d0b6f8f9f297ab89f355a727c333de1c5a2f7fc8
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / sunxi_nand.c
1 /*
2  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3  *
4  * Derived from:
5  *      https://github.com/yuq/sunxi-nfc-mtd
6  *      Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7  *
8  *      https://github.com/hno/Allwinner-Info
9  *      Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10  *
11  *      Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12  *      Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/clk.h>
37 #include <linux/delay.h>
38 #include <linux/dmaengine.h>
39 #include <linux/gpio.h>
40 #include <linux/interrupt.h>
41 #include <linux/iopoll.h>
42 #include <linux/reset.h>
43
44 #define NFC_REG_CTL             0x0000
45 #define NFC_REG_ST              0x0004
46 #define NFC_REG_INT             0x0008
47 #define NFC_REG_TIMING_CTL      0x000C
48 #define NFC_REG_TIMING_CFG      0x0010
49 #define NFC_REG_ADDR_LOW        0x0014
50 #define NFC_REG_ADDR_HIGH       0x0018
51 #define NFC_REG_SECTOR_NUM      0x001C
52 #define NFC_REG_CNT             0x0020
53 #define NFC_REG_CMD             0x0024
54 #define NFC_REG_RCMD_SET        0x0028
55 #define NFC_REG_WCMD_SET        0x002C
56 #define NFC_REG_IO_DATA         0x0030
57 #define NFC_REG_ECC_CTL         0x0034
58 #define NFC_REG_ECC_ST          0x0038
59 #define NFC_REG_DEBUG           0x003C
60 #define NFC_REG_ECC_ERR_CNT(x)  ((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x)    (0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA      0x00A0
63 #define NFC_REG_PAT_ID          0x00A4
64 #define NFC_RAM0_BASE           0x0400
65 #define NFC_RAM1_BASE           0x0800
66
67 /* define bit use in NFC_CTL */
68 #define NFC_EN                  BIT(0)
69 #define NFC_RESET               BIT(1)
70 #define NFC_BUS_WIDTH_MSK       BIT(2)
71 #define NFC_BUS_WIDTH_8         (0 << 2)
72 #define NFC_BUS_WIDTH_16        (1 << 2)
73 #define NFC_RB_SEL_MSK          BIT(3)
74 #define NFC_RB_SEL(x)           ((x) << 3)
75 #define NFC_CE_SEL_MSK          GENMASK(26, 24)
76 #define NFC_CE_SEL(x)           ((x) << 24)
77 #define NFC_CE_CTL              BIT(6)
78 #define NFC_PAGE_SHIFT_MSK      GENMASK(11, 8)
79 #define NFC_PAGE_SHIFT(x)       (((x) < 10 ? 0 : (x) - 10) << 8)
80 #define NFC_SAM                 BIT(12)
81 #define NFC_RAM_METHOD          BIT(14)
82 #define NFC_DEBUG_CTL           BIT(31)
83
84 /* define bit use in NFC_ST */
85 #define NFC_RB_B2R              BIT(0)
86 #define NFC_CMD_INT_FLAG        BIT(1)
87 #define NFC_DMA_INT_FLAG        BIT(2)
88 #define NFC_CMD_FIFO_STATUS     BIT(3)
89 #define NFC_STA                 BIT(4)
90 #define NFC_NATCH_INT_FLAG      BIT(5)
91 #define NFC_RB_STATE(x)         BIT(x + 8)
92
93 /* define bit use in NFC_INT */
94 #define NFC_B2R_INT_ENABLE      BIT(0)
95 #define NFC_CMD_INT_ENABLE      BIT(1)
96 #define NFC_DMA_INT_ENABLE      BIT(2)
97 #define NFC_INT_MASK            (NFC_B2R_INT_ENABLE | \
98                                  NFC_CMD_INT_ENABLE | \
99                                  NFC_DMA_INT_ENABLE)
100
101 /* define bit use in NFC_TIMING_CTL */
102 #define NFC_TIMING_CTL_EDO      BIT(8)
103
104 /* define NFC_TIMING_CFG register layout */
105 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)             \
106         (((tWB) & 0x3) | (((tADL) & 0x3) << 2) |                \
107         (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |         \
108         (((tCAD) & 0x7) << 8))
109
110 /* define bit use in NFC_CMD */
111 #define NFC_CMD_LOW_BYTE_MSK    GENMASK(7, 0)
112 #define NFC_CMD_HIGH_BYTE_MSK   GENMASK(15, 8)
113 #define NFC_CMD(x)              (x)
114 #define NFC_ADR_NUM_MSK         GENMASK(18, 16)
115 #define NFC_ADR_NUM(x)          (((x) - 1) << 16)
116 #define NFC_SEND_ADR            BIT(19)
117 #define NFC_ACCESS_DIR          BIT(20)
118 #define NFC_DATA_TRANS          BIT(21)
119 #define NFC_SEND_CMD1           BIT(22)
120 #define NFC_WAIT_FLAG           BIT(23)
121 #define NFC_SEND_CMD2           BIT(24)
122 #define NFC_SEQ                 BIT(25)
123 #define NFC_DATA_SWAP_METHOD    BIT(26)
124 #define NFC_ROW_AUTO_INC        BIT(27)
125 #define NFC_SEND_CMD3           BIT(28)
126 #define NFC_SEND_CMD4           BIT(29)
127 #define NFC_CMD_TYPE_MSK        GENMASK(31, 30)
128 #define NFC_NORMAL_OP           (0 << 30)
129 #define NFC_ECC_OP              (1 << 30)
130 #define NFC_PAGE_OP             (2 << 30)
131
132 /* define bit use in NFC_RCMD_SET */
133 #define NFC_READ_CMD_MSK        GENMASK(7, 0)
134 #define NFC_RND_READ_CMD0_MSK   GENMASK(15, 8)
135 #define NFC_RND_READ_CMD1_MSK   GENMASK(23, 16)
136
137 /* define bit use in NFC_WCMD_SET */
138 #define NFC_PROGRAM_CMD_MSK     GENMASK(7, 0)
139 #define NFC_RND_WRITE_CMD_MSK   GENMASK(15, 8)
140 #define NFC_READ_CMD0_MSK       GENMASK(23, 16)
141 #define NFC_READ_CMD1_MSK       GENMASK(31, 24)
142
143 /* define bit use in NFC_ECC_CTL */
144 #define NFC_ECC_EN              BIT(0)
145 #define NFC_ECC_PIPELINE        BIT(3)
146 #define NFC_ECC_EXCEPTION       BIT(4)
147 #define NFC_ECC_BLOCK_SIZE_MSK  BIT(5)
148 #define NFC_ECC_BLOCK_512       BIT(5)
149 #define NFC_RANDOM_EN           BIT(9)
150 #define NFC_RANDOM_DIRECTION    BIT(10)
151 #define NFC_ECC_MODE_MSK        GENMASK(15, 12)
152 #define NFC_ECC_MODE(x)         ((x) << 12)
153 #define NFC_RANDOM_SEED_MSK     GENMASK(30, 16)
154 #define NFC_RANDOM_SEED(x)      ((x) << 16)
155
156 /* define bit use in NFC_ECC_ST */
157 #define NFC_ECC_ERR(x)          BIT(x)
158 #define NFC_ECC_ERR_MSK         GENMASK(15, 0)
159 #define NFC_ECC_PAT_FOUND(x)    BIT(x + 16)
160 #define NFC_ECC_ERR_CNT(b, x)   (((x) >> (((b) % 4) * 8)) & 0xff)
161
162 #define NFC_DEFAULT_TIMEOUT_MS  1000
163
164 #define NFC_SRAM_SIZE           1024
165
166 #define NFC_MAX_CS              7
167
168 /*
169  * Ready/Busy detection type: describes the Ready/Busy detection modes
170  *
171  * @RB_NONE:    no external detection available, rely on STATUS command
172  *              and software timeouts
173  * @RB_NATIVE:  use sunxi NAND controller Ready/Busy support. The Ready/Busy
174  *              pin of the NAND flash chip must be connected to one of the
175  *              native NAND R/B pins (those which can be muxed to the NAND
176  *              Controller)
177  * @RB_GPIO:    use a simple GPIO to handle Ready/Busy status. The Ready/Busy
178  *              pin of the NAND flash chip must be connected to a GPIO capable
179  *              pin.
180  */
181 enum sunxi_nand_rb_type {
182         RB_NONE,
183         RB_NATIVE,
184         RB_GPIO,
185 };
186
187 /*
188  * Ready/Busy structure: stores information related to Ready/Busy detection
189  *
190  * @type:       the Ready/Busy detection mode
191  * @info:       information related to the R/B detection mode. Either a gpio
192  *              id or a native R/B id (those supported by the NAND controller).
