61e41c065db8292b8a798c421486d08982c83108
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / mtd / nand / sh_flctl.c
1 /*
2  * SuperH FLCTL nand controller
3  *
4  * Copyright (c) 2008 Renesas Solutions Corp.
5  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6  *
7  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/slab.h>
30
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/mtd/sh_flctl.h>
35
36 static struct nand_ecclayout flctl_4secc_oob_16 = {
37         .eccbytes = 10,
38         .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
39         .oobfree = {
40                 {.offset = 12,
41                 . length = 4} },
42 };
43
44 static struct nand_ecclayout flctl_4secc_oob_64 = {
45         .eccbytes = 10,
46         .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
47         .oobfree = {
48                 {.offset = 60,
49                 . length = 4} },
50 };
51
52 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
53
54 static struct nand_bbt_descr flctl_4secc_smallpage = {
55         .options = NAND_BBT_SCAN2NDPAGE,
56         .offs = 11,
57         .len = 1,
58         .pattern = scan_ff_pattern,
59 };
60
61 static struct nand_bbt_descr flctl_4secc_largepage = {
62         .options = NAND_BBT_SCAN2NDPAGE,
63         .offs = 58,
64         .len = 2,
65         .pattern = scan_ff_pattern,
66 };
67
68 static void empty_fifo(struct sh_flctl *flctl)
69 {
70         writel(0x000c0000, FLINTDMACR(flctl));  /* FIFO Clear */
71         writel(0x00000000, FLINTDMACR(flctl));  /* Clear Error flags */
72 }
73
74 static void start_translation(struct sh_flctl *flctl)
75 {
76         writeb(TRSTRT, FLTRCR(flctl));
77 }
78
79 static void timeout_error(struct sh_flctl *flctl, const char *str)
80 {
81         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
82 }
83
84 static void wait_completion(struct sh_flctl *flctl)
85 {
86         uint32_t timeout = LOOP_TIMEOUT_MAX;
87
88         while (timeout--) {
89                 if (readb(FLTRCR(flctl)) & TREND) {
90                         writeb(0x0, FLTRCR(flctl));
91                         return;
92                 }
93                 udelay(1);
94         }
95
96         timeout_error(flctl, __func__);
97         writeb(0x0, FLTRCR(flctl));
98 }
99
100 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
101 {
102         struct sh_flctl *flctl = mtd_to_flctl(mtd);
103         uint32_t addr = 0;
104
105         if (column == -1) {
106                 addr = page_addr;       /* ERASE1 */
107         } else if (page_addr != -1) {
108                 /* SEQIN, READ0, etc.. */
109                 if (flctl->chip.options & NAND_BUSWIDTH_16)
110                         column >>= 1;
111                 if (flctl->page_size) {
112                         addr = column & 0x0FFF;
113                         addr |= (page_addr & 0xff) << 16;
114                         addr |= ((page_addr >> 8) & 0xff) << 24;
115                         /* big than 128MB */
116                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
117                                 uint32_t        addr2;
118                                 addr2 = (page_addr >> 16) & 0xff;
119                                 writel(addr2, FLADR2(flctl));
120                         }
121                 } else {
122                         addr = column;
123                         addr |= (page_addr & 0xff) << 8;
124                         addr |= ((page_addr >> 8) & 0xff) << 16;
125                         addr |= ((page_addr >> 16) & 0xff) << 24;
126                 }
127         }
128         writel(addr, FLADR(flctl));
129 }
130
131 static void wait_rfifo_ready(struct sh_flctl *flctl)
132 {
133         uint32_t timeout = LOOP_TIMEOUT_MAX;
134
135         while (timeout--) {
136                 uint32_t val;
137                 /* check FIFO */
138                 val = readl(FLDTCNTR(flctl)) >> 16;
139                 if (val & 0xFF)
140                         return;
141                 udelay(1);
142         }
143         timeout_error(flctl, __func__);
144 }
145
146 static void wait_wfifo_ready(struct sh_flctl *flctl)
147 {
148         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
149
150         while (timeout--) {
151                 /* check FIFO */
152                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
153                 if (len >= 4)
154                         return;
155                 udelay(1);
156         }
157         timeout_error(flctl, __func__);
158 }
159
160 static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number)
161 {
