cmd: booti: move CONFIG_CMD_BOOTI to Kconfig
[platform/kernel/u-boot.git] / drivers / net / cpsw.c
1 /*
2  * CPSW Ethernet Switch Driver
3  *
4  * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #include <common.h>
17 #include <command.h>
18 #include <net.h>
19 #include <miiphy.h>
20 #include <malloc.h>
21 #include <net.h>
22 #include <netdev.h>
23 #include <cpsw.h>
24 #include <asm/errno.h>
25 #include <asm/gpio.h>
26 #include <asm/io.h>
27 #include <phy.h>
28 #include <asm/arch/cpu.h>
29 #include <dm.h>
30 #include <fdt_support.h>
31
32 DECLARE_GLOBAL_DATA_PTR;
33
34 #define BITMASK(bits)           (BIT(bits) - 1)
35 #define PHY_REG_MASK            0x1f
36 #define PHY_ID_MASK             0x1f
37 #define NUM_DESCS               (PKTBUFSRX * 2)
38 #define PKT_MIN                 60
39 #define PKT_MAX                 (1500 + 14 + 4 + 4)
40 #define CLEAR_BIT               1
41 #define GIGABITEN               BIT(7)
42 #define FULLDUPLEXEN            BIT(0)
43 #define MIIEN                   BIT(15)
44
45 /* reg offset */
46 #define CPSW_HOST_PORT_OFFSET   0x108
47 #define CPSW_SLAVE0_OFFSET      0x208
48 #define CPSW_SLAVE1_OFFSET      0x308
49 #define CPSW_SLAVE_SIZE         0x100
50 #define CPSW_CPDMA_OFFSET       0x800
51 #define CPSW_HW_STATS           0x900
52 #define CPSW_STATERAM_OFFSET    0xa00
53 #define CPSW_CPTS_OFFSET        0xc00
54 #define CPSW_ALE_OFFSET         0xd00
55 #define CPSW_SLIVER0_OFFSET     0xd80
56 #define CPSW_SLIVER1_OFFSET     0xdc0
57 #define CPSW_BD_OFFSET          0x2000
58 #define CPSW_MDIO_DIV           0xff
59
60 #define AM335X_GMII_SEL_OFFSET  0x630
61
62 /* DMA Registers */
63 #define CPDMA_TXCONTROL         0x004
64 #define CPDMA_RXCONTROL         0x014
65 #define CPDMA_SOFTRESET         0x01c
66 #define CPDMA_RXFREE            0x0e0
67 #define CPDMA_TXHDP_VER1        0x100
68 #define CPDMA_TXHDP_VER2        0x200
69 #define CPDMA_RXHDP_VER1        0x120
70 #define CPDMA_RXHDP_VER2        0x220
71 #define CPDMA_TXCP_VER1         0x140
72 #define CPDMA_TXCP_VER2         0x240
73 #define CPDMA_RXCP_VER1         0x160
74 #define CPDMA_RXCP_VER2         0x260
75
76 /* Descriptor mode bits */
77 #define CPDMA_DESC_SOP          BIT(31)
78 #define CPDMA_DESC_EOP          BIT(30)
79 #define CPDMA_DESC_OWNER        BIT(29)
80 #define CPDMA_DESC_EOQ          BIT(28)
81
82 /*
83  * This timeout definition is a worst-case ultra defensive measure against
84  * unexpected controller lock ups.  Ideally, we should never ever hit this
85  * scenario in practice.
86  */
87 #define MDIO_TIMEOUT            100 /* msecs */
88 #define CPDMA_TIMEOUT           100 /* msecs */
89
90 struct cpsw_mdio_regs {
91         u32     version;
92         u32     control;
93 #define CONTROL_IDLE            BIT(31)
94 #define CONTROL_ENABLE          BIT(30)
95
96         u32     alive;
97         u32     link;
98         u32     linkintraw;
99         u32     linkintmasked;
100         u32     __reserved_0[2];
101         u32     userintraw;
102         u32     userintmasked;
103         u32     userintmaskset;
104         u32     userintmaskclr;
105         u32     __reserved_1[20];
106
107         struct {
108                 u32             access;
109                 u32             physel;
110 #define USERACCESS_GO           BIT(31)
111 #define USERACCESS_WRITE        BIT(30)
112 #define USERACCESS_ACK          BIT(29)
113 #define USERACCESS_READ         (0)
114 #define USERACCESS_DATA         (0xffff)
115         } user[0];
116 };
117
118 struct cpsw_regs {
119         u32     id_ver;
120         u32     control;
121         u32     soft_reset;
122         u32     stat_port_en;
123         u32     ptype;
124 };
125
126 struct cpsw_slave_regs {
127         u32     max_blks;
128         u32     blk_cnt;
129         u32     flow_thresh;
130         u32     port_vlan;
131         u32     tx_pri_map;
132 #ifdef CONFIG_AM33XX
133         u32     gap_thresh;
134 #elif defined(CONFIG_TI814X)
135         u32     ts_ctl;
136         u32     ts_seq_ltype;
137         u32     ts_vlan;
138 #endif
139         u32     sa_lo;
140         u32     sa_hi;
141 };
142
143 struct cpsw_host_regs {
144         u32     max_blks;
145         u32     blk_cnt;
146         u32     flow_thresh;
147         u32     port_vlan;
148         u32     tx_pri_map;
149         u32     cpdma_tx_pri_map;
150         u32     cpdma_rx_chan_map;
151 };
152
153 struct cpsw_sliver_regs {
154         u32     id_ver;
155         u32     mac_control;
156         u32     mac_status;
157         u32     soft_reset;
158         u32     rx_maxlen;
159         u32     __reserved_0;
160         u32     rx_pause;
161         u32     tx_pause;
162         u32     __reserved_1;
163         u32     rx_pri_map;
164 };
165
166 #define ALE_ENTRY_BITS          68
167 #define ALE_ENTRY_WORDS         DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
168
169 /* ALE Registers */
170 #define ALE_CONTROL             0x08
171 #define ALE_UNKNOWNVLAN         0x18
172 #define ALE_TABLE_CONTROL       0x20
173 #define ALE_TABLE               0x34
174 #define ALE_PORTCTL             0x40
175
176 #define ALE_TABLE_WRITE         BIT(31)
177
178 #define ALE_TYPE_FREE                   0
179 #define ALE_TYPE_ADDR                   1
180 #define ALE_TYPE_VLAN                   2
181 #define ALE_TYPE_VLAN_ADDR              3
182
183 #define ALE_UCAST_PERSISTANT            0
184 #define ALE_UCAST_UNTOUCHED             1
185 #define ALE_UCAST_OUI                   2
186 #define ALE_UCAST_TOUCHED               3
187
188 #define ALE_MCAST_FWD                   0
189 #define ALE_MCAST_BLOCK_LEARN_FWD       1
190 #define ALE_MCAST_FWD_LEARN             2
191 #define ALE_MCAST_FWD_2                 3
192
193 enum cpsw_ale_port_state {
194         ALE_PORT_STATE_DISABLE  = 0x00,
195         ALE_PORT_STATE_BLOCK    = 0x01,
196         ALE_PORT_STATE_LEARN    = 0x02,
