1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
9 * Many thanks to all socketcan devs!
12 #include <linux/bitfield.h>
13 #include <linux/clocksource.h>
14 #include <linux/ethtool.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/signal.h>
19 #include <linux/timecounter.h>
20 #include <linux/units.h>
21 #include <linux/usb.h>
22 #include <linux/workqueue.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/error.h>
28 /* Device specific constants */
29 #define USB_GS_USB_1_VENDOR_ID 0x1d50
30 #define USB_GS_USB_1_PRODUCT_ID 0x606f
32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
41 #define GS_USB_ENDPOINT_IN 1
42 #define GS_USB_ENDPOINT_OUT 2
44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45 * for timer overflow (will be after ~71 minutes)
47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
52 /* Device specific constants */
54 GS_USB_BREQ_HOST_FORMAT = 0,
55 GS_USB_BREQ_BITTIMING,
59 GS_USB_BREQ_DEVICE_CONFIG,
60 GS_USB_BREQ_TIMESTAMP,
62 GS_USB_BREQ_GET_USER_ID,
63 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64 GS_USB_BREQ_SET_USER_ID,
65 GS_USB_BREQ_DATA_BITTIMING,
66 GS_USB_BREQ_BT_CONST_EXT,
67 GS_USB_BREQ_SET_TERMINATION,
68 GS_USB_BREQ_GET_TERMINATION,
69 GS_USB_BREQ_GET_STATE,
73 /* reset a channel. turns it off */
74 GS_CAN_MODE_RESET = 0,
75 /* starts a channel */
80 GS_CAN_STATE_ERROR_ACTIVE = 0,
81 GS_CAN_STATE_ERROR_WARNING,
82 GS_CAN_STATE_ERROR_PASSIVE,
88 enum gs_can_identify_mode {
89 GS_CAN_IDENTIFY_OFF = 0,
93 enum gs_can_termination_state {
94 GS_CAN_TERMINATION_STATE_OFF = 0,
95 GS_CAN_TERMINATION_STATE_ON
98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99 #define GS_USB_TERMINATION_ENABLED 120
101 /* data types passed between host and device */
103 /* The firmware on the original USB2CAN by Geschwister Schneider
104 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105 * between the host and the device in host byte order. This is done
106 * with the struct gs_host_config::byte_order member, which is sent
107 * first to indicate the desired byte order.
109 * The widely used open source firmware candleLight doesn't support
110 * this feature and exchanges the data in little endian byte order.
112 struct gs_host_config {
116 struct gs_device_config {
125 #define GS_CAN_MODE_NORMAL 0
126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127 #define GS_CAN_MODE_LOOP_BACK BIT(1)
128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129 #define GS_CAN_MODE_ONE_SHOT BIT(3)
130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132 /* GS_CAN_FEATURE_USER_ID BIT(6) */
133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134 #define GS_CAN_MODE_FD BIT(8)
135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
138 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
141 struct gs_device_mode {
146 struct gs_device_state {
152 struct gs_device_bittiming {
160 struct gs_identify_mode {
164 struct gs_device_termination_state {
168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
174 #define GS_CAN_FEATURE_USER_ID BIT(6)
175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176 #define GS_CAN_FEATURE_FD BIT(8)
177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179 #define GS_CAN_FEATURE_TERMINATION BIT(11)
180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181 #define GS_CAN_FEATURE_GET_STATE BIT(13)
182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
184 /* internal quirks - keep in GS_CAN_FEATURE space for now */
186 /* CANtact Pro original firmware:
187 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
191 struct gs_device_bt_const {
204 struct gs_device_bt_const_extended {
226 #define GS_CAN_FLAG_OVERFLOW BIT(0)
227 #define GS_CAN_FLAG_FD BIT(1)
228 #define GS_CAN_FLAG_BRS BIT(2)
229 #define GS_CAN_FLAG_ESI BIT(3)
235 struct classic_can_ts {
240 struct classic_can_quirk {
259 struct gs_host_frame {
269 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272 DECLARE_FLEX_ARRAY(struct canfd, canfd);
273 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
277 /* The GS USB devices make use of the same flags and masks as in
278 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282 #define GS_MAX_TX_URBS 10
283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284 #define GS_MAX_RX_URBS 30
285 /* Maximum number of interfaces the driver supports per device.
