mtd: spinand: Add initial support for the MX35LF1GE4AB chip
[platform/kernel/u-boot.git] / drivers / mtd / nand / spi / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *      Peter Pan <peterpandong@micron.com>
7  *      Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9
10 #define pr_fmt(fmt)     "spi-nand: " fmt
11
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <spi.h>
26 #include <spi-mem.h>
27 #include <linux/mtd/spinand.h>
28 #endif
29
30 /* SPI NAND index visible in MTD names */
31 static int spi_nand_idx;
32
33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
34                                           const struct nand_page_io_req *req,
35                                           u16 *column)
36 {
37         struct nand_device *nand = spinand_to_nand(spinand);
38         unsigned int shift;
39
40         if (nand->memorg.planes_per_lun < 2)
41                 return;
42
43         /* The plane number is passed in MSB just above the column address */
44         shift = fls(nand->memorg.pagesize);
45         *column |= req->pos.plane << shift;
46 }
47
48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
49 {
50         struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
51                                                       spinand->scratchbuf);
52         int ret;
53
54         ret = spi_mem_exec_op(spinand->slave, &op);
55         if (ret)
56                 return ret;
57
58         *val = *spinand->scratchbuf;
59         return 0;
60 }
61
62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
63 {
64         struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
65                                                       spinand->scratchbuf);
66
67         *spinand->scratchbuf = val;
68         return spi_mem_exec_op(spinand->slave, &op);
69 }
70
71 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
72 {
73         return spinand_read_reg_op(spinand, REG_STATUS, status);
74 }
75
76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
77 {
78         struct nand_device *nand = spinand_to_nand(spinand);
79
80         if (WARN_ON(spinand->cur_target < 0 ||
81                     spinand->cur_target >= nand->memorg.ntargets))
82                 return -EINVAL;
83
84         *cfg = spinand->cfg_cache[spinand->cur_target];
85         return 0;
86 }
87
88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
89 {
90         struct nand_device *nand = spinand_to_nand(spinand);
91         int ret;
92
93         if (WARN_ON(spinand->cur_target < 0 ||
94                     spinand->cur_target >= nand->memorg.ntargets))
95                 return -EINVAL;
96
97         if (spinand->cfg_cache[spinand->cur_target] == cfg)
98                 return 0;
99
100         ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
101         if (ret)
102                 return ret;
103
104         spinand->cfg_cache[spinand->cur_target] = cfg;
105         return 0;
106 }
107
108 /**
109  * spinand_upd_cfg() - Update the configuration register
110  * @spinand: the spinand device
111  * @mask: the mask encoding the bits to update in the config reg
112  * @val: the new value to apply
113  *
114  * Update the configuration register.
115  *
116  * Return: 0 on success, a negative error code otherwise.
117  */
118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
119 {
120         int ret;
121         u8 cfg;
122
123         ret = spinand_get_cfg(spinand, &cfg);
124         if (ret)
125                 return ret;
126
127         cfg &= ~mask;
128         cfg |= val;
129
130         return spinand_set_cfg(spinand, cfg);
131 }
132
133 /**
134  * spinand_select_target() - Select a specific NAND target/die
135  * @spinand: the spinand device
136  * @target: the target/die to select
137  *
138  * Select a new target/die. If chip only has one die, this function is a NOOP.
139  *
140  * Return: 0 on success, a negative error code otherwise.
141  */
142 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
143 {
144         struct nand_device *nand = spinand_to_nand(spinand);
145         int ret;
146
147         if (WARN_ON(target >= nand->memorg.ntargets))
148                 return -EINVAL;
149
150         if (spinand->cur_target == target)
151                 return 0;
152
153         if (nand->memorg.ntargets == 1) {
154                 spinand->cur_target = target;
155                 return 0;
156         }
157
158         ret = spinand->select_target(spinand, target);
159         if (ret)
160                 return ret;
161
162         spinand->cur_target = target;
163         return 0;
164 }
165
166 static int spinand_init_cfg_cache(struct spinand_device *spinand)
167 {
168         struct nand_device *nand = spinand_to_nand(spinand);
169         struct udevice *dev = spinand->slave->dev;
170         unsigned int target;
171         int ret;
172
173         spinand->cfg_cache = devm_kzalloc(dev,
174                                           sizeof(*spinand->cfg_cache) *
175                                           nand->memorg.ntargets,
176                                           GFP_KERNEL);
177         if (!spinand->cfg_cache)
178                 return -ENOMEM;
179
180         for (target = 0; target < nand->memorg.ntargets; target++) {
181                 ret = spinand_select_target(spinand, target);
182                 if (ret)
183                         return ret;
184
185                 /*
186                  * We use spinand_read_reg_op() instead of spinand_get_cfg()
187                  * here to bypass the config cache.