193  */
194 struct sunxi_nand_rb {
195         enum sunxi_nand_rb_type type;
196         union {
197                 int gpio;
198                 int nativeid;
199         } info;
200 };
201
202 /*
203  * Chip Select structure: stores information related to NAND Chip Select
204  *
205  * @cs:         the NAND CS id used to communicate with a NAND Chip
206  * @rb:         the Ready/Busy description
207  */
208 struct sunxi_nand_chip_sel {
209         u8 cs;
210         struct sunxi_nand_rb rb;
211 };
212
213 /*
214  * sunxi HW ECC infos: stores information related to HW ECC support
215  *
216  * @mode:       the sunxi ECC mode field deduced from ECC requirements
217  */
218 struct sunxi_nand_hw_ecc {
219         int mode;
220 };
221
222 /*
223  * NAND chip structure: stores NAND chip device related information
224  *
225  * @node:               used to store NAND chips into a list
226  * @nand:               base NAND chip structure
227  * @mtd:                base MTD structure
228  * @clk_rate:           clk_rate required for this NAND chip
229  * @timing_cfg          TIMING_CFG register value for this NAND chip
230  * @selected:           current active CS
231  * @nsels:              number of CS lines required by the NAND chip
232  * @sels:               array of CS lines descriptions
233  */
234 struct sunxi_nand_chip {
235         struct list_head node;
236         struct nand_chip nand;
237         unsigned long clk_rate;
238         u32 timing_cfg;
239         u32 timing_ctl;
240         int selected;
241         int addr_cycles;
242         u32 addr[2];
243         int cmd_cycles;
244         u8 cmd[2];
245         int nsels;
246         struct sunxi_nand_chip_sel sels[0];
247 };
248
249 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
250 {
251         return container_of(nand, struct sunxi_nand_chip, nand);
252 }
253
254 /*
255  * NAND Controller structure: stores sunxi NAND controller information
256  *
257  * @controller:         base controller structure
258  * @dev:                parent device (used to print error messages)
259  * @regs:               NAND controller registers
260  * @ahb_clk:            NAND Controller AHB clock
261  * @mod_clk:            NAND Controller mod clock
262  * @assigned_cs:        bitmask describing already assigned CS lines
263  * @clk_rate:           NAND controller current clock rate
264  * @chips:              a list containing all the NAND chips attached to
265  *                      this NAND controller
266  * @complete:           a completion object used to wait for NAND
267  *                      controller events
268  */
269 struct sunxi_nfc {
270         struct nand_hw_control controller;
271         struct device *dev;
272         void __iomem *regs;
273         struct clk *ahb_clk;
274         struct clk *mod_clk;
275         struct reset_control *reset;
276         unsigned long assigned_cs;
277         unsigned long clk_rate;
278         struct list_head chips;
279         struct completion complete;
280         struct dma_chan *dmac;
281 };
282
283 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
284 {
285         return container_of(ctrl, struct sunxi_nfc, controller);
286 }
287
288 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
289 {
290         struct sunxi_nfc *nfc = dev_id;
291         u32 st = readl(nfc->regs + NFC_REG_ST);
292         u32 ien = readl(nfc->regs + NFC_REG_INT);
293
294         if (!(ien & st))
295                 return IRQ_NONE;
296
297         if ((ien & st) == ien)
298                 complete(&nfc->complete);
299
300         writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
301         writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
302
303         return IRQ_HANDLED;
304 }
305
306 static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
307                                  bool use_polling, unsigned int timeout_ms)
308 {
309         int ret;
310
311         if (events & ~NFC_INT_MASK)
312                 return -EINVAL;
313
314         if (!timeout_ms)
315                 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
316
317         if (!use_polling) {
318                 init_completion(&nfc->complete);
319
320                 writel(events, nfc->regs + NFC_REG_INT);
321
322                 ret = wait_for_completion_timeout(&nfc->complete,
323                                                 msecs_to_jiffies(timeout_ms));
324                 if (!ret)
325                         ret = -ETIMEDOUT;
326                 else
327                         ret = 0;
328
329                 writel(0, nfc->regs + NFC_REG_INT);
330         } else {
331                 u32 status;
332
333                 ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
334                                          (status & events) == events, 1,
335                                          timeout_ms * 1000);
336         }
337
338         writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
339
340         if (ret)
341                 dev_err(nfc->dev, "wait interrupt timedout\n");
342
343         return ret;
344 }
345
346 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
347 {
348         u32 status;
349         int ret;
350
351         ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
352                                  !(status & NFC_CMD_FIFO_STATUS), 1,
353                                  NFC_DEFAULT_TIMEOUT_MS * 1000);
354         if (ret)
355                 dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
356
357         return ret;
358 }
359
360 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
361 {
362         u32 ctl;
363         int ret;
364
365         writel(0, nfc->regs + NFC_REG_ECC_CTL);
366         writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
367
368         ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
369                                  !(ctl & NFC_RESET), 1,
370                                  NFC_DEFAULT_TIMEOUT_MS * 1000);
371         if (ret)
372                 dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
373
374         return ret;
375 }
376
377 static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
378                                     int chunksize, int nchunks,
379                                     enum dma_data_direction ddir,
380                                     struct scatterlist *sg)
381 {
382         struct nand_chip *nand = mtd_to_nand(mtd);
383         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
384         struct dma_async_tx_descriptor *dmad;
385         enum dma_transfer_direction tdir;
386         dma_cookie_t dmat;
387         int ret;
388
389         if (ddir == DMA_FROM_DEVICE)
390                 tdir = DMA_DEV_TO_MEM;
391         else
392                 tdir = DMA_MEM_TO_DEV;
393
394         sg_init_one(sg, buf, nchunks * chunksize);
395         ret = dma_map_sg(nfc->dev, sg, 1, ddir);
396         if (!ret)
397                 return -ENOMEM;
398
399         dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
400         if (!dmad) {
401                 ret = -EINVAL;
402                 goto err_unmap_buf;
403         }
404
405         writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
406                nfc->regs + NFC_REG_CTL);
407         writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
408         writel(chunksize, nfc->regs + NFC_REG_CNT);
409         dmat = dmaengine_submit(dmad);
410
411         ret = dma_submit_error(dmat);
412         if (ret)
413                 goto err_clr_dma_flag;
414
415         return 0;
416
417 err_clr_dma_flag:
418         writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
419                nfc->regs + NFC_REG_CTL);
420
421 err_unmap_buf:
422         dma_unmap_sg(nfc->dev, sg, 1, ddir);
423         return ret;
424 }
425
426 static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
427                                      enum dma_data_direction ddir,
428                                      struct scatterlist *sg)
429 {
430         struct nand_chip *nand = mtd_to_nand(mtd);
431         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
432
433         dma_unmap_sg(nfc->dev, sg, 1, ddir);
434         writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
435                nfc->regs + NFC_REG_CTL);
436 }
437
438 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
439 {
440         struct nand_chip *nand = mtd_to_nand(mtd);
441         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
442         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
443         struct sunxi_nand_rb *rb;
444         int ret;
445
446         if (sunxi_nand->selected < 0)
447                 return 0;
448
449         rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
450
451         switch (rb->type) {
452         case RB_NATIVE:
453                 ret = !!(readl(nfc->regs + NFC_REG_ST) &
454                          NFC_RB_STATE(rb->info.nativeid));
455                 break;
456         case RB_GPIO:
457                 ret = gpio_get_value(rb->info.gpio);
458                 break;
459         case RB_NONE:
460         default:
461                 ret = 0;
462                 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
463                 break;
464         }
465
466         return ret;
467 }
468
469 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
470 {
471         struct nand_chip *nand = mtd_to_nand(mtd);
472         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
473         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
474         struct sunxi_nand_chip_sel *sel;
475         u32 ctl;
476
477         if (chip > 0 && chip >= sunxi_nand->nsels)
478                 return;
479
480         if (chip == sunxi_nand->selected)
481                 return;
482
483         ctl = readl(nfc->regs + NFC_REG_CTL) &
484               ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
485
486         if (chip >= 0) {
487                 sel = &sunxi_nand->sels[chip];
488
489                 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
490                        NFC_PAGE_SHIFT(nand->page_shift);
491                 if (sel->rb.type == RB_NONE) {
492                         nand->dev_ready = NULL;
493                 } else {
494                         nand->dev_ready = sunxi_nfc_dev_ready;
495                         if (sel->rb.type == RB_NATIVE)
496                                 ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
497                 }
498
499                 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
500
501                 if (nfc->clk_rate != sunxi_nand->clk_rate) {
502                         clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
503                         nfc->clk_rate = sunxi_nand->clk_rate;
504                 }
505         }
506
507         writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
508         writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
509         writel(ctl, nfc->regs + NFC_REG_CTL);
510
511         sunxi_nand->selected = chip;
512 }
513
514 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
515 {
516         struct nand_chip *nand = mtd_to_nand(mtd);
517         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
518         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
519         int ret;
520         int cnt;
521         int offs = 0;
522         u32 tmp;
523
524         while (len > offs) {
525                 bool poll = false;
526
527                 cnt = min(len - offs, NFC_SRAM_SIZE);
528
529                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
530                 if (ret)
531                         break;
532
533                 writel(cnt, nfc->regs + NFC_REG_CNT);
534                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
535                 writel(tmp, nfc->regs + NFC_REG_CMD);
536
537                 /* Arbitrary limit for polling mode */
538                 if (cnt < 64)
539                         poll = true;
540
541                 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
542                 if (ret)
