Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[platform/kernel/linux-rpi.git] / drivers / mtd / spi-nor / cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Cadence QSPI Controller
4  *
5  * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6  */
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/mtd/spi-nor.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sched.h>
27 #include <linux/spi/spi.h>
28 #include <linux/timer.h>
29
30 #define CQSPI_NAME                      "cadence-qspi"
31 #define CQSPI_MAX_CHIPSELECT            16
32
33 /* Quirks */
34 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
35
36 /* Capabilities mask */
37 #define CQSPI_BASE_HWCAPS_MASK                                  \
38         (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |             \
39         SNOR_HWCAPS_READ_1_1_2 | SNOR_HWCAPS_READ_1_1_4 |       \
40         SNOR_HWCAPS_PP)
41
42 struct cqspi_st;
43
44 struct cqspi_flash_pdata {
45         struct spi_nor  nor;
46         struct cqspi_st *cqspi;
47         u32             clk_rate;
48         u32             read_delay;
49         u32             tshsl_ns;
50         u32             tsd2d_ns;
51         u32             tchsh_ns;
52         u32             tslch_ns;
53         u8              inst_width;
54         u8              addr_width;
55         u8              data_width;
56         u8              cs;
57         bool            registered;
58         bool            use_direct_mode;
59 };
60
61 struct cqspi_st {
62         struct platform_device  *pdev;
63
64         struct clk              *clk;
65         unsigned int            sclk;
66
67         void __iomem            *iobase;
68         void __iomem            *ahb_base;
69         resource_size_t         ahb_size;
70         struct completion       transfer_complete;
71         struct mutex            bus_mutex;
72
73         struct dma_chan         *rx_chan;
74         struct completion       rx_dma_complete;
75         dma_addr_t              mmap_phys_base;
76
77         int                     current_cs;
78         int                     current_page_size;
79         int                     current_erase_size;
80         int                     current_addr_width;
81         unsigned long           master_ref_clk_hz;
82         bool                    is_decoded_cs;
83         u32                     fifo_depth;
84         u32                     fifo_width;
85         bool                    rclk_en;
86         u32                     trigger_address;
87         u32                     wr_delay;
88         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89 };
90
91 struct cqspi_driver_platdata {
92         u32 hwcaps_mask;
93         u8 quirks;
94 };
95
96 /* Operation timeout value */
97 #define CQSPI_TIMEOUT_MS                        500
98 #define CQSPI_READ_TIMEOUT_MS                   10
99
100 /* Instruction type */
101 #define CQSPI_INST_TYPE_SINGLE                  0
102 #define CQSPI_INST_TYPE_DUAL                    1
103 #define CQSPI_INST_TYPE_QUAD                    2
104 #define CQSPI_INST_TYPE_OCTAL                   3
105
106 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
107 #define CQSPI_DUMMY_BYTES_MAX                   4
108 #define CQSPI_DUMMY_CLKS_MAX                    31
109
110 #define CQSPI_STIG_DATA_LEN_MAX                 8
111
112 /* Register map */
113 #define CQSPI_REG_CONFIG                        0x00
114 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
115 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
116 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
117 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
118 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
119 #define CQSPI_REG_CONFIG_BAUD_LSB               19
120 #define CQSPI_REG_CONFIG_IDLE_LSB               31
121 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
122 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
123
124 #define CQSPI_REG_RD_INSTR                      0x04
125 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
126 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
127 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
128 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
129 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
130 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
134 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
135
136 #define CQSPI_REG_WR_INSTR                      0x08
137 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
138 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
139 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
140
141 #define CQSPI_REG_DELAY                         0x0C
142 #define CQSPI_REG_DELAY_TSLCH_LSB               0
143 #define CQSPI_REG_DELAY_TCHSH_LSB               8
144 #define CQSPI_REG_DELAY_TSD2D_LSB               16
145 #define CQSPI_REG_DELAY_TSHSL_LSB               24
146 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
147 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
148 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
149 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
150
151 #define CQSPI_REG_READCAPTURE                   0x10
152 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
153 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
154 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
155
156 #define CQSPI_REG_SIZE                          0x14
157 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
158 #define CQSPI_REG_SIZE_PAGE_LSB                 4
159 #define CQSPI_REG_SIZE_BLOCK_LSB                16
160 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
161 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
162 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
163
164 #define CQSPI_REG_SRAMPARTITION                 0x18
165 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
166
167 #define CQSPI_REG_DMA                           0x20
168 #define CQSPI_REG_DMA_SINGLE_LSB                0
169 #define CQSPI_REG_DMA_BURST_LSB                 8
170 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
171 #define CQSPI_REG_DMA_BURST_MASK                0xFF
172
173 #define CQSPI_REG_REMAP                         0x24
174 #define CQSPI_REG_MODE_BIT                      0x28
175
176 #define CQSPI_REG_SDRAMLEVEL                    0x2C
177 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
178 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
179 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
180 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
181
182 #define CQSPI_REG_IRQSTATUS                     0x40
183 #define CQSPI_REG_IRQMASK                       0x44
184
185 #define CQSPI_REG_INDIRECTRD                    0x60
186 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
187 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
188 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
189
190 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
191 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
192 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
193
194 #define CQSPI_REG_CMDCTRL                       0x90
195 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
196 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
197 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
198 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
199 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
200 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
201 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
202 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
203 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
204 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
205 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
206 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
207
208 #define CQSPI_REG_INDIRECTWR                    0x70
209 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
210 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
211 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
212
213 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
214 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
215 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
216
217 #define CQSPI_REG_CMDADDRESS                    0x94
218 #define CQSPI_REG_CMDREADDATALOWER              0xA0
219 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
