drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / drivers / net / can / usb / gs_usb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3  * and bytewerk.org candleLight USB CAN interfaces.
4  *
5  * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6  * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7  * Copyright (C) 2016 Hubert Denkmair
8  *
9  * Many thanks to all socketcan devs!
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/clocksource.h>
14 #include <linux/ethtool.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/signal.h>
19 #include <linux/timecounter.h>
20 #include <linux/units.h>
21 #include <linux/usb.h>
22 #include <linux/workqueue.h>
23
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/error.h>
27
28 /* Device specific constants */
29 #define USB_GS_USB_1_VENDOR_ID 0x1d50
30 #define USB_GS_USB_1_PRODUCT_ID 0x606f
31
32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
34
35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
37
38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
40
41 #define GS_USB_ENDPOINT_IN 1
42 #define GS_USB_ENDPOINT_OUT 2
43
44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45  * for timer overflow (will be after ~71 minutes)
46  */
47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50               CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
51
52 /* Device specific constants */
53 enum gs_usb_breq {
54         GS_USB_BREQ_HOST_FORMAT = 0,
55         GS_USB_BREQ_BITTIMING,
56         GS_USB_BREQ_MODE,
57         GS_USB_BREQ_BERR,
58         GS_USB_BREQ_BT_CONST,
59         GS_USB_BREQ_DEVICE_CONFIG,
60         GS_USB_BREQ_TIMESTAMP,
61         GS_USB_BREQ_IDENTIFY,
62         GS_USB_BREQ_GET_USER_ID,
63         GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64         GS_USB_BREQ_SET_USER_ID,
65         GS_USB_BREQ_DATA_BITTIMING,
66         GS_USB_BREQ_BT_CONST_EXT,
67         GS_USB_BREQ_SET_TERMINATION,
68         GS_USB_BREQ_GET_TERMINATION,
69         GS_USB_BREQ_GET_STATE,
70 };
71
72 enum gs_can_mode {
73         /* reset a channel. turns it off */
74         GS_CAN_MODE_RESET = 0,
75         /* starts a channel */
76         GS_CAN_MODE_START
77 };
78
79 enum gs_can_state {
80         GS_CAN_STATE_ERROR_ACTIVE = 0,
81         GS_CAN_STATE_ERROR_WARNING,
82         GS_CAN_STATE_ERROR_PASSIVE,
83         GS_CAN_STATE_BUS_OFF,
84         GS_CAN_STATE_STOPPED,
85         GS_CAN_STATE_SLEEPING
86 };
87
88 enum gs_can_identify_mode {
89         GS_CAN_IDENTIFY_OFF = 0,
90         GS_CAN_IDENTIFY_ON
91 };
92
93 enum gs_can_termination_state {
94         GS_CAN_TERMINATION_STATE_OFF = 0,
95         GS_CAN_TERMINATION_STATE_ON
96 };
97
98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99 #define GS_USB_TERMINATION_ENABLED 120
100
101 /* data types passed between host and device */
102
103 /* The firmware on the original USB2CAN by Geschwister Schneider
104  * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105  * between the host and the device in host byte order. This is done
106  * with the struct gs_host_config::byte_order member, which is sent
107  * first to indicate the desired byte order.
108  *
109  * The widely used open source firmware candleLight doesn't support
110  * this feature and exchanges the data in little endian byte order.
111  */
112 struct gs_host_config {
113         __le32 byte_order;
114 } __packed;
115
116 struct gs_device_config {
117         u8 reserved1;
118         u8 reserved2;
119         u8 reserved3;
120         u8 icount;
121         __le32 sw_version;
122         __le32 hw_version;
123 } __packed;
124
125 #define GS_CAN_MODE_NORMAL 0
126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127 #define GS_CAN_MODE_LOOP_BACK BIT(1)
128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129 #define GS_CAN_MODE_ONE_SHOT BIT(3)
130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132 /* GS_CAN_FEATURE_USER_ID BIT(6) */
133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134 #define GS_CAN_MODE_FD BIT(8)
135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
138 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
140
141 struct gs_device_mode {
142         __le32 mode;
143         __le32 flags;
144 } __packed;
145
146 struct gs_device_state {
147         __le32 state;
148         __le32 rxerr;
149         __le32 txerr;
150 } __packed;
151
152 struct gs_device_bittiming {
153         __le32 prop_seg;
154         __le32 phase_seg1;
155         __le32 phase_seg2;
156         __le32 sjw;
157         __le32 brp;
158 } __packed;
159
160 struct gs_identify_mode {
161         __le32 mode;
162 } __packed;
163
164 struct gs_device_termination_state {
165         __le32 state;
166 } __packed;
167
168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
174 #define GS_CAN_FEATURE_USER_ID BIT(6)
175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176 #define GS_CAN_FEATURE_FD BIT(8)
177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179 #define GS_CAN_FEATURE_TERMINATION BIT(11)
180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181 #define GS_CAN_FEATURE_GET_STATE BIT(13)
182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
183
