can: rcar_canfd: Add missing ECC error checks for channels 2-7
[platform/kernel/linux-starfive.git] / drivers / net / can / rcar / rcar_canfd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/ethtool.h>
31 #include <linux/netdevice.h>
32 #include <linux/platform_device.h>
33 #include <linux/can/dev.h>
34 #include <linux/clk.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 #include <linux/iopoll.h>
40 #include <linux/reset.h>
41
42 #define RCANFD_DRV_NAME                 "rcar_canfd"
43
44 enum rcanfd_chip_id {
45         RENESAS_RCAR_GEN3 = 0,
46         RENESAS_RZG2L,
47         RENESAS_R8A779A0,
48 };
49
50 /* Global register bits */
51
52 /* RSCFDnCFDGRMCFG */
53 #define RCANFD_GRMCFG_RCMC              BIT(0)
54
55 /* RSCFDnCFDGCFG / RSCFDnGCFG */
56 #define RCANFD_GCFG_EEFE                BIT(6)
57 #define RCANFD_GCFG_CMPOC               BIT(5)  /* CAN FD only */
58 #define RCANFD_GCFG_DCS                 BIT(4)
59 #define RCANFD_GCFG_DCE                 BIT(1)
60 #define RCANFD_GCFG_TPRI                BIT(0)
61
62 /* RSCFDnCFDGCTR / RSCFDnGCTR */
63 #define RCANFD_GCTR_TSRST               BIT(16)
64 #define RCANFD_GCTR_CFMPOFIE            BIT(11) /* CAN FD only */
65 #define RCANFD_GCTR_THLEIE              BIT(10)
66 #define RCANFD_GCTR_MEIE                BIT(9)
67 #define RCANFD_GCTR_DEIE                BIT(8)
68 #define RCANFD_GCTR_GSLPR               BIT(2)
69 #define RCANFD_GCTR_GMDC_MASK           (0x3)
70 #define RCANFD_GCTR_GMDC_GOPM           (0x0)
71 #define RCANFD_GCTR_GMDC_GRESET         (0x1)
72 #define RCANFD_GCTR_GMDC_GTEST          (0x2)
73
74 /* RSCFDnCFDGSTS / RSCFDnGSTS */
75 #define RCANFD_GSTS_GRAMINIT            BIT(3)
76 #define RCANFD_GSTS_GSLPSTS             BIT(2)
77 #define RCANFD_GSTS_GHLTSTS             BIT(1)
78 #define RCANFD_GSTS_GRSTSTS             BIT(0)
79 /* Non-operational status */
80 #define RCANFD_GSTS_GNOPM               (BIT(0) | BIT(1) | BIT(2) | BIT(3))
81
82 /* RSCFDnCFDGERFL / RSCFDnGERFL */
83 #define RCANFD_GERFL_EEF0_7             GENMASK(23, 16)
84 #define RCANFD_GERFL_EEF(ch)            BIT(16 + (ch))
85 #define RCANFD_GERFL_CMPOF              BIT(3)  /* CAN FD only */
86 #define RCANFD_GERFL_THLES              BIT(2)
87 #define RCANFD_GERFL_MES                BIT(1)
88 #define RCANFD_GERFL_DEF                BIT(0)
89
90 #define RCANFD_GERFL_ERR(gpriv, x) \
91         ((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
92                         RCANFD_GERFL_EEF(0) | RCANFD_GERFL_EEF(1)) | \
93                 RCANFD_GERFL_MES | \
94                 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
95
96 /* AFL Rx rules registers */
97
98 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
99 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
100         (((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
101          (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
102
103 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
104         (((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
105          reg_v3u(gpriv, 0x1ff, 0xff))
106
107 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
108 #define RCANFD_GAFLECTR_AFLDAE          BIT(8)
109 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_v3u(gpriv, 0x7f, 0x1f))
110
111 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
112 #define RCANFD_GAFLID_GAFLLB            BIT(29)
113
114 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
115 #define RCANFD_GAFLP1_GAFLFDP(x)        (1 << (x))
116
117 /* Channel register bits */
118
119 /* RSCFDnCmCFG - Classical CAN only */
120 #define RCANFD_CFG_SJW(x)               (((x) & 0x3) << 24)
121 #define RCANFD_CFG_TSEG2(x)             (((x) & 0x7) << 20)
122 #define RCANFD_CFG_TSEG1(x)             (((x) & 0xf) << 16)
123 #define RCANFD_CFG_BRP(x)               (((x) & 0x3ff) << 0)
124
125 /* RSCFDnCFDCmNCFG - CAN FD only */
126 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
127         (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
128
129 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
130         (((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
131
132 #define RCANFD_NCFG_NSJW(gpriv, x) \
133         (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
134
135 #define RCANFD_NCFG_NBRP(x)             (((x) & 0x3ff) << 0)
136
137 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
138 #define RCANFD_CCTR_CTME                BIT(24)
139 #define RCANFD_CCTR_ERRD                BIT(23)
140 #define RCANFD_CCTR_BOM_MASK            (0x3 << 21)
141 #define RCANFD_CCTR_BOM_ISO             (0x0 << 21)
142 #define RCANFD_CCTR_BOM_BENTRY          (0x1 << 21)
143 #define RCANFD_CCTR_BOM_BEND            (0x2 << 21)
144 #define RCANFD_CCTR_TDCVFIE             BIT(19)
145 #define RCANFD_CCTR_SOCOIE              BIT(18)
146 #define RCANFD_CCTR_EOCOIE              BIT(17)
147 #define RCANFD_CCTR_TAIE                BIT(16)
148 #define RCANFD_CCTR_ALIE                BIT(15)
149 #define RCANFD_CCTR_BLIE                BIT(14)
150 #define RCANFD_CCTR_OLIE                BIT(13)
151 #define RCANFD_CCTR_BORIE               BIT(12)
152 #define RCANFD_CCTR_BOEIE               BIT(11)
153 #define RCANFD_CCTR_EPIE                BIT(10)
154 #define RCANFD_CCTR_EWIE                BIT(9)
155 #define RCANFD_CCTR_BEIE                BIT(8)
156 #define RCANFD_CCTR_CSLPR               BIT(2)
157 #define RCANFD_CCTR_CHMDC_MASK          (0x3)
158 #define RCANFD_CCTR_CHDMC_COPM          (0x0)
159 #define RCANFD_CCTR_CHDMC_CRESET        (0x1)
160 #define RCANFD_CCTR_CHDMC_CHLT          (0x2)
161
162 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
163 #define RCANFD_CSTS_COMSTS              BIT(7)
164 #define RCANFD_CSTS_RECSTS              BIT(6)
165 #define RCANFD_CSTS_TRMSTS              BIT(5)
166 #define RCANFD_CSTS_BOSTS               BIT(4)
167 #define RCANFD_CSTS_EPSTS               BIT(3)
168 #define RCANFD_CSTS_SLPSTS              BIT(2)
169 #define RCANFD_CSTS_HLTSTS              BIT(1)
170 #define RCANFD_CSTS_CRSTSTS             BIT(0)
171
172 #define RCANFD_CSTS_TECCNT(x)           (((x) >> 24) & 0xff)
173 #define RCANFD_CSTS_RECCNT(x)           (((x) >> 16) & 0xff)
174
175 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
176 #define RCANFD_CERFL_ADERR              BIT(14)
177 #define RCANFD_CERFL_B0ERR              BIT(13)
178 #define RCANFD_CERFL_B1ERR              BIT(12)
179 #define RCANFD_CERFL_CERR               BIT(11)
180 #define RCANFD_CERFL_AERR               BIT(10)
181 #define RCANFD_CERFL_FERR               BIT(9)
182 #define RCANFD_CERFL_SERR               BIT(8)
183 #define RCANFD_CERFL_ALF                BIT(7)
184 #define RCANFD_CERFL_BLF                BIT(6)
185 #define RCANFD_CERFL_OVLF               BIT(5)
186 #define RCANFD_CERFL_BORF               BIT(4)
187 #define RCANFD_CERFL_BOEF               BIT(3)
188 #define RCANFD_CERFL_EPF                BIT(2)
189 #define RCANFD_CERFL_EWF                BIT(1)
190 #define RCANFD_CERFL_BEF                BIT(0)
191
192 #define RCANFD_CERFL_ERR(x)             ((x) & (0x7fff)) /* above bits 14:0 */
193
194 /* RSCFDnCFDCmDCFG */
195 #define RCANFD_DCFG_DSJW(x)             (((x) & 0x7) << 24)
196
197 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
198         (((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
199
200 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
201         (((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
202
203 #define RCANFD_DCFG_DBRP(x)             (((x) & 0xff) << 0)
204
205 /* RSCFDnCFDCmFDCFG */
206 #define RCANFD_FDCFG_CLOE               BIT(30)
207 #define RCANFD_FDCFG_FDOE               BIT(28)
208 #define RCANFD_FDCFG_TDCE               BIT(9)
209 #define RCANFD_FDCFG_TDCOC              BIT(8)
210 #define RCANFD_FDCFG_TDCO(x)            (((x) & 0x7f) >> 16)
211
212 /* RSCFDnCFDRFCCx */
213 #define RCANFD_RFCC_RFIM                BIT(12)
214 #define RCANFD_RFCC_RFDC(x)             (((x) & 0x7) << 8)
215 #define RCANFD_RFCC_RFPLS(x)            (((x) & 0x7) << 4)
216 #define RCANFD_RFCC_RFIE                BIT(1)
217 #define RCANFD_RFCC_RFE                 BIT(0)
218
219 /* RSCFDnCFDRFSTSx */
220 #define RCANFD_RFSTS_RFIF               BIT(3)
221 #define RCANFD_RFSTS_RFMLT              BIT(2)
222 #define RCANFD_RFSTS_RFFLL              BIT(1)
223 #define RCANFD_RFSTS_RFEMP              BIT(0)
224
225 /* RSCFDnCFDRFIDx */
226 #define RCANFD_RFID_RFIDE               BIT(31)
227 #define RCANFD_RFID_RFRTR               BIT(30)
228
229 /* RSCFDnCFDRFPTRx */
230 #define RCANFD_RFPTR_RFDLC(x)           (((x) >> 28) & 0xf)
231 #define RCANFD_RFPTR_RFPTR(x)           (((x) >> 16) & 0xfff)
232 #define RCANFD_RFPTR_RFTS(x)            (((x) >> 0) & 0xffff)
233
234 /* RSCFDnCFDRFFDSTSx */
235 #define RCANFD_RFFDSTS_RFFDF            BIT(2)
236 #define RCANFD_RFFDSTS_RFBRS            BIT(1)
237 #define RCANFD_RFFDSTS_RFESI            BIT(0)
238
239 /* Common FIFO bits */
240
241 /* RSCFDnCFDCFCCk */
242 #define RCANFD_CFCC_CFTML(gpriv, x)     (((x) & 0xf) << reg_v3u(gpriv, 16, 20))
243 #define RCANFD_CFCC_CFM(gpriv, x)       (((x) & 0x3) << reg_v3u(gpriv,  8, 16))
244 #define RCANFD_CFCC_CFIM                BIT(12)
245 #define RCANFD_CFCC_CFDC(gpriv, x)      (((x) & 0x7) << reg_v3u(gpriv, 21,  8))
246 #define RCANFD_CFCC_CFPLS(x)            (((x) & 0x7) << 4)
247 #define RCANFD_CFCC_CFTXIE              BIT(2)
248 #define RCANFD_CFCC_CFE                 BIT(0)
249
250 /* RSCFDnCFDCFSTSk */
251 #define RCANFD_CFSTS_CFMC(x)            (((x) >> 8) & 0xff)
252 #define RCANFD_CFSTS_CFTXIF             BIT(4)
253 #define RCANFD_CFSTS_CFMLT              BIT(2)
254 #define RCANFD_CFSTS_CFFLL              BIT(1)
255 #define RCANFD_CFSTS_CFEMP              BIT(0)
256
257 /* RSCFDnCFDCFIDk */
258 #define RCANFD_CFID_CFIDE               BIT(31)
259 #define RCANFD_CFID_CFRTR               BIT(30)