220 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
221 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
222
223 /* Interrupt status bits */
224 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
225 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
226 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
227 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
228 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
229 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
230 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
231 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
232
233 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
234                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
235                                          CQSPI_REG_IRQ_IND_COMP)
236
237 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
238                                          CQSPI_REG_IRQ_WATERMARK        | \
239                                          CQSPI_REG_IRQ_UNDERFLOW)
240
241 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
242
243 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
244 {
245         unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
246         u32 val;
247
248         while (1) {
249                 val = readl(reg);
250                 if (clear)
251                         val = ~val;
252                 val &= mask;
253
254                 if (val == mask)
255                         return 0;
256
257                 if (time_after(jiffies, end))
258                         return -ETIMEDOUT;
259         }
260 }
261
262 static bool cqspi_is_idle(struct cqspi_st *cqspi)
263 {
264         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
265
266         return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
267 }
268
269 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
270 {
271         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
272
273         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
274         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
275 }
276
277 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
278 {
279         struct cqspi_st *cqspi = dev;
280         unsigned int irq_status;
281
282         /* Read interrupt status */
283         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
284
285         /* Clear interrupt */
286         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
287
288         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
289
290         if (irq_status)
291                 complete(&cqspi->transfer_complete);
292
293         return IRQ_HANDLED;
294 }
295
296 static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
297 {
298         struct cqspi_flash_pdata *f_pdata = nor->priv;
299         u32 rdreg = 0;
300
301         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304
305         return rdreg;
306 }
307
308 static int cqspi_wait_idle(struct cqspi_st *cqspi)
309 {
310         const unsigned int poll_idle_retry = 3;
311         unsigned int count = 0;
312         unsigned long timeout;
313
314         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
315         while (1) {
316                 /*
317                  * Read few times in succession to ensure the controller
318                  * is indeed idle, that is, the bit does not transition
319                  * low again.
320                  */
321                 if (cqspi_is_idle(cqspi))
322                         count++;
323                 else
324                         count = 0;
325
326                 if (count >= poll_idle_retry)
327                         return 0;
328
329                 if (time_after(jiffies, timeout)) {
330                         /* Timeout, in busy mode. */
331                         dev_err(&cqspi->pdev->dev,
332                                 "QSPI is still busy after %dms timeout.\n",
333                                 CQSPI_TIMEOUT_MS);
334                         return -ETIMEDOUT;
335                 }
336
337                 cpu_relax();
338         }
339 }
340
341 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
342 {
343         void __iomem *reg_base = cqspi->iobase;
344         int ret;
345
346         /* Write the CMDCTRL without start execution. */
347         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
348         /* Start execute */
349         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
350         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
351
352         /* Polling for completion. */
353         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
354                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
355         if (ret) {
356                 dev_err(&cqspi->pdev->dev,
357                         "Flash command execution timed out.\n");
358                 return ret;
359         }
360
361         /* Polling QSPI idle status. */
362         return cqspi_wait_idle(cqspi);
363 }
364
365 static int cqspi_command_read(struct spi_nor *nor,
366                               const u8 *txbuf, const unsigned n_tx,
367                               u8 *rxbuf, const unsigned n_rx)
368 {
369         struct cqspi_flash_pdata *f_pdata = nor->priv;
370         struct cqspi_st *cqspi = f_pdata->cqspi;
371         void __iomem *reg_base = cqspi->iobase;
372         unsigned int rdreg;
373         unsigned int reg;
374         unsigned int read_len;
375         int status;
376
377         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
378                 dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
379                         n_rx, rxbuf);
380                 return -EINVAL;
381         }
382
383         reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
384
385         rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
386         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
387
388         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
389
390         /* 0 means 1 byte. */
391         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
392                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
393         status = cqspi_exec_flash_cmd(cqspi, reg);
394         if (status)
395                 return status;
396
397         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
398
399         /* Put the read value into rx_buf */
400         read_len = (n_rx > 4) ? 4 : n_rx;
401         memcpy(rxbuf, &reg, read_len);
402         rxbuf += read_len;
403
404         if (n_rx > 4) {
405                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
406
407                 read_len = n_rx - read_len;
408                 memcpy(rxbuf, &reg, read_len);
409         }
410
411         return 0;
412 }
413
414 static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
415                                const u8 *txbuf, const unsigned n_tx)
416 {
417         struct cqspi_flash_pdata *f_pdata = nor->priv;
418         struct cqspi_st *cqspi = f_pdata->cqspi;
419         void __iomem *reg_base = cqspi->iobase;
420         unsigned int reg;
421         unsigned int data;
422         u32 write_len;
423         int ret;
424
425         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
426                 dev_err(nor->dev,
427                         "Invalid input argument, cmdlen %d txbuf 0x%p\n",
428                         n_tx, txbuf);
429                 return -EINVAL;
430         }
431
432         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
433         if (n_tx) {
434                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
435                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
436                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
437                 data = 0;
438                 write_len = (n_tx > 4) ? 4 : n_tx;
439                 memcpy(&data, txbuf, write_len);
440                 txbuf += write_len;
441                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
442
443                 if (n_tx > 4) {
444                         data = 0;
445                         write_len = n_tx - 4;
446                         memcpy(&data, txbuf, write_len);
447                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
448                 }
449         }
450         ret = cqspi_exec_flash_cmd(cqspi, reg);
451         return ret;
452 }
453
