[MTD] [NAND] S3C2410: Deal with unaligned lengths in S3C2440 buffer read/write
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25 #define DEBUG
26 #endif
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
45
46 #include <asm/io.h>
47
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
50
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
53 #else
54 static int hardware_ecc = 0;
55 #endif
56
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static int clock_stop = 1;
59 #else
60 static const int clock_stop = 0;
61 #endif
62
63
64 /* new oob placement block for use with hardware ecc generation
65  */
66
67 static struct nand_ecclayout nand_hw_eccoob = {
68         .eccbytes = 3,
69         .eccpos = {0, 1, 2},
70         .oobfree = {{8, 8}}
71 };
72
73 /* controller and mtd information */
74
75 struct s3c2410_nand_info;
76
77 /**
78  * struct s3c2410_nand_mtd - driver MTD structure
79  * @mtd: The MTD instance to pass to the MTD layer.
80  * @chip: The NAND chip information.
81  * @set: The platform information supplied for this set of NAND chips.
82  * @info: Link back to the hardware information.
83  * @scan_res: The result from calling nand_scan_ident().
84 */
85 struct s3c2410_nand_mtd {
86         struct mtd_info                 mtd;
87         struct nand_chip                chip;
88         struct s3c2410_nand_set         *set;
89         struct s3c2410_nand_info        *info;
90         int                             scan_res;
91 };
92
93 enum s3c_cpu_type {
94         TYPE_S3C2410,
95         TYPE_S3C2412,
96         TYPE_S3C2440,
97 };
98
99 /* overview of the s3c2410 nand state */
100
101 /**
102  * struct s3c2410_nand_info - NAND controller state.
103  * @mtds: An array of MTD instances on this controoler.
104  * @platform: The platform data for this board.
105  * @device: The platform device we bound to.
106  * @area: The IO area resource that came from request_mem_region().
107  * @clk: The clock resource for this controller.
108  * @regs: The area mapped for the hardware registers described by @area.
109  * @sel_reg: Pointer to the register controlling the NAND selection.
110  * @sel_bit: The bit in @sel_reg to select the NAND chip.
111  * @mtd_count: The number of MTDs created from this controller.
112  * @save_sel: The contents of @sel_reg to be saved over suspend.
113  * @clk_rate: The clock rate from @clk.
114  * @cpu_type: The exact type of this controller.
115  */
116 struct s3c2410_nand_info {
117         /* mtd info */
118         struct nand_hw_control          controller;
119         struct s3c2410_nand_mtd         *mtds;
120         struct s3c2410_platform_nand    *platform;
121
122         /* device info */
123         struct device                   *device;
124         struct resource                 *area;
125         struct clk                      *clk;
126         void __iomem                    *regs;
127         void __iomem                    *sel_reg;
128         int                             sel_bit;
129         int                             mtd_count;
130         unsigned long                   save_sel;
131         unsigned long                   clk_rate;
132
133         enum s3c_cpu_type               cpu_type;
134
135 #ifdef CONFIG_CPU_FREQ
136         struct notifier_block   freq_transition;
137 #endif
138 };
139
140 /* conversion functions */
141
142 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
143 {
144         return container_of(mtd, struct s3c2410_nand_mtd, mtd);
145 }
146
147 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
148 {
149         return s3c2410_nand_mtd_toours(mtd)->info;
150 }
151
152 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
153 {
154         return platform_get_drvdata(dev);
155 }
156
157 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
158 {
159         return dev->dev.platform_data;
160 }
161
162 static inline int allow_clk_stop(struct s3c2410_nand_info *info)
163 {
164         return clock_stop;
165 }
166
167 /* timing calculations */
168
169 #define NS_IN_KHZ 1000000
170
171 /**
172  * s3c_nand_calc_rate - calculate timing data.
173  * @wanted: The cycle time in nanoseconds.
174  * @clk: The clock rate in kHz.
175  * @max: The maximum divider value.
176  *
177  * Calculate the timing value from the given parameters.
178  */
179 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
180 {
181         int result;
182
183         result = (wanted * clk) / NS_IN_KHZ;
184         result++;
185
186         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
187
188         if (result > max) {
189                 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
190                 return -1;
191         }
192
193         if (result < 1)
194                 result = 1;
195
196         return result;
197 }
198
199 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
200
201 /* controller setup */
202
203 /**
204  * s3c2410_nand_setrate - setup controller timing information.
