can: gs_usb: gs_usb_set_timestamp(): remove return statements form void function
[platform/kernel/linux-starfive.git] / drivers / net / can / usb / gs_usb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3  * and bytewerk.org candleLight USB CAN interfaces.
4  *
5  * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6  * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7  * Copyright (C) 2016 Hubert Denkmair
8  *
9  * Many thanks to all socketcan devs!
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/clocksource.h>
14 #include <linux/ethtool.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/netdevice.h>
18 #include <linux/signal.h>
19 #include <linux/timecounter.h>
20 #include <linux/units.h>
21 #include <linux/usb.h>
22 #include <linux/workqueue.h>
23
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/error.h>
27
28 /* Device specific constants */
29 #define USB_GS_USB_1_VENDOR_ID 0x1d50
30 #define USB_GS_USB_1_PRODUCT_ID 0x606f
31
32 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
33 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
34
35 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
36 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
37
38 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
39 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
40
41 #define GS_USB_ENDPOINT_IN 1
42 #define GS_USB_ENDPOINT_OUT 2
43
44 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
45  * for timer overflow (will be after ~71 minutes)
46  */
47 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
48 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
49 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
50               CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
51
52 /* Device specific constants */
53 enum gs_usb_breq {
54         GS_USB_BREQ_HOST_FORMAT = 0,
55         GS_USB_BREQ_BITTIMING,
56         GS_USB_BREQ_MODE,
57         GS_USB_BREQ_BERR,
58         GS_USB_BREQ_BT_CONST,
59         GS_USB_BREQ_DEVICE_CONFIG,
60         GS_USB_BREQ_TIMESTAMP,
61         GS_USB_BREQ_IDENTIFY,
62         GS_USB_BREQ_GET_USER_ID,
63         GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
64         GS_USB_BREQ_SET_USER_ID,
65         GS_USB_BREQ_DATA_BITTIMING,
66         GS_USB_BREQ_BT_CONST_EXT,
67         GS_USB_BREQ_SET_TERMINATION,
68         GS_USB_BREQ_GET_TERMINATION,
69         GS_USB_BREQ_GET_STATE,
70 };
71
72 enum gs_can_mode {
73         /* reset a channel. turns it off */
74         GS_CAN_MODE_RESET = 0,
75         /* starts a channel */
76         GS_CAN_MODE_START
77 };
78
79 enum gs_can_state {
80         GS_CAN_STATE_ERROR_ACTIVE = 0,
81         GS_CAN_STATE_ERROR_WARNING,
82         GS_CAN_STATE_ERROR_PASSIVE,
83         GS_CAN_STATE_BUS_OFF,
84         GS_CAN_STATE_STOPPED,
85         GS_CAN_STATE_SLEEPING
86 };
87
88 enum gs_can_identify_mode {
89         GS_CAN_IDENTIFY_OFF = 0,
90         GS_CAN_IDENTIFY_ON
91 };
92
93 enum gs_can_termination_state {
94         GS_CAN_TERMINATION_STATE_OFF = 0,
95         GS_CAN_TERMINATION_STATE_ON
96 };
97
98 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
99 #define GS_USB_TERMINATION_ENABLED 120
100
101 /* data types passed between host and device */
102
103 /* The firmware on the original USB2CAN by Geschwister Schneider
104  * Technologie Entwicklungs- und Vertriebs UG exchanges all data
105  * between the host and the device in host byte order. This is done
106  * with the struct gs_host_config::byte_order member, which is sent
107  * first to indicate the desired byte order.
108  *
109  * The widely used open source firmware candleLight doesn't support
110  * this feature and exchanges the data in little endian byte order.
111  */
112 struct gs_host_config {
113         __le32 byte_order;
114 } __packed;
115
116 struct gs_device_config {
117         u8 reserved1;
118         u8 reserved2;
119         u8 reserved3;
120         u8 icount;
121         __le32 sw_version;
122         __le32 hw_version;
123 } __packed;
124
125 #define GS_CAN_MODE_NORMAL 0
126 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
127 #define GS_CAN_MODE_LOOP_BACK BIT(1)
128 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
129 #define GS_CAN_MODE_ONE_SHOT BIT(3)
130 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
131 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
132 /* GS_CAN_FEATURE_USER_ID BIT(6) */
133 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
134 #define GS_CAN_MODE_FD BIT(8)
135 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
136 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
137 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
138 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
139 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
140
141 struct gs_device_mode {
142         __le32 mode;
143         __le32 flags;
144 } __packed;
145
146 struct gs_device_state {
147         __le32 state;
148         __le32 rxerr;
149         __le32 txerr;
150 } __packed;
151
152 struct gs_device_bittiming {
153         __le32 prop_seg;
154         __le32 phase_seg1;
155         __le32 phase_seg2;
156         __le32 sjw;
157         __le32 brp;
158 } __packed;
159
160 struct gs_identify_mode {
161         __le32 mode;
162 } __packed;
163
164 struct gs_device_termination_state {
165         __le32 state;
166 } __packed;
167
168 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
169 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
170 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
171 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
172 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
173 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
