drivers: usb: gadget: ether/rndis: convert driver to adopt device driver model
[platform/kernel/u-boot.git] / drivers / net / cpsw.c
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <linux/errno.h>
25 #include <asm/gpio.h>
26 #include <asm/io.h>
27 #include <phy.h>
28 #include <asm/arch/cpu.h>
29 #include <dm.h>
30 #include <fdt_support.h>
31
32 DECLARE_GLOBAL_DATA_PTR;
33
34 #define BITMASK(bits)           (BIT(bits) - 1)
35 #define PHY_REG_MASK            0x1f
36 #define PHY_ID_MASK             0x1f
37 #define NUM_DESCS               (PKTBUFSRX * 2)
38 #define PKT_MIN                 60
39 #define PKT_MAX                 (1500 + 14 + 4 + 4)
40 #define CLEAR_BIT               1
41 #define GIGABITEN               BIT(7)
42 #define FULLDUPLEXEN            BIT(0)
43 #define MIIEN                   BIT(15)
44
45 /* reg offset */
46 #define CPSW_HOST_PORT_OFFSET   0x108
47 #define CPSW_SLAVE0_OFFSET      0x208
48 #define CPSW_SLAVE1_OFFSET      0x308
49 #define CPSW_SLAVE_SIZE         0x100
50 #define CPSW_CPDMA_OFFSET       0x800
51 #define CPSW_HW_STATS           0x900
52 #define CPSW_STATERAM_OFFSET    0xa00
53 #define CPSW_CPTS_OFFSET        0xc00
54 #define CPSW_ALE_OFFSET         0xd00
55 #define CPSW_SLIVER0_OFFSET     0xd80
56 #define CPSW_SLIVER1_OFFSET     0xdc0
57 #define CPSW_BD_OFFSET          0x2000
58 #define CPSW_MDIO_DIV           0xff
59
60 #define AM335X_GMII_SEL_OFFSET  0x630
61
62 /* DMA Registers */
63 #define CPDMA_TXCONTROL         0x004
64 #define CPDMA_RXCONTROL         0x014
65 #define CPDMA_SOFTRESET         0x01c
66 #define CPDMA_RXFREE            0x0e0
67 #define CPDMA_TXHDP_VER1        0x100
68 #define CPDMA_TXHDP_VER2        0x200
69 #define CPDMA_RXHDP_VER1        0x120
70 #define CPDMA_RXHDP_VER2        0x220
71 #define CPDMA_TXCP_VER1         0x140
72 #define CPDMA_TXCP_VER2         0x240
73 #define CPDMA_RXCP_VER1         0x160
74 #define CPDMA_RXCP_VER2         0x260
75
76 /* Descriptor mode bits */
77 #define CPDMA_DESC_SOP          BIT(31)
78 #define CPDMA_DESC_EOP          BIT(30)
79 #define CPDMA_DESC_OWNER        BIT(29)
80 #define CPDMA_DESC_EOQ          BIT(28)
81
82 /*
83  * This timeout definition is a worst-case ultra defensive measure against
84  * unexpected controller lock ups.  Ideally, we should never ever hit this
85  * scenario in practice.
86  */
87 #define MDIO_TIMEOUT            100 /* msecs */
88 #define CPDMA_TIMEOUT           100 /* msecs */
89
90 struct cpsw_mdio_regs {
91         u32     version;
92         u32     control;
93 #define CONTROL_IDLE            BIT(31)
94 #define CONTROL_ENABLE          BIT(30)
95
96         u32     alive;
97         u32     link;
98         u32     linkintraw;
99         u32     linkintmasked;
100         u32     __reserved_0[2];
101         u32     userintraw;
102         u32     userintmasked;
103         u32     userintmaskset;
104         u32     userintmaskclr;
105         u32     __reserved_1[20];
106
107         struct {
108                 u32             access;
109                 u32             physel;
110 #define USERACCESS_GO           BIT(31)
111 #define USERACCESS_WRITE        BIT(30)
112 #define USERACCESS_ACK          BIT(29)
113 #define USERACCESS_READ         (0)
114 #define USERACCESS_DATA         (0xffff)
115         } user[0];
116 };
117
118 struct cpsw_regs {
119         u32     id_ver;
120         u32     control;
121         u32     soft_reset;
122         u32     stat_port_en;
123         u32     ptype;
124 };
125
126 struct cpsw_slave_regs {
127         u32     max_blks;
128         u32     blk_cnt;
129         u32     flow_thresh;
130         u32     port_vlan;
131         u32     tx_pri_map;
132 #ifdef CONFIG_AM33XX
133         u32     gap_thresh;
134 #elif defined(CONFIG_TI814X)
135         u32     ts_ctl;
136         u32     ts_seq_ltype;
137         u32     ts_vlan;
138 #endif
139         u32     sa_lo;
140         u32     sa_hi;
141 };
142
143 struct cpsw_host_regs {
144         u32     max_blks;
145         u32     blk_cnt;
146         u32     flow_thresh;
147         u32     port_vlan;
148         u32     tx_pri_map;
149         u32     cpdma_tx_pri_map;
150         u32     cpdma_rx_chan_map;
151 };
152
153 struct cpsw_sliver_regs {
154         u32     id_ver;
155         u32     mac_control;
156         u32     mac_status;
157         u32     soft_reset;
158         u32     rx_maxlen;
159         u32     __reserved_0;
160         u32     rx_pause;
161         u32     tx_pause;
162         u32     __reserved_1;
163         u32     rx_pri_map;
164 };
165
166 #define ALE_ENTRY_BITS          68
167 #define ALE_ENTRY_WORDS         DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
168
169 /* ALE Registers */
170 #define ALE_CONTROL             0x08
171 #define ALE_UNKNOWNVLAN         0x18
172 #define ALE_TABLE_CONTROL       0x20
173 #define ALE_TABLE               0x34
174 #define ALE_PORTCTL             0x40
175
176 #define ALE_TABLE_WRITE         BIT(31)
177
178 #define ALE_TYPE_FREE                   0
179 #define ALE_TYPE_ADDR                   1
180 #define ALE_TYPE_VLAN                   2
181 #define ALE_TYPE_VLAN_ADDR              3
182
183 #define ALE_UCAST_PERSISTANT            0
184 #define ALE_UCAST_UNTOUCHED             1
185 #define ALE_UCAST_OUI                   2
186 #define ALE_UCAST_TOUCHED               3
187
188 #define ALE_MCAST_FWD                   0
189 #define ALE_MCAST_BLOCK_LEARN_FWD       1
190 #define ALE_MCAST_FWD_LEARN             2
191 #define ALE_MCAST_FWD_2                 3
192
193 enum cpsw_ale_port_state {
194         ALE_PORT_STATE_DISABLE  = 0x00,
195         ALE_PORT_STATE_BLOCK    = 0x01,
196         ALE_PORT_STATE_LEARN    = 0x02,
197         ALE_PORT_STATE_FORWARD  = 0x03,
198 };
199
200 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
201 #define ALE_SECURE      1
202 #define ALE_BLOCKED     2
203
204 struct cpsw_slave {
205         struct cpsw_slave_regs          *regs;
206         struct cpsw_sliver_regs         *sliver;
207         int                             slave_num;
208         u32                             mac_control;
209         struct cpsw_slave_data          *data;
210 };
211
212 struct cpdma_desc {
213         /* hardware fields */
214         u32                     hw_next;
215         u32                     hw_buffer;
216         u32                     hw_len;
217         u32                     hw_mode;