162         uint32_t timeout = LOOP_TIMEOUT_MAX;
163         int checked[4];
164         void __iomem *ecc_reg[4];
165         int i;
166         uint32_t data, size;
167
168         memset(checked, 0, sizeof(checked));
169
170         while (timeout--) {
171                 size = readl(FLDTCNTR(flctl)) >> 24;
172                 if (size & 0xFF)
173                         return 0;       /* success */
174
175                 if (readl(FL4ECCCR(flctl)) & _4ECCFA)
176                         return 1;       /* can't correct */
177
178                 udelay(1);
179                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
180                         continue;
181
182                 /* start error correction */
183                 ecc_reg[0] = FL4ECCRESULT0(flctl);
184                 ecc_reg[1] = FL4ECCRESULT1(flctl);
185                 ecc_reg[2] = FL4ECCRESULT2(flctl);
186                 ecc_reg[3] = FL4ECCRESULT3(flctl);
187
188                 for (i = 0; i < 3; i++) {
189                         data = readl(ecc_reg[i]);
190                         if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
191                                 uint8_t org;
192                                 int index;
193
194                                 if (flctl->page_size)
195                                         index = (512 * sector_number) +
196                                                 (data >> 16);
197                                 else
198                                         index = data >> 16;
199
200                                 org = flctl->done_buff[index];
201                                 flctl->done_buff[index] = org ^ (data & 0xFF);
202                                 checked[i] = 1;
203                         }
204                 }
205
206                 writel(0, FL4ECCCR(flctl));
207         }
208
209         timeout_error(flctl, __func__);
210         return 1;       /* timeout */
211 }
212
213 static void wait_wecfifo_ready(struct sh_flctl *flctl)
214 {
215         uint32_t timeout = LOOP_TIMEOUT_MAX;
216         uint32_t len;
217
218         while (timeout--) {
219                 /* check FLECFIFO */
220                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
221                 if (len >= 4)
222                         return;
223                 udelay(1);
224         }
225         timeout_error(flctl, __func__);
226 }
227
228 static void read_datareg(struct sh_flctl *flctl, int offset)
229 {
230         unsigned long data;
231         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
232
233         wait_completion(flctl);
234
235         data = readl(FLDATAR(flctl));
236         *buf = le32_to_cpu(data);
237 }
238
239 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
240 {
241         int i, len_4align;
242         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
243         void *fifo_addr = (void *)FLDTFIFO(flctl);
244
245         len_4align = (rlen + 3) / 4;
246
247         for (i = 0; i < len_4align; i++) {
248                 wait_rfifo_ready(flctl);
249                 buf[i] = readl(fifo_addr);
250                 buf[i] = be32_to_cpu(buf[i]);
251         }
252 }
253
254 static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector)
255 {
256         int i;
257         unsigned long *ecc_buf = (unsigned long *)buff;
258         void *fifo_addr = (void *)FLECFIFO(flctl);
259
260         for (i = 0; i < 4; i++) {
261                 if (wait_recfifo_ready(flctl , sector))
262                         return 1;
263                 ecc_buf[i] = readl(fifo_addr);
264                 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
265         }
266
267         return 0;
268 }
269
270 static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
271 {
272         int i, len_4align;
273         unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
274         void *fifo_addr = (void *)FLDTFIFO(flctl);
275
276         len_4align = (rlen + 3) / 4;
277         for (i = 0; i < len_4align; i++) {
278                 wait_wfifo_ready(flctl);
279                 writel(cpu_to_be32(data[i]), fifo_addr);
280         }
281 }
282
283 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
284 {
285         struct sh_flctl *flctl = mtd_to_flctl(mtd);
286         uint32_t flcmncr_val = readl(FLCMNCR(flctl)) & ~SEL_16BIT;
287         uint32_t flcmdcr_val, addr_len_bytes = 0;
288
289         /* Set SNAND bit if page size is 2048byte */
290         if (flctl->page_size)
291                 flcmncr_val |= SNAND_E;
292         else
293                 flcmncr_val &= ~SNAND_E;
294
295         /* default FLCMDCR val */
