2 * CPSW Ethernet Switch Driver
4 * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
24 #include <asm/errno.h>
27 #include <asm/arch/cpu.h>
29 #define BITMASK(bits) (BIT(bits) - 1)
30 #define PHY_REG_MASK 0x1f
31 #define PHY_ID_MASK 0x1f
32 #define NUM_DESCS (PKTBUFSRX * 2)
34 #define PKT_MAX (1500 + 14 + 4 + 4)
36 #define GIGABITEN BIT(7)
37 #define FULLDUPLEXEN BIT(0)
41 #define CPDMA_TXCONTROL 0x004
42 #define CPDMA_RXCONTROL 0x014
43 #define CPDMA_SOFTRESET 0x01c
44 #define CPDMA_RXFREE 0x0e0
45 #define CPDMA_TXHDP_VER1 0x100
46 #define CPDMA_TXHDP_VER2 0x200
47 #define CPDMA_RXHDP_VER1 0x120
48 #define CPDMA_RXHDP_VER2 0x220
49 #define CPDMA_TXCP_VER1 0x140
50 #define CPDMA_TXCP_VER2 0x240
51 #define CPDMA_RXCP_VER1 0x160
52 #define CPDMA_RXCP_VER2 0x260
54 #define CPDMA_RAM_ADDR 0x4a102000
56 /* Descriptor mode bits */
57 #define CPDMA_DESC_SOP BIT(31)
58 #define CPDMA_DESC_EOP BIT(30)
59 #define CPDMA_DESC_OWNER BIT(29)
60 #define CPDMA_DESC_EOQ BIT(28)
63 * This timeout definition is a worst-case ultra defensive measure against
64 * unexpected controller lock ups. Ideally, we should never ever hit this
65 * scenario in practice.
67 #define MDIO_TIMEOUT 100 /* msecs */
68 #define CPDMA_TIMEOUT 100 /* msecs */
70 struct cpsw_mdio_regs {
73 #define CONTROL_IDLE BIT(31)
74 #define CONTROL_ENABLE BIT(30)
90 #define USERACCESS_GO BIT(31)
91 #define USERACCESS_WRITE BIT(30)
92 #define USERACCESS_ACK BIT(29)
93 #define USERACCESS_READ (0)
94 #define USERACCESS_DATA (0xffff)
106 struct cpsw_slave_regs {
114 #elif defined(CONFIG_TI814X)
123 struct cpsw_host_regs {
129 u32 cpdma_tx_pri_map;
130 u32 cpdma_rx_chan_map;
133 struct cpsw_sliver_regs {
146 #define ALE_ENTRY_BITS 68
147 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
150 #define ALE_CONTROL 0x08
151 #define ALE_UNKNOWNVLAN 0x18
152 #define ALE_TABLE_CONTROL 0x20
153 #define ALE_TABLE 0x34
154 #define ALE_PORTCTL 0x40
156 #define ALE_TABLE_WRITE BIT(31)
158 #define ALE_TYPE_FREE 0
159 #define ALE_TYPE_ADDR 1
160 #define ALE_TYPE_VLAN 2
161 #define ALE_TYPE_VLAN_ADDR 3
163 #define ALE_UCAST_PERSISTANT 0
164 #define ALE_UCAST_UNTOUCHED 1
165 #define ALE_UCAST_OUI 2
166 #define ALE_UCAST_TOUCHED 3
168 #define ALE_MCAST_FWD 0
169 #define ALE_MCAST_BLOCK_LEARN_FWD 1
170 #define ALE_MCAST_FWD_LEARN 2
171 #define ALE_MCAST_FWD_2 3
173 enum cpsw_ale_port_state {
174 ALE_PORT_STATE_DISABLE = 0x00,
175 ALE_PORT_STATE_BLOCK = 0x01,
176 ALE_PORT_STATE_LEARN = 0x02,
177 ALE_PORT_STATE_FORWARD = 0x03,
180 /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
182 #define ALE_BLOCKED 2
185 struct cpsw_slave_regs *regs;
186 struct cpsw_sliver_regs *sliver;
189 struct cpsw_slave_data *data;
193 /* hardware fields */
198 /* software fields */
204 struct cpdma_desc *head, *tail;
205 void *hdp, *cp, *rxfree;
208 #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld)
209 #define desc_read(desc, fld) __raw_readl(&(desc)->fld)
210 #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld))
212 #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld)
213 #define chan_read(chan, fld) __raw_readl((chan)->fld)
214 #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld))
216 #define for_each_slave(slave, priv) \
217 for (slave = (priv)->slaves; slave != (priv)->slaves + \
218 (priv)->data.slaves; slave++)
221 struct eth_device *dev;
222 struct cpsw_platform_data data;
225 struct cpsw_regs *regs;
227 struct cpsw_host_regs *host_port_regs;
230 struct cpdma_desc *descs;
231 struct cpdma_desc *desc_free;
232 struct cpdma_chan rx_chan, tx_chan;
234 struct cpsw_slave *slaves;
235 struct phy_device *phydev;
242 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
248 idx = 2 - idx; /* flip */
249 return (ale_entry[idx] >> start) & BITMASK(bits);
252 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
257 value &= BITMASK(bits);
260 idx = 2 - idx; /* flip */
261 ale_entry[idx] &= ~(BITMASK(bits) << start);
262 ale_entry[idx] |= (value << start);
265 #define DEFINE_ALE_FIELD(name, start, bits) \
266 static inline int cpsw_ale_get_##name(u32 *ale_entry) \
268 return cpsw_ale_get_field(ale_entry, start, bits); \
270 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