205  * @info: The controller instance.
206  *
207  * Given the information supplied by the platform, calculate and set
208  * the necessary timing registers in the hardware to generate the
209  * necessary timing cycles to the hardware.
210  */
211 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
212 {
213         struct s3c2410_platform_nand *plat = info->platform;
214         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
215         int tacls, twrph0, twrph1;
216         unsigned long clkrate = clk_get_rate(info->clk);
217         unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
218         unsigned long flags;
219
220         /* calculate the timing information for the controller */
221
222         info->clk_rate = clkrate;
223         clkrate /= 1000;        /* turn clock into kHz for ease of use */
224
225         if (plat != NULL) {
226                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
227                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
228                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
229         } else {
230                 /* default timings */
231                 tacls = tacls_max;
232                 twrph0 = 8;
233                 twrph1 = 8;
234         }
235
236         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
237                 dev_err(info->device, "cannot get suitable timings\n");
238                 return -EINVAL;
239         }
240
241         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
242                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
243
244         switch (info->cpu_type) {
245         case TYPE_S3C2410:
246                 mask = (S3C2410_NFCONF_TACLS(3) |
247                         S3C2410_NFCONF_TWRPH0(7) |
248                         S3C2410_NFCONF_TWRPH1(7));
249                 set = S3C2410_NFCONF_EN;
250                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
251                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
252                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
253                 break;
254
255         case TYPE_S3C2440:
256         case TYPE_S3C2412:
257                 mask = (S3C2410_NFCONF_TACLS(tacls_max - 1) |
258                         S3C2410_NFCONF_TWRPH0(7) |
259                         S3C2410_NFCONF_TWRPH1(7));
260
261                 set = S3C2440_NFCONF_TACLS(tacls - 1);
262                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
263                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
264                 break;
265
266         default:
267                 BUG();
268         }
269
270         local_irq_save(flags);
271
272         cfg = readl(info->regs + S3C2410_NFCONF);
273         cfg &= ~mask;
274         cfg |= set;
275         writel(cfg, info->regs + S3C2410_NFCONF);
276
277         local_irq_restore(flags);
278
279         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
280
281         return 0;
282 }
283
284 /**
285  * s3c2410_nand_inithw - basic hardware initialisation
286  * @info: The hardware state.
287  *
288  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
289  * to setup the hardware access speeds and set the controller to be enabled.
290 */
291 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
292 {
293         int ret;
294
295         ret = s3c2410_nand_setrate(info);
296         if (ret < 0)
297                 return ret;
298
299         switch (info->cpu_type) {
300         case TYPE_S3C2410:
301         default:
302                 break;
303
304         case TYPE_S3C2440:
305         case TYPE_S3C2412:
306                 /* enable the controller and de-assert nFCE */
307
308                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
309         }
310
311         return 0;
312 }
313
314 /**
315  * s3c2410_nand_select_chip - select the given nand chip
316  * @mtd: The MTD instance for this chip.
317  * @chip: The chip number.
318  *
319  * This is called by the MTD layer to either select a given chip for the
320  * @mtd instance, or to indicate that the access has finished and the
321  * chip can be de-selected.
322  *
323  * The routine ensures that the nFCE line is correctly setup, and any
324  * platform specific selection code is called to route nFCE to the specific
325  * chip.
