1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
9 * UBI wear-leveling sub-system.
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
123 #define WL_MAX_FAILURES 32
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
141 struct rb_node **p, *parent = NULL;
145 struct ubi_wl_entry *e1;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
152 else if (e->ec > e1->ec)
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
185 * This function returns zero in case of success and a negative error code in
188 static int do_work(struct ubi_device *ubi)
191 struct ubi_work *wrk;
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
220 err = wrk->func(ubi, wrk, 0);
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
242 struct ubi_wl_entry *e1;
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
246 if (e->pnum == e1->pnum) {
253 else if (e->ec > e1->ec)
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
272 * This function returns non-zero if @e is in the protection queue and zero
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
277 struct ubi_wl_entry *p;
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
300 int pq_tail = ubi->pq_head - 1;
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
322 struct ubi_wl_entry *e;
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
330 struct ubi_wl_entry *e1;
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
356 struct ubi_wl_entry *e, *first, *last;
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
379 * This function returns a wear leveling entry in case of success and
380 * NULL in case of failure.
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
384 struct ubi_wl_entry *e;
386 e = find_mean_wl_entry(ubi, &ubi->free);
388 ubi_err(ubi, "no free eraseblocks");
392 self_check_in_wl_tree(ubi, e, &ubi->free);
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
398 rb_erase(&e->u.rb, &ubi->free);
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
415 struct ubi_wl_entry *e;
417 e = ubi->lookuptbl[pnum];
421 if (self_check_in_pq(ubi, e))
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
435 * This function returns zero in case of success and a negative error code in
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
447 err = self_check_ec(ubi, e->pnum, e->ec);
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
460 if (ec > UBI_MAX_ERASECOUNTER) {
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
473 ec_hdr->ec = cpu_to_be64(ec);
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
483 spin_unlock(&ubi->wl_lock);
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
498 static void serve_prot_queue(struct ubi_device *ubi)
500 struct ubi_wl_entry *e, *tmp;
504 * There may be several protected physical eraseblock to remove,
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
518 * Let's be nice and avoid holding the spinlock for
521 spin_unlock(&ubi->wl_lock);
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
558 * This function adds a work defined by @wrk to the tail of the pending works
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
580 * This function returns zero in case of success and a %-ENOMEM in case of
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
586 struct ubi_work *wl_wrk;
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
597 wl_wrk->func = &erase_worker;
599 wl_wrk->vol_id = vol_id;
601 wl_wrk->torture = torture;
604 __schedule_ubi_work(ubi, wl_wrk);
606 schedule_ubi_work(ubi, wl_wrk);
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
623 struct ubi_work wl_wrk;
625 dbg_wl("sync erase of PEB %i", e->pnum);
628 wl_wrk.vol_id = vol_id;
630 wl_wrk.torture = torture;
632 return __erase_worker(ubi, &wl_wrk);
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
665 vid_hdr = ubi_get_vid_hdr(vidb);
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674 if (!next_peb_for_wl(ubi) ||
676 if (!ubi->free.rb_node ||
678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
680 * No free physical eraseblocks? Well, they must be waiting in
681 * the queue to be erased. Cancel movement - it will be
682 * triggered again when a free physical eraseblock appears.
684 * No used physical eraseblocks? They must be temporarily
685 * protected from being moved. They will be moved to the
686 * @ubi->used tree later and the wear-leveling will be
689 dbg_wl("cancel WL, a list is empty: free %d, used %d",
690 !ubi->free.rb_node, !ubi->used.rb_node);
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695 e1 = find_anchor_wl_entry(&ubi->used);
696 if (e1 && ubi->fm_anchor &&
697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698 ubi->fm_do_produce_anchor = 1;
700 * fm_anchor is no longer considered a good anchor.
701 * NULL assignment also prevents multiple wear level checks
704 wl_tree_add(ubi->fm_anchor, &ubi->free);
705 ubi->fm_anchor = NULL;
709 if (ubi->fm_do_produce_anchor) {
712 e2 = get_peb_for_wl(ubi);
716 self_check_in_wl_tree(ubi, e1, &ubi->used);
717 rb_erase(&e1->u.rb, &ubi->used);
718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719 ubi->fm_do_produce_anchor = 0;
720 } else if (!ubi->scrub.rb_node) {
722 if (!ubi->scrub.rb_node) {
725 * Now pick the least worn-out used physical eraseblock and a
726 * highly worn-out free physical eraseblock. If the erase
727 * counters differ much enough, start wear-leveling.