197         ALE_PORT_STATE_FORWARD  = 0x03,
198 };
199
200 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
201 #define ALE_SECURE      1
202 #define ALE_BLOCKED     2
203
204 struct cpsw_slave {
205         struct cpsw_slave_regs          *regs;
206         struct cpsw_sliver_regs         *sliver;
207         int                             slave_num;
208         u32                             mac_control;
209         struct cpsw_slave_data          *data;
210 };
211
212 struct cpdma_desc {
213         /* hardware fields */
214         u32                     hw_next;
215         u32                     hw_buffer;
216         u32                     hw_len;
217         u32                     hw_mode;
218         /* software fields */
219         u32                     sw_buffer;
220         u32                     sw_len;
221 };
222
223 struct cpdma_chan {
224         struct cpdma_desc       *head, *tail;
225         void                    *hdp, *cp, *rxfree;
226 };
227
228 #define desc_write(desc, fld, val)      __raw_writel((u32)(val), &(desc)->fld)
229 #define desc_read(desc, fld)            __raw_readl(&(desc)->fld)
230 #define desc_read_ptr(desc, fld)        ((void *)__raw_readl(&(desc)->fld))
231
232 #define chan_write(chan, fld, val)      __raw_writel((u32)(val), (chan)->fld)
233 #define chan_read(chan, fld)            __raw_readl((chan)->fld)
234 #define chan_read_ptr(chan, fld)        ((void *)__raw_readl((chan)->fld))
235
236 #define for_active_slave(slave, priv) \
237         slave = (priv)->slaves + (priv)->data.active_slave; if (slave)
238 #define for_each_slave(slave, priv) \
239         for (slave = (priv)->slaves; slave != (priv)->slaves + \
240                                 (priv)->data.slaves; slave++)
241
242 struct cpsw_priv {
243 #ifdef CONFIG_DM_ETH
244         struct udevice                  *dev;
245 #else
246         struct eth_device               *dev;
247 #endif
248         struct cpsw_platform_data       data;
249         int                             host_port;
250
251         struct cpsw_regs                *regs;
252         void                            *dma_regs;
253         struct cpsw_host_regs           *host_port_regs;
254         void                            *ale_regs;
255
256         struct cpdma_desc               *descs;
257         struct cpdma_desc               *desc_free;
258         struct cpdma_chan               rx_chan, tx_chan;
259
260         struct cpsw_slave               *slaves;
261         struct phy_device               *phydev;
262         struct mii_dev                  *bus;
263
264         u32                             phy_mask;
265 };
266
267 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
268 {
269         int idx;
270
271         idx    = start / 32;
272         start -= idx * 32;
273         idx    = 2 - idx; /* flip */
274         return (ale_entry[idx] >> start) & BITMASK(bits);
275 }
276
277 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
278                                       u32 value)
279 {
280         int idx;
281
282         value &= BITMASK(bits);
283         idx    = start / 32;
284         start -= idx * 32;
285         idx    = 2 - idx; /* flip */
286         ale_entry[idx] &= ~(BITMASK(bits) << start);
287         ale_entry[idx] |=  (value << start);
288 }
289
290 #define DEFINE_ALE_FIELD(name, start, bits)                             \
291 static inline int cpsw_ale_get_##name(u32 *ale_entry)                   \
292 {                                                                       \
293         return cpsw_ale_get_field(ale_entry, start, bits);              \
294 }                                                                       \
295 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value)       \
296 {                                                                       \
297         cpsw_ale_set_field(ale_entry, start, bits, value);              \
298 }
299
300 DEFINE_ALE_FIELD(entry_type,            60,     2)
301 DEFINE_ALE_FIELD(mcast_state,           62,     2)
302 DEFINE_ALE_FIELD(port_mask,             66,     3)
303 DEFINE_ALE_FIELD(ucast_type,            62,     2)
304 DEFINE_ALE_FIELD(port_num,              66,     2)
305 DEFINE_ALE_FIELD(blocked,               65,     1)
306 DEFINE_ALE_FIELD(secure,                64,     1)
307 DEFINE_ALE_FIELD(mcast,                 40,     1)
308
309 /* The MAC address field in the ALE entry cannot be macroized as above */
310 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
311 {
312         int i;
313
314         for (i = 0; i < 6; i++)
315                 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
316 }
317
318 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
319 {
320         int i;
321
322         for (i = 0; i < 6; i++)
323                 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
324 }
325
326 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
327 {
328         int i;
329
330         __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
331
332         for (i = 0; i < ALE_ENTRY_WORDS; i++)
333                 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
334
335         return idx;
336 }
337
338 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
339 {
340         int i;
341
342         for (i = 0; i < ALE_ENTRY_WORDS; i++)
343                 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
344
345         __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
346
347         return idx;
348 }
349
350 static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr)
351 {
352         u32 ale_entry[ALE_ENTRY_WORDS];
353         int type, idx;
354
355         for (idx = 0; idx < priv->data.ale_entries; idx++) {
356                 u8 entry_addr[6];
357
358                 cpsw_ale_read(priv, idx, ale_entry);
359                 type = cpsw_ale_get_entry_type(ale_entry);
