mtd: mtd_nandecctest: add double bit error detection tests
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / tests / mtd_nandecctest.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/list.h>
4 #include <linux/random.h>
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/slab.h>
8 #include <linux/mtd/nand_ecc.h>
9
10 /*
11  * Test the implementation for software ECC
12  *
13  * No actual MTD device is needed, So we don't need to warry about losing
14  * important data by human error.
15  *
16  * This covers possible patterns of corruption which can be reliably corrected
17  * or detected.
18  */
19
20 #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)
21
22 struct nand_ecc_test {
23         const char *name;
24         void (*prepare)(void *, void *, void *, void *, const size_t);
25         int (*verify)(void *, void *, void *, const size_t);
26 };
27
28 /*
29  * The reason for this __change_bit_le() instead of __change_bit() is to inject
30  * bit error properly within the region which is not a multiple of
31  * sizeof(unsigned long) on big-endian systems
32  */
33 #ifdef __LITTLE_ENDIAN
34 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
35 #elif defined(__BIG_ENDIAN)
36 #define __change_bit_le(nr, addr) \
37                 __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
38 #else
39 #error "Unknown byte order"
40 #endif
41
42 static void single_bit_error_data(void *error_data, void *correct_data,
43                                 size_t size)
44 {
45         unsigned int offset = random32() % (size * BITS_PER_BYTE);
46
47         memcpy(error_data, correct_data, size);
48         __change_bit_le(offset, error_data);
49 }
50
51 static void double_bit_error_data(void *error_data, void *correct_data,
52                                 size_t size)
53 {
54         unsigned int offset[2];
55
56         offset[0] = random32() % (size * BITS_PER_BYTE);
57         do {
58                 offset[1] = random32() % (size * BITS_PER_BYTE);
59         } while (offset[0] == offset[1]);
60
61         memcpy(error_data, correct_data, size);
62
63         __change_bit_le(offset[0], error_data);
64         __change_bit_le(offset[1], error_data);
65 }
66
67 static unsigned int random_ecc_bit(size_t size)
68 {
69         unsigned int offset = random32() % (3 * BITS_PER_BYTE);
70
71         if (size == 256) {
72                 /*
73                  * Don't inject a bit error into the insignificant bits (16th
74                  * and 17th bit) in ECC code for 256 byte data block
75                  */
76                 while (offset == 16 || offset == 17)
77                         offset = random32() % (3 * BITS_PER_BYTE);
78         }
79
80         return offset;
81 }
82
83 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
84                                 size_t size)
85 {
86         unsigned int offset = random_ecc_bit(size);
87
88         memcpy(error_ecc, correct_ecc, 3);
89         __change_bit_le(offset, error_ecc);
90 }
91
92 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
93                                 size_t size)
94 {
95         unsigned int offset[2];
96
97         offset[0] = random_ecc_bit(size);
98         do {
99                 offset[1] = random_ecc_bit(size);
100         } while (offset[0] == offset[1]);
101
102         memcpy(error_ecc, correct_ecc, 3);
103         __change_bit_le(offset[0], error_ecc);
104         __change_bit_le(offset[1], error_ecc);
105 }
106
107 static void no_bit_error(void *error_data, void *error_ecc,
108                 void *correct_data, void *correct_ecc, const size_t size)
109 {
110         memcpy(error_data, correct_data, size);
111         memcpy(error_ecc, correct_ecc, 3);
112 }
113
114 static int no_bit_error_verify(void *error_data, void *error_ecc,
115                                 void *correct_data, const size_t size)
116 {
117         unsigned char calc_ecc[3];
118         int ret;
119
120         __nand_calculate_ecc(error_data, size, calc_ecc);
121         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
122         if (ret == 0 && !memcmp(correct_data, error_data, size))
123                 return 0;
124
125         return -EINVAL;
126 }
127
128 static void single_bit_error_in_data(void *error_data, void *error_ecc,
129                 void *correct_data, void *correct_ecc, const size_t size)
130 {
131         single_bit_error_data(error_data, correct_data, size);
132         memcpy(error_ecc, correct_ecc, 3);
133 }
134
135 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
136                 void *correct_data, void *correct_ecc, const size_t size)
137 {
138         memcpy(error_data, correct_data, size);
139         single_bit_error_ecc(error_ecc, correct_ecc, size);
140 }
141
142 static int single_bit_error_correct(void *error_data, void *error_ecc,
143                                 void *correct_data, const size_t size)
144 {
145         unsigned char calc_ecc[3];
146         int ret;
147
148         __nand_calculate_ecc(error_data, size, calc_ecc);
149         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
150         if (ret == 1 && !memcmp(correct_data, error_data, size))
151                 return 0;
152
153         return -EINVAL;
154 }
155
156 static void double_bit_error_in_data(void *error_data, void *error_ecc,
157                 void *correct_data, void *correct_ecc, const size_t size)
158 {