454 static int cqspi_command_write_addr(struct spi_nor *nor,
455                                     const u8 opcode, const unsigned int addr)
456 {
457         struct cqspi_flash_pdata *f_pdata = nor->priv;
458         struct cqspi_st *cqspi = f_pdata->cqspi;
459         void __iomem *reg_base = cqspi->iobase;
460         unsigned int reg;
461
462         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
463         reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
464         reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
465                 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
466
467         writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
468
469         return cqspi_exec_flash_cmd(cqspi, reg);
470 }
471
472 static int cqspi_read_setup(struct spi_nor *nor)
473 {
474         struct cqspi_flash_pdata *f_pdata = nor->priv;
475         struct cqspi_st *cqspi = f_pdata->cqspi;
476         void __iomem *reg_base = cqspi->iobase;
477         unsigned int dummy_clk = 0;
478         unsigned int reg;
479
480         reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
481         reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
482
483         /* Setup dummy clock cycles */
484         dummy_clk = nor->read_dummy;
485         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
486                 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
487
488         if (dummy_clk / 8) {
489                 reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
490                 /* Set mode bits high to ensure chip doesn't enter XIP */
491                 writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
492
493                 /* Need to subtract the mode byte (8 clocks). */
494                 if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
495                         dummy_clk -= 8;
496
497                 if (dummy_clk)
498                         reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
499                                << CQSPI_REG_RD_INSTR_DUMMY_LSB;
500         }
501
502         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
503
504         /* Set address width */
505         reg = readl(reg_base + CQSPI_REG_SIZE);
506         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
507         reg |= (nor->addr_width - 1);
508         writel(reg, reg_base + CQSPI_REG_SIZE);
509         return 0;
510 }
511
512 static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
513                                        loff_t from_addr, const size_t n_rx)
514 {
515         struct cqspi_flash_pdata *f_pdata = nor->priv;
516         struct cqspi_st *cqspi = f_pdata->cqspi;
517         void __iomem *reg_base = cqspi->iobase;
518         void __iomem *ahb_base = cqspi->ahb_base;
519         unsigned int remaining = n_rx;
520         unsigned int mod_bytes = n_rx % 4;
521         unsigned int bytes_to_read = 0;
522         u8 *rxbuf_end = rxbuf + n_rx;
523         int ret = 0;
524
525         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
526         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
527
528         /* Clear all interrupts. */
529         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
530
531         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
532
533         reinit_completion(&cqspi->transfer_complete);
534         writel(CQSPI_REG_INDIRECTRD_START_MASK,
535                reg_base + CQSPI_REG_INDIRECTRD);
536
537         while (remaining > 0) {
538                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
539                                 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
540                         ret = -ETIMEDOUT;
541
542                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
543
544                 if (ret && bytes_to_read == 0) {
545                         dev_err(nor->dev, "Indirect read timeout, no bytes\n");
546                         goto failrd;
547                 }
548
549                 while (bytes_to_read != 0) {
550                         unsigned int word_remain = round_down(remaining, 4);
551
552                         bytes_to_read *= cqspi->fifo_width;
553                         bytes_to_read = bytes_to_read > remaining ?
554                                         remaining : bytes_to_read;
555                         bytes_to_read = round_down(bytes_to_read, 4);
556                         /* Read 4 byte word chunks then single bytes */
557                         if (bytes_to_read) {
558                                 ioread32_rep(ahb_base, rxbuf,
559                                              (bytes_to_read / 4));
560                         } else if (!word_remain && mod_bytes) {
561                                 unsigned int temp = ioread32(ahb_base);
562
563                                 bytes_to_read = mod_bytes;
564                                 memcpy(rxbuf, &temp, min((unsigned int)
565                                                          (rxbuf_end - rxbuf),
566                                                          bytes_to_read));
567                         }
568                         rxbuf += bytes_to_read;
569                         remaining -= bytes_to_read;
570                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
571                 }
572
573                 if (remaining > 0)
574                         reinit_completion(&cqspi->transfer_complete);
575         }
576
577         /* Check indirect done status */
578         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
579                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
580         if (ret) {
581                 dev_err(nor->dev,
582                         "Indirect read completion error (%i)\n", ret);
583                 goto failrd;
584         }
585
586         /* Disable interrupt */
587         writel(0, reg_base + CQSPI_REG_IRQMASK);
588
589         /* Clear indirect completion status */
590         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
591
592         return 0;
593
594 failrd:
595         /* Disable interrupt */
596         writel(0, reg_base + CQSPI_REG_IRQMASK);
597
598         /* Cancel the indirect read */
599         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
600                reg_base + CQSPI_REG_INDIRECTRD);
601         return ret;
602 }
603
604 static int cqspi_write_setup(struct spi_nor *nor)
605 {
606         unsigned int reg;
607         struct cqspi_flash_pdata *f_pdata = nor->priv;
608         struct cqspi_st *cqspi = f_pdata->cqspi;
609         void __iomem *reg_base = cqspi->iobase;
610
611         /* Set opcode. */
612         reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
613         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
614         reg = cqspi_calc_rdreg(nor, nor->program_opcode);
615         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
616
617         reg = readl(reg_base + CQSPI_REG_SIZE);
618         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
619         reg |= (nor->addr_width - 1);
620         writel(reg, reg_base + CQSPI_REG_SIZE);
621         return 0;
622 }
623
624 static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
625                                         const u8 *txbuf, const size_t n_tx)
626 {
627         const unsigned int page_size = nor->page_size;
628         struct cqspi_flash_pdata *f_pdata = nor->priv;
629         struct cqspi_st *cqspi = f_pdata->cqspi;
630         void __iomem *reg_base = cqspi->iobase;
631         unsigned int remaining = n_tx;
632         unsigned int write_bytes;
633         int ret;
634
635         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
636         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
637
638         /* Clear all interrupts. */
639         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
640
641         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
642
643         reinit_completion(&cqspi->transfer_complete);
644         writel(CQSPI_REG_INDIRECTWR_START_MASK,
645                reg_base + CQSPI_REG_INDIRECTWR);
646         /*
647          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
648          * Controller programming sequence, couple of cycles of
649          * QSPI_REF_CLK delay is required for the above bit to
650          * be internally synchronized by the QSPI module. Provide 5
651          * cycles of delay.
