81ebf0562c89d24ec4008d0d69e0256bcc099cb3
[platform/kernel/linux-starfive.git] / drivers / net / can / dev / rx-offload.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2014      Protonic Holland,
3  *                         David Jander
4  * Copyright (C) 2014-2021 Pengutronix,
5  *                         Marc Kleine-Budde <kernel@pengutronix.de>
6  */
7
8 #include <linux/can/dev.h>
9 #include <linux/can/rx-offload.h>
10
11 struct can_rx_offload_cb {
12         u32 timestamp;
13 };
14
15 static inline struct can_rx_offload_cb *
16 can_rx_offload_get_cb(struct sk_buff *skb)
17 {
18         BUILD_BUG_ON(sizeof(struct can_rx_offload_cb) > sizeof(skb->cb));
19
20         return (struct can_rx_offload_cb *)skb->cb;
21 }
22
23 static inline bool
24 can_rx_offload_le(struct can_rx_offload *offload,
25                   unsigned int a, unsigned int b)
26 {
27         if (offload->inc)
28                 return a <= b;
29         else
30                 return a >= b;
31 }
32
33 static inline unsigned int
34 can_rx_offload_inc(struct can_rx_offload *offload, unsigned int *val)
35 {
36         if (offload->inc)
37                 return (*val)++;
38         else
39                 return (*val)--;
40 }
41
42 static int can_rx_offload_napi_poll(struct napi_struct *napi, int quota)
43 {
44         struct can_rx_offload *offload = container_of(napi,
45                                                       struct can_rx_offload,
46                                                       napi);
47         struct net_device *dev = offload->dev;
48         struct net_device_stats *stats = &dev->stats;
49         struct sk_buff *skb;
50         int work_done = 0;
51
52         while ((work_done < quota) &&
53                (skb = skb_dequeue(&offload->skb_queue))) {
54                 struct can_frame *cf = (struct can_frame *)skb->data;
55
56                 work_done++;
57                 if (!(cf->can_id & CAN_ERR_FLAG)) {
58                         stats->rx_packets++;
59                         if (!(cf->can_id & CAN_RTR_FLAG))
60                                 stats->rx_bytes += cf->len;
61                 }
62                 netif_receive_skb(skb);
63         }
64
65         if (work_done < quota) {
66                 napi_complete_done(napi, work_done);
67
68                 /* Check if there was another interrupt */
69                 if (!skb_queue_empty(&offload->skb_queue))
70                         napi_reschedule(&offload->napi);
71         }
72
73         return work_done;
74 }
75
76 static inline void
77 __skb_queue_add_sort(struct sk_buff_head *head, struct sk_buff *new,
78                      int (*compare)(struct sk_buff *a, struct sk_buff *b))
79 {
80         struct sk_buff *pos, *insert = NULL;
81
82         skb_queue_reverse_walk(head, pos) {
83                 const struct can_rx_offload_cb *cb_pos, *cb_new;
84
85                 cb_pos = can_rx_offload_get_cb(pos);
86                 cb_new = can_rx_offload_get_cb(new);
87
88                 netdev_dbg(new->dev,
89                            "%s: pos=0x%08x, new=0x%08x, diff=%10d, queue_len=%d\n",
90                            __func__,
91                            cb_pos->timestamp, cb_new->timestamp,
92                            cb_new->timestamp - cb_pos->timestamp,
93                            skb_queue_len(head));
94
95                 if (compare(pos, new) < 0)
96                         continue;
97                 insert = pos;
98                 break;
99         }
100         if (!insert)
101                 __skb_queue_head(head, new);
102         else
103                 __skb_queue_after(head, insert, new);
104 }
105
106 static int can_rx_offload_compare(struct sk_buff *a, struct sk_buff *b)
107 {
108         const struct can_rx_offload_cb *cb_a, *cb_b;
109
110         cb_a = can_rx_offload_get_cb(a);
111         cb_b = can_rx_offload_get_cb(b);
112
113         /* Subtract two u32 and return result as int, to keep
114          * difference steady around the u32 overflow.
115          */
116         return cb_b->timestamp - cb_a->timestamp;
117 }
118
119 /**
120  * can_rx_offload_offload_one() - Read one CAN frame from HW
121  * @offload: pointer to rx_offload context
122  * @n: number of mailbox to read
123  *
124  * The task of this function is to read a CAN frame from mailbox @n
125  * from the device and return the mailbox's content as a struct
126  * sk_buff.
127  *
128  * If the struct can_rx_offload::skb_queue exceeds the maximal queue
129  * length (struct can_rx_offload::skb_queue_len_max) or no skb can be
130  * allocated, the mailbox contents is discarded by reading it into an
131  * overflow buffer. This way the mailbox is marked as free by the
132  * driver.