729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730 e2 = get_peb_for_wl(ubi);
734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735 dbg_wl("no WL needed: min used EC %d, max free EC %d",
738 /* Give the unused PEB back */
739 wl_tree_add(e2, &ubi->free);
743 self_check_in_wl_tree(ubi, e1, &ubi->used);
744 rb_erase(&e1->u.rb, &ubi->used);
745 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746 e1->pnum, e1->ec, e2->pnum, e2->ec);
748 /* Perform scrubbing */
750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751 e2 = get_peb_for_wl(ubi);
755 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756 rb_erase(&e1->u.rb, &ubi->scrub);
757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
762 spin_unlock(&ubi->wl_lock);
765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766 * We so far do not know which logical eraseblock our physical
767 * eraseblock (@e1) belongs to. We have to read the volume identifier
770 * Note, we are protected from this PEB being unmapped and erased. The
771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772 * which is being moved was unmapped.
775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776 if (err && err != UBI_IO_BITFLIPS) {
778 if (err == UBI_IO_FF) {
780 * We are trying to move PEB without a VID header. UBI
781 * always write VID headers shortly after the PEB was
782 * given, so we have a situation when it has not yet
783 * had a chance to write it, because it was preempted.
784 * So add this PEB to the protection queue so far,
785 * because presumably more data will be written there
786 * (including the missing VID header), and then we'll
789 dbg_wl("PEB %d has no VID header", e1->pnum);
792 } else if (err == UBI_IO_FF_BITFLIPS) {
794 * The same situation as %UBI_IO_FF, but bit-flips were
795 * detected. It is better to schedule this PEB for
798 dbg_wl("PEB %d has no VID header but has bit-flips",
802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
804 * While a full scan would detect interrupted erasures
805 * at attach time we can face them here when attached from
808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
814 ubi_err(ubi, "error %d while reading VID header from PEB %d",
819 vol_id = be32_to_cpu(vid_hdr->vol_id);
820 lnum = be32_to_cpu(vid_hdr->lnum);
822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
824 if (err == MOVE_CANCEL_RACE) {
826 * The LEB has not been moved because the volume is
827 * being deleted or the PEB has been put meanwhile. We
828 * should prevent this PEB from being selected for
829 * wear-leveling movement again, so put it to the
836 if (err == MOVE_RETRY) {
841 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
842 err == MOVE_TARGET_RD_ERR) {
844 * Target PEB had bit-flips or write error - torture it.
851 if (err == MOVE_SOURCE_RD_ERR) {
853 * An error happened while reading the source PEB. Do
854 * not switch to R/O mode in this case, and give the
855 * upper layers a possibility to recover from this,
856 * e.g. by unmapping corresponding LEB. Instead, just
857 * put this PEB to the @ubi->erroneous list to prevent
858 * UBI from trying to move it over and over again.
860 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
861 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
862 ubi->erroneous_peb_count);
876 /* The PEB has been successfully moved */
878 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
879 e1->pnum, vol_id, lnum, e2->pnum);
880 ubi_free_vid_buf(vidb);
882 spin_lock(&ubi->wl_lock);
883 if (!ubi->move_to_put) {
884 wl_tree_add(e2, &ubi->used);
887 ubi->move_from = ubi->move_to = NULL;
888 ubi->move_to_put = ubi->wl_scheduled = 0;
889 spin_unlock(&ubi->wl_lock);
891 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
894 spin_lock(&ubi->wl_lock);
895 wl_entry_destroy(ubi, e2);
896 spin_unlock(&ubi->wl_lock);
903 * Well, the target PEB was put meanwhile, schedule it for
906 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
907 e2->pnum, vol_id, lnum);
908 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
914 mutex_unlock(&ubi->move_mutex);
915 up_read(&ubi->fm_eba_sem);
919 * For some reasons the LEB was not moved, might be an error, might be
920 * something else. @e1 was not changed, so return it back. @e2 might
921 * have been changed, schedule it for erasure.