218         /* software fields */
219         u32                     sw_buffer;
220         u32                     sw_len;
221 };
222
223 struct cpdma_chan {
224         struct cpdma_desc       *head, *tail;
225         void                    *hdp, *cp, *rxfree;
226 };
227
228 /* AM33xx SoC specific definitions for the CONTROL port */
229 #define AM33XX_GMII_SEL_MODE_MII        0
230 #define AM33XX_GMII_SEL_MODE_RMII       1
231 #define AM33XX_GMII_SEL_MODE_RGMII      2
232
233 #define AM33XX_GMII_SEL_RGMII1_IDMODE   BIT(4)
234 #define AM33XX_GMII_SEL_RGMII2_IDMODE   BIT(5)
235 #define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6)
236 #define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7)
237
238 #define GMII_SEL_MODE_MASK              0x3
239
240 #define desc_write(desc, fld, val)      __raw_writel((u32)(val), &(desc)->fld)
241 #define desc_read(desc, fld)            __raw_readl(&(desc)->fld)
242 #define desc_read_ptr(desc, fld)        ((void *)__raw_readl(&(desc)->fld))
243
244 #define chan_write(chan, fld, val)      __raw_writel((u32)(val), (chan)->fld)
245 #define chan_read(chan, fld)            __raw_readl((chan)->fld)
246 #define chan_read_ptr(chan, fld)        ((void *)__raw_readl((chan)->fld))
247
248 #define for_active_slave(slave, priv) \
249         slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
250 #define for_each_slave(slave, priv) \
251         for (slave = (priv)->slaves; slave != (priv)->slaves + \
252                                 (priv)->data.slaves; slave++)
253
254 struct cpsw_priv {
255 #ifdef CONFIG_DM_ETH
256         struct udevice                  *dev;
257 #else
258         struct eth_device               *dev;
259 #endif
260         struct cpsw_platform_data       data;
261         int                             host_port;
262
263         struct cpsw_regs                *regs;
264         void                            *dma_regs;
265         struct cpsw_host_regs           *host_port_regs;
266         void                            *ale_regs;
267
268         struct cpdma_desc               *descs;
269         struct cpdma_desc               *desc_free;
270         struct cpdma_chan               rx_chan, tx_chan;
271
272         struct cpsw_slave               *slaves;
273         struct phy_device               *phydev;
274         struct mii_dev                  *bus;
275
276         u32                             phy_mask;
277 };
278
279 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
280 {
281         int idx;
282
283         idx    = start / 32;
284         start -= idx * 32;
285         idx    = 2 - idx; /* flip */
286         return (ale_entry[idx] >> start) & BITMASK(bits);
287 }
288
289 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
290                                       u32 value)
291 {
292         int idx;
293
294         value &= BITMASK(bits);
295         idx    = start / 32;
296         start -= idx * 32;
297         idx    = 2 - idx; /* flip */
298         ale_entry[idx] &= ~(BITMASK(bits) << start);
299         ale_entry[idx] |=  (value << start);
300 }
301
302 #define DEFINE_ALE_FIELD(name, start, bits)                             \
303 static inline int cpsw_ale_get_##name(u32 *ale_entry)                   \
304 {                                                                       \
305         return cpsw_ale_get_field(ale_entry, start, bits);              \
306 }                                                                       \
307 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)       \
308 {                                                                       \
309         cpsw_ale_set_field(ale_entry, start, bits, value);              \
310 }
311
312 DEFINE_ALE_FIELD(entry_type,            60,     2)
313 DEFINE_ALE_FIELD(mcast_state,           62,     2)
314 DEFINE_ALE_FIELD(port_mask,             66,     3)
315 DEFINE_ALE_FIELD(ucast_type,            62,     2)
316 DEFINE_ALE_FIELD(port_num,              66,     2)
317 DEFINE_ALE_FIELD(blocked,               65,     1)
318 DEFINE_ALE_FIELD(secure,                64,     1)
319 DEFINE_ALE_FIELD(mcast,                 40,     1)
320
321 /* The MAC address field in the ALE entry cannot be macroized as above */
322 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
323 {
324         int i;
325
326         for (i = 0; i < 6; i++)
327                 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
328 }
329
330 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
331 {
332         int i;
333
334         for (i = 0; i < 6; i++)
335                 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
336 }
337
338 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
339 {
340         int i;
341
342         __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
343
344         for (i = 0; i < ALE_ENTRY_WORDS; i++)
345                 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
346
347         return idx;
348 }
349
350 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
351 {
352         int i;
353
354         for (i = 0; i < ALE_ENTRY_WORDS; i++)
355                 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
356
357         __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
358
359         return idx;
360 }
361
362 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
363 {
364         u32 ale_entry[ALE_ENTRY_WORDS];
365         int type, idx;
366
367         for (idx = 0; idx < priv->data.ale_entries; idx++) {
368                 u8 entry_addr[6];
369
370                 cpsw_ale_read(priv, idx, ale_entry);
371                 type = cpsw_ale_get_entry_type(ale_entry);
372                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
373                         continue;
374                 cpsw_ale_get_addr(ale_entry, entry_addr);
375                 if (memcmp(entry_addr, addr, 6) == 0)
376                         return idx;
377         }
378         return -ENOENT;
379 }
380
381 static int cpsw_ale_match_free(struct cpsw_priv *priv)
382 {
383         u32 ale_entry[ALE_ENTRY_WORDS];
384         int type, idx;
385
386         for (idx = 0; idx < priv->data.ale_entries; idx++) {
387                 cpsw_ale_read(priv, idx, ale_entry);
388                 type = cpsw_ale_get_entry_type(ale_entry);
389                 if (type == ALE_TYPE_FREE)
390                         return idx;