360                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
361                         continue;
362                 cpsw_ale_get_addr(ale_entry, entry_addr);
363                 if (memcmp(entry_addr, addr, 6) == 0)
364                         return idx;
365         }
366         return -ENOENT;
367 }
368
369 static int cpsw_ale_match_free(struct cpsw_priv *priv)
370 {
371         u32 ale_entry[ALE_ENTRY_WORDS];
372         int type, idx;
373
374         for (idx = 0; idx < priv->data.ale_entries; idx++) {
375                 cpsw_ale_read(priv, idx, ale_entry);
376                 type = cpsw_ale_get_entry_type(ale_entry);
377                 if (type == ALE_TYPE_FREE)
378                         return idx;
379         }
380         return -ENOENT;
381 }
382
383 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
384 {
385         u32 ale_entry[ALE_ENTRY_WORDS];
386         int type, idx;
387
388         for (idx = 0; idx < priv->data.ale_entries; idx++) {
389                 cpsw_ale_read(priv, idx, ale_entry);
390                 type = cpsw_ale_get_entry_type(ale_entry);
391                 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
392                         continue;
393                 if (cpsw_ale_get_mcast(ale_entry))
394                         continue;
395                 type = cpsw_ale_get_ucast_type(ale_entry);
396                 if (type != ALE_UCAST_PERSISTANT &&
397                     type != ALE_UCAST_OUI)
398                         return idx;
399         }
400         return -ENOENT;
401 }
402
403 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr,
404                               int port, int flags)
405 {
406         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
407         int idx;
408
409         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
410         cpsw_ale_set_addr(ale_entry, addr);
411         cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
412         cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
413         cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
414         cpsw_ale_set_port_num(ale_entry, port);
415
416         idx = cpsw_ale_match_addr(priv, addr);
417         if (idx < 0)
418                 idx = cpsw_ale_match_free(priv);
419         if (idx < 0)
420                 idx = cpsw_ale_find_ageable(priv);
421         if (idx < 0)
422                 return -ENOMEM;
423
424         cpsw_ale_write(priv, idx, ale_entry);
425         return 0;
426 }
427
428 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr,
429                               int port_mask)
430 {
431         u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
432         int idx, mask;
433
434         idx = cpsw_ale_match_addr(priv, addr);
435         if (idx >= 0)
436                 cpsw_ale_read(priv, idx, ale_entry);
437
438         cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
439         cpsw_ale_set_addr(ale_entry, addr);
440         cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
441
442         mask = cpsw_ale_get_port_mask(ale_entry);
443         port_mask |= mask;
444         cpsw_ale_set_port_mask(ale_entry, port_mask);
445
446         if (idx < 0)
447                 idx = cpsw_ale_match_free(priv);
448         if (idx < 0)
449                 idx = cpsw_ale_find_ageable(priv);
450         if (idx < 0)
451                 return -ENOMEM;
452
453         cpsw_ale_write(priv, idx, ale_entry);
454         return 0;
455 }
456
457 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
458 {
459         u32 tmp, mask = BIT(bit);
460
461         tmp  = __raw_readl(priv->ale_regs + ALE_CONTROL);
462         tmp &= ~mask;
463         tmp |= val ? mask : 0;
464         __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
465 }
466
467 #define cpsw_ale_enable(priv, val)      cpsw_ale_control(priv, 31, val)
468 #define cpsw_ale_clear(priv, val)       cpsw_ale_control(priv, 30, val)
469 #define cpsw_ale_vlan_aware(priv, val)  cpsw_ale_control(priv,  2, val)
470
471 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
472                                        int val)
473 {
474         int offset = ALE_PORTCTL + 4 * port;
475         u32 tmp, mask = 0x3;
476
477         tmp  = __raw_readl(priv->ale_regs + offset);
478         tmp &= ~mask;
479         tmp |= val & mask;
480         __raw_writel(tmp, priv->ale_regs + offset);
481 }
482
483 static struct cpsw_mdio_regs *mdio_regs;
484
485 /* wait until hardware is ready for another user access */
486 static inline u32 wait_for_user_access(void)
487 {
488         u32 reg = 0;
489         int timeout = MDIO_TIMEOUT;
490
491         while (timeout-- &&
492         ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
493                 udelay(10);
494
495         if (timeout == -1) {
496                 printf("wait_for_user_access Timeout\n");
497                 return -ETIMEDOUT;
498         }
499         return reg;
500 }
501
502 /* wait until hardware state machine is idle */
503 static inline void wait_for_idle(void)
504 {
505         int timeout = MDIO_TIMEOUT;
506
507         while (timeout-- &&
508                 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
509                 udelay(10);
510
511         if (timeout == -1)
512                 printf("wait_for_idle Timeout\n");
513 }
514
515 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
516                                 int dev_addr, int phy_reg)
517 {
518         int data;
519         u32 reg;
520
521         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
522                 return -EINVAL;
523
524         wait_for_user_access();
525         reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
526                (phy_id << 16));
527         __raw_writel(reg, &mdio_regs->user[0].access);
528         reg = wait_for_user_access();
