global: Move remaining CONFIG_SYS_* to CFG_SYS_*
[platform/kernel/u-boot.git] / drivers / net / cortina_ni.c
1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4  * Copyright (C) 2020 Cortina Access Inc.
5  * Author: Aaron Tseng <aaron.tseng@cortina-access.com>
6  *
7  * Ethernet MAC Driver for all supported CAxxxx SoCs
8  */
9
10 #include <common.h>
11 #include <command.h>
12 #include <malloc.h>
13 #include <net.h>
14 #include <miiphy.h>
15 #include <env.h>
16 #include <linux/delay.h>
17 #include <linux/bitops.h>
18 #include <u-boot/crc.h>
19 #include <led.h>
20
21 #include "cortina_ni.h"
22
23 #define HEADER_A_SIZE   8
24
25 enum ca_led_state_t {
26         CA_LED_OFF = 0,
27         CA_LED_ON = 1,
28 };
29
30 enum ca_port_t {
31         NI_PORT_0 = 0,
32         NI_PORT_1,
33         NI_PORT_2,
34         NI_PORT_3,
35         NI_PORT_4,
36         NI_PORT_5,
37         NI_PORT_MAX,
38 };
39
40 static struct udevice *curr_dev;
41
42 static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max)
43 {
44         if (x + 1 >= (u32 *)max)
45                 return (u32 *)base;
46         else
47                 return (x + 1);
48 }
49
50 static void ca_reg_read(void *reg, u64 base, u64 offset)
51 {
52         u32 *val = (u32 *)reg;
53
54         *val = readl(KSEG1_ATU_XLAT(base + offset));
55 }
56
57 static void ca_reg_write(void *reg, u64 base, u64 offset)
58 {
59         u32 val = *(u32 *)reg;
60
61         writel(val, KSEG1_ATU_XLAT(base + offset));
62 }
63
64 static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data)
65 {
66         /* up to 10000 cycles*/
67         u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
68         struct PER_MDIO_ADDR_t mdio_addr;
69         struct PER_MDIO_CTRL_t mdio_ctrl;
70         struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
71
72         memset(&mdio_addr, 0, sizeof(mdio_addr));
73         mdio_addr.mdio_addr = addr;
74         mdio_addr.mdio_offset = offset;
75         mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG;
76         ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
77                      PER_MDIO_ADDR_OFFSET);
78         ca_reg_write(&data, (u64)priv->per_mdio_base_addr,
79                      PER_MDIO_WRDATA_OFFSET);
80
81         memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
82         mdio_ctrl.mdiostart = 1;
83         ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
84                      PER_MDIO_CTRL_OFFSET);
85
86         debug("%s: phy_addr=%d, offset=%d, data=0x%x\n",
87               __func__, addr, offset, data);
88
89         do {
90                 ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
91                             PER_MDIO_CTRL_OFFSET);
92                 if (mdio_ctrl.mdiodone) {
93                         ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
94                                      PER_MDIO_CTRL_OFFSET);
95                         return 0;
96                 }
97         } while (--loop_wait);
98
99         printf("CA NI %s: PHY write timeout!!!\n", __func__);
100         return -ETIMEDOUT;
101 }
102
103 int ca_mdio_write(u32 addr, u32 offset, u16 data)
104 {
105         u32 reg_addr, reg_val;
106         struct NI_MDIO_OPER_T mdio_oper;
107
108         /* support range: 1~31*/
109         if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
110                 return -EINVAL;
111
112         /* the phy addr 5 is connect to RGMII */
113         if (addr >= 5)
114                 return ca_mdio_write_rgmii(addr, offset, data);
115
116         memset(&mdio_oper, 0, sizeof(mdio_oper));
117         mdio_oper.reg_off = offset;
118         mdio_oper.phy_addr = addr;
119         mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
120         reg_val = data;
121         memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
122         ca_reg_write(&reg_val, (u64)reg_addr, 0);
123
124         return 0;
125 }
126
127 static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data)
128 {
129         u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
130         struct PER_MDIO_ADDR_t mdio_addr;
131         struct PER_MDIO_CTRL_t mdio_ctrl;
132         struct PER_MDIO_RDDATA_t read_data;
133         struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
134
135         memset(&mdio_addr, 0, sizeof(mdio_addr));
136         mdio_addr.mdio_addr = addr;
137         mdio_addr.mdio_offset = offset;
138         mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG;
139         ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
140                      PER_MDIO_ADDR_OFFSET);
141
142         memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
143         mdio_ctrl.mdiostart = 1;
144         ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
145                      PER_MDIO_CTRL_OFFSET);
146
147         do {
148                 ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
149                             PER_MDIO_CTRL_OFFSET);
150                 if (mdio_ctrl.mdiodone) {
151                         ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
152                                      PER_MDIO_CTRL_OFFSET);
153                         ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr,
154                                     PER_MDIO_RDDATA_OFFSET);
155                         *data = read_data.mdio_rddata;
156                         return 0;
157                 }
158         } while (--loop_wait);
159
160         printf("CA NI %s: TIMEOUT!!\n", __func__);
161         return -ETIMEDOUT;
162 }
163
164 int ca_mdio_read(u32 addr, u32 offset, u16 *data)
165 {
166         u32 reg_addr, reg_val;
167         struct NI_MDIO_OPER_T mdio_oper;
168
169         if (!data)
170                 return -EINVAL;
171
172         /* support range: 1~31*/
173         if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
174                 return -EINVAL;
175
176         /* the phy addr 5 is connect to RGMII */
177         if (addr >= 5)