272 cpsw_ale_set_field(ale_entry, start, bits, value); \
275 DEFINE_ALE_FIELD(entry_type, 60, 2)
276 DEFINE_ALE_FIELD(mcast_state, 62, 2)
277 DEFINE_ALE_FIELD(port_mask, 66, 3)
278 DEFINE_ALE_FIELD(ucast_type, 62, 2)
279 DEFINE_ALE_FIELD(port_num, 66, 2)
280 DEFINE_ALE_FIELD(blocked, 65, 1)
281 DEFINE_ALE_FIELD(secure, 64, 1)
282 DEFINE_ALE_FIELD(mcast, 40, 1)
284 /* The MAC address field in the ALE entry cannot be macroized as above */
285 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
289 for (i = 0; i < 6; i++)
290 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
293 static inline void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
297 for (i = 0; i < 6; i++)
298 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
301 static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
305 __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
307 for (i = 0; i < ALE_ENTRY_WORDS; i++)
308 ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i);
313 static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
317 for (i = 0; i < ALE_ENTRY_WORDS; i++)
318 __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
320 __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
325 static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
327 u32 ale_entry[ALE_ENTRY_WORDS];
330 for (idx = 0; idx < priv->data.ale_entries; idx++) {
333 cpsw_ale_read(priv, idx, ale_entry);
334 type = cpsw_ale_get_entry_type(ale_entry);
335 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
337 cpsw_ale_get_addr(ale_entry, entry_addr);
338 if (memcmp(entry_addr, addr, 6) == 0)
344 static int cpsw_ale_match_free(struct cpsw_priv *priv)
346 u32 ale_entry[ALE_ENTRY_WORDS];
349 for (idx = 0; idx < priv->data.ale_entries; idx++) {
350 cpsw_ale_read(priv, idx, ale_entry);
351 type = cpsw_ale_get_entry_type(ale_entry);
352 if (type == ALE_TYPE_FREE)
358 static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
360 u32 ale_entry[ALE_ENTRY_WORDS];
363 for (idx = 0; idx < priv->data.ale_entries; idx++) {
364 cpsw_ale_read(priv, idx, ale_entry);
365 type = cpsw_ale_get_entry_type(ale_entry);
366 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
368 if (cpsw_ale_get_mcast(ale_entry))
370 type = cpsw_ale_get_ucast_type(ale_entry);
371 if (type != ALE_UCAST_PERSISTANT &&
372 type != ALE_UCAST_OUI)
378 static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
381 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
384 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
385 cpsw_ale_set_addr(ale_entry, addr);
386 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
387 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
388 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
389 cpsw_ale_set_port_num(ale_entry, port);
391 idx = cpsw_ale_match_addr(priv, addr);
393 idx = cpsw_ale_match_free(priv);
395 idx = cpsw_ale_find_ageable(priv);
399 cpsw_ale_write(priv, idx, ale_entry);
403 static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
405 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
408 idx = cpsw_ale_match_addr(priv, addr);
410 cpsw_ale_read(priv, idx, ale_entry);
412 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
413 cpsw_ale_set_addr(ale_entry, addr);
414 cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
416 mask = cpsw_ale_get_port_mask(ale_entry);
418 cpsw_ale_set_port_mask(ale_entry, port_mask);
421 idx = cpsw_ale_match_free(priv);
423 idx = cpsw_ale_find_ageable(priv);
427 cpsw_ale_write(priv, idx, ale_entry);
431 static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
433 u32 tmp, mask = BIT(bit);
435 tmp = __raw_readl(priv->ale_regs + ALE_CONTROL);
437 tmp |= val ? mask : 0;
438 __raw_writel(tmp, priv->ale_regs + ALE_CONTROL);
441 #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
442 #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
443 #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
445 static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
448 int offset = ALE_PORTCTL + 4 * port;
451 tmp = __raw_readl(priv->ale_regs + offset);
454 __raw_writel(tmp, priv->ale_regs + offset);
457 static struct cpsw_mdio_regs *mdio_regs;