184 /* internal quirks - keep in GS_CAN_FEATURE space for now */
185
186 /* CANtact Pro original firmware:
187  * BREQ DATA_BITTIMING overlaps with GET_USER_ID
188  */
189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
190
191 struct gs_device_bt_const {
192         __le32 feature;
193         __le32 fclk_can;
194         __le32 tseg1_min;
195         __le32 tseg1_max;
196         __le32 tseg2_min;
197         __le32 tseg2_max;
198         __le32 sjw_max;
199         __le32 brp_min;
200         __le32 brp_max;
201         __le32 brp_inc;
202 } __packed;
203
204 struct gs_device_bt_const_extended {
205         __le32 feature;
206         __le32 fclk_can;
207         __le32 tseg1_min;
208         __le32 tseg1_max;
209         __le32 tseg2_min;
210         __le32 tseg2_max;
211         __le32 sjw_max;
212         __le32 brp_min;
213         __le32 brp_max;
214         __le32 brp_inc;
215
216         __le32 dtseg1_min;
217         __le32 dtseg1_max;
218         __le32 dtseg2_min;
219         __le32 dtseg2_max;
220         __le32 dsjw_max;
221         __le32 dbrp_min;
222         __le32 dbrp_max;
223         __le32 dbrp_inc;
224 } __packed;
225
226 #define GS_CAN_FLAG_OVERFLOW BIT(0)
227 #define GS_CAN_FLAG_FD BIT(1)
228 #define GS_CAN_FLAG_BRS BIT(2)
229 #define GS_CAN_FLAG_ESI BIT(3)
230
231 struct classic_can {
232         u8 data[8];
233 } __packed;
234
235 struct classic_can_ts {
236         u8 data[8];
237         __le32 timestamp_us;
238 } __packed;
239
240 struct classic_can_quirk {
241         u8 data[8];
242         u8 quirk;
243 } __packed;
244
245 struct canfd {
246         u8 data[64];
247 } __packed;
248
249 struct canfd_ts {
250         u8 data[64];
251         __le32 timestamp_us;
252 } __packed;
253
254 struct canfd_quirk {
255         u8 data[64];
256         u8 quirk;
257 } __packed;
258
259 struct gs_host_frame {
260         u32 echo_id;
261         __le32 can_id;
262
263         u8 can_dlc;
264         u8 channel;
265         u8 flags;
266         u8 reserved;
267
268         union {
269                 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270                 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271                 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272                 DECLARE_FLEX_ARRAY(struct canfd, canfd);
273                 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274                 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
275         };
276 } __packed;
277 /* The GS USB devices make use of the same flags and masks as in
278  * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
279  */
280
281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282 #define GS_MAX_TX_URBS 10
283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284 #define GS_MAX_RX_URBS 30
285 /* Maximum number of interfaces the driver supports per device.
286  * Current hardware only supports 3 interfaces. The future may vary.
287  */
288 #define GS_MAX_INTF 3
289
290 struct gs_tx_context {
291         struct gs_can *dev;
292         unsigned int echo_id;
293 };
294
295 struct gs_can {
296         struct can_priv can; /* must be the first member */
297
298         struct gs_usb *parent;
299
300         struct net_device *netdev;
301         struct usb_device *udev;
302
303         struct can_bittiming_const bt_const, data_bt_const;
304         unsigned int channel;   /* channel number */
305
306         /* time counter for hardware timestamps */
307         struct cyclecounter cc;
308         struct timecounter tc;
309         spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
310         struct delayed_work timestamp;
311
312         u32 feature;
313         unsigned int hf_size_tx;
314
315         /* This lock prevents a race condition between xmit and receive. */
316         spinlock_t tx_ctx_lock;
317         struct gs_tx_context tx_context[GS_MAX_TX_URBS];
318
319         struct usb_anchor tx_submitted;
320         atomic_t active_tx_urbs;
321 };
322
323 /* usb interface struct */
324 struct gs_usb {
325         struct gs_can *canch[GS_MAX_INTF];
326         struct usb_anchor rx_submitted;
327         struct usb_device *udev;
328         unsigned int hf_size_rx;
329         u8 active_channels;
330 };
331
332 /* 'allocate' a tx context.
333  * returns a valid tx context or NULL if there is no space.
334  */
335 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
336 {
337         int i = 0;
338         unsigned long flags;
339
340         spin_lock_irqsave(&dev->tx_ctx_lock, flags);
341
342         for (; i < GS_MAX_TX_URBS; i++) {
343                 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
344                         dev->tx_context[i].echo_id = i;
345                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
346                         return &dev->tx_context[i];
347                 }
348         }
349
350         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
351         return NULL;
352 }
353
354 /* releases a tx context
355  */
356 static void gs_free_tx_context(struct gs_tx_context *txc)
357 {
358         txc->echo_id = GS_MAX_TX_URBS;
359 }
360
361 /* Get a tx context by id.