652          */
653         if (cqspi->wr_delay)
654                 ndelay(cqspi->wr_delay);
655
656         while (remaining > 0) {
657                 size_t write_words, mod_bytes;
658
659                 write_bytes = remaining > page_size ? page_size : remaining;
660                 write_words = write_bytes / 4;
661                 mod_bytes = write_bytes % 4;
662                 /* Write 4 bytes at a time then single bytes. */
663                 if (write_words) {
664                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
665                         txbuf += (write_words * 4);
666                 }
667                 if (mod_bytes) {
668                         unsigned int temp = 0xFFFFFFFF;
669
670                         memcpy(&temp, txbuf, mod_bytes);
671                         iowrite32(temp, cqspi->ahb_base);
672                         txbuf += mod_bytes;
673                 }
674
675                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
676                                         msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
677                         dev_err(nor->dev, "Indirect write timeout\n");
678                         ret = -ETIMEDOUT;
679                         goto failwr;
680                 }
681
682                 remaining -= write_bytes;
683
684                 if (remaining > 0)
685                         reinit_completion(&cqspi->transfer_complete);
686         }
687
688         /* Check indirect done status */
689         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
690                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
691         if (ret) {
692                 dev_err(nor->dev,
693                         "Indirect write completion error (%i)\n", ret);
694                 goto failwr;
695         }
696
697         /* Disable interrupt. */
698         writel(0, reg_base + CQSPI_REG_IRQMASK);
699
700         /* Clear indirect completion status */
701         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
702
703         cqspi_wait_idle(cqspi);
704
705         return 0;
706
707 failwr:
708         /* Disable interrupt. */
709         writel(0, reg_base + CQSPI_REG_IRQMASK);
710
711         /* Cancel the indirect write */
712         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
713                reg_base + CQSPI_REG_INDIRECTWR);
714         return ret;
715 }
716
717 static void cqspi_chipselect(struct spi_nor *nor)
718 {
719         struct cqspi_flash_pdata *f_pdata = nor->priv;
720         struct cqspi_st *cqspi = f_pdata->cqspi;
721         void __iomem *reg_base = cqspi->iobase;
722         unsigned int chip_select = f_pdata->cs;
723         unsigned int reg;
724
725         reg = readl(reg_base + CQSPI_REG_CONFIG);
726         if (cqspi->is_decoded_cs) {
727                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
728         } else {
729                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
730
731                 /* Convert CS if without decoder.