286 * Current hardware only supports 3 interfaces. The future may vary.
288 #define GS_MAX_INTF 3
290 struct gs_tx_context {
292 unsigned int echo_id;
296 struct can_priv can; /* must be the first member */
298 struct gs_usb *parent;
300 struct net_device *netdev;
301 struct usb_device *udev;
303 struct can_bittiming_const bt_const, data_bt_const;
304 unsigned int channel; /* channel number */
306 /* time counter for hardware timestamps */
307 struct cyclecounter cc;
308 struct timecounter tc;
309 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
310 struct delayed_work timestamp;
313 unsigned int hf_size_tx;
315 /* This lock prevents a race condition between xmit and receive. */
316 spinlock_t tx_ctx_lock;
317 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
319 struct usb_anchor tx_submitted;
320 atomic_t active_tx_urbs;
323 /* usb interface struct */
325 struct gs_can *canch[GS_MAX_INTF];
326 struct usb_anchor rx_submitted;
327 struct usb_device *udev;
328 unsigned int hf_size_rx;
332 /* 'allocate' a tx context.
333 * returns a valid tx context or NULL if there is no space.
335 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
340 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
342 for (; i < GS_MAX_TX_URBS; i++) {
343 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
344 dev->tx_context[i].echo_id = i;
345 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
346 return &dev->tx_context[i];
350 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
354 /* releases a tx context
356 static void gs_free_tx_context(struct gs_tx_context *txc)
358 txc->echo_id = GS_MAX_TX_URBS;
361 /* Get a tx context by id.
363 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
368 if (id < GS_MAX_TX_URBS) {
369 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
370 if (dev->tx_context[id].echo_id == id) {
371 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
372 return &dev->tx_context[id];
374 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
379 static int gs_cmd_reset(struct gs_can *dev)
381 struct gs_device_mode dm = {
382 .mode = GS_CAN_MODE_RESET,
385 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
386 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
387 dev->channel, 0, &dm, sizeof(dm), 1000,
391 static inline int gs_usb_get_timestamp(const struct gs_can *dev,
397 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_TIMESTAMP,
398 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
400 ×tamp, sizeof(timestamp),
401 USB_CTRL_GET_TIMEOUT,
406 *timestamp_p = le32_to_cpu(timestamp);
411 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
413 struct gs_can *dev = container_of(cc, struct gs_can, cc);
417 lockdep_assert_held(&dev->tc_lock);
419 /* drop lock for synchronous USB transfer */
420 spin_unlock_bh(&dev->tc_lock);
421 err = gs_usb_get_timestamp(dev, ×tamp);
422 spin_lock_bh(&dev->tc_lock);
424 netdev_err(dev->netdev,
425 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
431 static void gs_usb_timestamp_work(struct work_struct *work)
433 struct delayed_work *delayed_work = to_delayed_work(work);
436 dev = container_of(delayed_work, struct gs_can, timestamp);
437 spin_lock_bh(&dev->tc_lock);
438 timecounter_read(&dev->tc);
439 spin_unlock_bh(&dev->tc_lock);
441 schedule_delayed_work(&dev->timestamp,
442 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
445 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
446 struct sk_buff *skb, u32 timestamp)
448 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
451 spin_lock_bh(&dev->tc_lock);
452 ns = timecounter_cyc2time(&dev->tc, timestamp);
453 spin_unlock_bh(&dev->tc_lock);
455 hwtstamps->hwtstamp = ns_to_ktime(ns);
458 static void gs_usb_timestamp_init(struct gs_can *dev)
460 struct cyclecounter *cc = &dev->cc;
462 cc->read = gs_usb_timestamp_read;
463 cc->mask = CYCLECOUNTER_MASK(32);
464 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
465 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
467 spin_lock_init(&dev->tc_lock);
468 spin_lock_bh(&dev->tc_lock);
469 timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
470 spin_unlock_bh(&dev->tc_lock);
472 INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