133  *
134  * Return: A pointer to skb containing the CAN frame on success.
135  *
136  *         NULL if the mailbox @n is empty.
137  *
138  *         ERR_PTR() in case of an error
139  */
140 static struct sk_buff *
141 can_rx_offload_offload_one(struct can_rx_offload *offload, unsigned int n)
142 {
143         struct sk_buff *skb;
144         struct can_rx_offload_cb *cb;
145         bool drop = false;
146         u32 timestamp;
147
148         /* If queue is full drop frame */
149         if (unlikely(skb_queue_len(&offload->skb_queue) >
150                      offload->skb_queue_len_max))
151                 drop = true;
152
153         skb = offload->mailbox_read(offload, n, &timestamp, drop);
154         /* Mailbox was empty. */
155         if (unlikely(!skb))
156                 return NULL;
157
158         /* There was a problem reading the mailbox, propagate
159          * error value.
160          */
161         if (IS_ERR(skb)) {
162                 offload->dev->stats.rx_dropped++;
163                 offload->dev->stats.rx_fifo_errors++;
164
165                 return skb;
166         }
167
168         /* Mailbox was read. */
169         cb = can_rx_offload_get_cb(skb);
170         cb->timestamp = timestamp;
171
172         return skb;
173 }
174
175 int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload,
176                                          u64 pending)
177 {
178         unsigned int i;
179         int received = 0;
180
181         for (i = offload->mb_first;
182              can_rx_offload_le(offload, i, offload->mb_last);
183              can_rx_offload_inc(offload, &i)) {
184                 struct sk_buff *skb;
185
186                 if (!(pending & BIT_ULL(i)))
187                         continue;
188
189                 skb = can_rx_offload_offload_one(offload, i);
190                 if (IS_ERR_OR_NULL(skb))
191                         continue;
192
193                 __skb_queue_add_sort(&offload->skb_irq_queue, skb,
194                                      can_rx_offload_compare);
195                 received++;
196         }
197
198         return received;
199 }
200 EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_timestamp);
201
202 int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload)
203 {
204         struct sk_buff *skb;
205         int received = 0;
206
207         while (1) {
208                 skb = can_rx_offload_offload_one(offload, 0);
209                 if (IS_ERR(skb))
210                         continue;
211                 if (!skb)
212                         break;
213
214                 __skb_queue_tail(&offload->skb_irq_queue, skb);
215                 received++;
216         }
217
218         return received;
219 }
220 EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_fifo);
221
222 int can_rx_offload_queue_timestamp(struct can_rx_offload *offload,
223                                 struct sk_buff *skb, u32 timestamp)
224 {
225         struct can_rx_offload_cb *cb;
226
227         if (skb_queue_len(&offload->skb_queue) >
228             offload->skb_queue_len_max) {
229                 dev_kfree_skb_any(skb);
230                 return -ENOBUFS;
231         }
232
233         cb = can_rx_offload_get_cb(skb);
234         cb->timestamp = timestamp;
235
236         __skb_queue_add_sort(&offload->skb_irq_queue, skb,
237                              can_rx_offload_compare);
238
239         return 0;
240 }
241 EXPORT_SYMBOL_GPL(can_rx_offload_queue_timestamp);
242
243 unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload,
244                                          unsigned int idx, u32 timestamp,
245                                          unsigned int *frame_len_ptr)
246 {
247         struct net_device *dev = offload->dev;
248         struct net_device_stats *stats = &dev->stats;
249         struct sk_buff *skb;
250         unsigned int len;
251         int err;
252
253         skb = __can_get_echo_skb(dev, idx, &len, frame_len_ptr);
254         if (!skb)
255                 return 0;
256
257         err = can_rx_offload_queue_timestamp(offload, skb, timestamp);
258         if (err) {
259                 stats->rx_errors++;
260                 stats->tx_fifo_errors++;
261         }
262
263         return len;
264 }
265 EXPORT_SYMBOL_GPL(can_rx_offload_get_echo_skb);
266
267 int can_rx_offload_queue_tail(struct can_rx_offload *offload,
268                               struct sk_buff *skb)
269 {
270         if (skb_queue_len(&offload->skb_queue) >
271             offload->skb_queue_len_max) {
272                 dev_kfree_skb_any(skb);
273                 return -ENOBUFS;
274         }