296         flcmdcr_val = DOCMD1_E | DOADR_E;
297
298         /* Set for FLCMDCR */
299         switch (cmd) {
300         case NAND_CMD_ERASE1:
301                 addr_len_bytes = flctl->erase_ADRCNT;
302                 flcmdcr_val |= DOCMD2_E;
303                 break;
304         case NAND_CMD_READ0:
305         case NAND_CMD_READOOB:
306         case NAND_CMD_RNDOUT:
307                 addr_len_bytes = flctl->rw_ADRCNT;
308                 flcmdcr_val |= CDSRC_E;
309                 if (flctl->chip.options & NAND_BUSWIDTH_16)
310                         flcmncr_val |= SEL_16BIT;
311                 break;
312         case NAND_CMD_SEQIN:
313                 /* This case is that cmd is READ0 or READ1 or READ00 */
314                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
315                 break;
316         case NAND_CMD_PAGEPROG:
317                 addr_len_bytes = flctl->rw_ADRCNT;
318                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
319                 if (flctl->chip.options & NAND_BUSWIDTH_16)
320                         flcmncr_val |= SEL_16BIT;
321                 break;
322         case NAND_CMD_READID:
323                 flcmncr_val &= ~SNAND_E;
324                 flcmdcr_val |= CDSRC_E;
325                 addr_len_bytes = ADRCNT_1;
326                 break;
327         case NAND_CMD_STATUS:
328         case NAND_CMD_RESET:
329                 flcmncr_val &= ~SNAND_E;
330                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
331                 break;
332         default:
333                 break;
334         }
335
336         /* Set address bytes parameter */
337         flcmdcr_val |= addr_len_bytes;
338
339         /* Now actually write */
340         writel(flcmncr_val, FLCMNCR(flctl));
341         writel(flcmdcr_val, FLCMDCR(flctl));
342         writel(flcmcdr_val, FLCMCDR(flctl));
343 }
344
345 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
346                                 uint8_t *buf, int page)
347 {
348         int i, eccsize = chip->ecc.size;
349         int eccbytes = chip->ecc.bytes;
350         int eccsteps = chip->ecc.steps;
351         uint8_t *p = buf;
352         struct sh_flctl *flctl = mtd_to_flctl(mtd);
353
354         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
355                 chip->read_buf(mtd, p, eccsize);
356
357         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
358                 if (flctl->hwecc_cant_correct[i])
359                         mtd->ecc_stats.failed++;
360                 else
361                         mtd->ecc_stats.corrected += 0;
362         }
363
364         return 0;
365 }
366
367 static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
368                                    const uint8_t *buf)
369 {
370         int i, eccsize = chip->ecc.size;
371         int eccbytes = chip->ecc.bytes;
372         int eccsteps = chip->ecc.steps;
373         const uint8_t *p = buf;
374
375         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
376                 chip->write_buf(mtd, p, eccsize);
377 }
378
379 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
380 {
381         struct sh_flctl *flctl = mtd_to_flctl(mtd);
382         int sector, page_sectors;
383
384         if (flctl->page_size)
385                 page_sectors = 4;
386         else
387                 page_sectors = 1;
388
389         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
390                  FLCMNCR(flctl));
391
392         set_cmd_regs(mtd, NAND_CMD_READ0,
393                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
394
395         for (sector = 0; sector < page_sectors; sector++) {
396                 int ret;
397
398                 empty_fifo(flctl);
399                 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
400                 writel(page_addr << 2 | sector, FLADR(flctl));
401
402                 start_translation(flctl);
403                 read_fiforeg(flctl, 512, 512 * sector);
404
405                 ret = read_ecfiforeg(flctl,
406                         &flctl->done_buff[mtd->writesize + 16 * sector],
407                         sector);
408
409                 if (ret)
410                         flctl->hwecc_cant_correct[sector] = 1;
411
412                 writel(0x0, FL4ECCCR(flctl));
413                 wait_completion(flctl);
414         }
415         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
416                         FLCMNCR(flctl));
417 }
418
419 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
420 {
421         struct sh_flctl *flctl = mtd_to_flctl(mtd);