178                 return ca_mdio_read_rgmii(addr, offset, data);
179
180         memset(&mdio_oper, 0, sizeof(mdio_oper));
181         mdio_oper.reg_off = offset;
182         mdio_oper.phy_addr = addr;
183         mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
184         reg_val = *data;
185         memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
186         ca_reg_read(&reg_val, (u64)reg_addr, 0);
187         *data = reg_val;
188         return 0;
189 }
190
191 int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value)
192 {
193         return ca_mdio_read(addr, reg, value);
194 }
195
196 int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value)
197 {
198         return ca_mdio_write(addr, reg, value);
199 }
200
201 static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
202 {
203         u16 data;
204
205         ca_mdio_read(addr, reg, &data);
206         return data;
207 }
208
209 static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
210                               u16 val)
211 {
212         return ca_mdio_write(addr, reg, val);
213 }
214
215 static void ca_ni_setup_mac_addr(void)
216 {
217         u8 mac[6];
218         struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0;
219         struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1;
220         struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
221         struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
222         struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
223
224         /* parsing ethaddr and set to NI registers. */
225         if (eth_env_get_enetaddr("ethaddr", mac)) {
226                 /* The complete MAC address consists of
227                  * {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4],
228                  * PT_PORT_STATIC_CFG_mac_addr6[5]}.
229                  */
230                 mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) +
231                                           (mac[2] << 8) + mac[3];
232                 ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr,
233                              NI_HV_GLB_MAC_ADDR_CFG0_OFFSET);
234
235                 memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1));
236                 mac_addr_cfg1.mac_addr1 = mac[4];
237                 ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr,
238                              NI_HV_GLB_MAC_ADDR_CFG1_OFFSET);
239
240                 ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
241                             NI_HV_PT_PORT_STATIC_CFG_OFFSET +
242                             (APB0_NI_HV_PT_STRIDE * priv->active_port));
243
244                 port_static_cfg.mac_addr6 = mac[5];
245                 ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
246                              NI_HV_PT_PORT_STATIC_CFG_OFFSET +
247                              (APB0_NI_HV_PT_STRIDE * priv->active_port));
248
249                 /* received only Broadcast and Address matched packets */
250                 ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
251                             NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
252                 cpuxram_cfg.xram_mgmt_promisc_mode = 0;
253                 cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
254                 cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
255                 ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
256                              NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
257         } else {
258                 /* received all packets(promiscuous mode) */
259                 ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
260                             NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
261                 cpuxram_cfg.xram_mgmt_promisc_mode = 3;
262                 cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
263                 cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
264                 ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
265                              NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
266         }
267 }
268
269 static void ca_ni_enable_tx_rx(void)
270 {
271         struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg;
272         struct NI_HV_PT_TXMAC_CFG_t txmac_cfg;
273         struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
274
275         /* Enable TX and RX functions */
276         ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
277                     NI_HV_PT_RXMAC_CFG_OFFSET +
278                     (APB0_NI_HV_PT_STRIDE * priv->active_port));
279         rxmac_cfg.rx_en = 1;
280         ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
281                      NI_HV_PT_RXMAC_CFG_OFFSET +
282                      (APB0_NI_HV_PT_STRIDE * priv->active_port));
283
284         ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr,
285                     NI_HV_PT_TXMAC_CFG_OFFSET +
286                     (APB0_NI_HV_PT_STRIDE * priv->active_port));
287         txmac_cfg.tx_en = 1;
288         ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr,
289                      NI_HV_PT_TXMAC_CFG_OFFSET +
290                      (APB0_NI_HV_PT_STRIDE * priv->active_port));
291 }
292
293 #define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */
294 static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv)
295 {
296         u8 i;
297         u16 data;
298         u32 start_time;
299
300         start_time = get_timer(0);
301         while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) {
302                 for (i = 0; i < priv->valid_port_num; i++) {
303                         if (!priv->port_map[i].phy_addr)
304                                 continue;
305
306                         ca_mdio_read(priv->port_map[i].phy_addr, 1, &data);
307                         if (data & 0x04) {
308                                 priv->active_port = priv->port_map[i].port;