391         }
392         return -ENOENT;
393 }
394
395 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
396 {
397         u32 ale_entry[ALE_ENTRY_WORDS];
398         int type, idx;
399
400         for (idx = 0; idx < priv->data.ale_entries; idx++) {
401                 cpsw_ale_read(priv, idx, ale_entry);
402                 type = cpsw_ale_get_entry_type(ale_entry);
403                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
404                         continue;
405                 if (cpsw_ale_get_mcast(ale_entry))
406                         continue;
407                 type = cpsw_ale_get_ucast_type(ale_entry);
408                 if (type != ALE_UCAST_PERSISTANT &&
409                     type != ALE_UCAST_OUI)
410                         return idx;
411         }
412         return -ENOENT;
413 }
414
415 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
416                               int port, int flags)
417 {
418         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
419         int idx;
420
421         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
422         cpsw_ale_set_addr(ale_entry, addr);
423         cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
424         cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
425         cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
426         cpsw_ale_set_port_num(ale_entry, port);
427
428         idx = cpsw_ale_match_addr(priv, addr);
429         if (idx < 0)
430                 idx = cpsw_ale_match_free(priv);
431         if (idx < 0)
432                 idx = cpsw_ale_find_ageable(priv);
433         if (idx < 0)
434                 return -ENOMEM;
435
436         cpsw_ale_write(priv, idx, ale_entry);
437         return 0;
438 }
439
440 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
441                               int port_mask)
442 {
443         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
444         int idx, mask;
445
446         idx = cpsw_ale_match_addr(priv, addr);
447         if (idx >= 0)
448                 cpsw_ale_read(priv, idx, ale_entry);
449
450         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
451         cpsw_ale_set_addr(ale_entry, addr);
452         cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
453
454         mask = cpsw_ale_get_port_mask(ale_entry);
455         port_mask |= mask;
456         cpsw_ale_set_port_mask(ale_entry, port_mask);
457
458         if (idx < 0)
459                 idx = cpsw_ale_match_free(priv);
460         if (idx < 0)
461                 idx = cpsw_ale_find_ageable(priv);
462         if (idx < 0)
463                 return -ENOMEM;
464
465         cpsw_ale_write(priv, idx, ale_entry);
466         return 0;
467 }
468
469 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
470 {
471         u32 tmp, mask = BIT(bit);
472
473         tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
474         tmp &= ~mask;
475         tmp |= val ? mask : 0;
476         __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
477 }
478
479 #define cpsw_ale_enable(priv, val)      cpsw_ale_control(priv, 31, val)
480 #define cpsw_ale_clear(priv, val)       cpsw_ale_control(priv, 30, val)
481 #define cpsw_ale_vlan_aware(priv, val)  cpsw_ale_control(priv,  2, val)
482
483 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
484                                        int val)
485 {
486         int offset = ALE_PORTCTL + 4 * port;
487         u32 tmp, mask = 0x3;
488
489         tmp  = __raw_readl(priv->ale_regs + offset);
490         tmp &= ~mask;
491         tmp |= val & mask;
492         __raw_writel(tmp, priv->ale_regs + offset);
493 }
494
495 static struct cpsw_mdio_regs *mdio_regs;
496
497 /* wait until hardware is ready for another user access */
498 static inline u32 wait_for_user_access(void)
499 {
500         u32 reg = 0;
501         int timeout = MDIO_TIMEOUT;
502
503         while (timeout-- &&
504         ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
505                 udelay(10);
506
507         if (timeout == -1) {
508                 printf("wait_for_user_access Timeout\n");
509                 return -ETIMEDOUT;
510         }
511         return reg;
512 }
513
514 /* wait until hardware state machine is idle */
515 static inline void wait_for_idle(void)
516 {
517         int timeout = MDIO_TIMEOUT;
518
519         while (timeout-- &&
520                 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
521                 udelay(10);
522
523         if (timeout == -1)
524                 printf("wait_for_idle Timeout\n");
525 }
526
527 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
528                                 int dev_addr, int phy_reg)
529 {
530         int data;
531         u32 reg;
532
533         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
534                 return -EINVAL;
535
536         wait_for_user_access();
537         reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
538                (phy_id << 16));
539         __raw_writel(reg, &mdio_regs->user[0].access);
540         reg = wait_for_user_access();
541
542         data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
543         return data;
544 }
545
546 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
547                                 int phy_reg, u16 data)
548 {
549         u32 reg;
550
551         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
552                 return -EINVAL;
553
554         wait_for_user_access();
555         reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
556                    (phy_id << 16) | (data & USERACCESS_DATA));
557         __raw_writel(reg, &mdio_regs->user[0].access);
558         wait_for_user_access();
559
560         return 0;
561 }
562
563 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
564 {
565         struct mii_dev *bus = mdio_alloc();
566
567         mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
568
569         /* set enable and clock divider */
570         __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
571
572         /*
573          * wait for scan logic to settle:
574          * the scan time consists of (a) a large fixed component, and (b) a
575          * small component that varies with the mii bus frequency.  These
576          * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