925 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
926 e1->pnum, vol_id, lnum, e2->pnum, err);
928 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
929 e1->pnum, e2->pnum, err);
930 spin_lock(&ubi->wl_lock);
932 prot_queue_add(ubi, e1);
933 else if (erroneous) {
934 wl_tree_add(e1, &ubi->erroneous);
935 ubi->erroneous_peb_count += 1;
936 } else if (scrubbing)
937 wl_tree_add(e1, &ubi->scrub);
939 wl_tree_add(e1, &ubi->used);
941 wl_tree_add(e2, &ubi->free);
945 ubi_assert(!ubi->move_to_put);
946 ubi->move_from = ubi->move_to = NULL;
947 ubi->wl_scheduled = 0;
948 spin_unlock(&ubi->wl_lock);
950 ubi_free_vid_buf(vidb);
952 ensure_wear_leveling(ubi, 1);
954 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
960 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
965 mutex_unlock(&ubi->move_mutex);
966 up_read(&ubi->fm_eba_sem);
971 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
972 err, e1->pnum, e2->pnum);
974 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
975 err, e1->pnum, vol_id, lnum, e2->pnum);
976 spin_lock(&ubi->wl_lock);
977 ubi->move_from = ubi->move_to = NULL;
978 ubi->move_to_put = ubi->wl_scheduled = 0;
979 wl_entry_destroy(ubi, e1);
980 wl_entry_destroy(ubi, e2);
981 spin_unlock(&ubi->wl_lock);
983 ubi_free_vid_buf(vidb);
987 mutex_unlock(&ubi->move_mutex);
988 up_read(&ubi->fm_eba_sem);
989 ubi_assert(err != 0);
990 return err < 0 ? err : -EIO;
993 ubi->wl_scheduled = 0;
994 spin_unlock(&ubi->wl_lock);
995 mutex_unlock(&ubi->move_mutex);
996 up_read(&ubi->fm_eba_sem);
997 ubi_free_vid_buf(vidb);
1002 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1003 * @ubi: UBI device description object
1004 * @nested: set to non-zero if this function is called from UBI worker
1006 * This function checks if it is time to start wear-leveling and schedules it
1007 * if yes. This function returns zero in case of success and a negative error
1008 * code in case of failure.
1010 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1013 struct ubi_work *wrk;
1015 spin_lock(&ubi->wl_lock);
1016 if (ubi->wl_scheduled)
1017 /* Wear-leveling is already in the work queue */
1021 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1022 * WL worker has to be scheduled anyway.
1024 if (!ubi->scrub.rb_node) {
1025 #ifdef CONFIG_MTD_UBI_FASTMAP
1026 if (!need_wear_leveling(ubi))
1029 struct ubi_wl_entry *e1;
1030 struct ubi_wl_entry *e2;
1032 if (!ubi->used.rb_node || !ubi->free.rb_node)
1033 /* No physical eraseblocks - no deal */
1037 * We schedule wear-leveling only if the difference between the
1038 * lowest erase counter of used physical eraseblocks and a high
1039 * erase counter of free physical eraseblocks is greater than
1040 * %UBI_WL_THRESHOLD.
1042 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1043 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1045 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1048 dbg_wl("schedule wear-leveling");
1050 dbg_wl("schedule scrubbing");
1052 ubi->wl_scheduled = 1;
1053 spin_unlock(&ubi->wl_lock);
1055 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1061 wrk->func = &wear_leveling_worker;
1063 __schedule_ubi_work(ubi, wrk);
1065 schedule_ubi_work(ubi, wrk);
1069 spin_lock(&ubi->wl_lock);
1070 ubi->wl_scheduled = 0;
1072 spin_unlock(&ubi->wl_lock);
1077 * __erase_worker - physical eraseblock erase worker function.
1078 * @ubi: UBI device description object
1079 * @wl_wrk: the work object
1081 * This function erases a physical eraseblock and perform torture testing if
1082 * needed. It also takes care about marking the physical eraseblock bad if
1083 * needed. Returns zero in case of success and a negative error code in case of
1086 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1088 struct ubi_wl_entry *e = wl_wrk->e;
1090 int vol_id = wl_wrk->vol_id;
1091 int lnum = wl_wrk->lnum;
1092 int err, available_consumed = 0;
1094 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1095 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1097 err = sync_erase(ubi, e, wl_wrk->torture);
1099 spin_lock(&ubi->wl_lock);
1101 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1102 e->pnum < UBI_FM_MAX_START) {
1104 * Abort anchor production, if needed it will be
1105 * enabled again in the wear leveling started below.
1108 ubi->fm_do_produce_anchor = 0;
1110 wl_tree_add(e, &ubi->free);
1114 spin_unlock(&ubi->wl_lock);
1117 * One more erase operation has happened, take care about
1118 * protected physical eraseblocks.
1120 serve_prot_queue(ubi);
1122 /* And take care about wear-leveling */
1123 err = ensure_wear_leveling(ubi, 1);
1127 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1129 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1133 /* Re-schedule the LEB for erasure */
1134 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1136 spin_lock(&ubi->wl_lock);
1137 wl_entry_destroy(ubi, e);
1138 spin_unlock(&ubi->wl_lock);
1145 spin_lock(&ubi->wl_lock);
1146 wl_entry_destroy(ubi, e);
1147 spin_unlock(&ubi->wl_lock);
1150 * If this is not %-EIO, we have no idea what to do. Scheduling
1151 * this physical eraseblock for erasure again would cause
1152 * errors again and again. Well, lets switch to R/O mode.