362  */
363 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
364                                                unsigned int id)
365 {
366         unsigned long flags;
367
368         if (id < GS_MAX_TX_URBS) {
369                 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
370                 if (dev->tx_context[id].echo_id == id) {
371                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
372                         return &dev->tx_context[id];
373                 }
374                 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
375         }
376         return NULL;
377 }
378
379 static int gs_cmd_reset(struct gs_can *dev)
380 {
381         struct gs_device_mode dm = {
382                 .mode = GS_CAN_MODE_RESET,
383         };
384
385         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
386                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
387                                     dev->channel, 0, &dm, sizeof(dm), 1000,
388                                     GFP_KERNEL);
389 }
390
391 static inline int gs_usb_get_timestamp(const struct gs_can *dev,
392                                        u32 *timestamp_p)
393 {
394         __le32 timestamp;
395         int rc;
396
397         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_TIMESTAMP,
398                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
399                                   dev->channel, 0,
400                                   &timestamp, sizeof(timestamp),
401                                   USB_CTRL_GET_TIMEOUT,
402                                   GFP_KERNEL);
403         if (rc)
404                 return rc;
405
406         *timestamp_p = le32_to_cpu(timestamp);
407
408         return 0;
409 }
410
411 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
412 {
413         struct gs_can *dev = container_of(cc, struct gs_can, cc);
414         u32 timestamp = 0;
415         int err;
416
417         lockdep_assert_held(&dev->tc_lock);
418
419         /* drop lock for synchronous USB transfer */
420         spin_unlock_bh(&dev->tc_lock);
421         err = gs_usb_get_timestamp(dev, &timestamp);
422         spin_lock_bh(&dev->tc_lock);
423         if (err)
424                 netdev_err(dev->netdev,
425                            "Error %d while reading timestamp. HW timestamps may be inaccurate.",
426                            err);
427
428         return timestamp;
429 }
430
431 static void gs_usb_timestamp_work(struct work_struct *work)
432 {
433         struct delayed_work *delayed_work = to_delayed_work(work);
434         struct gs_can *dev;
435
436         dev = container_of(delayed_work, struct gs_can, timestamp);
437         spin_lock_bh(&dev->tc_lock);
438         timecounter_read(&dev->tc);
439         spin_unlock_bh(&dev->tc_lock);
440
441         schedule_delayed_work(&dev->timestamp,
442                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
443 }
444
445 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
446                                      struct sk_buff *skb, u32 timestamp)
447 {
448         struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
449         u64 ns;
450
451         spin_lock_bh(&dev->tc_lock);
452         ns = timecounter_cyc2time(&dev->tc, timestamp);
453         spin_unlock_bh(&dev->tc_lock);
454
455         hwtstamps->hwtstamp = ns_to_ktime(ns);
456 }
457
458 static void gs_usb_timestamp_init(struct gs_can *dev)
459 {
460         struct cyclecounter *cc = &dev->cc;
461
462         cc->read = gs_usb_timestamp_read;
463         cc->mask = CYCLECOUNTER_MASK(32);
464         cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
465         cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
466
467         spin_lock_init(&dev->tc_lock);
468         spin_lock_bh(&dev->tc_lock);
469         timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
470         spin_unlock_bh(&dev->tc_lock);
471
472         INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
473         schedule_delayed_work(&dev->timestamp,
474                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
475 }
476
477 static void gs_usb_timestamp_stop(struct gs_can *dev)
478 {
479         cancel_delayed_work_sync(&dev->timestamp);
480 }
481
482 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
483 {
484         struct can_device_stats *can_stats = &dev->can.can_stats;
485
486         if (cf->can_id & CAN_ERR_RESTARTED) {
487                 dev->can.state = CAN_STATE_ERROR_ACTIVE;
488                 can_stats->restarts++;
489         } else if (cf->can_id & CAN_ERR_BUSOFF) {
490                 dev->can.state = CAN_STATE_BUS_OFF;
491                 can_stats->bus_off++;
492         } else if (cf->can_id & CAN_ERR_CRTL) {
493                 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
494                     (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
495                         dev->can.state = CAN_STATE_ERROR_WARNING;
496                         can_stats->error_warning++;
497                 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
498                            (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
499                         dev->can.state = CAN_STATE_ERROR_PASSIVE;
500                         can_stats->error_passive++;
501                 } else {
502                         dev->can.state = CAN_STATE_ERROR_ACTIVE;
503                 }
504         }
505 }
506
507 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
508                                  const struct gs_host_frame *hf)
509 {
510         u32 timestamp;
511
512         if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
513                 return;
514
515         if (hf->flags & GS_CAN_FLAG_FD)
516                 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
517         else
518                 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
519
520         gs_usb_skb_set_timestamp(dev, skb, timestamp);
521
522         return;
523 }
524
525 static void gs_usb_receive_bulk_callback(struct urb *urb)
526 {
527         struct gs_usb *usbcan = urb->context;
528         struct gs_can *dev;
529         struct net_device *netdev;
530         int rc;
531         struct net_device_stats *stats;
532         struct gs_host_frame *hf = urb->transfer_buffer;
533         struct gs_tx_context *txc;
534         struct can_frame *cf;
535         struct canfd_frame *cfd;
536         struct sk_buff *skb;
537
538         BUG_ON(!usbcan);
539
540         switch (urb->status) {
541         case 0: /* success */
542                 break;
543         case -ENOENT:
544         case -ESHUTDOWN:
545                 return;
546         default:
547                 /* do not resubmit aborted urbs. eg: when device goes down */
548                 return;
549         }
550
551         /* device reports out of range channel id */
552         if (hf->channel >= GS_MAX_INTF)
553                 goto device_detach;
554
555         dev = usbcan->canch[hf->channel];
556
557         netdev = dev->netdev;
558         stats = &netdev->stats;
559
560         if (!netif_device_present(netdev))