529
530         data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
531         return data;
532 }
533
534 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
535                                 int phy_reg, u16 data)
536 {
537         u32 reg;
538
539         if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
540                 return -EINVAL;
541
542         wait_for_user_access();
543         reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
544                    (phy_id << 16) | (data & USERACCESS_DATA));
545         __raw_writel(reg, &mdio_regs->user[0].access);
546         wait_for_user_access();
547
548         return 0;
549 }
550
551 static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div)
552 {
553         struct mii_dev *bus = mdio_alloc();
554
555         mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
556
557         /* set enable and clock divider */
558         __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
559
560         /*
561          * wait for scan logic to settle:
562          * the scan time consists of (a) a large fixed component, and (b) a
563          * small component that varies with the mii bus frequency.  These
564          * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
565          * silicon.  Since the effect of (b) was found to be largely
566          * negligible, we keep things simple here.
567          */
568         udelay(1000);
569
570         bus->read = cpsw_mdio_read;
571         bus->write = cpsw_mdio_write;
572         strcpy(bus->name, name);
573
574         mdio_register(bus);
575 }
576
577 /* Set a self-clearing bit in a register, and wait for it to clear */
578 static inline void setbit_and_wait_for_clear32(void *addr)
579 {
580         __raw_writel(CLEAR_BIT, addr);
581         while (__raw_readl(addr) & CLEAR_BIT)
582                 ;
583 }
584
585 #define mac_hi(mac)     (((mac)[0] << 0) | ((mac)[1] << 8) |    \
586                          ((mac)[2] << 16) | ((mac)[3] << 24))
587 #define mac_lo(mac)     (((mac)[4] << 0) | ((mac)[5] << 8))
588
589 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
590                                struct cpsw_priv *priv)
591 {
592 #ifdef CONFIG_DM_ETH
593         struct eth_pdata *pdata = dev_get_platdata(priv->dev);
594
595         writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi);
596         writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo);
597 #else
598         __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
599         __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
600 #endif
601 }
602
603 static void cpsw_slave_update_link(struct cpsw_slave *slave,
604                                    struct cpsw_priv *priv, int *link)
605 {
606         struct phy_device *phy;
607         u32 mac_control = 0;
608
609         phy = priv->phydev;
610
611         if (!phy)
612                 return;
613
614         phy_startup(phy);
615         *link = phy->link;
616
617         if (*link) { /* link up */
618                 mac_control = priv->data.mac_control;
619                 if (phy->speed == 1000)
620                         mac_control |= GIGABITEN;
621                 if (phy->duplex == DUPLEX_FULL)
622                         mac_control |= FULLDUPLEXEN;
623                 if (phy->speed == 100)
624                         mac_control |= MIIEN;
625         }
626
627         if (mac_control == slave->mac_control)
628                 return;
629
630         if (mac_control) {
631                 printf("link up on port %d, speed %d, %s duplex\n",
632                                 slave->slave_num, phy->speed,
633                                 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
634         } else {
635                 printf("link down on port %d\n", slave->slave_num);
636         }
637
638         __raw_writel(mac_control, &slave->sliver->mac_control);
639         slave->mac_control = mac_control;
640 }
641
642 static int cpsw_update_link(struct cpsw_priv *priv)
643 {
644         int link = 0;
645         struct cpsw_slave *slave;
646
647         for_active_slave(slave, priv)
648                 cpsw_slave_update_link(slave, priv, &link);
649
650         return link;
651 }
652
653 static inline u32  cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
654 {
655         if (priv->host_port == 0)
656                 return slave_num + 1;
657         else
658                 return slave_num;
659 }
660
661 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
662 {
663         u32     slave_port;
664
665         setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
666
667         /* setup priority mapping */
668         __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
669         __raw_writel(0x33221100, &slave->regs->tx_pri_map);
670
671         /* setup max packet size, and mac address */
672         __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
673         cpsw_set_slave_mac(slave, priv);
674
675         slave->mac_control = 0; /* no link yet */
676
677         /* enable forwarding */
678         slave_port = cpsw_get_slave_port(priv, slave->slave_num);
679         cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
680
681         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port);
682
683         priv->phy_mask |= 1 << slave->data->phy_addr;
684 }
685
686 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
687 {
688         struct cpdma_desc *desc = priv->desc_free;
689
690         if (desc)
691                 priv->desc_free = desc_read_ptr(desc, hw_next);
692         return desc;
693 }
694
695 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
696 {
697         if (desc) {
698                 desc_write(desc, hw_next, priv->desc_free);
699                 priv->desc_free = desc;
700         }
701 }
702
703 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