174 #define GS_CAN_FEATURE_USER_ID BIT(6)
175 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
176 #define GS_CAN_FEATURE_FD BIT(8)
177 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
178 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
179 #define GS_CAN_FEATURE_TERMINATION BIT(11)
180 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
181 #define GS_CAN_FEATURE_GET_STATE BIT(13)
182 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
183
184 /* internal quirks - keep in GS_CAN_FEATURE space for now */
185
186 /* CANtact Pro original firmware:
187  * BREQ DATA_BITTIMING overlaps with GET_USER_ID
188  */
189 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
190
191 struct gs_device_bt_const {
192         __le32 feature;
193         __le32 fclk_can;
194         __le32 tseg1_min;
195         __le32 tseg1_max;
196         __le32 tseg2_min;
197         __le32 tseg2_max;
198         __le32 sjw_max;
199         __le32 brp_min;
200         __le32 brp_max;
201         __le32 brp_inc;
202 } __packed;
203
204 struct gs_device_bt_const_extended {
205         __le32 feature;
206         __le32 fclk_can;
207         __le32 tseg1_min;
208         __le32 tseg1_max;
209         __le32 tseg2_min;
210         __le32 tseg2_max;
211         __le32 sjw_max;
212         __le32 brp_min;
213         __le32 brp_max;
214         __le32 brp_inc;
215
216         __le32 dtseg1_min;
217         __le32 dtseg1_max;
218         __le32 dtseg2_min;
219         __le32 dtseg2_max;
220         __le32 dsjw_max;
221         __le32 dbrp_min;
222         __le32 dbrp_max;
223         __le32 dbrp_inc;
224 } __packed;
225
226 #define GS_CAN_FLAG_OVERFLOW BIT(0)
227 #define GS_CAN_FLAG_FD BIT(1)
228 #define GS_CAN_FLAG_BRS BIT(2)
229 #define GS_CAN_FLAG_ESI BIT(3)
230
231 struct classic_can {
232         u8 data[8];
233 } __packed;
234
235 struct classic_can_ts {
236         u8 data[8];
237         __le32 timestamp_us;
238 } __packed;
239
240 struct classic_can_quirk {
241         u8 data[8];
242         u8 quirk;
243 } __packed;
244
245 struct canfd {
246         u8 data[64];
247 } __packed;
248
249 struct canfd_ts {
250         u8 data[64];
251         __le32 timestamp_us;
252 } __packed;
253
254 struct canfd_quirk {
255         u8 data[64];
256         u8 quirk;
257 } __packed;
258
259 struct gs_host_frame {
260         u32 echo_id;
261         __le32 can_id;
262
263         u8 can_dlc;
264         u8 channel;
265         u8 flags;
266         u8 reserved;
267
268         union {
269                 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
270                 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
271                 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
272                 DECLARE_FLEX_ARRAY(struct canfd, canfd);
273                 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
274                 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
275         };
276 } __packed;
277 /* The GS USB devices make use of the same flags and masks as in
278  * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
279  */
280
281 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
282 #define GS_MAX_TX_URBS 10
283 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
284 #define GS_MAX_RX_URBS 30
285 /* Maximum number of interfaces the driver supports per device.
286  * Current hardware only supports 3 interfaces. The future may vary.
287  */
288 #define GS_MAX_INTF 3
289
290 struct gs_tx_context {
291         struct gs_can *dev;
292         unsigned int echo_id;
293 };
294
295 struct gs_can {
296         struct can_priv can; /* must be the first member */
297
298         struct gs_usb *parent;
299
300         struct net_device *netdev;
301         struct usb_device *udev;
302
303         struct can_bittiming_const bt_const, data_bt_const;
304         unsigned int channel;   /* channel number */
305
306         u32 feature;
307         unsigned int hf_size_tx;
308
309         /* This lock prevents a race condition between xmit and receive. */
310         spinlock_t tx_ctx_lock;
311         struct gs_tx_context tx_context[GS_MAX_TX_URBS];
312
313         struct usb_anchor tx_submitted;
314         atomic_t active_tx_urbs;
315 };
316
317 /* usb interface struct */
318 struct gs_usb {
319         struct gs_can *canch[GS_MAX_INTF];
320         struct usb_anchor rx_submitted;
321         struct usb_device *udev;
322
323         /* time counter for hardware timestamps */
324         struct cyclecounter cc;
325         struct timecounter tc;
326         spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
327         struct delayed_work timestamp;
328
329         unsigned int hf_size_rx;
330         u8 active_channels;
331 };
332
333 /* 'allocate' a tx context.
334  * returns a valid tx context or NULL if there is no space.
335  */
336 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
337 {
338         int i = 0;
339         unsigned long flags;
340
341         spin_lock_irqsave(&dev->tx_ctx_lock, flags);
342
343         for (; i < GS_MAX_TX_URBS; i++) {
344                 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
345                         dev->tx_context[i].echo_id = i;
346                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
347                         return &dev->tx_context[i];
348                 }
349         }
350
351         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
352         return NULL;
353 }
354
355 /* releases a tx context
356  */
357 static void gs_free_tx_context(struct gs_tx_context *txc)
358 {
359         txc->echo_id = GS_MAX_TX_URBS;
360 }
361
362 /* Get a tx context by id.
