Merge tag 'drm-misc-next-fixes-2023-09-01' of git://anongit.freedesktop.org/drm/drm...
[platform/kernel/linux-rpi.git] / drivers / net / can / usb / gs_usb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3  * and bytewerk.org candleLight USB CAN interfaces.
4  *
5  * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6  * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7  * Copyright (C) 2016 Hubert Denkmair
8  *
9  * Many thanks to all socketcan devs!
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/clocksource.h>
14 #include <linux/ethtool.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/signal.h>
19 #include <linux/timecounter.h>
20 #include <linux/units.h>
21 #include <linux/usb.h>
22 #include <linux/workqueue.h>
23
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/error.h>
27
28 /* Device specific constants */
29 #define USB_GS_USB_1_VENDOR_ID 0x1d50
30 #define USB_GS_USB_1_PRODUCT_ID 0x606f
31
32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
34
35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
37
38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
40
41 #define GS_USB_ENDPOINT_IN 1
42 #define GS_USB_ENDPOINT_OUT 2
43
44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45  * for timer overflow (will be after ~71 minutes)
46  */
47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50               CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
51
52 /* Device specific constants */
53 enum gs_usb_breq {
54         GS_USB_BREQ_HOST_FORMAT = 0,
55         GS_USB_BREQ_BITTIMING,
56         GS_USB_BREQ_MODE,
57         GS_USB_BREQ_BERR,
58         GS_USB_BREQ_BT_CONST,
59         GS_USB_BREQ_DEVICE_CONFIG,
60         GS_USB_BREQ_TIMESTAMP,
61         GS_USB_BREQ_IDENTIFY,
62         GS_USB_BREQ_GET_USER_ID,
63         GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64         GS_USB_BREQ_SET_USER_ID,
65         GS_USB_BREQ_DATA_BITTIMING,
66         GS_USB_BREQ_BT_CONST_EXT,
67         GS_USB_BREQ_SET_TERMINATION,
68         GS_USB_BREQ_GET_TERMINATION,
69         GS_USB_BREQ_GET_STATE,
70 };
71
72 enum gs_can_mode {
73         /* reset a channel. turns it off */
74         GS_CAN_MODE_RESET = 0,
75         /* starts a channel */
76         GS_CAN_MODE_START
77 };
78
79 enum gs_can_state {
80         GS_CAN_STATE_ERROR_ACTIVE = 0,
81         GS_CAN_STATE_ERROR_WARNING,
82         GS_CAN_STATE_ERROR_PASSIVE,
83         GS_CAN_STATE_BUS_OFF,
84         GS_CAN_STATE_STOPPED,
85         GS_CAN_STATE_SLEEPING
86 };
87
88 enum gs_can_identify_mode {
89         GS_CAN_IDENTIFY_OFF = 0,
90         GS_CAN_IDENTIFY_ON
91 };
92
93 enum gs_can_termination_state {
94         GS_CAN_TERMINATION_STATE_OFF = 0,
95         GS_CAN_TERMINATION_STATE_ON
96 };
97
98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99 #define GS_USB_TERMINATION_ENABLED 120
100
101 /* data types passed between host and device */
102
103 /* The firmware on the original USB2CAN by Geschwister Schneider
104  * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105  * between the host and the device in host byte order. This is done
106  * with the struct gs_host_config::byte_order member, which is sent
107  * first to indicate the desired byte order.
108  *
109  * The widely used open source firmware candleLight doesn't support
110  * this feature and exchanges the data in little endian byte order.
111  */
112 struct gs_host_config {
113         __le32 byte_order;
114 } __packed;
115
116 struct gs_device_config {
117         u8 reserved1;
118         u8 reserved2;
119         u8 reserved3;
120         u8 icount;
121         __le32 sw_version;
122         __le32 hw_version;
123 } __packed;
124
125 #define GS_CAN_MODE_NORMAL 0
126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127 #define GS_CAN_MODE_LOOP_BACK BIT(1)
128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129 #define GS_CAN_MODE_ONE_SHOT BIT(3)
130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132 /* GS_CAN_FEATURE_USER_ID BIT(6) */
133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134 #define GS_CAN_MODE_FD BIT(8)
135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
138 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
140
141 struct gs_device_mode {
142         __le32 mode;
143         __le32 flags;
144 } __packed;
145
146 struct gs_device_state {
147         __le32 state;
148         __le32 rxerr;
149         __le32 txerr;
150 } __packed;
151
152 struct gs_device_bittiming {
153         __le32 prop_seg;
154         __le32 phase_seg1;
155         __le32 phase_seg2;
156         __le32 sjw;
157         __le32 brp;
158 } __packed;
159
160 struct gs_identify_mode {
161         __le32 mode;
162 } __packed;
163
164 struct gs_device_termination_state {
165         __le32 state;
166 } __packed;
167
168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
174 #define GS_CAN_FEATURE_USER_ID BIT(6)
175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176 #define GS_CAN_FEATURE_FD BIT(8)
177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179 #define GS_CAN_FEATURE_TERMINATION BIT(11)
180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181 #define GS_CAN_FEATURE_GET_STATE BIT(13)
182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