188                  */
189                 ret = spinand_read_reg_op(spinand, REG_CFG,
190                                           &spinand->cfg_cache[target]);
191                 if (ret)
192                         return ret;
193         }
194
195         return 0;
196 }
197
198 static int spinand_init_quad_enable(struct spinand_device *spinand)
199 {
200         bool enable = false;
201
202         if (!(spinand->flags & SPINAND_HAS_QE_BIT))
203                 return 0;
204
205         if (spinand->op_templates.read_cache->data.buswidth == 4 ||
206             spinand->op_templates.write_cache->data.buswidth == 4 ||
207             spinand->op_templates.update_cache->data.buswidth == 4)
208                 enable = true;
209
210         return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
211                                enable ? CFG_QUAD_ENABLE : 0);
212 }
213
214 static int spinand_ecc_enable(struct spinand_device *spinand,
215                               bool enable)
216 {
217         return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
218                                enable ? CFG_ECC_ENABLE : 0);
219 }
220
221 static int spinand_write_enable_op(struct spinand_device *spinand)
222 {
223         struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
224
225         return spi_mem_exec_op(spinand->slave, &op);
226 }
227
228 static int spinand_load_page_op(struct spinand_device *spinand,
229                                 const struct nand_page_io_req *req)
230 {
231         struct nand_device *nand = spinand_to_nand(spinand);
232         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
233         struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
234
235         return spi_mem_exec_op(spinand->slave, &op);
236 }
237
238 static int spinand_read_from_cache_op(struct spinand_device *spinand,
239                                       const struct nand_page_io_req *req)
240 {
241         struct spi_mem_op op = *spinand->op_templates.read_cache;
242         struct nand_device *nand = spinand_to_nand(spinand);
243         struct mtd_info *mtd = nanddev_to_mtd(nand);
244         struct nand_page_io_req adjreq = *req;
245         unsigned int nbytes = 0;
246         void *buf = NULL;
247         u16 column = 0;
248         int ret;
249
250         if (req->datalen) {
251                 adjreq.datalen = nanddev_page_size(nand);
252                 adjreq.dataoffs = 0;
253                 adjreq.databuf.in = spinand->databuf;
254                 buf = spinand->databuf;
255                 nbytes = adjreq.datalen;
256         }
257
258         if (req->ooblen) {
259                 adjreq.ooblen = nanddev_per_page_oobsize(nand);
260                 adjreq.ooboffs = 0;
261                 adjreq.oobbuf.in = spinand->oobbuf;
262                 nbytes += nanddev_per_page_oobsize(nand);
263                 if (!buf) {
264                         buf = spinand->oobbuf;
265                         column = nanddev_page_size(nand);
266                 }
267         }
268
269         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
270         op.addr.val = column;
271
272         /*
273          * Some controllers are limited in term of max RX data size. In this
274          * case, just repeat the READ_CACHE operation after updating the
275          * column.
276          */
277         while (nbytes) {
278                 op.data.buf.in = buf;
279                 op.data.nbytes = nbytes;
280                 ret = spi_mem_adjust_op_size(spinand->slave, &op);
281                 if (ret)
282                         return ret;
283
284                 ret = spi_mem_exec_op(spinand->slave, &op);
285                 if (ret)
286                         return ret;
287
288                 buf += op.data.nbytes;
289                 nbytes -= op.data.nbytes;
290                 op.addr.val += op.data.nbytes;
291         }
292
293         if (req->datalen)
294                 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
295                        req->datalen);
296
297         if (req->ooblen) {
298                 if (req->mode == MTD_OPS_AUTO_OOB)
299                         mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
300                                                     spinand->oobbuf,
301                                                     req->ooboffs,
302                                                     req->ooblen);
303                 else
304                         memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
305                                req->ooblen);
306         }
307
308         return 0;
309 }
310
311 static int spinand_write_to_cache_op(struct spinand_device *spinand,
312                                      const struct nand_page_io_req *req)
313 {
314         struct spi_mem_op op = *spinand->op_templates.write_cache;
315         struct nand_device *nand = spinand_to_nand(spinand);
316         struct mtd_info *mtd = nanddev_to_mtd(nand);
317         struct nand_page_io_req adjreq = *req;
318         unsigned int nbytes = 0;
319         void *buf = NULL;
320         u16 column = 0;
321         int ret;
322
323         memset(spinand->databuf, 0xff,
324                nanddev_page_size(nand) +
325                nanddev_per_page_oobsize(nand));
326
327         if (req->datalen) {
328                 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
329                        req->datalen);
330                 adjreq.dataoffs = 0;
331                 adjreq.datalen = nanddev_page_size(nand);
332                 adjreq.databuf.out = spinand->databuf;
333                 nbytes = adjreq.datalen;
334                 buf = spinand->databuf;
335         }
336
337         if (req->ooblen) {
338                 if (req->mode == MTD_OPS_AUTO_OOB)
339                         mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
340                                                     spinand->oobbuf,
341                                                     req->ooboffs,
342                                                     req->ooblen);
343                 else
344                         memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
345                                req->ooblen);
346
347                 adjreq.ooblen = nanddev_per_page_oobsize(nand);
348                 adjreq.ooboffs = 0;
349                 nbytes += nanddev_per_page_oobsize(nand);
350                 if (!buf) {
351                         buf = spinand->oobbuf;
352                         column = nanddev_page_size(nand);
353                 }
354         }
355
356         spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
357
358         op = *spinand->op_templates.write_cache;
359         op.addr.val = column;
360
361         /*
362          * Some controllers are limited in term of max TX data size. In this
363          * case, split the operation into one LOAD CACHE and one or more
364          * LOAD RANDOM CACHE.