561                 return;
562
563         if (hf->echo_id == -1) { /* normal rx */
564                 if (hf->flags & GS_CAN_FLAG_FD) {
565                         skb = alloc_canfd_skb(dev->netdev, &cfd);
566                         if (!skb)
567                                 return;
568
569                         cfd->can_id = le32_to_cpu(hf->can_id);
570                         cfd->len = can_fd_dlc2len(hf->can_dlc);
571                         if (hf->flags & GS_CAN_FLAG_BRS)
572                                 cfd->flags |= CANFD_BRS;
573                         if (hf->flags & GS_CAN_FLAG_ESI)
574                                 cfd->flags |= CANFD_ESI;
575
576                         memcpy(cfd->data, hf->canfd->data, cfd->len);
577                 } else {
578                         skb = alloc_can_skb(dev->netdev, &cf);
579                         if (!skb)
580                                 return;
581
582                         cf->can_id = le32_to_cpu(hf->can_id);
583                         can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
584
585                         memcpy(cf->data, hf->classic_can->data, 8);
586
587                         /* ERROR frames tell us information about the controller */
588                         if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
589                                 gs_update_state(dev, cf);
590                 }
591
592                 gs_usb_set_timestamp(dev, skb, hf);
593
594                 netdev->stats.rx_packets++;
595                 netdev->stats.rx_bytes += hf->can_dlc;
596
597                 netif_rx(skb);
598         } else { /* echo_id == hf->echo_id */
599                 if (hf->echo_id >= GS_MAX_TX_URBS) {
600                         netdev_err(netdev,
601                                    "Unexpected out of range echo id %u\n",
602                                    hf->echo_id);
603                         goto resubmit_urb;
604                 }
605
606                 txc = gs_get_tx_context(dev, hf->echo_id);
607
608                 /* bad devices send bad echo_ids. */
609                 if (!txc) {
610                         netdev_err(netdev,
611                                    "Unexpected unused echo id %u\n",
612                                    hf->echo_id);
613                         goto resubmit_urb;
614                 }
615
616                 skb = dev->can.echo_skb[hf->echo_id];
617                 gs_usb_set_timestamp(dev, skb, hf);
618
619                 netdev->stats.tx_packets++;
620                 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
621                                                            NULL);
622
623                 gs_free_tx_context(txc);
624
625                 atomic_dec(&dev->active_tx_urbs);
626
627                 netif_wake_queue(netdev);
628         }
629
630         if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
631                 skb = alloc_can_err_skb(netdev, &cf);
632                 if (!skb)
633                         goto resubmit_urb;
634
635                 cf->can_id |= CAN_ERR_CRTL;
636                 cf->len = CAN_ERR_DLC;
637                 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
638                 stats->rx_over_errors++;
639                 stats->rx_errors++;
640                 netif_rx(skb);
641         }
642
643  resubmit_urb:
644         usb_fill_bulk_urb(urb, usbcan->udev,
645                           usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
646                           hf, dev->parent->hf_size_rx,
647                           gs_usb_receive_bulk_callback, usbcan);
648
649         rc = usb_submit_urb(urb, GFP_ATOMIC);
650
651         /* USB failure take down all interfaces */
652         if (rc == -ENODEV) {
653  device_detach:
654                 for (rc = 0; rc < GS_MAX_INTF; rc++) {
655                         if (usbcan->canch[rc])
656                                 netif_device_detach(usbcan->canch[rc]->netdev);
657                 }
658         }
659 }
660
661 static int gs_usb_set_bittiming(struct net_device *netdev)
662 {
663         struct gs_can *dev = netdev_priv(netdev);
664         struct can_bittiming *bt = &dev->can.bittiming;
665         struct gs_device_bittiming dbt = {
666                 .prop_seg = cpu_to_le32(bt->prop_seg),
667                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
668                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
669                 .sjw = cpu_to_le32(bt->sjw),
670                 .brp = cpu_to_le32(bt->brp),
671         };
672
673         /* request bit timings */
674         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
675                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
676                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
677                                     GFP_KERNEL);
678 }
679
680 static int gs_usb_set_data_bittiming(struct net_device *netdev)
681 {
682         struct gs_can *dev = netdev_priv(netdev);
683         struct can_bittiming *bt = &dev->can.data_bittiming;
684         struct gs_device_bittiming dbt = {
685                 .prop_seg = cpu_to_le32(bt->prop_seg),
686                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
687                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
688                 .sjw = cpu_to_le32(bt->sjw),
689                 .brp = cpu_to_le32(bt->brp),
690         };
691         u8 request = GS_USB_BREQ_DATA_BITTIMING;
692
693         if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
694                 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
695
696         /* request data bit timings */
697         return usb_control_msg_send(dev->udev, 0, request,
698                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
699                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
700                                     GFP_KERNEL);
701 }
702
703 static void gs_usb_xmit_callback(struct urb *urb)
704 {
705         struct gs_tx_context *txc = urb->context;
706         struct gs_can *dev = txc->dev;
707         struct net_device *netdev = dev->netdev;
708
709         if (urb->status)
710                 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
711 }
712
713 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
714                                      struct net_device *netdev)
715 {
716         struct gs_can *dev = netdev_priv(netdev);
717         struct net_device_stats *stats = &dev->netdev->stats;
718         struct urb *urb;
719         struct gs_host_frame *hf;
720         struct can_frame *cf;
721         struct canfd_frame *cfd;
722         int rc;
723         unsigned int idx;
724         struct gs_tx_context *txc;
725
726         if (can_dev_dropped_skb(netdev, skb))
727                 return NETDEV_TX_OK;
728
729         /* find an empty context to keep track of transmission */
730         txc = gs_alloc_tx_context(dev);
731         if (!txc)
732                 return NETDEV_TX_BUSY;
733
734         /* create a URB, and a buffer for it */
735         urb = usb_alloc_urb(0, GFP_ATOMIC);