183
184 /* internal quirks - keep in GS_CAN_FEATURE space for now */
185
186 /* CANtact Pro original firmware:
187  * BREQ DATA_BITTIMING overlaps with GET_USER_ID
188  */
189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
190
191 struct gs_device_bt_const {
192         __le32 feature;
193         __le32 fclk_can;
194         __le32 tseg1_min;
195         __le32 tseg1_max;
196         __le32 tseg2_min;
197         __le32 tseg2_max;
198         __le32 sjw_max;
199         __le32 brp_min;
200         __le32 brp_max;
201         __le32 brp_inc;
202 } __packed;
203
204 struct gs_device_bt_const_extended {
205         __le32 feature;
206         __le32 fclk_can;
207         __le32 tseg1_min;
208         __le32 tseg1_max;
209         __le32 tseg2_min;
210         __le32 tseg2_max;
211         __le32 sjw_max;
212         __le32 brp_min;
213         __le32 brp_max;
214         __le32 brp_inc;
215
216         __le32 dtseg1_min;
217         __le32 dtseg1_max;
218         __le32 dtseg2_min;
219         __le32 dtseg2_max;
220         __le32 dsjw_max;
221         __le32 dbrp_min;
222         __le32 dbrp_max;
223         __le32 dbrp_inc;
224 } __packed;
225
226 #define GS_CAN_FLAG_OVERFLOW BIT(0)
227 #define GS_CAN_FLAG_FD BIT(1)
228 #define GS_CAN_FLAG_BRS BIT(2)
229 #define GS_CAN_FLAG_ESI BIT(3)
230
231 struct classic_can {
232         u8 data[8];
233 } __packed;
234
235 struct classic_can_ts {
236         u8 data[8];
237         __le32 timestamp_us;
238 } __packed;
239
240 struct classic_can_quirk {
241         u8 data[8];
242         u8 quirk;
243 } __packed;
244
245 struct canfd {
246         u8 data[64];
247 } __packed;
248
249 struct canfd_ts {
250         u8 data[64];
251         __le32 timestamp_us;
252 } __packed;
253
254 struct canfd_quirk {
255         u8 data[64];
256         u8 quirk;
257 } __packed;
258
259 struct gs_host_frame {
260         u32 echo_id;
261         __le32 can_id;
262
263         u8 can_dlc;
264         u8 channel;
265         u8 flags;
266         u8 reserved;
267
268         union {
269                 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270                 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271                 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272                 DECLARE_FLEX_ARRAY(struct canfd, canfd);
273                 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274                 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
275         };
276 } __packed;
277 /* The GS USB devices make use of the same flags and masks as in
278  * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
279  */
280
281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282 #define GS_MAX_TX_URBS 10
283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284 #define GS_MAX_RX_URBS 30
285 /* Maximum number of interfaces the driver supports per device.
286  * Current hardware only supports 3 interfaces. The future may vary.
287  */
288 #define GS_MAX_INTF 3
289
290 struct gs_tx_context {
291         struct gs_can *dev;
292         unsigned int echo_id;
293 };
294
295 struct gs_can {
296         struct can_priv can; /* must be the first member */
297
298         struct gs_usb *parent;
299
300         struct net_device *netdev;
301         struct usb_device *udev;
302
303         struct can_bittiming_const bt_const, data_bt_const;
304         unsigned int channel;   /* channel number */
305
306         u32 feature;
307         unsigned int hf_size_tx;
308
309         /* This lock prevents a race condition between xmit and receive. */
310         spinlock_t tx_ctx_lock;
311         struct gs_tx_context tx_context[GS_MAX_TX_URBS];
312
313         struct usb_anchor tx_submitted;
314         atomic_t active_tx_urbs;
315 };
316
317 /* usb interface struct */
318 struct gs_usb {
319         struct gs_can *canch[GS_MAX_INTF];
320         struct usb_anchor rx_submitted;
321         struct usb_device *udev;
322
323         /* time counter for hardware timestamps */
324         struct cyclecounter cc;
325         struct timecounter tc;
326         spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
327         struct delayed_work timestamp;
328
329         unsigned int hf_size_rx;
330         u8 active_channels;
331 };
332
333 /* 'allocate' a tx context.
334  * returns a valid tx context or NULL if there is no space.
335  */
336 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
337 {
338         int i = 0;
339         unsigned long flags;
340
341         spin_lock_irqsave(&dev->tx_ctx_lock, flags);
342
343         for (; i < GS_MAX_TX_URBS; i++) {
344                 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
345                         dev->tx_context[i].echo_id = i;
346                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
347                         return &dev->tx_context[i];
348                 }
349         }
350
351         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
352         return NULL;
353 }
354
355 /* releases a tx context
356  */
357 static void gs_free_tx_context(struct gs_tx_context *txc)
358 {
359         txc->echo_id = GS_MAX_TX_URBS;
360 }
361
362 /* Get a tx context by id.
