2 * See file CREDITS for list of people who contributed to this
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; either version 2 of
8 * the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
34 #define PCI_CFDA_PSM 0x43
36 #define CFRV_RN 0x000000f0 /* Revision Number */
38 #define WAKEUP 0x00 /* Power Saving Wakeup */
39 #define SLEEP 0x80 /* Power Saving Sleep Mode */
41 #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
43 /* Ethernet chip registers.
45 #define DE4X5_BMR 0x000 /* Bus Mode Register */
46 #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
47 #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
48 #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
49 #define DE4X5_STS 0x028 /* Status Register */
50 #define DE4X5_OMR 0x030 /* Operation Mode Register */
51 #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
52 #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
56 #define BMR_SWR 0x00000001 /* Software Reset */
57 #define STS_TS 0x00700000 /* Transmit Process State */
58 #define STS_RS 0x000e0000 /* Receive Process State */
59 #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
60 #define OMR_SR 0x00000002 /* Start/Stop Receive */
61 #define OMR_PS 0x00040000 /* Port Select */
62 #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
63 #define OMR_PM 0x00000080 /* Pass All Multicast */
67 #define R_OWN 0x80000000 /* Own Bit */
68 #define RD_RER 0x02000000 /* Receive End Of Ring */
69 #define RD_LS 0x00000100 /* Last Descriptor */
70 #define RD_ES 0x00008000 /* Error Summary */
71 #define TD_TER 0x02000000 /* Transmit End Of Ring */
72 #define T_OWN 0x80000000 /* Own Bit */
73 #define TD_LS 0x40000000 /* Last Segment */
74 #define TD_FS 0x20000000 /* First Segment */
75 #define TD_ES 0x00008000 /* Error Summary */
76 #define TD_SET 0x08000000 /* Setup Packet */
78 /* The EEPROM commands include the alway-set leading bit. */
79 #define SROM_WRITE_CMD 5
80 #define SROM_READ_CMD 6
81 #define SROM_ERASE_CMD 7
83 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
84 #define SROM_RD 0x00004000 /* Read from Boot ROM */
85 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
86 #define EE_WRITE_0 0x4801
87 #define EE_WRITE_1 0x4805
88 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
89 #define SROM_SR 0x00000800 /* Select Serial ROM when set */
91 #define DT_IN 0x00000004 /* Serial Data In */
92 #define DT_CLK 0x00000002 /* Serial ROM Clock */
93 #define DT_CS 0x00000001 /* Serial ROM Chip Select */
97 #ifdef CONFIG_TULIP_FIX_DAVICOM
98 #define RESET_DM9102(dev) {\
102 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
106 #define RESET_DE4X5(dev) {\
108 i=INL(dev, DE4X5_BMR);\
110 OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
112 OUTL(dev, i, DE4X5_BMR);\
114 for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
119 #define START_DE4X5(dev) {\
121 omr = INL(dev, DE4X5_OMR);\
122 omr |= OMR_ST | OMR_SR;\
123 OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
126 #define STOP_DE4X5(dev) {\
128 omr = INL(dev, DE4X5_OMR);\
129 omr &= ~(OMR_ST|OMR_SR);\
130 OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
133 #define NUM_RX_DESC PKTBUFSRX
134 #ifndef CONFIG_TULIP_FIX_DAVICOM
135 #define NUM_TX_DESC 1 /* Number of TX descriptors */
137 #define NUM_TX_DESC 4
139 #define RX_BUFF_SZ PKTSIZE_ALIGN
141 #define TOUT_LOOP 1000000
143 #define SETUP_FRAME_LEN 192
153 static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
154 static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
155 static int rx_new; /* RX descriptor ring pointer */
156 static int tx_new; /* TX descriptor ring pointer */
158 static char rxRingSize;
159 static char txRingSize;
161 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
162 static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
163 static int getfrom_srom(struct eth_device* dev, u_long addr);
164 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
165 static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
166 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
168 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
169 static void update_srom(struct eth_device *dev, bd_t *bis);
171 #ifndef CONFIG_TULIP_FIX_DAVICOM
172 static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
173 static void read_hw_addr(struct eth_device* dev, bd_t * bis);
174 #endif /* CONFIG_TULIP_FIX_DAVICOM */
175 static void send_setup_frame(struct eth_device* dev, bd_t * bis);
177 static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
178 static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
179 static int dc21x4x_recv(struct eth_device* dev);
180 static void dc21x4x_halt(struct eth_device* dev);
181 #ifdef CONFIG_TULIP_SELECT_MEDIA
182 extern void dc21x4x_select_media(struct eth_device* dev);
185 #if defined(CONFIG_E500)
186 #define phys_to_bus(a) (a)
188 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
191 static int INL(struct eth_device* dev, u_long addr)
193 return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
196 static void OUTL(struct eth_device* dev, int command, u_long addr)
198 *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
201 static struct pci_device_id supported[] = {
202 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
