treewide: use get_random_bytes() when possible
[platform/kernel/linux-starfive.git] / drivers / mtd / tests / mtd_nandecctest.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/list.h>
7 #include <linux/random.h>
8 #include <linux/string.h>
9 #include <linux/bitops.h>
10 #include <linux/slab.h>
11 #include <linux/mtd/nand-ecc-sw-hamming.h>
12
13 #include "mtd_test.h"
14
15 /*
16  * Test the implementation for software ECC
17  *
18  * No actual MTD device is needed, So we don't need to warry about losing
19  * important data by human error.
20  *
21  * This covers possible patterns of corruption which can be reliably corrected
22  * or detected.
23  */
24
25 #if IS_ENABLED(CONFIG_MTD_RAW_NAND)
26
27 struct nand_ecc_test {
28         const char *name;
29         void (*prepare)(void *, void *, void *, void *, const size_t);
30         int (*verify)(void *, void *, void *, const size_t);
31 };
32
33 /*
34  * The reason for this __change_bit_le() instead of __change_bit() is to inject
35  * bit error properly within the region which is not a multiple of
36  * sizeof(unsigned long) on big-endian systems
37  */
38 #ifdef __LITTLE_ENDIAN
39 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
40 #elif defined(__BIG_ENDIAN)
41 #define __change_bit_le(nr, addr) \
42                 __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
43 #else
44 #error "Unknown byte order"
45 #endif
46
47 static void single_bit_error_data(void *error_data, void *correct_data,
48                                 size_t size)
49 {
50         unsigned int offset = prandom_u32_max(size * BITS_PER_BYTE);
51
52         memcpy(error_data, correct_data, size);
53         __change_bit_le(offset, error_data);
54 }
55
56 static void double_bit_error_data(void *error_data, void *correct_data,
57                                 size_t size)
58 {
59         unsigned int offset[2];
60
61         offset[0] = prandom_u32_max(size * BITS_PER_BYTE);
62         do {
63                 offset[1] = prandom_u32_max(size * BITS_PER_BYTE);
64         } while (offset[0] == offset[1]);
65
66         memcpy(error_data, correct_data, size);
67
68         __change_bit_le(offset[0], error_data);
69         __change_bit_le(offset[1], error_data);
70 }
71
72 static unsigned int random_ecc_bit(size_t size)
73 {
74         unsigned int offset = prandom_u32_max(3 * BITS_PER_BYTE);
75
76         if (size == 256) {
77                 /*
78                  * Don't inject a bit error into the insignificant bits (16th
79                  * and 17th bit) in ECC code for 256 byte data block
80                  */
81                 while (offset == 16 || offset == 17)
82                         offset = prandom_u32_max(3 * BITS_PER_BYTE);
83         }
84
85         return offset;
86 }
87
88 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
89                                 size_t size)
90 {
91         unsigned int offset = random_ecc_bit(size);
92
93         memcpy(error_ecc, correct_ecc, 3);
94         __change_bit_le(offset, error_ecc);
95 }
96
97 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
98                                 size_t size)
99 {
100         unsigned int offset[2];
101
102         offset[0] = random_ecc_bit(size);
103         do {
104                 offset[1] = random_ecc_bit(size);
105         } while (offset[0] == offset[1]);
106
107         memcpy(error_ecc, correct_ecc, 3);
108         __change_bit_le(offset[0], error_ecc);
109         __change_bit_le(offset[1], error_ecc);
110 }
111
112 static void no_bit_error(void *error_data, void *error_ecc,
113                 void *correct_data, void *correct_ecc, const size_t size)
114 {
115         memcpy(error_data, correct_data, size);
116         memcpy(error_ecc, correct_ecc, 3);
117 }
118
119 static int no_bit_error_verify(void *error_data, void *error_ecc,
120                                 void *correct_data, const size_t size)
121 {
122         bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
123         unsigned char calc_ecc[3];
124         int ret;
125
126         ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
127         ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
128                                      sm_order);
129         if (ret == 0 && !memcmp(correct_data, error_data, size))
130                 return 0;
131
132         return -EINVAL;
133 }
134
135 static void single_bit_error_in_data(void *error_data, void *error_ecc,
136                 void *correct_data, void *correct_ecc, const size_t size)
137 {
138         single_bit_error_data(error_data, correct_data, size);
139         memcpy(error_ecc, correct_ecc, 3);
140 }
141
142 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
143                 void *correct_data, void *correct_ecc, const size_t size)
144 {
145         memcpy(error_data, correct_data, size);
146         single_bit_error_ecc(error_ecc, correct_ecc, size);
147 }
148
149 static int single_bit_error_correct(void *error_data, void *error_ecc,
150                                 void *correct_data, const size_t size)
151 {
152         bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
153         unsigned char calc_ecc[3];
154         int ret;
155
156         ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
157         ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
158                                      sm_order);
159         if (ret == 1 && !memcmp(correct_data, error_data, size))
160                 return 0;
161
162         return -EINVAL;
163 }
164
165 static void double_bit_error_in_data(void *error_data, void *error_ecc,
166                 void *correct_data, void *correct_ecc, const size_t size)
167 {