363  */
364 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
365                                                unsigned int id)
366 {
367         unsigned long flags;
368
369         if (id < GS_MAX_TX_URBS) {
370                 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
371                 if (dev->tx_context[id].echo_id == id) {
372                         spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
373                         return &dev->tx_context[id];
374                 }
375                 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
376         }
377         return NULL;
378 }
379
380 static int gs_cmd_reset(struct gs_can *dev)
381 {
382         struct gs_device_mode dm = {
383                 .mode = GS_CAN_MODE_RESET,
384         };
385
386         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
387                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
388                                     dev->channel, 0, &dm, sizeof(dm), 1000,
389                                     GFP_KERNEL);
390 }
391
392 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
393                                        u32 *timestamp_p)
394 {
395         __le32 timestamp;
396         int rc;
397
398         rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
399                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
400                                   0, 0,
401                                   &timestamp, sizeof(timestamp),
402                                   USB_CTRL_GET_TIMEOUT,
403                                   GFP_KERNEL);
404         if (rc)
405                 return rc;
406
407         *timestamp_p = le32_to_cpu(timestamp);
408
409         return 0;
410 }
411
412 static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
413 {
414         struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
415         u32 timestamp = 0;
416         int err;
417
418         lockdep_assert_held(&parent->tc_lock);
419
420         /* drop lock for synchronous USB transfer */
421         spin_unlock_bh(&parent->tc_lock);
422         err = gs_usb_get_timestamp(parent, &timestamp);
423         spin_lock_bh(&parent->tc_lock);
424         if (err)
425                 dev_err(&parent->udev->dev,
426                         "Error %d while reading timestamp. HW timestamps may be inaccurate.",
427                         err);
428
429         return timestamp;
430 }
431
432 static void gs_usb_timestamp_work(struct work_struct *work)
433 {
434         struct delayed_work *delayed_work = to_delayed_work(work);
435         struct gs_usb *parent;
436
437         parent = container_of(delayed_work, struct gs_usb, timestamp);
438         spin_lock_bh(&parent->tc_lock);
439         timecounter_read(&parent->tc);
440         spin_unlock_bh(&parent->tc_lock);
441
442         schedule_delayed_work(&parent->timestamp,
443                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
444 }
445
446 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
447                                      struct sk_buff *skb, u32 timestamp)
448 {
449         struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
450         struct gs_usb *parent = dev->parent;
451         u64 ns;
452
453         spin_lock_bh(&parent->tc_lock);
454         ns = timecounter_cyc2time(&parent->tc, timestamp);
455         spin_unlock_bh(&parent->tc_lock);
456
457         hwtstamps->hwtstamp = ns_to_ktime(ns);
458 }
459
460 static void gs_usb_timestamp_init(struct gs_usb *parent)
461 {
462         struct cyclecounter *cc = &parent->cc;
463
464         cc->read = gs_usb_timestamp_read;
465         cc->mask = CYCLECOUNTER_MASK(32);
466         cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
467         cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
468
469         spin_lock_init(&parent->tc_lock);
470         spin_lock_bh(&parent->tc_lock);
471         timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
472         spin_unlock_bh(&parent->tc_lock);
473
474         INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
475         schedule_delayed_work(&parent->timestamp,
476                               GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
477 }
478
479 static void gs_usb_timestamp_stop(struct gs_usb *parent)
480 {
481         cancel_delayed_work_sync(&parent->timestamp);
482 }
483
484 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
485 {
486         struct can_device_stats *can_stats = &dev->can.can_stats;
487
488         if (cf->can_id & CAN_ERR_RESTARTED) {
489                 dev->can.state = CAN_STATE_ERROR_ACTIVE;
490                 can_stats->restarts++;
491         } else if (cf->can_id & CAN_ERR_BUSOFF) {
492                 dev->can.state = CAN_STATE_BUS_OFF;
493                 can_stats->bus_off++;
494         } else if (cf->can_id & CAN_ERR_CRTL) {
495                 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
496                     (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
497                         dev->can.state = CAN_STATE_ERROR_WARNING;
498                         can_stats->error_warning++;
499                 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
500                            (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
501                         dev->can.state = CAN_STATE_ERROR_PASSIVE;
502                         can_stats->error_passive++;
503                 } else {
504                         dev->can.state = CAN_STATE_ERROR_ACTIVE;
505                 }
506         }
507 }
508
509 static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
510                                  const struct gs_host_frame *hf)
511 {
512         u32 timestamp;
513
514         if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
515                 return;
516
517         if (hf->flags & GS_CAN_FLAG_FD)
518                 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
519         else
520                 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
521
522         gs_usb_skb_set_timestamp(dev, skb, timestamp);
523 }
524
525 static void gs_usb_receive_bulk_callback(struct urb *urb)
526 {
527         struct gs_usb *usbcan = urb->context;
528         struct gs_can *dev;
529         struct net_device *netdev;
530         int rc;
531         struct net_device_stats *stats;
532         struct gs_host_frame *hf = urb->transfer_buffer;
533         struct gs_tx_context *txc;
534         struct can_frame *cf;
535         struct canfd_frame *cfd;
536         struct sk_buff *skb;
537
538         BUG_ON(!usbcan);
539
540         switch (urb->status) {
541         case 0: /* success */
542                 break;
543         case -ENOENT:
544         case -ESHUTDOWN:
545                 return;
546         default:
547                 /* do not resubmit aborted urbs. eg: when device goes down */
548                 return;
549         }
550
551         /* device reports out of range channel id */
552         if (hf->channel >= GS_MAX_INTF)
553                 goto device_detach;
554
555         dev = usbcan->canch[hf->channel];
556
557         netdev = dev->netdev;
558         stats = &netdev->stats;
559
560         if (!netif_device_present(netdev))
561                 return;
562