736         if (!urb)
737                 goto nomem_urb;
738
739         hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
740         if (!hf) {
741                 netdev_err(netdev, "No memory left for USB buffer\n");
742                 goto nomem_hf;
743         }
744
745         idx = txc->echo_id;
746
747         if (idx >= GS_MAX_TX_URBS) {
748                 netdev_err(netdev, "Invalid tx context %u\n", idx);
749                 goto badidx;
750         }
751
752         hf->echo_id = idx;
753         hf->channel = dev->channel;
754         hf->flags = 0;
755         hf->reserved = 0;
756
757         if (can_is_canfd_skb(skb)) {
758                 cfd = (struct canfd_frame *)skb->data;
759
760                 hf->can_id = cpu_to_le32(cfd->can_id);
761                 hf->can_dlc = can_fd_len2dlc(cfd->len);
762                 hf->flags |= GS_CAN_FLAG_FD;
763                 if (cfd->flags & CANFD_BRS)
764                         hf->flags |= GS_CAN_FLAG_BRS;
765                 if (cfd->flags & CANFD_ESI)
766                         hf->flags |= GS_CAN_FLAG_ESI;
767
768                 memcpy(hf->canfd->data, cfd->data, cfd->len);
769         } else {
770                 cf = (struct can_frame *)skb->data;
771
772                 hf->can_id = cpu_to_le32(cf->can_id);
773                 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
774
775                 memcpy(hf->classic_can->data, cf->data, cf->len);
776         }
777
778         usb_fill_bulk_urb(urb, dev->udev,
779                           usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
780                           hf, dev->hf_size_tx,
781                           gs_usb_xmit_callback, txc);
782
783         urb->transfer_flags |= URB_FREE_BUFFER;
784         usb_anchor_urb(urb, &dev->tx_submitted);
785
786         can_put_echo_skb(skb, netdev, idx, 0);
787
788         atomic_inc(&dev->active_tx_urbs);
789
790         rc = usb_submit_urb(urb, GFP_ATOMIC);
791         if (unlikely(rc)) {                     /* usb send failed */
792                 atomic_dec(&dev->active_tx_urbs);
793
794                 can_free_echo_skb(netdev, idx, NULL);
795                 gs_free_tx_context(txc);
796
797                 usb_unanchor_urb(urb);
798
799                 if (rc == -ENODEV) {
800                         netif_device_detach(netdev);
801                 } else {
802                         netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
803                         stats->tx_dropped++;
804                 }
805         } else {
806                 /* Slow down tx path */
807                 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
808                         netif_stop_queue(netdev);
809         }
810
811         /* let usb core take care of this urb */
812         usb_free_urb(urb);
813
814         return NETDEV_TX_OK;
815
816  badidx:
817         kfree(hf);
818  nomem_hf:
819         usb_free_urb(urb);
820
821  nomem_urb:
822         gs_free_tx_context(txc);
823         dev_kfree_skb(skb);
824         stats->tx_dropped++;
825         return NETDEV_TX_OK;
826 }
827
828 static int gs_can_open(struct net_device *netdev)
829 {
830         struct gs_can *dev = netdev_priv(netdev);
831         struct gs_usb *parent = dev->parent;
832         struct gs_device_mode dm = {
833                 .mode = cpu_to_le32(GS_CAN_MODE_START),
834         };
835         struct gs_host_frame *hf;
836         u32 ctrlmode;
837         u32 flags = 0;
838         int rc, i;
839
840         rc = open_candev(netdev);
841         if (rc)
842                 return rc;
843
844         ctrlmode = dev->can.ctrlmode;
845         if (ctrlmode & CAN_CTRLMODE_FD) {
846                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
847                         dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
848                 else
849                         dev->hf_size_tx = struct_size(hf, canfd, 1);
850         } else {
851                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
852                         dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
853                 else
854                         dev->hf_size_tx = struct_size(hf, classic_can, 1);
855         }
856
857         if (!parent->active_channels) {
858                 for (i = 0; i < GS_MAX_RX_URBS; i++) {
859                         struct urb *urb;
860                         u8 *buf;
861
862                         /* alloc rx urb */
863                         urb = usb_alloc_urb(0, GFP_KERNEL);
864                         if (!urb)
865                                 return -ENOMEM;
866
867                         /* alloc rx buffer */
868                         buf = kmalloc(dev->parent->hf_size_rx,
869                                       GFP_KERNEL);
870                         if (!buf) {
871                                 netdev_err(netdev,
872                                            "No memory left for USB buffer\n");
873                                 usb_free_urb(urb);
874                                 return -ENOMEM;
875                         }
876
877                         /* fill, anchor, and submit rx urb */
878                         usb_fill_bulk_urb(urb,
879                                           dev->udev,
880                                           usb_rcvbulkpipe(dev->udev,
881                                                           GS_USB_ENDPOINT_IN),
882                                           buf,
883                                           dev->parent->hf_size_rx,
884                                           gs_usb_receive_bulk_callback, parent);
885                         urb->transfer_flags |= URB_FREE_BUFFER;
886
887                         usb_anchor_urb(urb, &parent->rx_submitted);
888
889                         rc = usb_submit_urb(urb, GFP_KERNEL);
890                         if (rc) {
891                                 if (rc == -ENODEV)
892                                         netif_device_detach(dev->netdev);
893
894                                 netdev_err(netdev,
895                                            "usb_submit failed (err=%d)\n", rc);
896
897                                 usb_unanchor_urb(urb);
898                                 usb_free_urb(urb);
899                                 break;
900                         }
901
902                         /* Drop reference,
903                          * USB core will take care of freeing it
904                          */
905                         usb_free_urb(urb);
906                 }
907         }
908
909         /* flags */
910         if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
911                 flags |= GS_CAN_MODE_LOOP_BACK;
912
913         if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
914                 flags |= GS_CAN_MODE_LISTEN_ONLY;
915
916         if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
917                 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
918
919         if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
920                 flags |= GS_CAN_MODE_ONE_SHOT;
921
922         if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