473 schedule_delayed_work(&dev->timestamp,
474 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
477 static void gs_usb_timestamp_stop(struct gs_can *dev)
479 cancel_delayed_work_sync(&dev->timestamp);
482 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
484 struct can_device_stats *can_stats = &dev->can.can_stats;
486 if (cf->can_id & CAN_ERR_RESTARTED) {
487 dev->can.state = CAN_STATE_ERROR_ACTIVE;
488 can_stats->restarts++;
489 } else if (cf->can_id & CAN_ERR_BUSOFF) {
490 dev->can.state = CAN_STATE_BUS_OFF;
491 can_stats->bus_off++;
492 } else if (cf->can_id & CAN_ERR_CRTL) {
493 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
494 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
495 dev->can.state = CAN_STATE_ERROR_WARNING;
496 can_stats->error_warning++;
497 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
498 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
499 dev->can.state = CAN_STATE_ERROR_PASSIVE;
500 can_stats->error_passive++;
502 dev->can.state = CAN_STATE_ERROR_ACTIVE;
507 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
508 const struct gs_host_frame *hf)
512 if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
515 if (hf->flags & GS_CAN_FLAG_FD)
516 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
518 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
520 gs_usb_skb_set_timestamp(dev, skb, timestamp);
525 static void gs_usb_receive_bulk_callback(struct urb *urb)
527 struct gs_usb *usbcan = urb->context;
529 struct net_device *netdev;
531 struct net_device_stats *stats;
532 struct gs_host_frame *hf = urb->transfer_buffer;
533 struct gs_tx_context *txc;
534 struct can_frame *cf;
535 struct canfd_frame *cfd;
540 switch (urb->status) {
541 case 0: /* success */
547 /* do not resubmit aborted urbs. eg: when device goes down */
551 /* device reports out of range channel id */
552 if (hf->channel >= GS_MAX_INTF)
555 dev = usbcan->canch[hf->channel];
557 netdev = dev->netdev;
558 stats = &netdev->stats;
560 if (!netif_device_present(netdev))
563 if (hf->echo_id == -1) { /* normal rx */
564 if (hf->flags & GS_CAN_FLAG_FD) {
565 skb = alloc_canfd_skb(dev->netdev, &cfd);
569 cfd->can_id = le32_to_cpu(hf->can_id);
570 cfd->len = can_fd_dlc2len(hf->can_dlc);
571 if (hf->flags & GS_CAN_FLAG_BRS)
572 cfd->flags |= CANFD_BRS;
573 if (hf->flags & GS_CAN_FLAG_ESI)
574 cfd->flags |= CANFD_ESI;
576 memcpy(cfd->data, hf->canfd->data, cfd->len);
578 skb = alloc_can_skb(dev->netdev, &cf);
582 cf->can_id = le32_to_cpu(hf->can_id);
583 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
585 memcpy(cf->data, hf->classic_can->data, 8);
587 /* ERROR frames tell us information about the controller */
588 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
589 gs_update_state(dev, cf);
592 gs_usb_set_timestamp(dev, skb, hf);
594 netdev->stats.rx_packets++;
595 netdev->stats.rx_bytes += hf->can_dlc;
598 } else { /* echo_id == hf->echo_id */
599 if (hf->echo_id >= GS_MAX_TX_URBS) {
601 "Unexpected out of range echo id %u\n",
606 txc = gs_get_tx_context(dev, hf->echo_id);
608 /* bad devices send bad echo_ids. */
611 "Unexpected unused echo id %u\n",
616 skb = dev->can.echo_skb[hf->echo_id];
617 gs_usb_set_timestamp(dev, skb, hf);
619 netdev->stats.tx_packets++;
620 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
623 gs_free_tx_context(txc);
625 atomic_dec(&dev->active_tx_urbs);
627 netif_wake_queue(netdev);
630 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
631 skb = alloc_can_err_skb(netdev, &cf);
635 cf->can_id |= CAN_ERR_CRTL;
636 cf->len = CAN_ERR_DLC;
637 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
638 stats->rx_over_errors++;
644 usb_fill_bulk_urb(urb, usbcan->udev,
645 usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
646 hf, dev->parent->hf_size_rx,
647 gs_usb_receive_bulk_callback, usbcan);
649 rc = usb_submit_urb(urb, GFP_ATOMIC);
651 /* USB failure take down all interfaces */
654 for (rc = 0; rc < GS_MAX_INTF; rc++) {
655 if (usbcan->canch[rc])
656 netif_device_detach(usbcan->canch[rc]->netdev);
661 static int gs_usb_set_bittiming(struct net_device *netdev)
663 struct gs_can *dev = netdev_priv(netdev);
664 struct can_bittiming *bt = &dev->can.bittiming;
