2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output unit.
25 * This unit provides a uniform way to work with all kinds of the underlying
26 * MTD devices. It also implements handy functions for reading and writing UBI
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this unit
31 * validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O unit does the following trick in order to avoid this extra copy.
83 * It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID header
84 * and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. When the
85 * VID header is being written out, it shifts the VID header pointer back and
86 * writes the whole sub-page.
90 #include <linux/crc32.h>
91 #include <linux/err.h>
94 #include <ubi_uboot.h>
97 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
98 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_ec_hdr *ec_hdr);
102 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
103 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
104 const struct ubi_vid_hdr *vid_hdr);
105 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
108 #define paranoid_check_not_bad(ubi, pnum) 0
109 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
110 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
111 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
112 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
113 #define paranoid_check_all_ff(ubi, pnum, offset, len) 0
117 * ubi_io_read - read data from a physical eraseblock.
118 * @ubi: UBI device description object
119 * @buf: buffer where to store the read data
120 * @pnum: physical eraseblock number to read from
121 * @offset: offset within the physical eraseblock from where to read
122 * @len: how many bytes to read
124 * This function reads data from offset @offset of physical eraseblock @pnum
125 * and stores the read data in the @buf buffer. The following return codes are
128 * o %0 if all the requested data were successfully read;
129 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
130 * correctable bit-flips were detected; this is harmless but may indicate
131 * that this eraseblock may become bad soon (but do not have to);
132 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
133 * example it can be an ECC error in case of NAND; this most probably means
134 * that the data is corrupted;
135 * o %-EIO if some I/O error occurred;
136 * o other negative error codes in case of other errors.
138 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
141 int err, retries = 0;
145 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
147 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
148 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
151 err = paranoid_check_not_bad(ubi, pnum);
153 return err > 0 ? -EINVAL : err;
155 addr = (loff_t)pnum * ubi->peb_size + offset;
157 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
159 if (err == -EUCLEAN) {
161 * -EUCLEAN is reported if there was a bit-flip which
162 * was corrected, so this is harmless.
164 ubi_msg("fixable bit-flip detected at PEB %d", pnum);
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
169 if (read != len && retries++ < UBI_IO_RETRIES) {
170 dbg_io("error %d while reading %d bytes from PEB %d:%d, "
171 "read only %zd bytes, retry",
172 err, len, pnum, offset, read);
177 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
178 "read %zd bytes", err, len, pnum, offset, read);
179 ubi_dbg_dump_stack();
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
186 if (read != len && err == -EBADMSG) {
188 printk("%s[%d] not here\n", __func__, __LINE__);
192 ubi_assert(len == read);
194 if (ubi_dbg_is_bitflip()) {
195 dbg_msg("bit-flip (emulated)");
196 err = UBI_IO_BITFLIPS;
204 * ubi_io_write - write data to a physical eraseblock.
205 * @ubi: UBI device description object
206 * @buf: buffer with the data to write
207 * @pnum: physical eraseblock number to write to
208 * @offset: offset within the physical eraseblock where to write
209 * @len: how many bytes to write
211 * This function writes @len bytes of data from buffer @buf to offset @offset
212 * of physical eraseblock @pnum. If all the data were successfully written,
213 * zero is returned. If an error occurred, this function returns a negative
214 * error code. If %-EIO is returned, the physical eraseblock most probably went
217 * Note, in case of an error, it is possible that something was still written
218 * to the flash media, but may be some garbage.
220 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
227 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
229 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
230 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
231 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
232 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
235 ubi_err("read-only mode");
239 /* The below has to be compiled out if paranoid checks are disabled */
241 err = paranoid_check_not_bad(ubi, pnum);
243 return err > 0 ? -EINVAL : err;
245 /* The area we are writing to has to contain all 0xFF bytes */
246 err = paranoid_check_all_ff(ubi, pnum, offset, len);
248 return err > 0 ? -EINVAL : err;
250 if (offset >= ubi->leb_start) {
252 * We write to the data area of the physical eraseblock. Make
253 * sure it has valid EC and VID headers.