363  */
364 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
365                                                unsigned int id)
366 {
367         unsigned long flags;
368
369         if (id < GS_MAX_TX_URBS) {
370                 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
371                 if (dev->tx_context[id].echo_id == id) {
372                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
373                         return &dev->tx_context[id];
374                 }
375                 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
376         }
377         return NULL;
378 }
379
380 static int gs_cmd_reset(struct gs_can *dev)
381 {
382         struct gs_device_mode dm = {
383                 .mode = GS_CAN_MODE_RESET,
384         };
385
386         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
387                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
388                                     dev->channel, 0, &dm, sizeof(dm), 1000,
389                                     GFP_KERNEL);
390 }
391
392 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
393                                        u32 *timestamp_p)
394 {
395         __le32 timestamp;
396         int rc;
397
398         rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
399                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
400                                   0, 0,
401                                   &timestamp, sizeof(timestamp),
402                                   USB_CTRL_GET_TIMEOUT,
403                                   GFP_KERNEL);
404         if (rc)
405                 return rc;
406
407         *timestamp_p = le32_to_cpu(timestamp);
408
409         return 0;
410 }
411
412 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
413 {
414         struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
415         u32 timestamp = 0;
416         int err;
417
418         lockdep_assert_held(&parent->tc_lock);
419
420         /* drop lock for synchronous USB transfer */
421         spin_unlock_bh(&parent->tc_lock);
422         err = gs_usb_get_timestamp(parent, &timestamp);
423         spin_lock_bh(&parent->tc_lock);
424         if (err)
425                 dev_err(&parent->udev->dev,
426                         "Error %d while reading timestamp. HW timestamps may be inaccurate.",
427                         err);
428
429         return timestamp;
430 }
431
432 static void gs_usb_timestamp_work(struct work_struct *work)
433 {
434         struct delayed_work *delayed_work = to_delayed_work(work);
435         struct gs_usb *parent;
436
437         parent = container_of(delayed_work, struct gs_usb, timestamp);
438         spin_lock_bh(&parent->tc_lock);
439         timecounter_read(&parent->tc);
440         spin_unlock_bh(&parent->tc_lock);
441
442         schedule_delayed_work(&parent->timestamp,
443                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
444 }
445
446 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
447                                      struct sk_buff *skb, u32 timestamp)
448 {
449         struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
450         struct gs_usb *parent = dev->parent;
451         u64 ns;
452
453         spin_lock_bh(&parent->tc_lock);
454         ns = timecounter_cyc2time(&parent->tc, timestamp);
455         spin_unlock_bh(&parent->tc_lock);
456
457         hwtstamps->hwtstamp = ns_to_ktime(ns);
458 }
459
460 static void gs_usb_timestamp_init(struct gs_usb *parent)
461 {
462         struct cyclecounter *cc = &parent->cc;
463
464         cc->read = gs_usb_timestamp_read;
465         cc->mask = CYCLECOUNTER_MASK(32);
466         cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
467         cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
468
469         spin_lock_init(&parent->tc_lock);
470         spin_lock_bh(&parent->tc_lock);
471         timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
472         spin_unlock_bh(&parent->tc_lock);
473
474         INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
475         schedule_delayed_work(&parent->timestamp,
476                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
477 }
478
479 static void gs_usb_timestamp_stop(struct gs_usb *parent)
480 {
481         cancel_delayed_work_sync(&parent->timestamp);
482 }
483
484 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
485 {
486         struct can_device_stats *can_stats = &dev->can.can_stats;
487
488         if (cf->can_id & CAN_ERR_RESTARTED) {
489                 dev->can.state = CAN_STATE_ERROR_ACTIVE;
490                 can_stats->restarts++;
491         } else if (cf->can_id & CAN_ERR_BUSOFF) {
492                 dev->can.state = CAN_STATE_BUS_OFF;
493                 can_stats->bus_off++;
494         } else if (cf->can_id & CAN_ERR_CRTL) {
495                 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
496                     (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
497                         dev->can.state = CAN_STATE_ERROR_WARNING;
498                         can_stats->error_warning++;
499                 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
500                            (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
501                         dev->can.state = CAN_STATE_ERROR_PASSIVE;
502                         can_stats->error_passive++;
503                 } else {
504                         dev->can.state = CAN_STATE_ERROR_ACTIVE;
505                 }
506         }
507 }
508
509 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
510                                  const struct gs_host_frame *hf)
511 {
512         u32 timestamp;
513
514         if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
515                 return;
516
517         if (hf->flags & GS_CAN_FLAG_FD)
518                 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
519         else
520                 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
521
522         gs_usb_skb_set_timestamp(dev, skb, timestamp);
523
524         return;
525 }
526
527 static void gs_usb_receive_bulk_callback(struct urb *urb)
528 {
529         struct gs_usb *usbcan = urb->context;
530         struct gs_can *dev;
531         struct net_device *netdev;
532         int rc;
533         struct net_device_stats *stats;
534         struct gs_host_frame *hf = urb->transfer_buffer;
535         struct gs_tx_context *txc;
536         struct can_frame *cf;
537         struct canfd_frame *cfd;
538         struct sk_buff *skb;
539
540         BUG_ON(!usbcan);
541
542         switch (urb->status) {
543         case 0: /* success */
544                 break;
545         case -ENOENT:
546         case -ESHUTDOWN:
547                 return;
548         default:
549                 /* do not resubmit aborted urbs. eg: when device goes down */
550                 return;
551         }
552
553         /* device reports out of range channel id */
554         if (hf->channel >= GS_MAX_INTF)
555                 goto device_detach;
556
557         dev = usbcan->canch[hf->channel];
558
559         netdev = dev->netdev;
560         stats = &netdev->stats;
561
562         if (!netif_device_present(netdev))
563                 return;
564