665 struct gs_device_bittiming dbt = {
666 .prop_seg = cpu_to_le32(bt->prop_seg),
667 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
668 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
669 .sjw = cpu_to_le32(bt->sjw),
670 .brp = cpu_to_le32(bt->brp),
673 /* request bit timings */
674 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
675 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
676 dev->channel, 0, &dbt, sizeof(dbt), 1000,
680 static int gs_usb_set_data_bittiming(struct net_device *netdev)
682 struct gs_can *dev = netdev_priv(netdev);
683 struct can_bittiming *bt = &dev->can.data_bittiming;
684 struct gs_device_bittiming dbt = {
685 .prop_seg = cpu_to_le32(bt->prop_seg),
686 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
687 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
688 .sjw = cpu_to_le32(bt->sjw),
689 .brp = cpu_to_le32(bt->brp),
691 u8 request = GS_USB_BREQ_DATA_BITTIMING;
693 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
694 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
696 /* request data bit timings */
697 return usb_control_msg_send(dev->udev, 0, request,
698 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
699 dev->channel, 0, &dbt, sizeof(dbt), 1000,
703 static void gs_usb_xmit_callback(struct urb *urb)
705 struct gs_tx_context *txc = urb->context;
706 struct gs_can *dev = txc->dev;
707 struct net_device *netdev = dev->netdev;
710 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
713 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
714 struct net_device *netdev)
716 struct gs_can *dev = netdev_priv(netdev);
717 struct net_device_stats *stats = &dev->netdev->stats;
719 struct gs_host_frame *hf;
720 struct can_frame *cf;
721 struct canfd_frame *cfd;
724 struct gs_tx_context *txc;
726 if (can_dev_dropped_skb(netdev, skb))
729 /* find an empty context to keep track of transmission */
730 txc = gs_alloc_tx_context(dev);
732 return NETDEV_TX_BUSY;
734 /* create a URB, and a buffer for it */
735 urb = usb_alloc_urb(0, GFP_ATOMIC);
739 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
741 netdev_err(netdev, "No memory left for USB buffer\n");
747 if (idx >= GS_MAX_TX_URBS) {
748 netdev_err(netdev, "Invalid tx context %u\n", idx);
753 hf->channel = dev->channel;
757 if (can_is_canfd_skb(skb)) {
758 cfd = (struct canfd_frame *)skb->data;
760 hf->can_id = cpu_to_le32(cfd->can_id);
761 hf->can_dlc = can_fd_len2dlc(cfd->len);
762 hf->flags |= GS_CAN_FLAG_FD;
763 if (cfd->flags & CANFD_BRS)
764 hf->flags |= GS_CAN_FLAG_BRS;
765 if (cfd->flags & CANFD_ESI)
766 hf->flags |= GS_CAN_FLAG_ESI;
768 memcpy(hf->canfd->data, cfd->data, cfd->len);
770 cf = (struct can_frame *)skb->data;
772 hf->can_id = cpu_to_le32(cf->can_id);
773 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
775 memcpy(hf->classic_can->data, cf->data, cf->len);
778 usb_fill_bulk_urb(urb, dev->udev,
779 usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
781 gs_usb_xmit_callback, txc);
783 urb->transfer_flags |= URB_FREE_BUFFER;
784 usb_anchor_urb(urb, &dev->tx_submitted);
786 can_put_echo_skb(skb, netdev, idx, 0);
788 atomic_inc(&dev->active_tx_urbs);
790 rc = usb_submit_urb(urb, GFP_ATOMIC);
791 if (unlikely(rc)) { /* usb send failed */
792 atomic_dec(&dev->active_tx_urbs);
794 can_free_echo_skb(netdev, idx, NULL);
795 gs_free_tx_context(txc);
797 usb_unanchor_urb(urb);
800 netif_device_detach(netdev);
802 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
806 /* Slow down tx path */
807 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
808 netif_stop_queue(netdev);
811 /* let usb core take care of this urb */
822 gs_free_tx_context(txc);
828 static int gs_can_open(struct net_device *netdev)
830 struct gs_can *dev = netdev_priv(netdev);
831 struct gs_usb *parent = dev->parent;
832 struct gs_device_mode dm = {
833 .mode = cpu_to_le32(GS_CAN_MODE_START),
835 struct gs_host_frame *hf;
840 rc = open_candev(netdev);
844 ctrlmode = dev->can.ctrlmode;
845 if (ctrlmode & CAN_CTRLMODE_FD) {
846 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
847 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
849 dev->hf_size_tx = struct_size(hf, canfd, 1);
