2 * CPSW Ethernet Switch Driver
4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
24 #include <asm/errno.h>
27 #include <asm/arch/cpu.h>
29 #define BITMASK(bits) (BIT(bits) - 1)
30 #define PHY_REG_MASK 0x1f
31 #define PHY_ID_MASK 0x1f
32 #define NUM_DESCS (PKTBUFSRX * 2)
34 #define PKT_MAX (1500 + 14 + 4 + 4)
36 #define GIGABITEN BIT(7)
37 #define FULLDUPLEXEN BIT(0)
41 #define CPDMA_TXCONTROL 0x004
42 #define CPDMA_RXCONTROL 0x014
43 #define CPDMA_SOFTRESET 0x01c
44 #define CPDMA_RXFREE 0x0e0
45 #define CPDMA_TXHDP_VER1 0x100
46 #define CPDMA_TXHDP_VER2 0x200
47 #define CPDMA_RXHDP_VER1 0x120
48 #define CPDMA_RXHDP_VER2 0x220
49 #define CPDMA_TXCP_VER1 0x140
50 #define CPDMA_TXCP_VER2 0x240
51 #define CPDMA_RXCP_VER1 0x160
52 #define CPDMA_RXCP_VER2 0x260
54 /* Descriptor mode bits */
55 #define CPDMA_DESC_SOP BIT(31)
56 #define CPDMA_DESC_EOP BIT(30)
57 #define CPDMA_DESC_OWNER BIT(29)
58 #define CPDMA_DESC_EOQ BIT(28)
61 * This timeout definition is a worst-case ultra defensive measure against
62 * unexpected controller lock ups. Ideally, we should never ever hit this
63 * scenario in practice.
65 #define MDIO_TIMEOUT 100 /* msecs */
66 #define CPDMA_TIMEOUT 100 /* msecs */
68 struct cpsw_mdio_regs {
71 #define CONTROL_IDLE BIT(31)
72 #define CONTROL_ENABLE BIT(30)
88 #define USERACCESS_GO BIT(31)
89 #define USERACCESS_WRITE BIT(30)
90 #define USERACCESS_ACK BIT(29)
91 #define USERACCESS_READ (0)
92 #define USERACCESS_DATA (0xffff)
104 struct cpsw_slave_regs {
112 #elif defined(CONFIG_TI814X)
121 struct cpsw_host_regs {
127 u32 cpdma_tx_pri_map;
128 u32 cpdma_rx_chan_map;
131 struct cpsw_sliver_regs {
144 #define ALE_ENTRY_BITS 68
145 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
148 #define ALE_CONTROL 0x08
149 #define ALE_UNKNOWNVLAN 0x18
150 #define ALE_TABLE_CONTROL 0x20
151 #define ALE_TABLE 0x34
152 #define ALE_PORTCTL 0x40
154 #define ALE_TABLE_WRITE BIT(31)
156 #define ALE_TYPE_FREE 0
157 #define ALE_TYPE_ADDR 1
158 #define ALE_TYPE_VLAN 2
159 #define ALE_TYPE_VLAN_ADDR 3
161 #define ALE_UCAST_PERSISTANT 0
162 #define ALE_UCAST_UNTOUCHED 1
163 #define ALE_UCAST_OUI 2
164 #define ALE_UCAST_TOUCHED 3
166 #define ALE_MCAST_FWD 0
167 #define ALE_MCAST_BLOCK_LEARN_FWD 1
168 #define ALE_MCAST_FWD_LEARN 2
169 #define ALE_MCAST_FWD_2 3
171 enum cpsw_ale_port_state {
172 ALE_PORT_STATE_DISABLE = 0x00,
173 ALE_PORT_STATE_BLOCK = 0x01,
174 ALE_PORT_STATE_LEARN = 0x02,
175 ALE_PORT_STATE_FORWARD = 0x03,
178 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
180 #define ALE_BLOCKED 2
183 struct cpsw_slave_regs *regs;
184 struct cpsw_sliver_regs *sliver;
187 struct cpsw_slave_data *data;
191 /* hardware fields */
196 /* software fields */
202 struct cpdma_desc *head, *tail;
203 void *hdp, *cp, *rxfree;
206 #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
207 #define desc_read(desc, fld) __raw_readl(&(desc)->fld)
208 #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
210 #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
211 #define chan_read(chan, fld) __raw_readl((chan)->fld)
212 #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
214 #define for_each_slave(slave, priv) \
215 for (slave = (priv)->slaves; slave != (priv)->slaves + \
216 (priv)->data.slaves; slave++)
219 struct eth_device *dev;
220 struct cpsw_platform_data data;
223 struct cpsw_regs *regs;