459 /* wait until hardware is ready for another user access */
460 static inline u32 wait_for_user_access(void)
463 int timeout = MDIO_TIMEOUT;
466 ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO))
470 printf("wait_for_user_access Timeout\n");
476 /* wait until hardware state machine is idle */
477 static inline void wait_for_idle(void)
479 int timeout = MDIO_TIMEOUT;
482 ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0))
486 printf("wait_for_idle Timeout\n");
489 static int cpsw_mdio_read(struct mii_dev *bus, int phy_id,
490 int dev_addr, int phy_reg)
495 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
498 wait_for_user_access();
499 reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
501 __raw_writel(reg, &mdio_regs->user[0].access);
502 reg = wait_for_user_access();
504 data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1;
508 static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr,
509 int phy_reg, u16 data)
513 if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
516 wait_for_user_access();
517 reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
518 (phy_id << 16) | (data & USERACCESS_DATA));
519 __raw_writel(reg, &mdio_regs->user[0].access);
520 wait_for_user_access();
525 static void cpsw_mdio_init(char *name, u32 mdio_base, u32 div)
527 struct mii_dev *bus = mdio_alloc();
529 mdio_regs = (struct cpsw_mdio_regs *)mdio_base;
531 /* set enable and clock divider */
532 __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control);
535 * wait for scan logic to settle:
536 * the scan time consists of (a) a large fixed component, and (b) a
537 * small component that varies with the mii bus frequency. These
538 * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
539 * silicon. Since the effect of (b) was found to be largely
540 * negligible, we keep things simple here.
544 bus->read = cpsw_mdio_read;
545 bus->write = cpsw_mdio_write;
546 sprintf(bus->name, name);
551 /* Set a self-clearing bit in a register, and wait for it to clear */
552 static inline void setbit_and_wait_for_clear32(void *addr)
554 __raw_writel(CLEAR_BIT, addr);
555 while (__raw_readl(addr) & CLEAR_BIT)
559 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
560 ((mac)[2] << 16) | ((mac)[3] << 24))
561 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
563 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
564 struct cpsw_priv *priv)
566 __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi);
567 __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo);
570 static void cpsw_slave_update_link(struct cpsw_slave *slave,
571 struct cpsw_priv *priv, int *link)
573 struct phy_device *phy = priv->phydev;
579 if (*link) { /* link up */
580 mac_control = priv->data.mac_control;
581 if (phy->speed == 1000)
582 mac_control |= GIGABITEN;
583 if (phy->duplex == DUPLEX_FULL)
584 mac_control |= FULLDUPLEXEN;
585 if (phy->speed == 100)
586 mac_control |= MIIEN;
589 if (mac_control == slave->mac_control)
593 printf("link up on port %d, speed %d, %s duplex\n",
594 slave->slave_num, phy->speed,
595 (phy->duplex == DUPLEX_FULL) ? "full" : "half");
597 printf("link down on port %d\n", slave->slave_num);
600 __raw_writel(mac_control, &slave->sliver->mac_control);
601 slave->mac_control = mac_control;
604 static int cpsw_update_link(struct cpsw_priv *priv)
607 struct cpsw_slave *slave;
609 for_each_slave(slave, priv)
610 cpsw_slave_update_link(slave, priv, &link);
611 priv->mdio_link = readl(&mdio_regs->link);
615 static int cpsw_check_link(struct cpsw_priv *priv)
619 link = __raw_readl(&mdio_regs->link) & priv->phy_mask;
620 if ((link) && (link == priv->mdio_link))
623 return cpsw_update_link(priv);
626 static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
628 if (priv->host_port == 0)
629 return slave_num + 1;
634 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
638 setbit_and_wait_for_clear32(&slave->sliver->soft_reset);
640 /* setup priority mapping */
641 __raw_writel(0x76543210, &slave->sliver->rx_pri_map);
642 __raw_writel(0x33221100, &slave->regs->tx_pri_map);
644 /* setup max packet size, and mac address */
645 __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen);
646 cpsw_set_slave_mac(slave, priv);