851 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
852 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
854 dev->hf_size_tx = struct_size(hf, classic_can, 1);
857 if (!parent->active_channels) {
858 for (i = 0; i < GS_MAX_RX_URBS; i++) {
863 urb = usb_alloc_urb(0, GFP_KERNEL);
867 /* alloc rx buffer */
868 buf = kmalloc(dev->parent->hf_size_rx,
872 "No memory left for USB buffer\n");
877 /* fill, anchor, and submit rx urb */
878 usb_fill_bulk_urb(urb,
880 usb_rcvbulkpipe(dev->udev,
883 dev->parent->hf_size_rx,
884 gs_usb_receive_bulk_callback, parent);
885 urb->transfer_flags |= URB_FREE_BUFFER;
887 usb_anchor_urb(urb, &parent->rx_submitted);
889 rc = usb_submit_urb(urb, GFP_KERNEL);
892 netif_device_detach(dev->netdev);
895 "usb_submit failed (err=%d)\n", rc);
897 usb_unanchor_urb(urb);
903 * USB core will take care of freeing it
910 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
911 flags |= GS_CAN_MODE_LOOP_BACK;
913 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
914 flags |= GS_CAN_MODE_LISTEN_ONLY;
916 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
917 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
919 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
920 flags |= GS_CAN_MODE_ONE_SHOT;
922 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
923 flags |= GS_CAN_MODE_BERR_REPORTING;
925 if (ctrlmode & CAN_CTRLMODE_FD)
926 flags |= GS_CAN_MODE_FD;
928 /* if hardware supports timestamps, enable it */
929 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
930 flags |= GS_CAN_MODE_HW_TIMESTAMP;
932 /* start polling timestamp */
933 gs_usb_timestamp_init(dev);
936 /* finally start device */
937 dev->can.state = CAN_STATE_ERROR_ACTIVE;
938 dm.flags = cpu_to_le32(flags);
939 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
940 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
941 dev->channel, 0, &dm, sizeof(dm), 1000,
944 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
945 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
946 gs_usb_timestamp_stop(dev);
947 dev->can.state = CAN_STATE_STOPPED;
951 parent->active_channels++;
952 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
953 netif_start_queue(netdev);
958 static int gs_usb_get_state(const struct net_device *netdev,
959 struct can_berr_counter *bec,
960 enum can_state *state)
962 struct gs_can *dev = netdev_priv(netdev);
963 struct gs_device_state ds;
966 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
967 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
970 USB_CTRL_GET_TIMEOUT,
975 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
978 *state = le32_to_cpu(ds.state);
979 bec->txerr = le32_to_cpu(ds.txerr);
980 bec->rxerr = le32_to_cpu(ds.rxerr);
985 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
986 struct can_berr_counter *bec)
988 enum can_state state;
990 return gs_usb_get_state(netdev, bec, &state);
993 static int gs_can_close(struct net_device *netdev)
996 struct gs_can *dev = netdev_priv(netdev);
997 struct gs_usb *parent = dev->parent;
999 netif_stop_queue(netdev);
1001 /* stop polling timestamp */
1002 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1003 gs_usb_timestamp_stop(dev);
1006 parent->active_channels--;
1007 if (!parent->active_channels) {
1008 usb_kill_anchored_urbs(&parent->rx_submitted);
1011 /* Stop sending URBs */
1012 usb_kill_anchored_urbs(&dev->tx_submitted);
1013 atomic_set(&dev->active_tx_urbs, 0);
1015 /* reset the device */
1016 rc = gs_cmd_reset(dev);
1018 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1020 /* reset tx contexts */
1021 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1022 dev->tx_context[rc].dev = dev;
1023 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1026 /* close the netdev */
1027 close_candev(netdev);
1032 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1034 const struct gs_can *dev = netdev_priv(netdev);
1036 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1037 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1042 static const struct net_device_ops gs_usb_netdev_ops = {
1043 .ndo_open = gs_can_open,
1044 .ndo_stop = gs_can_close,
1045 .ndo_start_xmit = gs_can_start_xmit,