326  */
327 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
328 {
329         struct s3c2410_nand_info *info;
330         struct s3c2410_nand_mtd *nmtd;
331         struct nand_chip *this = mtd->priv;
332         unsigned long cur;
333
334         nmtd = this->priv;
335         info = nmtd->info;
336
337         if (chip != -1 && allow_clk_stop(info))
338                 clk_enable(info->clk);
339
340         cur = readl(info->sel_reg);
341
342         if (chip == -1) {
343                 cur |= info->sel_bit;
344         } else {
345                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
346                         dev_err(info->device, "invalid chip %d\n", chip);
347                         return;
348                 }
349
350                 if (info->platform != NULL) {
351                         if (info->platform->select_chip != NULL)
352                                 (info->platform->select_chip) (nmtd->set, chip);
353                 }
354
355                 cur &= ~info->sel_bit;
356         }
357
358         writel(cur, info->sel_reg);
359
360         if (chip == -1 && allow_clk_stop(info))
361                 clk_disable(info->clk);
362 }
363
364 /* s3c2410_nand_hwcontrol
365  *
366  * Issue command and address cycles to the chip
367 */
368
369 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
370                                    unsigned int ctrl)
371 {
372         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
373
374         if (cmd == NAND_CMD_NONE)
375                 return;
376
377         if (ctrl & NAND_CLE)
378                 writeb(cmd, info->regs + S3C2410_NFCMD);
379         else
380                 writeb(cmd, info->regs + S3C2410_NFADDR);
381 }
382
383 /* command and control functions */
384
385 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
386                                    unsigned int ctrl)
387 {
388         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
389
390         if (cmd == NAND_CMD_NONE)
391                 return;
392
393         if (ctrl & NAND_CLE)
394                 writeb(cmd, info->regs + S3C2440_NFCMD);
395         else
396                 writeb(cmd, info->regs + S3C2440_NFADDR);
397 }
398
399 /* s3c2410_nand_devready()
400  *
401  * returns 0 if the nand is busy, 1 if it is ready
402 */
403
404 static int s3c2410_nand_devready(struct mtd_info *mtd)
405 {
406         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
407         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
408 }
409
410 static int s3c2440_nand_devready(struct mtd_info *mtd)
411 {
412         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
413         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
414 }
415
416 static int s3c2412_nand_devready(struct mtd_info *mtd)
417 {
418         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
419         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
420 }
421
422 /* ECC handling functions */
423
424 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
425                                      u_char *read_ecc, u_char *calc_ecc)
426 {
427         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
428         unsigned int diff0, diff1, diff2;
429         unsigned int bit, byte;
430
431         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
432
433         diff0 = read_ecc[0] ^ calc_ecc[0];
434         diff1 = read_ecc[1] ^ calc_ecc[1];
435         diff2 = read_ecc[2] ^ calc_ecc[2];
436
437         pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
438                  __func__,
439                  read_ecc[0], read_ecc[1], read_ecc[2],
440                  calc_ecc[0], calc_ecc[1], calc_ecc[2],
441                  diff0, diff1, diff2);
442
443         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
444                 return 0;               /* ECC is ok */
445
446         /* sometimes people do not think about using the ECC, so check
447          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
448          * the error, on the assumption that this is an un-eccd page.
449          */
450         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
451             && info->platform->ignore_unset_ecc)
452                 return 0;
453
454         /* Can we correct this ECC (ie, one row and column change).
455          * Note, this is similar to the 256 error code on smartmedia */
456
457         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
458             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
459             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
460                 /* calculate the bit position of the error */
461
462                 bit  = ((diff2 >> 3) & 1) |
463                        ((diff2 >> 4) & 2) |
464                        ((diff2 >> 5) & 4);
465
466                 /* calculate the byte position of the error */
467
468                 byte = ((diff2 << 7) & 0x100) |
469                        ((diff1 << 0) & 0x80)  |
470                        ((diff1 << 1) & 0x40)  |
471                        ((diff1 << 2) & 0x20)  |
472                        ((diff1 << 3) & 0x10)  |
473                        ((diff0 >> 4) & 0x08)  |
474                        ((diff0 >> 3) & 0x04)  |
475                        ((diff0 >> 2) & 0x02)  |
476                        ((diff0 >> 1) & 0x01);
477
478                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
479                         bit, byte);
480
481                 dat[byte] ^= (1 << bit);
482                 return 1;
483         }
484
485         /* if there is only one bit difference in the ECC, then
486          * one of only a row or column parity has changed, which
487          * means the error is most probably in the ECC itself */
488
489         diff0 |= (diff1 << 8);
490         diff0 |= (diff2 << 16);
491
492         if ((diff0 & ~(1<<fls(diff0))) == 0)
493                 return 1;
494
495         return -1;
496 }
497
498 /* ECC functions
499  *
500  * These allow the s3c2410 and s3c2440 to use the controller's ECC
501  * generator block to ECC the data as it passes through]
502 */
503
504 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
505 {
506         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
507         unsigned long ctrl;
508
509         ctrl = readl(info->regs + S3C2410_NFCONF);
510         ctrl |= S3C2410_NFCONF_INITECC;
511         writel(ctrl, info->regs + S3C2410_NFCONF);
512 }
513
514 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
515 {
516         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
517         unsigned long ctrl;
518
519         ctrl = readl(info->regs + S3C2440_NFCONT);
520         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
521 }
522
523 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
524 {
525         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
526         unsigned long ctrl;
527
528         ctrl = readl(info->regs + S3C2440_NFCONT);
529         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
530 }
531
532 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