225 struct cpsw_host_regs *host_port_regs;
228 struct cpdma_desc *descs;
229 struct cpdma_desc *desc_free;
230 struct cpdma_chan rx_chan, tx_chan;
232 struct cpsw_slave *slaves;
233 struct phy_device *phydev;
240 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
246 idx = 2 - idx; /* flip */
247 return (ale_entry[idx] >> start) & BITMASK(bits);
250 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
255 value &= BITMASK(bits);
258 idx = 2 - idx; /* flip */
259 ale_entry[idx] &= ~(BITMASK(bits) << start);
260 ale_entry[idx] |= (value << start);
263 #define DEFINE_ALE_FIELD(name, start, bits) \
264 static inline int cpsw_ale_get_##name(u32 *ale_entry) \
266 return cpsw_ale_get_field(ale_entry, start, bits); \
268 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
270 cpsw_ale_set_field(ale_entry, start, bits, value); \
273 DEFINE_ALE_FIELD(entry_type, 60, 2)
274 DEFINE_ALE_FIELD(mcast_state, 62, 2)
275 DEFINE_ALE_FIELD(port_mask, 66, 3)
276 DEFINE_ALE_FIELD(ucast_type, 62, 2)
277 DEFINE_ALE_FIELD(port_num, 66, 2)
278 DEFINE_ALE_FIELD(blocked, 65, 1)
279 DEFINE_ALE_FIELD(secure, 64, 1)
280 DEFINE_ALE_FIELD(mcast, 40, 1)
282 /* The MAC address field in the ALE entry cannot be macroized as above */
283 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
287 for (i = 0; i < 6; i++)
288 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
291 static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
295 for (i = 0; i < 6; i++)
296 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
299 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
303 __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
305 for (i = 0; i < ALE_ENTRY_WORDS; i++)
306 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
311 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
315 for (i = 0; i < ALE_ENTRY_WORDS; i++)
316 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
318 __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
323 static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
325 u32 ale_entry[ALE_ENTRY_WORDS];
328 for (idx = 0; idx < priv->data.ale_entries; idx++) {
331 cpsw_ale_read(priv, idx, ale_entry);
332 type = cpsw_ale_get_entry_type(ale_entry);
333 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
335 cpsw_ale_get_addr(ale_entry, entry_addr);
336 if (memcmp(entry_addr, addr, 6) == 0)
342 static int cpsw_ale_match_free(struct cpsw_priv *priv)
344 u32 ale_entry[ALE_ENTRY_WORDS];
347 for (idx = 0; idx < priv->data.ale_entries; idx++) {
348 cpsw_ale_read(priv, idx, ale_entry);
349 type = cpsw_ale_get_entry_type(ale_entry);
350 if (type == ALE_TYPE_FREE)
356 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
358 u32 ale_entry[ALE_ENTRY_WORDS];
361 for (idx = 0; idx < priv->data.ale_entries; idx++) {
362 cpsw_ale_read(priv, idx, ale_entry);
363 type = cpsw_ale_get_entry_type(ale_entry);
364 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
366 if (cpsw_ale_get_mcast(ale_entry))
368 type = cpsw_ale_get_ucast_type(ale_entry);
369 if (type != ALE_UCAST_PERSISTANT &&
370 type != ALE_UCAST_OUI)
376 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
379 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
382 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
383 cpsw_ale_set_addr(ale_entry, addr);
384 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