422
423         set_cmd_regs(mtd, NAND_CMD_READ0,
424                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
425
426         empty_fifo(flctl);
427         if (flctl->page_size) {
428                 int i;
429                 /* In case that the page size is 2k */
430                 for (i = 0; i < 16 * 3; i++)
431                         flctl->done_buff[i] = 0xFF;
432
433                 set_addr(mtd, 3 * 528 + 512, page_addr);
434                 writel(16, FLDTCNTR(flctl));
435
436                 start_translation(flctl);
437                 read_fiforeg(flctl, 16, 16 * 3);
438                 wait_completion(flctl);
439         } else {
440                 /* In case that the page size is 512b */
441                 set_addr(mtd, 512, page_addr);
442                 writel(16, FLDTCNTR(flctl));
443
444                 start_translation(flctl);
445                 read_fiforeg(flctl, 16, 0);
446                 wait_completion(flctl);
447         }
448 }
449
450 static void execmd_write_page_sector(struct mtd_info *mtd)
451 {
452         struct sh_flctl *flctl = mtd_to_flctl(mtd);
453         int i, page_addr = flctl->seqin_page_addr;
454         int sector, page_sectors;
455
456         if (flctl->page_size)
457                 page_sectors = 4;
458         else
459                 page_sectors = 1;
460
461         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
462
463         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
464                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
465
466         for (sector = 0; sector < page_sectors; sector++) {
467                 empty_fifo(flctl);
468                 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
469                 writel(page_addr << 2 | sector, FLADR(flctl));
470
471                 start_translation(flctl);
472                 write_fiforeg(flctl, 512, 512 * sector);
473
474                 for (i = 0; i < 4; i++) {
475                         wait_wecfifo_ready(flctl); /* wait for write ready */
476                         writel(0xFFFFFFFF, FLECFIFO(flctl));
477                 }
478                 wait_completion(flctl);
479         }
480
481         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
482 }
483
484 static void execmd_write_oob(struct mtd_info *mtd)
485 {
486         struct sh_flctl *flctl = mtd_to_flctl(mtd);
487         int page_addr = flctl->seqin_page_addr;
488         int sector, page_sectors;
489
490         if (flctl->page_size) {
491                 sector = 3;
492                 page_sectors = 4;
493         } else {
494                 sector = 0;
495                 page_sectors = 1;
496         }
497
498         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
499                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
500
501         for (; sector < page_sectors; sector++) {
502                 empty_fifo(flctl);
503                 set_addr(mtd, sector * 528 + 512, page_addr);
504                 writel(16, FLDTCNTR(flctl));    /* set read size */
505
506                 start_translation(flctl);
507                 write_fiforeg(flctl, 16, 16 * sector);
508                 wait_completion(flctl);
509         }
510 }
511
512 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
513                         int column, int page_addr)
514 {
515         struct sh_flctl *flctl = mtd_to_flctl(mtd);
516         uint32_t read_cmd = 0;
517
518         flctl->read_bytes = 0;
519         if (command != NAND_CMD_PAGEPROG)
520                 flctl->index = 0;
521
522         switch (command) {
523         case NAND_CMD_READ1:
524         case NAND_CMD_READ0:
525                 if (flctl->hwecc) {
526                         /* read page with hwecc */
527                         execmd_read_page_sector(mtd, page_addr);
528                         break;
529                 }
530                 if (flctl->page_size)
531                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
532                                 | command);
533                 else
534                         set_cmd_regs(mtd, command, command);
535
536                 set_addr(mtd, 0, page_addr);
537
538                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
539                 if (flctl->chip.options & NAND_BUSWIDTH_16)
540                         column >>= 1;
541                 flctl->index += column;
542                 goto read_normal_exit;
543
544         case NAND_CMD_READOOB:
545                 if (flctl->hwecc) {
546                         /* read page with hwecc */