309                                 return 0;
310                         }
311                 }
312         }
313
314         printf("CA NI %s: auto scan active_port timeout.\n", __func__);
315         return -1;
316 }
317
318 static void ca_ni_led(int port, int status)
319 {
320         char label[10];
321         struct udevice *led_dev;
322
323         if (IS_ENABLED(CONFIG_LED_CORTINA)) {
324                 snprintf(label, sizeof(label), "led%d", port);
325                 debug("%s: set port %d led %s.\n",
326                       __func__, port, status ? "on" : "off");
327                 led_get_by_label(label, &led_dev);
328                 led_set_state(led_dev, status);
329         }
330 }
331
332 static void ca_ni_reset(void)
333 {
334         int i;
335         struct NI_HV_GLB_INIT_DONE_t init_done;
336         struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config;
337         struct NI_HV_GLB_STATIC_CFG_t static_cfg;
338         struct GLOBAL_BLOCK_RESET_t glb_blk_reset;
339         struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
340
341         /* NI global resets */
342         ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr,
343                     GLOBAL_BLOCK_RESET_OFFSET);
344         glb_blk_reset.reset_ni = 1;
345         ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
346                      GLOBAL_BLOCK_RESET_OFFSET);
347         /* Remove resets */
348         glb_blk_reset.reset_ni = 0;
349         ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
350                      GLOBAL_BLOCK_RESET_OFFSET);
351
352         /* check the ready bit of NI module */
353         for (i = 0; i < NI_READ_POLL_COUNT; i++) {
354                 ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr,
355                             NI_HV_GLB_INIT_DONE_OFFSET);
356                 if (init_done.ni_init_done)
357                         break;
358         }
359         if (i == NI_READ_POLL_COUNT) {
360                 printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n",
361                        __func__, init_done.ni_init_done);
362         }
363
364         ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr,
365                     NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
366         switch (priv->active_port) {
367         case NI_PORT_0:
368                 intf_rst_config.intf_rst_p0 = 0;
369                 intf_rst_config.mac_rx_rst_p0 = 0;
370                 intf_rst_config.mac_tx_rst_p0 = 0;
371                 break;
372         case NI_PORT_1:
373                 intf_rst_config.intf_rst_p1 = 0;
374                 intf_rst_config.mac_rx_rst_p1 = 0;
375                 intf_rst_config.mac_tx_rst_p1 = 0;
376                 break;
377         case NI_PORT_2:
378                 intf_rst_config.intf_rst_p2 = 0;
379                 intf_rst_config.mac_rx_rst_p2 = 0;
380                 intf_rst_config.mac_tx_rst_p2 = 0;
381                 break;
382         case NI_PORT_3:
383                 intf_rst_config.intf_rst_p3 = 0;
384                 intf_rst_config.mac_tx_rst_p3 = 0;
385                 intf_rst_config.mac_rx_rst_p3 = 0;
386                 break;
387         case NI_PORT_4:
388                 intf_rst_config.intf_rst_p4 = 0;
389                 intf_rst_config.mac_tx_rst_p4 = 0;
390                 intf_rst_config.mac_rx_rst_p4 = 0;
391                 break;
392         }
393
394         ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr,
395                      NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
396
397         /* Only one GMAC can connect to CPU */
398         ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr,
399                     NI_HV_GLB_STATIC_CFG_OFFSET);
400         static_cfg.port_to_cpu = priv->active_port;
401         static_cfg.txmib_mode = 1;
402         static_cfg.rxmib_mode = 1;
403
404         ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr,
405                      NI_HV_GLB_STATIC_CFG_OFFSET);
406 }
407
408 static void ca_internal_gphy_cal(struct cortina_ni_priv *priv)
409 {
410         int i, port, num;
411         u32 reg_off, value;
412
413         num = priv->gphy_num;
414         for (port = 0; port < 4; port++) {
415                 for (i = 0; i < num; i++) {
416                         reg_off = priv->gphy_values[i].reg_off + (port * 0x80);
417                         value = priv->gphy_values[i].value;
418                         ca_reg_write(&value, reg_off, 0);
419                         mdelay(50);
420                 }
421         }
422 }
423
424 static int ca_mdio_register(struct udevice *dev)
425 {
426         int ret;
427         struct cortina_ni_priv *priv = dev_get_priv(dev);
428         struct mii_dev *mdio_bus = mdio_alloc();
429
430         if (!mdio_bus)
431                 return -ENOMEM;
432
433         mdio_bus->read = cortina_mdio_read;
434         mdio_bus->write = cortina_mdio_write;
435         snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
436
437         mdio_bus->priv = (void *)priv;
438
439         ret = mdio_register(mdio_bus);
440         if (ret)
441                 return ret;
442
443         priv->mdio_bus = mdio_bus;
444         return 0;
445 }
446
447 static void ca_rgmii_init(struct cortina_ni_priv *priv)
448 {
449         struct GLOBAL_GLOBAL_CONFIG_t   glb_config;
450         struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control;
451
452         /* Generating 25Mhz reference clock for switch */
453         ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
454                     GLOBAL_GLOBAL_CONFIG_OFFSET);
455         glb_config.refclk_sel = 0x01;
456         glb_config.ext_reset = 0x01;
457         ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
458                      GLOBAL_GLOBAL_CONFIG_OFFSET);
459
460         mdelay(20);
461
462         /* Do external reset */
463         ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