385 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
386 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
387 cpsw_ale_set_port_num(ale_entry, port);
389 idx = cpsw_ale_match_addr(priv, addr);
391 idx = cpsw_ale_match_free(priv);
393 idx = cpsw_ale_find_ageable(priv);
397 cpsw_ale_write(priv, idx, ale_entry);
401 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
403 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
406 idx = cpsw_ale_match_addr(priv, addr);
408 cpsw_ale_read(priv, idx, ale_entry);
410 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
411 cpsw_ale_set_addr(ale_entry, addr);
412 cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
414 mask = cpsw_ale_get_port_mask(ale_entry);
416 cpsw_ale_set_port_mask(ale_entry, port_mask);
419 idx = cpsw_ale_match_free(priv);
421 idx = cpsw_ale_find_ageable(priv);
425 cpsw_ale_write(priv, idx, ale_entry);
429 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
431 u32 tmp, mask = BIT(bit);
433 tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
435 tmp |= val ? mask : 0;
436 __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
439 #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
440 #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
441 #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
443 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
446 int offset = ALE_PORTCTL + 4 * port;
449 tmp = __raw_readl(priv->ale_regs + offset);
452 __raw_writel(tmp, priv->ale_regs + offset);
455 static struct cpsw_mdio_regs *mdio_regs;
457 /* wait until hardware is ready for another user access */
458 static inline u32 wait_for_user_access(void)
461 int timeout = MDIO_TIMEOUT;
464 ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
468 printf("wait_for_user_access Timeout\n");
474 /* wait until hardware state machine is idle */
475 static inline void wait_for_idle(void)
477 int timeout = MDIO_TIMEOUT;
480 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
484 printf("wait_for_idle Timeout\n");
487 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
488 int dev_addr, int phy_reg)
493 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
496 wait_for_user_access();
497 reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
499 __raw_writel(reg, &mdio_regs->user[0].access);
500 reg = wait_for_user_access();
502 data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
506 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
507 int phy_reg, u16 data)
511 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
514 wait_for_user_access();
515 reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
516 (phy_id << 16) | (data & USERACCESS_DATA));
517 __raw_writel(reg, &mdio_regs->user[0].access);
518 wait_for_user_access();
523 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
525 struct mii_dev *bus = mdio_alloc();
527 mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
529 /* set enable and clock divider */
530 __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
533 * wait for scan logic to settle:
534 * the scan time consists of (a) a large fixed component, and (b) a
535 * small component that varies with the mii bus frequency. These
536 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
537 * silicon. Since the effect of (b) was found to be largely
538 * negligible, we keep things simple here.