255 err = paranoid_check_peb_ec_hdr(ubi, pnum);
257 return err > 0 ? -EINVAL : err;
258 err = paranoid_check_peb_vid_hdr(ubi, pnum);
260 return err > 0 ? -EINVAL : err;
263 if (ubi_dbg_is_write_failure()) {
264 dbg_err("cannot write %d bytes to PEB %d:%d "
265 "(emulated)", len, pnum, offset);
266 ubi_dbg_dump_stack();
270 addr = (loff_t)pnum * ubi->peb_size + offset;
271 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
273 ubi_err("error %d while writing %d bytes to PEB %d:%d, written"
274 " %zd bytes", err, len, pnum, offset, written);
275 ubi_dbg_dump_stack();
277 ubi_assert(written == len);
283 * erase_callback - MTD erasure call-back.
284 * @ei: MTD erase information object.
286 * Note, even though MTD erase interface is asynchronous, all the current
287 * implementations are synchronous anyway.
289 static void erase_callback(struct erase_info *ei)
291 wake_up_interruptible((wait_queue_head_t *)ei->priv);
295 * do_sync_erase - synchronously erase a physical eraseblock.
296 * @ubi: UBI device description object
297 * @pnum: the physical eraseblock number to erase
299 * This function synchronously erases physical eraseblock @pnum and returns
300 * zero in case of success and a negative error code in case of failure. If
301 * %-EIO is returned, the physical eraseblock most probably went bad.
303 static int do_sync_erase(struct ubi_device *ubi, int pnum)
305 int err, retries = 0;
306 struct erase_info ei;
307 wait_queue_head_t wq;
309 dbg_io("erase PEB %d", pnum);
312 init_waitqueue_head(&wq);
313 memset(&ei, 0, sizeof(struct erase_info));
316 ei.addr = (loff_t)pnum * ubi->peb_size;
317 ei.len = ubi->peb_size;
318 ei.callback = erase_callback;
319 ei.priv = (unsigned long)&wq;
321 err = ubi->mtd->erase(ubi->mtd, &ei);
323 if (retries++ < UBI_IO_RETRIES) {
324 dbg_io("error %d while erasing PEB %d, retry",
329 ubi_err("cannot erase PEB %d, error %d", pnum, err);
330 ubi_dbg_dump_stack();
334 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
335 ei.state == MTD_ERASE_FAILED);
337 ubi_err("interrupted PEB %d erasure", pnum);
341 if (ei.state == MTD_ERASE_FAILED) {
342 if (retries++ < UBI_IO_RETRIES) {
343 dbg_io("error while erasing PEB %d, retry", pnum);
347 ubi_err("cannot erase PEB %d", pnum);
348 ubi_dbg_dump_stack();
352 err = paranoid_check_all_ff(ubi, pnum, 0, ubi->peb_size);
354 return err > 0 ? -EINVAL : err;
356 if (ubi_dbg_is_erase_failure() && !err) {
357 dbg_err("cannot erase PEB %d (emulated)", pnum);
365 * check_pattern - check if buffer contains only a certain byte pattern.
366 * @buf: buffer to check
367 * @patt: the pattern to check
368 * @size: buffer size in bytes
370 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
371 * something else was also found.
373 static int check_pattern(const void *buf, uint8_t patt, int size)
377 for (i = 0; i < size; i++)
378 if (((const uint8_t *)buf)[i] != patt)
383 /* Patterns to write to a physical eraseblock when torturing it */
384 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
387 * torture_peb - test a supposedly bad physical eraseblock.
388 * @ubi: UBI device description object
389 * @pnum: the physical eraseblock number to test
391 * This function returns %-EIO if the physical eraseblock did not pass the
392 * test, a positive number of erase operations done if the test was
393 * successfully passed, and other negative error codes in case of other errors.