260 #define RCANFD_CFID_CFID_MASK(x)        ((x) & 0x1fffffff)
261
262 /* RSCFDnCFDCFPTRk */
263 #define RCANFD_CFPTR_CFDLC(x)           (((x) & 0xf) << 28)
264 #define RCANFD_CFPTR_CFPTR(x)           (((x) & 0xfff) << 16)
265 #define RCANFD_CFPTR_CFTS(x)            (((x) & 0xff) << 0)
266
267 /* RSCFDnCFDCFFDCSTSk */
268 #define RCANFD_CFFDCSTS_CFFDF           BIT(2)
269 #define RCANFD_CFFDCSTS_CFBRS           BIT(1)
270 #define RCANFD_CFFDCSTS_CFESI           BIT(0)
271
272 /* This controller supports either Classical CAN only mode or CAN FD only mode.
273  * These modes are supported in two separate set of register maps & names.
274  * However, some of the register offsets are common for both modes. Those
275  * offsets are listed below as Common registers.
276  *
277  * The CAN FD only mode specific registers & Classical CAN only mode specific
278  * registers are listed separately. Their register names starts with
279  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
280  */
281
282 /* Common registers */
283
284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
285 #define RCANFD_CCFG(m)                  (0x0000 + (0x10 * (m)))
286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
287 #define RCANFD_CCTR(m)                  (0x0004 + (0x10 * (m)))
288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
289 #define RCANFD_CSTS(m)                  (0x0008 + (0x10 * (m)))
290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
291 #define RCANFD_CERFL(m)                 (0x000C + (0x10 * (m)))
292
293 /* RSCFDnCFDGCFG / RSCFDnGCFG */
294 #define RCANFD_GCFG                     (0x0084)
295 /* RSCFDnCFDGCTR / RSCFDnGCTR */
296 #define RCANFD_GCTR                     (0x0088)
297 /* RSCFDnCFDGCTS / RSCFDnGCTS */
298 #define RCANFD_GSTS                     (0x008c)
299 /* RSCFDnCFDGERFL / RSCFDnGERFL */
300 #define RCANFD_GERFL                    (0x0090)
301 /* RSCFDnCFDGTSC / RSCFDnGTSC */
302 #define RCANFD_GTSC                     (0x0094)
303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
304 #define RCANFD_GAFLECTR                 (0x0098)
305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
306 #define RCANFD_GAFLCFG(ch)              (0x009c + (0x04 * ((ch) / 2)))
307 /* RSCFDnCFDRMNB / RSCFDnRMNB */
308 #define RCANFD_RMNB                     (0x00a4)
309 /* RSCFDnCFDRMND / RSCFDnRMND */
310 #define RCANFD_RMND(y)                  (0x00a8 + (0x04 * (y)))
311
312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
313 #define RCANFD_RFCC(gpriv, x)           (reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
315 #define RCANFD_RFSTS(gpriv, x)          (RCANFD_RFCC(gpriv, x) + 0x20)
316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
317 #define RCANFD_RFPCTR(gpriv, x)         (RCANFD_RFCC(gpriv, x) + 0x40)
318
319 /* Common FIFO Control registers */
320
321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
322 #define RCANFD_CFCC(gpriv, ch, idx) \
323         (reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
325 #define RCANFD_CFSTS(gpriv, ch, idx) \
326         (reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
328 #define RCANFD_CFPCTR(gpriv, ch, idx) \
329         (reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
330
331 /* RSCFDnCFDFESTS / RSCFDnFESTS */
332 #define RCANFD_FESTS                    (0x0238)
333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
334 #define RCANFD_FFSTS                    (0x023c)
335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
336 #define RCANFD_FMSTS                    (0x0240)
337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
338 #define RCANFD_RFISTS                   (0x0244)
339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
340 #define RCANFD_CFRISTS                  (0x0248)
341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
342 #define RCANFD_CFTISTS                  (0x024c)
343
344 /* RSCFDnCFDTMCp / RSCFDnTMCp */
345 #define RCANFD_TMC(p)                   (0x0250 + (0x01 * (p)))
346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
347 #define RCANFD_TMSTS(p)                 (0x02d0 + (0x01 * (p)))
348
349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
350 #define RCANFD_TMTRSTS(y)               (0x0350 + (0x04 * (y)))
351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
352 #define RCANFD_TMTARSTS(y)              (0x0360 + (0x04 * (y)))
353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
354 #define RCANFD_TMTCSTS(y)               (0x0370 + (0x04 * (y)))
355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
356 #define RCANFD_TMTASTS(y)               (0x0380 + (0x04 * (y)))
357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
358 #define RCANFD_TMIEC(y)                 (0x0390 + (0x04 * (y)))
359
360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
361 #define RCANFD_TXQCC(m)                 (0x03a0 + (0x04 * (m)))
362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
363 #define RCANFD_TXQSTS(m)                (0x03c0 + (0x04 * (m)))
364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
365 #define RCANFD_TXQPCTR(m)               (0x03e0 + (0x04 * (m)))
366
367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
368 #define RCANFD_THLCC(m)                 (0x0400 + (0x04 * (m)))
369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
370 #define RCANFD_THLSTS(m)                (0x0420 + (0x04 * (m)))
371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
372 #define RCANFD_THLPCTR(m)               (0x0440 + (0x04 * (m)))
373
374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
375 #define RCANFD_GTINTSTS0                (0x0460)
376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
377 #define RCANFD_GTINTSTS1                (0x0464)
378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
379 #define RCANFD_GTSTCFG                  (0x0468)
380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
381 #define RCANFD_GTSTCTR                  (0x046c)
382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
383 #define RCANFD_GLOCKK                   (0x047c)
384 /* RSCFDnCFDGRMCFG */
385 #define RCANFD_GRMCFG                   (0x04fc)
386
387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
388 #define RCANFD_GAFLID(offset, j)        ((offset) + (0x10 * (j)))
389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
390 #define RCANFD_GAFLM(offset, j)         ((offset) + 0x04 + (0x10 * (j)))
391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
392 #define RCANFD_GAFLP0(offset, j)        ((offset) + 0x08 + (0x10 * (j)))
393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
394 #define RCANFD_GAFLP1(offset, j)        ((offset) + 0x0c + (0x10 * (j)))
395
396 /* Classical CAN only mode register map */
397
398 /* RSCFDnGAFLXXXj offset */
399 #define RCANFD_C_GAFL_OFFSET            (0x0500)
400
401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
402 #define RCANFD_C_RMID(q)                (0x0600 + (0x10 * (q)))
403 #define RCANFD_C_RMPTR(q)               (0x0604 + (0x10 * (q)))
404 #define RCANFD_C_RMDF0(q)               (0x0608 + (0x10 * (q)))
405 #define RCANFD_C_RMDF1(q)               (0x060c + (0x10 * (q)))
406
407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
408 #define RCANFD_C_RFOFFSET       (0x0e00)
409 #define RCANFD_C_RFID(x)        (RCANFD_C_RFOFFSET + (0x10 * (x)))
410 #define RCANFD_C_RFPTR(x)       (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
411 #define RCANFD_C_RFDF(x, df) \
412                 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
413
414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
415 #define RCANFD_C_CFOFFSET               (0x0e80)
416
417 #define RCANFD_C_CFID(ch, idx) \
418         (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
419
420 #define RCANFD_C_CFPTR(ch, idx) \
421         (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
422
423 #define RCANFD_C_CFDF(ch, idx, df) \
424         (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
425
426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
427 #define RCANFD_C_TMID(p)                (0x1000 + (0x10 * (p)))
428 #define RCANFD_C_TMPTR(p)               (0x1004 + (0x10 * (p)))
429 #define RCANFD_C_TMDF0(p)               (0x1008 + (0x10 * (p)))
430 #define RCANFD_C_TMDF1(p)               (0x100c + (0x10 * (p)))
431
432 /* RSCFDnTHLACCm */
433 #define RCANFD_C_THLACC(m)              (0x1800 + (0x04 * (m)))
434 /* RSCFDnRPGACCr */
435 #define RCANFD_C_RPGACC(r)              (0x1900 + (0x04 * (r)))
436
437 /* R-Car V3U Classical and CAN FD mode specific register map */
438 #define RCANFD_V3U_CFDCFG               (0x1314)
439 #define RCANFD_V3U_DCFG(m)              (0x1400 + (0x20 * (m)))
440
441 #define RCANFD_V3U_GAFL_OFFSET          (0x1800)
442
443 /* CAN FD mode specific register map */
444
445 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
446 #define RCANFD_F_DCFG(m)                (0x0500 + (0x20 * (m)))
447 #define RCANFD_F_CFDCFG(m)              (0x0504 + (0x20 * (m)))
448 #define RCANFD_F_CFDCTR(m)              (0x0508 + (0x20 * (m)))
449 #define RCANFD_F_CFDSTS(m)              (0x050c + (0x20 * (m)))
450 #define RCANFD_F_CFDCRC(m)              (0x0510 + (0x20 * (m)))
451
452 /* RSCFDnCFDGAFLXXXj offset */
453 #define RCANFD_F_GAFL_OFFSET            (0x1000)
454
455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
456 #define RCANFD_F_RMID(q)                (0x2000 + (0x20 * (q)))
457 #define RCANFD_F_RMPTR(q)               (0x2004 + (0x20 * (q)))
458 #define RCANFD_F_RMFDSTS(q)             (0x2008 + (0x20 * (q)))
459 #define RCANFD_F_RMDF(q, b)             (0x200c + (0x04 * (b)) + (0x20 * (q)))
460
461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
462 #define RCANFD_F_RFOFFSET(gpriv)        reg_v3u(gpriv, 0x6000, 0x3000)
463 #define RCANFD_F_RFID(gpriv, x)         (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
464 #define RCANFD_F_RFPTR(gpriv, x)        (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