704                         void *buffer, int len)
705 {
706         struct cpdma_desc *desc, *prev;
707         u32 mode;
708
709         desc = cpdma_desc_alloc(priv);
710         if (!desc)
711                 return -ENOMEM;
712
713         if (len < PKT_MIN)
714                 len = PKT_MIN;
715
716         mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
717
718         desc_write(desc, hw_next,   0);
719         desc_write(desc, hw_buffer, buffer);
720         desc_write(desc, hw_len,    len);
721         desc_write(desc, hw_mode,   mode | len);
722         desc_write(desc, sw_buffer, buffer);
723         desc_write(desc, sw_len,    len);
724
725         if (!chan->head) {
726                 /* simple case - first packet enqueued */
727                 chan->head = desc;
728                 chan->tail = desc;
729                 chan_write(chan, hdp, desc);
730                 goto done;
731         }
732
733         /* not the first packet - enqueue at the tail */
734         prev = chan->tail;
735         desc_write(prev, hw_next, desc);
736         chan->tail = desc;
737
738         /* next check if EOQ has been triggered already */
739         if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
740                 chan_write(chan, hdp, desc);
741
742 done:
743         if (chan->rxfree)
744                 chan_write(chan, rxfree, 1);
745         return 0;
746 }
747
748 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
749                          void **buffer, int *len)
750 {
751         struct cpdma_desc *desc = chan->head;
752         u32 status;
753
754         if (!desc)
755                 return -ENOENT;
756
757         status = desc_read(desc, hw_mode);
758
759         if (len)
760                 *len = status & 0x7ff;
761
762         if (buffer)
763                 *buffer = desc_read_ptr(desc, sw_buffer);
764
765         if (status & CPDMA_DESC_OWNER) {
766                 if (chan_read(chan, hdp) == 0) {
767                         if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
768                                 chan_write(chan, hdp, desc);
769                 }
770
771                 return -EBUSY;
772         }
773
774         chan->head = desc_read_ptr(desc, hw_next);
775         chan_write(chan, cp, desc);
776
777         cpdma_desc_free(priv, desc);
778         return 0;
779 }
780
781 static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr)
782 {
783         struct cpsw_slave       *slave;
784         int i, ret;
785
786         /* soft reset the controller and initialize priv */
787         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
788
789         /* initialize and reset the address lookup engine */
790         cpsw_ale_enable(priv, 1);
791         cpsw_ale_clear(priv, 1);
792         cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
793
794         /* setup host port priority mapping */
795         __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
796         __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
797
798         /* disable priority elevation and enable statistics on all ports */
799         __raw_writel(0, &priv->regs->ptype);
800
801         /* enable statistics collection only on the host port */
802         __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
803         __raw_writel(0x7, &priv->regs->stat_port_en);
804
805         cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
806
807         cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE);
808         cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port);
809
810         for_active_slave(slave, priv)
811                 cpsw_slave_init(slave, priv);
812
813         cpsw_update_link(priv);
814
815         /* init descriptor pool */
816         for (i = 0; i < NUM_DESCS; i++) {
817                 desc_write(&priv->descs[i], hw_next,
818                            (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
819         }
820         priv->desc_free = &priv->descs[0];
821
822         /* initialize channels */
823         if (priv->data.version == CPSW_CTRL_VERSION_2) {
824                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
825                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER2;
826                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER2;
827                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
828
829                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
830                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER2;
831                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER2;
832         } else {
833                 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
834                 priv->rx_chan.hdp       = priv->dma_regs + CPDMA_RXHDP_VER1;
835                 priv->rx_chan.cp        = priv->dma_regs + CPDMA_RXCP_VER1;
836                 priv->rx_chan.rxfree    = priv->dma_regs + CPDMA_RXFREE;
837
838                 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
839                 priv->tx_chan.hdp       = priv->dma_regs + CPDMA_TXHDP_VER1;
840                 priv->tx_chan.cp        = priv->dma_regs + CPDMA_TXCP_VER1;
841         }
842
843         /* clear dma state */
844         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
845
846         if (priv->data.version == CPSW_CTRL_VERSION_2) {
847                 for (i = 0; i < priv->data.channels; i++) {
848                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
849                                         * i);
850                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
851                                         * i);
852                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
853                                         * i);