395 static int torture_peb(struct ubi_device *ubi, int pnum)
397 int err, i, patt_count;
399 patt_count = ARRAY_SIZE(patterns);
400 ubi_assert(patt_count > 0);
402 mutex_lock(&ubi->buf_mutex);
403 for (i = 0; i < patt_count; i++) {
404 err = do_sync_erase(ubi, pnum);
408 /* Make sure the PEB contains only 0xFF bytes */
409 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
413 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
415 ubi_err("erased PEB %d, but a non-0xFF byte found",
421 /* Write a pattern and check it */
422 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
423 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
427 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
428 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
432 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
434 ubi_err("pattern %x checking failed for PEB %d",
444 mutex_unlock(&ubi->buf_mutex);
445 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
447 * If a bit-flip or data integrity error was detected, the test
448 * has not passed because it happened on a freshly erased
449 * physical eraseblock which means something is wrong with it.
451 ubi_err("read problems on freshly erased PEB %d, must be bad",
459 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
460 * @ubi: UBI device description object
461 * @pnum: physical eraseblock number to erase
462 * @torture: if this physical eraseblock has to be tortured
464 * This function synchronously erases physical eraseblock @pnum. If @torture
465 * flag is not zero, the physical eraseblock is checked by means of writing
466 * different patterns to it and reading them back. If the torturing is enabled,
467 * the physical eraseblock is erased more then once.
469 * This function returns the number of erasures made in case of success, %-EIO
470 * if the erasure failed or the torturing test failed, and other negative error
471 * codes in case of other errors. Note, %-EIO means that the physical
474 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
478 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
480 err = paranoid_check_not_bad(ubi, pnum);
482 return err > 0 ? -EINVAL : err;
485 ubi_err("read-only mode");
490 ret = torture_peb(ubi, pnum);
495 err = do_sync_erase(ubi, pnum);
503 * ubi_io_is_bad - check if a physical eraseblock is bad.
504 * @ubi: UBI device description object
505 * @pnum: the physical eraseblock number to check
507 * This function returns a positive number if the physical eraseblock is bad,
508 * zero if not, and a negative error code if an error occurred.
510 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
512 struct mtd_info *mtd = ubi->mtd;
514 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
516 if (ubi->bad_allowed) {
519 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
521 ubi_err("error %d while checking if PEB %d is bad",
524 dbg_io("PEB %d is bad", pnum);
532 * ubi_io_mark_bad - mark a physical eraseblock as bad.
533 * @ubi: UBI device description object
534 * @pnum: the physical eraseblock number to mark
536 * This function returns zero in case of success and a negative error code in
539 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
542 struct mtd_info *mtd = ubi->mtd;
544 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
547 ubi_err("read-only mode");
551 if (!ubi->bad_allowed)
554 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
556 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
561 * validate_ec_hdr - validate an erase counter header.
562 * @ubi: UBI device description object
563 * @ec_hdr: the erase counter header to check
565 * This function returns zero if the erase counter header is OK, and %1 if
568 static int validate_ec_hdr(const struct ubi_device *ubi,
569 const struct ubi_ec_hdr *ec_hdr)
572 int vid_hdr_offset, leb_start;
574 ec = be64_to_cpu(ec_hdr->ec);
575 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
576 leb_start = be32_to_cpu(ec_hdr->data_offset);
578 if (ec_hdr->version != UBI_VERSION) {
579 ubi_err("node with incompatible UBI version found: "
580 "this UBI version is %d, image version is %d",
581 UBI_VERSION, (int)ec_hdr->version);
585 if (vid_hdr_offset != ubi->vid_hdr_offset) {
586 ubi_err("bad VID header offset %d, expected %d",
587 vid_hdr_offset, ubi->vid_hdr_offset);
591 if (leb_start != ubi->leb_start) {
592 ubi_err("bad data offset %d, expected %d",
593 leb_start, ubi->leb_start);
597 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
598 ubi_err("bad erase counter %lld", ec);
605 ubi_err("bad EC header");
606 ubi_dbg_dump_ec_hdr(ec_hdr);
607 ubi_dbg_dump_stack();
612 * ubi_io_read_ec_hdr - read and check an erase counter header.