203 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
204 #ifdef CONFIG_TULIP_FIX_DAVICOM
205 { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
210 int dc21x4x_initialize(bd_t *bis)
218 unsigned short status;
219 struct eth_device* dev;
222 devbusfn = pci_find_devices(supported, idx++);
223 if (devbusfn == -1) {
227 /* Get the chip configuration revision register. */
228 pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
230 #ifndef CONFIG_TULIP_FIX_DAVICOM
231 if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
232 printf("Error: The chip is not DC21143.\n");
237 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
239 #ifdef CONFIG_TULIP_USE_IO
245 pci_write_config_word(devbusfn, PCI_COMMAND, status);
247 pci_read_config_word(devbusfn, PCI_COMMAND, &status);
248 #ifdef CONFIG_TULIP_USE_IO
249 if (!(status & PCI_COMMAND_IO)) {
250 printf("Error: Can not enable I/O access.\n");
254 if (!(status & PCI_COMMAND_MEMORY)) {
255 printf("Error: Can not enable MEMORY access.\n");
260 if (!(status & PCI_COMMAND_MASTER)) {
261 printf("Error: Can not enable Bus Mastering.\n");
265 /* Check the latency timer for values >= 0x60. */
266 pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
269 pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
272 #ifdef CONFIG_TULIP_USE_IO
273 /* read BAR for memory space access */
274 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
275 iobase &= PCI_BASE_ADDRESS_IO_MASK;
277 /* read BAR for memory space access */
278 pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
279 iobase &= PCI_BASE_ADDRESS_MEM_MASK;
281 debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
283 dev = (struct eth_device*) malloc(sizeof *dev);
286 printf("Can not allocalte memory of dc21x4x\n");
289 memset(dev, 0, sizeof(*dev));
291 #ifdef CONFIG_TULIP_FIX_DAVICOM
292 sprintf(dev->name, "Davicom#%d", card_number);
294 sprintf(dev->name, "dc21x4x#%d", card_number);
297 #ifdef CONFIG_TULIP_USE_IO
298 dev->iobase = pci_io_to_phys(devbusfn, iobase);
300 dev->iobase = pci_mem_to_phys(devbusfn, iobase);
302 dev->priv = (void*) devbusfn;
303 dev->init = dc21x4x_init;
304 dev->halt = dc21x4x_halt;
305 dev->send = dc21x4x_send;
306 dev->recv = dc21x4x_recv;
308 /* Ensure we're not sleeping. */
309 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
313 #ifndef CONFIG_TULIP_FIX_DAVICOM
314 read_hw_addr(dev, bis);
324 static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
327 int devbusfn = (int) dev->priv;
329 /* Ensure we're not sleeping. */
330 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
332 #ifdef CONFIG_TULIP_FIX_DAVICOM
338 if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
339 printf("Error: Cannot reset ethernet controller.\n");
343 #ifdef CONFIG_TULIP_SELECT_MEDIA
344 dc21x4x_select_media(dev);
346 OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
349 for (i = 0; i < NUM_RX_DESC; i++) {
350 rx_ring[i].status = cpu_to_le32(R_OWN);
351 rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
352 rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
353 #ifdef CONFIG_TULIP_FIX_DAVICOM
354 rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
360 for (i=0; i < NUM_TX_DESC; i++) {
361 tx_ring[i].status = 0;
365 #ifdef CONFIG_TULIP_FIX_DAVICOM
366 tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
372 rxRingSize = NUM_RX_DESC;
373 txRingSize = NUM_TX_DESC;
375 /* Write the end of list marker to the descriptor lists. */
376 rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
377 tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
379 /* Tell the adapter where the TX/RX rings are located. */
380 OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
381 OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
388 send_setup_frame(dev, bis);
393 static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
399 printf("%s: bad packet size: %d\n", dev->name, length);
403 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
404 if (i >= TOUT_LOOP) {
405 printf("%s: tx error buffer not ready\n", dev->name);
410 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
411 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
412 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
414 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
416 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
417 if (i >= TOUT_LOOP) {
418 printf(".%s: tx buffer not ready\n", dev->name);
423 if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
424 #if 0 /* test-only */
425 printf("TX error status = 0x%08X\n",
426 le32_to_cpu(tx_ring[tx_new].status));
428 tx_ring[tx_new].status = 0x0;
435 tx_new = (tx_new+1) % NUM_TX_DESC;
439 static int dc21x4x_recv(struct eth_device* dev)
445 status = (s32)le32_to_cpu(rx_ring[rx_new].status);
447 if (status & R_OWN) {
451 if (status & RD_LS) {
452 /* Valid frame status.
454 if (status & RD_ES) {
456 /* There was an error.
458 printf("RX error status = 0x%08X\n", status);
460 /* A valid frame received.
462 length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
464 /* Pass the packet up to the protocol
467 NetReceive(NetRxPackets[rx_new], length - 4);
470 /* Change buffer ownership for this frame, back
473 rx_ring[rx_new].status = cpu_to_le32(R_OWN);
476 /* Update entry information.