464                     GLOBAL_GLOBAL_CONFIG_OFFSET);
465         glb_config.ext_reset = 0x0;
466         ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
467                      GLOBAL_GLOBAL_CONFIG_OFFSET);
468
469         ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr,
470                     GLOBAL_IO_DRIVE_CONTROL_OFFSET);
471         io_drive_control.gmac_mode = 2;
472         io_drive_control.gmac_dn = 1;
473         io_drive_control.gmac_dp = 1;
474         ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr,
475                      GLOBAL_IO_DRIVE_CONTROL_OFFSET);
476 }
477
478 static int ca_phy_probe(struct udevice *dev)
479 {
480         int auto_scan_active_port = 0, tmp_port;
481         char *buf;
482         struct cortina_ni_priv *priv = dev_get_priv(dev);
483         struct phy_device *int_phydev, *ext_phydev;
484
485         /* Initialize internal phy device */
486         int_phydev = phy_connect(priv->mdio_bus,
487                                  priv->port_map[NI_PORT_3].phy_addr,
488                                  dev, priv->phy_interface);
489         if (int_phydev) {
490                 int_phydev->supported &= PHY_GBIT_FEATURES;
491                 int_phydev->advertising = int_phydev->supported;
492                 phy_config(int_phydev);
493         } else {
494                 printf("CA NI %s: There is no internal phy device\n", __func__);
495         }
496
497         /* Initialize external phy device */
498         ext_phydev = phy_connect(priv->mdio_bus,
499                                  priv->port_map[NI_PORT_4].phy_addr,
500                                  dev, priv->phy_interface);
501         if (ext_phydev) {
502                 ext_phydev->supported &= PHY_GBIT_FEATURES;
503                 ext_phydev->advertising = int_phydev->supported;
504                 phy_config(ext_phydev);
505         } else {
506                 printf("CA NI %s: There is no external phy device\n", __func__);
507         }
508
509         /* auto scan the first link up port as active_port */
510         buf = env_get("auto_scan_active_port");
511         if (buf != 0) {
512                 auto_scan_active_port = simple_strtoul(buf, NULL, 0);
513                 printf("CA NI %s: auto_scan_active_port=%d\n", __func__,
514                        auto_scan_active_port);
515         }
516
517         if (auto_scan_active_port) {
518                 ca_ni_auto_scan_active_port(priv);
519         } else {
520                 buf = env_get("active_port");
521                 if (buf != 0) {
522                         tmp_port = simple_strtoul(buf, NULL, 0);
523                         if (tmp_port < 0 &&
524                             !(priv->valid_port_map && BIT(tmp_port))) {
525                                 printf("CA NI ERROR: not support this port.");
526                                 free(dev);
527                                 free(priv);
528                                 return 1;
529                         }
530
531                         priv->active_port = tmp_port;
532                 }
533         }
534
535         printf("CA NI %s: active_port=%d\n", __func__, priv->active_port);
536         if (priv->active_port == NI_PORT_4)
537                 priv->phydev = ext_phydev;
538         else
539                 priv->phydev = int_phydev;
540
541         return 0;
542 }
543
544 static int cortina_eth_start(struct udevice *dev)
545 {
546         int ret;
547         struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx;
548         struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx;
549         struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
550         struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
551         struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg;
552         struct cortina_ni_priv *priv = dev_get_priv(dev);
553         struct phy_device *phydev = priv->phydev;
554
555         ret = phy_startup(priv->phydev);
556         if (ret) {
557                 ca_ni_led(priv->active_port, CA_LED_OFF);
558                 printf("CA NI Could not initialize PHY %s, active_port=%d\n",
559                        priv->phydev->dev->name, priv->active_port);
560                 return ret;
561         }
562
563         if (!priv->phydev->link) {
564                 printf("CA NI %s: link down.\n", priv->phydev->dev->name);
565                 return 0;
566         }
567
568         ca_ni_led(priv->active_port, CA_LED_ON);
569         printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n",
570                phydev->phy_id, phydev->speed,
571                phydev->duplex == DUPLEX_HALF ? "half" : "full");
572
573         /* RX XRAM ADDRESS CONFIG (start and end address) */
574         memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx));
575         cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR;
576         cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR;
577         ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr,
578                      NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET);
579
580         /* TX XRAM ADDRESS CONFIG (start and end address) */
581         memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx));
582         cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR;
583         cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR;
584         ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr,
585                      NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET);
586
587         /*
588          * Configuration for Management Ethernet Interface:
589          * - RGMII 1000 mode or RGMII 100 mode
590          * - MAC mode
591          */
592         ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
593                     NI_HV_PT_PORT_STATIC_CFG_OFFSET +
594                     (APB0_NI_HV_PT_STRIDE * priv->active_port));
595         if (phydev->speed == SPEED_1000) {
596                 /* port 4 connects to RGMII PHY */