613 * @ubi: UBI device description object
614 * @pnum: physical eraseblock to read from
615 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
617 * @verbose: be verbose if the header is corrupted or was not found
619 * This function reads erase counter header from physical eraseblock @pnum and
620 * stores it in @ec_hdr. This function also checks CRC checksum of the read
621 * erase counter header. The following codes may be returned:
623 * o %0 if the CRC checksum is correct and the header was successfully read;
624 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
625 * and corrected by the flash driver; this is harmless but may indicate that
626 * this eraseblock may become bad soon (but may be not);
627 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
628 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
629 * o a negative error code in case of failure.
631 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
632 struct ubi_ec_hdr *ec_hdr, int verbose)
634 int err, read_err = 0;
635 uint32_t crc, magic, hdr_crc;
637 dbg_io("read EC header from PEB %d", pnum);
638 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
642 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
644 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
648 * We read all the data, but either a correctable bit-flip
649 * occurred, or MTD reported about some data integrity error,
650 * like an ECC error in case of NAND. The former is harmless,
651 * the later may mean that the read data is corrupted. But we
652 * have a CRC check-sum and we will detect this. If the EC
653 * header is still OK, we just report this as there was a
659 magic = be32_to_cpu(ec_hdr->magic);
660 if (magic != UBI_EC_HDR_MAGIC) {
662 * The magic field is wrong. Let's check if we have read all
663 * 0xFF. If yes, this physical eraseblock is assumed to be
666 * But if there was a read error, we do not test it for all
667 * 0xFFs. Even if it does contain all 0xFFs, this error
668 * indicates that something is still wrong with this physical
669 * eraseblock and we anyway cannot treat it as empty.
671 if (read_err != -EBADMSG &&
672 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
673 /* The physical eraseblock is supposedly empty */
676 * The below is just a paranoid check, it has to be
677 * compiled out if paranoid checks are disabled.
679 err = paranoid_check_all_ff(ubi, pnum, 0,
682 return err > 0 ? UBI_IO_BAD_EC_HDR : err;
685 ubi_warn("no EC header found at PEB %d, "
686 "only 0xFF bytes", pnum);
687 return UBI_IO_PEB_EMPTY;
691 * This is not a valid erase counter header, and these are not
692 * 0xFF bytes. Report that the header is corrupted.
695 ubi_warn("bad magic number at PEB %d: %08x instead of "
696 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
697 ubi_dbg_dump_ec_hdr(ec_hdr);
699 return UBI_IO_BAD_EC_HDR;
702 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
703 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
705 if (hdr_crc != crc) {
707 ubi_warn("bad EC header CRC at PEB %d, calculated %#08x,"
708 " read %#08x", pnum, crc, hdr_crc);
709 ubi_dbg_dump_ec_hdr(ec_hdr);
711 return UBI_IO_BAD_EC_HDR;
714 /* And of course validate what has just been read from the media */
715 err = validate_ec_hdr(ubi, ec_hdr);
717 ubi_err("validation failed for PEB %d", pnum);
721 return read_err ? UBI_IO_BITFLIPS : 0;
725 * ubi_io_write_ec_hdr - write an erase counter header.
726 * @ubi: UBI device description object
727 * @pnum: physical eraseblock to write to
728 * @ec_hdr: the erase counter header to write
730 * This function writes erase counter header described by @ec_hdr to physical
731 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
732 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
735 * This function returns zero in case of success and a negative error code in
736 * case of failure. If %-EIO is returned, the physical eraseblock most probably
739 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
740 struct ubi_ec_hdr *ec_hdr)
745 dbg_io("write EC header to PEB %d", pnum);
746 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
748 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
749 ec_hdr->version = UBI_VERSION;
750 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
751 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
752 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
753 ec_hdr->hdr_crc = cpu_to_be32(crc);
755 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
759 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
764 * validate_vid_hdr - validate a volume identifier header.