547                         execmd_read_oob(mtd, page_addr);
548                         break;
549                 }
550
551                 if (flctl->page_size) {
552                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
553                                 | NAND_CMD_READ0);
554                         set_addr(mtd, mtd->writesize, page_addr);
555                 } else {
556                         set_cmd_regs(mtd, command, command);
557                         set_addr(mtd, 0, page_addr);
558                 }
559                 flctl->read_bytes = mtd->oobsize;
560                 goto read_normal_exit;
561
562         case NAND_CMD_RNDOUT:
563                 if (flctl->hwecc)
564                         break;
565
566                 if (flctl->page_size)
567                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
568                                 | command);
569                 else
570                         set_cmd_regs(mtd, command, command);
571
572                 set_addr(mtd, column, 0);
573
574                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
575                 goto read_normal_exit;
576
577         case NAND_CMD_READID:
578                 set_cmd_regs(mtd, command, command);
579
580                 /* READID is always performed using an 8-bit bus */
581                 if (flctl->chip.options & NAND_BUSWIDTH_16)
582                         column <<= 1;
583                 set_addr(mtd, column, 0);
584
585                 flctl->read_bytes = 8;
586                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
587                 empty_fifo(flctl);
588                 start_translation(flctl);
589                 read_fiforeg(flctl, flctl->read_bytes, 0);
590                 wait_completion(flctl);
591                 break;
592
593         case NAND_CMD_ERASE1:
594                 flctl->erase1_page_addr = page_addr;
595                 break;
596
597         case NAND_CMD_ERASE2:
598                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
599                         (command << 8) | NAND_CMD_ERASE1);
600                 set_addr(mtd, -1, flctl->erase1_page_addr);
601                 start_translation(flctl);
602                 wait_completion(flctl);
603                 break;
604
605         case NAND_CMD_SEQIN:
606                 if (!flctl->page_size) {
607                         /* output read command */
608                         if (column >= mtd->writesize) {
609                                 column -= mtd->writesize;
610                                 read_cmd = NAND_CMD_READOOB;
611                         } else if (column < 256) {
612                                 read_cmd = NAND_CMD_READ0;
613                         } else {
614                                 column -= 256;
615                                 read_cmd = NAND_CMD_READ1;
616                         }
617                 }
618                 flctl->seqin_column = column;
619                 flctl->seqin_page_addr = page_addr;
620                 flctl->seqin_read_cmd = read_cmd;
621                 break;
622
623         case NAND_CMD_PAGEPROG:
624                 empty_fifo(flctl);
625                 if (!flctl->page_size) {
626                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
627                                         flctl->seqin_read_cmd);
628                         set_addr(mtd, -1, -1);
629                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
630                         start_translation(flctl);
631                         wait_completion(flctl);
632                 }
633                 if (flctl->hwecc) {
634                         /* write page with hwecc */
635                         if (flctl->seqin_column == mtd->writesize)
636                                 execmd_write_oob(mtd);
637                         else if (!flctl->seqin_column)
638                                 execmd_write_page_sector(mtd);
639                         else
640                                 printk(KERN_ERR "Invalid address !?\n");
641                         break;
642                 }
643                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
644                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
645                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
646                 start_translation(flctl);
647                 write_fiforeg(flctl, flctl->index, 0);
648                 wait_completion(flctl);
649                 break;
650
651         case NAND_CMD_STATUS:
652                 set_cmd_regs(mtd, command, command);
653                 set_addr(mtd, -1, -1);
654
655                 flctl->read_bytes = 1;
656                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
657                 start_translation(flctl);
658                 read_datareg(flctl, 0); /* read and end */
659                 break;
660
661         case NAND_CMD_RESET:
662                 set_cmd_regs(mtd, command, command);
663                 set_addr(mtd, -1, -1);
664
665                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
666                 start_translation(flctl);
667                 wait_completion(flctl);
668                 break;
669
670         default:
671                 break;
672         }
673         return;
674
675 read_normal_exit:
676         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
677         empty_fifo(flctl);
678         start_translation(flctl);
679         read_fiforeg(flctl, flctl->read_bytes, 0);
680         wait_completion(flctl);
681         return;
682 }
683
684 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
685 {
686         struct sh_flctl *flctl = mtd_to_flctl(mtd);
687         uint32_t flcmncr_val = readl(FLCMNCR(flctl));
688
689         switch (chipnr) {
690         case -1:
691                 flcmncr_val &= ~CE0_ENABLE;
692                 writel(flcmncr_val, FLCMNCR(flctl));
693                 break;
694         case 0:
695                 flcmncr_val |= CE0_ENABLE;
696                 writel(flcmncr_val, FLCMNCR(flctl));
697                 break;
698         default:
699                 BUG();
700         }
701 }
702
703 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
704 {
705         struct sh_flctl *flctl = mtd_to_flctl(mtd);
706         int i, index = flctl->index;
707
708         for (i = 0; i < len; i++)
709                 flctl->done_buff[index + i] = buf[i];
710         flctl->index += len;
711 }
712
713 static uint8_t flctl_read_byte(struct mtd_info *mtd)
714 {
715         struct sh_flctl *flctl = mtd_to_flctl(mtd);
716         int index = flctl->index;
717         uint8_t data;
718
719         data = flctl->done_buff[index];
720         flctl->index++;
721         return data;
722 }
723
724 static uint16_t flctl_read_word(struct mtd_info *mtd)
725 {
726        struct sh_flctl *flctl = mtd_to_flctl(mtd);
727        int index = flctl->index;
728        uint16_t data;
729        uint16_t *buf = (uint16_t *)&flctl->done_buff[index];
730
731        data = *buf;
732        flctl->index += 2;
733        return data;
734 }
735
736 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
737 {
738         int i;
739
740         for (i = 0; i < len; i++)
741                 buf[i] = flctl_read_byte(mtd);
742 }
743
744 static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
745 {
746         int i;
747
748         for (i = 0; i < len; i++)
749                 if (buf[i] != flctl_read_byte(mtd))
750                         return -EFAULT;
751         return 0;
752 }
753
754 static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
755 {
756         writel(val, FLCMNCR(flctl));
757 }
758
759 static int flctl_chip_init_tail(struct mtd_info *mtd)
760 {
761         struct sh_flctl *flctl = mtd_to_flctl(mtd);
762         struct nand_chip *chip = &flctl->chip;
763
764         if (mtd->writesize == 512) {
765                 flctl->page_size = 0;
766                 if (chip->chipsize > (32 << 20)) {
767                         /* big than 32MB */
768                         flctl->rw_ADRCNT = ADRCNT_4;
769                         flctl->erase_ADRCNT = ADRCNT_3;
770                 } else if (chip->chipsize > (2 << 16)) {
771                         /* big than 128KB */
772                         flctl->rw_ADRCNT = ADRCNT_3;
773                         flctl->erase_ADRCNT = ADRCNT_2;
774                 } else {
775                         flctl->rw_ADRCNT = ADRCNT_2;
776                         flctl->erase_ADRCNT = ADRCNT_1;
777                 }
778         } else {
779                 flctl->page_size = 1;
780                 if (chip->chipsize > (128 << 20)) {
781                         /* big than 128MB */
782                         flctl->rw_ADRCNT = ADRCNT2_E;
783                         flctl->erase_ADRCNT = ADRCNT_3;
784                 } else if (chip->chipsize > (8 << 16)) {
785                         /* big than 512KB */
786                         flctl->rw_ADRCNT = ADRCNT_4;
787                         flctl->erase_ADRCNT = ADRCNT_2;
788                 } else {
789                         flctl->rw_ADRCNT = ADRCNT_3;