648 slave->mac_control = 0; /* no link yet */
650 /* enable forwarding */
651 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
652 cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
654 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << slave_port);
656 priv->phy_mask |= 1 << slave->data->phy_id;
659 static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
661 struct cpdma_desc *desc = priv->desc_free;
664 priv->desc_free = desc_read_ptr(desc, hw_next);
668 static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
671 desc_write(desc, hw_next, priv->desc_free);
672 priv->desc_free = desc;
676 static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
677 void *buffer, int len)
679 struct cpdma_desc *desc, *prev;
682 desc = cpdma_desc_alloc(priv);
689 mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
691 desc_write(desc, hw_next, 0);
692 desc_write(desc, hw_buffer, buffer);
693 desc_write(desc, hw_len, len);
694 desc_write(desc, hw_mode, mode | len);
695 desc_write(desc, sw_buffer, buffer);
696 desc_write(desc, sw_len, len);
699 /* simple case - first packet enqueued */
702 chan_write(chan, hdp, desc);
706 /* not the first packet - enqueue at the tail */
708 desc_write(prev, hw_next, desc);
711 /* next check if EOQ has been triggered already */
712 if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ)
713 chan_write(chan, hdp, desc);
717 chan_write(chan, rxfree, 1);
721 static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
722 void **buffer, int *len)
724 struct cpdma_desc *desc = chan->head;
730 status = desc_read(desc, hw_mode);
733 *len = status & 0x7ff;
736 *buffer = desc_read_ptr(desc, sw_buffer);
738 if (status & CPDMA_DESC_OWNER) {
739 if (chan_read(chan, hdp) == 0) {
740 if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER)
741 chan_write(chan, hdp, desc);
747 chan->head = desc_read_ptr(desc, hw_next);
748 chan_write(chan, cp, desc);
750 cpdma_desc_free(priv, desc);
754 static int cpsw_init(struct eth_device *dev, bd_t *bis)
756 struct cpsw_priv *priv = dev->priv;
757 struct cpsw_slave *slave;
760 /* soft reset the controller and initialize priv */
761 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
763 /* initialize and reset the address lookup engine */
764 cpsw_ale_enable(priv, 1);
765 cpsw_ale_clear(priv, 1);
766 cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
768 /* setup host port priority mapping */
769 __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
770 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
772 /* disable priority elevation and enable statistics on all ports */
773 __raw_writel(0, &priv->regs->ptype);
775 /* enable statistics collection only on the host port */
776 __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en);
778 cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
780 cpsw_ale_add_ucast(priv, priv->dev->enetaddr, priv->host_port,
782 cpsw_ale_add_mcast(priv, NetBcastAddr, 1 << priv->host_port);
784 for_each_slave(slave, priv)
785 cpsw_slave_init(slave, priv);
787 cpsw_update_link(priv);
789 /* init descriptor pool */
790 for (i = 0; i < NUM_DESCS; i++) {
791 desc_write(&priv->descs[i], hw_next,
792 (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]);
794 priv->desc_free = &priv->descs[0];
796 /* initialize channels */
797 if (priv->data.version == CPSW_CTRL_VERSION_2) {
798 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
799 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2;
800 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2;
801 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
803 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
804 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2;
805 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2;
807 memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
808 priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1;
809 priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1;
810 priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
812 memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
813 priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1;
814 priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1;