563         if (!netif_running(netdev))
564                 goto resubmit_urb;
565
566         if (hf->echo_id == -1) { /* normal rx */
567                 if (hf->flags & GS_CAN_FLAG_FD) {
568                         skb = alloc_canfd_skb(dev->netdev, &cfd);
569                         if (!skb)
570                                 return;
571
572                         cfd->can_id = le32_to_cpu(hf->can_id);
573                         cfd->len = can_fd_dlc2len(hf->can_dlc);
574                         if (hf->flags & GS_CAN_FLAG_BRS)
575                                 cfd->flags |= CANFD_BRS;
576                         if (hf->flags & GS_CAN_FLAG_ESI)
577                                 cfd->flags |= CANFD_ESI;
578
579                         memcpy(cfd->data, hf->canfd->data, cfd->len);
580                 } else {
581                         skb = alloc_can_skb(dev->netdev, &cf);
582                         if (!skb)
583                                 return;
584
585                         cf->can_id = le32_to_cpu(hf->can_id);
586                         can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
587
588                         memcpy(cf->data, hf->classic_can->data, 8);
589
590                         /* ERROR frames tell us information about the controller */
591                         if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
592                                 gs_update_state(dev, cf);
593                 }
594
595                 gs_usb_set_timestamp(dev, skb, hf);
596
597                 netdev->stats.rx_packets++;
598                 netdev->stats.rx_bytes += hf->can_dlc;
599
600                 netif_rx(skb);
601         } else { /* echo_id == hf->echo_id */
602                 if (hf->echo_id >= GS_MAX_TX_URBS) {
603                         netdev_err(netdev,
604                                    "Unexpected out of range echo id %u\n",
605                                    hf->echo_id);
606                         goto resubmit_urb;
607                 }
608
609                 txc = gs_get_tx_context(dev, hf->echo_id);
610
611                 /* bad devices send bad echo_ids. */
612                 if (!txc) {
613                         netdev_err(netdev,
614                                    "Unexpected unused echo id %u\n",
615                                    hf->echo_id);
616                         goto resubmit_urb;
617                 }
618
619                 skb = dev->can.echo_skb[hf->echo_id];
620                 gs_usb_set_timestamp(dev, skb, hf);
621
622                 netdev->stats.tx_packets++;
623                 netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
624                                                            NULL);
625
626                 gs_free_tx_context(txc);
627
628                 atomic_dec(&dev->active_tx_urbs);
629
630                 netif_wake_queue(netdev);
631         }
632
633         if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
634                 skb = alloc_can_err_skb(netdev, &cf);
635                 if (!skb)
636                         goto resubmit_urb;
637
638                 cf->can_id |= CAN_ERR_CRTL;
639                 cf->len = CAN_ERR_DLC;
640                 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
641                 stats->rx_over_errors++;
642                 stats->rx_errors++;
643                 netif_rx(skb);
644         }
645
646 resubmit_urb:
647         usb_fill_bulk_urb(urb, usbcan->udev,
648                           usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
649                           hf, dev->parent->hf_size_rx,
650                           gs_usb_receive_bulk_callback, usbcan);
651
652         rc = usb_submit_urb(urb, GFP_ATOMIC);
653
654         /* USB failure take down all interfaces */
655         if (rc == -ENODEV) {
656 device_detach:
657                 for (rc = 0; rc < GS_MAX_INTF; rc++) {
658                         if (usbcan->canch[rc])
659                                 netif_device_detach(usbcan->canch[rc]->netdev);
660                 }
661         }
662 }
663
664 static int gs_usb_set_bittiming(struct net_device *netdev)
665 {
666         struct gs_can *dev = netdev_priv(netdev);
667         struct can_bittiming *bt = &dev->can.bittiming;
668         struct gs_device_bittiming dbt = {
669                 .prop_seg = cpu_to_le32(bt->prop_seg),
670                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
671                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
672                 .sjw = cpu_to_le32(bt->sjw),
673                 .brp = cpu_to_le32(bt->brp),
674         };
675
676         /* request bit timings */
677         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
678                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
679                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
680                                     GFP_KERNEL);
681 }
682
683 static int gs_usb_set_data_bittiming(struct net_device *netdev)
684 {
685         struct gs_can *dev = netdev_priv(netdev);
686         struct can_bittiming *bt = &dev->can.data_bittiming;
687         struct gs_device_bittiming dbt = {
688                 .prop_seg = cpu_to_le32(bt->prop_seg),
689                 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
690                 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
691                 .sjw = cpu_to_le32(bt->sjw),
692                 .brp = cpu_to_le32(bt->brp),
693         };
694         u8 request = GS_USB_BREQ_DATA_BITTIMING;
695
696         if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
697                 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
698
699         /* request data bit timings */
700         return usb_control_msg_send(dev->udev, 0, request,
701                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
702                                     dev->channel, 0, &dbt, sizeof(dbt), 1000,
703                                     GFP_KERNEL);
704 }
705
706 static void gs_usb_xmit_callback(struct urb *urb)
707 {
708         struct gs_tx_context *txc = urb->context;
709         struct gs_can *dev = txc->dev;
710         struct net_device *netdev = dev->netdev;
711
712         if (urb->status)
713                 netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
714 }
715
716 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
717                                      struct net_device *netdev)
718 {
719         struct gs_can *dev = netdev_priv(netdev);
720         struct net_device_stats *stats = &dev->netdev->stats;
721         struct urb *urb;
722         struct gs_host_frame *hf;
723         struct can_frame *cf;
724         struct canfd_frame *cfd;
725         int rc;
726         unsigned int idx;
727         struct gs_tx_context *txc;
728
729         if (can_dev_dropped_skb(netdev, skb))
730                 return NETDEV_TX_OK;
731
732         /* find an empty context to keep track of transmission */
733         txc = gs_alloc_tx_context(dev);
734         if (!txc)
735                 return NETDEV_TX_BUSY;
736
737         /* create a URB, and a buffer for it */
738         urb = usb_alloc_urb(0, GFP_ATOMIC);
739         if (!urb)
740                 goto nomem_urb;
741