854                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
855                                         * i);
856                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
857                                         * i);
858                 }
859         } else {
860                 for (i = 0; i < priv->data.channels; i++) {
861                         __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
862                                         * i);
863                         __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
864                                         * i);
865                         __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
866                                         * i);
867                         __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
868                                         * i);
869                         __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
870                                         * i);
871
872                 }
873         }
874
875         __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
876         __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
877
878         /* submit rx descs */
879         for (i = 0; i < PKTBUFSRX; i++) {
880                 ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i],
881                                    PKTSIZE);
882                 if (ret < 0) {
883                         printf("error %d submitting rx desc\n", ret);
884                         break;
885                 }
886         }
887
888         return 0;
889 }
890
891 static void _cpsw_halt(struct cpsw_priv *priv)
892 {
893         writel(0, priv->dma_regs + CPDMA_TXCONTROL);
894         writel(0, priv->dma_regs + CPDMA_RXCONTROL);
895
896         /* soft reset the controller and initialize priv */
897         setbit_and_wait_for_clear32(&priv->regs->soft_reset);
898
899         /* clear dma state */
900         setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
901
902 }
903
904 static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length)
905 {
906         void *buffer;
907         int len;
908         int timeout = CPDMA_TIMEOUT;
909
910         flush_dcache_range((unsigned long)packet,
911                            (unsigned long)packet + ALIGN(length, PKTALIGN));
912
913         /* first reap completed packets */
914         while (timeout-- &&
915                 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
916                 ;
917
918         if (timeout == -1) {
919                 printf("cpdma_process timeout\n");
920                 return -ETIMEDOUT;
921         }
922
923         return cpdma_submit(priv, &priv->tx_chan, packet, length);
924 }
925
926 static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt)
927 {
928         void *buffer;
929         int len;
930         int ret = -EAGAIN;
931
932         ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len);
933         if (ret < 0)
934                 return ret;
935
936         invalidate_dcache_range((unsigned long)buffer,
937                                 (unsigned long)buffer + PKTSIZE_ALIGN);
938         *pkt = buffer;
939
940         return len;
941 }
942
943 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
944                             struct cpsw_priv *priv)
945 {
946         void                    *regs = priv->regs;
947         struct cpsw_slave_data  *data = priv->data.slave_data + slave_num;
948         slave->slave_num = slave_num;
949         slave->data     = data;
950         slave->regs     = regs + data->slave_reg_ofs;
951         slave->sliver   = regs + data->sliver_reg_ofs;
952 }
953
954 static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave)
955 {
956         struct phy_device *phydev;
957         u32 supported = PHY_GBIT_FEATURES;
958
959         phydev = phy_connect(priv->bus,
960                         slave->data->phy_addr,
961                         priv->dev,
962                         slave->data->phy_if);
963
964         if (!phydev)
965                 return -1;
966
967         phydev->supported &= supported;
968         phydev->advertising = phydev->supported;
969
970 #ifdef CONFIG_DM_ETH
971         if (slave->data->phy_of_handle)
972                 phydev->dev->of_offset = slave->data->phy_of_handle;
973 #endif
974
975         priv->phydev = phydev;
976         phy_config(phydev);
977
978         return 1;
979 }
980
981 int _cpsw_register(struct cpsw_priv *priv)
982 {
983         struct cpsw_slave       *slave;
984         struct cpsw_platform_data *data = &priv->data;
985         void                    *regs = (void *)data->cpsw_base;
986
987         priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
988         if (!priv->slaves) {
989                 return -ENOMEM;
990         }
991
992         priv->host_port         = data->host_port_num;
993         priv->regs              = regs;
994         priv->host_port_regs    = regs + data->host_port_reg_ofs;
995         priv->dma_regs          = regs + data->cpdma_reg_ofs;
996         priv->ale_regs          = regs + data->ale_reg_ofs;
997         priv->descs             = (void *)regs + data->bd_ram_ofs;
998
999         int idx = 0;
1000
1001         for_each_slave(slave, priv) {
1002                 cpsw_slave_setup(slave, idx, priv);
1003                 idx = idx + 1;
1004         }
1005
1006         cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div);
1007         priv->bus = miiphy_get_dev_by_name(priv->dev->name);
1008         for_active_slave(slave, priv)
1009                 cpsw_phy_init(priv, slave);
1010
1011         return 0;
1012 }
1013
1014 #ifndef CONFIG_DM_ETH
1015 static int cpsw_init(struct eth_device *dev, bd_t *bis)
1016 {
1017         struct cpsw_priv        *priv = dev->priv;
1018
1019         return _cpsw_init(priv, dev->enetaddr);