565         if (!netif_running(netdev))
566                 goto resubmit_urb;
567
568         if (hf->echo_id == -1) { /* normal rx */
569                 if (hf->flags & GS_CAN_FLAG_FD) {
570                         skb = alloc_canfd_skb(dev->netdev, &cfd);
571                         if (!skb)
572                                 return;
573
574                         cfd->can_id = le32_to_cpu(hf->can_id);
575                         cfd->len = can_fd_dlc2len(hf->can_dlc);
576                         if (hf->flags & GS_CAN_FLAG_BRS)
577                                 cfd->flags |= CANFD_BRS;
578                         if (hf->flags & GS_CAN_FLAG_ESI)
579                                 cfd->flags |= CANFD_ESI;
580
581                         memcpy(cfd->data, hf->canfd->data, cfd->len);
582                 } else {
583                         skb = alloc_can_skb(dev->netdev, &cf);
584                         if (!skb)
585                                 return;
586
587                         cf->can_id = le32_to_cpu(hf->can_id);
588                         can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
589
590                         memcpy(cf->data, hf->classic_can->data, 8);
591
592                         /* ERROR frames tell us information about the controller */
593                         if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
594                                 gs_update_state(dev, cf);
595                 }
596
597                 gs_usb_set_timestamp(dev, skb, hf);
598
599                 netdev->stats.rx_packets++;
600                 netdev->stats.rx_bytes += hf->can_dlc;
601
602                 netif_rx(skb);
603         } else { /* echo_id == hf->echo_id */
604                 if (hf->echo_id >= GS_MAX_TX_URBS) {
605                         netdev_err(netdev,
606                                    "Unexpected out of range echo id %u\n",
607                                    hf->echo_id);
608                         goto resubmit_urb;
609                 }
610
611                 txc = gs_get_tx_context(dev, hf->echo_id);
612
613                 /* bad devices send bad echo_ids. */
614                 if (!txc) {
615                         netdev_err(netdev,
616                                    "Unexpected unused echo id %u\n",
617                                    hf->echo_id);
618                         goto resubmit_urb;
619                 }
620
621                 skb = dev->can.echo_skb[hf->echo_id];
622                 gs_usb_set_timestamp(dev, skb, hf);
623
624                 netdev->stats.tx_packets++;
625                 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
626                                                            NULL);
627
628                 gs_free_tx_context(txc);
629
630                 atomic_dec(&dev->active_tx_urbs);
631
632                 netif_wake_queue(netdev);
633         }
634
635         if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
636                 skb = alloc_can_err_skb(netdev, &cf);
637                 if (!skb)
638                         goto resubmit_urb;
639
640                 cf->can_id |= CAN_ERR_CRTL;
641                 cf->len = CAN_ERR_DLC;
642                 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
643                 stats->rx_over_errors++;
644                 stats->rx_errors++;
645                 netif_rx(skb);
646         }
647
648  resubmit_urb:
649         usb_fill_bulk_urb(urb, usbcan->udev,
650                           usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
651                           hf, dev->parent->hf_size_rx,
652                           gs_usb_receive_bulk_callback, usbcan);
653
654         rc = usb_submit_urb(urb, GFP_ATOMIC);
655
656         /* USB failure take down all interfaces */
657         if (rc == -ENODEV) {
658  device_detach:
659                 for (rc = 0; rc < GS_MAX_INTF; rc++) {
660                         if (usbcan->canch[rc])
661                                 netif_device_detach(usbcan->canch[rc]->netdev);
662                 }
663         }
664 }
665
666 static int gs_usb_set_bittiming(struct net_device *netdev)
667 {
668         struct gs_can *dev = netdev_priv(netdev);
669         struct can_bittiming *bt = &dev->can.bittiming;
670         struct gs_device_bittiming dbt = {
671                 .prop_seg = cpu_to_le32(bt->prop_seg),
672                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
673                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
674                 .sjw = cpu_to_le32(bt->sjw),
675                 .brp = cpu_to_le32(bt->brp),
676         };
677
678         /* request bit timings */
679         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
680                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
681                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
682                                     GFP_KERNEL);
683 }
684
685 static int gs_usb_set_data_bittiming(struct net_device *netdev)
686 {
687         struct gs_can *dev = netdev_priv(netdev);
688         struct can_bittiming *bt = &dev->can.data_bittiming;
689         struct gs_device_bittiming dbt = {
690                 .prop_seg = cpu_to_le32(bt->prop_seg),
691                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
692                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
693                 .sjw = cpu_to_le32(bt->sjw),
694                 .brp = cpu_to_le32(bt->brp),
695         };
696         u8 request = GS_USB_BREQ_DATA_BITTIMING;
697
698         if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
699                 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
700
701         /* request data bit timings */
702         return usb_control_msg_send(dev->udev, 0, request,
703                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
704                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
705                                     GFP_KERNEL);
706 }
707
708 static void gs_usb_xmit_callback(struct urb *urb)
709 {
710         struct gs_tx_context *txc = urb->context;
711         struct gs_can *dev = txc->dev;
712         struct net_device *netdev = dev->netdev;
713
714         if (urb->status)
715                 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
716 }
717
718 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
719                                      struct net_device *netdev)
720 {
721         struct gs_can *dev = netdev_priv(netdev);
722         struct net_device_stats *stats = &dev->netdev->stats;
723         struct urb *urb;
724         struct gs_host_frame *hf;
725         struct can_frame *cf;
726         struct canfd_frame *cfd;
727         int rc;
728         unsigned int idx;
729         struct gs_tx_context *txc;
730
731         if (can_dev_dropped_skb(netdev, skb))
732                 return NETDEV_TX_OK;
733
734         /* find an empty context to keep track of transmission */
735         txc = gs_alloc_tx_context(dev);
736         if (!txc)
737                 return NETDEV_TX_BUSY;
738
739         /* create a URB, and a buffer for it */
740         urb = usb_alloc_urb(0, GFP_ATOMIC);
741         if (!urb)
742                 goto nomem_urb;
743