465 #define RCANFD_F_RFFDSTS(gpriv, x)      (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
466 #define RCANFD_F_RFDF(gpriv, x, df) \
467         (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
468
469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
470 #define RCANFD_F_CFOFFSET(gpriv)        reg_v3u(gpriv, 0x6400, 0x3400)
471
472 #define RCANFD_F_CFID(gpriv, ch, idx) \
473         (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
474
475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
476         (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
477
478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
479         (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
480
481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
482         (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
483          (0x04 * (df)))
484
485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
486 #define RCANFD_F_TMID(p)                (0x4000 + (0x20 * (p)))
487 #define RCANFD_F_TMPTR(p)               (0x4004 + (0x20 * (p)))
488 #define RCANFD_F_TMFDCTR(p)             (0x4008 + (0x20 * (p)))
489 #define RCANFD_F_TMDF(p, b)             (0x400c + (0x20 * (p)) + (0x04 * (b)))
490
491 /* RSCFDnCFDTHLACCm */
492 #define RCANFD_F_THLACC(m)              (0x6000 + (0x04 * (m)))
493 /* RSCFDnCFDRPGACCr */
494 #define RCANFD_F_RPGACC(r)              (0x6400 + (0x04 * (r)))
495
496 /* Constants */
497 #define RCANFD_FIFO_DEPTH               8       /* Tx FIFO depth */
498 #define RCANFD_NAPI_WEIGHT              8       /* Rx poll quota */
499
500 #define RCANFD_NUM_CHANNELS             8       /* Eight channels max */
501 #define RCANFD_CHANNELS_MASK            BIT((RCANFD_NUM_CHANNELS) - 1)
502
503 #define RCANFD_GAFL_PAGENUM(entry)      ((entry) / 16)
504 #define RCANFD_CHANNEL_NUMRULES         1       /* only one rule per channel */
505
506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
507  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
508  * number is added to RFFIFO index.
509  */
510 #define RCANFD_RFFIFO_IDX               0
511
512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
513  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
514  */
515 #define RCANFD_CFFIFO_IDX               0
516
517 /* fCAN clock select register settings */
518 enum rcar_canfd_fcanclk {
519         RCANFD_CANFDCLK = 0,            /* CANFD clock */
520         RCANFD_EXTCLK,                  /* Externally input clock */
521 };
522
523 struct rcar_canfd_global;
524
525 /* Channel priv data */
526 struct rcar_canfd_channel {
527         struct can_priv can;                    /* Must be the first member */
528         struct net_device *ndev;
529         struct rcar_canfd_global *gpriv;        /* Controller reference */
530         void __iomem *base;                     /* Register base address */
531         struct napi_struct napi;
532         u32 tx_head;                            /* Incremented on xmit */
533         u32 tx_tail;                            /* Incremented on xmit done */
534         u32 channel;                            /* Channel number */
535         spinlock_t tx_lock;                     /* To protect tx path */
536 };
537
538 /* Global priv data */
539 struct rcar_canfd_global {
540         struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
541         void __iomem *base;             /* Register base address */
542         struct platform_device *pdev;   /* Respective platform device */
543         struct clk *clkp;               /* Peripheral clock */
544         struct clk *can_clk;            /* fCAN clock */
545         enum rcar_canfd_fcanclk fcan;   /* CANFD or Ext clock */
546         unsigned long channels_mask;    /* Enabled channels mask */
547         bool fdmode;                    /* CAN FD or Classical CAN only mode */
548         struct reset_control *rstc1;
549         struct reset_control *rstc2;
550         enum rcanfd_chip_id chip_id;
551         u32 max_channels;
552 };
553
554 /* CAN FD mode nominal rate constants */
555 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
556         .name = RCANFD_DRV_NAME,
557         .tseg1_min = 2,
558         .tseg1_max = 128,
559         .tseg2_min = 2,
560         .tseg2_max = 32,
561         .sjw_max = 32,
562         .brp_min = 1,
563         .brp_max = 1024,
564         .brp_inc = 1,
565 };
566
567 /* CAN FD mode data rate constants */
568 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
569         .name = RCANFD_DRV_NAME,
570         .tseg1_min = 2,
571         .tseg1_max = 16,
572         .tseg2_min = 2,
573         .tseg2_max = 8,
574         .sjw_max = 8,
575         .brp_min = 1,
576         .brp_max = 256,
577         .brp_inc = 1,
578 };
579
580 /* Classical CAN mode bitrate constants */
581 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
582         .name = RCANFD_DRV_NAME,
583         .tseg1_min = 4,
584         .tseg1_max = 16,
585         .tseg2_min = 2,
586         .tseg2_max = 8,
587         .sjw_max = 4,
588         .brp_min = 1,
589         .brp_max = 1024,
590         .brp_inc = 1,
591 };
592
593 /* Helper functions */
594 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
595 {
596         return gpriv->chip_id == RENESAS_R8A779A0;
597 }
598
599 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
600                           u32 v3u, u32 not_v3u)
601 {
602         return is_v3u(gpriv) ? v3u : not_v3u;
603 }
604
605 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
606 {
607         u32 data = readl(reg);
608
609         data &= ~mask;
610         data |= (val & mask);
611         writel(data, reg);
612 }
613
614 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
615 {
616         return readl(base + (offset));
617 }
618
619 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
620 {
621         writel(val, base + (offset));
622 }
623
624 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
625 {
626         rcar_canfd_update(val, val, base + (reg));
627 }
628
629 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
630 {
631         rcar_canfd_update(val, 0, base + (reg));
632 }
633
634 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
635                                   u32 mask, u32 val)
636 {
637         rcar_canfd_update(mask, val, base + (reg));
638 }
639
640 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
641                                 struct canfd_frame *cf, u32 off)
642 {
643         u32 i, lwords;
644
645         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
646         for (i = 0; i < lwords; i++)
647                 *((u32 *)cf->data + i) =
648                         rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
649 }
650
651 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
652                                 struct canfd_frame *cf, u32 off)
653 {
654         u32 i, lwords;
655
656         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
657         for (i = 0; i < lwords; i++)
658                 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
659                                  *((u32 *)cf->data + i));
660 }
661
662 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
663 {
664         u32 i;
665
666         for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
667                 can_free_echo_skb(ndev, i, NULL);
668 }
669
670 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
671 {
672         if (is_v3u(gpriv)) {
673                 if (gpriv->fdmode)
674                         rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
675                                            RCANFD_FDCFG_FDOE);
676                 else
677                         rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
678                                            RCANFD_FDCFG_CLOE);
679         } else {
680                 if (gpriv->fdmode)
681                         rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
682                                            RCANFD_GRMCFG_RCMC);
683                 else
684                         rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
685                                              RCANFD_GRMCFG_RCMC);
686         }
687 }
688
689 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
690 {
691         u32 sts, ch;
692         int err;
693
694         /* Check RAMINIT flag as CAN RAM initialization takes place
695          * after the MCU reset
696          */
697         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
698                                  !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
699         if (err) {
700                 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
701                 return err;
702         }
703
704         /* Transition to Global Reset mode */
705         rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
706         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
707                               RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
708
709         /* Ensure Global reset mode */
710         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
711                                  (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
712         if (err) {
713                 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
714                 return err;
715         }
716
717         /* Reset Global error flags */
718         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
719
720         /* Set the controller into appropriate mode */
721         rcar_canfd_set_mode(gpriv);
722
723         /* Transition all Channels to reset mode */
724         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
725                 rcar_canfd_clear_bit(gpriv->base,
726                                      RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