365          */
366         while (nbytes) {
367                 op.data.buf.out = buf;
368                 op.data.nbytes = nbytes;
369
370                 ret = spi_mem_adjust_op_size(spinand->slave, &op);
371                 if (ret)
372                         return ret;
373
374                 ret = spi_mem_exec_op(spinand->slave, &op);
375                 if (ret)
376                         return ret;
377
378                 buf += op.data.nbytes;
379                 nbytes -= op.data.nbytes;
380                 op.addr.val += op.data.nbytes;
381
382                 /*
383                  * We need to use the RANDOM LOAD CACHE operation if there's
384                  * more than one iteration, because the LOAD operation resets
385                  * the cache to 0xff.
386                  */
387                 if (nbytes) {
388                         column = op.addr.val;
389                         op = *spinand->op_templates.update_cache;
390                         op.addr.val = column;
391                 }
392         }
393
394         return 0;
395 }
396
397 static int spinand_program_op(struct spinand_device *spinand,
398                               const struct nand_page_io_req *req)
399 {
400         struct nand_device *nand = spinand_to_nand(spinand);
401         unsigned int row = nanddev_pos_to_row(nand, &req->pos);
402         struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
403
404         return spi_mem_exec_op(spinand->slave, &op);
405 }
406
407 static int spinand_erase_op(struct spinand_device *spinand,
408                             const struct nand_pos *pos)
409 {
410         struct nand_device *nand = &spinand->base;
411         unsigned int row = nanddev_pos_to_row(nand, pos);
412         struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
413
414         return spi_mem_exec_op(spinand->slave, &op);
415 }
416
417 static int spinand_wait(struct spinand_device *spinand, u8 *s)
418 {
419         unsigned long start, stop;
420         u8 status;
421         int ret;
422
423         start = get_timer(0);
424         stop = 400;
425         do {
426                 ret = spinand_read_status(spinand, &status);
427                 if (ret)
428                         return ret;
429
430                 if (!(status & STATUS_BUSY))
431                         goto out;
432         } while (get_timer(start) < stop);
433
434         /*
435          * Extra read, just in case the STATUS_READY bit has changed
436          * since our last check
437          */
438         ret = spinand_read_status(spinand, &status);
439         if (ret)
440                 return ret;
441
442 out:
443         if (s)
444                 *s = status;
445
446         return status & STATUS_BUSY ? -ETIMEDOUT : 0;
447 }
448
449 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
450 {
451         struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
452                                                  SPINAND_MAX_ID_LEN);
453         int ret;
454
455         ret = spi_mem_exec_op(spinand->slave, &op);
456         if (!ret)
457                 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
458
459         return ret;
460 }
461
462 static int spinand_reset_op(struct spinand_device *spinand)
463 {
464         struct spi_mem_op op = SPINAND_RESET_OP;
465         int ret;
466
467         ret = spi_mem_exec_op(spinand->slave, &op);
468         if (ret)
469                 return ret;
470
471         return spinand_wait(spinand, NULL);
472 }
473
474 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
475 {
476         return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
477 }
478
479 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
480 {
481         struct nand_device *nand = spinand_to_nand(spinand);
482
483         if (spinand->eccinfo.get_status)
484                 return spinand->eccinfo.get_status(spinand, status);
485
486         switch (status & STATUS_ECC_MASK) {
487         case STATUS_ECC_NO_BITFLIPS:
488                 return 0;
489
490         case STATUS_ECC_HAS_BITFLIPS:
491                 /*
492                  * We have no way to know exactly how many bitflips have been
493                  * fixed, so let's return the maximum possible value so that
494                  * wear-leveling layers move the data immediately.