533 {
534         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
535
536         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
537         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
538         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
539
540         pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
541                  ecc_code[0], ecc_code[1], ecc_code[2]);
542
543         return 0;
544 }
545
546 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
547 {
548         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
549         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
550
551         ecc_code[0] = ecc;
552         ecc_code[1] = ecc >> 8;
553         ecc_code[2] = ecc >> 16;
554
555         pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
556
557         return 0;
558 }
559
560 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
561 {
562         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
563         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
564
565         ecc_code[0] = ecc;
566         ecc_code[1] = ecc >> 8;
567         ecc_code[2] = ecc >> 16;
568
569         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
570
571         return 0;
572 }
573
574 /* over-ride the standard functions for a little more speed. We can
575  * use read/write block to move the data buffers to/from the controller
576 */
577
578 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
579 {
580         struct nand_chip *this = mtd->priv;
581         readsb(this->IO_ADDR_R, buf, len);
582 }
583
584 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
585 {
586         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
587
588         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
589
590         /* cleanup if we've got less than a word to do */
591         if (len & 3) {
592                 buf += len & ~3;
593
594                 for (; len & 3; len--)
595                         *buf++ = readb(info->regs + S3C2440_NFDATA);
596         }
597 }
598
599 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
600 {
601         struct nand_chip *this = mtd->priv;
602         writesb(this->IO_ADDR_W, buf, len);
603 }
604
605 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
606 {
607         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
608
609         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
610
611         /* cleanup any fractional write */
612         if (len & 3) {
613                 buf += len & ~3;
614
615                 for (; len & 3; len--, buf++)
616                         writeb(*buf, info->regs + S3C2440_NFDATA);
617         }
618 }
619
620 /* cpufreq driver support */
621
622 #ifdef CONFIG_CPU_FREQ
623
624 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
625                                           unsigned long val, void *data)
626 {
627         struct s3c2410_nand_info *info;
628         unsigned long newclk;
629
630         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
631         newclk = clk_get_rate(info->clk);
632
633         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
634             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
635                 s3c2410_nand_setrate(info);
636         }
637
638         return 0;
639 }
640
641 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
642 {
643         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
644
645         return cpufreq_register_notifier(&info->freq_transition,
646                                          CPUFREQ_TRANSITION_NOTIFIER);
647 }
648
649 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
650 {
651         cpufreq_unregister_notifier(&info->freq_transition,
652                                     CPUFREQ_TRANSITION_NOTIFIER);
653 }
654
655 #else
656 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
657 {
658         return 0;
659 }
660
661 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
662 {
663 }
664 #endif
665
666 /* device management functions */
667
668 static int s3c24xx_nand_remove(struct platform_device *pdev)
669 {
670         struct s3c2410_nand_info *info = to_nand_info(pdev);
671
672         platform_set_drvdata(pdev, NULL);
673
674         if (info == NULL)
675                 return 0;
676
677         s3c2410_nand_cpufreq_deregister(info);
678
679         /* Release all our mtds  and their partitions, then go through
680          * freeing the resources used
681          */
682
683         if (info->mtds != NULL) {
684                 struct s3c2410_nand_mtd *ptr = info->mtds;
685                 int mtdno;
686
687                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
688                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
689                         nand_release(&ptr->mtd);
690                 }
691
692                 kfree(info->mtds);
693         }
694
695         /* free the common resources */
696
697         if (info->clk != NULL && !IS_ERR(info->clk)) {
698                 if (!allow_clk_stop(info))
699                         clk_disable(info->clk);
700                 clk_put(info->clk);
701         }
702
703         if (info->regs != NULL) {
704                 iounmap(info->regs);
705                 info->regs = NULL;
706         }
707
708         if (info->area != NULL) {
709                 release_resource(info->area);
710                 kfree(info->area);
711                 info->area = NULL;
712         }
713
714         kfree(info);
715
716         return 0;
717 }
718
719 #ifdef CONFIG_MTD_PARTITIONS
720 const char *part_probes[] = { "cmdlinepart", NULL };
721 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
722                                       struct s3c2410_nand_mtd *mtd,
723                                       struct s3c2410_nand_set *set)
724 {
725         struct mtd_partition *part_info;
726         int nr_part = 0;
727
728         if (set == NULL)
729                 return add_mtd_device(&mtd->mtd);
730
731         if (set->nr_partitions == 0) {
732                 mtd->mtd.name = set->name;
733                 nr_part = parse_mtd_partitions(&mtd->mtd, part_probes,
734                                                 &part_info, 0);
735         } else {
736                 if (set->nr_partitions > 0 && set->partitions != NULL) {
737                         nr_part = set->nr_partitions;
738                         part_info = set->partitions;
739                 }
740         }
741
742         if (nr_part > 0 && part_info)
743                 return add_mtd_partitions(&mtd->mtd, part_info, nr_part);
744
745         return add_mtd_device(&mtd->mtd);
746 }
747 #else
748 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
749                                       struct s3c2410_nand_mtd *mtd,
750                                       struct s3c2410_nand_set *set)
751 {
752         return add_mtd_device(&mtd->mtd);
753 }
754 #endif
755
756 /**
757  * s3c2410_nand_init_chip - initialise a single instance of an chip
758  * @info: The base NAND controller the chip is on.