1156 /* It is %-EIO, the PEB went bad */
1158 if (!ubi->bad_allowed) {
1159 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1163 spin_lock(&ubi->volumes_lock);
1164 if (ubi->beb_rsvd_pebs == 0) {
1165 if (ubi->avail_pebs == 0) {
1166 spin_unlock(&ubi->volumes_lock);
1167 ubi_err(ubi, "no reserved/available physical eraseblocks");
1170 ubi->avail_pebs -= 1;
1171 available_consumed = 1;
1173 spin_unlock(&ubi->volumes_lock);
1175 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1176 err = ubi_io_mark_bad(ubi, pnum);
1180 spin_lock(&ubi->volumes_lock);
1181 if (ubi->beb_rsvd_pebs > 0) {
1182 if (available_consumed) {
1184 * The amount of reserved PEBs increased since we last
1187 ubi->avail_pebs += 1;
1188 available_consumed = 0;
1190 ubi->beb_rsvd_pebs -= 1;
1192 ubi->bad_peb_count += 1;
1193 ubi->good_peb_count -= 1;
1194 ubi_calculate_reserved(ubi);
1195 if (available_consumed)
1196 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1197 else if (ubi->beb_rsvd_pebs)
1198 ubi_msg(ubi, "%d PEBs left in the reserve",
1199 ubi->beb_rsvd_pebs);
1201 ubi_warn(ubi, "last PEB from the reserve was used");
1202 spin_unlock(&ubi->volumes_lock);
1207 if (available_consumed) {
1208 spin_lock(&ubi->volumes_lock);
1209 ubi->avail_pebs += 1;
1210 spin_unlock(&ubi->volumes_lock);
1216 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1222 struct ubi_wl_entry *e = wl_wrk->e;
1224 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1226 wl_entry_destroy(ubi, e);
1230 ret = __erase_worker(ubi, wl_wrk);
1236 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1237 * @ubi: UBI device description object
1238 * @vol_id: the volume ID that last used this PEB
1239 * @lnum: the last used logical eraseblock number for the PEB
1240 * @pnum: physical eraseblock to return
1241 * @torture: if this physical eraseblock has to be tortured
1243 * This function is called to return physical eraseblock @pnum to the pool of
1244 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1245 * occurred to this @pnum and it has to be tested. This function returns zero
1246 * in case of success, and a negative error code in case of failure.
1248 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1249 int pnum, int torture)
1252 struct ubi_wl_entry *e;
1254 dbg_wl("PEB %d", pnum);
1255 ubi_assert(pnum >= 0);
1256 ubi_assert(pnum < ubi->peb_count);
1258 down_read(&ubi->fm_protect);
1261 spin_lock(&ubi->wl_lock);
1262 e = ubi->lookuptbl[pnum];
1265 * This wl entry has been removed for some errors by other
1266 * process (eg. wear leveling worker), corresponding process
1267 * (except __erase_worker, which cannot concurrent with
1268 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1269 * just ignore this wl entry.
1271 spin_unlock(&ubi->wl_lock);
1272 up_read(&ubi->fm_protect);
1275 if (e == ubi->move_from) {
1277 * User is putting the physical eraseblock which was selected to
1278 * be moved. It will be scheduled for erasure in the
1279 * wear-leveling worker.
1281 dbg_wl("PEB %d is being moved, wait", pnum);
1282 spin_unlock(&ubi->wl_lock);
1284 /* Wait for the WL worker by taking the @ubi->move_mutex */
1285 mutex_lock(&ubi->move_mutex);
1286 mutex_unlock(&ubi->move_mutex);
1288 } else if (e == ubi->move_to) {
1290 * User is putting the physical eraseblock which was selected
1291 * as the target the data is moved to. It may happen if the EBA
1292 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1293 * but the WL sub-system has not put the PEB to the "used" tree
1294 * yet, but it is about to do this. So we just set a flag which
1295 * will tell the WL worker that the PEB is not needed anymore
1296 * and should be scheduled for erasure.
