872         /* bring up the mdio bus */
1873         gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1874         if (gphy_fw_np) {
1875                 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1876                 of_node_put(gphy_fw_np);
1877                 if (err) {
1878                         dev_err(dev, "gphy fw probe failed\n");
1879                         return err;
1880                 }
1881         }
1882
1883         /* bring up the mdio bus */
1884         mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1885         if (mdio_np) {
1886                 err = gswip_mdio(priv, mdio_np);
1887                 if (err) {
1888                         dev_err(dev, "mdio probe failed\n");
1889                         goto put_mdio_node;
1890                 }
1891         }
1892
1893         err = dsa_register_switch(priv->ds);
1894         if (err) {
1895                 dev_err(dev, "dsa switch register failed: %i\n", err);
1896                 goto mdio_bus;
1897         }
1898         if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1899                 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1900                         priv->hw_info->cpu_port);
1901                 err = -EINVAL;
1902                 goto disable_switch;
1903         }
1904
1905         platform_set_drvdata(pdev, priv);
1906
1907         dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1908                  (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1909                  (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1910         return 0;
1911
1912 disable_switch:
1913         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1914         dsa_unregister_switch(priv->ds);
1915 mdio_bus:
1916         if (mdio_np)
1917                 mdiobus_unregister(priv->ds->slave_mii_bus);
1918 put_mdio_node:
1919         of_node_put(mdio_np);
1920         for (i = 0; i < priv->num_gphy_fw; i++)
1921                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1922         return err;
1923 }
1924
1925 static int gswip_remove(struct platform_device *pdev)
1926 {
1927         struct gswip_priv *priv = platform_get_drvdata(pdev);
1928         int i;
1929
1930         /* disable the switch */
1931         gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1932
1933         dsa_unregister_switch(priv->ds);
1934
1935         if (priv->ds->slave_mii_bus) {
1936                 mdiobus_unregister(priv->ds->slave_mii_bus);
1937                 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1938         }
1939
1940         for (i = 0; i < priv->num_gphy_fw; i++)
1941                 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1942
1943         return 0;
1944 }
1945
1946 static const struct gswip_hw_info gswip_xrx200 = {
1947         .max_ports = 7,
1948         .cpu_port = 6,
1949 };
1950
1951 static const struct of_device_id gswip_of_match[] = {
1952         { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1953         {},
1954 };
1955 MODULE_DEVICE_TABLE(of, gswip_of_match);
1956
1957 static struct platform_driver gswip_driver = {
1958         .probe = gswip_probe,
1959         .remove = gswip_remove,
1960         .driver = {
1961                 .name = "gswip",
1962                 .of_match_table = gswip_of_match,
1963         },
1964 };
1965
1966 module_platform_driver(gswip_driver);
1967
1968 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1969 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1970 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1971 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1972 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1973 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1974 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1975 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1976 MODULE_LICENSE("GPL v2");