597                 if (phydev->addr == 5)
598                         port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000;
599                 else
600                         port_static_cfg.int_cfg = GE_MAC_INTF_GMII;
601         } else {
602                 /* port 4 connects to RGMII PHY */
603                 if (phydev->addr == 5)
604                         port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100;
605                 else
606                         port_static_cfg.int_cfg = GE_MAC_INTF_MII;
607         }
608
609         ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
610                      NI_HV_PT_PORT_STATIC_CFG_OFFSET +
611                      (APB0_NI_HV_PT_STRIDE * priv->active_port));
612
613         ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
614                     NI_HV_PT_PORT_GLB_CFG_OFFSET +
615                     (APB0_NI_HV_PT_STRIDE * priv->active_port));
616         port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0;
617         port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0;
618         ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
619                      NI_HV_PT_PORT_GLB_CFG_OFFSET +
620                      (APB0_NI_HV_PT_STRIDE * priv->active_port));
621
622         /* Need to toggle the tx and rx cpu_pkt_dis bit */
623         /* after changing Address config register.      */
624         ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
625                     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
626         cpuxram_cfg.rx_0_cpu_pkt_dis = 1;
627         cpuxram_cfg.tx_0_cpu_pkt_dis = 1;
628         ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
629                      NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
630
631         ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
632                     NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
633         cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
634         cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
635         ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
636                      NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
637
638         ca_ni_enable_tx_rx();
639
640         return 0;
641 }
642
643 /*********************************************
644  * Packet receive routine from Management FE
645  * Expects a previously allocated buffer and
646  * fills the length
647  * Retruns 0 on success -1 on failure
648  *******************************************/
649 static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp)
650 {
651         u8 *ptr;
652         u32 next_link, pktlen = 0;
653         u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr;
654         int loop, index = 0, blk_num;
655         struct cortina_ni_priv *priv = dev_get_priv(dev);
656         struct NI_HEADER_X_T header_x;
657         struct NI_PACKET_STATUS packet_status;
658         struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx;
659         struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx;
660
661         /* get the hw write pointer */
662         memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx));
663         ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
664                     NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
665         hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
666
667         /* get the sw read pointer */
668         memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx));
669         ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr,
670                     NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
671         sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr;
672
673         debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__,
674               priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
675         debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n",
676               priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
677         debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n",
678               __func__, hw_rx_wr_ptr, sw_rx_rd_ptr);
679
680         while (sw_rx_rd_ptr != hw_rx_wr_ptr) {
681                 /* Point to the absolute memory address of XRAM
682                  * where read pointer is
683                  */
684                 rx_xram_ptr = (u32 *)
685                               ((unsigned long)priv->ni_xram_base
686                                + sw_rx_rd_ptr * 8);
687
688                 /* Wrap around if required */
689                 if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr)
690                         rx_xram_ptr = (u32 *)
691                                       (unsigned long)priv->rx_xram_base_adr;
692
693                 /* Checking header XR. Do not update the read pointer yet */
694                 /* skip unused 32-bit in Header XR */
695                 rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
696                                                  priv->rx_xram_base_adr,
697                                                  priv->rx_xram_end_adr);
698
699                 memcpy(&header_x, rx_xram_ptr, sizeof(header_x));
700                 next_link = header_x.next_link;
701                 /* Header XR [31:0] */
702
703                 if (*rx_xram_ptr == 0xffffffff)
704                         printf("CA NI %s: XRAM Error !\n", __func__);
705
706                 debug("%s : RX next link 0x%x\n", __func__, next_link);
707                 debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid);
708
709                 if (header_x.ownership == 0) {
710                         /* point to Packet status [31:0] */
711                         rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
712                                                          priv->rx_xram_base_adr,
713                                                          priv->rx_xram_end_adr);