923                 flags |= GS_CAN_MODE_BERR_REPORTING;
924
925         if (ctrlmode & CAN_CTRLMODE_FD)
926                 flags |= GS_CAN_MODE_FD;
927
928         /* if hardware supports timestamps, enable it */
929         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
930                 flags |= GS_CAN_MODE_HW_TIMESTAMP;
931
932                 /* start polling timestamp */
933                 gs_usb_timestamp_init(dev);
934         }
935
936         /* finally start device */
937         dev->can.state = CAN_STATE_ERROR_ACTIVE;
938         dm.flags = cpu_to_le32(flags);
939         rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
940                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
941                                   dev->channel, 0, &dm, sizeof(dm), 1000,
942                                   GFP_KERNEL);
943         if (rc) {
944                 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
945                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
946                         gs_usb_timestamp_stop(dev);
947                 dev->can.state = CAN_STATE_STOPPED;
948                 return rc;
949         }
950
951         parent->active_channels++;
952         if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
953                 netif_start_queue(netdev);
954
955         return 0;
956 }
957
958 static int gs_usb_get_state(const struct net_device *netdev,
959                             struct can_berr_counter *bec,
960                             enum can_state *state)
961 {
962         struct gs_can *dev = netdev_priv(netdev);
963         struct gs_device_state ds;
964         int rc;
965
966         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
967                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
968                                   dev->channel, 0,
969                                   &ds, sizeof(ds),
970                                   USB_CTRL_GET_TIMEOUT,
971                                   GFP_KERNEL);
972         if (rc)
973                 return rc;
974
975         if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
976                 return -EOPNOTSUPP;
977
978         *state = le32_to_cpu(ds.state);
979         bec->txerr = le32_to_cpu(ds.txerr);
980         bec->rxerr = le32_to_cpu(ds.rxerr);
981
982         return 0;
983 }
984
985 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
986                                        struct can_berr_counter *bec)
987 {
988         enum can_state state;
989
990         return gs_usb_get_state(netdev, bec, &state);
991 }
992
993 static int gs_can_close(struct net_device *netdev)
994 {
995         int rc;
996         struct gs_can *dev = netdev_priv(netdev);
997         struct gs_usb *parent = dev->parent;
998
999         netif_stop_queue(netdev);
1000
1001         /* stop polling timestamp */
1002         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1003                 gs_usb_timestamp_stop(dev);
1004
1005         /* Stop polling */
1006         parent->active_channels--;
1007         if (!parent->active_channels) {
1008                 usb_kill_anchored_urbs(&parent->rx_submitted);
1009         }
1010
1011         /* Stop sending URBs */
1012         usb_kill_anchored_urbs(&dev->tx_submitted);
1013         atomic_set(&dev->active_tx_urbs, 0);
1014
1015         /* reset the device */
1016         rc = gs_cmd_reset(dev);
1017         if (rc < 0)
1018                 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1019
1020         /* reset tx contexts */
1021         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1022                 dev->tx_context[rc].dev = dev;
1023                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1024         }
1025
1026         /* close the netdev */
1027         close_candev(netdev);
1028
1029         return 0;
1030 }
1031
1032 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1033 {
1034         const struct gs_can *dev = netdev_priv(netdev);
1035
1036         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1037                 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1038
1039         return -EOPNOTSUPP;
1040 }
1041
1042 static const struct net_device_ops gs_usb_netdev_ops = {
1043         .ndo_open = gs_can_open,
1044         .ndo_stop = gs_can_close,
1045         .ndo_start_xmit = gs_can_start_xmit,
1046         .ndo_change_mtu = can_change_mtu,
1047         .ndo_eth_ioctl = gs_can_eth_ioctl,
1048 };
1049
1050 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1051 {
1052         struct gs_can *dev = netdev_priv(netdev);
1053         struct gs_identify_mode imode;
1054
1055         if (do_identify)
1056                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1057         else
1058                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1059
1060         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1061                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1062                                     dev->channel, 0, &imode, sizeof(imode), 100,
1063                                     GFP_KERNEL);
1064 }
1065
1066 /* blink LED's for finding the this interface */
1067 static int gs_usb_set_phys_id(struct net_device *netdev,
1068                               enum ethtool_phys_id_state state)
1069 {
1070         const struct gs_can *dev = netdev_priv(netdev);
1071         int rc = 0;
1072
1073         if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1074                 return -EOPNOTSUPP;
1075
1076         switch (state) {
1077         case ETHTOOL_ID_ACTIVE:
1078                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1079                 break;
1080         case ETHTOOL_ID_INACTIVE:
1081                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1082                 break;
1083         default:
1084                 break;
1085         }
1086
1087         return rc;
1088 }
1089
1090 static int gs_usb_get_ts_info(struct net_device *netdev,
1091                               struct ethtool_ts_info *info)
1092 {
1093         struct gs_can *dev = netdev_priv(netdev);
1094
1095         /* report if device supports HW timestamps */
1096         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1097                 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1098
1099         return ethtool_op_get_ts_info(netdev, info);
1100 }
1101
1102 static const struct ethtool_ops gs_usb_ethtool_ops = {
1103         .set_phys_id = gs_usb_set_phys_id,
1104         .get_ts_info = gs_usb_get_ts_info,
1105 };
1106
1107 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1108 {
1109         struct gs_can *dev = netdev_priv(netdev);
1110         struct gs_device_termination_state term_state;
1111         int rc;
1112
1113         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1114                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1115                                   dev->channel, 0,
1116                                   &term_state, sizeof(term_state), 1000,
1117                                   GFP_KERNEL);
1118         if (rc)