495                  */
496                 return nand->eccreq.strength;
497
498         case STATUS_ECC_UNCOR_ERROR:
499                 return -EBADMSG;
500
501         default:
502                 break;
503         }
504
505         return -EINVAL;
506 }
507
508 static int spinand_read_page(struct spinand_device *spinand,
509                              const struct nand_page_io_req *req,
510                              bool ecc_enabled)
511 {
512         u8 status;
513         int ret;
514
515         ret = spinand_load_page_op(spinand, req);
516         if (ret)
517                 return ret;
518
519         ret = spinand_wait(spinand, &status);
520         if (ret < 0)
521                 return ret;
522
523         ret = spinand_read_from_cache_op(spinand, req);
524         if (ret)
525                 return ret;
526
527         if (!ecc_enabled)
528                 return 0;
529
530         return spinand_check_ecc_status(spinand, status);
531 }
532
533 static int spinand_write_page(struct spinand_device *spinand,
534                               const struct nand_page_io_req *req)
535 {
536         u8 status;
537         int ret;
538
539         ret = spinand_write_enable_op(spinand);
540         if (ret)
541                 return ret;
542
543         ret = spinand_write_to_cache_op(spinand, req);
544         if (ret)
545                 return ret;
546
547         ret = spinand_program_op(spinand, req);
548         if (ret)
549                 return ret;
550
551         ret = spinand_wait(spinand, &status);
552         if (!ret && (status & STATUS_PROG_FAILED))
553                 ret = -EIO;
554
555         return ret;
556 }
557
558 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
559                             struct mtd_oob_ops *ops)
560 {
561         struct spinand_device *spinand = mtd_to_spinand(mtd);
562         struct nand_device *nand = mtd_to_nanddev(mtd);
563         unsigned int max_bitflips = 0;
564         struct nand_io_iter iter;
565         bool enable_ecc = false;
566         bool ecc_failed = false;
567         int ret = 0;
568
569         if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
570                 enable_ecc = true;
571
572 #ifndef __UBOOT__
573         mutex_lock(&spinand->lock);
574 #endif
575
576         nanddev_io_for_each_page(nand, from, ops, &iter) {
577                 ret = spinand_select_target(spinand, iter.req.pos.target);
578                 if (ret)
579                         break;
580
581                 ret = spinand_ecc_enable(spinand, enable_ecc);
582                 if (ret)
583                         break;
584
585                 ret = spinand_read_page(spinand, &iter.req, enable_ecc);
586                 if (ret < 0 && ret != -EBADMSG)
587                         break;
588
589                 if (ret == -EBADMSG) {
590                         ecc_failed = true;
591                         mtd->ecc_stats.failed++;
592                         ret = 0;
593                 } else {
594                         mtd->ecc_stats.corrected += ret;
595                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
596                 }
597
598                 ops->retlen += iter.req.datalen;
599                 ops->oobretlen += iter.req.ooblen;
600         }
601
602 #ifndef __UBOOT__
603         mutex_unlock(&spinand->lock);
604 #endif
605         if (ecc_failed && !ret)
606                 ret = -EBADMSG;
607
608         return ret ? ret : max_bitflips;
609 }
610
611 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
612                              struct mtd_oob_ops *ops)
613 {
614         struct spinand_device *spinand = mtd_to_spinand(mtd);
615         struct nand_device *nand = mtd_to_nanddev(mtd);
616         struct nand_io_iter iter;
617         bool enable_ecc = false;
618         int ret = 0;
619
620         if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
621                 enable_ecc = true;
622
623 #ifndef __UBOOT__
624         mutex_lock(&spinand->lock);
625 #endif
626
627         nanddev_io_for_each_page(nand, to, ops, &iter) {
628                 ret = spinand_select_target(spinand, iter.req.pos.target);
629                 if (ret)
630                         break;
631
632                 ret = spinand_ecc_enable(spinand, enable_ecc);
633                 if (ret)
634                         break;