714
715                         memcpy(&packet_status, rx_xram_ptr,
716                                sizeof(*rx_xram_ptr));
717                         if (packet_status.valid == 0) {
718                                 debug("%s: Invalid Packet !!, ", __func__);
719                                 debug("next_link=%d\n", next_link);
720
721                                 /* Update the software read pointer */
722                                 ca_reg_write(&next_link,
723                                              (u64)priv->ni_hv_base_addr,
724                                         NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
725                                 return 0;
726                         }
727
728                         if (packet_status.drop ||
729                             packet_status.runt ||
730                             packet_status.oversize ||
731                             packet_status.jabber ||
732                             packet_status.crc_error ||
733                             packet_status.jumbo) {
734                                 debug("%s: Error Packet!!, ", __func__);
735                                 debug("next_link=%d\n", next_link);
736
737                                 /* Update the software read pointer */
738                                 ca_reg_write(&next_link,
739                                              (u64)priv->ni_hv_base_addr,
740                                         NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
741                                 return 0;
742                         }
743
744                         /* check whether packet size is larger than 1514 */
745                         if (packet_status.packet_size > 1518) {
746                                 debug("%s: Error Packet !! Packet size=%d, ",
747                                       __func__, packet_status.packet_size);
748                                 debug("larger than 1518, next_link=%d\n",
749                                       next_link);
750
751                                 /* Update the software read pointer */
752                                 ca_reg_write(&next_link,
753                                              (u64)priv->ni_hv_base_addr,
754                                         NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
755                                 return 0;
756                         }
757
758                         rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
759                                                          priv->rx_xram_base_adr,
760                                                          priv->rx_xram_end_adr);
761
762                         pktlen = packet_status.packet_size;
763
764                         debug("%s : rx packet length = %d\n",
765                               __func__, packet_status.packet_size);
766
767                         rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
768                                                          priv->rx_xram_base_adr,
769                                                          priv->rx_xram_end_adr);
770
771                         data_ptr = (u32 *)net_rx_packets[index];
772
773                         /* Read out the packet */
774                         /* Data is in little endian form in the XRAM */
775
776                         /* Send the packet to upper layer */
777
778                         debug("%s: packet data[]=", __func__);
779
780                         for (loop = 0; loop <= pktlen / 4; loop++) {
781                                 ptr = (u8 *)rx_xram_ptr;
782                                 if (loop < 10)
783                                         debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]",
784                                               ptr[0], ptr[1], ptr[2], ptr[3]);
785                                 *data_ptr++ = *rx_xram_ptr++;
786                                 /* Wrap around if required */
787                                 if (rx_xram_ptr >= (u32 *)
788                                     (unsigned long)priv->rx_xram_end_adr) {
789                                         rx_xram_ptr = (u32 *)(unsigned long)
790                                                        (priv->rx_xram_base_adr);
791                                 }
792                         }
793
794                         debug("\n");
795                         net_process_received_packet(net_rx_packets[index],
796                                                     pktlen);
797                         if (++index >= PKTBUFSRX)
798                                 index = 0;
799                         blk_num = net_rx_packets[index][0x2c] * 255 +
800                                 net_rx_packets[index][0x2d];
801                         debug("%s: tftp block number=%d\n", __func__, blk_num);
802
803                         /* Update the software read pointer */
804                         ca_reg_write(&next_link,
805                                      (u64)priv->ni_hv_base_addr,
806                                      NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
807                 }
808
809                 /* get the hw write pointer */
810                 ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
811                             NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
812                 hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
813
814                 /* get the sw read pointer */
815                 ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr,
816                             NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
817         }
818         return 0;
819 }
820
821 static int cortina_eth_send(struct udevice *dev, void *packet, int length)
822 {
823         u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0;
824         u32 loop, new_pkt_len, ca_crc32;
825         u32 *tx_xram_ptr, *data_ptr;