790                         flctl->erase_ADRCNT = ADRCNT_1;
791                 }
792         }
793
794         if (flctl->hwecc) {
795                 if (mtd->writesize == 512) {
796                         chip->ecc.layout = &flctl_4secc_oob_16;
797                         chip->badblock_pattern = &flctl_4secc_smallpage;
798                 } else {
799                         chip->ecc.layout = &flctl_4secc_oob_64;
800                         chip->badblock_pattern = &flctl_4secc_largepage;
801                 }
802
803                 chip->ecc.size = 512;
804                 chip->ecc.bytes = 10;
805                 chip->ecc.read_page = flctl_read_page_hwecc;
806                 chip->ecc.write_page = flctl_write_page_hwecc;
807                 chip->ecc.mode = NAND_ECC_HW;
808
809                 /* 4 symbols ECC enabled */
810                 writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02,
811                                 FLCMNCR(flctl));
812         } else {
813                 chip->ecc.mode = NAND_ECC_SOFT;
814         }
815
816         return 0;
817 }
818
819 static int __devinit flctl_probe(struct platform_device *pdev)
820 {
821         struct resource *res;
822         struct sh_flctl *flctl;
823         struct mtd_info *flctl_mtd;
824         struct nand_chip *nand;
825         struct sh_flctl_platform_data *pdata;
826         int ret = -ENXIO;
827
828         pdata = pdev->dev.platform_data;
829         if (pdata == NULL) {
830                 dev_err(&pdev->dev, "no platform data defined\n");
831                 return -EINVAL;
832         }
833
834         flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
835         if (!flctl) {
836                 dev_err(&pdev->dev, "failed to allocate driver data\n");
837                 return -ENOMEM;
838         }
839
840         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841         if (!res) {
842                 dev_err(&pdev->dev, "failed to get I/O memory\n");
843                 goto err;
844         }
845
846         flctl->reg = ioremap(res->start, resource_size(res));
847         if (flctl->reg == NULL) {
848                 dev_err(&pdev->dev, "failed to remap I/O memory\n");
849                 goto err;
850         }
851
852         platform_set_drvdata(pdev, flctl);
853         flctl_mtd = &flctl->mtd;
854         nand = &flctl->chip;
855         flctl_mtd->priv = nand;
856         flctl->pdev = pdev;
857         flctl->hwecc = pdata->has_hwecc;
858
859         flctl_register_init(flctl, pdata->flcmncr_val);
860
861         nand->options = NAND_NO_AUTOINCR;
862
863         /* Set address of hardware control function */
864         /* 20 us command delay time */
865         nand->chip_delay = 20;
866
867         nand->read_byte = flctl_read_byte;
868         nand->write_buf = flctl_write_buf;
869         nand->read_buf = flctl_read_buf;
870         nand->verify_buf = flctl_verify_buf;
871         nand->select_chip = flctl_select_chip;
872         nand->cmdfunc = flctl_cmdfunc;
873
874         if (pdata->flcmncr_val & SEL_16BIT) {
875                 nand->options |= NAND_BUSWIDTH_16;
876                 nand->read_word = flctl_read_word;
877         }
878
879         ret = nand_scan_ident(flctl_mtd, 1, NULL);
880         if (ret)
881                 goto err;
882
883         ret = flctl_chip_init_tail(flctl_mtd);
884         if (ret)
885                 goto err;
886
887         ret = nand_scan_tail(flctl_mtd);
888         if (ret)
889                 goto err;
890
891         mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
892
893         return 0;
894
895 err:
896         kfree(flctl);
897         return ret;
898 }
899
900 static int __devexit flctl_remove(struct platform_device *pdev)
901 {
902         struct sh_flctl *flctl = platform_get_drvdata(pdev);
903
904         nand_release(&flctl->mtd);
905         kfree(flctl);
906
907         return 0;
908 }
909
910 static struct platform_driver flctl_driver = {
911         .remove         = flctl_remove,
912         .driver = {
913                 .name   = "sh_flctl",
914                 .owner  = THIS_MODULE,
915         },
916 };
917
918 static int __init flctl_nand_init(void)
919 {
920         return platform_driver_probe(&flctl_driver, flctl_probe);
921 }
922
923 static void __exit flctl_nand_cleanup(void)
924 {
925         platform_driver_unregister(&flctl_driver);
926 }
927
928 module_init(flctl_nand_init);
929 module_exit(flctl_nand_cleanup);
930
931 MODULE_LICENSE("GPL");
932 MODULE_AUTHOR("Yoshihiro Shimoda");
933 MODULE_DESCRIPTION("SuperH FLCTL driver");
934 MODULE_ALIAS("platform:sh_flctl");