732                  * CS0 to 4b'1110
733                  * CS1 to 4b'1101
734                  * CS2 to 4b'1011
735                  * CS3 to 4b'0111
736                  */
737                 chip_select = 0xF & ~(1 << chip_select);
738         }
739
740         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
741                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
742         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
743             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
744         writel(reg, reg_base + CQSPI_REG_CONFIG);
745 }
746
747 static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
748 {
749         struct cqspi_flash_pdata *f_pdata = nor->priv;
750         struct cqspi_st *cqspi = f_pdata->cqspi;
751         void __iomem *iobase = cqspi->iobase;
752         unsigned int reg;
753
754         /* configure page size and block size. */
755         reg = readl(iobase + CQSPI_REG_SIZE);
756         reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
757         reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
758         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
759         reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
760         reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
761         reg |= (nor->addr_width - 1);
762         writel(reg, iobase + CQSPI_REG_SIZE);
763
764         /* configure the chip select */
765         cqspi_chipselect(nor);
766
767         /* Store the new configuration of the controller */
768         cqspi->current_page_size = nor->page_size;
769         cqspi->current_erase_size = nor->mtd.erasesize;
770         cqspi->current_addr_width = nor->addr_width;
771 }
772
773 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
774                                            const unsigned int ns_val)
775 {
776         unsigned int ticks;
777
778         ticks = ref_clk_hz / 1000;      /* kHz */
779         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
780
781         return ticks;
782 }
783
784 static void cqspi_delay(struct spi_nor *nor)
785 {
786         struct cqspi_flash_pdata *f_pdata = nor->priv;
787         struct cqspi_st *cqspi = f_pdata->cqspi;
788         void __iomem *iobase = cqspi->iobase;
789         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
790         unsigned int tshsl, tchsh, tslch, tsd2d;
791         unsigned int reg;
792         unsigned int tsclk;
793
794         /* calculate the number of ref ticks for one sclk tick */
795         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
796
797         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
798         /* this particular value must be at least one sclk */
799         if (tshsl < tsclk)
800                 tshsl = tsclk;
801
802         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
803         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
804         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
805
806         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
807                << CQSPI_REG_DELAY_TSHSL_LSB;
808         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
809                 << CQSPI_REG_DELAY_TCHSH_LSB;
810         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
811                 << CQSPI_REG_DELAY_TSLCH_LSB;
812         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
813                 << CQSPI_REG_DELAY_TSD2D_LSB;
814         writel(reg, iobase + CQSPI_REG_DELAY);
815 }
816
817 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
818 {
819         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
820         void __iomem *reg_base = cqspi->iobase;
821         u32 reg, div;
822
823         /* Recalculate the baudrate divisor based on QSPI specification. */
824         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
825
826         reg = readl(reg_base + CQSPI_REG_CONFIG);
827         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
828         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
829         writel(reg, reg_base + CQSPI_REG_CONFIG);
830 }
831
832 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
833                                    const bool bypass,
834                                    const unsigned int delay)
835 {
836         void __iomem *reg_base = cqspi->iobase;
837         unsigned int reg;
838
839         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
840
841         if (bypass)
842                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
843         else
844                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
845
846         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
847                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
848
849         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
850                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
851
852         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
853 }
854
855 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
856 {
857         void __iomem *reg_base = cqspi->iobase;
858         unsigned int reg;
859
860         reg = readl(reg_base + CQSPI_REG_CONFIG);
861
862         if (enable)
863                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
864         else
865                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
866
867         writel(reg, reg_base + CQSPI_REG_CONFIG);
868 }
869
870 static void cqspi_configure(struct spi_nor *nor)
871 {
872         struct cqspi_flash_pdata *f_pdata = nor->priv;
873         struct cqspi_st *cqspi = f_pdata->cqspi;
874         const unsigned int sclk = f_pdata->clk_rate;
875         int switch_cs = (cqspi->current_cs != f_pdata->cs);
876         int switch_ck = (cqspi->sclk != sclk);
877
878         if ((cqspi->current_page_size != nor->page_size) ||
879             (cqspi->current_erase_size != nor->mtd.erasesize) ||
880             (cqspi->current_addr_width != nor->addr_width))
881                 switch_cs = 1;
882
883         if (switch_cs || switch_ck)
884                 cqspi_controller_enable(cqspi, 0);
885
886         /* Switch chip select. */
887         if (switch_cs) {
888                 cqspi->current_cs = f_pdata->cs;
889                 cqspi_configure_cs_and_sizes(nor);
890         }
891
892         /* Setup baudrate divisor and delays */
893         if (switch_ck) {
894                 cqspi->sclk = sclk;
895                 cqspi_config_baudrate_div(cqspi);
896                 cqspi_delay(nor);
897                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
898                                        f_pdata->read_delay);
899         }
900
901         if (switch_cs || switch_ck)
902                 cqspi_controller_enable(cqspi, 1);
903 }
904
905 static int cqspi_set_protocol(struct spi_nor *nor, const int read)
906 {
907         struct cqspi_flash_pdata *f_pdata = nor->priv;
908
909         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
910         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
911         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