577          * silicon.  Since the effect of (b) was found to be largely
578          * negligible, we keep things simple here.
579          */
580         udelay(1000);
581
582         bus->read = cpsw_mdio_read;
583         bus->write = cpsw_mdio_write;
584         strcpy(bus->name, name);
585
586         mdio_register(bus);
587 }
588
589 /* Set a self-clearing bit in a register, and wait for it to clear */
590 static inline void setbit_and_wait_for_clear32(void *addr)
591 {
592         __raw_writel(CLEAR_BIT, addr);
593         while (__raw_readl(addr) & CLEAR_BIT)
594                 ;
595 }
596
597 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
598                          ((mac)[2] << 16) | ((mac)[3] << 24))
599 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
600
601 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
602                                struct cpsw_priv *priv)
603 {
604 #ifdef CONFIG_DM_ETH
605         struct eth_pdata *pdata = dev_get_platdata(priv->dev);
606
607         writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
608         writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
609 #else
610         __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
611         __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
612 #endif
613 }
614
615 static void cpsw_slave_update_link(struct cpsw_slave *slave,
616                                    struct cpsw_priv *priv, int *link)
617 {
618         struct phy_device *phy;
619         u32 mac_control = 0;
620
621         phy = priv->phydev;
622
623         if (!phy)
624                 return;
625
626         phy_startup(phy);
627         *link = phy->link;
628
629         if (*link) { /* link up */
630                 mac_control = priv->data.mac_control;
631                 if (phy->speed == 1000)
632                         mac_control |= GIGABITEN;
633                 if (phy->duplex == DUPLEX_FULL)
634                         mac_control |= FULLDUPLEXEN;
635                 if (phy->speed == 100)
636                         mac_control |= MIIEN;
637         }
638
639         if (mac_control == slave->mac_control)
640                 return;
641
642         if (mac_control) {
643                 printf("link up on port %d, speed %d, %s duplex\n",
644                                 slave->slave_num, phy->speed,
645                                 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
646         } else {
647                 printf("link down on port %d\n", slave->slave_num);
648         }
649
650         __raw_writel(mac_control, &slave->sliver->mac_control);
651         slave->mac_control = mac_control;
652 }
653
654 static int cpsw_update_link(struct cpsw_priv *priv)
655 {
656         int link = 0;
657         struct cpsw_slave *slave;
658
659         for_active_slave(slave, priv)
660                 cpsw_slave_update_link(slave, priv, &link);
661
662         return link;
663 }
664
665 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
666 {
667         if (priv->host_port == 0)
668                 return slave_num + 1;
669         else
670                 return slave_num;
671 }
672
673 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
674 {
675         u32     slave_port;
676
677         setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
678
679         /* setup priority mapping */
680         __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
681         __raw_writel(0x33221100, &slave->regs->tx_pri_map);
682
683         /* setup max packet size, and mac address */
684         __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
685         cpsw_set_slave_mac(slave, priv);
686
687         slave->mac_control = 0; /* no link yet */
688
689         /* enable forwarding */
690         slave_port = cpsw_get_slave_port(priv, slave->slave_num);
691         cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
692
693         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
694
695         priv->phy_mask |= 1 << slave->data->phy_addr;
696 }
697
698 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
699 {
700         struct cpdma_desc *desc = priv->desc_free;
701
702         if (desc)
703                 priv->desc_free = desc_read_ptr(desc, hw_next);
704         return desc;
705 }
706
707 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
708 {
709         if (desc) {
710                 desc_write(desc, hw_next, priv->desc_free);
711                 priv->desc_free = desc;
712         }
713 }
714
715 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
716                         void *buffer, int len)
717 {
718         struct cpdma_desc *desc, *prev;
719         u32 mode;
720
721         desc = cpdma_desc_alloc(priv);
722         if (!desc)
723                 return -ENOMEM;
724
725         if (len < PKT_MIN)
726                 len = PKT_MIN;
727
728         mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
729
730         desc_write(desc, hw_next,   0);
731         desc_write(desc, hw_buffer, buffer);
732         desc_write(desc, hw_len,    len);
733         desc_write(desc, hw_mode,   mode | len);
734         desc_write(desc, sw_buffer, buffer);
735         desc_write(desc, sw_len,    len);
736
737         if (!chan->head) {
738                 /* simple case - first packet enqueued */
739                 chan->head = desc;
740                 chan->tail = desc;
741                 chan_write(chan, hdp, desc);
742                 goto done;
743         }
744
745         /* not the first packet - enqueue at the tail */
746         prev = chan->tail;
747         desc_write(prev, hw_next, desc);
748         chan->tail = desc;
749
750         /* next check if EOQ has been triggered already */
751         if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
752                 chan_write(chan, hdp, desc);
753
754 done:
755         if (chan->rxfree)
756                 chan_write(chan, rxfree, 1);
757         return 0;
758 }
759
760 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
761                          void **buffer, int *len)
762 {
763         struct cpdma_desc *desc = chan->head;
764         u32 status;
765
766         if (!desc)
767                 return -ENOENT;
768
769         status = desc_read(desc, hw_mode);
770
771         if (len)
772                 *len = status & 0x7ff;
773
774         if (buffer)