159         double_bit_error_data(error_data, correct_data, size);
160         memcpy(error_ecc, correct_ecc, 3);
161 }
162
163 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
164                 void *correct_data, void *correct_ecc, const size_t size)
165 {
166         single_bit_error_data(error_data, correct_data, size);
167         single_bit_error_ecc(error_ecc, correct_ecc, size);
168 }
169
170 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
171                 void *correct_data, void *correct_ecc, const size_t size)
172 {
173         memcpy(error_data, correct_data, size);
174         double_bit_error_ecc(error_ecc, correct_ecc, size);
175 }
176
177 static int double_bit_error_detect(void *error_data, void *error_ecc,
178                                 void *correct_data, const size_t size)
179 {
180         unsigned char calc_ecc[3];
181         int ret;
182
183         __nand_calculate_ecc(error_data, size, calc_ecc);
184         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
185
186         return (ret == -1) ? 0 : -EINVAL;
187 }
188
189 static const struct nand_ecc_test nand_ecc_test[] = {
190         {
191                 .name = "no-bit-error",
192                 .prepare = no_bit_error,
193                 .verify = no_bit_error_verify,
194         },
195         {
196                 .name = "single-bit-error-in-data-correct",
197                 .prepare = single_bit_error_in_data,
198                 .verify = single_bit_error_correct,
199         },
200         {
201                 .name = "single-bit-error-in-ecc-correct",
202                 .prepare = single_bit_error_in_ecc,
203                 .verify = single_bit_error_correct,
204         },
205         {
206                 .name = "double-bit-error-in-data-detect",
207                 .prepare = double_bit_error_in_data,
208                 .verify = double_bit_error_detect,
209         },
210         {
211                 .name = "single-bit-error-in-data-and-ecc-detect",
212                 .prepare = single_bit_error_in_data_and_ecc,
213                 .verify = double_bit_error_detect,
214         },
215         {
216                 .name = "double-bit-error-in-ecc-detect",
217                 .prepare = double_bit_error_in_ecc,
218                 .verify = double_bit_error_detect,
219         },
220 };
221
222 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
223                         void *correct_ecc, const size_t size)
224 {
225         pr_info("hexdump of error data:\n");
226         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
227                         error_data, size, false);
228         print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
229                         DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
230
231         pr_info("hexdump of correct data:\n");
232         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
233                         correct_data, size, false);
234         print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
235                         DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
236 }
237
238 static int nand_ecc_test_run(const size_t size)
239 {
240         int i;
241         int err = 0;
242         void *error_data;
243         void *error_ecc;
244         void *correct_data;
245         void *correct_ecc;
246
247         error_data = kmalloc(size, GFP_KERNEL);
248         error_ecc = kmalloc(3, GFP_KERNEL);
249         correct_data = kmalloc(size, GFP_KERNEL);
250         correct_ecc = kmalloc(3, GFP_KERNEL);
251
252         if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
253                 err = -ENOMEM;
254                 goto error;
255         }
256
257         get_random_bytes(correct_data, size);
258         __nand_calculate_ecc(correct_data, size, correct_ecc);
259
260         for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
261                 nand_ecc_test[i].prepare(error_data, error_ecc,
262                                 correct_data, correct_ecc, size);
263                 err = nand_ecc_test[i].verify(error_data, error_ecc,
264                                                 correct_data, size);
265
266                 if (err) {
267                         pr_err("mtd_nandecctest: not ok - %s-%zd\n",
268                                 nand_ecc_test[i].name, size);
269                         dump_data_ecc(error_data, error_ecc,
270                                 correct_data, correct_ecc, size);
271                         break;
272                 }
273                 pr_info("mtd_nandecctest: ok - %s-%zd\n",
274                         nand_ecc_test[i].name, size);
275         }
276 error:
277         kfree(error_data);
278         kfree(error_ecc);
279         kfree(correct_data);
280         kfree(correct_ecc);
281
282         return err;
283 }
284
285 #else
286
287 static int nand_ecc_test_run(const size_t size)
288 {
289         return 0;
290 }
291
292 #endif
293
294 static int __init ecc_test_init(void)
295 {
296         int err;
297
298         err = nand_ecc_test_run(256);
299         if (err)
300                 return err;
301
302         return nand_ecc_test_run(512);
303 }
304
305 static void __exit ecc_test_exit(void)
306 {
307 }
308
309 module_init(ecc_test_init);
310 module_exit(ecc_test_exit);
311
312 MODULE_DESCRIPTION("NAND ECC function test module");
313 MODULE_AUTHOR("Akinobu Mita");
314 MODULE_LICENSE("GPL");