817 /* clear dma state */
818 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
820 if (priv->data.version == CPSW_CTRL_VERSION_2) {
821 for (i = 0; i < priv->data.channels; i++) {
822 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4
824 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
826 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4
828 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4
830 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4
834 for (i = 0; i < priv->data.channels; i++) {
835 __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4
837 __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4
839 __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4
841 __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4
843 __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4
849 __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL);
850 __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL);
852 /* submit rx descs */
853 for (i = 0; i < PKTBUFSRX; i++) {
854 ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
857 printf("error %d submitting rx desc\n", ret);
865 static void cpsw_halt(struct eth_device *dev)
867 struct cpsw_priv *priv = dev->priv;
869 writel(0, priv->dma_regs + CPDMA_TXCONTROL);
870 writel(0, priv->dma_regs + CPDMA_RXCONTROL);
872 /* soft reset the controller and initialize priv */
873 setbit_and_wait_for_clear32(&priv->regs->soft_reset);
875 /* clear dma state */
876 setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET);
878 priv->data.control(0);
881 static int cpsw_send(struct eth_device *dev, void *packet, int length)
883 struct cpsw_priv *priv = dev->priv;
886 int timeout = CPDMA_TIMEOUT;
888 if (!cpsw_check_link(priv))
891 flush_dcache_range((unsigned long)packet,
892 (unsigned long)packet + length);
894 /* first reap completed packets */
896 (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0))
900 printf("cpdma_process timeout\n");
904 return cpdma_submit(priv, &priv->tx_chan, packet, length);
907 static int cpsw_recv(struct eth_device *dev)
909 struct cpsw_priv *priv = dev->priv;
913 cpsw_update_link(priv);
915 while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
916 invalidate_dcache_range((unsigned long)buffer,
917 (unsigned long)buffer + PKTSIZE_ALIGN);
918 NetReceive(buffer, len);
919 cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
925 static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
926 struct cpsw_priv *priv)
928 void *regs = priv->regs;
929 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
930 slave->slave_num = slave_num;
932 slave->regs = regs + data->slave_reg_ofs;
933 slave->sliver = regs + data->sliver_reg_ofs;
936 static int cpsw_phy_init(struct eth_device *dev, struct cpsw_slave *slave)
938 struct cpsw_priv *priv = (struct cpsw_priv *)dev->priv;
939 struct phy_device *phydev;
940 u32 supported = (SUPPORTED_10baseT_Half |
941 SUPPORTED_10baseT_Full |
942 SUPPORTED_100baseT_Half |
943 SUPPORTED_100baseT_Full |
944 SUPPORTED_1000baseT_Full);
946 phydev = phy_connect(priv->bus,
949 slave->data->phy_if);
951 phydev->supported &= supported;
952 phydev->advertising = phydev->supported;
954 priv->phydev = phydev;
960 int cpsw_register(struct cpsw_platform_data *data)
962 struct cpsw_priv *priv;
963 struct cpsw_slave *slave;
964 void *regs = (void *)data->cpsw_base;
965 struct eth_device *dev;
967 dev = calloc(sizeof(*dev), 1);
971 priv = calloc(sizeof(*priv), 1);
980 priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves);
987 priv->descs = (void *)CPDMA_RAM_ADDR;
988 priv->host_port = data->host_port_num;
990 priv->host_port_regs = regs + data->host_port_reg_ofs;
991 priv->dma_regs = regs + data->cpdma_reg_ofs;
992 priv->ale_regs = regs + data->ale_reg_ofs;
996 for_each_slave(slave, priv) {
997 cpsw_slave_setup(slave, idx, priv);
1001 strcpy(dev->name, "cpsw");
1003 dev->init = cpsw_init;
1004 dev->halt = cpsw_halt;
1005 dev->send = cpsw_send;
1006 dev->recv = cpsw_recv;
1011 cpsw_mdio_init(dev->name, data->mdio_base, data->mdio_div);
1012 priv->bus = miiphy_get_dev_by_name(dev->name);
1013 for_each_slave(slave, priv)
1014 cpsw_phy_init(dev, slave);