742         hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
743         if (!hf) {
744                 netdev_err(netdev, "No memory left for USB buffer\n");
745                 goto nomem_hf;
746         }
747
748         idx = txc->echo_id;
749
750         if (idx >= GS_MAX_TX_URBS) {
751                 netdev_err(netdev, "Invalid tx context %u\n", idx);
752                 goto badidx;
753         }
754
755         hf->echo_id = idx;
756         hf->channel = dev->channel;
757         hf->flags = 0;
758         hf->reserved = 0;
759
760         if (can_is_canfd_skb(skb)) {
761                 cfd = (struct canfd_frame *)skb->data;
762
763                 hf->can_id = cpu_to_le32(cfd->can_id);
764                 hf->can_dlc = can_fd_len2dlc(cfd->len);
765                 hf->flags |= GS_CAN_FLAG_FD;
766                 if (cfd->flags & CANFD_BRS)
767                         hf->flags |= GS_CAN_FLAG_BRS;
768                 if (cfd->flags & CANFD_ESI)
769                         hf->flags |= GS_CAN_FLAG_ESI;
770
771                 memcpy(hf->canfd->data, cfd->data, cfd->len);
772         } else {
773                 cf = (struct can_frame *)skb->data;
774
775                 hf->can_id = cpu_to_le32(cf->can_id);
776                 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
777
778                 memcpy(hf->classic_can->data, cf->data, cf->len);
779         }
780
781         usb_fill_bulk_urb(urb, dev->udev,
782                           usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
783                           hf, dev->hf_size_tx,
784                           gs_usb_xmit_callback, txc);
785
786         urb->transfer_flags |= URB_FREE_BUFFER;
787         usb_anchor_urb(urb, &dev->tx_submitted);
788
789         can_put_echo_skb(skb, netdev, idx, 0);
790
791         atomic_inc(&dev->active_tx_urbs);
792
793         rc = usb_submit_urb(urb, GFP_ATOMIC);
794         if (unlikely(rc)) {                     /* usb send failed */
795                 atomic_dec(&dev->active_tx_urbs);
796
797                 can_free_echo_skb(netdev, idx, NULL);
798                 gs_free_tx_context(txc);
799
800                 usb_unanchor_urb(urb);
801
802                 if (rc == -ENODEV) {
803                         netif_device_detach(netdev);
804                 } else {
805                         netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
806                         stats->tx_dropped++;
807                 }
808         } else {
809                 /* Slow down tx path */
810                 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
811                         netif_stop_queue(netdev);
812         }
813
814         /* let usb core take care of this urb */
815         usb_free_urb(urb);
816
817         return NETDEV_TX_OK;
818
819 badidx:
820         kfree(hf);
821 nomem_hf:
822         usb_free_urb(urb);
823
824 nomem_urb:
825         gs_free_tx_context(txc);
826         dev_kfree_skb(skb);
827         stats->tx_dropped++;
828         return NETDEV_TX_OK;
829 }
830
831 static int gs_can_open(struct net_device *netdev)
832 {
833         struct gs_can *dev = netdev_priv(netdev);
834         struct gs_usb *parent = dev->parent;
835         struct gs_device_mode dm = {
836                 .mode = cpu_to_le32(GS_CAN_MODE_START),
837         };
838         struct gs_host_frame *hf;
839         struct urb *urb = NULL;
840         u32 ctrlmode;
841         u32 flags = 0;
842         int rc, i;
843
844         rc = open_candev(netdev);
845         if (rc)
846                 return rc;
847
848         ctrlmode = dev->can.ctrlmode;
849         if (ctrlmode & CAN_CTRLMODE_FD) {
850                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
851                         dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
852                 else
853                         dev->hf_size_tx = struct_size(hf, canfd, 1);
854         } else {
855                 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
856                         dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
857                 else
858                         dev->hf_size_tx = struct_size(hf, classic_can, 1);
859         }
860
861         if (!parent->active_channels) {
862                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
863                         gs_usb_timestamp_init(parent);
864
865                 for (i = 0; i < GS_MAX_RX_URBS; i++) {
866                         u8 *buf;
867
868                         /* alloc rx urb */
869                         urb = usb_alloc_urb(0, GFP_KERNEL);
870                         if (!urb) {
871                                 rc = -ENOMEM;
872                                 goto out_usb_kill_anchored_urbs;
873                         }
874
875                         /* alloc rx buffer */
876                         buf = kmalloc(dev->parent->hf_size_rx,
877                                       GFP_KERNEL);
878                         if (!buf) {
879                                 netdev_err(netdev,
880                                            "No memory left for USB buffer\n");
881                                 rc = -ENOMEM;
882                                 goto out_usb_free_urb;
883                         }
884
885                         /* fill, anchor, and submit rx urb */
886                         usb_fill_bulk_urb(urb,
887                                           dev->udev,
888                                           usb_rcvbulkpipe(dev->udev,
889                                                           GS_USB_ENDPOINT_IN),
890                                           buf,
891                                           dev->parent->hf_size_rx,
892                                           gs_usb_receive_bulk_callback, parent);
893                         urb->transfer_flags |= URB_FREE_BUFFER;
894
895                         usb_anchor_urb(urb, &parent->rx_submitted);
896
897                         rc = usb_submit_urb(urb, GFP_KERNEL);
898                         if (rc) {
899                                 if (rc == -ENODEV)
900                                         netif_device_detach(dev->netdev);
901
902                                 netdev_err(netdev,
903                                            "usb_submit failed (err=%d)\n", rc);
904
905                                 goto out_usb_unanchor_urb;
906                         }
907
908                         /* Drop reference,
909                          * USB core will take care of freeing it
910                          */
911                         usb_free_urb(urb);
912                 }
913         }
914
915         /* flags */
916         if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
917                 flags |= GS_CAN_MODE_LOOP_BACK;
918
919         if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
920                 flags |= GS_CAN_MODE_LISTEN_ONLY;
921
922         if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
923                 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
924
925         if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
926                 flags |= GS_CAN_MODE_ONE_SHOT;
927
928         if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
929                 flags |= GS_CAN_MODE_BERR_REPORTING;