727
728                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
729                                       RCANFD_CCTR_CHMDC_MASK,
730                                       RCANFD_CCTR_CHDMC_CRESET);
731
732                 /* Ensure Channel reset mode */
733                 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
734                                          (sts & RCANFD_CSTS_CRSTSTS),
735                                          2, 500000);
736                 if (err) {
737                         dev_dbg(&gpriv->pdev->dev,
738                                 "channel %u reset failed\n", ch);
739                         return err;
740                 }
741         }
742         return 0;
743 }
744
745 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
746 {
747         u32 cfg, ch;
748
749         /* Global configuration settings */
750
751         /* ECC Error flag Enable */
752         cfg = RCANFD_GCFG_EEFE;
753
754         if (gpriv->fdmode)
755                 /* Truncate payload to configured message size RFPLS */
756                 cfg |= RCANFD_GCFG_CMPOC;
757
758         /* Set External Clock if selected */
759         if (gpriv->fcan != RCANFD_CANFDCLK)
760                 cfg |= RCANFD_GCFG_DCS;
761
762         rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
763
764         /* Channel configuration settings */
765         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
766                 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
767                                    RCANFD_CCTR_ERRD);
768                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
769                                       RCANFD_CCTR_BOM_MASK,
770                                       RCANFD_CCTR_BOM_BENTRY);
771         }
772 }
773
774 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
775                                            u32 ch)
776 {
777         u32 cfg;
778         int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
779         u32 ridx = ch + RCANFD_RFFIFO_IDX;
780
781         if (ch == 0) {
782                 start = 0; /* Channel 0 always starts from 0th rule */
783         } else {
784                 /* Get number of Channel 0 rules and adjust */
785                 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
786                 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
787         }
788
789         /* Enable write access to entry */
790         page = RCANFD_GAFL_PAGENUM(start);
791         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
792                            (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
793                             RCANFD_GAFLECTR_AFLDAE));
794
795         /* Write number of rules for channel */
796         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
797                            RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
798         if (is_v3u(gpriv))
799                 offset = RCANFD_V3U_GAFL_OFFSET;
800         else if (gpriv->fdmode)
801                 offset = RCANFD_F_GAFL_OFFSET;
802         else
803                 offset = RCANFD_C_GAFL_OFFSET;
804
805         /* Accept all IDs */
806         rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
807         /* IDE or RTR is not considered for matching */
808         rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
809         /* Any data length accepted */
810         rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
811         /* Place the msg in corresponding Rx FIFO entry */
812         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
813                            RCANFD_GAFLP1_GAFLFDP(ridx));
814
815         /* Disable write access to page */
816         rcar_canfd_clear_bit(gpriv->base,
817                              RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
818 }
819
820 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
821 {
822         /* Rx FIFO is used for reception */
823         u32 cfg;
824         u16 rfdc, rfpls;
825
826         /* Select Rx FIFO based on channel */
827         u32 ridx = ch + RCANFD_RFFIFO_IDX;
828
829         rfdc = 2;               /* b010 - 8 messages Rx FIFO depth */
830         if (gpriv->fdmode)
831                 rfpls = 7;      /* b111 - Max 64 bytes payload */
832         else
833                 rfpls = 0;      /* b000 - Max 8 bytes payload */
834
835         cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
836                 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
837         rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
838 }
839
840 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
841 {
842         /* Tx/Rx(Common) FIFO configured in Tx mode is
843          * used for transmission
844          *
845          * Each channel has 3 Common FIFO dedicated to them.
846          * Use the 1st (index 0) out of 3
847          */
848         u32 cfg;
849         u16 cftml, cfm, cfdc, cfpls;
850
851         cftml = 0;              /* 0th buffer */
852         cfm = 1;                /* b01 - Transmit mode */
853         cfdc = 2;               /* b010 - 8 messages Tx FIFO depth */
854         if (gpriv->fdmode)
855                 cfpls = 7;      /* b111 - Max 64 bytes payload */
856         else
857                 cfpls = 0;      /* b000 - Max 8 bytes payload */
858
859         cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
860                 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
861                 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
862         rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
863
864         if (gpriv->fdmode)
865                 /* Clear FD mode specific control/status register */
866                 rcar_canfd_write(gpriv->base,
867                                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
868 }
869
870 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
871 {
872         u32 ctr;
873
874         /* Clear any stray error interrupt flags */
875         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
876
877         /* Global interrupts setup */
878         ctr = RCANFD_GCTR_MEIE;
879         if (gpriv->fdmode)
880                 ctr |= RCANFD_GCTR_CFMPOFIE;
881
882         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
883 }
884
885 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
886                                                  *gpriv)
887 {
888         /* Disable all interrupts */
889         rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
890
891         /* Clear any stray error interrupt flags */
892         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
893 }
894
895 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
896                                                  *priv)
897 {
898         u32 ctr, ch = priv->channel;
899
900         /* Clear any stray error flags */
901         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
902
903         /* Channel interrupts setup */
904         ctr = (RCANFD_CCTR_TAIE |
905                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
906                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
907                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
908                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
909         rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
910 }
911
912 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
913                                                   *priv)
914 {
915         u32 ctr, ch = priv->channel;
916
917         ctr = (RCANFD_CCTR_TAIE |
918                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922         rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
923
924         /* Clear any stray error flags */
925         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
926 }
927
928 static void rcar_canfd_global_error(struct net_device *ndev)
929 {
930         struct rcar_canfd_channel *priv = netdev_priv(ndev);
931         struct rcar_canfd_global *gpriv = priv->gpriv;
932         struct net_device_stats *stats = &ndev->stats;
933         u32 ch = priv->channel;
934         u32 gerfl, sts;
935         u32 ridx = ch + RCANFD_RFFIFO_IDX;
936
937         gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
938         if (gerfl & RCANFD_GERFL_EEF(ch)) {
939                 netdev_dbg(ndev, "Ch%u: ECC Error flag\n", ch);
940                 stats->tx_dropped++;
941         }
942         if (gerfl & RCANFD_GERFL_MES) {
943                 sts = rcar_canfd_read(priv->base,
944                                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
945                 if (sts & RCANFD_CFSTS_CFMLT) {
946                         netdev_dbg(ndev, "Tx Message Lost flag\n");
947                         stats->tx_dropped++;
948                         rcar_canfd_write(priv->base,
949                                          RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
950                                          sts & ~RCANFD_CFSTS_CFMLT);
951                 }
952
953                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
954                 if (sts & RCANFD_RFSTS_RFMLT) {
955                         netdev_dbg(ndev, "Rx Message Lost flag\n");
956                         stats->rx_dropped++;
957                         rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
958                                          sts & ~RCANFD_RFSTS_RFMLT);
959                 }
960         }
961         if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
962                 /* Message Lost flag will be set for respective channel
963                  * when this condition happens with counters and flags
964                  * already updated.