1298 dbg_wl("PEB %d is the target of data moving", pnum);
1299 ubi_assert(!ubi->move_to_put);
1300 ubi->move_to_put = 1;
1301 spin_unlock(&ubi->wl_lock);
1302 up_read(&ubi->fm_protect);
1305 if (in_wl_tree(e, &ubi->used)) {
1306 self_check_in_wl_tree(ubi, e, &ubi->used);
1307 rb_erase(&e->u.rb, &ubi->used);
1308 } else if (in_wl_tree(e, &ubi->scrub)) {
1309 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1310 rb_erase(&e->u.rb, &ubi->scrub);
1311 } else if (in_wl_tree(e, &ubi->erroneous)) {
1312 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1313 rb_erase(&e->u.rb, &ubi->erroneous);
1314 ubi->erroneous_peb_count -= 1;
1315 ubi_assert(ubi->erroneous_peb_count >= 0);
1316 /* Erroneous PEBs should be tortured */
1319 err = prot_queue_del(ubi, e->pnum);
1321 ubi_err(ubi, "PEB %d not found", pnum);
1323 spin_unlock(&ubi->wl_lock);
1324 up_read(&ubi->fm_protect);
1329 spin_unlock(&ubi->wl_lock);
1331 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1333 spin_lock(&ubi->wl_lock);
1334 wl_tree_add(e, &ubi->used);
1335 spin_unlock(&ubi->wl_lock);
1338 up_read(&ubi->fm_protect);
1343 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1344 * @ubi: UBI device description object
1345 * @pnum: the physical eraseblock to schedule
1347 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1348 * needs scrubbing. This function schedules a physical eraseblock for
1349 * scrubbing which is done in background. This function returns zero in case of
1350 * success and a negative error code in case of failure.
1352 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1354 struct ubi_wl_entry *e;
1356 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1359 spin_lock(&ubi->wl_lock);
1360 e = ubi->lookuptbl[pnum];
1361 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1362 in_wl_tree(e, &ubi->erroneous)) {
1363 spin_unlock(&ubi->wl_lock);
1367 if (e == ubi->move_to) {
1369 * This physical eraseblock was used to move data to. The data
1370 * was moved but the PEB was not yet inserted to the proper
1371 * tree. We should just wait a little and let the WL worker
1374 spin_unlock(&ubi->wl_lock);
1375 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1380 if (in_wl_tree(e, &ubi->used)) {
1381 self_check_in_wl_tree(ubi, e, &ubi->used);
1382 rb_erase(&e->u.rb, &ubi->used);
1386 err = prot_queue_del(ubi, e->pnum);
1388 ubi_err(ubi, "PEB %d not found", pnum);
1390 spin_unlock(&ubi->wl_lock);
1395 wl_tree_add(e, &ubi->scrub);
1396 spin_unlock(&ubi->wl_lock);
1399 * Technically scrubbing is the same as wear-leveling, so it is done
1402 return ensure_wear_leveling(ubi, 0);
1406 * ubi_wl_flush - flush all pending works.
1407 * @ubi: UBI device description object
1408 * @vol_id: the volume id to flush for
1409 * @lnum: the logical eraseblock number to flush for
1411 * This function executes all pending works for a particular volume id /
1412 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1413 * acts as a wildcard for all of the corresponding volume numbers or logical
1414 * eraseblock numbers. It returns zero in case of success and a negative error
1415 * code in case of failure.
1417 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1423 * Erase while the pending works queue is not empty, but not more than
1424 * the number of currently pending works.
1426 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1427 vol_id, lnum, ubi->works_count);
1430 struct ubi_work *wrk, *tmp;
1433 down_read(&ubi->work_sem);
1434 spin_lock(&ubi->wl_lock);
1435 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1436 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1437 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1438 list_del(&wrk->list);
1439 ubi->works_count -= 1;
1440 ubi_assert(ubi->works_count >= 0);
1441 spin_unlock(&ubi->wl_lock);
1443 err = wrk->func(ubi, wrk, 0);
1445 up_read(&ubi->work_sem);
1449 spin_lock(&ubi->wl_lock);
1454 spin_unlock(&ubi->wl_lock);
1455 up_read(&ubi->work_sem);
1459 * Make sure all the works which have been done in parallel are
1462 down_write(&ubi->work_sem);
1463 up_write(&ubi->work_sem);
1468 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1470 if (in_wl_tree(e, &ubi->scrub))
1472 else if (in_wl_tree(e, &ubi->erroneous))
1474 else if (ubi->move_from == e)
1476 else if (ubi->move_to == e)
1483 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1484 * @ubi: UBI device description object
1485 * @pnum: the physical eraseblock to schedule
1486 * @force: don't read the block, assume bitflips happened and take action.
1488 * This function reads the given eraseblock and checks if bitflips occured.
1489 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1490 * If scrubbing is forced with @force, the eraseblock is not read,
1491 * but scheduled for scrubbing right away.