542 bus->read = cpsw_mdio_read;
543 bus->write = cpsw_mdio_write;
544 sprintf(bus->name, name);
549 /* Set a self-clearing bit in a register, and wait for it to clear */
550 static inline void setbit_and_wait_for_clear32(void *addr)
552 __raw_writel(CLEAR_BIT, addr);
553 while (__raw_readl(addr) & CLEAR_BIT)
557 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
558 ((mac)[2] << 16) | ((mac)[3] << 24))
559 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
561 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
562 struct cpsw_priv *priv)
564 __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
565 __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
568 static void cpsw_slave_update_link(struct cpsw_slave *slave,
569 struct cpsw_priv *priv, int *link)
571 struct phy_device *phy = priv->phydev;
577 if (*link) { /* link up */
578 mac_control = priv->data.mac_control;
579 if (phy->speed == 1000)
580 mac_control |= GIGABITEN;
581 if (phy->duplex == DUPLEX_FULL)
582 mac_control |= FULLDUPLEXEN;
583 if (phy->speed == 100)
584 mac_control |= MIIEN;
587 if (mac_control == slave->mac_control)
591 printf("link up on port %d, speed %d, %s duplex\n",
592 slave->slave_num, phy->speed,
593 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
595 printf("link down on port %d\n", slave->slave_num);
598 __raw_writel(mac_control, &slave->sliver->mac_control);
599 slave->mac_control = mac_control;
602 static int cpsw_update_link(struct cpsw_priv *priv)
605 struct cpsw_slave *slave;
607 for_each_slave(slave, priv)
608 cpsw_slave_update_link(slave, priv, &link);
609 priv->mdio_link = readl(&mdio_regs->link);
613 static int cpsw_check_link(struct cpsw_priv *priv)
617 link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
618 if ((link) && (link == priv->mdio_link))
621 return cpsw_update_link(priv);
624 static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
626 if (priv->host_port == 0)
627 return slave_num + 1;
632 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
636 setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
638 /* setup priority mapping */
639 __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
640 __raw_writel(0x33221100, &slave->regs->tx_pri_map);
642 /* setup max packet size, and mac address */
643 __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
644 cpsw_set_slave_mac(slave, priv);
646 slave->mac_control = 0; /* no link yet */
648 /* enable forwarding */
649 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
650 cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
652 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
654 priv->phy_mask |= 1 << slave->data->phy_id;
657 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
659 struct cpdma_desc *desc = priv->desc_free;
662 priv->desc_free = desc_read_ptr(desc, hw_next);
666 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
669 desc_write(desc, hw_next, priv->desc_free);
670 priv->desc_free = desc;
674 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
675 void *buffer, int len)
677 struct cpdma_desc *desc, *prev;
680 desc = cpdma_desc_alloc(priv);
687 mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
689 desc_write(desc, hw_next, 0);
690 desc_write(desc, hw_buffer, buffer);
691 desc_write(desc, hw_len, len);
692 desc_write(desc, hw_mode, mode | len);
693 desc_write(desc, sw_buffer, buffer);
694 desc_write(desc, sw_len, len);
697 /* simple case - first packet enqueued */
700 chan_write(chan, hdp, desc);
704 /* not the first packet - enqueue at the tail */
706 desc_write(prev, hw_next, desc);
709 /* next check if EOQ has been triggered already */
710 if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
711 chan_write(chan, hdp, desc);
715 chan_write(chan, rxfree, 1);
719 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
720 void **buffer, int *len)
722 struct cpdma_desc *desc = chan->head;
728 status = desc_read(desc, hw_mode);
731 *len = status & 0x7ff;
734 *buffer = desc_read_ptr(desc, sw_buffer);
736 if (status & CPDMA_DESC_OWNER) {
737 if (chan_read(chan, hdp) == 0) {
738 if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
739 chan_write(chan, hdp, desc);
745 chan->head = desc_read_ptr(desc, hw_next);
746 chan_write(chan, cp, desc);
748 cpdma_desc_free(priv, desc);
752 static int cpsw_init(struct eth_device *dev, bd_t *bis)
754 struct cpsw_priv *priv = dev->priv;
755 struct cpsw_slave *slave;
758 /* soft reset the controller and initialize priv */
759 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
761 /* initialize and reset the address lookup engine */
762 cpsw_ale_enable(priv, 1);
763 cpsw_ale_clear(priv, 1);
764 cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
766 /* setup host port priority mapping */
767 __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
768 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
770 /* disable priority elevation and enable statistics on all ports */
771 __raw_writel(0, &priv->regs->ptype);
773 /* enable statistics collection only on the host port */
774 __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
775 __raw_writel(0x7, &priv->regs->stat_port_en);
777 cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
779 cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
781 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