744         hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
745         if (!hf) {
746                 netdev_err(netdev, "No memory left for USB buffer\n");
747                 goto nomem_hf;
748         }
749
750         idx = txc->echo_id;
751
752         if (idx >= GS_MAX_TX_URBS) {
753                 netdev_err(netdev, "Invalid tx context %u\n", idx);
754                 goto badidx;
755         }
756
757         hf->echo_id = idx;
758         hf->channel = dev->channel;
759         hf->flags = 0;
760         hf->reserved = 0;
761
762         if (can_is_canfd_skb(skb)) {
763                 cfd = (struct canfd_frame *)skb->data;
764
765                 hf->can_id = cpu_to_le32(cfd->can_id);
766                 hf->can_dlc = can_fd_len2dlc(cfd->len);
767                 hf->flags |= GS_CAN_FLAG_FD;
768                 if (cfd->flags & CANFD_BRS)
769                         hf->flags |= GS_CAN_FLAG_BRS;
770                 if (cfd->flags & CANFD_ESI)
771                         hf->flags |= GS_CAN_FLAG_ESI;
772
773                 memcpy(hf->canfd->data, cfd->data, cfd->len);
774         } else {
775                 cf = (struct can_frame *)skb->data;
776
777                 hf->can_id = cpu_to_le32(cf->can_id);
778                 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
779
780                 memcpy(hf->classic_can->data, cf->data, cf->len);
781         }
782
783         usb_fill_bulk_urb(urb, dev->udev,
784                           usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
785                           hf, dev->hf_size_tx,
786                           gs_usb_xmit_callback, txc);
787
788         urb->transfer_flags |= URB_FREE_BUFFER;
789         usb_anchor_urb(urb, &dev->tx_submitted);
790
791         can_put_echo_skb(skb, netdev, idx, 0);
792
793         atomic_inc(&dev->active_tx_urbs);
794
795         rc = usb_submit_urb(urb, GFP_ATOMIC);
796         if (unlikely(rc)) {                     /* usb send failed */
797                 atomic_dec(&dev->active_tx_urbs);
798
799                 can_free_echo_skb(netdev, idx, NULL);
800                 gs_free_tx_context(txc);
801
802                 usb_unanchor_urb(urb);
803
804                 if (rc == -ENODEV) {
805                         netif_device_detach(netdev);
806                 } else {
807                         netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
808                         stats->tx_dropped++;
809                 }
810         } else {
811                 /* Slow down tx path */
812                 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
813                         netif_stop_queue(netdev);
814         }
815
816         /* let usb core take care of this urb */
817         usb_free_urb(urb);
818
819         return NETDEV_TX_OK;
820
821  badidx:
822         kfree(hf);
823  nomem_hf:
824         usb_free_urb(urb);
825
826  nomem_urb:
827         gs_free_tx_context(txc);
828         dev_kfree_skb(skb);
829         stats->tx_dropped++;
830         return NETDEV_TX_OK;
831 }
832
833 static int gs_can_open(struct net_device *netdev)
834 {
835         struct gs_can *dev = netdev_priv(netdev);
836         struct gs_usb *parent = dev->parent;
837         struct gs_device_mode dm = {
838                 .mode = cpu_to_le32(GS_CAN_MODE_START),
839         };
840         struct gs_host_frame *hf;
841         struct urb *urb = NULL;
842         u32 ctrlmode;
843         u32 flags = 0;
844         int rc, i;
845
846         rc = open_candev(netdev);
847         if (rc)
848                 return rc;
849
850         ctrlmode = dev->can.ctrlmode;
851         if (ctrlmode & CAN_CTRLMODE_FD) {
852                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
853                         dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
854                 else
855                         dev->hf_size_tx = struct_size(hf, canfd, 1);
856         } else {
857                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
858                         dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
859                 else
860                         dev->hf_size_tx = struct_size(hf, classic_can, 1);
861         }
862
863         if (!parent->active_channels) {
864                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
865                         gs_usb_timestamp_init(parent);
866
867                 for (i = 0; i < GS_MAX_RX_URBS; i++) {
868                         u8 *buf;
869
870                         /* alloc rx urb */
871                         urb = usb_alloc_urb(0, GFP_KERNEL);
872                         if (!urb) {
873                                 rc = -ENOMEM;
874                                 goto out_usb_kill_anchored_urbs;
875                         }
876
877                         /* alloc rx buffer */
878                         buf = kmalloc(dev->parent->hf_size_rx,
879                                       GFP_KERNEL);
880                         if (!buf) {
881                                 netdev_err(netdev,
882                                            "No memory left for USB buffer\n");
883                                 rc = -ENOMEM;
884                                 goto out_usb_free_urb;
885                         }
886
887                         /* fill, anchor, and submit rx urb */
888                         usb_fill_bulk_urb(urb,
889                                           dev->udev,
890                                           usb_rcvbulkpipe(dev->udev,
891                                                           GS_USB_ENDPOINT_IN),
892                                           buf,
893                                           dev->parent->hf_size_rx,
894                                           gs_usb_receive_bulk_callback, parent);
895                         urb->transfer_flags |= URB_FREE_BUFFER;
896
897                         usb_anchor_urb(urb, &parent->rx_submitted);
898
899                         rc = usb_submit_urb(urb, GFP_KERNEL);
900                         if (rc) {
901                                 if (rc == -ENODEV)
902                                         netif_device_detach(dev->netdev);
903
904                                 netdev_err(netdev,
905                                            "usb_submit failed (err=%d)\n", rc);
906
907                                 goto out_usb_unanchor_urb;
908                         }
909
910                         /* Drop reference,
911                          * USB core will take care of freeing it
912                          */
913                         usb_free_urb(urb);
914                 }
915         }
916
917         /* flags */
918         if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
919                 flags |= GS_CAN_MODE_LOOP_BACK;
920
921         if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
922                 flags |= GS_CAN_MODE_LISTEN_ONLY;
923
924         if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
925                 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
926
927         if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
928                 flags |= GS_CAN_MODE_ONE_SHOT;
929
930         if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
931                 flags |= GS_CAN_MODE_BERR_REPORTING;