912
913         if (read) {
914                 switch (nor->read_proto) {
915                 case SNOR_PROTO_1_1_1:
916                         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
917                         break;
918                 case SNOR_PROTO_1_1_2:
919                         f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
920                         break;
921                 case SNOR_PROTO_1_1_4:
922                         f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
923                         break;
924                 case SNOR_PROTO_1_1_8:
925                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
926                         break;
927                 default:
928                         return -EINVAL;
929                 }
930         }
931
932         cqspi_configure(nor);
933
934         return 0;
935 }
936
937 static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
938                            size_t len, const u_char *buf)
939 {
940         struct cqspi_flash_pdata *f_pdata = nor->priv;
941         struct cqspi_st *cqspi = f_pdata->cqspi;
942         int ret;
943
944         ret = cqspi_set_protocol(nor, 0);
945         if (ret)
946                 return ret;
947
948         ret = cqspi_write_setup(nor);
949         if (ret)
950                 return ret;
951
952         if (f_pdata->use_direct_mode) {
953                 memcpy_toio(cqspi->ahb_base + to, buf, len);
954                 ret = cqspi_wait_idle(cqspi);
955         } else {
956                 ret = cqspi_indirect_write_execute(nor, to, buf, len);
957         }
958         if (ret)
959                 return ret;
960
961         return len;
962 }
963
964 static void cqspi_rx_dma_callback(void *param)
965 {
966         struct cqspi_st *cqspi = param;
967
968         complete(&cqspi->rx_dma_complete);
969 }
970
971 static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
972                                      loff_t from, size_t len)
973 {
974         struct cqspi_flash_pdata *f_pdata = nor->priv;
975         struct cqspi_st *cqspi = f_pdata->cqspi;
976         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
977         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
978         int ret = 0;
979         struct dma_async_tx_descriptor *tx;
980         dma_cookie_t cookie;
981         dma_addr_t dma_dst;
982
983         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
984                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
985                 return 0;
986         }
987
988         dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
989         if (dma_mapping_error(nor->dev, dma_dst)) {
990                 dev_err(nor->dev, "dma mapping failed\n");
991                 return -ENOMEM;
992         }
993         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
994                                        len, flags);
995         if (!tx) {
996                 dev_err(nor->dev, "device_prep_dma_memcpy error\n");
997                 ret = -EIO;
998                 goto err_unmap;
999         }
1000
1001         tx->callback = cqspi_rx_dma_callback;
1002         tx->callback_param = cqspi;
1003         cookie = tx->tx_submit(tx);
1004         reinit_completion(&cqspi->rx_dma_complete);
1005
1006         ret = dma_submit_error(cookie);
1007         if (ret) {
1008                 dev_err(nor->dev, "dma_submit_error %d\n", cookie);
1009                 ret = -EIO;
1010                 goto err_unmap;
1011         }
1012
1013         dma_async_issue_pending(cqspi->rx_chan);
1014         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1015                                          msecs_to_jiffies(len))) {
1016                 dmaengine_terminate_sync(cqspi->rx_chan);
1017                 dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
1018                 ret = -ETIMEDOUT;
1019                 goto err_unmap;
1020         }
1021
1022 err_unmap:
1023         dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
1024
1025         return ret;
1026 }
1027
1028 static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
1029                           size_t len, u_char *buf)
1030 {
1031         struct cqspi_flash_pdata *f_pdata = nor->priv;
1032         int ret;
1033
1034         ret = cqspi_set_protocol(nor, 1);
1035         if (ret)
1036                 return ret;
1037
1038         ret = cqspi_read_setup(nor);
1039         if (ret)
1040                 return ret;
1041
1042         if (f_pdata->use_direct_mode)
1043                 ret = cqspi_direct_read_execute(nor, buf, from, len);
1044         else
1045                 ret = cqspi_indirect_read_execute(nor, buf, from, len);
1046         if (ret)
1047                 return ret;
1048
1049         return len;
1050 }
1051
1052 static int cqspi_erase(struct spi_nor *nor, loff_t offs)
1053 {
1054         int ret;
1055
1056         ret = cqspi_set_protocol(nor, 0);
1057         if (ret)
1058                 return ret;
1059
1060         /* Send write enable, then erase commands. */
1061         ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
1062         if (ret)
1063                 return ret;
1064
1065         /* Set up command buffer. */
1066         ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
1067         if (ret)
1068                 return ret;
1069
1070         return 0;
1071 }
1072
1073 static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
1074 {
1075         struct cqspi_flash_pdata *f_pdata = nor->priv;
1076         struct cqspi_st *cqspi = f_pdata->cqspi;
1077
1078         mutex_lock(&cqspi->bus_mutex);
1079
1080         return 0;
1081 }
1082
1083 static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
1084 {
1085         struct cqspi_flash_pdata *f_pdata = nor->priv;
1086         struct cqspi_st *cqspi = f_pdata->cqspi;
1087
1088         mutex_unlock(&cqspi->bus_mutex);
1089 }
1090
1091 static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1092 {
1093         int ret;
1094
1095         ret = cqspi_set_protocol(nor, 0);
1096         if (!ret)
1097                 ret = cqspi_command_read(nor, &opcode, 1, buf, len);
1098
1099         return ret;
1100 }
1101
1102 static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1103 {
1104         int ret;
1105
1106         ret = cqspi_set_protocol(nor, 0);
1107         if (!ret)
1108                 ret = cqspi_command_write(nor, opcode, buf, len);
1109
1110         return ret;
1111 }
1112
1113 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1114                                     struct cqspi_flash_pdata *f_pdata,
1115                                     struct device_node *np)
1116 {
1117         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1118                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1119                 return -ENXIO;
1120         }
1121
1122         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1123                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1124                 return -ENXIO;
1125         }
1126