543                         break;
544
545                 if (buf)
546                         memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
547                                       cnt);
548                 offs += cnt;
549         }
550 }
551
552 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
553                                 int len)
554 {
555         struct nand_chip *nand = mtd_to_nand(mtd);
556         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
557         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
558         int ret;
559         int cnt;
560         int offs = 0;
561         u32 tmp;
562
563         while (len > offs) {
564                 bool poll = false;
565
566                 cnt = min(len - offs, NFC_SRAM_SIZE);
567
568                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
569                 if (ret)
570                         break;
571
572                 writel(cnt, nfc->regs + NFC_REG_CNT);
573                 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
574                 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
575                       NFC_ACCESS_DIR;
576                 writel(tmp, nfc->regs + NFC_REG_CMD);
577
578                 /* Arbitrary limit for polling mode */
579                 if (cnt < 64)
580                         poll = true;
581
582                 ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
583                 if (ret)
584                         break;
585
586                 offs += cnt;
587         }
588 }
589
590 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
591 {
592         uint8_t ret;
593
594         sunxi_nfc_read_buf(mtd, &ret, 1);
595
596         return ret;
597 }
598
599 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
600                                unsigned int ctrl)
601 {
602         struct nand_chip *nand = mtd_to_nand(mtd);
603         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
604         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
605         int ret;
606
607         if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
608             !(ctrl & (NAND_CLE | NAND_ALE))) {
609                 u32 cmd = 0;
610
611                 if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
612                         return;
613
614                 if (sunxi_nand->cmd_cycles--)
615                         cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
616
617                 if (sunxi_nand->cmd_cycles--) {
618                         cmd |= NFC_SEND_CMD2;
619                         writel(sunxi_nand->cmd[1],
620                                nfc->regs + NFC_REG_RCMD_SET);
621                 }
622
623                 sunxi_nand->cmd_cycles = 0;
624
625                 if (sunxi_nand->addr_cycles) {
626                         cmd |= NFC_SEND_ADR |
627                                NFC_ADR_NUM(sunxi_nand->addr_cycles);
628                         writel(sunxi_nand->addr[0],
629                                nfc->regs + NFC_REG_ADDR_LOW);
630                 }
631
632                 if (sunxi_nand->addr_cycles > 4)
633                         writel(sunxi_nand->addr[1],
634                                nfc->regs + NFC_REG_ADDR_HIGH);
635
636                 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
637                 if (ret)
638                         return;
639
640                 writel(cmd, nfc->regs + NFC_REG_CMD);
641                 sunxi_nand->addr[0] = 0;
642                 sunxi_nand->addr[1] = 0;
643                 sunxi_nand->addr_cycles = 0;
644                 sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
645         }
646
647         if (ctrl & NAND_CLE) {
648                 sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
649         } else if (ctrl & NAND_ALE) {
650                 sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
651                                 dat << ((sunxi_nand->addr_cycles % 4) * 8);
652                 sunxi_nand->addr_cycles++;
653         }
654 }
655
656 /* These seed values have been extracted from Allwinner's BSP */
657 static const u16 sunxi_nfc_randomizer_page_seeds[] = {
658         0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
659         0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
660         0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
661         0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
662         0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
663         0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
664         0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
665         0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
666         0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
667         0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
668         0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
669         0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
670         0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
671         0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
672         0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
673         0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
674 };
675
676 /*
677  * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
678  * have been generated using
679  * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
680  * the randomizer engine does internally before de/scrambling OOB data.
681  *
682  * Those tables are statically defined to avoid calculating randomizer state
683  * at runtime.
684  */
685 static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
686         0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
687         0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
688         0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
689         0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
690         0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
691         0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
692         0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
693         0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
694         0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
695         0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
696         0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
697         0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
698         0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
699         0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
700         0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
701         0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
702 };
703
704 static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
705         0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
706         0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
707         0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
708         0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
709         0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
710         0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
711         0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
712         0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
713         0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
714         0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
715         0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
716         0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
717         0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
718         0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
719         0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
720         0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
721 };
722
723 static u16 sunxi_nfc_randomizer_step(u16 state, int count)
724 {
725         state &= 0x7fff;
726
727         /*
728          * This loop is just a simple implementation of a Fibonacci LFSR using
729          * the x16 + x15 + 1 polynomial.
730          */
731         while (count--)
732                 state = ((state >> 1) |
733                          (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
734
735         return state;
736 }
737
738 static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
739 {
740         const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
741         int mod = mtd_div_by_ws(mtd->erasesize, mtd);
742
743         if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
744                 mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
745
746         if (ecc) {
747                 if (mtd->ecc_step_size == 512)
748                         seeds = sunxi_nfc_randomizer_ecc512_seeds;
749                 else
750                         seeds = sunxi_nfc_randomizer_ecc1024_seeds;
751         }
752
753         return seeds[page % mod];
754 }
755
756 static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
757                                         int page, bool ecc)
758 {
759         struct nand_chip *nand = mtd_to_nand(mtd);
760         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
761         u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
762         u16 state;
763
764         if (!(nand->options & NAND_NEED_SCRAMBLING))
765                 return;
766
767         ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
768         state = sunxi_nfc_randomizer_state(mtd, page, ecc);
769         ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
770         writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
771 }
772
773 static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
774 {
775         struct nand_chip *nand = mtd_to_nand(mtd);
776         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
777
778         if (!(nand->options & NAND_NEED_SCRAMBLING))
779                 return;
780
781         writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
782                nfc->regs + NFC_REG_ECC_CTL);
783 }
784
785 static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
786 {
787         struct nand_chip *nand = mtd_to_nand(mtd);
788         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
789
790         if (!(nand->options & NAND_NEED_SCRAMBLING))
791                 return;
792
793         writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
794                nfc->regs + NFC_REG_ECC_CTL);
795 }
796
797 static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
798 {
799         u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
800
801         bbm[0] ^= state;
802         bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
803 }
804
805 static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
806                                            const uint8_t *buf, int len,
807                                            bool ecc, int page)
808 {
809         sunxi_nfc_randomizer_config(mtd, page, ecc);
810         sunxi_nfc_randomizer_enable(mtd);
811         sunxi_nfc_write_buf(mtd, buf, len);
812         sunxi_nfc_randomizer_disable(mtd);
813 }
814
815 static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
816                                           int len, bool ecc, int page)
817 {
818         sunxi_nfc_randomizer_config(mtd, page, ecc);
819         sunxi_nfc_randomizer_enable(mtd);
820         sunxi_nfc_read_buf(mtd, buf, len);
821         sunxi_nfc_randomizer_disable(mtd);
822 }
823
824 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
825 {
826         struct nand_chip *nand = mtd_to_nand(mtd);
827         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
828         struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
829         u32 ecc_ctl;
830
831         ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
832         ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
833                      NFC_ECC_BLOCK_SIZE_MSK);
834         ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
835                    NFC_ECC_PIPELINE;
836
837         if (nand->ecc.size == 512)