965                  */
966                 netdev_dbg(ndev, "global payload overflow interrupt\n");
967         }
968
969         /* Clear all global error interrupts. Only affected channels bits
970          * get cleared
971          */
972         rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
973 }
974
975 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
976                              u16 txerr, u16 rxerr)
977 {
978         struct rcar_canfd_channel *priv = netdev_priv(ndev);
979         struct net_device_stats *stats = &ndev->stats;
980         struct can_frame *cf;
981         struct sk_buff *skb;
982         u32 ch = priv->channel;
983
984         netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
985
986         /* Propagate the error condition to the CAN stack */
987         skb = alloc_can_err_skb(ndev, &cf);
988         if (!skb) {
989                 stats->rx_dropped++;
990                 return;
991         }
992
993         /* Channel error interrupts */
994         if (cerfl & RCANFD_CERFL_BEF) {
995                 netdev_dbg(ndev, "Bus error\n");
996                 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
997                 cf->data[2] = CAN_ERR_PROT_UNSPEC;
998                 priv->can.can_stats.bus_error++;
999         }
1000         if (cerfl & RCANFD_CERFL_ADERR) {
1001                 netdev_dbg(ndev, "ACK Delimiter Error\n");
1002                 stats->tx_errors++;
1003                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1004         }
1005         if (cerfl & RCANFD_CERFL_B0ERR) {
1006                 netdev_dbg(ndev, "Bit Error (dominant)\n");
1007                 stats->tx_errors++;
1008                 cf->data[2] |= CAN_ERR_PROT_BIT0;
1009         }
1010         if (cerfl & RCANFD_CERFL_B1ERR) {
1011                 netdev_dbg(ndev, "Bit Error (recessive)\n");
1012                 stats->tx_errors++;
1013                 cf->data[2] |= CAN_ERR_PROT_BIT1;
1014         }
1015         if (cerfl & RCANFD_CERFL_CERR) {
1016                 netdev_dbg(ndev, "CRC Error\n");
1017                 stats->rx_errors++;
1018                 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1019         }
1020         if (cerfl & RCANFD_CERFL_AERR) {
1021                 netdev_dbg(ndev, "ACK Error\n");
1022                 stats->tx_errors++;
1023                 cf->can_id |= CAN_ERR_ACK;
1024                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1025         }
1026         if (cerfl & RCANFD_CERFL_FERR) {
1027                 netdev_dbg(ndev, "Form Error\n");
1028                 stats->rx_errors++;
1029                 cf->data[2] |= CAN_ERR_PROT_FORM;
1030         }
1031         if (cerfl & RCANFD_CERFL_SERR) {
1032                 netdev_dbg(ndev, "Stuff Error\n");
1033                 stats->rx_errors++;
1034                 cf->data[2] |= CAN_ERR_PROT_STUFF;
1035         }
1036         if (cerfl & RCANFD_CERFL_ALF) {
1037                 netdev_dbg(ndev, "Arbitration lost Error\n");
1038                 priv->can.can_stats.arbitration_lost++;
1039                 cf->can_id |= CAN_ERR_LOSTARB;
1040                 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1041         }
1042         if (cerfl & RCANFD_CERFL_BLF) {
1043                 netdev_dbg(ndev, "Bus Lock Error\n");
1044                 stats->rx_errors++;
1045                 cf->can_id |= CAN_ERR_BUSERROR;
1046         }
1047         if (cerfl & RCANFD_CERFL_EWF) {
1048                 netdev_dbg(ndev, "Error warning interrupt\n");
1049                 priv->can.state = CAN_STATE_ERROR_WARNING;
1050                 priv->can.can_stats.error_warning++;
1051                 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1052                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1053                         CAN_ERR_CRTL_RX_WARNING;
1054                 cf->data[6] = txerr;
1055                 cf->data[7] = rxerr;
1056         }
1057         if (cerfl & RCANFD_CERFL_EPF) {
1058                 netdev_dbg(ndev, "Error passive interrupt\n");
1059                 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1060                 priv->can.can_stats.error_passive++;
1061                 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
1062                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1063                         CAN_ERR_CRTL_RX_PASSIVE;
1064                 cf->data[6] = txerr;
1065                 cf->data[7] = rxerr;
1066         }
1067         if (cerfl & RCANFD_CERFL_BOEF) {
1068                 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1069                 rcar_canfd_tx_failure_cleanup(ndev);
1070                 priv->can.state = CAN_STATE_BUS_OFF;
1071                 priv->can.can_stats.bus_off++;
1072                 can_bus_off(ndev);
1073                 cf->can_id |= CAN_ERR_BUSOFF;
1074         }
1075         if (cerfl & RCANFD_CERFL_OVLF) {
1076                 netdev_dbg(ndev,
1077                            "Overload Frame Transmission error interrupt\n");
1078                 stats->tx_errors++;
1079                 cf->can_id |= CAN_ERR_PROT;
1080                 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1081         }
1082
1083         /* Clear channel error interrupts that are handled */
1084         rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1085                          RCANFD_CERFL_ERR(~cerfl));
1086         netif_rx(skb);
1087 }
1088
1089 static void rcar_canfd_tx_done(struct net_device *ndev)
1090 {
1091         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1092         struct rcar_canfd_global *gpriv = priv->gpriv;
1093         struct net_device_stats *stats = &ndev->stats;
1094         u32 sts;
1095         unsigned long flags;
1096         u32 ch = priv->channel;
1097
1098         do {
1099                 u8 unsent, sent;
1100
1101                 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1102                 stats->tx_packets++;
1103                 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1104
1105                 spin_lock_irqsave(&priv->tx_lock, flags);
1106                 priv->tx_tail++;
1107                 sts = rcar_canfd_read(priv->base,
1108                                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1109                 unsent = RCANFD_CFSTS_CFMC(sts);
1110
1111                 /* Wake producer only when there is room */
1112                 if (unsent != RCANFD_FIFO_DEPTH)
1113                         netif_wake_queue(ndev);
1114
1115                 if (priv->tx_head - priv->tx_tail <= unsent) {
1116                         spin_unlock_irqrestore(&priv->tx_lock, flags);
1117                         break;
1118                 }
1119                 spin_unlock_irqrestore(&priv->tx_lock, flags);
1120
1121         } while (1);
1122
1123         /* Clear interrupt */
1124         rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1125                          sts & ~RCANFD_CFSTS_CFTXIF);
1126 }
1127
1128 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1129 {
1130         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1131         struct net_device *ndev = priv->ndev;
1132         u32 gerfl;
1133
1134         /* Handle global error interrupts */
1135         gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1136         if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1137                 rcar_canfd_global_error(ndev);
1138 }
1139
1140 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1141 {
1142         struct rcar_canfd_global *gpriv = dev_id;
1143         u32 ch;
1144
1145         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1146                 rcar_canfd_handle_global_err(gpriv, ch);
1147
1148         return IRQ_HANDLED;
1149 }
1150
1151 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1152 {
1153         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1154         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1155         u32 sts, cc;
1156
1157         /* Handle Rx interrupts */
1158         sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1159         cc = rcar_canfd_read(priv->base, RCANFD_RFCC(gpriv, ridx));
1160         if (likely(sts & RCANFD_RFSTS_RFIF &&
1161                    cc & RCANFD_RFCC_RFIE)) {
1162                 if (napi_schedule_prep(&priv->napi)) {
1163                         /* Disable Rx FIFO interrupts */
1164                         rcar_canfd_clear_bit(priv->base,
1165                                              RCANFD_RFCC(gpriv, ridx),
1166                                              RCANFD_RFCC_RFIE);
1167                         __napi_schedule(&priv->napi);
1168                 }
1169         }
1170 }
1171
1172 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1173 {
1174         struct rcar_canfd_global *gpriv = dev_id;
1175         u32 ch;
1176
1177         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1178                 rcar_canfd_handle_global_receive(gpriv, ch);
1179
1180         return IRQ_HANDLED;
1181 }
1182
1183 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1184 {
1185         struct rcar_canfd_global *gpriv = dev_id;
1186         u32 ch;
1187
1188         /* Global error interrupts still indicate a condition specific
1189          * to a channel. RxFIFO interrupt is a global interrupt.