1494 * %EINVAL, PEB is out of range
1495 * %ENOENT, PEB is no longer used by UBI
1496 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1497 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1498 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1499 * %0, no bit flips detected
1501 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1504 struct ubi_wl_entry *e;
1506 if (pnum < 0 || pnum >= ubi->peb_count) {
1512 * Pause all parallel work, otherwise it can happen that the
1513 * erase worker frees a wl entry under us.
1515 down_write(&ubi->work_sem);
1518 * Make sure that the wl entry does not change state while
1521 spin_lock(&ubi->wl_lock);
1522 e = ubi->lookuptbl[pnum];
1524 spin_unlock(&ubi->wl_lock);
1530 * Does it make sense to check this PEB?
1532 if (!scrub_possible(ubi, e)) {
1533 spin_unlock(&ubi->wl_lock);
1537 spin_unlock(&ubi->wl_lock);
1540 mutex_lock(&ubi->buf_mutex);
1541 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1542 mutex_unlock(&ubi->buf_mutex);
1545 if (force || err == UBI_IO_BITFLIPS) {
1547 * Okay, bit flip happened, let's figure out what we can do.
1549 spin_lock(&ubi->wl_lock);
1552 * Recheck. We released wl_lock, UBI might have killed the
1553 * wl entry under us.
1555 e = ubi->lookuptbl[pnum];
1557 spin_unlock(&ubi->wl_lock);
1563 * Need to re-check state
1565 if (!scrub_possible(ubi, e)) {
1566 spin_unlock(&ubi->wl_lock);
1571 if (in_pq(ubi, e)) {
1572 prot_queue_del(ubi, e->pnum);
1573 wl_tree_add(e, &ubi->scrub);
1574 spin_unlock(&ubi->wl_lock);
1576 err = ensure_wear_leveling(ubi, 1);
1577 } else if (in_wl_tree(e, &ubi->used)) {
1578 rb_erase(&e->u.rb, &ubi->used);
1579 wl_tree_add(e, &ubi->scrub);
1580 spin_unlock(&ubi->wl_lock);
1582 err = ensure_wear_leveling(ubi, 1);
1583 } else if (in_wl_tree(e, &ubi->free)) {
1584 rb_erase(&e->u.rb, &ubi->free);
1586 spin_unlock(&ubi->wl_lock);
1589 * This PEB is empty we can schedule it for
1590 * erasure right away. No wear leveling needed.
1592 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1593 force ? 0 : 1, true);
1595 spin_unlock(&ubi->wl_lock);
1606 up_write(&ubi->work_sem);
1613 * tree_destroy - destroy an RB-tree.
1614 * @ubi: UBI device description object
1615 * @root: the root of the tree to destroy
1617 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1620 struct ubi_wl_entry *e;
1626 else if (rb->rb_right)
1629 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1633 if (rb->rb_left == &e->u.rb)
1636 rb->rb_right = NULL;
1639 wl_entry_destroy(ubi, e);
1645 * ubi_thread - UBI background thread.
1646 * @u: the UBI device description object pointer
1648 int ubi_thread(void *u)
1651 struct ubi_device *ubi = u;
1653 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1654 ubi->bgt_name, task_pid_nr(current));
1660 if (kthread_should_stop())
1663 if (try_to_freeze())
1666 spin_lock(&ubi->wl_lock);
1667 if (list_empty(&ubi->works) || ubi->ro_mode ||
1668 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1669 set_current_state(TASK_INTERRUPTIBLE);
1670 spin_unlock(&ubi->wl_lock);
1673 * Check kthread_should_stop() after we set the task
1674 * state to guarantee that we either see the stop bit
1675 * and exit or the task state is reset to runnable such
1676 * that it's not scheduled out indefinitely and detects
1677 * the stop bit at kthread_should_stop().
1679 if (kthread_should_stop()) {
1680 set_current_state(TASK_RUNNING);
1687 spin_unlock(&ubi->wl_lock);
1691 ubi_err(ubi, "%s: work failed with error code %d",
1692 ubi->bgt_name, err);
1693 if (failures++ > WL_MAX_FAILURES) {
1695 * Too many failures, disable the thread and
1696 * switch to read-only mode.
1698 ubi_msg(ubi, "%s: %d consecutive failures",
1699 ubi->bgt_name, WL_MAX_FAILURES);
1701 ubi->thread_enabled = 0;
1710 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1711 ubi->thread_enabled = 0;
1716 * shutdown_work - shutdown all pending works.