932
933         if (ctrlmode & CAN_CTRLMODE_FD)
934                 flags |= GS_CAN_MODE_FD;
935
936         /* if hardware supports timestamps, enable it */
937         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
938                 flags |= GS_CAN_MODE_HW_TIMESTAMP;
939
940         /* finally start device */
941         dev->can.state = CAN_STATE_ERROR_ACTIVE;
942         dm.flags = cpu_to_le32(flags);
943         rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
944                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
945                                   dev->channel, 0, &dm, sizeof(dm), 1000,
946                                   GFP_KERNEL);
947         if (rc) {
948                 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
949                 dev->can.state = CAN_STATE_STOPPED;
950
951                 goto out_usb_kill_anchored_urbs;
952         }
953
954         parent->active_channels++;
955         if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
956                 netif_start_queue(netdev);
957
958         return 0;
959
960 out_usb_unanchor_urb:
961         usb_unanchor_urb(urb);
962 out_usb_free_urb:
963         usb_free_urb(urb);
964 out_usb_kill_anchored_urbs:
965         if (!parent->active_channels) {
966                 usb_kill_anchored_urbs(&dev->tx_submitted);
967
968                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
969                         gs_usb_timestamp_stop(parent);
970         }
971
972         close_candev(netdev);
973
974         return rc;
975 }
976
977 static int gs_usb_get_state(const struct net_device *netdev,
978                             struct can_berr_counter *bec,
979                             enum can_state *state)
980 {
981         struct gs_can *dev = netdev_priv(netdev);
982         struct gs_device_state ds;
983         int rc;
984
985         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
986                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
987                                   dev->channel, 0,
988                                   &ds, sizeof(ds),
989                                   USB_CTRL_GET_TIMEOUT,
990                                   GFP_KERNEL);
991         if (rc)
992                 return rc;
993
994         if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
995                 return -EOPNOTSUPP;
996
997         *state = le32_to_cpu(ds.state);
998         bec->txerr = le32_to_cpu(ds.txerr);
999         bec->rxerr = le32_to_cpu(ds.rxerr);
1000
1001         return 0;
1002 }
1003
1004 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1005                                        struct can_berr_counter *bec)
1006 {
1007         enum can_state state;
1008
1009         return gs_usb_get_state(netdev, bec, &state);
1010 }
1011
1012 static int gs_can_close(struct net_device *netdev)
1013 {
1014         int rc;
1015         struct gs_can *dev = netdev_priv(netdev);
1016         struct gs_usb *parent = dev->parent;
1017
1018         netif_stop_queue(netdev);
1019
1020         /* Stop polling */
1021         parent->active_channels--;
1022         if (!parent->active_channels) {
1023                 usb_kill_anchored_urbs(&parent->rx_submitted);
1024
1025                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1026                         gs_usb_timestamp_stop(parent);
1027         }
1028
1029         /* Stop sending URBs */
1030         usb_kill_anchored_urbs(&dev->tx_submitted);
1031         atomic_set(&dev->active_tx_urbs, 0);
1032
1033         dev->can.state = CAN_STATE_STOPPED;
1034
1035         /* reset the device */
1036         rc = gs_cmd_reset(dev);
1037         if (rc < 0)
1038                 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1039
1040         /* reset tx contexts */
1041         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1042                 dev->tx_context[rc].dev = dev;
1043                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1044         }
1045
1046         /* close the netdev */
1047         close_candev(netdev);
1048
1049         return 0;
1050 }
1051
1052 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1053 {
1054         const struct gs_can *dev = netdev_priv(netdev);
1055
1056         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1057                 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1058
1059         return -EOPNOTSUPP;
1060 }
1061
1062 static const struct net_device_ops gs_usb_netdev_ops = {
1063         .ndo_open = gs_can_open,
1064         .ndo_stop = gs_can_close,
1065         .ndo_start_xmit = gs_can_start_xmit,
1066         .ndo_change_mtu = can_change_mtu,
1067         .ndo_eth_ioctl = gs_can_eth_ioctl,
1068 };
1069
1070 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1071 {
1072         struct gs_can *dev = netdev_priv(netdev);
1073         struct gs_identify_mode imode;
1074
1075         if (do_identify)
1076                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1077         else
1078                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1079
1080         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1081                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1082                                     dev->channel, 0, &imode, sizeof(imode), 100,
1083                                     GFP_KERNEL);
1084 }
1085
1086 /* blink LED's for finding the this interface */
1087 static int gs_usb_set_phys_id(struct net_device *netdev,
1088                               enum ethtool_phys_id_state state)
1089 {
1090         const struct gs_can *dev = netdev_priv(netdev);
1091         int rc = 0;
1092
1093         if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1094                 return -EOPNOTSUPP;
1095
1096         switch (state) {
1097         case ETHTOOL_ID_ACTIVE:
1098                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1099                 break;
1100         case ETHTOOL_ID_INACTIVE:
1101                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1102                 break;
1103         default:
1104                 break;
1105         }
1106
1107         return rc;
1108 }
1109
1110 static int gs_usb_get_ts_info(struct net_device *netdev,
1111                               struct ethtool_ts_info *info)
1112 {
1113         struct gs_can *dev = netdev_priv(netdev);
1114
1115         /* report if device supports HW timestamps */
1116         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1117                 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1118
1119         return ethtool_op_get_ts_info(netdev, info);
1120 }
1121
1122 static const struct ethtool_ops gs_usb_ethtool_ops = {
1123         .set_phys_id = gs_usb_set_phys_id,
1124         .get_ts_info = gs_usb_get_ts_info,
1125 };
1126
1127 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1128 {
1129         struct gs_can *dev = netdev_priv(netdev);
1130         struct gs_device_termination_state term_state;
1131         int rc;
1132
1133         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1134                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1135                                   dev->channel, 0,