635
636                 ret = spinand_write_page(spinand, &iter.req);
637                 if (ret)
638                         break;
639
640                 ops->retlen += iter.req.datalen;
641                 ops->oobretlen += iter.req.ooblen;
642         }
643
644 #ifndef __UBOOT__
645         mutex_unlock(&spinand->lock);
646 #endif
647
648         return ret;
649 }
650
651 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
652 {
653         struct spinand_device *spinand = nand_to_spinand(nand);
654         struct nand_page_io_req req = {
655                 .pos = *pos,
656                 .ooblen = 2,
657                 .ooboffs = 0,
658                 .oobbuf.in = spinand->oobbuf,
659                 .mode = MTD_OPS_RAW,
660         };
661         int ret;
662
663         memset(spinand->oobbuf, 0, 2);
664         ret = spinand_select_target(spinand, pos->target);
665         if (ret)
666                 return ret;
667
668         ret = spinand_read_page(spinand, &req, false);
669         if (ret)
670                 return ret;
671
672         if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
673                 return true;
674
675         return false;
676 }
677
678 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
679 {
680         struct nand_device *nand = mtd_to_nanddev(mtd);
681 #ifndef __UBOOT__
682         struct spinand_device *spinand = nand_to_spinand(nand);
683 #endif
684         struct nand_pos pos;
685         int ret;
686
687         nanddev_offs_to_pos(nand, offs, &pos);
688 #ifndef __UBOOT__
689         mutex_lock(&spinand->lock);
690 #endif
691         ret = nanddev_isbad(nand, &pos);
692 #ifndef __UBOOT__
693         mutex_unlock(&spinand->lock);
694 #endif
695         return ret;
696 }
697
698 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
699 {
700         struct spinand_device *spinand = nand_to_spinand(nand);
701         struct nand_page_io_req req = {
702                 .pos = *pos,
703                 .ooboffs = 0,
704                 .ooblen = 2,
705                 .oobbuf.out = spinand->oobbuf,
706         };
707         int ret;
708
709         /* Erase block before marking it bad. */
710         ret = spinand_select_target(spinand, pos->target);
711         if (ret)
712                 return ret;
713
714         ret = spinand_write_enable_op(spinand);
715         if (ret)
716                 return ret;
717
718         ret = spinand_erase_op(spinand, pos);
719         if (ret)
720                 return ret;
721
722         memset(spinand->oobbuf, 0, 2);
723         return spinand_write_page(spinand, &req);
724 }
725
726 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
727 {
728         struct nand_device *nand = mtd_to_nanddev(mtd);
729 #ifndef __UBOOT__
730         struct spinand_device *spinand = nand_to_spinand(nand);
731 #endif
732         struct nand_pos pos;
733         int ret;
734
735         nanddev_offs_to_pos(nand, offs, &pos);
736 #ifndef __UBOOT__
737         mutex_lock(&spinand->lock);
738 #endif
739         ret = nanddev_markbad(nand, &pos);
740 #ifndef __UBOOT__
741         mutex_unlock(&spinand->lock);
742 #endif
743         return ret;
744 }
745
746 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
747 {
748         struct spinand_device *spinand = nand_to_spinand(nand);
749         u8 status;
750         int ret;
751
752         ret = spinand_select_target(spinand, pos->target);
753         if (ret)
754                 return ret;
755
756         ret = spinand_write_enable_op(spinand);
757         if (ret)
758                 return ret;
759
760         ret = spinand_erase_op(spinand, pos);
761         if (ret)
762                 return ret;
763
764         ret = spinand_wait(spinand, &status);
765         if (!ret && (status & STATUS_ERASE_FAILED))
766                 ret = -EIO;
767
768         return ret;
769 }
770
771 static int spinand_mtd_erase(struct mtd_info *mtd,
772                              struct erase_info *einfo)
773 {
774 #ifndef __UBOOT__
775         struct spinand_device *spinand = mtd_to_spinand(mtd);
776 #endif
777         int ret;
778
779 #ifndef __UBOOT__
780         mutex_lock(&spinand->lock);
781 #endif
782         ret = nanddev_mtd_erase(mtd, einfo);
783 #ifndef __UBOOT__
784         mutex_unlock(&spinand->lock);
785 #endif
786
787         return ret;