1046 .ndo_change_mtu = can_change_mtu,
1047 .ndo_eth_ioctl = gs_can_eth_ioctl,
1050 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1052 struct gs_can *dev = netdev_priv(netdev);
1053 struct gs_identify_mode imode;
1056 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1058 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1060 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1061 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1062 dev->channel, 0, &imode, sizeof(imode), 100,
1066 /* blink LED's for finding the this interface */
1067 static int gs_usb_set_phys_id(struct net_device *netdev,
1068 enum ethtool_phys_id_state state)
1070 const struct gs_can *dev = netdev_priv(netdev);
1073 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1077 case ETHTOOL_ID_ACTIVE:
1078 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1080 case ETHTOOL_ID_INACTIVE:
1081 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1090 static int gs_usb_get_ts_info(struct net_device *netdev,
1091 struct ethtool_ts_info *info)
1093 struct gs_can *dev = netdev_priv(netdev);
1095 /* report if device supports HW timestamps */
1096 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1097 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1099 return ethtool_op_get_ts_info(netdev, info);
1102 static const struct ethtool_ops gs_usb_ethtool_ops = {
1103 .set_phys_id = gs_usb_set_phys_id,
1104 .get_ts_info = gs_usb_get_ts_info,
1107 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1109 struct gs_can *dev = netdev_priv(netdev);
1110 struct gs_device_termination_state term_state;
1113 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1114 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1116 &term_state, sizeof(term_state), 1000,
1121 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1122 *term = GS_USB_TERMINATION_ENABLED;
1124 *term = GS_USB_TERMINATION_DISABLED;
1129 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1131 struct gs_can *dev = netdev_priv(netdev);
1132 struct gs_device_termination_state term_state;
1134 if (term == GS_USB_TERMINATION_ENABLED)
1135 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1137 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1139 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1140 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1142 &term_state, sizeof(term_state), 1000,
1146 static const u16 gs_usb_termination_const[] = {
1147 GS_USB_TERMINATION_DISABLED,
1148 GS_USB_TERMINATION_ENABLED
1151 static struct gs_can *gs_make_candev(unsigned int channel,
1152 struct usb_interface *intf,
1153 struct gs_device_config *dconf)
1156 struct net_device *netdev;
1158 struct gs_device_bt_const_extended bt_const_extended;
1159 struct gs_device_bt_const bt_const;
1162 /* fetch bit timing constants */
1163 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1164 GS_USB_BREQ_BT_CONST,
1165 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1166 channel, 0, &bt_const, sizeof(bt_const), 1000,
1171 "Couldn't get bit timing const for channel %d (%pe)\n",
1172 channel, ERR_PTR(rc));
1177 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1179 dev_err(&intf->dev, "Couldn't allocate candev\n");
1180 return ERR_PTR(-ENOMEM);
1183 dev = netdev_priv(netdev);
1185 netdev->netdev_ops = &gs_usb_netdev_ops;
1186 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1188 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1189 netdev->dev_id = channel;
1192 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1193 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1194 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1195 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1196 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1197 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1198 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1199 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1200 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1202 dev->udev = interface_to_usbdev(intf);
1203 dev->netdev = netdev;
1204 dev->channel = channel;
1206 init_usb_anchor(&dev->tx_submitted);
1207 atomic_set(&dev->active_tx_urbs, 0);
1208 spin_lock_init(&dev->tx_ctx_lock);