478 rx_new = (rx_new + 1) % rxRingSize;
484 static void dc21x4x_halt(struct eth_device* dev)
486 int devbusfn = (int) dev->priv;
489 OUTL(dev, 0, DE4X5_SICR);
491 pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
494 static void send_setup_frame(struct eth_device* dev, bd_t *bis)
497 char setup_frame[SETUP_FRAME_LEN];
498 char *pa = &setup_frame[0];
500 memset(pa, 0xff, SETUP_FRAME_LEN);
502 for (i = 0; i < ETH_ALEN; i++) {
503 *(pa + (i & 1)) = dev->enetaddr[i];
509 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
510 if (i >= TOUT_LOOP) {
511 printf("%s: tx error buffer not ready\n", dev->name);
516 tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
517 tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
518 tx_ring[tx_new].status = cpu_to_le32(T_OWN);
520 OUTL(dev, POLL_DEMAND, DE4X5_TPD);
522 for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
523 if (i >= TOUT_LOOP) {
524 printf("%s: tx buffer not ready\n", dev->name);
529 if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
530 printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
532 tx_new = (tx_new+1) % NUM_TX_DESC;
538 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
539 /* SROM Read and write routines.
542 sendto_srom(struct eth_device* dev, u_int command, u_long addr)
544 OUTL(dev, command, addr);
549 getfrom_srom(struct eth_device* dev, u_long addr)
553 tmp = INL(dev, addr);
559 /* Note: this routine returns extra data bits for size detection. */
560 static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
564 int read_cmd = location | (SROM_READ_CMD << addr_len);
566 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
567 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
570 printf(" EEPROM read at %d ", location);
573 /* Shift the read command bits out. */
574 for (i = 4 + addr_len; i >= 0; i--) {
575 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
576 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
578 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
581 printf("%X", getfrom_srom(dev, ioaddr) & 15);
583 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
586 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
589 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
592 for (i = 16; i > 0; i--) {
593 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
596 printf("%X", getfrom_srom(dev, ioaddr) & 15);
598 retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
599 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
603 /* Terminate the EEPROM access. */
604 sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
607 printf(" EEPROM value at %d is %5.5x.\n", location, retval);
612 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
614 /* This executes a generic EEPROM command, typically a write or write
615 * enable. It returns the data output from the EEPROM, and thus may
616 * also be used for reads.
618 #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
619 static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
624 printf(" EEPROM op 0x%x: ", cmd);
627 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
629 /* Shift the command bits out. */
631 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
632 sendto_srom(dev,dataval, ioaddr);
636 printf("%X", getfrom_srom(dev,ioaddr) & 15);
639 sendto_srom(dev,dataval | DT_CLK, ioaddr);
641 retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
642 } while (--cmd_len >= 0);
643 sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
645 /* Terminate the EEPROM access. */
646 sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
649 printf(" EEPROM result is 0x%5.5x.\n", retval);
654 #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
656 #ifndef CONFIG_TULIP_FIX_DAVICOM
657 static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
659 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
661 return do_eeprom_cmd(dev, ioaddr,
662 (((SROM_READ_CMD << ee_addr_size) | index) << 16)
663 | 0xffff, 3 + ee_addr_size + 16);
665 #endif /* CONFIG_TULIP_FIX_DAVICOM */
668 static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
670 int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
672 unsigned short newval;
674 udelay(10*1000); /* test-only */
677 printf("ee_addr_size=%d.\n", ee_addr_size);
678 printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
681 /* Enable programming modes. */
682 do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
684 /* Do the actual write. */
685 do_eeprom_cmd(dev, ioaddr,
686 (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
687 3 + ee_addr_size + 16);
689 /* Poll for write finished. */
690 sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
691 for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
692 if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
696 printf(" Write finished after %d ticks.\n", i);
699 /* Disable programming. */
700 do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
702 /* And read the result. */
703 newval = do_eeprom_cmd(dev, ioaddr,
704 (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
705 | 0xffff, 3 + ee_addr_size + 16);
707 printf(" New value at offset %d is %4.4x.\n", index, newval);
713 #ifndef CONFIG_TULIP_FIX_DAVICOM
714 static void read_hw_addr(struct eth_device *dev, bd_t *bis)
716 u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
719 for (i = 0; i < (ETH_ALEN >> 1); i++) {
720 tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
721 *p = le16_to_cpu(tmp);
725 if ((j == 0) || (j == 0x2fffd)) {
726 memset (dev->enetaddr, 0, ETH_ALEN);
727 debug ("Warning: can't read HW address from SROM.\n");
735 update_srom(dev, bis);
739 #endif /* CONFIG_TULIP_FIX_DAVICOM */
742 static void update_srom(struct eth_device *dev, bd_t *bis)
745 static unsigned short eeprom[0x40] = {
746 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
747 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
748 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
749 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
750 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
751 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
752 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
753 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
754 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
755 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
756 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
757 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
758 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
759 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
760 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
761 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
765 /* Ethernet Addr... */
766 if (!eth_getenv_enetaddr("ethaddr", enetaddr))
768 eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
769 eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
770 eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
772 for (i=0; i<0x40; i++) {
773 write_srom(dev, DE4X5_APROM, i, eeprom[i]);
776 #endif /* UPDATE_SROM */