759  * @nmtd: The new controller MTD instance to fill in.
760  * @set: The information passed from the board specific platform data.
761  *
762  * Initialise the given @nmtd from the information in @info and @set. This
763  * readies the structure for use with the MTD layer functions by ensuring
764  * all pointers are setup and the necessary control routines selected.
765  */
766 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
767                                    struct s3c2410_nand_mtd *nmtd,
768                                    struct s3c2410_nand_set *set)
769 {
770         struct nand_chip *chip = &nmtd->chip;
771         void __iomem *regs = info->regs;
772
773         chip->write_buf    = s3c2410_nand_write_buf;
774         chip->read_buf     = s3c2410_nand_read_buf;
775         chip->select_chip  = s3c2410_nand_select_chip;
776         chip->chip_delay   = 50;
777         chip->priv         = nmtd;
778         chip->options      = 0;
779         chip->controller   = &info->controller;
780
781         switch (info->cpu_type) {
782         case TYPE_S3C2410:
783                 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
784                 info->sel_reg   = regs + S3C2410_NFCONF;
785                 info->sel_bit   = S3C2410_NFCONF_nFCE;
786                 chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
787                 chip->dev_ready = s3c2410_nand_devready;
788                 break;
789
790         case TYPE_S3C2440:
791                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
792                 info->sel_reg   = regs + S3C2440_NFCONT;
793                 info->sel_bit   = S3C2440_NFCONT_nFCE;
794                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
795                 chip->dev_ready = s3c2440_nand_devready;
796                 chip->read_buf  = s3c2440_nand_read_buf;
797                 chip->write_buf = s3c2440_nand_write_buf;
798                 break;
799
800         case TYPE_S3C2412:
801                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
802                 info->sel_reg   = regs + S3C2440_NFCONT;
803                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
804                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
805                 chip->dev_ready = s3c2412_nand_devready;
806
807                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
808                         dev_info(info->device, "System booted from NAND\n");
809
810                 break;
811         }
812
813         chip->IO_ADDR_R = chip->IO_ADDR_W;
814
815         nmtd->info         = info;
816         nmtd->mtd.priv     = chip;
817         nmtd->mtd.owner    = THIS_MODULE;
818         nmtd->set          = set;
819
820         if (hardware_ecc) {
821                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
822                 chip->ecc.correct   = s3c2410_nand_correct_data;
823                 chip->ecc.mode      = NAND_ECC_HW;
824
825                 switch (info->cpu_type) {
826                 case TYPE_S3C2410:
827                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
828                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
829                         break;
830
831                 case TYPE_S3C2412:
832                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
833                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
834                         break;
835
836                 case TYPE_S3C2440:
837                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
838                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
839                         break;
840
841                 }
842         } else {
843                 chip->ecc.mode      = NAND_ECC_SOFT;
844         }
845
846         if (set->ecc_layout != NULL)
847                 chip->ecc.layout = set->ecc_layout;
848
849         if (set->disable_ecc)
850                 chip->ecc.mode  = NAND_ECC_NONE;
851
852         switch (chip->ecc.mode) {
853         case NAND_ECC_NONE:
854                 dev_info(info->device, "NAND ECC disabled\n");
855                 break;
856         case NAND_ECC_SOFT:
857                 dev_info(info->device, "NAND soft ECC\n");
858                 break;
859         case NAND_ECC_HW:
860                 dev_info(info->device, "NAND hardware ECC\n");
861                 break;
862         default:
863                 dev_info(info->device, "NAND ECC UNKNOWN\n");
864                 break;
865         }
866
867         /* If you use u-boot BBT creation code, specifying this flag will
868          * let the kernel fish out the BBT from the NAND, and also skip the
869          * full NAND scan that can take 1/2s or so. Little things... */
870         if (set->flash_bbt)
871                 chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
872 }
873
874 /**
875  * s3c2410_nand_update_chip - post probe update
876  * @info: The controller instance.