930
931         if (ctrlmode & CAN_CTRLMODE_FD)
932                 flags |= GS_CAN_MODE_FD;
933
934         /* if hardware supports timestamps, enable it */
935         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
936                 flags |= GS_CAN_MODE_HW_TIMESTAMP;
937
938         /* finally start device */
939         dev->can.state = CAN_STATE_ERROR_ACTIVE;
940         dm.flags = cpu_to_le32(flags);
941         rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
942                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
943                                   dev->channel, 0, &dm, sizeof(dm), 1000,
944                                   GFP_KERNEL);
945         if (rc) {
946                 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
947                 dev->can.state = CAN_STATE_STOPPED;
948
949                 goto out_usb_kill_anchored_urbs;
950         }
951
952         parent->active_channels++;
953         if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
954                 netif_start_queue(netdev);
955
956         return 0;
957
958 out_usb_unanchor_urb:
959         usb_unanchor_urb(urb);
960 out_usb_free_urb:
961         usb_free_urb(urb);
962 out_usb_kill_anchored_urbs:
963         if (!parent->active_channels) {
964                 usb_kill_anchored_urbs(&dev->tx_submitted);
965
966                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
967                         gs_usb_timestamp_stop(parent);
968         }
969
970         close_candev(netdev);
971
972         return rc;
973 }
974
975 static int gs_usb_get_state(const struct net_device *netdev,
976                             struct can_berr_counter *bec,
977                             enum can_state *state)
978 {
979         struct gs_can *dev = netdev_priv(netdev);
980         struct gs_device_state ds;
981         int rc;
982
983         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
984                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
985                                   dev->channel, 0,
986                                   &ds, sizeof(ds),
987                                   USB_CTRL_GET_TIMEOUT,
988                                   GFP_KERNEL);
989         if (rc)
990                 return rc;
991
992         if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
993                 return -EOPNOTSUPP;
994
995         *state = le32_to_cpu(ds.state);
996         bec->txerr = le32_to_cpu(ds.txerr);
997         bec->rxerr = le32_to_cpu(ds.rxerr);
998
999         return 0;
1000 }
1001
1002 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1003                                        struct can_berr_counter *bec)
1004 {
1005         enum can_state state;
1006
1007         return gs_usb_get_state(netdev, bec, &state);
1008 }
1009
1010 static int gs_can_close(struct net_device *netdev)
1011 {
1012         int rc;
1013         struct gs_can *dev = netdev_priv(netdev);
1014         struct gs_usb *parent = dev->parent;
1015
1016         netif_stop_queue(netdev);
1017
1018         /* Stop polling */
1019         parent->active_channels--;
1020         if (!parent->active_channels) {
1021                 usb_kill_anchored_urbs(&parent->rx_submitted);
1022
1023                 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1024                         gs_usb_timestamp_stop(parent);
1025         }
1026
1027         /* Stop sending URBs */
1028         usb_kill_anchored_urbs(&dev->tx_submitted);
1029         atomic_set(&dev->active_tx_urbs, 0);
1030
1031         dev->can.state = CAN_STATE_STOPPED;
1032
1033         /* reset the device */
1034         rc = gs_cmd_reset(dev);
1035         if (rc < 0)
1036                 netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
1037
1038         /* reset tx contexts */
1039         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1040                 dev->tx_context[rc].dev = dev;
1041                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1042         }
1043
1044         /* close the netdev */
1045         close_candev(netdev);
1046
1047         return 0;
1048 }
1049
1050 static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1051 {
1052         const struct gs_can *dev = netdev_priv(netdev);
1053
1054         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1055                 return can_eth_ioctl_hwts(netdev, ifr, cmd);
1056
1057         return -EOPNOTSUPP;
1058 }
1059
1060 static const struct net_device_ops gs_usb_netdev_ops = {
1061         .ndo_open = gs_can_open,
1062         .ndo_stop = gs_can_close,
1063         .ndo_start_xmit = gs_can_start_xmit,
1064         .ndo_change_mtu = can_change_mtu,
1065         .ndo_eth_ioctl = gs_can_eth_ioctl,
1066 };
1067
1068 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1069 {
1070         struct gs_can *dev = netdev_priv(netdev);
1071         struct gs_identify_mode imode;
1072
1073         if (do_identify)
1074                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1075         else
1076                 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1077
1078         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1079                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1080                                     dev->channel, 0, &imode, sizeof(imode), 100,
1081                                     GFP_KERNEL);
1082 }
1083
1084 /* blink LED's for finding the this interface */
1085 static int gs_usb_set_phys_id(struct net_device *netdev,
1086                               enum ethtool_phys_id_state state)
1087 {
1088         const struct gs_can *dev = netdev_priv(netdev);
1089         int rc = 0;
1090
1091         if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1092                 return -EOPNOTSUPP;
1093
1094         switch (state) {
1095         case ETHTOOL_ID_ACTIVE:
1096                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1097                 break;
1098         case ETHTOOL_ID_INACTIVE:
1099                 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1100                 break;
1101         default:
1102                 break;
1103         }
1104
1105         return rc;
1106 }
1107
1108 static int gs_usb_get_ts_info(struct net_device *netdev,
1109                               struct ethtool_ts_info *info)
1110 {
1111         struct gs_can *dev = netdev_priv(netdev);
1112
1113         /* report if device supports HW timestamps */
1114         if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1115                 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1116
1117         return ethtool_op_get_ts_info(netdev, info);
1118 }
1119
1120 static const struct ethtool_ops gs_usb_ethtool_ops = {
1121         .set_phys_id = gs_usb_set_phys_id,
1122         .get_ts_info = gs_usb_get_ts_info,
1123 };
1124
1125 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1126 {
1127         struct gs_can *dev = netdev_priv(netdev);
1128         struct gs_device_termination_state term_state;
1129         int rc;
1130
1131         rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1132                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1133                                   dev->channel, 0,
1134                                   &term_state, sizeof(term_state), 1000,