838                 ecc_ctl |= NFC_ECC_BLOCK_512;
839
840         writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
841 }
842
843 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
844 {
845         struct nand_chip *nand = mtd_to_nand(mtd);
846         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
847
848         writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
849                nfc->regs + NFC_REG_ECC_CTL);
850 }
851
852 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
853 {
854         buf[0] = user_data;
855         buf[1] = user_data >> 8;
856         buf[2] = user_data >> 16;
857         buf[3] = user_data >> 24;
858 }
859
860 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
861 {
862         return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
863 }
864
865 static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
866                                                 int step, bool bbm, int page)
867 {
868         struct nand_chip *nand = mtd_to_nand(mtd);
869         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
870
871         sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
872                                    oob);
873
874         /* De-randomize the Bad Block Marker. */
875         if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
876                 sunxi_nfc_randomize_bbm(mtd, page, oob);
877 }
878
879 static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
880                                                 const u8 *oob, int step,
881                                                 bool bbm, int page)
882 {
883         struct nand_chip *nand = mtd_to_nand(mtd);
884         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
885         u8 user_data[4];
886
887         /* Randomize the Bad Block Marker. */
888         if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
889                 memcpy(user_data, oob, sizeof(user_data));
890                 sunxi_nfc_randomize_bbm(mtd, page, user_data);
891                 oob = user_data;
892         }
893
894         writel(sunxi_nfc_buf_to_user_data(oob),
895                nfc->regs + NFC_REG_USER_DATA(step));
896 }
897
898 static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
899                                           unsigned int *max_bitflips, int ret)
900 {
901         if (ret < 0) {
902                 mtd->ecc_stats.failed++;
903         } else {
904                 mtd->ecc_stats.corrected += ret;
905                 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
906         }
907 }
908
909 static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
910                                     int step, u32 status, bool *erased)
911 {
912         struct nand_chip *nand = mtd_to_nand(mtd);
913         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
914         struct nand_ecc_ctrl *ecc = &nand->ecc;
915         u32 tmp;
916
917         *erased = false;
918
919         if (status & NFC_ECC_ERR(step))
920                 return -EBADMSG;
921
922         if (status & NFC_ECC_PAT_FOUND(step)) {
923                 u8 pattern;
924
925                 if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
926                         pattern = 0x0;
927                 } else {
928                         pattern = 0xff;
929                         *erased = true;
930                 }
931
932                 if (data)
933                         memset(data, pattern, ecc->size);
934
935                 if (oob)
936                         memset(oob, pattern, ecc->bytes + 4);
937
938                 return 0;
939         }
940
941         tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step));
942
943         return NFC_ECC_ERR_CNT(step, tmp);
944 }
945
946 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
947                                        u8 *data, int data_off,
948                                        u8 *oob, int oob_off,
949                                        int *cur_off,
950                                        unsigned int *max_bitflips,
951                                        bool bbm, bool oob_required, int page)
952 {
953         struct nand_chip *nand = mtd_to_nand(mtd);
954         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
955         struct nand_ecc_ctrl *ecc = &nand->ecc;
956         int raw_mode = 0;
957         bool erased;
958         int ret;
959
960         if (*cur_off != data_off)
961                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
962
963         sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
964
965         if (data_off + ecc->size != oob_off)
966                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
967
968         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
969         if (ret)
970                 return ret;
971
972         sunxi_nfc_randomizer_enable(mtd);
973         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
974                nfc->regs + NFC_REG_CMD);
975
976         ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
977         sunxi_nfc_randomizer_disable(mtd);
978         if (ret)
979                 return ret;
980
981         *cur_off = oob_off + ecc->bytes + 4;
982
983         ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
984                                        readl(nfc->regs + NFC_REG_ECC_ST),
985                                        &erased);
986         if (erased)
987                 return 1;
988
989         if (ret < 0) {
990                 /*
991                  * Re-read the data with the randomizer disabled to identify
992                  * bitflips in erased pages.
993                  */
994                 if (nand->options & NAND_NEED_SCRAMBLING) {
995                         nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
996                         nand->read_buf(mtd, data, ecc->size);
997                 } else {
998                         memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
999                                       ecc->size);
1000                 }
1001
1002                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
1003                 nand->read_buf(mtd, oob, ecc->bytes + 4);
1004
1005                 ret = nand_check_erased_ecc_chunk(data, ecc->size,
1006                                                   oob, ecc->bytes + 4,
1007                                                   NULL, 0, ecc->strength);
1008                 if (ret >= 0)
1009                         raw_mode = 1;
1010         } else {
1011                 memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
1012
1013                 if (oob_required) {
1014                         nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
1015                         sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
1016                                                       true, page);
1017
1018                         sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
1019                                                             bbm, page);
1020                 }
1021         }
1022
1023         sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);
1024
1025         return raw_mode;
1026 }
1027
1028 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
1029                                             u8 *oob, int *cur_off,
1030                                             bool randomize, int page)
1031 {
1032         struct nand_chip *nand = mtd_to_nand(mtd);
1033         struct nand_ecc_ctrl *ecc = &nand->ecc;
1034         int offset = ((ecc->bytes + 4) * ecc->steps);
1035         int len = mtd->oobsize - offset;
1036
1037         if (len <= 0)
1038                 return;
1039
1040         if (!cur_off || *cur_off != offset)
1041                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
1042                               offset + mtd->writesize, -1);
1043
1044         if (!randomize)
1045                 sunxi_nfc_read_buf(mtd, oob + offset, len);
1046         else
1047                 sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
1048                                               false, page);
1049
1050         if (cur_off)
1051                 *cur_off = mtd->oobsize + mtd->writesize;
1052 }
1053
1054 static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
1055                                             int oob_required, int page,
1056                                             int nchunks)
1057 {
1058         struct nand_chip *nand = mtd_to_nand(mtd);
1059         bool randomized = nand->options & NAND_NEED_SCRAMBLING;
1060         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
1061         struct nand_ecc_ctrl *ecc = &nand->ecc;
1062         unsigned int max_bitflips = 0;
1063         int ret, i, raw_mode = 0;
1064         struct scatterlist sg;
1065         u32 status;
1066
1067         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1068         if (ret)
1069                 return ret;
1070
1071         ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
1072                                        DMA_FROM_DEVICE, &sg);
1073         if (ret)
1074                 return ret;
1075
1076         sunxi_nfc_hw_ecc_enable(mtd);
1077         sunxi_nfc_randomizer_config(mtd, page, false);
1078         sunxi_nfc_randomizer_enable(mtd);
1079
1080         writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
1081                NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
1082
1083         dma_async_issue_pending(nfc->dmac);
1084
1085         writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
1086                nfc->regs + NFC_REG_CMD);
1087
1088         ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1089         if (ret)
1090                 dmaengine_terminate_all(nfc->dmac);
1091
1092         sunxi_nfc_randomizer_disable(mtd);
1093         sunxi_nfc_hw_ecc_disable(mtd);
1094
1095         sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);
1096
1097         if (ret)
1098                 return ret;
1099
1100         status = readl(nfc->regs + NFC_REG_ECC_ST);
1101
1102         for (i = 0; i < nchunks; i++) {
1103                 int data_off = i * ecc->size;
1104                 int oob_off = i * (ecc->bytes + 4);
1105                 u8 *data = buf + data_off;
1106                 u8 *oob = nand->oob_poi + oob_off;
1107                 bool erased;
1108
1109                 ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
1110                                                oob_required ? oob : NULL,
1111                                                i, status, &erased);
1112
1113                 /* ECC errors are handled in the second loop. */
1114                 if (ret < 0)
1115                         continue;
1116
1117                 if (oob_required && !erased) {
1118                         /* TODO: use DMA to retrieve OOB */
1119                         nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
1120                                       mtd->writesize + oob_off, -1);
1121                         nand->read_buf(mtd, oob, ecc->bytes + 4);
1122
1123                         sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
1124                                                             !i, page);
1125                 }
1126
1127                 if (erased)
1128                         raw_mode = 1;
1129
1130                 sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
1131         }
1132
1133         if (status & NFC_ECC_ERR_MSK) {
1134                 for (i = 0; i < nchunks; i++) {
1135                         int data_off = i * ecc->size;
1136                         int oob_off = i * (ecc->bytes + 4);
1137                         u8 *data = buf + data_off;
1138                         u8 *oob = nand->oob_poi + oob_off;
1139
1140                         if (!(status & NFC_ECC_ERR(i)))
1141                                 continue;
1142
1143                         /*
1144                          * Re-read the data with the randomizer disabled to
1145                          * identify bitflips in erased pages.