1190          */
1191         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1192                 rcar_canfd_handle_global_err(gpriv, ch);
1193                 rcar_canfd_handle_global_receive(gpriv, ch);
1194         }
1195         return IRQ_HANDLED;
1196 }
1197
1198 static void rcar_canfd_state_change(struct net_device *ndev,
1199                                     u16 txerr, u16 rxerr)
1200 {
1201         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1202         struct net_device_stats *stats = &ndev->stats;
1203         enum can_state rx_state, tx_state, state = priv->can.state;
1204         struct can_frame *cf;
1205         struct sk_buff *skb;
1206
1207         /* Handle transition from error to normal states */
1208         if (txerr < 96 && rxerr < 96)
1209                 state = CAN_STATE_ERROR_ACTIVE;
1210         else if (txerr < 128 && rxerr < 128)
1211                 state = CAN_STATE_ERROR_WARNING;
1212
1213         if (state != priv->can.state) {
1214                 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1215                            state, priv->can.state, txerr, rxerr);
1216                 skb = alloc_can_err_skb(ndev, &cf);
1217                 if (!skb) {
1218                         stats->rx_dropped++;
1219                         return;
1220                 }
1221                 tx_state = txerr >= rxerr ? state : 0;
1222                 rx_state = txerr <= rxerr ? state : 0;
1223
1224                 can_change_state(ndev, cf, tx_state, rx_state);
1225                 netif_rx(skb);
1226         }
1227 }
1228
1229 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1230 {
1231         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1232         struct net_device *ndev = priv->ndev;
1233         u32 sts;
1234
1235         /* Handle Tx interrupts */
1236         sts = rcar_canfd_read(priv->base,
1237                               RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1238         if (likely(sts & RCANFD_CFSTS_CFTXIF))
1239                 rcar_canfd_tx_done(ndev);
1240 }
1241
1242 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1243 {
1244         struct rcar_canfd_channel *priv = dev_id;
1245
1246         rcar_canfd_handle_channel_tx(priv->gpriv, priv->channel);
1247
1248         return IRQ_HANDLED;
1249 }
1250
1251 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1252 {
1253         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1254         struct net_device *ndev = priv->ndev;
1255         u16 txerr, rxerr;
1256         u32 sts, cerfl;
1257
1258         /* Handle channel error interrupts */
1259         cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1260         sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1261         txerr = RCANFD_CSTS_TECCNT(sts);
1262         rxerr = RCANFD_CSTS_RECCNT(sts);
1263         if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1264                 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1265
1266         /* Handle state change to lower states */
1267         if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1268                      priv->can.state != CAN_STATE_BUS_OFF))
1269                 rcar_canfd_state_change(ndev, txerr, rxerr);
1270 }
1271
1272 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1273 {
1274         struct rcar_canfd_channel *priv = dev_id;
1275
1276         rcar_canfd_handle_channel_err(priv->gpriv, priv->channel);
1277
1278         return IRQ_HANDLED;
1279 }
1280
1281 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1282 {
1283         struct rcar_canfd_global *gpriv = dev_id;
1284         u32 ch;
1285
1286         /* Common FIFO is a per channel resource */
1287         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1288                 rcar_canfd_handle_channel_err(gpriv, ch);
1289                 rcar_canfd_handle_channel_tx(gpriv, ch);
1290         }
1291
1292         return IRQ_HANDLED;
1293 }
1294
1295 static void rcar_canfd_set_bittiming(struct net_device *dev)
1296 {
1297         struct rcar_canfd_channel *priv = netdev_priv(dev);
1298         struct rcar_canfd_global *gpriv = priv->gpriv;
1299         const struct can_bittiming *bt = &priv->can.bittiming;
1300         const struct can_bittiming *dbt = &priv->can.data_bittiming;
1301         u16 brp, sjw, tseg1, tseg2;
1302         u32 cfg;
1303         u32 ch = priv->channel;
1304
1305         /* Nominal bit timing settings */
1306         brp = bt->brp - 1;
1307         sjw = bt->sjw - 1;
1308         tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1309         tseg2 = bt->phase_seg2 - 1;
1310
1311         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1312                 /* CAN FD only mode */
1313                 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1314                        RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1315
1316                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1317                 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1318                            brp, sjw, tseg1, tseg2);
1319
1320                 /* Data bit timing settings */
1321                 brp = dbt->brp - 1;
1322                 sjw = dbt->sjw - 1;
1323                 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1324                 tseg2 = dbt->phase_seg2 - 1;
1325
1326                 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1327                        RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1328
1329                 if (is_v3u(gpriv))
1330                         rcar_canfd_write(priv->base, RCANFD_V3U_DCFG(ch), cfg);
1331                 else
1332                         rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1333                 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1334                            brp, sjw, tseg1, tseg2);
1335         } else {
1336                 /* Classical CAN only mode */
1337                 if (is_v3u(gpriv)) {
1338                         cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1339                                RCANFD_NCFG_NBRP(brp) |
1340                                RCANFD_NCFG_NSJW(gpriv, sjw) |
1341                                RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1342                 } else {
1343                         cfg = (RCANFD_CFG_TSEG1(tseg1) |
1344                                RCANFD_CFG_BRP(brp) |
1345                                RCANFD_CFG_SJW(sjw) |
1346                                RCANFD_CFG_TSEG2(tseg2));
1347                 }
1348
1349                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1350                 netdev_dbg(priv->ndev,
1351                            "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1352                            brp, sjw, tseg1, tseg2);
1353         }
1354 }
1355
1356 static int rcar_canfd_start(struct net_device *ndev)
1357 {
1358         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1359         struct rcar_canfd_global *gpriv = priv->gpriv;
1360         int err = -EOPNOTSUPP;
1361         u32 sts, ch = priv->channel;
1362         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1363
1364         rcar_canfd_set_bittiming(ndev);
1365
1366         rcar_canfd_enable_channel_interrupts(priv);
1367
1368         /* Set channel to Operational mode */
1369         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1370                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1371
1372         /* Verify channel mode change */
1373         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1374                                  (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1375         if (err) {
1376                 netdev_err(ndev, "channel %u communication state failed\n", ch);
1377                 goto fail_mode_change;
1378         }
1379
1380         /* Enable Common & Rx FIFO */
1381         rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1382                            RCANFD_CFCC_CFE);
1383         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1384
1385         priv->can.state = CAN_STATE_ERROR_ACTIVE;
1386         return 0;
1387
1388 fail_mode_change:
1389         rcar_canfd_disable_channel_interrupts(priv);
1390         return err;
1391 }
1392
1393 static int rcar_canfd_open(struct net_device *ndev)
1394 {
1395         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1396         struct rcar_canfd_global *gpriv = priv->gpriv;
1397         int err;
1398
1399         /* Peripheral clock is already enabled in probe */
1400         err = clk_prepare_enable(gpriv->can_clk);
1401         if (err) {
1402                 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1403                 goto out_clock;
1404         }
1405
1406         err = open_candev(ndev);
1407         if (err) {
1408                 netdev_err(ndev, "open_candev() failed, error %d\n", err);
1409                 goto out_can_clock;
1410         }
1411
1412         napi_enable(&priv->napi);
1413         err = rcar_canfd_start(ndev);
1414         if (err)
1415                 goto out_close;
1416         netif_start_queue(ndev);
1417         return 0;
1418 out_close:
1419         napi_disable(&priv->napi);
1420         close_candev(ndev);
1421 out_can_clock:
1422         clk_disable_unprepare(gpriv->can_clk);
1423 out_clock:
1424         return err;
1425 }
1426
1427 static void rcar_canfd_stop(struct net_device *ndev)
1428 {
1429         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1430         struct rcar_canfd_global *gpriv = priv->gpriv;
1431         int err;
1432         u32 sts, ch = priv->channel;
1433         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1434
1435         /* Transition to channel reset mode  */
1436         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1437                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1438
1439         /* Check Channel reset mode */
1440         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1441                                  (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1442         if (err)
1443                 netdev_err(ndev, "channel %u reset failed\n", ch);
1444
1445         rcar_canfd_disable_channel_interrupts(priv);
1446
1447         /* Disable Common & Rx FIFO */
1448         rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1449                              RCANFD_CFCC_CFE);
1450         rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1451
1452         /* Set the state as STOPPED */
1453         priv->can.state = CAN_STATE_STOPPED;
1454 }
1455
1456 static int rcar_canfd_close(struct net_device *ndev)
1457 {
1458         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1459         struct rcar_canfd_global *gpriv = priv->gpriv;
1460
1461         netif_stop_queue(ndev);
1462         rcar_canfd_stop(ndev);
1463         napi_disable(&priv->napi);
1464         clk_disable_unprepare(gpriv->can_clk);
1465         close_candev(ndev);
1466         return 0;
1467 }
1468
1469 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1470                                          struct net_device *ndev)
1471 {
1472         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1473         struct rcar_canfd_global *gpriv = priv->gpriv;
1474         struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1475         u32 sts = 0, id, dlc;
1476         unsigned long flags;
1477         u32 ch = priv->channel;
1478
1479         if (can_dev_dropped_skb(ndev, skb))
1480                 return NETDEV_TX_OK;
1481
1482         if (cf->can_id & CAN_EFF_FLAG) {
1483                 id = cf->can_id & CAN_EFF_MASK;
1484                 id |= RCANFD_CFID_CFIDE;
1485         } else {
1486                 id = cf->can_id & CAN_SFF_MASK;
1487         }
1488
1489         if (cf->can_id & CAN_RTR_FLAG)
1490                 id |= RCANFD_CFID_CFRTR;
1491
1492         dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1493
1494         if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1495                 rcar_canfd_write(priv->base,
1496                                  RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1497                 rcar_canfd_write(priv->base,
1498                                  RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1499
1500                 if (can_is_canfd_skb(skb)) {