1127         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1128                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1129                 return -ENXIO;
1130         }
1131
1132         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1133                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1134                 return -ENXIO;
1135         }
1136
1137         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1138                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1139                 return -ENXIO;
1140         }
1141
1142         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1143                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1144                 return -ENXIO;
1145         }
1146
1147         return 0;
1148 }
1149
1150 static int cqspi_of_get_pdata(struct platform_device *pdev)
1151 {
1152         struct device_node *np = pdev->dev.of_node;
1153         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1154
1155         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1156
1157         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1158                 dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1159                 return -ENXIO;
1160         }
1161
1162         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1163                 dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1164                 return -ENXIO;
1165         }
1166
1167         if (of_property_read_u32(np, "cdns,trigger-address",
1168                                  &cqspi->trigger_address)) {
1169                 dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1170                 return -ENXIO;
1171         }
1172
1173         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1174
1175         return 0;
1176 }
1177
1178 static void cqspi_controller_init(struct cqspi_st *cqspi)
1179 {
1180         u32 reg;
1181
1182         cqspi_controller_enable(cqspi, 0);
1183
1184         /* Configure the remap address register, no remap */
1185         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1186
1187         /* Disable all interrupts. */
1188         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1189
1190         /* Configure the SRAM split to 1:1 . */
1191         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1192
1193         /* Load indirect trigger address. */
1194         writel(cqspi->trigger_address,
1195                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1196
1197         /* Program read watermark -- 1/2 of the FIFO. */
1198         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1199                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1200         /* Program write watermark -- 1/8 of the FIFO. */
1201         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1202                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1203
1204         /* Enable Direct Access Controller */
1205         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1206         reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1207         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1208
1209         cqspi_controller_enable(cqspi, 1);
1210 }
1211
1212 static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1213 {
1214         dma_cap_mask_t mask;
1215
1216         dma_cap_zero(mask);
1217         dma_cap_set(DMA_MEMCPY, mask);
1218
1219         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1220         if (IS_ERR(cqspi->rx_chan)) {
1221                 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1222                 cqspi->rx_chan = NULL;
1223         }
1224         init_completion(&cqspi->rx_dma_complete);
1225 }
1226
1227 static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1228 {
1229         struct platform_device *pdev = cqspi->pdev;
1230         struct device *dev = &pdev->dev;
1231         const struct cqspi_driver_platdata *ddata;
1232         struct spi_nor_hwcaps hwcaps;
1233         struct cqspi_flash_pdata *f_pdata;
1234         struct spi_nor *nor;
1235         struct mtd_info *mtd;
1236         unsigned int cs;
1237         int i, ret;
1238
1239         ddata = of_device_get_match_data(dev);
1240         if (!ddata) {
1241                 dev_err(dev, "Couldn't find driver data\n");
1242                 return -EINVAL;
1243         }
1244         hwcaps.mask = ddata->hwcaps_mask;
1245
1246         /* Get flash device data */
1247         for_each_available_child_of_node(dev->of_node, np) {
1248                 ret = of_property_read_u32(np, "reg", &cs);
1249                 if (ret) {
1250                         dev_err(dev, "Couldn't determine chip select.\n");
1251                         goto err;
1252                 }
1253
1254                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1255                         ret = -EINVAL;
1256                         dev_err(dev, "Chip select %d out of range.\n", cs);
1257                         goto err;
1258                 }
1259
1260                 f_pdata = &cqspi->f_pdata[cs];
1261                 f_pdata->cqspi = cqspi;
1262                 f_pdata->cs = cs;
1263
1264                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1265                 if (ret)
1266                         goto err;
1267
1268                 nor = &f_pdata->nor;
1269                 mtd = &nor->mtd;
1270
1271                 mtd->priv = nor;
1272
1273                 nor->dev = dev;
1274                 spi_nor_set_flash_node(nor, np);
1275                 nor->priv = f_pdata;
1276
1277                 nor->read_reg = cqspi_read_reg;
1278                 nor->write_reg = cqspi_write_reg;
1279                 nor->read = cqspi_read;
1280                 nor->write = cqspi_write;
1281                 nor->erase = cqspi_erase;
1282                 nor->prepare = cqspi_prep;
1283                 nor->unprepare = cqspi_unprep;
1284
1285                 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1286                                            dev_name(dev), cs);
1287                 if (!mtd->name) {
1288                         ret = -ENOMEM;
1289                         goto err;
1290                 }
1291
1292                 ret = spi_nor_scan(nor, NULL, &hwcaps);
1293                 if (ret)
1294                         goto err;
1295
1296                 ret = mtd_device_register(mtd, NULL, 0);
1297                 if (ret)
1298                         goto err;
1299
1300                 f_pdata->registered = true;
1301
1302                 if (mtd->size <= cqspi->ahb_size) {
1303                         f_pdata->use_direct_mode = true;
1304                         dev_dbg(nor->dev, "using direct mode for %s\n",
1305                                 mtd->name);
1306
1307                         if (!cqspi->rx_chan)
1308                                 cqspi_request_mmap_dma(cqspi);
1309                 }
1310         }
1311
1312         return 0;
1313
1314 err:
1315         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1316                 if (cqspi->f_pdata[i].registered)
1317                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1318         return ret;