775                 *buffer = desc_read_ptr(desc, sw_buffer);
776
777         if (status & CPDMA_DESC_OWNER) {
778                 if (chan_read(chan, hdp) == 0) {
779                         if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
780                                 chan_write(chan, hdp, desc);
781                 }
782
783                 return -EBUSY;
784         }
785
786         chan->head = desc_read_ptr(desc, hw_next);
787         chan_write(chan, cp, desc);
788
789         cpdma_desc_free(priv, desc);
790         return 0;
791 }
792
793 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
794 {
795         struct cpsw_slave       *slave;
796         int i, ret;
797
798         /* soft reset the controller and initialize priv */
799         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
800
801         /* initialize and reset the address lookup engine */
802         cpsw_ale_enable(priv, 1);
803         cpsw_ale_clear(priv, 1);
804         cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
805
806         /* setup host port priority mapping */
807         __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
808         __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
809
810         /* disable priority elevation and enable statistics on all ports */
811         __raw_writel(0, &priv->regs->ptype);
812
813         /* enable statistics collection only on the host port */
814         __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
815         __raw_writel(0x7, &priv->regs->stat_port_en);
816
817         cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
818
819         cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
820         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
821
822         for_active_slave(slave, priv)
823                 cpsw_slave_init(slave, priv);
824
825         cpsw_update_link(priv);
826
827         /* init descriptor pool */
828         for (i = 0; i < NUM_DESCS; i++) {
829                 desc_write(&priv->descs[i], hw_next,
830                            (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
831         }
832         priv->desc_free = &priv->descs[0];
833
834         /* initialize channels */
835         if (priv->data.version == CPSW_CTRL_VERSION_2) {
836                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
837                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
838                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
839                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
840
841                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
842                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
843                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
844         } else {
845                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
846                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
847                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
848                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
849
850                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
851                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
852                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
853         }
854
855         /* clear dma state */
856         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
857
858         if (priv->data.version == CPSW_CTRL_VERSION_2) {
859                 for (i = 0; i < priv->data.channels; i++) {
860                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
861                                         * i);
862                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
863                                         * i);
864                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
865                                         * i);
866                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
867                                         * i);
868                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
869                                         * i);
870                 }
871         } else {
872                 for (i = 0; i < priv->data.channels; i++) {
873                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
874                                         * i);
875                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
876                                         * i);
877                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
878                                         * i);
879                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
880                                         * i);
881                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
882                                         * i);
883
884                 }
885         }
886
887         __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
888         __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
889
890         /* submit rx descs */
891         for (i = 0; i < PKTBUFSRX; i++) {
892                 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
893                                    PKTSIZE);
894                 if (ret < 0) {
895                         printf("error %d submitting rx desc\n", ret);
896                         break;
897                 }
898         }
899
900         return 0;
901 }
902
903 static void _cpsw_halt(struct cpsw_priv *priv)
904 {
905         writel(0, priv->dma_regs + CPDMA_TXCONTROL);
906         writel(0, priv->dma_regs + CPDMA_RXCONTROL);
907
908         /* soft reset the controller and initialize priv */
909         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
910
911         /* clear dma state */
912         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
913
914 }
915
916 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
917 {
918         void *buffer;
919         int len;
920         int timeout = CPDMA_TIMEOUT;
921
922         flush_dcache_range((unsigned long)packet,
923                            (unsigned long)packet + ALIGN(length, PKTALIGN));
924
925         /* first reap completed packets */
926         while (timeout-- &&
927                 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