1119                 return rc;
1120
1121         if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1122                 *term = GS_USB_TERMINATION_ENABLED;
1123         else
1124                 *term = GS_USB_TERMINATION_DISABLED;
1125
1126         return 0;
1127 }
1128
1129 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1130 {
1131         struct gs_can *dev = netdev_priv(netdev);
1132         struct gs_device_termination_state term_state;
1133
1134         if (term == GS_USB_TERMINATION_ENABLED)
1135                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1136         else
1137                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1138
1139         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1140                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1141                                     dev->channel, 0,
1142                                     &term_state, sizeof(term_state), 1000,
1143                                     GFP_KERNEL);
1144 }
1145
1146 static const u16 gs_usb_termination_const[] = {
1147         GS_USB_TERMINATION_DISABLED,
1148         GS_USB_TERMINATION_ENABLED
1149 };
1150
1151 static struct gs_can *gs_make_candev(unsigned int channel,
1152                                      struct usb_interface *intf,
1153                                      struct gs_device_config *dconf)
1154 {
1155         struct gs_can *dev;
1156         struct net_device *netdev;
1157         int rc;
1158         struct gs_device_bt_const_extended bt_const_extended;
1159         struct gs_device_bt_const bt_const;
1160         u32 feature;
1161
1162         /* fetch bit timing constants */
1163         rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1164                                   GS_USB_BREQ_BT_CONST,
1165                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1166                                   channel, 0, &bt_const, sizeof(bt_const), 1000,
1167                                   GFP_KERNEL);
1168
1169         if (rc) {
1170                 dev_err(&intf->dev,
1171                         "Couldn't get bit timing const for channel %d (%pe)\n",
1172                         channel, ERR_PTR(rc));
1173                 return ERR_PTR(rc);
1174         }
1175
1176         /* create netdev */
1177         netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1178         if (!netdev) {
1179                 dev_err(&intf->dev, "Couldn't allocate candev\n");
1180                 return ERR_PTR(-ENOMEM);
1181         }
1182
1183         dev = netdev_priv(netdev);
1184
1185         netdev->netdev_ops = &gs_usb_netdev_ops;
1186         netdev->ethtool_ops = &gs_usb_ethtool_ops;
1187
1188         netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1189         netdev->dev_id = channel;
1190
1191         /* dev setup */
1192         strcpy(dev->bt_const.name, KBUILD_MODNAME);
1193         dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1194         dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1195         dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1196         dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1197         dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1198         dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1199         dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1200         dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1201
1202         dev->udev = interface_to_usbdev(intf);
1203         dev->netdev = netdev;
1204         dev->channel = channel;
1205
1206         init_usb_anchor(&dev->tx_submitted);
1207         atomic_set(&dev->active_tx_urbs, 0);
1208         spin_lock_init(&dev->tx_ctx_lock);
1209         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1210                 dev->tx_context[rc].dev = dev;
1211                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1212         }
1213
1214         /* can setup */
1215         dev->can.state = CAN_STATE_STOPPED;
1216         dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1217         dev->can.bittiming_const = &dev->bt_const;
1218         dev->can.do_set_bittiming = gs_usb_set_bittiming;
1219
1220         dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1221
1222         feature = le32_to_cpu(bt_const.feature);
1223         dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1224         if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1225                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1226
1227         if (feature & GS_CAN_FEATURE_LOOP_BACK)
1228                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1229
1230         if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1231                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1232
1233         if (feature & GS_CAN_FEATURE_ONE_SHOT)
1234                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1235
1236         if (feature & GS_CAN_FEATURE_FD) {
1237                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1238                 /* The data bit timing will be overwritten, if
1239                  * GS_CAN_FEATURE_BT_CONST_EXT is set.
1240                  */
1241                 dev->can.data_bittiming_const = &dev->bt_const;
1242                 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1243         }
1244
1245         if (feature & GS_CAN_FEATURE_TERMINATION) {
1246                 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1247                 if (rc) {
1248                         dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1249
1250                         dev_info(&intf->dev,
1251                                  "Disabling termination support for channel %d (%pe)\n",
1252                                  channel, ERR_PTR(rc));
1253                 } else {
1254                         dev->can.termination_const = gs_usb_termination_const;
1255                         dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1256                         dev->can.do_set_termination = gs_usb_set_termination;
1257                 }
1258         }
1259
1260         if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1261                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1262
1263         if (feature & GS_CAN_FEATURE_GET_STATE)
1264                 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1265
1266         /* The CANtact Pro from LinkLayer Labs is based on the
1267          * LPC54616 µC, which is affected by the NXP LPC USB transfer
1268          * erratum. However, the current firmware (version 2) doesn't
1269          * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1270          * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1271          * this issue.
1272          *
1273          * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1274          * CANtact Pro firmware uses a request value, which is already
1275          * used by the candleLight firmware for a different purpose
1276          * (GS_USB_BREQ_GET_USER_ID). Set the feature
1277          * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1278          * issue.