1209 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1210 dev->tx_context[rc].dev = dev;
1211 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1215 dev->can.state = CAN_STATE_STOPPED;
1216 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1217 dev->can.bittiming_const = &dev->bt_const;
1218 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1220 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1222 feature = le32_to_cpu(bt_const.feature);
1223 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1224 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1225 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1227 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1228 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1230 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1231 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1233 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1234 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1236 if (feature & GS_CAN_FEATURE_FD) {
1237 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1238 /* The data bit timing will be overwritten, if
1239 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1241 dev->can.data_bittiming_const = &dev->bt_const;
1242 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1245 if (feature & GS_CAN_FEATURE_TERMINATION) {
1246 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1248 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1250 dev_info(&intf->dev,
1251 "Disabling termination support for channel %d (%pe)\n",
1252 channel, ERR_PTR(rc));
1254 dev->can.termination_const = gs_usb_termination_const;
1255 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1256 dev->can.do_set_termination = gs_usb_set_termination;
1260 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1261 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1263 if (feature & GS_CAN_FEATURE_GET_STATE)
1264 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1266 /* The CANtact Pro from LinkLayer Labs is based on the
1267 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1268 * erratum. However, the current firmware (version 2) doesn't
1269 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1270 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1273 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1274 * CANtact Pro firmware uses a request value, which is already
1275 * used by the candleLight firmware for a different purpose
1276 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1277 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1280 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1281 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1282 dev->udev->manufacturer && dev->udev->product &&
1283 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1284 !strcmp(dev->udev->product, "CANtact Pro") &&
1285 (le32_to_cpu(dconf->sw_version) <= 2))
1286 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1287 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1289 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1290 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1291 feature & GS_CAN_FEATURE_IDENTIFY))
1292 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1294 /* fetch extended bit timing constants if device has feature
1295 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1297 if (feature & GS_CAN_FEATURE_FD &&
1298 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1299 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1300 GS_USB_BREQ_BT_CONST_EXT,
1301 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1302 channel, 0, &bt_const_extended,
1303 sizeof(bt_const_extended),
1307 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1308 channel, ERR_PTR(rc));
1309 goto out_free_candev;
1312 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1313 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1314 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1315 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1316 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1317 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1318 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1319 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1320 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1322 dev->can.data_bittiming_const = &dev->data_bt_const;