1319 }
1320
1321 static int cqspi_probe(struct platform_device *pdev)
1322 {
1323         struct device_node *np = pdev->dev.of_node;
1324         struct device *dev = &pdev->dev;
1325         struct cqspi_st *cqspi;
1326         struct resource *res;
1327         struct resource *res_ahb;
1328         const struct cqspi_driver_platdata *ddata;
1329         int ret;
1330         int irq;
1331
1332         cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1333         if (!cqspi)
1334                 return -ENOMEM;
1335
1336         mutex_init(&cqspi->bus_mutex);
1337         cqspi->pdev = pdev;
1338         platform_set_drvdata(pdev, cqspi);
1339
1340         /* Obtain configuration from OF. */
1341         ret = cqspi_of_get_pdata(pdev);
1342         if (ret) {
1343                 dev_err(dev, "Cannot get mandatory OF data.\n");
1344                 return -ENODEV;
1345         }
1346
1347         /* Obtain QSPI clock. */
1348         cqspi->clk = devm_clk_get(dev, NULL);
1349         if (IS_ERR(cqspi->clk)) {
1350                 dev_err(dev, "Cannot claim QSPI clock.\n");
1351                 return PTR_ERR(cqspi->clk);
1352         }
1353
1354         /* Obtain and remap controller address. */
1355         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356         cqspi->iobase = devm_ioremap_resource(dev, res);
1357         if (IS_ERR(cqspi->iobase)) {
1358                 dev_err(dev, "Cannot remap controller address.\n");
1359                 return PTR_ERR(cqspi->iobase);
1360         }
1361
1362         /* Obtain and remap AHB address. */
1363         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1364         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1365         if (IS_ERR(cqspi->ahb_base)) {
1366                 dev_err(dev, "Cannot remap AHB address.\n");
1367                 return PTR_ERR(cqspi->ahb_base);
1368         }
1369         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1370         cqspi->ahb_size = resource_size(res_ahb);
1371
1372         init_completion(&cqspi->transfer_complete);
1373
1374         /* Obtain IRQ line. */
1375         irq = platform_get_irq(pdev, 0);
1376         if (irq < 0) {
1377                 dev_err(dev, "Cannot obtain IRQ.\n");
1378                 return -ENXIO;
1379         }
1380
1381         pm_runtime_enable(dev);
1382         ret = pm_runtime_get_sync(dev);
1383         if (ret < 0) {
1384                 pm_runtime_put_noidle(dev);
1385                 return ret;
1386         }
1387
1388         ret = clk_prepare_enable(cqspi->clk);
1389         if (ret) {
1390                 dev_err(dev, "Cannot enable QSPI clock.\n");
1391                 goto probe_clk_failed;
1392         }
1393
1394         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1395         ddata  = of_device_get_match_data(dev);
1396         if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
1397                 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1398                                                    cqspi->master_ref_clk_hz);
1399
1400         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1401                                pdev->name, cqspi);
1402         if (ret) {
1403                 dev_err(dev, "Cannot request IRQ.\n");
1404                 goto probe_irq_failed;
1405         }
1406
1407         cqspi_wait_idle(cqspi);
1408         cqspi_controller_init(cqspi);
1409         cqspi->current_cs = -1;
1410         cqspi->sclk = 0;
1411
1412         ret = cqspi_setup_flash(cqspi, np);
1413         if (ret) {
1414                 dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1415                 goto probe_setup_failed;
1416         }
1417
1418         return ret;
1419 probe_setup_failed:
1420         cqspi_controller_enable(cqspi, 0);
1421 probe_irq_failed:
1422         clk_disable_unprepare(cqspi->clk);
1423 probe_clk_failed:
1424         pm_runtime_put_sync(dev);
1425         pm_runtime_disable(dev);
1426         return ret;
1427 }
1428
1429 static int cqspi_remove(struct platform_device *pdev)
1430 {
1431         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1432         int i;
1433
1434         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1435                 if (cqspi->f_pdata[i].registered)
1436                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1437
1438         cqspi_controller_enable(cqspi, 0);
1439
1440         if (cqspi->rx_chan)
1441                 dma_release_channel(cqspi->rx_chan);
1442
1443         clk_disable_unprepare(cqspi->clk);
1444
1445         pm_runtime_put_sync(&pdev->dev);
1446         pm_runtime_disable(&pdev->dev);
1447
1448         return 0;
1449 }
1450
1451 #ifdef CONFIG_PM_SLEEP
1452 static int cqspi_suspend(struct device *dev)
1453 {
1454         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1455
1456         cqspi_controller_enable(cqspi, 0);
1457         return 0;
1458 }
1459
1460 static int cqspi_resume(struct device *dev)
1461 {
1462         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1463
1464         cqspi_controller_enable(cqspi, 1);
1465         return 0;
1466 }
1467
1468 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1469         .suspend = cqspi_suspend,
1470         .resume = cqspi_resume,
1471 };
1472
1473 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1474 #else
1475 #define CQSPI_DEV_PM_OPS        NULL
1476 #endif
1477
1478 static const struct cqspi_driver_platdata cdns_qspi = {
1479         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1480 };
1481
1482 static const struct cqspi_driver_platdata k2g_qspi = {
1483         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1484         .quirks = CQSPI_NEEDS_WR_DELAY,
1485 };
1486
1487 static const struct cqspi_driver_platdata am654_ospi = {
1488         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK | SNOR_HWCAPS_READ_1_1_8,
1489         .quirks = CQSPI_NEEDS_WR_DELAY,
1490 };
1491
1492 static const struct of_device_id cqspi_dt_ids[] = {
1493         {
1494                 .compatible = "cdns,qspi-nor",
1495                 .data = &cdns_qspi,
1496         },
1497         {
1498                 .compatible = "ti,k2g-qspi",
1499                 .data = &k2g_qspi,
1500         },
1501         {
1502                 .compatible = "ti,am654-ospi",
1503                 .data = &am654_ospi,
1504         },
1505         { /* end of table */ }
1506 };
1507
1508 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1509
1510 static struct platform_driver cqspi_platform_driver = {
1511         .probe = cqspi_probe,
1512         .remove = cqspi_remove,
1513         .driver = {
1514                 .name = CQSPI_NAME,
1515                 .pm = CQSPI_DEV_PM_OPS,
1516                 .of_match_table = cqspi_dt_ids,
1517         },
1518 };
1519
1520 module_platform_driver(cqspi_platform_driver);
1521
1522 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1523 MODULE_LICENSE("GPL v2");
1524 MODULE_ALIAS("platform:" CQSPI_NAME);
1525 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1526 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");