1279          */
1280         if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1281             dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1282             dev->udev->manufacturer && dev->udev->product &&
1283             !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1284             !strcmp(dev->udev->product, "CANtact Pro") &&
1285             (le32_to_cpu(dconf->sw_version) <= 2))
1286                 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1287                         GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1288
1289         /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1290         if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1291               feature & GS_CAN_FEATURE_IDENTIFY))
1292                 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1293
1294         /* fetch extended bit timing constants if device has feature
1295          * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1296          */
1297         if (feature & GS_CAN_FEATURE_FD &&
1298             feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1299                 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1300                                           GS_USB_BREQ_BT_CONST_EXT,
1301                                           USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1302                                           channel, 0, &bt_const_extended,
1303                                           sizeof(bt_const_extended),
1304                                           1000, GFP_KERNEL);
1305                 if (rc) {
1306                         dev_err(&intf->dev,
1307                                 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1308                                 channel, ERR_PTR(rc));
1309                         goto out_free_candev;
1310                 }
1311
1312                 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1313                 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1314                 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1315                 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1316                 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1317                 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1318                 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1319                 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1320                 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1321
1322                 dev->can.data_bittiming_const = &dev->data_bt_const;
1323         }
1324
1325         SET_NETDEV_DEV(netdev, &intf->dev);
1326
1327         rc = register_candev(dev->netdev);
1328         if (rc) {
1329                 dev_err(&intf->dev,
1330                         "Couldn't register candev for channel %d (%pe)\n",
1331                         channel, ERR_PTR(rc));
1332                 goto out_free_candev;
1333         }
1334
1335         return dev;
1336
1337  out_free_candev:
1338         free_candev(dev->netdev);
1339         return ERR_PTR(rc);
1340 }
1341
1342 static void gs_destroy_candev(struct gs_can *dev)
1343 {
1344         unregister_candev(dev->netdev);
1345         usb_kill_anchored_urbs(&dev->tx_submitted);
1346         free_candev(dev->netdev);
1347 }
1348
1349 static int gs_usb_probe(struct usb_interface *intf,
1350                         const struct usb_device_id *id)
1351 {
1352         struct usb_device *udev = interface_to_usbdev(intf);
1353         struct gs_host_frame *hf;
1354         struct gs_usb *dev;
1355         struct gs_host_config hconf = {
1356                 .byte_order = cpu_to_le32(0x0000beef),
1357         };
1358         struct gs_device_config dconf;
1359         unsigned int icount, i;
1360         int rc;
1361
1362         /* send host config */
1363         rc = usb_control_msg_send(udev, 0,
1364                                   GS_USB_BREQ_HOST_FORMAT,
1365                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1366                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1367                                   &hconf, sizeof(hconf), 1000,
1368                                   GFP_KERNEL);
1369         if (rc) {
1370                 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1371                 return rc;
1372         }
1373
1374         /* read device config */
1375         rc = usb_control_msg_recv(udev, 0,
1376                                   GS_USB_BREQ_DEVICE_CONFIG,
1377                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1378                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1379                                   &dconf, sizeof(dconf), 1000,
1380                                   GFP_KERNEL);
1381         if (rc) {
1382                 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1383                         rc);
1384                 return rc;
1385         }
1386
1387         icount = dconf.icount + 1;
1388         dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1389
1390         if (icount > GS_MAX_INTF) {
1391                 dev_err(&intf->dev,
1392                         "Driver cannot handle more that %u CAN interfaces\n",
1393                         GS_MAX_INTF);
1394                 return -EINVAL;
1395         }
1396
1397         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1398         if (!dev)
1399                 return -ENOMEM;
1400
1401         init_usb_anchor(&dev->rx_submitted);
1402
1403         usb_set_intfdata(intf, dev);
1404         dev->udev = udev;
1405
1406         for (i = 0; i < icount; i++) {
1407                 unsigned int hf_size_rx = 0;
1408
1409                 dev->canch[i] = gs_make_candev(i, intf, &dconf);
1410                 if (IS_ERR_OR_NULL(dev->canch[i])) {
1411                         /* save error code to return later */
1412                         rc = PTR_ERR(dev->canch[i]);
1413
1414                         /* on failure destroy previously created candevs */
1415                         icount = i;
1416                         for (i = 0; i < icount; i++)
1417                                 gs_destroy_candev(dev->canch[i]);
1418
1419                         usb_kill_anchored_urbs(&dev->rx_submitted);
1420                         kfree(dev);
1421                         return rc;
1422                 }
1423                 dev->canch[i]->parent = dev;
1424
1425                 /* set RX packet size based on FD and if hardware
1426                 * timestamps are supported.
1427                 */
1428                 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1429                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1430                                 hf_size_rx = struct_size(hf, canfd_ts, 1);
1431                         else
1432                                 hf_size_rx = struct_size(hf, canfd, 1);
1433                 } else {
1434                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1435                                 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1436                         else
1437                                 hf_size_rx = struct_size(hf, classic_can, 1);
1438                 }
1439                 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1440         }
1441
1442         return 0;
1443 }
1444
1445 static void gs_usb_disconnect(struct usb_interface *intf)
1446 {
1447         struct gs_usb *dev = usb_get_intfdata(intf);
1448         unsigned int i;
1449
1450         usb_set_intfdata(intf, NULL);
1451
1452         if (!dev) {
1453                 dev_err(&intf->dev, "Disconnect (nodata)\n");
1454                 return;
1455         }
1456
1457         for (i = 0; i < GS_MAX_INTF; i++)
1458                 if (dev->canch[i])
1459                         gs_destroy_candev(dev->canch[i]);
1460
1461         usb_kill_anchored_urbs(&dev->rx_submitted);
1462         kfree(dev);
1463 }
1464
1465 static const struct usb_device_id gs_usb_table[] = {
1466         { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1467                                       USB_GS_USB_1_PRODUCT_ID, 0) },
1468         { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1469                                       USB_CANDLELIGHT_PRODUCT_ID, 0) },
1470         { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1471                                       USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1472         { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1473                                       USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1474         {} /* Terminating entry */
1475 };
1476
1477 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1478
1479 static struct usb_driver gs_usb_driver = {
1480         .name = KBUILD_MODNAME,
1481         .probe = gs_usb_probe,
1482         .disconnect = gs_usb_disconnect,
1483         .id_table = gs_usb_table,
1484 };
1485
1486 module_usb_driver(gs_usb_driver);
1487
1488 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1489 MODULE_DESCRIPTION(
1490 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1491 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1492 "and bytewerk.org candleLight USB CAN interfaces.");
1493 MODULE_LICENSE("GPL v2");