1020 }
1021
1022 static void cpsw_halt(struct eth_device *dev)
1023 {
1024         struct cpsw_priv *priv = dev->priv;
1025
1026         return _cpsw_halt(priv);
1027 }
1028
1029 static int cpsw_send(struct eth_device *dev, void *packet, int length)
1030 {
1031         struct cpsw_priv        *priv = dev->priv;
1032
1033         return _cpsw_send(priv, packet, length);
1034 }
1035
1036 static int cpsw_recv(struct eth_device *dev)
1037 {
1038         struct cpsw_priv *priv = dev->priv;
1039         uchar *pkt = NULL;
1040         int len;
1041
1042         len = _cpsw_recv(priv, &pkt);
1043
1044         if (len > 0) {
1045                 net_process_received_packet(pkt, len);
1046                 cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE);
1047         }
1048
1049         return len;
1050 }
1051
1052 int cpsw_register(struct cpsw_platform_data *data)
1053 {
1054         struct cpsw_priv        *priv;
1055         struct eth_device       *dev;
1056         int ret;
1057
1058         dev = calloc(sizeof(*dev), 1);
1059         if (!dev)
1060                 return -ENOMEM;
1061
1062         priv = calloc(sizeof(*priv), 1);
1063         if (!priv) {
1064                 free(dev);
1065                 return -ENOMEM;
1066         }
1067
1068         priv->dev = dev;
1069         priv->data = *data;
1070
1071         strcpy(dev->name, "cpsw");
1072         dev->iobase     = 0;
1073         dev->init       = cpsw_init;
1074         dev->halt       = cpsw_halt;
1075         dev->send       = cpsw_send;
1076         dev->recv       = cpsw_recv;
1077         dev->priv       = priv;
1078
1079         eth_register(dev);
1080
1081         ret = _cpsw_register(priv);
1082         if (ret < 0) {
1083                 eth_unregister(dev);
1084                 free(dev);
1085                 free(priv);
1086                 return ret;
1087         }
1088
1089         return 1;
1090 }
1091 #else
1092 static int cpsw_eth_start(struct udevice *dev)
1093 {
1094         struct eth_pdata *pdata = dev_get_platdata(dev);
1095         struct cpsw_priv *priv = dev_get_priv(dev);
1096
1097         return _cpsw_init(priv, pdata->enetaddr);
1098 }
1099
1100 static int cpsw_eth_send(struct udevice *dev, void *packet, int length)
1101 {
1102         struct cpsw_priv *priv = dev_get_priv(dev);
1103
1104         return _cpsw_send(priv, packet, length);
1105 }
1106
1107 static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp)
1108 {
1109         struct cpsw_priv *priv = dev_get_priv(dev);
1110
1111         return _cpsw_recv(priv, packetp);
1112 }
1113
1114 static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet,
1115                                    int length)
1116 {
1117         struct cpsw_priv *priv = dev_get_priv(dev);
1118
1119         return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE);
1120 }
1121
1122 static void cpsw_eth_stop(struct udevice *dev)
1123 {
1124         struct cpsw_priv *priv = dev_get_priv(dev);
1125
1126         return _cpsw_halt(priv);
1127 }
1128
1129
1130 static int cpsw_eth_probe(struct udevice *dev)
1131 {
1132         struct cpsw_priv *priv = dev_get_priv(dev);
1133
1134         priv->dev = dev;
1135
1136         return _cpsw_register(priv);
1137 }
1138
1139 static const struct eth_ops cpsw_eth_ops = {
1140         .start          = cpsw_eth_start,
1141         .send           = cpsw_eth_send,
1142         .recv           = cpsw_eth_recv,
1143         .free_pkt       = cpsw_eth_free_pkt,
1144         .stop           = cpsw_eth_stop,
1145 };
1146
1147 static inline fdt_addr_t cpsw_get_addr_by_node(const void *fdt, int node)
1148 {
1149         return fdtdec_get_addr_size_auto_noparent(fdt, node, "reg", 0, NULL,
1150                                                   false);
1151 }
1152
1153 static int cpsw_eth_ofdata_to_platdata(struct udevice *dev)
1154 {
1155         struct eth_pdata *pdata = dev_get_platdata(dev);
1156         struct cpsw_priv *priv = dev_get_priv(dev);
1157         struct gpio_desc *mode_gpios;
1158         const char *phy_mode;
1159         const void *fdt = gd->fdt_blob;
1160         int node = dev->of_offset;
1161         int subnode;
1162         int slave_index = 0;
1163         int active_slave;
1164         int num_mode_gpios;
1165         int ret;
1166
1167         pdata->iobase = dev_get_addr(dev);
1168         priv->data.version = CPSW_CTRL_VERSION_2;
1169         priv->data.bd_ram_ofs = CPSW_BD_OFFSET;
1170         priv->data.ale_reg_ofs = CPSW_ALE_OFFSET;
1171         priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET;
1172         priv->data.mdio_div = CPSW_MDIO_DIV;
1173         priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
1174
1175         pdata->phy_interface = -1;
1176
1177         priv->data.cpsw_base = pdata->iobase;
1178         priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1);
1179         if (priv->data.channels <= 0) {
1180                 printf("error: cpdma_channels not found in dt\n");
1181                 return -ENOENT;
1182         }
1183
1184         priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1);
1185         if (priv->data.slaves <= 0) {
1186                 printf("error: slaves not found in dt\n");
1187                 return -ENOENT;
1188         }
1189         priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) *
1190                                        priv->data.slaves);
1191
1192         priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1);
1193         if (priv->data.ale_entries <= 0) {
1194                 printf("error: ale_entries not found in dt\n");
1195                 return -ENOENT;
1196         }
1197
1198         priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1);
1199         if (priv->data.bd_ram_ofs <= 0) {
1200                 printf("error: bd_ram_size not found in dt\n");
1201                 return -ENOENT;