877  * @nmtd: The driver version of the MTD instance.
878  *
879  * This routine is called after the chip probe has succesfully completed
880  * and the relevant per-chip information updated. This call ensure that
881  * we update the internal state accordingly.
882  *
883  * The internal state is currently limited to the ECC state information.
884 */
885 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
886                                      struct s3c2410_nand_mtd *nmtd)
887 {
888         struct nand_chip *chip = &nmtd->chip;
889
890         dev_dbg(info->device, "chip %p => page shift %d\n",
891                 chip, chip->page_shift);
892
893         if (chip->ecc.mode != NAND_ECC_HW)
894                 return;
895
896                 /* change the behaviour depending on wether we are using
897                  * the large or small page nand device */
898
899         if (chip->page_shift > 10) {
900                 chip->ecc.size      = 256;
901                 chip->ecc.bytes     = 3;
902         } else {
903                 chip->ecc.size      = 512;
904                 chip->ecc.bytes     = 3;
905                 chip->ecc.layout    = &nand_hw_eccoob;
906         }
907 }
908
909 /* s3c24xx_nand_probe
910  *
911  * called by device layer when it finds a device matching
912  * one our driver can handled. This code checks to see if
913  * it can allocate all necessary resources then calls the
914  * nand layer to look for devices
915 */
916 static int s3c24xx_nand_probe(struct platform_device *pdev)
917 {
918         struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
919         enum s3c_cpu_type cpu_type; 
920         struct s3c2410_nand_info *info;
921         struct s3c2410_nand_mtd *nmtd;
922         struct s3c2410_nand_set *sets;
923         struct resource *res;
924         int err = 0;
925         int size;
926         int nr_sets;
927         int setno;
928
929         cpu_type = platform_get_device_id(pdev)->driver_data;
930
931         pr_debug("s3c2410_nand_probe(%p)\n", pdev);
932
933         info = kmalloc(sizeof(*info), GFP_KERNEL);
934         if (info == NULL) {
935                 dev_err(&pdev->dev, "no memory for flash info\n");
936                 err = -ENOMEM;
937                 goto exit_error;
938         }
939
940         memset(info, 0, sizeof(*info));
941         platform_set_drvdata(pdev, info);
942
943         spin_lock_init(&info->controller.lock);
944         init_waitqueue_head(&info->controller.wq);
945
946         /* get the clock source and enable it */
947
948         info->clk = clk_get(&pdev->dev, "nand");
949         if (IS_ERR(info->clk)) {
950                 dev_err(&pdev->dev, "failed to get clock\n");
951                 err = -ENOENT;
952                 goto exit_error;
953         }
954
955         clk_enable(info->clk);
956
957         /* allocate and map the resource */
958
959         /* currently we assume we have the one resource */
960         res  = pdev->resource;
961         size = res->end - res->start + 1;
962
963         info->area = request_mem_region(res->start, size, pdev->name);
964
965         if (info->area == NULL) {
966                 dev_err(&pdev->dev, "cannot reserve register region\n");
967                 err = -ENOENT;
968                 goto exit_error;
969         }
970
971         info->device     = &pdev->dev;
972         info->platform   = plat;
973         info->regs       = ioremap(res->start, size);
974         info->cpu_type   = cpu_type;
975
976         if (info->regs == NULL) {
977                 dev_err(&pdev->dev, "cannot reserve register region\n");
978                 err = -EIO;
979                 goto exit_error;
980         }
981
982         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
983
984         /* initialise the hardware */
985
986         err = s3c2410_nand_inithw(info);
987         if (err != 0)
988                 goto exit_error;
989
990         sets = (plat != NULL) ? plat->sets : NULL;
991         nr_sets = (plat != NULL) ? plat->nr_sets : 1;
992
993         info->mtd_count = nr_sets;
994
995         /* allocate our information */
996
997         size = nr_sets * sizeof(*info->mtds);
998         info->mtds = kmalloc(size, GFP_KERNEL);
999         if (info->mtds == NULL) {
1000                 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1001                 err = -ENOMEM;
1002                 goto exit_error;
1003         }
1004
1005         memset(info->mtds, 0, size);
1006
1007         /* initialise all possible chips */
1008
1009         nmtd = info->mtds;
1010