1146                          */
1147                         if (randomized) {
1148                                 /* TODO: use DMA to read page in raw mode */
1149                                 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
1150                                               data_off, -1);
1151                                 nand->read_buf(mtd, data, ecc->size);
1152                         }
1153
1154                         /* TODO: use DMA to retrieve OOB */
1155                         nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
1156                                       mtd->writesize + oob_off, -1);
1157                         nand->read_buf(mtd, oob, ecc->bytes + 4);
1158
1159                         ret = nand_check_erased_ecc_chunk(data, ecc->size,
1160                                                           oob, ecc->bytes + 4,
1161                                                           NULL, 0,
1162                                                           ecc->strength);
1163                         if (ret >= 0)
1164                                 raw_mode = 1;
1165
1166                         sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
1167                 }
1168         }
1169
1170         if (oob_required)
1171                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
1172                                                 NULL, !raw_mode,
1173                                                 page);
1174
1175         return max_bitflips;
1176 }
1177
1178 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
1179                                         const u8 *data, int data_off,
1180                                         const u8 *oob, int oob_off,
1181                                         int *cur_off, bool bbm,
1182                                         int page)
1183 {
1184         struct nand_chip *nand = mtd_to_nand(mtd);
1185         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
1186         struct nand_ecc_ctrl *ecc = &nand->ecc;
1187         int ret;
1188
1189         if (data_off != *cur_off)
1190                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
1191
1192         sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
1193
1194         if (data_off + ecc->size != oob_off)
1195                 nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
1196
1197         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1198         if (ret)
1199                 return ret;
1200
1201         sunxi_nfc_randomizer_enable(mtd);
1202         sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);
1203
1204         writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
1205                NFC_ACCESS_DIR | NFC_ECC_OP,
1206                nfc->regs + NFC_REG_CMD);
1207
1208         ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1209         sunxi_nfc_randomizer_disable(mtd);
1210         if (ret)
1211                 return ret;
1212
1213         *cur_off = oob_off + ecc->bytes + 4;
1214
1215         return 0;
1216 }
1217
1218 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
1219                                              u8 *oob, int *cur_off,
1220                                              int page)
1221 {
1222         struct nand_chip *nand = mtd_to_nand(mtd);
1223         struct nand_ecc_ctrl *ecc = &nand->ecc;
1224         int offset = ((ecc->bytes + 4) * ecc->steps);
1225         int len = mtd->oobsize - offset;
1226
1227         if (len <= 0)
1228                 return;
1229
1230         if (!cur_off || *cur_off != offset)
1231                 nand->cmdfunc(mtd, NAND_CMD_RNDIN,
1232                               offset + mtd->writesize, -1);
1233
1234         sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
1235
1236         if (cur_off)
1237                 *cur_off = mtd->oobsize + mtd->writesize;
1238 }
1239
1240 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
1241                                       struct nand_chip *chip, uint8_t *buf,
1242                                       int oob_required, int page)
1243 {
1244         struct nand_ecc_ctrl *ecc = &chip->ecc;
1245         unsigned int max_bitflips = 0;
1246         int ret, i, cur_off = 0;
1247         bool raw_mode = false;
1248
1249         sunxi_nfc_hw_ecc_enable(mtd);
1250
1251         for (i = 0; i < ecc->steps; i++) {
1252                 int data_off = i * ecc->size;
1253                 int oob_off = i * (ecc->bytes + 4);
1254                 u8 *data = buf + data_off;
1255                 u8 *oob = chip->oob_poi + oob_off;
1256
1257                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
1258                                                   oob_off + mtd->writesize,
1259                                                   &cur_off, &max_bitflips,
1260                                                   !i, oob_required, page);
1261                 if (ret < 0)
1262                         return ret;
1263                 else if (ret)
1264                         raw_mode = true;
1265         }
1266
1267         if (oob_required)
1268                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
1269                                                 !raw_mode, page);
1270
1271         sunxi_nfc_hw_ecc_disable(mtd);
1272
1273         return max_bitflips;
1274 }
1275
1276 static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd,
1277                                           struct nand_chip *chip, u8 *buf,
1278                                           int oob_required, int page)
1279 {
1280         int ret;
1281
1282         ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
1283                                                chip->ecc.steps);
1284         if (ret >= 0)
1285                 return ret;
1286
1287         /* Fallback to PIO mode */
1288         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
1289
1290         return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page);
1291 }
1292
1293 static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
1294                                          struct nand_chip *chip,
1295                                          u32 data_offs, u32 readlen,
1296                                          u8 *bufpoi, int page)
1297 {
1298         struct nand_ecc_ctrl *ecc = &chip->ecc;
1299         int ret, i, cur_off = 0;
1300         unsigned int max_bitflips = 0;
1301
1302         sunxi_nfc_hw_ecc_enable(mtd);
1303
1304         for (i = data_offs / ecc->size;
1305              i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
1306                 int data_off = i * ecc->size;
1307                 int oob_off = i * (ecc->bytes + 4);
1308                 u8 *data = bufpoi + data_off;
1309                 u8 *oob = chip->oob_poi + oob_off;
1310
1311                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
1312                                                   oob,
1313                                                   oob_off + mtd->writesize,
1314                                                   &cur_off, &max_bitflips, !i,
1315                                                   false, page);
1316                 if (ret < 0)
1317                         return ret;
1318         }
1319
1320         sunxi_nfc_hw_ecc_disable(mtd);
1321
1322         return max_bitflips;
1323 }
1324
1325 static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd,
1326                                              struct nand_chip *chip,
1327                                              u32 data_offs, u32 readlen,
1328                                              u8 *buf, int page)
1329 {
1330         int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
1331         int ret;
1332
1333         ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
1334         if (ret >= 0)
1335                 return ret;
1336
1337         /* Fallback to PIO mode */
1338         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
1339
1340         return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen,
1341                                              buf, page);
1342 }
1343
1344 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
1345                                        struct nand_chip *chip,
1346                                        const uint8_t *buf, int oob_required,
1347                                        int page)
1348 {
1349         struct nand_ecc_ctrl *ecc = &chip->ecc;
1350         int ret, i, cur_off = 0;
1351
1352         sunxi_nfc_hw_ecc_enable(mtd);
1353
1354         for (i = 0; i < ecc->steps; i++) {
1355                 int data_off = i * ecc->size;
1356                 int oob_off = i * (ecc->bytes + 4);
1357                 const u8 *data = buf + data_off;
1358                 const u8 *oob = chip->oob_poi + oob_off;
1359
1360                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
1361                                                    oob_off + mtd->writesize,
1362                                                    &cur_off, !i, page);
1363                 if (ret)
1364                         return ret;
1365         }
1366
1367         if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
1368                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
1369                                                  &cur_off, page);
1370
1371         sunxi_nfc_hw_ecc_disable(mtd);
1372
1373         return 0;
1374 }
1375
1376 static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
1377                                           struct nand_chip *chip,
1378                                           u32 data_offs, u32 data_len,
1379                                           const u8 *buf, int oob_required,
1380                                           int page)
1381 {
1382         struct nand_ecc_ctrl *ecc = &chip->ecc;
1383         int ret, i, cur_off = 0;
1384
1385         sunxi_nfc_hw_ecc_enable(mtd);
1386
1387         for (i = data_offs / ecc->size;
1388              i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
1389                 int data_off = i * ecc->size;
1390                 int oob_off = i * (ecc->bytes + 4);
1391                 const u8 *data = buf + data_off;
1392                 const u8 *oob = chip->oob_poi + oob_off;
1393
1394                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
1395                                                    oob_off + mtd->writesize,
1396                                                    &cur_off, !i, page);
1397                 if (ret)
1398                         return ret;
1399         }
1400
1401         sunxi_nfc_hw_ecc_disable(mtd);
1402
1403         return 0;
1404 }
1405
1406 static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
1407                                            struct nand_chip *chip,
1408                                            const u8 *buf,
1409                                            int oob_required,
1410                                            int page)
1411 {
1412         struct nand_chip *nand = mtd_to_nand(mtd);
1413         struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
1414         struct nand_ecc_ctrl *ecc = &nand->ecc;
1415         struct scatterlist sg;
1416         int ret, i;
1417
1418         ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
1419         if (ret)
1420                 return ret;
1421
1422         ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
1423                                        DMA_TO_DEVICE, &sg);
1424         if (ret)
1425                 goto pio_fallback;
1426
1427         for (i = 0; i < ecc->steps; i++) {
1428                 const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
1429
1430                 sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
1431         }
1432
1433         sunxi_nfc_hw_ecc_enable(mtd);
1434         sunxi_nfc_randomizer_config(mtd, page, false);