1136                                   &term_state, sizeof(term_state), 1000,
1137                                   GFP_KERNEL);
1138         if (rc)
1139                 return rc;
1140
1141         if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1142                 *term = GS_USB_TERMINATION_ENABLED;
1143         else
1144                 *term = GS_USB_TERMINATION_DISABLED;
1145
1146         return 0;
1147 }
1148
1149 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1150 {
1151         struct gs_can *dev = netdev_priv(netdev);
1152         struct gs_device_termination_state term_state;
1153
1154         if (term == GS_USB_TERMINATION_ENABLED)
1155                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1156         else
1157                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1158
1159         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1160                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1161                                     dev->channel, 0,
1162                                     &term_state, sizeof(term_state), 1000,
1163                                     GFP_KERNEL);
1164 }
1165
1166 static const u16 gs_usb_termination_const[] = {
1167         GS_USB_TERMINATION_DISABLED,
1168         GS_USB_TERMINATION_ENABLED
1169 };
1170
1171 static struct gs_can *gs_make_candev(unsigned int channel,
1172                                      struct usb_interface *intf,
1173                                      struct gs_device_config *dconf)
1174 {
1175         struct gs_can *dev;
1176         struct net_device *netdev;
1177         int rc;
1178         struct gs_device_bt_const_extended bt_const_extended;
1179         struct gs_device_bt_const bt_const;
1180         u32 feature;
1181
1182         /* fetch bit timing constants */
1183         rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1184                                   GS_USB_BREQ_BT_CONST,
1185                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1186                                   channel, 0, &bt_const, sizeof(bt_const), 1000,
1187                                   GFP_KERNEL);
1188
1189         if (rc) {
1190                 dev_err(&intf->dev,
1191                         "Couldn't get bit timing const for channel %d (%pe)\n",
1192                         channel, ERR_PTR(rc));
1193                 return ERR_PTR(rc);
1194         }
1195
1196         /* create netdev */
1197         netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1198         if (!netdev) {
1199                 dev_err(&intf->dev, "Couldn't allocate candev\n");
1200                 return ERR_PTR(-ENOMEM);
1201         }
1202
1203         dev = netdev_priv(netdev);
1204
1205         netdev->netdev_ops = &gs_usb_netdev_ops;
1206         netdev->ethtool_ops = &gs_usb_ethtool_ops;
1207
1208         netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1209         netdev->dev_id = channel;
1210
1211         /* dev setup */
1212         strcpy(dev->bt_const.name, KBUILD_MODNAME);
1213         dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1214         dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1215         dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1216         dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1217         dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1218         dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1219         dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1220         dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1221
1222         dev->udev = interface_to_usbdev(intf);
1223         dev->netdev = netdev;
1224         dev->channel = channel;
1225
1226         init_usb_anchor(&dev->tx_submitted);
1227         atomic_set(&dev->active_tx_urbs, 0);
1228         spin_lock_init(&dev->tx_ctx_lock);
1229         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1230                 dev->tx_context[rc].dev = dev;
1231                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1232         }
1233
1234         /* can setup */
1235         dev->can.state = CAN_STATE_STOPPED;
1236         dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1237         dev->can.bittiming_const = &dev->bt_const;
1238         dev->can.do_set_bittiming = gs_usb_set_bittiming;
1239
1240         dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1241
1242         feature = le32_to_cpu(bt_const.feature);
1243         dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1244         if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1245                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1246
1247         if (feature & GS_CAN_FEATURE_LOOP_BACK)
1248                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1249
1250         if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1251                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1252
1253         if (feature & GS_CAN_FEATURE_ONE_SHOT)
1254                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1255
1256         if (feature & GS_CAN_FEATURE_FD) {
1257                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1258                 /* The data bit timing will be overwritten, if
1259                  * GS_CAN_FEATURE_BT_CONST_EXT is set.
1260                  */
1261                 dev->can.data_bittiming_const = &dev->bt_const;
1262                 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1263         }
1264
1265         if (feature & GS_CAN_FEATURE_TERMINATION) {
1266                 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1267                 if (rc) {
1268                         dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1269
1270                         dev_info(&intf->dev,
1271                                  "Disabling termination support for channel %d (%pe)\n",
1272                                  channel, ERR_PTR(rc));
1273                 } else {
1274                         dev->can.termination_const = gs_usb_termination_const;
1275                         dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1276                         dev->can.do_set_termination = gs_usb_set_termination;
1277                 }
1278         }
1279
1280         if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1281                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1282
1283         if (feature & GS_CAN_FEATURE_GET_STATE)
1284                 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1285
1286         /* The CANtact Pro from LinkLayer Labs is based on the
1287          * LPC54616 µC, which is affected by the NXP LPC USB transfer
1288          * erratum. However, the current firmware (version 2) doesn't
1289          * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1290          * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1291          * this issue.
1292          *
1293          * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1294          * CANtact Pro firmware uses a request value, which is already
1295          * used by the candleLight firmware for a different purpose
1296          * (GS_USB_BREQ_GET_USER_ID). Set the feature
1297          * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1298          * issue.