1011         for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1012                 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1013
1014                 s3c2410_nand_init_chip(info, nmtd, sets);
1015
1016                 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1017                                                  (sets) ? sets->nr_chips : 1);
1018
1019                 if (nmtd->scan_res == 0) {
1020                         s3c2410_nand_update_chip(info, nmtd);
1021                         nand_scan_tail(&nmtd->mtd);
1022                         s3c2410_nand_add_partition(info, nmtd, sets);
1023                 }
1024
1025                 if (sets != NULL)
1026                         sets++;
1027         }
1028
1029         err = s3c2410_nand_cpufreq_register(info);
1030         if (err < 0) {
1031                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1032                 goto exit_error;
1033         }
1034
1035         if (allow_clk_stop(info)) {
1036                 dev_info(&pdev->dev, "clock idle support enabled\n");
1037                 clk_disable(info->clk);
1038         }
1039
1040         pr_debug("initialised ok\n");
1041         return 0;
1042
1043  exit_error:
1044         s3c24xx_nand_remove(pdev);
1045
1046         if (err == 0)
1047                 err = -EINVAL;
1048         return err;
1049 }
1050
1051 /* PM Support */
1052 #ifdef CONFIG_PM
1053
1054 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1055 {
1056         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1057
1058         if (info) {
1059                 info->save_sel = readl(info->sel_reg);
1060
1061                 /* For the moment, we must ensure nFCE is high during
1062                  * the time we are suspended. This really should be
1063                  * handled by suspending the MTDs we are using, but
1064                  * that is currently not the case. */
1065
1066                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1067
1068                 if (!allow_clk_stop(info))
1069                         clk_disable(info->clk);
1070         }
1071
1072         return 0;
1073 }
1074
1075 static int s3c24xx_nand_resume(struct platform_device *dev)
1076 {
1077         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1078         unsigned long sel;
1079
1080         if (info) {
1081                 clk_enable(info->clk);
1082                 s3c2410_nand_inithw(info);
1083
1084                 /* Restore the state of the nFCE line. */
1085
1086                 sel = readl(info->sel_reg);
1087                 sel &= ~info->sel_bit;
1088                 sel |= info->save_sel & info->sel_bit;
1089                 writel(sel, info->sel_reg);
1090
1091                 if (allow_clk_stop(info))
1092                         clk_disable(info->clk);
1093         }
1094
1095         return 0;
1096 }
1097
1098 #else
1099 #define s3c24xx_nand_suspend NULL
1100 #define s3c24xx_nand_resume NULL
1101 #endif
1102
1103 /* driver device registration */
1104
1105 static struct platform_device_id s3c24xx_driver_ids[] = {
1106         {
1107                 .name           = "s3c2410-nand",
1108                 .driver_data    = TYPE_S3C2410,
1109         }, {
1110                 .name           = "s3c2440-nand",
1111                 .driver_data    = TYPE_S3C2440,
1112         }, {
1113                 .name           = "s3c2412-nand",
1114                 .driver_data    = TYPE_S3C2412,
1115         },
1116         { }
1117 };
1118
1119 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1120
1121 static struct platform_driver s3c24xx_nand_driver = {
1122         .probe          = s3c24xx_nand_probe,
1123         .remove         = s3c24xx_nand_remove,
1124         .suspend        = s3c24xx_nand_suspend,
1125         .resume         = s3c24xx_nand_resume,
1126         .id_table       = s3c24xx_driver_ids,
1127         .driver         = {
1128                 .name   = "s3c24xx-nand",
1129                 .owner  = THIS_MODULE,
1130         },
1131 };
1132
1133 static int __init s3c2410_nand_init(void)
1134 {
1135         printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1136
1137         return platform_driver_register(&s3c24xx_nand_driver);
1138 }
1139
1140 static void __exit s3c2410_nand_exit(void)
1141 {
1142         platform_driver_unregister(&s3c24xx_nand_driver);
1143 }
1144
1145 module_init(s3c2410_nand_init);
1146 module_exit(s3c2410_nand_exit);
1147
1148 MODULE_LICENSE("GPL");
1149 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1150 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");