783 for_each_slave(slave, priv)
784 cpsw_slave_init(slave, priv);
786 cpsw_update_link(priv);
788 /* init descriptor pool */
789 for (i = 0; i < NUM_DESCS; i++) {
790 desc_write(&priv->descs[i], hw_next,
791 (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
793 priv->desc_free = &priv->descs[0];
795 /* initialize channels */
796 if (priv->data.version == CPSW_CTRL_VERSION_2) {
797 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
798 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
799 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
800 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
802 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
803 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
804 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
806 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
807 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
808 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
809 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
811 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
812 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
813 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
816 /* clear dma state */
817 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
819 if (priv->data.version == CPSW_CTRL_VERSION_2) {
820 for (i = 0; i < priv->data.channels; i++) {
821 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
823 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
825 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
827 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
829 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
833 for (i = 0; i < priv->data.channels; i++) {
834 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
836 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
838 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
840 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
842 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
848 __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
849 __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
851 /* submit rx descs */
852 for (i = 0; i < PKTBUFSRX; i++) {
853 ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
856 printf("error %d submitting rx desc\n", ret);
864 static void cpsw_halt(struct eth_device *dev)
866 struct cpsw_priv *priv = dev->priv;
868 writel(0, priv->dma_regs + CPDMA_TXCONTROL);
869 writel(0, priv->dma_regs + CPDMA_RXCONTROL);
871 /* soft reset the controller and initialize priv */
872 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
874 /* clear dma state */
875 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
877 priv->data.control(0);
880 static int cpsw_send(struct eth_device *dev, void *packet, int length)
882 struct cpsw_priv *priv = dev->priv;
885 int timeout = CPDMA_TIMEOUT;
887 if (!cpsw_check_link(priv))
890 flush_dcache_range((unsigned long)packet,
891 (unsigned long)packet + length);
893 /* first reap completed packets */
895 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
899 printf("cpdma_process timeout\n");
903 return cpdma_submit(priv, &priv->tx_chan, packet, length);
906 static int cpsw_recv(struct eth_device *dev)
908 struct cpsw_priv *priv = dev->priv;
912 cpsw_update_link(priv);
914 while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
915 invalidate_dcache_range((unsigned long)buffer,
916 (unsigned long)buffer + PKTSIZE_ALIGN);
917 NetReceive(buffer, len);
918 cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
924 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
925 struct cpsw_priv *priv)
927 void *regs = priv->regs;
928 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
929 slave->slave_num = slave_num;
931 slave->regs = regs + data->slave_reg_ofs;
932 slave->sliver = regs + data->sliver_reg_ofs;
935 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
937 struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
938 struct phy_device *phydev;
939 u32 supported = (SUPPORTED_10baseT_Half |
940 SUPPORTED_10baseT_Full |
941 SUPPORTED_100baseT_Half |
942 SUPPORTED_100baseT_Full |
943 SUPPORTED_1000baseT_Full);
945 phydev = phy_connect(priv->bus,
948 slave->data->phy_if);
950 phydev->supported &= supported;
951 phydev->advertising = phydev->supported;
953 priv->phydev = phydev;
959 int cpsw_register(struct cpsw_platform_data *data)
961 struct cpsw_priv *priv;
962 struct cpsw_slave *slave;
963 void *regs = (void *)data->cpsw_base;
964 struct eth_device *dev;
966 dev = calloc(sizeof(*dev), 1);
970 priv = calloc(sizeof(*priv), 1);
979 priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
986 priv->host_port = data->host_port_num;
988 priv->host_port_regs = regs + data->host_port_reg_ofs;
989 priv->dma_regs = regs + data->cpdma_reg_ofs;
990 priv->ale_regs = regs + data->ale_reg_ofs;
991 priv->descs = (void *)regs + data->bd_ram_ofs;
995 for_each_slave(slave, priv) {
996 cpsw_slave_setup(slave, idx, priv);
1000 strcpy(dev->name, "cpsw");
1002 dev->init = cpsw_init;
1003 dev->halt = cpsw_halt;
1004 dev->send = cpsw_send;
1005 dev->recv = cpsw_recv;
1010 cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
1011 priv->bus = miiphy_get_dev_by_name(dev->name);
1012 for_each_slave(slave, priv)
1013 cpsw_phy_init(dev, slave);