826         u16 next_link = 0;
827         u8 *ptr, *pkt_buf_ptr, valid_bytes = 0;
828         int pad = 0;
829         static u8 pkt_buf[2048];
830         struct NI_HEADER_X_T hdr_xt;
831         struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx;
832         struct cortina_ni_priv *priv = dev_get_priv(dev);
833
834         if (!packet || length > 2032)
835                 return -1;
836
837         /* Get the hardware read pointer */
838         ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr,
839                     NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET);
840
841         /* Get the software write pointer */
842         ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr,
843                     NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
844
845         debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ",
846               __func__,
847               KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
848                              NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET));
849         debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n",
850               KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
851                              NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET));
852         debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr);
853         debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr);
854
855         if (hw_tx_rd_ptr != sw_tx_wr_ptr) {
856                 printf("CA NI %s: Tx FIFO is not available!\n", __func__);
857                 return 1;
858         }
859
860         /* a workaround on 2015/10/01
861          * the packet size+CRC should be 8-byte alignment
862          */
863         if (((length + 4) % 8) != 0)
864                 length += (8 - ((length + 4) % 8));
865
866         memset(pkt_buf, 0x00, sizeof(pkt_buf));
867
868         /* add 8-byte header_A at the beginning of packet */
869         memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length);
870
871         pad = 64 - (length + 4);        /* if packet length < 60 */
872         pad = (pad < 0) ? 0 : pad;
873
874         debug("%s: length=%d, pad=%d\n", __func__, length, pad);
875
876         new_pkt_len = length + pad;     /* new packet length */
877
878         pkt_buf_ptr = (u8 *)pkt_buf;
879
880         /* Calculate the CRC32, skip 8-byte header_A */
881         ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len);
882
883         debug("%s: crc32 is 0x%x\n", __func__, ca_crc32);
884         debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32);
885         debug("%s: pkt len %d\n", __func__, new_pkt_len);
886         /* should add 8-byte header_! */
887         /* CRC will re-calculated by hardware */
888         memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE),
889                (u8 *)(&ca_crc32), sizeof(ca_crc32));
890         new_pkt_len = new_pkt_len + 4;  /* add CRC */
891
892         valid_bytes = new_pkt_len % 8;
893         valid_bytes = valid_bytes ? valid_bytes : 0;
894         debug("%s: valid_bytes %d\n", __func__, valid_bytes);
895
896         /* should add 8-byte headerA */
897         next_link = sw_tx_wr_ptr +
898                 (new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */
899         /* add header */
900         next_link = next_link + 1;
901         /* Wrap around if required */
902         if (next_link > priv->tx_xram_end) {
903                 next_link = priv->tx_xram_start +
904                         (next_link - (priv->tx_xram_end + 1));
905         }
906
907         debug("%s: TX next_link %x\n", __func__, next_link);
908         memset(&hdr_xt, 0, sizeof(hdr_xt));
909         hdr_xt.ownership = 1;
910         hdr_xt.bytes_valid = valid_bytes;
911         hdr_xt.next_link = next_link;
912
913         tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base
914                       + sw_tx_wr_ptr * 8);
915
916         /* Wrap around if required */
917         if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr)
918                 tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr;
919
920         tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
921                                          priv->tx_xram_base_adr,
922                                          priv->tx_xram_end_adr);
923
924         memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr));
925
926         tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
927                                          priv->tx_xram_base_adr,
928                                          priv->tx_xram_end_adr);
929
930         /* Now to copy the data. The first byte on the line goes first */
931         data_ptr = (u32 *)pkt_buf_ptr;
932         debug("%s: packet data[]=", __func__);
933
934         /* copy header_A to XRAM */
935         for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) {
936                 ptr = (u8 *)data_ptr;
937                 if ((loop % 4) == 0)
938                         debug("\n");
939                 debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-",
940                       ptr[0], ptr[1], ptr[2], ptr[3]);
941
942                 *tx_xram_ptr = *data_ptr++;
943                 tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
944                                                  priv->tx_xram_base_adr,
945                                                  priv->tx_xram_end_adr);
946         }
947         debug("\n");
948
949         /* Publish the software write pointer */
950         cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link;
951         ca_reg_write(&cpuxram_cpu_cfg_tx,
952                      (u64)priv->ni_hv_base_addr,
953                      NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
954
955         return 0;
956 }
957
958 static void cortina_eth_stop(struct udevice *netdev)
959 {
960         /* Nothing to do for now. */
961 }
962