765 * @ubi: UBI device description object
766 * @vid_hdr: the volume identifier header to check
768 * This function checks that data stored in the volume identifier header
769 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
771 static int validate_vid_hdr(const struct ubi_device *ubi,
772 const struct ubi_vid_hdr *vid_hdr)
774 int vol_type = vid_hdr->vol_type;
775 int copy_flag = vid_hdr->copy_flag;
776 int vol_id = be32_to_cpu(vid_hdr->vol_id);
777 int lnum = be32_to_cpu(vid_hdr->lnum);
778 int compat = vid_hdr->compat;
779 int data_size = be32_to_cpu(vid_hdr->data_size);
780 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
781 int data_pad = be32_to_cpu(vid_hdr->data_pad);
782 int data_crc = be32_to_cpu(vid_hdr->data_crc);
783 int usable_leb_size = ubi->leb_size - data_pad;
785 if (copy_flag != 0 && copy_flag != 1) {
786 dbg_err("bad copy_flag");
790 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
792 dbg_err("negative values");
796 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
797 dbg_err("bad vol_id");
801 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
802 dbg_err("bad compat");
806 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
807 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
808 compat != UBI_COMPAT_REJECT) {
809 dbg_err("bad compat");
813 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
814 dbg_err("bad vol_type");
818 if (data_pad >= ubi->leb_size / 2) {
819 dbg_err("bad data_pad");
823 if (vol_type == UBI_VID_STATIC) {
825 * Although from high-level point of view static volumes may
826 * contain zero bytes of data, but no VID headers can contain
827 * zero at these fields, because they empty volumes do not have
828 * mapped logical eraseblocks.
831 dbg_err("zero used_ebs");
834 if (data_size == 0) {
835 dbg_err("zero data_size");
838 if (lnum < used_ebs - 1) {
839 if (data_size != usable_leb_size) {
840 dbg_err("bad data_size");
843 } else if (lnum == used_ebs - 1) {
844 if (data_size == 0) {
845 dbg_err("bad data_size at last LEB");
849 dbg_err("too high lnum");
853 if (copy_flag == 0) {
855 dbg_err("non-zero data CRC");
858 if (data_size != 0) {
859 dbg_err("non-zero data_size");
863 if (data_size == 0) {
864 dbg_err("zero data_size of copy");
869 dbg_err("bad used_ebs");
877 ubi_err("bad VID header");
878 ubi_dbg_dump_vid_hdr(vid_hdr);
879 ubi_dbg_dump_stack();
884 * ubi_io_read_vid_hdr - read and check a volume identifier header.
885 * @ubi: UBI device description object
886 * @pnum: physical eraseblock number to read from
887 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
889 * @verbose: be verbose if the header is corrupted or wasn't found
891 * This function reads the volume identifier header from physical eraseblock
892 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
893 * volume identifier header. The following codes may be returned:
895 * o %0 if the CRC checksum is correct and the header was successfully read;
896 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
897 * and corrected by the flash driver; this is harmless but may indicate that
898 * this eraseblock may become bad soon;
899 * o %UBI_IO_BAD_VID_HRD if the volume identifier header is corrupted (a CRC
901 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
903 * o a negative error code in case of failure.
905 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
906 struct ubi_vid_hdr *vid_hdr, int verbose)
908 int err, read_err = 0;
909 uint32_t crc, magic, hdr_crc;
912 dbg_io("read VID header from PEB %d", pnum);
913 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
917 p = (char *)vid_hdr - ubi->vid_hdr_shift;
918 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
919 ubi->vid_hdr_alsize);
921 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
925 * We read all the data, but either a correctable bit-flip
926 * occurred, or MTD reported about some data integrity error,
927 * like an ECC error in case of NAND. The former is harmless,
928 * the later may mean the read data is corrupted. But we have a
929 * CRC check-sum and we will identify this. If the VID header is
930 * still OK, we just report this as there was a bit-flip.