1135                                   GFP_KERNEL);
1136         if (rc)
1137                 return rc;
1138
1139         if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1140                 *term = GS_USB_TERMINATION_ENABLED;
1141         else
1142                 *term = GS_USB_TERMINATION_DISABLED;
1143
1144         return 0;
1145 }
1146
1147 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1148 {
1149         struct gs_can *dev = netdev_priv(netdev);
1150         struct gs_device_termination_state term_state;
1151
1152         if (term == GS_USB_TERMINATION_ENABLED)
1153                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1154         else
1155                 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1156
1157         return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1158                                     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1159                                     dev->channel, 0,
1160                                     &term_state, sizeof(term_state), 1000,
1161                                     GFP_KERNEL);
1162 }
1163
1164 static const u16 gs_usb_termination_const[] = {
1165         GS_USB_TERMINATION_DISABLED,
1166         GS_USB_TERMINATION_ENABLED
1167 };
1168
1169 static struct gs_can *gs_make_candev(unsigned int channel,
1170                                      struct usb_interface *intf,
1171                                      struct gs_device_config *dconf)
1172 {
1173         struct gs_can *dev;
1174         struct net_device *netdev;
1175         int rc;
1176         struct gs_device_bt_const_extended bt_const_extended;
1177         struct gs_device_bt_const bt_const;
1178         u32 feature;
1179
1180         /* fetch bit timing constants */
1181         rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1182                                   GS_USB_BREQ_BT_CONST,
1183                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1184                                   channel, 0, &bt_const, sizeof(bt_const), 1000,
1185                                   GFP_KERNEL);
1186
1187         if (rc) {
1188                 dev_err(&intf->dev,
1189                         "Couldn't get bit timing const for channel %d (%pe)\n",
1190                         channel, ERR_PTR(rc));
1191                 return ERR_PTR(rc);
1192         }
1193
1194         /* create netdev */
1195         netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1196         if (!netdev) {
1197                 dev_err(&intf->dev, "Couldn't allocate candev\n");
1198                 return ERR_PTR(-ENOMEM);
1199         }
1200
1201         dev = netdev_priv(netdev);
1202
1203         netdev->netdev_ops = &gs_usb_netdev_ops;
1204         netdev->ethtool_ops = &gs_usb_ethtool_ops;
1205
1206         netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1207         netdev->dev_id = channel;
1208
1209         /* dev setup */
1210         strcpy(dev->bt_const.name, KBUILD_MODNAME);
1211         dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1212         dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1213         dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1214         dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1215         dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1216         dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1217         dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1218         dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1219
1220         dev->udev = interface_to_usbdev(intf);
1221         dev->netdev = netdev;
1222         dev->channel = channel;
1223
1224         init_usb_anchor(&dev->tx_submitted);
1225         atomic_set(&dev->active_tx_urbs, 0);
1226         spin_lock_init(&dev->tx_ctx_lock);
1227         for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1228                 dev->tx_context[rc].dev = dev;
1229                 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1230         }
1231
1232         /* can setup */
1233         dev->can.state = CAN_STATE_STOPPED;
1234         dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1235         dev->can.bittiming_const = &dev->bt_const;
1236         dev->can.do_set_bittiming = gs_usb_set_bittiming;
1237
1238         dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1239
1240         feature = le32_to_cpu(bt_const.feature);
1241         dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1242         if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1243                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1244
1245         if (feature & GS_CAN_FEATURE_LOOP_BACK)
1246                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1247
1248         if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1249                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1250
1251         if (feature & GS_CAN_FEATURE_ONE_SHOT)
1252                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1253
1254         if (feature & GS_CAN_FEATURE_FD) {
1255                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1256                 /* The data bit timing will be overwritten, if
1257                  * GS_CAN_FEATURE_BT_CONST_EXT is set.
1258                  */
1259                 dev->can.data_bittiming_const = &dev->bt_const;
1260                 dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
1261         }
1262
1263         if (feature & GS_CAN_FEATURE_TERMINATION) {
1264                 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1265                 if (rc) {
1266                         dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1267
1268                         dev_info(&intf->dev,
1269                                  "Disabling termination support for channel %d (%pe)\n",
1270                                  channel, ERR_PTR(rc));
1271                 } else {
1272                         dev->can.termination_const = gs_usb_termination_const;
1273                         dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1274                         dev->can.do_set_termination = gs_usb_set_termination;
1275                 }
1276         }
1277
1278         if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1279                 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1280
1281         if (feature & GS_CAN_FEATURE_GET_STATE)
1282                 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1283
1284         /* The CANtact Pro from LinkLayer Labs is based on the
1285          * LPC54616 µC, which is affected by the NXP LPC USB transfer
1286          * erratum. However, the current firmware (version 2) doesn't
1287          * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1288          * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1289          * this issue.
1290          *
1291          * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1292          * CANtact Pro firmware uses a request value, which is already
1293          * used by the candleLight firmware for a different purpose
1294          * (GS_USB_BREQ_GET_USER_ID). Set the feature
1295          * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1296          * issue.