168         double_bit_error_data(error_data, correct_data, size);
169         memcpy(error_ecc, correct_ecc, 3);
170 }
171
172 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
173                 void *correct_data, void *correct_ecc, const size_t size)
174 {
175         single_bit_error_data(error_data, correct_data, size);
176         single_bit_error_ecc(error_ecc, correct_ecc, size);
177 }
178
179 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
180                 void *correct_data, void *correct_ecc, const size_t size)
181 {
182         memcpy(error_data, correct_data, size);
183         double_bit_error_ecc(error_ecc, correct_ecc, size);
184 }
185
186 static int double_bit_error_detect(void *error_data, void *error_ecc,
187                                 void *correct_data, const size_t size)
188 {
189         bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
190         unsigned char calc_ecc[3];
191         int ret;
192
193         ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
194         ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
195                                      sm_order);
196
197         return (ret == -EBADMSG) ? 0 : -EINVAL;
198 }
199
200 static const struct nand_ecc_test nand_ecc_test[] = {
201         {
202                 .name = "no-bit-error",
203                 .prepare = no_bit_error,
204                 .verify = no_bit_error_verify,
205         },
206         {
207                 .name = "single-bit-error-in-data-correct",
208                 .prepare = single_bit_error_in_data,
209                 .verify = single_bit_error_correct,
210         },
211         {
212                 .name = "single-bit-error-in-ecc-correct",
213                 .prepare = single_bit_error_in_ecc,
214                 .verify = single_bit_error_correct,
215         },
216         {
217                 .name = "double-bit-error-in-data-detect",
218                 .prepare = double_bit_error_in_data,
219                 .verify = double_bit_error_detect,
220         },
221         {
222                 .name = "single-bit-error-in-data-and-ecc-detect",
223                 .prepare = single_bit_error_in_data_and_ecc,
224                 .verify = double_bit_error_detect,
225         },
226         {
227                 .name = "double-bit-error-in-ecc-detect",
228                 .prepare = double_bit_error_in_ecc,
229                 .verify = double_bit_error_detect,
230         },
231 };
232
233 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
234                         void *correct_ecc, const size_t size)
235 {
236         pr_info("hexdump of error data:\n");
237         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
238                         error_data, size, false);
239         print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
240                         DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
241
242         pr_info("hexdump of correct data:\n");
243         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
244                         correct_data, size, false);
245         print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
246                         DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
247 }
248
249 static int nand_ecc_test_run(const size_t size)
250 {
251         bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
252         int i;
253         int err = 0;
254         void *error_data;
255         void *error_ecc;
256         void *correct_data;
257         void *correct_ecc;
258
259         error_data = kmalloc(size, GFP_KERNEL);
260         error_ecc = kmalloc(3, GFP_KERNEL);
261         correct_data = kmalloc(size, GFP_KERNEL);
262         correct_ecc = kmalloc(3, GFP_KERNEL);
263
264         if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
265                 err = -ENOMEM;
266                 goto error;
267         }
268
269         get_random_bytes(correct_data, size);
270         ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order);
271         for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
272                 nand_ecc_test[i].prepare(error_data, error_ecc,
273                                 correct_data, correct_ecc, size);
274                 err = nand_ecc_test[i].verify(error_data, error_ecc,
275                                                 correct_data, size);
276
277                 if (err) {
278                         pr_err("not ok - %s-%zd\n",
279                                 nand_ecc_test[i].name, size);
280                         dump_data_ecc(error_data, error_ecc,
281                                 correct_data, correct_ecc, size);
282                         break;
283                 }
284                 pr_info("ok - %s-%zd\n",
285                         nand_ecc_test[i].name, size);
286
287                 err = mtdtest_relax();
288                 if (err)
289                         break;
290         }
291 error:
292         kfree(error_data);
293         kfree(error_ecc);
294         kfree(correct_data);
295         kfree(correct_ecc);
296
297         return err;
298 }
299
300 #else
301
302 static int nand_ecc_test_run(const size_t size)
303 {
304         return 0;
305 }
306
307 #endif
308
309 static int __init ecc_test_init(void)
310 {
311         int err;
312
313         err = nand_ecc_test_run(256);
314         if (err)
315                 return err;
316
317         return nand_ecc_test_run(512);
318 }
319
320 static void __exit ecc_test_exit(void)
321 {
322 }
323
324 module_init(ecc_test_init);
325 module_exit(ecc_test_exit);
326
327 MODULE_DESCRIPTION("NAND ECC function test module");
328 MODULE_AUTHOR("Akinobu Mita");
329 MODULE_LICENSE("GPL");