1202         }
1203
1204         priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1);
1205         if (priv->data.mac_control <= 0) {
1206                 printf("error: ale_entries not found in dt\n");
1207                 return -ENOENT;
1208         }
1209
1210         num_mode_gpios = gpio_get_list_count(dev, "mode-gpios");
1211         if (num_mode_gpios > 0) {
1212                 mode_gpios = malloc(sizeof(struct gpio_desc) *
1213                                     num_mode_gpios);
1214                 gpio_request_list_by_name(dev, "mode-gpios", mode_gpios,
1215                                           num_mode_gpios, GPIOD_IS_OUT);
1216                 free(mode_gpios);
1217         }
1218
1219         active_slave = fdtdec_get_int(fdt, node, "active_slave", 0);
1220         priv->data.active_slave = active_slave;
1221
1222         fdt_for_each_subnode(fdt, subnode, node) {
1223                 int len;
1224                 const char *name;
1225
1226                 name = fdt_get_name(fdt, subnode, &len);
1227                 if (!strncmp(name, "mdio", 4)) {
1228                         u32 mdio_base;
1229
1230                         mdio_base = cpsw_get_addr_by_node(fdt, subnode);
1231                         if (mdio_base == FDT_ADDR_T_NONE) {
1232                                 error("Not able to get MDIO address space\n");
1233                                 return -ENOENT;
1234                         }
1235                         priv->data.mdio_base = mdio_base;
1236                 }
1237
1238                 if (!strncmp(name, "slave", 5)) {
1239                         u32 phy_id[2];
1240
1241                         if (slave_index >= priv->data.slaves)
1242                                 continue;
1243                         phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL);
1244                         if (phy_mode)
1245                                 priv->data.slave_data[slave_index].phy_if =
1246                                         phy_get_interface_by_name(phy_mode);
1247
1248                         priv->data.slave_data[slave_index].phy_of_handle =
1249                                 fdtdec_lookup_phandle(fdt, subnode,
1250                                                       "phy-handle");
1251
1252                         if (priv->data.slave_data[slave_index].phy_of_handle >= 0) {
1253                                 priv->data.slave_data[slave_index].phy_addr =
1254                                                 fdtdec_get_int(gd->fdt_blob,
1255                                                                priv->data.slave_data[slave_index].phy_of_handle,
1256                                                                "reg", -1);
1257                         } else {
1258                                 fdtdec_get_int_array(fdt, subnode, "phy_id",
1259                                                      phy_id, 2);
1260                                 priv->data.slave_data[slave_index].phy_addr =
1261                                                 phy_id[1];
1262                         }
1263                         slave_index++;
1264                 }
1265
1266                 if (!strncmp(name, "cpsw-phy-sel", 12)) {
1267                         priv->data.gmii_sel = cpsw_get_addr_by_node(fdt,
1268                                                                     subnode);
1269
1270                         if (priv->data.gmii_sel == FDT_ADDR_T_NONE) {
1271                                 error("Not able to get gmii_sel reg address\n");
1272                                 return -ENOENT;
1273                         }
1274                 }
1275         }
1276
1277         priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET;
1278         priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET;
1279
1280         if (priv->data.slaves == 2) {
1281                 priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET;
1282                 priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET;
1283         }
1284
1285         ret = ti_cm_get_macid(dev, active_slave, pdata->enetaddr);
1286         if (ret < 0) {
1287                 error("cpsw read efuse mac failed\n");
1288                 return ret;
1289         }
1290
1291         pdata->phy_interface = priv->data.slave_data[active_slave].phy_if;
1292         if (pdata->phy_interface == -1) {
1293                 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1294                 return -EINVAL;
1295         }
1296         switch (pdata->phy_interface) {
1297         case PHY_INTERFACE_MODE_MII:
1298                 writel(MII_MODE_ENABLE, priv->data.gmii_sel);
1299                 break;
1300         case PHY_INTERFACE_MODE_RMII:
1301                 writel(RMII_MODE_ENABLE, priv->data.gmii_sel);
1302                 break;
1303         case PHY_INTERFACE_MODE_RGMII:
1304         case PHY_INTERFACE_MODE_RGMII_ID:
1305         case PHY_INTERFACE_MODE_RGMII_RXID:
1306         case PHY_INTERFACE_MODE_RGMII_TXID:
1307                 writel(RGMII_MODE_ENABLE, priv->data.gmii_sel);
1308                 break;
1309         }
1310
1311         return 0;
1312 }
1313
1314
1315 static const struct udevice_id cpsw_eth_ids[] = {
1316         { .compatible = "ti,cpsw" },
1317         { .compatible = "ti,am335x-cpsw" },
1318         { }
1319 };
1320
1321 U_BOOT_DRIVER(eth_cpsw) = {
1322         .name   = "eth_cpsw",
1323         .id     = UCLASS_ETH,
1324         .of_match = cpsw_eth_ids,
1325         .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata,
1326         .probe  = cpsw_eth_probe,
1327         .ops    = &cpsw_eth_ops,
1328         .priv_auto_alloc_size = sizeof(struct cpsw_priv),
1329         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1330         .flags = DM_FLAG_ALLOC_PRIV_DMA,
1331 };
1332 #endif /* CONFIG_DM_ETH */