788 }
789
790 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
791 {
792 #ifndef __UBOOT__
793         struct spinand_device *spinand = mtd_to_spinand(mtd);
794 #endif
795         struct nand_device *nand = mtd_to_nanddev(mtd);
796         struct nand_pos pos;
797         int ret;
798
799         nanddev_offs_to_pos(nand, offs, &pos);
800 #ifndef __UBOOT__
801         mutex_lock(&spinand->lock);
802 #endif
803         ret = nanddev_isreserved(nand, &pos);
804 #ifndef __UBOOT__
805         mutex_unlock(&spinand->lock);
806 #endif
807
808         return ret;
809 }
810
811 const struct spi_mem_op *
812 spinand_find_supported_op(struct spinand_device *spinand,
813                           const struct spi_mem_op *ops,
814                           unsigned int nops)
815 {
816         unsigned int i;
817
818         for (i = 0; i < nops; i++) {
819                 if (spi_mem_supports_op(spinand->slave, &ops[i]))
820                         return &ops[i];
821         }
822
823         return NULL;
824 }
825
826 static const struct nand_ops spinand_ops = {
827         .erase = spinand_erase,
828         .markbad = spinand_markbad,
829         .isbad = spinand_isbad,
830 };
831
832 static const struct spinand_manufacturer *spinand_manufacturers[] = {
833         &macronix_spinand_manufacturer,
834         &micron_spinand_manufacturer,
835         &winbond_spinand_manufacturer,
836 };
837
838 static int spinand_manufacturer_detect(struct spinand_device *spinand)
839 {
840         unsigned int i;
841         int ret;
842
843         for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
844                 ret = spinand_manufacturers[i]->ops->detect(spinand);
845                 if (ret > 0) {
846                         spinand->manufacturer = spinand_manufacturers[i];
847                         return 0;
848                 } else if (ret < 0) {
849                         return ret;
850                 }
851         }
852
853         return -ENOTSUPP;
854 }
855
856 static int spinand_manufacturer_init(struct spinand_device *spinand)
857 {
858         if (spinand->manufacturer->ops->init)
859                 return spinand->manufacturer->ops->init(spinand);
860
861         return 0;
862 }
863
864 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
865 {
866         /* Release manufacturer private data */
867         if (spinand->manufacturer->ops->cleanup)
868                 return spinand->manufacturer->ops->cleanup(spinand);
869 }
870
871 static const struct spi_mem_op *
872 spinand_select_op_variant(struct spinand_device *spinand,
873                           const struct spinand_op_variants *variants)
874 {
875         struct nand_device *nand = spinand_to_nand(spinand);
876         unsigned int i;
877
878         for (i = 0; i < variants->nops; i++) {
879                 struct spi_mem_op op = variants->ops[i];
880                 unsigned int nbytes;
881                 int ret;
882
883                 nbytes = nanddev_per_page_oobsize(nand) +
884                          nanddev_page_size(nand);
885
886                 while (nbytes) {
887                         op.data.nbytes = nbytes;
888                         ret = spi_mem_adjust_op_size(spinand->slave, &op);
889                         if (ret)
890                                 break;
891
892                         if (!spi_mem_supports_op(spinand->slave, &op))
893                                 break;
894
895                         nbytes -= op.data.nbytes;
896                 }
897
898                 if (!nbytes)
899                         return &variants->ops[i];
900         }
901
902         return NULL;
903 }
904
905 /**
906  * spinand_match_and_init() - Try to find a match between a device ID and an
907  *                            entry in a spinand_info table
908  * @spinand: SPI NAND object
909  * @table: SPI NAND device description table
910  * @table_size: size of the device description table
911  *
912  * Should be used by SPI NAND manufacturer drivers when they want to find a
913  * match between a device ID retrieved through the READ_ID command and an
914  * entry in the SPI NAND description table. If a match is found, the spinand
915  * object will be initialized with information provided by the matching
916  * spinand_info entry.
917  *
918  * Return: 0 on success, a negative error code otherwise.