928                 ;
929
930         if (timeout == -1) {
931                 printf("cpdma_process timeout\n");
932                 return -ETIMEDOUT;
933         }
934
935         return cpdma_submit(priv, &priv->tx_chan, packet, length);
936 }
937
938 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
939 {
940         void *buffer;
941         int len;
942         int ret = -EAGAIN;
943
944         ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
945         if (ret < 0)
946                 return ret;
947
948         invalidate_dcache_range((unsigned long)buffer,
949                                 (unsigned long)buffer + PKTSIZE_ALIGN);
950         *pkt = buffer;
951
952         return len;
953 }
954
955 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
956                             struct cpsw_priv *priv)
957 {
958         void                    *regs = priv->regs;
959         struct cpsw_slave_data  *data = priv->data.slave_data + slave_num;
960         slave->slave_num = slave_num;
961         slave->data     = data;
962         slave->regs     = regs + data->slave_reg_ofs;
963         slave->sliver   = regs + data->sliver_reg_ofs;
964 }
965
966 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
967 {
968         struct phy_device *phydev;
969         u32 supported = PHY_GBIT_FEATURES;
970
971         phydev = phy_connect(priv->bus,
972                         slave->data->phy_addr,
973                         priv->dev,
974                         slave->data->phy_if);
975
976         if (!phydev)
977                 return -1;
978
979         phydev->supported &= supported;
980         phydev->advertising = phydev->supported;
981
982 #ifdef CONFIG_DM_ETH
983         if (slave->data->phy_of_handle)
984                 phydev->dev->of_offset = slave->data->phy_of_handle;
985 #endif
986
987         priv->phydev = phydev;
988         phy_config(phydev);
989
990         return 1;
991 }
992
993 int _cpsw_register(struct cpsw_priv *priv)
994 {
995         struct cpsw_slave       *slave;
996         struct cpsw_platform_data *data = &priv->data;
997         void                    *regs = (void *)data->cpsw_base;
998
999         priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
1000         if (!priv->slaves) {
1001                 return -ENOMEM;
1002         }
1003
1004         priv->host_port         = data->host_port_num;
1005         priv->regs              = regs;
1006         priv->host_port_regs    = regs + data->host_port_reg_ofs;
1007         priv->dma_regs          = regs + data->cpdma_reg_ofs;
1008         priv->ale_regs          = regs + data->ale_reg_ofs;
1009         priv->descs             = (void *)regs + data->bd_ram_ofs;
1010
1011         int idx = 0;
1012
1013         for_each_slave(slave, priv) {
1014                 cpsw_slave_setup(slave, idx, priv);
1015                 idx = idx + 1;
1016         }
1017
1018         cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
1019         priv->bus = miiphy_get_dev_by_name(priv->dev->name);
1020         for_active_slave(slave, priv)
1021                 cpsw_phy_init(priv, slave);
1022
1023         return 0;
1024 }
1025
1026 #ifndef CONFIG_DM_ETH
1027 static int cpsw_init(struct eth_device *dev, bd_t *bis)
1028 {
1029         struct cpsw_priv        *priv = dev->priv;
1030
1031         return _cpsw_init(priv, dev->enetaddr);
1032 }
1033
1034 static void cpsw_halt(struct eth_device *dev)
1035 {
1036         struct cpsw_priv *priv = dev->priv;
1037
1038         return _cpsw_halt(priv);
1039 }
1040
1041 static int cpsw_send(struct eth_device *dev, void *packet, int length)
1042 {
1043         struct cpsw_priv        *priv = dev->priv;
1044
1045         return _cpsw_send(priv, packet, length);
1046 }
1047
1048 static int cpsw_recv(struct eth_device *dev)
1049 {
1050         struct cpsw_priv *priv = dev->priv;
1051         uchar *pkt = NULL;
1052         int len;
1053
1054         len = _cpsw_recv(priv, &pkt);
1055
1056         if (len > 0) {
1057                 net_process_received_packet(pkt, len);
1058                 cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
1059         }
1060
1061         return len;
1062 }
1063
1064 int cpsw_register(struct cpsw_platform_data *data)
1065 {
1066         struct cpsw_priv        *priv;
1067         struct eth_device       *dev;
1068         int ret;
1069
1070         dev = calloc(sizeof(*dev), 1);
1071         if (!dev)
1072                 return -ENOMEM;
1073
1074         priv = calloc(sizeof(*priv), 1);
1075         if (!priv) {
1076                 free(dev);
1077                 return -ENOMEM;
1078         }
1079
1080         priv->dev = dev;
1081         priv->data = *data;
1082
1083         strcpy(dev->name, "cpsw");
1084         dev->iobase     = 0;
1085         dev->init       = cpsw_init;
1086         dev->halt       = cpsw_halt;
1087         dev->send       = cpsw_send;
1088         dev->recv       = cpsw_recv;
1089         dev->priv       = priv;
1090
1091         eth_register(dev);
1092
1093         ret = _cpsw_register(priv);
1094         if (ret < 0) {
1095                 eth_unregister(dev);
1096                 free(dev);
1097                 free(priv);
1098                 return ret;
1099         }
1100
1101         return 1;
1102 }
1103 #else
1104 static int cpsw_eth_start(struct udevice *dev)
1105 {
1106         struct eth_pdata *pdata = dev_get_platdata(dev);
1107         struct cpsw_priv *priv = dev_get_priv(dev);
1108
1109         return _cpsw_init(priv, pdata->enetaddr);
1110 }
1111
1112 static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
1113 {
1114         struct cpsw_priv *priv = dev_get_priv(dev);
1115
1116         return _cpsw_send(priv, packet, length);
1117 }
1118
1119 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
1120 {
1121         struct cpsw_priv *priv = dev_get_priv(dev);
1122
1123         return _cpsw_recv(priv, packetp);
1124 }
1125
1126 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
1127                                    int length)
1128 {
1129         struct cpsw_priv *priv = dev_get_priv(dev);
1130
1131         return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
1132 }
1133
1134 static void cpsw_eth_stop(struct udevice *dev)
1135 {
1136         struct cpsw_priv *priv = dev_get_priv(dev);
1137
1138         return _cpsw_halt(priv);
1139 }
1140
1141