935 magic = be32_to_cpu(vid_hdr->magic);
936 if (magic != UBI_VID_HDR_MAGIC) {
938 * If we have read all 0xFF bytes, the VID header probably does
939 * not exist and the physical eraseblock is assumed to be free.
941 * But if there was a read error, we do not test the data for
942 * 0xFFs. Even if it does contain all 0xFFs, this error
943 * indicates that something is still wrong with this physical
944 * eraseblock and it cannot be regarded as free.
946 if (read_err != -EBADMSG &&
947 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
948 /* The physical eraseblock is supposedly free */
951 * The below is just a paranoid check, it has to be
952 * compiled out if paranoid checks are disabled.
954 err = paranoid_check_all_ff(ubi, pnum, ubi->leb_start,
957 return err > 0 ? UBI_IO_BAD_VID_HDR : err;
960 ubi_warn("no VID header found at PEB %d, "
961 "only 0xFF bytes", pnum);
962 return UBI_IO_PEB_FREE;
966 * This is not a valid VID header, and these are not 0xFF
967 * bytes. Report that the header is corrupted.
970 ubi_warn("bad magic number at PEB %d: %08x instead of "
971 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
972 ubi_dbg_dump_vid_hdr(vid_hdr);
974 return UBI_IO_BAD_VID_HDR;
977 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
978 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
980 if (hdr_crc != crc) {
982 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
983 "read %#08x", pnum, crc, hdr_crc);
984 ubi_dbg_dump_vid_hdr(vid_hdr);
986 return UBI_IO_BAD_VID_HDR;
989 /* Validate the VID header that we have just read */
990 err = validate_vid_hdr(ubi, vid_hdr);
992 ubi_err("validation failed for PEB %d", pnum);
996 return read_err ? UBI_IO_BITFLIPS : 0;
1000 * ubi_io_write_vid_hdr - write a volume identifier header.
1001 * @ubi: UBI device description object
1002 * @pnum: the physical eraseblock number to write to
1003 * @vid_hdr: the volume identifier header to write
1005 * This function writes the volume identifier header described by @vid_hdr to
1006 * physical eraseblock @pnum. This function automatically fills the
1007 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1008 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1010 * This function returns zero in case of success and a negative error code in
1011 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1014 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1015 struct ubi_vid_hdr *vid_hdr)
1021 dbg_io("write VID header to PEB %d", pnum);
1022 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1024 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1026 return err > 0 ? -EINVAL: err;
1028 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1029 vid_hdr->version = UBI_VERSION;
1030 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1031 vid_hdr->hdr_crc = cpu_to_be32(crc);
1033 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1037 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1038 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1039 ubi->vid_hdr_alsize);
1043 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1046 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1047 * @ubi: UBI device description object
1048 * @pnum: physical eraseblock number to check
1050 * This function returns zero if the physical eraseblock is good, a positive
1051 * number if it is bad and a negative error code if an error occurred.
1053 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1057 err = ubi_io_is_bad(ubi, pnum);
1061 ubi_err("paranoid check failed for PEB %d", pnum);
1062 ubi_dbg_dump_stack();
1067 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1068 * @ubi: UBI device description object
1069 * @pnum: physical eraseblock number the erase counter header belongs to
1070 * @ec_hdr: the erase counter header to check
1072 * This function returns zero if the erase counter header contains valid
1073 * values, and %1 if not.
1075 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1076 const struct ubi_ec_hdr *ec_hdr)
1081 magic = be32_to_cpu(ec_hdr->magic);
1082 if (magic != UBI_EC_HDR_MAGIC) {
1083 ubi_err("bad magic %#08x, must be %#08x",
1084 magic, UBI_EC_HDR_MAGIC);
1088 err = validate_ec_hdr(ubi, ec_hdr);
1090 ubi_err("paranoid check failed for PEB %d", pnum);
1097 ubi_dbg_dump_ec_hdr(ec_hdr);
1098 ubi_dbg_dump_stack();
1103 * paranoid_check_peb_ec_hdr - check that the erase counter header of a
1104 * physical eraseblock is in-place and is all right.