1435         sunxi_nfc_randomizer_enable(mtd);
1436
1437         writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
1438                nfc->regs + NFC_REG_RCMD_SET);
1439
1440         dma_async_issue_pending(nfc->dmac);
1441
1442         writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
1443                NFC_DATA_TRANS | NFC_ACCESS_DIR,
1444                nfc->regs + NFC_REG_CMD);
1445
1446         ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
1447         if (ret)
1448                 dmaengine_terminate_all(nfc->dmac);
1449
1450         sunxi_nfc_randomizer_disable(mtd);
1451         sunxi_nfc_hw_ecc_disable(mtd);
1452
1453         sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);
1454
1455         if (ret)
1456                 return ret;
1457
1458         if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
1459                 /* TODO: use DMA to transfer extra OOB bytes ? */
1460                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
1461                                                  NULL, page);
1462
1463         return 0;
1464
1465 pio_fallback:
1466         return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
1467 }
1468
1469 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
1470                                                struct nand_chip *chip,
1471                                                uint8_t *buf, int oob_required,
1472                                                int page)
1473 {
1474         struct nand_ecc_ctrl *ecc = &chip->ecc;
1475         unsigned int max_bitflips = 0;
1476         int ret, i, cur_off = 0;
1477         bool raw_mode = false;
1478
1479         sunxi_nfc_hw_ecc_enable(mtd);
1480
1481         for (i = 0; i < ecc->steps; i++) {
1482                 int data_off = i * (ecc->size + ecc->bytes + 4);
1483                 int oob_off = data_off + ecc->size;
1484                 u8 *data = buf + (i * ecc->size);
1485                 u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
1486
1487                 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
1488                                                   oob_off, &cur_off,
1489                                                   &max_bitflips, !i,
1490                                                   oob_required,
1491                                                   page);
1492                 if (ret < 0)
1493                         return ret;
1494                 else if (ret)
1495                         raw_mode = true;
1496         }
1497
1498         if (oob_required)
1499                 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
1500                                                 !raw_mode, page);
1501
1502         sunxi_nfc_hw_ecc_disable(mtd);
1503
1504         return max_bitflips;
1505 }
1506
1507 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
1508                                                 struct nand_chip *chip,
1509                                                 const uint8_t *buf,
1510                                                 int oob_required, int page)
1511 {
1512         struct nand_ecc_ctrl *ecc = &chip->ecc;
1513         int ret, i, cur_off = 0;
1514
1515         sunxi_nfc_hw_ecc_enable(mtd);
1516
1517         for (i = 0; i < ecc->steps; i++) {
1518                 int data_off = i * (ecc->size + ecc->bytes + 4);
1519                 int oob_off = data_off + ecc->size;
1520                 const u8 *data = buf + (i * ecc->size);
1521                 const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
1522
1523                 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
1524                                                    oob, oob_off, &cur_off,
1525                                                    false, page);
1526                 if (ret)
1527                         return ret;
1528         }
1529
1530         if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
1531                 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
1532                                                  &cur_off, page);
1533
1534         sunxi_nfc_hw_ecc_disable(mtd);
1535
1536         return 0;
1537 }
1538
1539 static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd,
1540                                             struct nand_chip *chip,
1541                                             int page)
1542 {
1543         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1544
1545         chip->pagebuf = -1;
1546
1547         return chip->ecc.read_page(mtd, chip, chip->buffers->databuf, 1, page);
1548 }
1549
1550 static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd,
1551                                              struct nand_chip *chip,
1552                                              int page)
1553 {
1554         int ret, status;
1555
1556         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
1557
1558         chip->pagebuf = -1;
1559
1560         memset(chip->buffers->databuf, 0xff, mtd->writesize);
1561         ret = chip->ecc.write_page(mtd, chip, chip->buffers->databuf, 1, page);
1562         if (ret)
1563                 return ret;
1564
1565         /* Send command to program the OOB data */
1566         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1567
1568         status = chip->waitfunc(mtd, chip);
1569
1570         return status & NAND_STATUS_FAIL ? -EIO : 0;
1571 }
1572
1573 static const s32 tWB_lut[] = {6, 12, 16, 20};
1574 static const s32 tRHW_lut[] = {4, 8, 12, 20};
1575
1576 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
1577                 u32 clk_period)
1578 {
1579         u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
1580         int i;
1581
1582         for (i = 0; i < lut_size; i++) {
1583                 if (clk_cycles <= lut[i])
1584                         return i;
1585         }
1586
1587         /* Doesn't fit */
1588         return -EINVAL;
1589 }
1590
1591 #define sunxi_nand_lookup_timing(l, p, c) \
1592                         _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
1593
1594 static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
1595                                         const struct nand_data_interface *conf)
1596 {
1597         struct nand_chip *nand = mtd_to_nand(mtd);
1598         struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
1599         struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
1600         const struct nand_sdr_timings *timings;
1601         u32 min_clk_period = 0;
1602         s32 tWB, tADL, tWHR, tRHW, tCAD;
1603         long real_clk_rate;
1604
1605         timings = nand_get_sdr_timings(conf);
1606         if (IS_ERR(timings))
1607                 return -ENOTSUPP;
1608
1609         /* T1 <=> tCLS */
1610         if (timings->tCLS_min > min_clk_period)
1611                 min_clk_period = timings->tCLS_min;
1612
1613         /* T2 <=> tCLH */
1614         if (timings->tCLH_min > min_clk_period)
1615                 min_clk_period = timings->tCLH_min;
1616
1617         /* T3 <=> tCS */
1618         if (timings->tCS_min > min_clk_period)
1619                 min_clk_period = timings->tCS_min;
1620
1621         /* T4 <=> tCH */
1622         if (timings->tCH_min > min_clk_period)
1623                 min_clk_period = timings->tCH_min;
1624
1625         /* T5 <=> tWP */
1626         if (timings->tWP_min > min_clk_period)
1627                 min_clk_period = timings->tWP_min;
1628
1629         /* T6 <=> tWH */
1630         if (timings->tWH_min > min_clk_period)
1631                 min_clk_period = timings->tWH_min;
1632
1633         /* T7 <=> tALS */
1634         if (timings->tALS_min > min_clk_period)
1635                 min_clk_period = timings->tALS_min;
1636
1637         /* T8 <=> tDS */
1638         if (timings->tDS_min > min_clk_period)
1639                 min_clk_period = timings->tDS_min;
1640
1641         /* T9 <=> tDH */
1642         if (timings->tDH_min > min_clk_period)
1643                 min_clk_period = timings->tDH_min;
1644
1645         /* T10 <=> tRR */
1646         if (timings->tRR_min > (min_clk_period * 3))
1647                 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
1648
1649         /* T11 <=> tALH */
1650         if (timings->tALH_min > min_clk_period)
1651                 min_clk_period = timings->tALH_min;
1652
1653         /* T12 <=> tRP */
1654         if (timings->tRP_min > min_clk_period)
1655                 min_clk_period = timings->tRP_min;
1656
1657         /* T13 <=> tREH */
1658         if (timings->tREH_min > min_clk_period)
1659                 min_clk_period = timings->tREH_min;
1660
1661         /* T14 <=> tRC */
1662         if (timings->tRC_min > (min_clk_period * 2))
1663                 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
1664
1665         /* T15 <=> tWC */
1666         if (timings->tWC_min > (min_clk_period * 2))
1667                 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
1668
1669         /* T16 - T19 + tCAD */
1670         if (timings->tWB_max > (min_clk_period * 20))
1671                 min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);
1672
1673         if (timings->tADL_min > (min_clk_period * 32))
1674                 min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);
1675
1676         if (timings->tWHR_min > (min_clk_period * 32))
1677                 min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);
1678
1679         if (timings->tRHW_min > (min_clk_period * 20))
1680                 min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
1681
1682         tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
1683                                         min_clk_period);
1684         if (tWB < 0) {
1685                 dev_err(nfc->dev, "unsupported tWB\n");
1686                 return tWB;
1687         }
1688
1689         tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
1690         if (tADL > 3) {
1691                 dev_err(nfc->dev, "unsupported tADL\n");
1692                 return -EINVAL;
1693         }
1694
1695         tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
1696         if (tWHR > 3) {
1697                 dev_err(nfc->dev, "unsupported tWHR\n");
1698                 return -EINVAL;
1699         }
1700
1701         tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
1702                                         min_clk_period);
1703         if (tRHW < 0) {
1704                 dev_err(nfc->dev, "unsupported tRHW\n");
1705                 return tRHW;
1706         }
1707
1708         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1709                 return 0;
1710
1711         /*
1712          * TODO: according to ONFI specs this value only applies for DDR NAND,
1713          * but Allwinner seems to set this to 0x7. Mimic them for now.
1714          */
1715         tCAD = 0x7;
1716
1717         /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
1718         chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
1719
1720         /* Convert min_clk_period from picoseconds to nanoseconds */
1721         min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
1722
1723         /*
1724          * Unlike what is stated in Allwinner datasheet, the clk_rate should
1725          * be set to (1 / min_clk_period), and not (2 / min_clk_period).
1726          * This new formula was verified with a scope and validated by
1727          * Allwinner engineers.
1728          */
1729         chip->clk_rate = NSEC_PER_SEC / min_clk_period;
1730         real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);
1731
1732         /*
1733          * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
1734          * output cycle timings shall be used if the host drives tRC less than
1735          * 30 ns.
1736          */
1737         min_clk_period = NSEC_PER_SEC / real_clk_rate;
1738         chip->timing_ctl = ((min_clk_period * 2) < 30) ?