275
276         __skb_queue_tail(&offload->skb_irq_queue, skb);
277
278         return 0;
279 }
280 EXPORT_SYMBOL_GPL(can_rx_offload_queue_tail);
281
282 void can_rx_offload_irq_finish(struct can_rx_offload *offload)
283 {
284         unsigned long flags;
285         int queue_len;
286
287         if (skb_queue_empty_lockless(&offload->skb_irq_queue))
288                 return;
289
290         spin_lock_irqsave(&offload->skb_queue.lock, flags);
291         skb_queue_splice_tail_init(&offload->skb_irq_queue, &offload->skb_queue);
292         spin_unlock_irqrestore(&offload->skb_queue.lock, flags);
293
294         queue_len = skb_queue_len(&offload->skb_queue);
295         if (queue_len > offload->skb_queue_len_max / 8)
296                 netdev_dbg(offload->dev, "%s: queue_len=%d\n",
297                            __func__, queue_len);
298
299         napi_schedule(&offload->napi);
300 }
301 EXPORT_SYMBOL_GPL(can_rx_offload_irq_finish);
302
303 void can_rx_offload_threaded_irq_finish(struct can_rx_offload *offload)
304 {
305         unsigned long flags;
306         int queue_len;
307
308         if (skb_queue_empty_lockless(&offload->skb_irq_queue))
309                 return;
310
311         spin_lock_irqsave(&offload->skb_queue.lock, flags);
312         skb_queue_splice_tail_init(&offload->skb_irq_queue, &offload->skb_queue);
313         spin_unlock_irqrestore(&offload->skb_queue.lock, flags);
314
315         queue_len = skb_queue_len(&offload->skb_queue);
316         if (queue_len > offload->skb_queue_len_max / 8)
317                 netdev_dbg(offload->dev, "%s: queue_len=%d\n",
318                            __func__, queue_len);
319
320         local_bh_disable();
321         napi_schedule(&offload->napi);
322         local_bh_enable();
323 }
324 EXPORT_SYMBOL_GPL(can_rx_offload_threaded_irq_finish);
325
326 static int can_rx_offload_init_queue(struct net_device *dev,
327                                      struct can_rx_offload *offload,
328                                      unsigned int weight)
329 {
330         offload->dev = dev;
331
332         /* Limit queue len to 4x the weight (rounded to next power of two) */
333         offload->skb_queue_len_max = 2 << fls(weight);
334         offload->skb_queue_len_max *= 4;
335         skb_queue_head_init(&offload->skb_queue);
336         __skb_queue_head_init(&offload->skb_irq_queue);
337
338         netif_napi_add_weight(dev, &offload->napi, can_rx_offload_napi_poll,
339                               weight);
340
341         dev_dbg(dev->dev.parent, "%s: skb_queue_len_max=%d\n",
342                 __func__, offload->skb_queue_len_max);
343
344         return 0;
345 }
346
347 int can_rx_offload_add_timestamp(struct net_device *dev,
348                                  struct can_rx_offload *offload)
349 {
350         unsigned int weight;
351
352         if (offload->mb_first > BITS_PER_LONG_LONG ||
353             offload->mb_last > BITS_PER_LONG_LONG || !offload->mailbox_read)
354                 return -EINVAL;
355
356         if (offload->mb_first < offload->mb_last) {
357                 offload->inc = true;
358                 weight = offload->mb_last - offload->mb_first;
359         } else {
360                 offload->inc = false;
361                 weight = offload->mb_first - offload->mb_last;
362         }
363
364         return can_rx_offload_init_queue(dev, offload, weight);
365 }
366 EXPORT_SYMBOL_GPL(can_rx_offload_add_timestamp);
367
368 int can_rx_offload_add_fifo(struct net_device *dev,
369                             struct can_rx_offload *offload, unsigned int weight)
370 {
371         if (!offload->mailbox_read)
372                 return -EINVAL;
373
374         return can_rx_offload_init_queue(dev, offload, weight);
375 }
376 EXPORT_SYMBOL_GPL(can_rx_offload_add_fifo);
377
378 int can_rx_offload_add_manual(struct net_device *dev,
379                               struct can_rx_offload *offload,
380                               unsigned int weight)
381 {
382         if (offload->mailbox_read)
383                 return -EINVAL;
384
385         return can_rx_offload_init_queue(dev, offload, weight);
386 }
387 EXPORT_SYMBOL_GPL(can_rx_offload_add_manual);
388
389 void can_rx_offload_enable(struct can_rx_offload *offload)
390 {
391         napi_enable(&offload->napi);
392 }
393 EXPORT_SYMBOL_GPL(can_rx_offload_enable);
394
395 void can_rx_offload_del(struct can_rx_offload *offload)
396 {
397         netif_napi_del(&offload->napi);
398         skb_queue_purge(&offload->skb_queue);
399         __skb_queue_purge(&offload->skb_irq_queue);
400 }
401 EXPORT_SYMBOL_GPL(can_rx_offload_del);