1142 static int cpsw_eth_probe(struct udevice *dev)
1143 {
1144         struct cpsw_priv *priv = dev_get_priv(dev);
1145
1146         priv->dev = dev;
1147
1148         return _cpsw_register(priv);
1149 }
1150
1151 static const struct eth_ops cpsw_eth_ops = {
1152         .start          = cpsw_eth_start,
1153         .send           = cpsw_eth_send,
1154         .recv           = cpsw_eth_recv,
1155         .free_pkt       = cpsw_eth_free_pkt,
1156         .stop           = cpsw_eth_stop,
1157 };
1158
1159 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
1160 {
1161         return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL,
1162                                                   false);
1163 }
1164
1165 static void cpsw_gmii_sel_am3352(struct cpsw_priv *priv,
1166                                  phy_interface_t phy_mode)
1167 {
1168         u32 reg;
1169         u32 mask;
1170         u32 mode = 0;
1171         bool rgmii_id = false;
1172         int slave = priv->data.active_slave;
1173
1174         reg = readl(priv->data.gmii_sel);
1175
1176         switch (phy_mode) {
1177         case PHY_INTERFACE_MODE_RMII:
1178                 mode = AM33XX_GMII_SEL_MODE_RMII;
1179                 break;
1180
1181         case PHY_INTERFACE_MODE_RGMII:
1182                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1183                 break;
1184         case PHY_INTERFACE_MODE_RGMII_ID:
1185         case PHY_INTERFACE_MODE_RGMII_RXID:
1186         case PHY_INTERFACE_MODE_RGMII_TXID:
1187                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1188                 rgmii_id = true;
1189                 break;
1190
1191         case PHY_INTERFACE_MODE_MII:
1192         default:
1193                 mode = AM33XX_GMII_SEL_MODE_MII;
1194                 break;
1195         };
1196
1197         mask = GMII_SEL_MODE_MASK << (slave * 2) | BIT(slave + 6);
1198         mode <<= slave * 2;
1199
1200         if (priv->data.rmii_clock_external) {
1201                 if (slave == 0)
1202                         mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
1203                 else
1204                         mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
1205         }
1206
1207         if (rgmii_id) {
1208                 if (slave == 0)
1209                         mode |= AM33XX_GMII_SEL_RGMII1_IDMODE;
1210                 else
1211                         mode |= AM33XX_GMII_SEL_RGMII2_IDMODE;
1212         }
1213
1214         reg &= ~mask;
1215         reg |= mode;
1216
1217         writel(reg, priv->data.gmii_sel);
1218 }
1219
1220 static void cpsw_gmii_sel_dra7xx(struct cpsw_priv *priv,
1221                                  phy_interface_t phy_mode)
1222 {
1223         u32 reg;
1224         u32 mask;
1225         u32 mode = 0;
1226         int slave = priv->data.active_slave;
1227
1228         reg = readl(priv->data.gmii_sel);
1229
1230         switch (phy_mode) {
1231         case PHY_INTERFACE_MODE_RMII:
1232                 mode = AM33XX_GMII_SEL_MODE_RMII;
1233                 break;
1234
1235         case PHY_INTERFACE_MODE_RGMII:
1236         case PHY_INTERFACE_MODE_RGMII_ID:
1237         case PHY_INTERFACE_MODE_RGMII_RXID:
1238         case PHY_INTERFACE_MODE_RGMII_TXID:
1239                 mode = AM33XX_GMII_SEL_MODE_RGMII;
1240                 break;
1241
1242         case PHY_INTERFACE_MODE_MII:
1243         default:
1244                 mode = AM33XX_GMII_SEL_MODE_MII;
1245                 break;
1246         };
1247
1248         switch (slave) {
1249         case 0:
1250                 mask = GMII_SEL_MODE_MASK;
1251                 break;
1252         case 1:
1253                 mask = GMII_SEL_MODE_MASK << 4;
1254                 mode <<= 4;
1255                 break;
1256         default:
1257                 dev_err(priv->dev, "invalid slave number...\n");
1258                 return;
1259         }
1260
1261         if (priv->data.rmii_clock_external)
1262                 dev_err(priv->dev, "RMII External clock is not supported\n");
1263
1264         reg &= ~mask;
1265         reg |= mode;
1266
1267         writel(reg, priv->data.gmii_sel);
1268 }
1269
1270 static void cpsw_phy_sel(struct cpsw_priv *priv, const char *compat,
1271                          phy_interface_t phy_mode)
1272 {
1273         if (!strcmp(compat, "ti,am3352-cpsw-phy-sel"))
1274                 cpsw_gmii_sel_am3352(priv, phy_mode);
1275         if (!strcmp(compat, "ti,am43xx-cpsw-phy-sel"))
1276                 cpsw_gmii_sel_am3352(priv, phy_mode);
1277         else if (!strcmp(compat, "ti,dra7xx-cpsw-phy-sel"))
1278                 cpsw_gmii_sel_dra7xx(priv, phy_mode);
1279 }
1280
1281 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
1282 {
1283         struct eth_pdata *pdata = dev_get_platdata(dev);
1284         struct cpsw_priv *priv = dev_get_priv(dev);
1285         struct gpio_desc *mode_gpios;
1286         const char *phy_mode;
1287         const char *phy_sel_compat = NULL;
1288         const void *fdt = gd->fdt_blob;
1289         int node = dev->of_offset;
1290         int subnode;
1291         int slave_index = 0;
1292         int active_slave;
1293         int num_mode_gpios;
1294         int ret;
1295
1296         pdata->iobase = dev_get_addr(dev);
1297         priv->data.version = CPSW_CTRL_VERSION_2;
1298         priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
1299         priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
1300         priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
1301         priv->data.mdio_div = CPSW_MDIO_DIV;
1302         priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
1303
1304         pdata->phy_interface = -1;
1305
1306         priv->data.cpsw_base = pdata->iobase;
1307         priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
1308         if (priv->data.channels <= 0) {
1309                 printf("error: cpdma_channels not found in dt\n");
1310                 return -ENOENT;
1311         }
1312
1313         priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
1314         if (priv->data.slaves <= 0) {
1315                 printf("error: slaves not found in dt\n");
1316                 return -ENOENT;
1317         }
1318         priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
1319                                        priv->data.slaves);
1320