1501                         /* CAN FD frame format */
1502                         sts |= RCANFD_CFFDCSTS_CFFDF;
1503                         if (cf->flags & CANFD_BRS)
1504                                 sts |= RCANFD_CFFDCSTS_CFBRS;
1505
1506                         if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1507                                 sts |= RCANFD_CFFDCSTS_CFESI;
1508                 }
1509
1510                 rcar_canfd_write(priv->base,
1511                                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1512
1513                 rcar_canfd_put_data(priv, cf,
1514                                     RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1515         } else {
1516                 rcar_canfd_write(priv->base,
1517                                  RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1518                 rcar_canfd_write(priv->base,
1519                                  RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1520                 rcar_canfd_put_data(priv, cf,
1521                                     RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1522         }
1523
1524         can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1525
1526         spin_lock_irqsave(&priv->tx_lock, flags);
1527         priv->tx_head++;
1528
1529         /* Stop the queue if we've filled all FIFO entries */
1530         if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1531                 netif_stop_queue(ndev);
1532
1533         /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1534          * pointer for the Common FIFO
1535          */
1536         rcar_canfd_write(priv->base,
1537                          RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1538
1539         spin_unlock_irqrestore(&priv->tx_lock, flags);
1540         return NETDEV_TX_OK;
1541 }
1542
1543 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1544 {
1545         struct net_device_stats *stats = &priv->ndev->stats;
1546         struct rcar_canfd_global *gpriv = priv->gpriv;
1547         struct canfd_frame *cf;
1548         struct sk_buff *skb;
1549         u32 sts = 0, id, dlc;
1550         u32 ch = priv->channel;
1551         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1552
1553         if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1554                 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1555                 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1556
1557                 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1558
1559                 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1560                     sts & RCANFD_RFFDSTS_RFFDF)
1561                         skb = alloc_canfd_skb(priv->ndev, &cf);
1562                 else
1563                         skb = alloc_can_skb(priv->ndev,
1564                                             (struct can_frame **)&cf);
1565         } else {
1566                 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1567                 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1568                 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1569         }
1570
1571         if (!skb) {
1572                 stats->rx_dropped++;
1573                 return;
1574         }
1575
1576         if (id & RCANFD_RFID_RFIDE)
1577                 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1578         else
1579                 cf->can_id = id & CAN_SFF_MASK;
1580
1581         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1582                 if (sts & RCANFD_RFFDSTS_RFFDF)
1583                         cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1584                 else
1585                         cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1586
1587                 if (sts & RCANFD_RFFDSTS_RFESI) {
1588                         cf->flags |= CANFD_ESI;
1589                         netdev_dbg(priv->ndev, "ESI Error\n");
1590                 }
1591
1592                 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1593                         cf->can_id |= CAN_RTR_FLAG;
1594                 } else {
1595                         if (sts & RCANFD_RFFDSTS_RFBRS)
1596                                 cf->flags |= CANFD_BRS;
1597
1598                         rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1599                 }
1600         } else {
1601                 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1602                 if (id & RCANFD_RFID_RFRTR)
1603                         cf->can_id |= CAN_RTR_FLAG;
1604                 else if (is_v3u(gpriv))
1605                         rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1606                 else
1607                         rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1608         }
1609
1610         /* Write 0xff to RFPC to increment the CPU-side
1611          * pointer of the Rx FIFO
1612          */
1613         rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1614
1615         if (!(cf->can_id & CAN_RTR_FLAG))
1616                 stats->rx_bytes += cf->len;
1617         stats->rx_packets++;
1618         netif_receive_skb(skb);
1619 }
1620
1621 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1622 {
1623         struct rcar_canfd_channel *priv =
1624                 container_of(napi, struct rcar_canfd_channel, napi);
1625         struct rcar_canfd_global *gpriv = priv->gpriv;
1626         int num_pkts;
1627         u32 sts;
1628         u32 ch = priv->channel;
1629         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1630
1631         for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1632                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1633                 /* Check FIFO empty condition */
1634                 if (sts & RCANFD_RFSTS_RFEMP)
1635                         break;
1636
1637                 rcar_canfd_rx_pkt(priv);
1638
1639                 /* Clear interrupt bit */
1640                 if (sts & RCANFD_RFSTS_RFIF)
1641                         rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1642                                          sts & ~RCANFD_RFSTS_RFIF);
1643         }
1644
1645         /* All packets processed */
1646         if (num_pkts < quota) {
1647                 if (napi_complete_done(napi, num_pkts)) {
1648                         /* Enable Rx FIFO interrupts */
1649                         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1650                                            RCANFD_RFCC_RFIE);
1651                 }
1652         }
1653         return num_pkts;
1654 }
1655
1656 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1657 {
1658         int err;
1659
1660         switch (mode) {
1661         case CAN_MODE_START:
1662                 err = rcar_canfd_start(ndev);
1663                 if (err)
1664                         return err;
1665                 netif_wake_queue(ndev);
1666                 return 0;
1667         default:
1668                 return -EOPNOTSUPP;
1669         }
1670 }
1671
1672 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1673                                        struct can_berr_counter *bec)
1674 {
1675         struct rcar_canfd_channel *priv = netdev_priv(dev);
1676         u32 val, ch = priv->channel;
1677
1678         /* Peripheral clock is already enabled in probe */
1679         val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1680         bec->txerr = RCANFD_CSTS_TECCNT(val);
1681         bec->rxerr = RCANFD_CSTS_RECCNT(val);
1682         return 0;
1683 }
1684
1685 static const struct net_device_ops rcar_canfd_netdev_ops = {
1686         .ndo_open = rcar_canfd_open,
1687         .ndo_stop = rcar_canfd_close,
1688         .ndo_start_xmit = rcar_canfd_start_xmit,
1689         .ndo_change_mtu = can_change_mtu,
1690 };
1691
1692 static const struct ethtool_ops rcar_canfd_ethtool_ops = {
1693         .get_ts_info = ethtool_op_get_ts_info,
1694 };
1695
1696 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1697                                     u32 fcan_freq)
1698 {
1699         struct platform_device *pdev = gpriv->pdev;
1700         struct rcar_canfd_channel *priv;
1701         struct net_device *ndev;
1702         int err = -ENODEV;
1703
1704         ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1705         if (!ndev) {
1706                 dev_err(&pdev->dev, "alloc_candev() failed\n");
1707                 return -ENOMEM;
1708         }
1709         priv = netdev_priv(ndev);
1710
1711         ndev->netdev_ops = &rcar_canfd_netdev_ops;
1712         ndev->ethtool_ops = &rcar_canfd_ethtool_ops;
1713         ndev->flags |= IFF_ECHO;
1714         priv->ndev = ndev;
1715         priv->base = gpriv->base;
1716         priv->channel = ch;
1717         priv->gpriv = gpriv;
1718         priv->can.clock.freq = fcan_freq;
1719         dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1720
1721         if (gpriv->chip_id == RENESAS_RZG2L) {
1722                 char *irq_name;
1723                 int err_irq;
1724                 int tx_irq;
1725
1726                 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1727                 if (err_irq < 0) {
1728                         err = err_irq;
1729                         goto fail;
1730                 }
1731
1732                 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1733                 if (tx_irq < 0) {
1734                         err = tx_irq;
1735                         goto fail;
1736                 }
1737
1738                 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1739                                           "canfd.ch%d_err", ch);
1740                 if (!irq_name) {
1741                         err = -ENOMEM;
1742                         goto fail;
1743                 }
1744                 err = devm_request_irq(&pdev->dev, err_irq,
1745                                        rcar_canfd_channel_err_interrupt, 0,
1746                                        irq_name, priv);
1747                 if (err) {
1748                         dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1749                                 err_irq, err);
1750                         goto fail;
1751                 }
1752                 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1753                                           "canfd.ch%d_trx", ch);
1754                 if (!irq_name) {
1755                         err = -ENOMEM;
1756                         goto fail;
1757                 }
1758                 err = devm_request_irq(&pdev->dev, tx_irq,
1759                                        rcar_canfd_channel_tx_interrupt, 0,
1760                                        irq_name, priv);
1761                 if (err) {
1762                         dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1763                                 tx_irq, err);
1764                         goto fail;
1765                 }
1766         }
1767
1768         if (gpriv->fdmode) {
1769                 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1770                 priv->can.data_bittiming_const =
1771                         &rcar_canfd_data_bittiming_const;
1772
1773                 /* Controller starts in CAN FD only mode */
1774                 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1775                 if (err)
1776                         goto fail;
1777                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1778         } else {
1779                 /* Controller starts in Classical CAN only mode */
1780                 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1781                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1782         }
1783
1784         priv->can.do_set_mode = rcar_canfd_do_set_mode;
1785         priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1786         SET_NETDEV_DEV(ndev, &pdev->dev);
1787
1788         netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1789                               RCANFD_NAPI_WEIGHT);
1790         spin_lock_init(&priv->tx_lock);
1791         gpriv->ch[priv->channel] = priv;
1792         err = register_candev(ndev);
1793         if (err) {
1794                 dev_err(&pdev->dev,
1795                         "register_candev() failed, error %d\n", err);
1796                 goto fail_candev;
1797         }