1739                            NFC_TIMING_CTL_EDO : 0;
1740
1741         return 0;
1742 }
1743
1744 static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1745                                     struct mtd_oob_region *oobregion)
1746 {
1747         struct nand_chip *nand = mtd_to_nand(mtd);
1748         struct nand_ecc_ctrl *ecc = &nand->ecc;
1749
1750         if (section >= ecc->steps)
1751                 return -ERANGE;
1752
1753         oobregion->offset = section * (ecc->bytes + 4) + 4;
1754         oobregion->length = ecc->bytes;
1755
1756         return 0;
1757 }
1758
1759 static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section,
1760                                      struct mtd_oob_region *oobregion)
1761 {
1762         struct nand_chip *nand = mtd_to_nand(mtd);
1763         struct nand_ecc_ctrl *ecc = &nand->ecc;
1764
1765         if (section > ecc->steps)
1766                 return -ERANGE;
1767
1768         /*
1769          * The first 2 bytes are used for BB markers, hence we
1770          * only have 2 bytes available in the first user data
1771          * section.
1772          */
1773         if (!section && ecc->mode == NAND_ECC_HW) {
1774                 oobregion->offset = 2;
1775                 oobregion->length = 2;
1776
1777                 return 0;
1778         }
1779
1780         oobregion->offset = section * (ecc->bytes + 4);
1781
1782         if (section < ecc->steps)
1783                 oobregion->length = 4;
1784         else
1785                 oobregion->offset = mtd->oobsize - oobregion->offset;
1786
1787         return 0;
1788 }
1789
1790 static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
1791         .ecc = sunxi_nand_ooblayout_ecc,
1792         .free = sunxi_nand_ooblayout_free,
1793 };
1794
1795 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1796                                               struct nand_ecc_ctrl *ecc,
1797                                               struct device_node *np)
1798 {
1799         static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1800         struct nand_chip *nand = mtd_to_nand(mtd);
1801         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1802         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1803         struct sunxi_nand_hw_ecc *data;
1804         int nsectors;
1805         int ret;
1806         int i;
1807
1808         if (ecc->options & NAND_ECC_MAXIMIZE) {
1809                 int bytes;
1810
1811                 ecc->size = 1024;
1812                 nsectors = mtd->writesize / ecc->size;
1813
1814                 /* Reserve 2 bytes for the BBM */
1815                 bytes = (mtd->oobsize - 2) / nsectors;
1816
1817                 /* 4 non-ECC bytes are added before each ECC bytes section */
1818                 bytes -= 4;
1819
1820                 /* and bytes has to be even. */
1821                 if (bytes % 2)
1822                         bytes--;
1823
1824                 ecc->strength = bytes * 8 / fls(8 * ecc->size);
1825
1826                 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1827                         if (strengths[i] > ecc->strength)
1828                                 break;
1829                 }
1830
1831                 if (!i)
1832                         ecc->strength = 0;
1833                 else
1834                         ecc->strength = strengths[i - 1];
1835         }
1836
1837         if (ecc->size != 512 && ecc->size != 1024)
1838                 return -EINVAL;
1839
1840         data = kzalloc(sizeof(*data), GFP_KERNEL);
1841         if (!data)
1842                 return -ENOMEM;
1843
1844         /* Prefer 1k ECC chunk over 512 ones */
1845         if (ecc->size == 512 && mtd->writesize > 512) {
1846                 ecc->size = 1024;
1847                 ecc->strength *= 2;
1848         }
1849
1850         /* Add ECC info retrieval from DT */
1851         for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1852                 if (ecc->strength <= strengths[i])
1853                         break;
1854         }
1855
1856         if (i >= ARRAY_SIZE(strengths)) {
1857                 dev_err(nfc->dev, "unsupported strength\n");
1858                 ret = -ENOTSUPP;
1859                 goto err;
1860         }
1861
1862         data->mode = i;
1863
1864         /* HW ECC always request ECC bytes for 1024 bytes blocks */
1865         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1866
1867         /* HW ECC always work with even numbers of ECC bytes */
1868         ecc->bytes = ALIGN(ecc->bytes, 2);
1869
1870         nsectors = mtd->writesize / ecc->size;
1871
1872         if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1873                 ret = -EINVAL;
1874                 goto err;
1875         }
1876
1877         ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob;
1878         ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob;
1879         mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
1880         ecc->priv = data;
1881
1882         return 0;
1883
1884 err:
1885         kfree(data);
1886
1887         return ret;
1888 }
1889
1890 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1891 {
1892         kfree(ecc->priv);
1893 }
1894
1895 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1896                                        struct nand_ecc_ctrl *ecc,
1897                                        struct device_node *np)
1898 {
1899         struct nand_chip *nand = mtd_to_nand(mtd);
1900         struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1901         struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1902         int ret;
1903
1904         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1905         if (ret)
1906                 return ret;
1907
1908         if (nfc->dmac) {
1909                 ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
1910                 ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
1911                 ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
1912                 nand->options |= NAND_USE_BOUNCE_BUFFER;
1913         } else {
1914                 ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1915                 ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
1916                 ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1917         }
1918
1919         /* TODO: support DMA for raw accesses and subpage write */
1920         ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
1921         ecc->read_oob_raw = nand_read_oob_std;
1922         ecc->write_oob_raw = nand_write_oob_std;
1923
1924         return 0;
1925 }
1926
1927 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1928                                                 struct nand_ecc_ctrl *ecc,
1929                                                 struct device_node *np)
1930 {
1931         int ret;
1932
1933         ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1934         if (ret)
1935                 return ret;
1936
1937         ecc->prepad = 4;
1938         ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1939         ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1940         ecc->read_oob_raw = nand_read_oob_syndrome;
1941         ecc->write_oob_raw = nand_write_oob_syndrome;
1942
1943         return 0;
1944 }
1945
1946 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1947 {
1948         switch (ecc->mode) {
1949         case NAND_ECC_HW:
1950         case NAND_ECC_HW_SYNDROME:
1951                 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1952                 break;
1953         case NAND_ECC_NONE:
1954         default:
1955                 break;
1956         }
1957 }
1958
1959 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1960                                struct device_node *np)
1961 {
1962         struct nand_chip *nand = mtd_to_nand(mtd);
1963         int ret;
1964
1965         if (!ecc->size) {
1966                 ecc->size = nand->ecc_step_ds;
1967                 ecc->strength = nand->ecc_strength_ds;
1968         }
1969
1970         if (!ecc->size || !ecc->strength)
1971                 return -EINVAL;
1972
1973         switch (ecc->mode) {
1974         case NAND_ECC_HW:
1975                 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1976                 if (ret)
1977                         return ret;
1978                 break;
1979         case NAND_ECC_HW_SYNDROME:
1980                 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1981                 if (ret)
1982                         return ret;
1983                 break;
1984         case NAND_ECC_NONE:
1985         case NAND_ECC_SOFT:
1986                 break;
1987         default:
1988                 return -EINVAL;
1989         }
1990
1991         return 0;
1992 }
1993
1994 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1995                                 struct device_node *np)
1996 {
1997         struct sunxi_nand_chip *chip;
1998         struct mtd_info *mtd;
1999         struct nand_chip *nand;
2000         int nsels;
2001         int ret;
2002         int i;
2003         u32 tmp;
2004
2005         if (!of_get_property(np, "reg", &nsels))
2006                 return -EINVAL;
2007
2008         nsels /= sizeof(u32);
2009         if (!nsels) {
2010                 dev_err(dev, "invalid reg property size\n");
2011                 return -EINVAL;
2012         }
2013
2014         chip = devm_kzalloc(dev,
2015                             sizeof(*chip) +
2016                             (nsels * sizeof(struct sunxi_nand_chip_sel)),
2017                             GFP_KERNEL);
2018         if (!chip) {
2019                 dev_err(dev, "could not allocate chip\n");
2020                 return -ENOMEM;
2021         }
2022
2023         chip->nsels = nsels;
2024         chip->selected = -1;
2025
2026         for (i = 0; i < nsels; i++) {
2027                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
2028                 if (ret) {
2029                         dev_err(dev, "could not retrieve reg property: %d\n",
2030                                 ret);
2031                         return ret;
2032                 }
2033
2034                 if (tmp > NFC_MAX_CS) {
2035                         dev_err(dev,
2036                                 "invalid reg value: %u (max CS = 7)\n",
2037                                 tmp);
2038                         return -EINVAL;
2039                 }
2040
2041                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
2042                         dev_err(dev, "CS %d already assigned\n", tmp);
2043                         return -EINVAL;
2044                 }
2045
2046                 chip->sels[i].cs = tmp;
2047
2048                 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
2049                     tmp < 2) {
2050                         chip->sels[i].rb.type = RB_NATIVE;
2051                         chip->sels[i].rb.info.nativeid = tmp;
2052                 } else {
2053                         ret = of_get_named_gpio(np, "rb-gpios", i);
2054                         if (ret >= 0) {
2055                                 tmp = ret;
2056                                 chip->sels[i].rb.type = RB_GPIO;
2057                                 chip->sels[i].rb.info.gpio = tmp;
2058                                 ret = devm_gpio_request(dev, tmp, "nand-rb");
2059                                 if (ret)
2060                                         return ret;
2061
2062                                 ret = gpio_direction_input(tmp);
2063                                 if (ret)
2064                                         return ret;
2065                         } else {
2066                                 chip->sels[i].rb.type = RB_NONE;
2067                         }
2068                 }
2069         }
2070
2071         nand = &chip->nand;
2072         /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
2073         nand->chip_delay = 200;
2074         nand->controller = &nfc->controller;
2075         /*
2076          * Set the ECC mode to the default value in case nothing is specified
2077          * in the DT.