1717 * @ubi: UBI device description object
1719 static void shutdown_work(struct ubi_device *ubi)
1721 while (!list_empty(&ubi->works)) {
1722 struct ubi_work *wrk;
1724 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1725 list_del(&wrk->list);
1726 wrk->func(ubi, wrk, 1);
1727 ubi->works_count -= 1;
1728 ubi_assert(ubi->works_count >= 0);
1733 * erase_aeb - erase a PEB given in UBI attach info PEB
1734 * @ubi: UBI device description object
1735 * @aeb: UBI attach info PEB
1736 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1738 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1740 struct ubi_wl_entry *e;
1743 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1747 e->pnum = aeb->pnum;
1749 ubi->lookuptbl[e->pnum] = e;
1752 err = sync_erase(ubi, e, false);
1756 wl_tree_add(e, &ubi->free);
1759 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1767 wl_entry_destroy(ubi, e);
1773 * ubi_wl_init - initialize the WL sub-system using attaching information.
1774 * @ubi: UBI device description object
1775 * @ai: attaching information
1777 * This function returns zero in case of success, and a negative error code in
1780 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1782 int err, i, reserved_pebs, found_pebs = 0;
1783 struct rb_node *rb1, *rb2;
1784 struct ubi_ainf_volume *av;
1785 struct ubi_ainf_peb *aeb, *tmp;
1786 struct ubi_wl_entry *e;
1788 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1789 spin_lock_init(&ubi->wl_lock);
1790 mutex_init(&ubi->move_mutex);
1791 init_rwsem(&ubi->work_sem);
1792 ubi->max_ec = ai->max_ec;
1793 INIT_LIST_HEAD(&ubi->works);
1795 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1798 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1799 if (!ubi->lookuptbl)
1802 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1803 INIT_LIST_HEAD(&ubi->pq[i]);
1806 ubi->free_count = 0;
1807 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1810 err = erase_aeb(ubi, aeb, false);
1817 list_for_each_entry(aeb, &ai->free, u.list) {
1820 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1826 e->pnum = aeb->pnum;
1828 ubi_assert(e->ec >= 0);
1830 wl_tree_add(e, &ubi->free);
1833 ubi->lookuptbl[e->pnum] = e;
1838 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1839 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1842 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1848 e->pnum = aeb->pnum;
1850 ubi->lookuptbl[e->pnum] = e;
1853 dbg_wl("add PEB %d EC %d to the used tree",
1855 wl_tree_add(e, &ubi->used);
1857 dbg_wl("add PEB %d EC %d to the scrub tree",
1859 wl_tree_add(e, &ubi->scrub);
1866 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1869 e = ubi_find_fm_block(ubi, aeb->pnum);
1872 ubi_assert(!ubi->lookuptbl[e->pnum]);
1873 ubi->lookuptbl[e->pnum] = e;
1878 * Usually old Fastmap PEBs are scheduled for erasure
1879 * and we don't have to care about them but if we face
1880 * an power cut before scheduling them we need to
1881 * take care of them here.
1883 if (ubi->lookuptbl[aeb->pnum])
1887 * The fastmap update code might not find a free PEB for
1888 * writing the fastmap anchor to and then reuses the
1889 * current fastmap anchor PEB. When this PEB gets erased
1890 * and a power cut happens before it is written again we
1891 * must make sure that the fastmap attach code doesn't
1892 * find any outdated fastmap anchors, hence we erase the
1893 * outdated fastmap anchor PEBs synchronously here.
1895 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1898 err = erase_aeb(ubi, aeb, sync);
1906 dbg_wl("found %i PEBs", found_pebs);
1908 ubi_assert(ubi->good_peb_count == found_pebs);
1910 reserved_pebs = WL_RESERVED_PEBS;
1911 ubi_fastmap_init(ubi, &reserved_pebs);
1913 if (ubi->avail_pebs < reserved_pebs) {
1914 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1915 ubi->avail_pebs, reserved_pebs);
1916 if (ubi->corr_peb_count)
1917 ubi_err(ubi, "%d PEBs are corrupted and not used",
1918 ubi->corr_peb_count);
1922 ubi->avail_pebs -= reserved_pebs;
1923 ubi->rsvd_pebs += reserved_pebs;
1925 /* Schedule wear-leveling if needed */
1926 err = ensure_wear_leveling(ubi, 0);
1930 #ifdef CONFIG_MTD_UBI_FASTMAP
1931 if (!ubi->ro_mode && !ubi->fm_disabled)
1932 ubi_ensure_anchor_pebs(ubi);
1938 tree_destroy(ubi, &ubi->used);
1939 tree_destroy(ubi, &ubi->free);
1940 tree_destroy(ubi, &ubi->scrub);
1941 kfree(ubi->lookuptbl);
1946 * protection_queue_destroy - destroy the protection queue.