919  */
920 int spinand_match_and_init(struct spinand_device *spinand,
921                            const struct spinand_info *table,
922                            unsigned int table_size, u8 devid)
923 {
924         struct nand_device *nand = spinand_to_nand(spinand);
925         unsigned int i;
926
927         for (i = 0; i < table_size; i++) {
928                 const struct spinand_info *info = &table[i];
929                 const struct spi_mem_op *op;
930
931                 if (devid != info->devid)
932                         continue;
933
934                 nand->memorg = table[i].memorg;
935                 nand->eccreq = table[i].eccreq;
936                 spinand->eccinfo = table[i].eccinfo;
937                 spinand->flags = table[i].flags;
938                 spinand->select_target = table[i].select_target;
939
940                 op = spinand_select_op_variant(spinand,
941                                                info->op_variants.read_cache);
942                 if (!op)
943                         return -ENOTSUPP;
944
945                 spinand->op_templates.read_cache = op;
946
947                 op = spinand_select_op_variant(spinand,
948                                                info->op_variants.write_cache);
949                 if (!op)
950                         return -ENOTSUPP;
951
952                 spinand->op_templates.write_cache = op;
953
954                 op = spinand_select_op_variant(spinand,
955                                                info->op_variants.update_cache);
956                 spinand->op_templates.update_cache = op;
957
958                 return 0;
959         }
960
961         return -ENOTSUPP;
962 }
963
964 static int spinand_detect(struct spinand_device *spinand)
965 {
966         struct nand_device *nand = spinand_to_nand(spinand);
967         int ret;
968
969         ret = spinand_reset_op(spinand);
970         if (ret)
971                 return ret;
972
973         ret = spinand_read_id_op(spinand, spinand->id.data);
974         if (ret)
975                 return ret;
976
977         spinand->id.len = SPINAND_MAX_ID_LEN;
978
979         ret = spinand_manufacturer_detect(spinand);
980         if (ret) {
981                 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
982                         spinand->id.data);
983                 return ret;
984         }
985
986         if (nand->memorg.ntargets > 1 && !spinand->select_target) {
987                 dev_err(dev,
988                         "SPI NANDs with more than one die must implement ->select_target()\n");
989                 return -EINVAL;
990         }
991
992         dev_info(spinand->slave->dev,
993                  "%s SPI NAND was found.\n", spinand->manufacturer->name);
994         dev_info(spinand->slave->dev,
995                  "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
996                  nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
997                  nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
998
999         return 0;
1000 }
1001
1002 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
1003                                        struct mtd_oob_region *region)
1004 {
1005         return -ERANGE;
1006 }
1007
1008 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1009                                         struct mtd_oob_region *region)
1010 {
1011         if (section)
1012                 return -ERANGE;
1013
1014         /* Reserve 2 bytes for the BBM. */
1015         region->offset = 2;
1016         region->length = 62;
1017
1018         return 0;
1019 }
1020
1021 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1022         .ecc = spinand_noecc_ooblayout_ecc,
1023         .free = spinand_noecc_ooblayout_free,
1024 };
1025
1026 static int spinand_init(struct spinand_device *spinand)
1027 {
1028         struct mtd_info *mtd = spinand_to_mtd(spinand);
1029         struct nand_device *nand = mtd_to_nanddev(mtd);
1030         int ret, i;
1031
1032         /*
1033          * We need a scratch buffer because the spi_mem interface requires that
1034          * buf passed in spi_mem_op->data.buf be DMA-able.
1035          */
1036         spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1037         if (!spinand->scratchbuf)
1038                 return -ENOMEM;
1039
1040         ret = spinand_detect(spinand);
1041         if (ret)
1042                 goto err_free_bufs;
1043
1044         /*
1045          * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1046          * may use this buffer for DMA access.
1047          * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1048          */
1049         spinand->databuf = kzalloc(nanddev_page_size(nand) +
1050                                nanddev_per_page_oobsize(nand),
1051                                GFP_KERNEL);
1052         if (!spinand->databuf) {
1053                 ret = -ENOMEM;
1054                 goto err_free_bufs;
1055         }
1056
1057         spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1058
1059         ret = spinand_init_cfg_cache(spinand);
1060         if (ret)
1061                 goto err_free_bufs;
1062
1063         ret = spinand_init_quad_enable(spinand);
1064         if (ret)
1065                 goto err_free_bufs;
1066
1067         ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1068         if (ret)
1069                 goto err_free_bufs;
1070
1071         ret = spinand_manufacturer_init(spinand);
1072         if (ret) {
1073                 dev_err(dev,
1074                         "Failed to initialize the SPI NAND chip (err = %d)\n",
1075                         ret);
1076                 goto err_free_bufs;
1077         }
1078
1079         /* After power up, all blocks are locked, so unlock them here. */
1080         for (i = 0; i < nand->memorg.ntargets; i++) {
1081                 ret = spinand_select_target(spinand, i);
1082                 if (ret)
1083                         goto err_free_bufs;
1084
1085                 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1086                 if (ret)
1087                         goto err_free_bufs;
1088         }
1089
1090         ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1091         if (ret)
1092                 goto err_manuf_cleanup;
1093
1094         /*
1095          * Right now, we don't support ECC, so let the whole oob
1096          * area is available for user.