2078          */
2079         nand->ecc.mode = NAND_ECC_HW;
2080         nand_set_flash_node(nand, np);
2081         nand->select_chip = sunxi_nfc_select_chip;
2082         nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
2083         nand->read_buf = sunxi_nfc_read_buf;
2084         nand->write_buf = sunxi_nfc_write_buf;
2085         nand->read_byte = sunxi_nfc_read_byte;
2086         nand->setup_data_interface = sunxi_nfc_setup_data_interface;
2087
2088         mtd = nand_to_mtd(nand);
2089         mtd->dev.parent = dev;
2090
2091         ret = nand_scan_ident(mtd, nsels, NULL);
2092         if (ret)
2093                 return ret;
2094
2095         if (nand->bbt_options & NAND_BBT_USE_FLASH)
2096                 nand->bbt_options |= NAND_BBT_NO_OOB;
2097
2098         if (nand->options & NAND_NEED_SCRAMBLING)
2099                 nand->options |= NAND_NO_SUBPAGE_WRITE;
2100
2101         nand->options |= NAND_SUBPAGE_READ;
2102
2103         ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
2104         if (ret) {
2105                 dev_err(dev, "ECC init failed: %d\n", ret);
2106                 return ret;
2107         }
2108
2109         ret = nand_scan_tail(mtd);
2110         if (ret) {
2111                 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
2112                 return ret;
2113         }
2114
2115         ret = mtd_device_register(mtd, NULL, 0);
2116         if (ret) {
2117                 dev_err(dev, "failed to register mtd device: %d\n", ret);
2118                 nand_release(mtd);
2119                 return ret;
2120         }
2121
2122         list_add_tail(&chip->node, &nfc->chips);
2123
2124         return 0;
2125 }
2126
2127 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
2128 {
2129         struct device_node *np = dev->of_node;
2130         struct device_node *nand_np;
2131         int nchips = of_get_child_count(np);
2132         int ret;
2133
2134         if (nchips > 8) {
2135                 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
2136                 return -EINVAL;
2137         }
2138
2139         for_each_child_of_node(np, nand_np) {
2140                 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
2141                 if (ret) {
2142                         of_node_put(nand_np);
2143                         return ret;
2144                 }
2145         }
2146
2147         return 0;
2148 }
2149
2150 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
2151 {
2152         struct sunxi_nand_chip *chip;
2153
2154         while (!list_empty(&nfc->chips)) {
2155                 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
2156                                         node);
2157                 nand_release(nand_to_mtd(&chip->nand));
2158                 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
2159                 list_del(&chip->node);
2160         }
2161 }
2162
2163 static int sunxi_nfc_probe(struct platform_device *pdev)
2164 {
2165         struct device *dev = &pdev->dev;
2166         struct resource *r;
2167         struct sunxi_nfc *nfc;
2168         int irq;
2169         int ret;
2170
2171         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
2172         if (!nfc)
2173                 return -ENOMEM;
2174
2175         nfc->dev = dev;
2176         nand_hw_control_init(&nfc->controller);
2177         INIT_LIST_HEAD(&nfc->chips);
2178
2179         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2180         nfc->regs = devm_ioremap_resource(dev, r);
2181         if (IS_ERR(nfc->regs))
2182                 return PTR_ERR(nfc->regs);
2183
2184         irq = platform_get_irq(pdev, 0);
2185         if (irq < 0) {
2186                 dev_err(dev, "failed to retrieve irq\n");
2187                 return irq;
2188         }
2189
2190         nfc->ahb_clk = devm_clk_get(dev, "ahb");
2191         if (IS_ERR(nfc->ahb_clk)) {
2192                 dev_err(dev, "failed to retrieve ahb clk\n");
2193                 return PTR_ERR(nfc->ahb_clk);
2194         }
2195
2196         ret = clk_prepare_enable(nfc->ahb_clk);
2197         if (ret)
2198                 return ret;
2199
2200         nfc->mod_clk = devm_clk_get(dev, "mod");
2201         if (IS_ERR(nfc->mod_clk)) {
2202                 dev_err(dev, "failed to retrieve mod clk\n");
2203                 ret = PTR_ERR(nfc->mod_clk);
2204                 goto out_ahb_clk_unprepare;
2205         }
2206
2207         ret = clk_prepare_enable(nfc->mod_clk);
2208         if (ret)
2209                 goto out_ahb_clk_unprepare;
2210
2211         nfc->reset = devm_reset_control_get_optional(dev, "ahb");
2212         if (IS_ERR(nfc->reset)) {
2213                 ret = PTR_ERR(nfc->reset);
2214                 goto out_mod_clk_unprepare;
2215         }
2216
2217         ret = reset_control_deassert(nfc->reset);
2218         if (ret) {
2219                 dev_err(dev, "reset err %d\n", ret);
2220                 goto out_mod_clk_unprepare;
2221         }
2222
2223         ret = sunxi_nfc_rst(nfc);
2224         if (ret)
2225                 goto out_ahb_reset_reassert;
2226
2227         writel(0, nfc->regs + NFC_REG_INT);
2228         ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
2229                                0, "sunxi-nand", nfc);
2230         if (ret)
2231                 goto out_ahb_reset_reassert;
2232
2233         nfc->dmac = dma_request_slave_channel(dev, "rxtx");
2234         if (nfc->dmac) {
2235                 struct dma_slave_config dmac_cfg = { };
2236
2237                 dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA;
2238                 dmac_cfg.dst_addr = dmac_cfg.src_addr;
2239                 dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2240                 dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
2241                 dmac_cfg.src_maxburst = 4;
2242                 dmac_cfg.dst_maxburst = 4;
2243                 dmaengine_slave_config(nfc->dmac, &dmac_cfg);
2244         } else {
2245                 dev_warn(dev, "failed to request rxtx DMA channel\n");
2246         }
2247
2248         platform_set_drvdata(pdev, nfc);
2249
2250         ret = sunxi_nand_chips_init(dev, nfc);
2251         if (ret) {
2252                 dev_err(dev, "failed to init nand chips\n");
2253                 goto out_release_dmac;
2254         }
2255
2256         return 0;
2257
2258 out_release_dmac:
2259         if (nfc->dmac)
2260                 dma_release_channel(nfc->dmac);
2261 out_ahb_reset_reassert:
2262         reset_control_assert(nfc->reset);
2263 out_mod_clk_unprepare:
2264         clk_disable_unprepare(nfc->mod_clk);
2265 out_ahb_clk_unprepare:
2266         clk_disable_unprepare(nfc->ahb_clk);
2267
2268         return ret;
2269 }
2270
2271 static int sunxi_nfc_remove(struct platform_device *pdev)
2272 {
2273         struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
2274
2275         sunxi_nand_chips_cleanup(nfc);
2276
2277         reset_control_assert(nfc->reset);
2278
2279         if (nfc->dmac)
2280                 dma_release_channel(nfc->dmac);
2281         clk_disable_unprepare(nfc->mod_clk);
2282         clk_disable_unprepare(nfc->ahb_clk);
2283
2284         return 0;
2285 }
2286
2287 static const struct of_device_id sunxi_nfc_ids[] = {
2288         { .compatible = "allwinner,sun4i-a10-nand" },
2289         { /* sentinel */ }
2290 };
2291 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
2292
2293 static struct platform_driver sunxi_nfc_driver = {
2294         .driver = {
2295                 .name = "sunxi_nand",
2296                 .of_match_table = sunxi_nfc_ids,
2297         },
2298         .probe = sunxi_nfc_probe,
2299         .remove = sunxi_nfc_remove,
2300 };
2301 module_platform_driver(sunxi_nfc_driver);
2302
2303 MODULE_LICENSE("GPL v2");
2304 MODULE_AUTHOR("Boris BREZILLON");
2305 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
2306 MODULE_ALIAS("platform:sunxi_nand");