1947 * @ubi: UBI device description object
1949 static void protection_queue_destroy(struct ubi_device *ubi)
1952 struct ubi_wl_entry *e, *tmp;
1954 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1955 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1956 list_del(&e->u.list);
1957 wl_entry_destroy(ubi, e);
1963 * ubi_wl_close - close the wear-leveling sub-system.
1964 * @ubi: UBI device description object
1966 void ubi_wl_close(struct ubi_device *ubi)
1968 dbg_wl("close the WL sub-system");
1969 ubi_fastmap_close(ubi);
1971 protection_queue_destroy(ubi);
1972 tree_destroy(ubi, &ubi->used);
1973 tree_destroy(ubi, &ubi->erroneous);
1974 tree_destroy(ubi, &ubi->free);
1975 tree_destroy(ubi, &ubi->scrub);
1976 kfree(ubi->lookuptbl);
1980 * self_check_ec - make sure that the erase counter of a PEB is correct.
1981 * @ubi: UBI device description object
1982 * @pnum: the physical eraseblock number to check
1983 * @ec: the erase counter to check
1985 * This function returns zero if the erase counter of physical eraseblock @pnum
1986 * is equivalent to @ec, and a negative error code if not or if an error
1989 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1993 struct ubi_ec_hdr *ec_hdr;
1995 if (!ubi_dbg_chk_gen(ubi))
1998 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2002 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2003 if (err && err != UBI_IO_BITFLIPS) {
2004 /* The header does not have to exist */
2009 read_ec = be64_to_cpu(ec_hdr->ec);
2010 if (ec != read_ec && read_ec - ec > 1) {
2011 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2012 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2024 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2025 * @ubi: UBI device description object
2026 * @e: the wear-leveling entry to check
2027 * @root: the root of the tree
2029 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2032 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2033 struct ubi_wl_entry *e, struct rb_root *root)
2035 if (!ubi_dbg_chk_gen(ubi))
2038 if (in_wl_tree(e, root))
2041 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2042 e->pnum, e->ec, root);
2048 * self_check_in_pq - check if wear-leveling entry is in the protection
2050 * @ubi: UBI device description object
2051 * @e: the wear-leveling entry to check
2053 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2055 static int self_check_in_pq(const struct ubi_device *ubi,
2056 struct ubi_wl_entry *e)
2058 if (!ubi_dbg_chk_gen(ubi))
2064 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2069 #ifndef CONFIG_MTD_UBI_FASTMAP
2070 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2072 struct ubi_wl_entry *e;
2074 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2075 self_check_in_wl_tree(ubi, e, &ubi->free);
2077 ubi_assert(ubi->free_count >= 0);
2078 rb_erase(&e->u.rb, &ubi->free);
2084 * produce_free_peb - produce a free physical eraseblock.
2085 * @ubi: UBI device description object
2087 * This function tries to make a free PEB by means of synchronous execution of
2088 * pending works. This may be needed if, for example the background thread is
2089 * disabled. Returns zero in case of success and a negative error code in case
2092 static int produce_free_peb(struct ubi_device *ubi)
2096 while (!ubi->free.rb_node && ubi->works_count) {
2097 spin_unlock(&ubi->wl_lock);
2099 dbg_wl("do one work synchronously");
2102 spin_lock(&ubi->wl_lock);
2111 * ubi_wl_get_peb - get a physical eraseblock.
2112 * @ubi: UBI device description object
2114 * This function returns a physical eraseblock in case of success and a
2115 * negative error code in case of failure.
2116 * Returns with ubi->fm_eba_sem held in read mode!
2118 int ubi_wl_get_peb(struct ubi_device *ubi)
2121 struct ubi_wl_entry *e;
2124 down_read(&ubi->fm_eba_sem);
2125 spin_lock(&ubi->wl_lock);
2126 if (!ubi->free.rb_node) {
2127 if (ubi->works_count == 0) {
2128 ubi_err(ubi, "no free eraseblocks");
2129 ubi_assert(list_empty(&ubi->works));
2130 spin_unlock(&ubi->wl_lock);
2134 err = produce_free_peb(ubi);
2136 spin_unlock(&ubi->wl_lock);
2139 spin_unlock(&ubi->wl_lock);
2140 up_read(&ubi->fm_eba_sem);
2144 e = wl_get_wle(ubi);
2145 prot_queue_add(ubi, e);
2146 spin_unlock(&ubi->wl_lock);
2148 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2149 ubi->peb_size - ubi->vid_hdr_aloffset);
2151 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2158 #include "fastmap-wl.c"