1297          */
1298         if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1299             dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1300             dev->udev->manufacturer && dev->udev->product &&
1301             !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1302             !strcmp(dev->udev->product, "CANtact Pro") &&
1303             (le32_to_cpu(dconf->sw_version) <= 2))
1304                 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1305                         GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1306
1307         /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1308         if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1309               feature & GS_CAN_FEATURE_IDENTIFY))
1310                 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1311
1312         /* fetch extended bit timing constants if device has feature
1313          * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1314          */
1315         if (feature & GS_CAN_FEATURE_FD &&
1316             feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1317                 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1318                                           GS_USB_BREQ_BT_CONST_EXT,
1319                                           USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1320                                           channel, 0, &bt_const_extended,
1321                                           sizeof(bt_const_extended),
1322                                           1000, GFP_KERNEL);
1323                 if (rc) {
1324                         dev_err(&intf->dev,
1325                                 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1326                                 channel, ERR_PTR(rc));
1327                         goto out_free_candev;
1328                 }
1329
1330                 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1331                 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1332                 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1333                 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1334                 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1335                 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1336                 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1337                 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1338                 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1339
1340                 dev->can.data_bittiming_const = &dev->data_bt_const;
1341         }
1342
1343         SET_NETDEV_DEV(netdev, &intf->dev);
1344
1345         rc = register_candev(dev->netdev);
1346         if (rc) {
1347                 dev_err(&intf->dev,
1348                         "Couldn't register candev for channel %d (%pe)\n",
1349                         channel, ERR_PTR(rc));
1350                 goto out_free_candev;
1351         }
1352
1353         return dev;
1354
1355 out_free_candev:
1356         free_candev(dev->netdev);
1357         return ERR_PTR(rc);
1358 }
1359
1360 static void gs_destroy_candev(struct gs_can *dev)
1361 {
1362         unregister_candev(dev->netdev);
1363         usb_kill_anchored_urbs(&dev->tx_submitted);
1364         free_candev(dev->netdev);
1365 }
1366
1367 static int gs_usb_probe(struct usb_interface *intf,
1368                         const struct usb_device_id *id)
1369 {
1370         struct usb_device *udev = interface_to_usbdev(intf);
1371         struct gs_host_frame *hf;
1372         struct gs_usb *dev;
1373         struct gs_host_config hconf = {
1374                 .byte_order = cpu_to_le32(0x0000beef),
1375         };
1376         struct gs_device_config dconf;
1377         unsigned int icount, i;
1378         int rc;
1379
1380         /* send host config */
1381         rc = usb_control_msg_send(udev, 0,
1382                                   GS_USB_BREQ_HOST_FORMAT,
1383                                   USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1384                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1385                                   &hconf, sizeof(hconf), 1000,
1386                                   GFP_KERNEL);
1387         if (rc) {
1388                 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1389                 return rc;
1390         }
1391
1392         /* read device config */
1393         rc = usb_control_msg_recv(udev, 0,
1394                                   GS_USB_BREQ_DEVICE_CONFIG,
1395                                   USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1396                                   1, intf->cur_altsetting->desc.bInterfaceNumber,
1397                                   &dconf, sizeof(dconf), 1000,
1398                                   GFP_KERNEL);
1399         if (rc) {
1400                 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1401                         rc);
1402                 return rc;
1403         }
1404
1405         icount = dconf.icount + 1;
1406         dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1407
1408         if (icount > GS_MAX_INTF) {
1409                 dev_err(&intf->dev,
1410                         "Driver cannot handle more that %u CAN interfaces\n",
1411                         GS_MAX_INTF);
1412                 return -EINVAL;
1413         }
1414
1415         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1416         if (!dev)
1417                 return -ENOMEM;
1418
1419         init_usb_anchor(&dev->rx_submitted);
1420
1421         usb_set_intfdata(intf, dev);
1422         dev->udev = udev;
1423
1424         for (i = 0; i < icount; i++) {
1425                 unsigned int hf_size_rx = 0;
1426
1427                 dev->canch[i] = gs_make_candev(i, intf, &dconf);
1428                 if (IS_ERR_OR_NULL(dev->canch[i])) {
1429                         /* save error code to return later */
1430                         rc = PTR_ERR(dev->canch[i]);
1431
1432                         /* on failure destroy previously created candevs */
1433                         icount = i;
1434                         for (i = 0; i < icount; i++)
1435                                 gs_destroy_candev(dev->canch[i]);
1436
1437                         usb_kill_anchored_urbs(&dev->rx_submitted);
1438                         kfree(dev);
1439                         return rc;
1440                 }
1441                 dev->canch[i]->parent = dev;
1442
1443                 /* set RX packet size based on FD and if hardware
1444                  * timestamps are supported.
1445                  */
1446                 if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1447                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1448                                 hf_size_rx = struct_size(hf, canfd_ts, 1);
1449                         else
1450                                 hf_size_rx = struct_size(hf, canfd, 1);
1451                 } else {
1452                         if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1453                                 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1454                         else
1455                                 hf_size_rx = struct_size(hf, classic_can, 1);
1456                 }
1457                 dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
1458         }
1459
1460         return 0;
1461 }
1462
1463 static void gs_usb_disconnect(struct usb_interface *intf)
1464 {
1465         struct gs_usb *dev = usb_get_intfdata(intf);
1466         unsigned int i;
1467
1468         usb_set_intfdata(intf, NULL);
1469
1470         if (!dev) {
1471                 dev_err(&intf->dev, "Disconnect (nodata)\n");
1472                 return;
1473         }
1474
1475         for (i = 0; i < GS_MAX_INTF; i++)
1476                 if (dev->canch[i])
1477                         gs_destroy_candev(dev->canch[i]);
1478
1479         usb_kill_anchored_urbs(&dev->rx_submitted);
1480         kfree(dev);
1481 }
1482
1483 static const struct usb_device_id gs_usb_table[] = {
1484         { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1485                                       USB_GS_USB_1_PRODUCT_ID, 0) },
1486         { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1487                                       USB_CANDLELIGHT_PRODUCT_ID, 0) },
1488         { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1489                                       USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1490         { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1491                                       USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1492         {} /* Terminating entry */
1493 };
1494
1495 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1496
1497 static struct usb_driver gs_usb_driver = {
1498         .name = KBUILD_MODNAME,
1499         .probe = gs_usb_probe,
1500         .disconnect = gs_usb_disconnect,
1501         .id_table = gs_usb_table,
1502 };
1503
1504 module_usb_driver(gs_usb_driver);
1505
1506 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1507 MODULE_DESCRIPTION(
1508 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1509 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1510 "and bytewerk.org candleLight USB CAN interfaces.");
1511 MODULE_LICENSE("GPL v2");