1299          */
1300         if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1301             dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1302             dev->udev->manufacturer && dev->udev->product &&
1303             !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1304             !strcmp(dev->udev->product, "CANtact Pro") &&
1305             (le32_to_cpu(dconf->sw_version) <= 2))
1306                 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1307                         GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1308
1309         /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1310         if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1311               feature & GS_CAN_FEATURE_IDENTIFY))
1312                 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1313
1314         /* fetch extended bit timing constants if device has feature
1315          * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1316          */
1317         if (feature & GS_CAN_FEATURE_FD &&
1318             feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1319                 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1320                                           GS_USB_BREQ_BT_CONST_EXT,
1321                                           USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1322                                           channel, 0, &bt_const_extended,
1323                                           sizeof(bt_const_extended),
1324                                           1000, GFP_KERNEL);
1325                 if (rc) {
1326                         dev_err(&intf->dev,
1327                                 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1328                                 channel, ERR_PTR(rc));
1329                         goto out_free_candev;
1330                 }
1331
1332                 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1333                 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1334                 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1335                 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1336                 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1337                 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1338                 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1339                 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1340                 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1341
1342                 dev->can.data_bittiming_const = &dev->data_bt_const;
1343         }
1344
1345         SET_NETDEV_DEV(netdev, &intf->dev);
1346
1347         rc = register_candev(dev->netdev);
1348         if (rc) {
1349                 dev_err(&intf->dev,
1350                         "Couldn't register candev for channel %d (%pe)\n",
1351                         channel, ERR_PTR(rc));
1352                 goto out_free_candev;
1353         }
1354
1355         return dev;
1356
1357  out_free_candev:
1358         free_candev(dev->netdev);
1359         return ERR_PTR(rc);
1360 }
1361
1362 static void gs_destroy_candev(struct gs_can *dev)
1363 {
1364         unregister_candev(dev->netdev);
1365         usb_kill_anchored_urbs(&dev->tx_submitted);
1366         free_candev(dev->netdev);
1367 }
1368
1369 static int gs_usb_probe(struct usb_interface *intf,
1370                         const struct usb_device_id *id)
1371 {
1372         struct usb_device *udev = interface_to_usbdev(intf);
1373         struct gs_host_frame *hf;
1374         struct gs_usb *dev;
1375         struct gs_host_config hconf = {
1376                 .byte_order = cpu_to_le32(0x0000beef),
1377         };
1378         struct gs_device_config dconf;
1379         unsigned int icount, i;
1380         int rc;
1381
1382         /* send host config */
1383         rc = usb_control_msg_send(udev, 0,
1384                                   GS_USB_BREQ_HOST_FORMAT,
1385                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1386                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1387                                   &hconf, sizeof(hconf), 1000,
1388                                   GFP_KERNEL);
1389         if (rc) {
1390                 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1391                 return rc;
1392         }
1393
1394         /* read device config */
1395         rc = usb_control_msg_recv(udev, 0,
1396                                   GS_USB_BREQ_DEVICE_CONFIG,
1397                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1398                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1399                                   &dconf, sizeof(dconf), 1000,
1400                                   GFP_KERNEL);
1401         if (rc) {
1402                 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1403                         rc);
1404                 return rc;
1405         }
1406
1407         icount = dconf.icount + 1;
1408         dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1409
1410         if (icount > GS_MAX_INTF) {
1411                 dev_err(&intf->dev,
1412                         "Driver cannot handle more that %u CAN interfaces\n",
1413                         GS_MAX_INTF);
1414                 return -EINVAL;
1415         }
1416
1417         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1418         if (!dev)
1419                 return -ENOMEM;
1420
1421         init_usb_anchor(&dev->rx_submitted);
1422
1423         usb_set_intfdata(intf, dev);
1424         dev->udev = udev;
1425
1426         for (i = 0; i < icount; i++) {
1427                 unsigned int hf_size_rx = 0;
1428
1429                 dev->canch[i] = gs_make_candev(i, intf, &dconf);
1430                 if (IS_ERR_OR_NULL(dev->canch[i])) {
1431                         /* save error code to return later */
1432                         rc = PTR_ERR(dev->canch[i]);
1433
1434                         /* on failure destroy previously created candevs */
1435                         icount = i;
1436                         for (i = 0; i < icount; i++)
1437                                 gs_destroy_candev(dev->canch[i]);
1438
1439                         usb_kill_anchored_urbs(&dev->rx_submitted);
1440                         kfree(dev);
1441                         return rc;
1442                 }
1443                 dev->canch[i]->parent = dev;
1444
1445                 /* set RX packet size based on FD and if hardware
1446                 * timestamps are supported.
1447                 */
1448                 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1449                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1450                                 hf_size_rx = struct_size(hf, canfd_ts, 1);
1451                         else
1452                                 hf_size_rx = struct_size(hf, canfd, 1);
1453                 } else {
1454                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1455                                 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1456                         else
1457                                 hf_size_rx = struct_size(hf, classic_can, 1);
1458                 }
1459                 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1460         }
1461
1462         return 0;
1463 }
1464
1465 static void gs_usb_disconnect(struct usb_interface *intf)
1466 {
1467         struct gs_usb *dev = usb_get_intfdata(intf);
1468         unsigned int i;
1469
1470         usb_set_intfdata(intf, NULL);
1471
1472         if (!dev) {
1473                 dev_err(&intf->dev, "Disconnect (nodata)\n");
1474                 return;
1475         }
1476
1477         for (i = 0; i < GS_MAX_INTF; i++)
1478                 if (dev->canch[i])
1479                         gs_destroy_candev(dev->canch[i]);
1480
1481         usb_kill_anchored_urbs(&dev->rx_submitted);
1482         kfree(dev);
1483 }
1484
1485 static const struct usb_device_id gs_usb_table[] = {
1486         { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1487                                       USB_GS_USB_1_PRODUCT_ID, 0) },
1488         { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1489                                       USB_CANDLELIGHT_PRODUCT_ID, 0) },
1490         { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1491                                       USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1492         { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1493                                       USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1494         {} /* Terminating entry */
1495 };
1496
1497 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1498
1499 static struct usb_driver gs_usb_driver = {
1500         .name = KBUILD_MODNAME,
1501         .probe = gs_usb_probe,
1502         .disconnect = gs_usb_disconnect,
1503         .id_table = gs_usb_table,
1504 };
1505
1506 module_usb_driver(gs_usb_driver);
1507
1508 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1509 MODULE_DESCRIPTION(
1510 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1511 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1512 "and bytewerk.org candleLight USB CAN interfaces.");
1513 MODULE_LICENSE("GPL v2");