963 static int cortina_eth_probe(struct udevice *dev)
964 {
965         int ret, reg_value;
966         struct cortina_ni_priv *priv;
967
968         priv = dev_get_priv(dev);
969         priv->rx_xram_base_adr  = priv->ni_xram_base + (RX_BASE_ADDR * 8);
970         priv->rx_xram_end_adr   = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8);
971         priv->rx_xram_start     = RX_BASE_ADDR;
972         priv->rx_xram_end       = RX_TOP_ADDR;
973         priv->tx_xram_base_adr  = priv->ni_xram_base + (TX_BASE_ADDR * 8);
974         priv->tx_xram_end_adr   = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8);
975         priv->tx_xram_start     = TX_BASE_ADDR;
976         priv->tx_xram_end       = TX_TOP_ADDR;
977
978         curr_dev = dev;
979         debug("%s: rx_base_addr:%x\t rx_top_addr %x\n",
980               __func__, priv->rx_xram_start, priv->rx_xram_end);
981         debug("%s: tx_base_addr:%x\t tx_top_addr %x\n",
982               __func__, priv->tx_xram_start, priv->tx_xram_end);
983         debug("%s: rx physical start address = %x end address = %x\n",
984               __func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr);
985         debug("%s: tx physical start address = %x end address = %x\n",
986               __func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr);
987
988         /* MDIO register */
989         ret = ca_mdio_register(dev);
990         if (ret)
991                 return ret;
992
993         /* set MDIO pre-scale value */
994         ca_reg_read(&reg_value, (u64)priv->per_mdio_base_addr,
995                     PER_MDIO_CFG_OFFSET);
996         reg_value = reg_value | 0x00280000;
997         ca_reg_write(&reg_value, (u64)priv->per_mdio_base_addr,
998                      PER_MDIO_CFG_OFFSET);
999
1000         ca_phy_probe(dev);
1001         priv->phydev->addr = priv->port_map[priv->active_port].phy_addr;
1002
1003         ca_ni_led(priv->active_port, CA_LED_ON);
1004
1005         ca_ni_reset();
1006
1007         printf("CA NI %s: active_port=%d, phy_addr=%d\n",
1008                __func__, priv->active_port, priv->phydev->addr);
1009         printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__,
1010                priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0);
1011
1012         /* parsing ethaddr and set to NI registers. */
1013         ca_ni_setup_mac_addr();
1014
1015 #ifdef MIIPHY_REGISTER
1016         /* the phy_read and phy_write
1017          * should meet the proto type of miiphy_register
1018          */
1019         miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write);
1020 #endif
1021
1022         if (priv->init_rgmii) {
1023                 /* hardware settings for RGMII port */
1024                 ca_rgmii_init(priv);
1025         }
1026
1027         if (priv->gphy_num > 0) {
1028                 /* do internal gphy calibration */
1029                 ca_internal_gphy_cal(priv);
1030         }
1031         return 0;
1032 }
1033
1034 static int ca_ni_of_to_plat(struct udevice *dev)
1035 {
1036         int i, ret;
1037         struct cortina_ni_priv *priv = dev_get_priv(dev);
1038
1039         memset(priv, 0, sizeof(struct cortina_ni_priv));
1040         priv->glb_base_addr = dev_remap_addr_index(dev, 0);
1041         if (!priv->glb_base_addr)
1042                 return -ENOENT;
1043         printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n",
1044                __func__, priv->glb_base_addr);
1045
1046         priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1);
1047         if (!priv->per_mdio_base_addr)
1048                 return -ENOENT;
1049         printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n",
1050                __func__, priv->per_mdio_base_addr);
1051
1052         priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2);
1053         if (!priv->ni_hv_base_addr)
1054                 return -ENOENT;
1055         printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n",
1056                __func__, priv->ni_hv_base_addr);
1057
1058         priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1);
1059         priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1);
1060
1061         for (i = 0; i < priv->valid_port_num; i++) {
1062                 ret = dev_read_u32_index(dev, "valid-ports", i * 2,
1063                                          &priv->port_map[i].phy_addr);
1064                 ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1,
1065                                          &priv->port_map[i].port);
1066         }
1067
1068         priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1);
1069         for (i = 0; i < priv->gphy_num; i++) {
1070                 ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2,
1071                                          &priv->gphy_values[i].reg_off);
1072                 ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1,
1073                                          &priv->gphy_values[i].value);
1074         }
1075
1076         priv->active_port = dev_read_u32_default(dev, "def-active-port", 1);
1077         priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1);
1078         priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1);
1079         return 0;
1080 }
1081
1082 static const struct eth_ops cortina_eth_ops = {
1083         .start = cortina_eth_start,
1084         .send = cortina_eth_send,
1085         .recv = cortina_eth_recv,
1086         .stop = cortina_eth_stop,
1087 };
1088
1089 static const struct udevice_id cortina_eth_ids[] = {
1090         { .compatible = "eth_cortina" },
1091         { }
1092 };
1093
1094 U_BOOT_DRIVER(eth_cortina) = {
1095         .name = "eth_cortina",
1096         .id = UCLASS_ETH,
1097         .of_match = cortina_eth_ids,
1098         .probe = cortina_eth_probe,
1099         .ops = &cortina_eth_ops,
1100         .priv_auto = sizeof(struct cortina_ni_priv),
1101         .plat_auto = sizeof(struct eth_pdata),
1102         .of_to_plat = ca_ni_of_to_plat,
1103 };