1097          */
1098         mtd->_read_oob = spinand_mtd_read;
1099         mtd->_write_oob = spinand_mtd_write;
1100         mtd->_block_isbad = spinand_mtd_block_isbad;
1101         mtd->_block_markbad = spinand_mtd_block_markbad;
1102         mtd->_block_isreserved = spinand_mtd_block_isreserved;
1103         mtd->_erase = spinand_mtd_erase;
1104
1105         if (spinand->eccinfo.ooblayout)
1106                 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1107         else
1108                 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1109
1110         ret = mtd_ooblayout_count_freebytes(mtd);
1111         if (ret < 0)
1112                 goto err_cleanup_nanddev;
1113
1114         mtd->oobavail = ret;
1115
1116         return 0;
1117
1118 err_cleanup_nanddev:
1119         nanddev_cleanup(nand);
1120
1121 err_manuf_cleanup:
1122         spinand_manufacturer_cleanup(spinand);
1123
1124 err_free_bufs:
1125         kfree(spinand->databuf);
1126         kfree(spinand->scratchbuf);
1127         return ret;
1128 }
1129
1130 static void spinand_cleanup(struct spinand_device *spinand)
1131 {
1132         struct nand_device *nand = spinand_to_nand(spinand);
1133
1134         nanddev_cleanup(nand);
1135         spinand_manufacturer_cleanup(spinand);
1136         kfree(spinand->databuf);
1137         kfree(spinand->scratchbuf);
1138 }
1139
1140 static int spinand_probe(struct udevice *dev)
1141 {
1142         struct spinand_device *spinand = dev_get_priv(dev);
1143         struct spi_slave *slave = dev_get_parent_priv(dev);
1144         struct mtd_info *mtd = dev_get_uclass_priv(dev);
1145         struct nand_device *nand = spinand_to_nand(spinand);
1146         int ret;
1147
1148 #ifndef __UBOOT__
1149         spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1150                                GFP_KERNEL);
1151         if (!spinand)
1152                 return -ENOMEM;
1153
1154         spinand->spimem = mem;
1155         spi_mem_set_drvdata(mem, spinand);
1156         spinand_set_of_node(spinand, mem->spi->dev.of_node);
1157         mutex_init(&spinand->lock);
1158
1159         mtd = spinand_to_mtd(spinand);
1160         mtd->dev.parent = &mem->spi->dev;
1161 #else
1162         nand->mtd = mtd;
1163         mtd->priv = nand;
1164         mtd->dev = dev;
1165         mtd->name = malloc(20);
1166         if (!mtd->name)
1167                 return -ENOMEM;
1168         sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1169         spinand->slave = slave;
1170         spinand_set_of_node(spinand, dev->node.np);
1171 #endif
1172
1173         ret = spinand_init(spinand);
1174         if (ret)
1175                 return ret;
1176
1177 #ifndef __UBOOT__
1178         ret = mtd_device_register(mtd, NULL, 0);
1179 #else
1180         ret = add_mtd_device(mtd);
1181 #endif
1182         if (ret)
1183                 goto err_spinand_cleanup;
1184
1185         return 0;
1186
1187 err_spinand_cleanup:
1188         spinand_cleanup(spinand);
1189
1190         return ret;
1191 }
1192
1193 #ifndef __UBOOT__
1194 static int spinand_remove(struct udevice *slave)
1195 {
1196         struct spinand_device *spinand;
1197         struct mtd_info *mtd;
1198         int ret;
1199
1200         spinand = spi_mem_get_drvdata(slave);
1201         mtd = spinand_to_mtd(spinand);
1202         free(mtd->name);
1203
1204         ret = mtd_device_unregister(mtd);
1205         if (ret)
1206                 return ret;
1207
1208         spinand_cleanup(spinand);
1209
1210         return 0;
1211 }
1212
1213 static const struct spi_device_id spinand_ids[] = {
1214         { .name = "spi-nand" },
1215         { /* sentinel */ },
1216 };
1217
1218 #ifdef CONFIG_OF
1219 static const struct of_device_id spinand_of_ids[] = {
1220         { .compatible = "spi-nand" },
1221         { /* sentinel */ },
1222 };
1223 #endif
1224
1225 static struct spi_mem_driver spinand_drv = {
1226         .spidrv = {
1227                 .id_table = spinand_ids,
1228                 .driver = {
1229                         .name = "spi-nand",
1230                         .of_match_table = of_match_ptr(spinand_of_ids),
1231                 },
1232         },
1233         .probe = spinand_probe,
1234         .remove = spinand_remove,
1235 };
1236 module_spi_mem_driver(spinand_drv);
1237
1238 MODULE_DESCRIPTION("SPI NAND framework");
1239 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1240 MODULE_LICENSE("GPL v2");
1241 #endif /* __UBOOT__ */
1242
1243 static const struct udevice_id spinand_ids[] = {
1244         { .compatible = "spi-nand" },
1245         { /* sentinel */ },
1246 };
1247
1248 U_BOOT_DRIVER(spinand) = {
1249         .name = "spi_nand",
1250         .id = UCLASS_MTD,
1251         .of_match = spinand_ids,
1252         .priv_auto_alloc_size = sizeof(struct spinand_device),
1253         .probe = spinand_probe,
1254 };