1325 SET_NETDEV_DEV(netdev, &intf->dev);
1327 rc = register_candev(dev->netdev);
1330 "Couldn't register candev for channel %d (%pe)\n",
1331 channel, ERR_PTR(rc));
1332 goto out_free_candev;
1338 free_candev(dev->netdev);
1342 static void gs_destroy_candev(struct gs_can *dev)
1344 unregister_candev(dev->netdev);
1345 usb_kill_anchored_urbs(&dev->tx_submitted);
1346 free_candev(dev->netdev);
1349 static int gs_usb_probe(struct usb_interface *intf,
1350 const struct usb_device_id *id)
1352 struct usb_device *udev = interface_to_usbdev(intf);
1353 struct gs_host_frame *hf;
1355 struct gs_host_config hconf = {
1356 .byte_order = cpu_to_le32(0x0000beef),
1358 struct gs_device_config dconf;
1359 unsigned int icount, i;
1362 /* send host config */
1363 rc = usb_control_msg_send(udev, 0,
1364 GS_USB_BREQ_HOST_FORMAT,
1365 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1366 1, intf->cur_altsetting->desc.bInterfaceNumber,
1367 &hconf, sizeof(hconf), 1000,
1370 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1374 /* read device config */
1375 rc = usb_control_msg_recv(udev, 0,
1376 GS_USB_BREQ_DEVICE_CONFIG,
1377 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1378 1, intf->cur_altsetting->desc.bInterfaceNumber,
1379 &dconf, sizeof(dconf), 1000,
1382 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1387 icount = dconf.icount + 1;
1388 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1390 if (icount > GS_MAX_INTF) {
1392 "Driver cannot handle more that %u CAN interfaces\n",
1397 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401 init_usb_anchor(&dev->rx_submitted);
1403 usb_set_intfdata(intf, dev);
1406 for (i = 0; i < icount; i++) {
1407 unsigned int hf_size_rx = 0;
1409 dev->canch[i] = gs_make_candev(i, intf, &dconf);
1410 if (IS_ERR_OR_NULL(dev->canch[i])) {
1411 /* save error code to return later */
1412 rc = PTR_ERR(dev->canch[i]);
1414 /* on failure destroy previously created candevs */
1416 for (i = 0; i < icount; i++)
1417 gs_destroy_candev(dev->canch[i]);
1419 usb_kill_anchored_urbs(&dev->rx_submitted);
1423 dev->canch[i]->parent = dev;
1425 /* set RX packet size based on FD and if hardware
1426 * timestamps are supported.
1428 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1429 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1430 hf_size_rx = struct_size(hf, canfd_ts, 1);
1432 hf_size_rx = struct_size(hf, canfd, 1);
1434 if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1435 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1437 hf_size_rx = struct_size(hf, classic_can, 1);
1439 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1445 static void gs_usb_disconnect(struct usb_interface *intf)
1447 struct gs_usb *dev = usb_get_intfdata(intf);
1450 usb_set_intfdata(intf, NULL);
1453 dev_err(&intf->dev, "Disconnect (nodata)\n");
1457 for (i = 0; i < GS_MAX_INTF; i++)
1459 gs_destroy_candev(dev->canch[i]);
1461 usb_kill_anchored_urbs(&dev->rx_submitted);
1465 static const struct usb_device_id gs_usb_table[] = {
1466 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1467 USB_GS_USB_1_PRODUCT_ID, 0) },
1468 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1469 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1470 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1471 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1472 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1473 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1474 {} /* Terminating entry */
1477 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1479 static struct usb_driver gs_usb_driver = {
1480 .name = KBUILD_MODNAME,
1481 .probe = gs_usb_probe,
1482 .disconnect = gs_usb_disconnect,
1483 .id_table = gs_usb_table,
1486 module_usb_driver(gs_usb_driver);
1488 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1490 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1491 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1492 "and bytewerk.org candleLight USB CAN interfaces.");
1493 MODULE_LICENSE("GPL v2");