1321         priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
1322         if (priv->data.ale_entries <= 0) {
1323                 printf("error: ale_entries not found in dt\n");
1324                 return -ENOENT;
1325         }
1326
1327         priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
1328         if (priv->data.bd_ram_ofs <= 0) {
1329                 printf("error: bd_ram_size not found in dt\n");
1330                 return -ENOENT;
1331         }
1332
1333         priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
1334         if (priv->data.mac_control <= 0) {
1335                 printf("error: ale_entries not found in dt\n");
1336                 return -ENOENT;
1337         }
1338
1339         num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
1340         if (num_mode_gpios > 0) {
1341                 mode_gpios = malloc(sizeof(struct gpio_desc) *
1342                                     num_mode_gpios);
1343                 gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
1344                                           num_mode_gpios, GPIOD_IS_OUT);
1345                 free(mode_gpios);
1346         }
1347
1348         active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
1349         priv->data.active_slave = active_slave;
1350
1351         fdt_for_each_subnode(subnode, fdt, node) {
1352                 int len;
1353                 const char *name;
1354
1355                 name = fdt_get_name(fdt, subnode, &len);
1356                 if (!strncmp(name, "mdio", 4)) {
1357                         u32 mdio_base;
1358
1359                         mdio_base = cpsw_get_addr_by_node(fdt, subnode);
1360                         if (mdio_base == FDT_ADDR_T_NONE) {
1361                                 error("Not able to get MDIO address space\n");
1362                                 return -ENOENT;
1363                         }
1364                         priv->data.mdio_base = mdio_base;
1365                 }
1366
1367                 if (!strncmp(name, "slave", 5)) {
1368                         u32 phy_id[2];
1369
1370                         if (slave_index >= priv->data.slaves)
1371                                 continue;
1372                         phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
1373                         if (phy_mode)
1374                                 priv->data.slave_data[slave_index].phy_if =
1375                                         phy_get_interface_by_name(phy_mode);
1376
1377                         priv->data.slave_data[slave_index].phy_of_handle =
1378                                 fdtdec_lookup_phandle(fdt, subnode,
1379                                                       "phy-handle");
1380
1381                         if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
1382                                 priv->data.slave_data[slave_index].phy_addr =
1383                                                 fdtdec_get_int(gd->fdt_blob,
1384                                                                priv->data.slave_data[slave_index].phy_of_handle,
1385                                                                "reg", -1);
1386                         } else {
1387                                 fdtdec_get_int_array(fdt, subnode, "phy_id",
1388                                                      phy_id, 2);
1389                                 priv->data.slave_data[slave_index].phy_addr =
1390                                                 phy_id[1];
1391                         }
1392                         slave_index++;
1393                 }
1394
1395                 if (!strncmp(name, "cpsw-phy-sel", 12)) {
1396                         priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
1397                                                                     subnode);
1398
1399                         if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
1400                                 error("Not able to get gmii_sel reg address\n");
1401                                 return -ENOENT;
1402                         }
1403
1404                         if (fdt_get_property(fdt, subnode, "rmii-clock-ext",
1405                                              NULL))
1406                                 priv->data.rmii_clock_external = true;
1407
1408                         phy_sel_compat = fdt_getprop(fdt, subnode, "compatible",
1409                                                      NULL);
1410                         if (!phy_sel_compat) {
1411                                 error("Not able to get gmii_sel compatible\n");
1412                                 return -ENOENT;
1413                         }
1414                 }
1415         }
1416
1417         priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
1418         priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
1419
1420         if (priv->data.slaves == 2) {
1421                 priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
1422                 priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
1423         }
1424
1425         ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
1426         if (ret < 0) {
1427                 error("cpsw read efuse mac failed\n");
1428                 return ret;
1429         }
1430
1431         pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
1432         if (pdata->phy_interface == -1) {
1433                 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1434                 return -EINVAL;
1435         }
1436
1437         /* Select phy interface in control module */
1438         cpsw_phy_sel(priv, phy_sel_compat, pdata->phy_interface);
1439
1440         return 0;
1441 }
1442
1443
1444 static const struct udevice_id cpsw_eth_ids[] = {
1445         { .compatible = "ti,cpsw" },
1446         { .compatible = "ti,am335x-cpsw" },
1447         { }
1448 };
1449
1450 U_BOOT_DRIVER(eth_cpsw) = {
1451         .name   = "eth_cpsw",
1452         .id     = UCLASS_ETH,
1453         .of_match = cpsw_eth_ids,
1454         .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
1455         .probe  = cpsw_eth_probe,
1456         .ops    = &cpsw_eth_ops,
1457         .priv_auto_alloc_size = sizeof(struct cpsw_priv),
1458         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1459         .flags = DM_FLAG_ALLOC_PRIV_DMA,
1460 };
1461 #endif /* CONFIG_DM_ETH */