1798         dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1799         return 0;
1800
1801 fail_candev:
1802         netif_napi_del(&priv->napi);
1803 fail:
1804         free_candev(ndev);
1805         return err;
1806 }
1807
1808 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1809 {
1810         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1811
1812         if (priv) {
1813                 unregister_candev(priv->ndev);
1814                 netif_napi_del(&priv->napi);
1815                 free_candev(priv->ndev);
1816         }
1817 }
1818
1819 static int rcar_canfd_probe(struct platform_device *pdev)
1820 {
1821         void __iomem *addr;
1822         u32 sts, ch, fcan_freq;
1823         struct rcar_canfd_global *gpriv;
1824         struct device_node *of_child;
1825         unsigned long channels_mask = 0;
1826         int err, ch_irq, g_irq;
1827         int g_err_irq, g_recc_irq;
1828         bool fdmode = true;                     /* CAN FD only mode - default */
1829         enum rcanfd_chip_id chip_id;
1830         int max_channels;
1831         char name[9] = "channelX";
1832         int i;
1833
1834         chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1835         max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
1836
1837         if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1838                 fdmode = false;                 /* Classical CAN only mode */
1839
1840         for (i = 0; i < max_channels; ++i) {
1841                 name[7] = '0' + i;
1842                 of_child = of_get_child_by_name(pdev->dev.of_node, name);
1843                 if (of_child && of_device_is_available(of_child))
1844                         channels_mask |= BIT(i);
1845                 of_node_put(of_child);
1846         }
1847
1848         if (chip_id != RENESAS_RZG2L) {
1849                 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1850                 if (ch_irq < 0) {
1851                         /* For backward compatibility get irq by index */
1852                         ch_irq = platform_get_irq(pdev, 0);
1853                         if (ch_irq < 0)
1854                                 return ch_irq;
1855                 }
1856
1857                 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1858                 if (g_irq < 0) {
1859                         /* For backward compatibility get irq by index */
1860                         g_irq = platform_get_irq(pdev, 1);
1861                         if (g_irq < 0)
1862                                 return g_irq;
1863                 }
1864         } else {
1865                 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1866                 if (g_err_irq < 0)
1867                         return g_err_irq;
1868
1869                 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1870                 if (g_recc_irq < 0)
1871                         return g_recc_irq;
1872         }
1873
1874         /* Global controller context */
1875         gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1876         if (!gpriv)
1877                 return -ENOMEM;
1878
1879         gpriv->pdev = pdev;
1880         gpriv->channels_mask = channels_mask;
1881         gpriv->fdmode = fdmode;
1882         gpriv->chip_id = chip_id;
1883         gpriv->max_channels = max_channels;
1884
1885         if (gpriv->chip_id == RENESAS_RZG2L) {
1886                 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1887                 if (IS_ERR(gpriv->rstc1))
1888                         return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1889                                              "failed to get rstp_n\n");
1890
1891                 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1892                 if (IS_ERR(gpriv->rstc2))
1893                         return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1894                                              "failed to get rstc_n\n");
1895         }
1896
1897         /* Peripheral clock */
1898         gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1899         if (IS_ERR(gpriv->clkp))
1900                 return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->clkp),
1901                                      "cannot get peripheral clock\n");
1902
1903         /* fCAN clock: Pick External clock. If not available fallback to
1904          * CANFD clock
1905          */
1906         gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1907         if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1908                 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1909                 if (IS_ERR(gpriv->can_clk))
1910                         return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->can_clk),
1911                                              "cannot get canfd clock\n");
1912
1913                 gpriv->fcan = RCANFD_CANFDCLK;
1914
1915         } else {
1916                 gpriv->fcan = RCANFD_EXTCLK;
1917         }
1918         fcan_freq = clk_get_rate(gpriv->can_clk);
1919
1920         if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
1921                 /* CANFD clock is further divided by (1/2) within the IP */
1922                 fcan_freq /= 2;
1923
1924         addr = devm_platform_ioremap_resource(pdev, 0);
1925         if (IS_ERR(addr)) {
1926                 err = PTR_ERR(addr);
1927                 goto fail_dev;
1928         }
1929         gpriv->base = addr;
1930
1931         /* Request IRQ that's common for both channels */
1932         if (gpriv->chip_id != RENESAS_RZG2L) {
1933                 err = devm_request_irq(&pdev->dev, ch_irq,
1934                                        rcar_canfd_channel_interrupt, 0,
1935                                        "canfd.ch_int", gpriv);
1936                 if (err) {
1937                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1938                                 ch_irq, err);
1939                         goto fail_dev;
1940                 }
1941
1942                 err = devm_request_irq(&pdev->dev, g_irq,
1943                                        rcar_canfd_global_interrupt, 0,
1944                                        "canfd.g_int", gpriv);
1945                 if (err) {
1946                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1947                                 g_irq, err);
1948                         goto fail_dev;
1949                 }
1950         } else {
1951                 err = devm_request_irq(&pdev->dev, g_recc_irq,
1952                                        rcar_canfd_global_receive_fifo_interrupt, 0,
1953                                        "canfd.g_recc", gpriv);
1954
1955                 if (err) {
1956                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1957                                 g_recc_irq, err);
1958                         goto fail_dev;
1959                 }
1960
1961                 err = devm_request_irq(&pdev->dev, g_err_irq,
1962                                        rcar_canfd_global_err_interrupt, 0,
1963                                        "canfd.g_err", gpriv);
1964                 if (err) {
1965                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1966                                 g_err_irq, err);
1967                         goto fail_dev;
1968                 }
1969         }
1970
1971         err = reset_control_reset(gpriv->rstc1);
1972         if (err)
1973                 goto fail_dev;
1974         err = reset_control_reset(gpriv->rstc2);
1975         if (err) {
1976                 reset_control_assert(gpriv->rstc1);
1977                 goto fail_dev;
1978         }
1979
1980         /* Enable peripheral clock for register access */
1981         err = clk_prepare_enable(gpriv->clkp);
1982         if (err) {
1983                 dev_err(&pdev->dev,
1984                         "failed to enable peripheral clock, error %d\n", err);
1985                 goto fail_reset;
1986         }
1987
1988         err = rcar_canfd_reset_controller(gpriv);
1989         if (err) {
1990                 dev_err(&pdev->dev, "reset controller failed\n");
1991                 goto fail_clk;
1992         }
1993
1994         /* Controller in Global reset & Channel reset mode */
1995         rcar_canfd_configure_controller(gpriv);
1996
1997         /* Configure per channel attributes */
1998         for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
1999                 /* Configure Channel's Rx fifo */
2000                 rcar_canfd_configure_rx(gpriv, ch);
2001
2002                 /* Configure Channel's Tx (Common) fifo */
2003                 rcar_canfd_configure_tx(gpriv, ch);
2004
2005                 /* Configure receive rules */
2006                 rcar_canfd_configure_afl_rules(gpriv, ch);
2007         }
2008
2009         /* Configure common interrupts */
2010         rcar_canfd_enable_global_interrupts(gpriv);
2011
2012         /* Start Global operation mode */
2013         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2014                               RCANFD_GCTR_GMDC_GOPM);
2015
2016         /* Verify mode change */
2017         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2018                                  !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2019         if (err) {
2020                 dev_err(&pdev->dev, "global operational mode failed\n");
2021                 goto fail_mode;
2022         }
2023
2024         for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2025                 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2026                 if (err)
2027                         goto fail_channel;
2028         }
2029
2030         platform_set_drvdata(pdev, gpriv);
2031         dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2032                  gpriv->fcan, gpriv->fdmode);
2033         return 0;
2034
2035 fail_channel:
2036         for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
2037                 rcar_canfd_channel_remove(gpriv, ch);
2038 fail_mode:
2039         rcar_canfd_disable_global_interrupts(gpriv);
2040 fail_clk:
2041         clk_disable_unprepare(gpriv->clkp);
2042 fail_reset:
2043         reset_control_assert(gpriv->rstc1);
2044         reset_control_assert(gpriv->rstc2);
2045 fail_dev:
2046         return err;
2047 }
2048
2049 static int rcar_canfd_remove(struct platform_device *pdev)
2050 {
2051         struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2052         u32 ch;
2053
2054         rcar_canfd_reset_controller(gpriv);
2055         rcar_canfd_disable_global_interrupts(gpriv);
2056
2057         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
2058                 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2059                 rcar_canfd_channel_remove(gpriv, ch);
2060         }
2061
2062         /* Enter global sleep mode */
2063         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2064         clk_disable_unprepare(gpriv->clkp);
2065         reset_control_assert(gpriv->rstc1);
2066         reset_control_assert(gpriv->rstc2);
2067
2068         return 0;
2069 }
2070
2071 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2072 {
2073         return 0;
2074 }
2075
2076 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2077 {
2078         return 0;
2079 }
2080
2081 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2082                          rcar_canfd_resume);
2083
2084 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2085         { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2086         { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2087         { .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
2088         { }
2089 };
2090
2091 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2092
2093 static struct platform_driver rcar_canfd_driver = {
2094         .driver = {
2095                 .name = RCANFD_DRV_NAME,
2096                 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2097                 .pm = &rcar_canfd_pm_ops,
2098         },
2099         .probe = rcar_canfd_probe,
2100         .remove = rcar_canfd_remove,
2101 };
2102
2103 module_platform_driver(rcar_canfd_driver);
2104
2105 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2106 MODULE_LICENSE("GPL");
2107 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2108 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);