1105 * @ubi: UBI device description object
1106 * @pnum: the physical eraseblock number to check
1108 * This function returns zero if the erase counter header is all right, %1 if
1109 * not, and a negative error code if an error occurred.
1111 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1114 uint32_t crc, hdr_crc;
1115 struct ubi_ec_hdr *ec_hdr;
1117 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1121 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1122 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1125 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1126 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1127 if (hdr_crc != crc) {
1128 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1129 ubi_err("paranoid check failed for PEB %d", pnum);
1130 ubi_dbg_dump_ec_hdr(ec_hdr);
1131 ubi_dbg_dump_stack();
1136 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1144 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1145 * @ubi: UBI device description object
1146 * @pnum: physical eraseblock number the volume identifier header belongs to
1147 * @vid_hdr: the volume identifier header to check
1149 * This function returns zero if the volume identifier header is all right, and
1152 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1153 const struct ubi_vid_hdr *vid_hdr)
1158 magic = be32_to_cpu(vid_hdr->magic);
1159 if (magic != UBI_VID_HDR_MAGIC) {
1160 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1161 magic, pnum, UBI_VID_HDR_MAGIC);
1165 err = validate_vid_hdr(ubi, vid_hdr);
1167 ubi_err("paranoid check failed for PEB %d", pnum);
1174 ubi_err("paranoid check failed for PEB %d", pnum);
1175 ubi_dbg_dump_vid_hdr(vid_hdr);
1176 ubi_dbg_dump_stack();
1182 * paranoid_check_peb_vid_hdr - check that the volume identifier header of a
1183 * physical eraseblock is in-place and is all right.
1184 * @ubi: UBI device description object
1185 * @pnum: the physical eraseblock number to check
1187 * This function returns zero if the volume identifier header is all right,
1188 * %1 if not, and a negative error code if an error occurred.
1190 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1193 uint32_t crc, hdr_crc;
1194 struct ubi_vid_hdr *vid_hdr;
1197 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1201 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1202 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1203 ubi->vid_hdr_alsize);
1204 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1207 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1208 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1209 if (hdr_crc != crc) {
1210 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1211 "read %#08x", pnum, crc, hdr_crc);
1212 ubi_err("paranoid check failed for PEB %d", pnum);
1213 ubi_dbg_dump_vid_hdr(vid_hdr);
1214 ubi_dbg_dump_stack();
1219 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1222 ubi_free_vid_hdr(ubi, vid_hdr);
1227 * paranoid_check_all_ff - check that a region of flash is empty.
1228 * @ubi: UBI device description object
1229 * @pnum: the physical eraseblock number to check
1230 * @offset: the starting offset within the physical eraseblock to check
1231 * @len: the length of the region to check
1233 * This function returns zero if only 0xFF bytes are present at offset
1234 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1235 * code if an error occurred.
1237 static int paranoid_check_all_ff(struct ubi_device *ubi, int pnum, int offset,
1242 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1244 mutex_lock(&ubi->dbg_buf_mutex);
1245 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1246 if (err && err != -EUCLEAN) {
1247 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1248 "read %zd bytes", err, len, pnum, offset, read);
1252 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1254 ubi_err("flash region at PEB %d:%d, length %d does not "
1255 "contain all 0xFF bytes", pnum, offset, len);
1258 mutex_unlock(&ubi->dbg_buf_mutex);
1263 ubi_err("paranoid check failed for PEB %d", pnum);
1264 dbg_msg("hex dump of the %d-%d region", offset, offset + len);
1265 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1266 ubi->dbg_peb_buf, len, 1);
1269 ubi_dbg_dump_stack();
1270 mutex_unlock(&ubi->dbg_buf_mutex);
1274 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */