mtd: s3c2410 nand: convert to mtd_device_register()
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22 */
23
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25 #define DEBUG
26 #endif
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
45
46 #include <asm/io.h>
47
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
50
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
53 #else
54 static int hardware_ecc = 0;
55 #endif
56
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static const int clock_stop = 1;
59 #else
60 static const int clock_stop = 0;
61 #endif
62
63
64 /* new oob placement block for use with hardware ecc generation
65  */
66
67 static struct nand_ecclayout nand_hw_eccoob = {
68         .eccbytes = 3,
69         .eccpos = {0, 1, 2},
70         .oobfree = {{8, 8}}
71 };
72
73 /* controller and mtd information */
74
75 struct s3c2410_nand_info;
76
77 /**
78  * struct s3c2410_nand_mtd - driver MTD structure
79  * @mtd: The MTD instance to pass to the MTD layer.
80  * @chip: The NAND chip information.
81  * @set: The platform information supplied for this set of NAND chips.
82  * @info: Link back to the hardware information.
83  * @scan_res: The result from calling nand_scan_ident().
84 */
85 struct s3c2410_nand_mtd {
86         struct mtd_info                 mtd;
87         struct nand_chip                chip;
88         struct s3c2410_nand_set         *set;
89         struct s3c2410_nand_info        *info;
90         int                             scan_res;
91 };
92
93 enum s3c_cpu_type {
94         TYPE_S3C2410,
95         TYPE_S3C2412,
96         TYPE_S3C2440,
97 };
98
99 enum s3c_nand_clk_state {
100         CLOCK_DISABLE   = 0,
101         CLOCK_ENABLE,
102         CLOCK_SUSPEND,
103 };
104
105 /* overview of the s3c2410 nand state */
106
107 /**
108  * struct s3c2410_nand_info - NAND controller state.
109  * @mtds: An array of MTD instances on this controoler.
110  * @platform: The platform data for this board.
111  * @device: The platform device we bound to.
112  * @area: The IO area resource that came from request_mem_region().
113  * @clk: The clock resource for this controller.
114  * @regs: The area mapped for the hardware registers described by @area.
115  * @sel_reg: Pointer to the register controlling the NAND selection.
116  * @sel_bit: The bit in @sel_reg to select the NAND chip.
117  * @mtd_count: The number of MTDs created from this controller.
118  * @save_sel: The contents of @sel_reg to be saved over suspend.
119  * @clk_rate: The clock rate from @clk.
120  * @clk_state: The current clock state.
121  * @cpu_type: The exact type of this controller.
122  */
123 struct s3c2410_nand_info {
124         /* mtd info */
125         struct nand_hw_control          controller;
126         struct s3c2410_nand_mtd         *mtds;
127         struct s3c2410_platform_nand    *platform;
128
129         /* device info */
130         struct device                   *device;
131         struct resource                 *area;
132         struct clk                      *clk;
133         void __iomem                    *regs;
134         void __iomem                    *sel_reg;
135         int                             sel_bit;
136         int                             mtd_count;
137         unsigned long                   save_sel;
138         unsigned long                   clk_rate;
139         enum s3c_nand_clk_state         clk_state;
140
141         enum s3c_cpu_type               cpu_type;
142
143 #ifdef CONFIG_CPU_FREQ
144         struct notifier_block   freq_transition;
145 #endif
146 };
147
148 /* conversion functions */
149
150 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
151 {
152         return container_of(mtd, struct s3c2410_nand_mtd, mtd);
153 }
154
155 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
156 {
157         return s3c2410_nand_mtd_toours(mtd)->info;
158 }
159
160 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
161 {
162         return platform_get_drvdata(dev);
163 }
164
165 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
166 {
167         return dev->dev.platform_data;
168 }
169
170 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
171 {
172         return clock_stop;
173 }
174
175 /**
176  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
177  * @info: The controller instance.
178  * @new_state: State to which clock should be set.
179  */
180 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
181                 enum s3c_nand_clk_state new_state)
182 {
183         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
184                 return;
185
186         if (info->clk_state == CLOCK_ENABLE) {
187                 if (new_state != CLOCK_ENABLE)
188                         clk_disable(info->clk);
189         } else {
190                 if (new_state == CLOCK_ENABLE)
191                         clk_enable(info->clk);
192         }
193
194         info->clk_state = new_state;
195 }
196
197 /* timing calculations */
198
199 #define NS_IN_KHZ 1000000
200
201 /**
202  * s3c_nand_calc_rate - calculate timing data.
203  * @wanted: The cycle time in nanoseconds.
204  * @clk: The clock rate in kHz.
205  * @max: The maximum divider value.
206  *
207  * Calculate the timing value from the given parameters.
208  */
209 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
210 {
211         int result;
212
213         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
214
215         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
216
217         if (result > max) {
218                 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
219                 return -1;
220         }
221
222         if (result < 1)
223                 result = 1;
224
225         return result;
226 }
227
228 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
229
230 /* controller setup */
231
232 /**
233  * s3c2410_nand_setrate - setup controller timing information.
234  * @info: The controller instance.
235  *
236  * Given the information supplied by the platform, calculate and set
237  * the necessary timing registers in the hardware to generate the
238  * necessary timing cycles to the hardware.
239  */
240 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
241 {
242         struct s3c2410_platform_nand *plat = info->platform;
243         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
244         int tacls, twrph0, twrph1;
245         unsigned long clkrate = clk_get_rate(info->clk);
246         unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
247         unsigned long flags;
248
249         /* calculate the timing information for the controller */
250
251         info->clk_rate = clkrate;
252         clkrate /= 1000;        /* turn clock into kHz for ease of use */
253
254         if (plat != NULL) {
255                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
256                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
257                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
258         } else {
259                 /* default timings */
260                 tacls = tacls_max;
261                 twrph0 = 8;
262                 twrph1 = 8;
263         }
264
265         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
266                 dev_err(info->device, "cannot get suitable timings\n");
267                 return -EINVAL;
268         }
269
270         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
271                tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
272
273         switch (info->cpu_type) {
274         case TYPE_S3C2410:
275                 mask = (S3C2410_NFCONF_TACLS(3) |
276                         S3C2410_NFCONF_TWRPH0(7) |
277                         S3C2410_NFCONF_TWRPH1(7));
278                 set = S3C2410_NFCONF_EN;
279                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
280                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
281                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
282                 break;
283
284         case TYPE_S3C2440:
285         case TYPE_S3C2412:
286                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
287                         S3C2440_NFCONF_TWRPH0(7) |
288                         S3C2440_NFCONF_TWRPH1(7));
289
290                 set = S3C2440_NFCONF_TACLS(tacls - 1);
291                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
292                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
293                 break;
294
295         default:
296                 BUG();
297         }
298
299         local_irq_save(flags);
300
301         cfg = readl(info->regs + S3C2410_NFCONF);
302         cfg &= ~mask;
303         cfg |= set;
304         writel(cfg, info->regs + S3C2410_NFCONF);
305
306         local_irq_restore(flags);
307
308         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
309
310         return 0;
311 }
312
313 /**
314  * s3c2410_nand_inithw - basic hardware initialisation
315  * @info: The hardware state.
316  *
317  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
318  * to setup the hardware access speeds and set the controller to be enabled.
319 */
320 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
321 {
322         int ret;
323
324         ret = s3c2410_nand_setrate(info);
325         if (ret < 0)
326                 return ret;
327
328         switch (info->cpu_type) {
329         case TYPE_S3C2410:
330         default:
331                 break;
332
333         case TYPE_S3C2440:
334         case TYPE_S3C2412:
335                 /* enable the controller and de-assert nFCE */
336
337                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
338         }
339
340         return 0;
341 }
342
343 /**
344  * s3c2410_nand_select_chip - select the given nand chip
345  * @mtd: The MTD instance for this chip.
346  * @chip: The chip number.
347  *
348  * This is called by the MTD layer to either select a given chip for the
349  * @mtd instance, or to indicate that the access has finished and the
350  * chip can be de-selected.
351  *
352  * The routine ensures that the nFCE line is correctly setup, and any
353  * platform specific selection code is called to route nFCE to the specific
354  * chip.
355  */
356 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
357 {
358         struct s3c2410_nand_info *info;
359         struct s3c2410_nand_mtd *nmtd;
360         struct nand_chip *this = mtd->priv;
361         unsigned long cur;
362
363         nmtd = this->priv;
364         info = nmtd->info;
365
366         if (chip != -1)
367                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
368
369         cur = readl(info->sel_reg);
370
371         if (chip == -1) {
372                 cur |= info->sel_bit;
373         } else {
374                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
375                         dev_err(info->device, "invalid chip %d\n", chip);
376                         return;
377                 }
378
379                 if (info->platform != NULL) {
380                         if (info->platform->select_chip != NULL)
381                                 (info->platform->select_chip) (nmtd->set, chip);
382                 }
383
384                 cur &= ~info->sel_bit;
385         }
386
387         writel(cur, info->sel_reg);
388
389         if (chip == -1)
390                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
391 }
392
393 /* s3c2410_nand_hwcontrol
394  *
395  * Issue command and address cycles to the chip
396 */
397
398 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
399                                    unsigned int ctrl)
400 {
401         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
402
403         if (cmd == NAND_CMD_NONE)
404                 return;
405
406         if (ctrl & NAND_CLE)
407                 writeb(cmd, info->regs + S3C2410_NFCMD);
408         else
409                 writeb(cmd, info->regs + S3C2410_NFADDR);
410 }
411
412 /* command and control functions */
413
414 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
415                                    unsigned int ctrl)
416 {
417         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
418
419         if (cmd == NAND_CMD_NONE)
420                 return;
421
422         if (ctrl & NAND_CLE)
423                 writeb(cmd, info->regs + S3C2440_NFCMD);
424         else
425                 writeb(cmd, info->regs + S3C2440_NFADDR);
426 }
427
428 /* s3c2410_nand_devready()
429  *
430  * returns 0 if the nand is busy, 1 if it is ready
431 */
432
433 static int s3c2410_nand_devready(struct mtd_info *mtd)
434 {
435         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
436         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
437 }
438
439 static int s3c2440_nand_devready(struct mtd_info *mtd)
440 {
441         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
442         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
443 }
444
445 static int s3c2412_nand_devready(struct mtd_info *mtd)
446 {
447         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
448         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
449 }
450
451 /* ECC handling functions */
452
453 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
454                                      u_char *read_ecc, u_char *calc_ecc)
455 {
456         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
457         unsigned int diff0, diff1, diff2;
458         unsigned int bit, byte;
459
460         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
461
462         diff0 = read_ecc[0] ^ calc_ecc[0];
463         diff1 = read_ecc[1] ^ calc_ecc[1];
464         diff2 = read_ecc[2] ^ calc_ecc[2];
465
466         pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
467                  __func__,
468                  read_ecc[0], read_ecc[1], read_ecc[2],
469                  calc_ecc[0], calc_ecc[1], calc_ecc[2],
470                  diff0, diff1, diff2);
471
472         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
473                 return 0;               /* ECC is ok */
474
475         /* sometimes people do not think about using the ECC, so check
476          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
477          * the error, on the assumption that this is an un-eccd page.
478          */
479         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
480             && info->platform->ignore_unset_ecc)
481                 return 0;
482
483         /* Can we correct this ECC (ie, one row and column change).
484          * Note, this is similar to the 256 error code on smartmedia */
485
486         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
487             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
488             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
489                 /* calculate the bit position of the error */
490
491                 bit  = ((diff2 >> 3) & 1) |
492                        ((diff2 >> 4) & 2) |
493                        ((diff2 >> 5) & 4);
494
495                 /* calculate the byte position of the error */
496
497                 byte = ((diff2 << 7) & 0x100) |
498                        ((diff1 << 0) & 0x80)  |
499                        ((diff1 << 1) & 0x40)  |
500                        ((diff1 << 2) & 0x20)  |
501                        ((diff1 << 3) & 0x10)  |
502                        ((diff0 >> 4) & 0x08)  |
503                        ((diff0 >> 3) & 0x04)  |
504                        ((diff0 >> 2) & 0x02)  |
505                        ((diff0 >> 1) & 0x01);
506
507                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
508                         bit, byte);
509
510                 dat[byte] ^= (1 << bit);
511                 return 1;
512         }
513
514         /* if there is only one bit difference in the ECC, then
515          * one of only a row or column parity has changed, which
516          * means the error is most probably in the ECC itself */
517
518         diff0 |= (diff1 << 8);
519         diff0 |= (diff2 << 16);
520
521         if ((diff0 & ~(1<<fls(diff0))) == 0)
522                 return 1;
523
524         return -1;
525 }
526
527 /* ECC functions
528  *
529  * These allow the s3c2410 and s3c2440 to use the controller's ECC
530  * generator block to ECC the data as it passes through]
531 */
532
533 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
534 {
535         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
536         unsigned long ctrl;
537
538         ctrl = readl(info->regs + S3C2410_NFCONF);
539         ctrl |= S3C2410_NFCONF_INITECC;
540         writel(ctrl, info->regs + S3C2410_NFCONF);
541 }
542
543 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
544 {
545         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
546         unsigned long ctrl;
547
548         ctrl = readl(info->regs + S3C2440_NFCONT);
549         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
550 }
551
552 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
553 {
554         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
555         unsigned long ctrl;
556
557         ctrl = readl(info->regs + S3C2440_NFCONT);
558         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
559 }
560
561 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
562 {
563         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
564
565         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
566         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
567         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
568
569         pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
570                  ecc_code[0], ecc_code[1], ecc_code[2]);
571
572         return 0;
573 }
574
575 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
576 {
577         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
578         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
579
580         ecc_code[0] = ecc;
581         ecc_code[1] = ecc >> 8;
582         ecc_code[2] = ecc >> 16;
583
584         pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
585
586         return 0;
587 }
588
589 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
590 {
591         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
593
594         ecc_code[0] = ecc;
595         ecc_code[1] = ecc >> 8;
596         ecc_code[2] = ecc >> 16;
597
598         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
599
600         return 0;
601 }
602
603 /* over-ride the standard functions for a little more speed. We can
604  * use read/write block to move the data buffers to/from the controller
605 */
606
607 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
608 {
609         struct nand_chip *this = mtd->priv;
610         readsb(this->IO_ADDR_R, buf, len);
611 }
612
613 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
614 {
615         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
616
617         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
618
619         /* cleanup if we've got less than a word to do */
620         if (len & 3) {
621                 buf += len & ~3;
622
623                 for (; len & 3; len--)
624                         *buf++ = readb(info->regs + S3C2440_NFDATA);
625         }
626 }
627
628 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
629 {
630         struct nand_chip *this = mtd->priv;
631         writesb(this->IO_ADDR_W, buf, len);
632 }
633
634 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
635 {
636         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
637
638         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
639
640         /* cleanup any fractional write */
641         if (len & 3) {
642                 buf += len & ~3;
643
644                 for (; len & 3; len--, buf++)
645                         writeb(*buf, info->regs + S3C2440_NFDATA);
646         }
647 }
648
649 /* cpufreq driver support */
650
651 #ifdef CONFIG_CPU_FREQ
652
653 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
654                                           unsigned long val, void *data)
655 {
656         struct s3c2410_nand_info *info;
657         unsigned long newclk;
658
659         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
660         newclk = clk_get_rate(info->clk);
661
662         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
663             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
664                 s3c2410_nand_setrate(info);
665         }
666
667         return 0;
668 }
669
670 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
671 {
672         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
673
674         return cpufreq_register_notifier(&info->freq_transition,
675                                          CPUFREQ_TRANSITION_NOTIFIER);
676 }
677
678 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
679 {
680         cpufreq_unregister_notifier(&info->freq_transition,
681                                     CPUFREQ_TRANSITION_NOTIFIER);
682 }
683
684 #else
685 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
686 {
687         return 0;
688 }
689
690 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
691 {
692 }
693 #endif
694
695 /* device management functions */
696
697 static int s3c24xx_nand_remove(struct platform_device *pdev)
698 {
699         struct s3c2410_nand_info *info = to_nand_info(pdev);
700
701         platform_set_drvdata(pdev, NULL);
702
703         if (info == NULL)
704                 return 0;
705
706         s3c2410_nand_cpufreq_deregister(info);
707
708         /* Release all our mtds  and their partitions, then go through
709          * freeing the resources used
710          */
711
712         if (info->mtds != NULL) {
713                 struct s3c2410_nand_mtd *ptr = info->mtds;
714                 int mtdno;
715
716                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
717                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
718                         nand_release(&ptr->mtd);
719                 }
720
721                 kfree(info->mtds);
722         }
723
724         /* free the common resources */
725
726         if (info->clk != NULL && !IS_ERR(info->clk)) {
727                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
728                 clk_put(info->clk);
729         }
730
731         if (info->regs != NULL) {
732                 iounmap(info->regs);
733                 info->regs = NULL;
734         }
735
736         if (info->area != NULL) {
737                 release_resource(info->area);
738                 kfree(info->area);
739                 info->area = NULL;
740         }
741
742         kfree(info);
743
744         return 0;
745 }
746
747 const char *part_probes[] = { "cmdlinepart", NULL };
748 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
749                                       struct s3c2410_nand_mtd *mtd,
750                                       struct s3c2410_nand_set *set)
751 {
752         struct mtd_partition *part_info;
753         int nr_part = 0;
754
755         if (set == NULL)
756                 return mtd_device_register(&mtd->mtd, NULL, 0);
757
758         mtd->mtd.name = set->name;
759         nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, &part_info, 0);
760
761         if (nr_part <= 0 && set->nr_partitions > 0) {
762                 nr_part = set->nr_partitions;
763                 part_info = set->partitions;
764         }
765
766         return mtd_device_register(&mtd->mtd, part_info, nr_part);
767 }
768
769 /**
770  * s3c2410_nand_init_chip - initialise a single instance of an chip
771  * @info: The base NAND controller the chip is on.
772  * @nmtd: The new controller MTD instance to fill in.
773  * @set: The information passed from the board specific platform data.
774  *
775  * Initialise the given @nmtd from the information in @info and @set. This
776  * readies the structure for use with the MTD layer functions by ensuring
777  * all pointers are setup and the necessary control routines selected.
778  */
779 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
780                                    struct s3c2410_nand_mtd *nmtd,
781                                    struct s3c2410_nand_set *set)
782 {
783         struct nand_chip *chip = &nmtd->chip;
784         void __iomem *regs = info->regs;
785
786         chip->write_buf    = s3c2410_nand_write_buf;
787         chip->read_buf     = s3c2410_nand_read_buf;
788         chip->select_chip  = s3c2410_nand_select_chip;
789         chip->chip_delay   = 50;
790         chip->priv         = nmtd;
791         chip->options      = set->options;
792         chip->controller   = &info->controller;
793
794         switch (info->cpu_type) {
795         case TYPE_S3C2410:
796                 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
797                 info->sel_reg   = regs + S3C2410_NFCONF;
798                 info->sel_bit   = S3C2410_NFCONF_nFCE;
799                 chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
800                 chip->dev_ready = s3c2410_nand_devready;
801                 break;
802
803         case TYPE_S3C2440:
804                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
805                 info->sel_reg   = regs + S3C2440_NFCONT;
806                 info->sel_bit   = S3C2440_NFCONT_nFCE;
807                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
808                 chip->dev_ready = s3c2440_nand_devready;
809                 chip->read_buf  = s3c2440_nand_read_buf;
810                 chip->write_buf = s3c2440_nand_write_buf;
811                 break;
812
813         case TYPE_S3C2412:
814                 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
815                 info->sel_reg   = regs + S3C2440_NFCONT;
816                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
817                 chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
818                 chip->dev_ready = s3c2412_nand_devready;
819
820                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
821                         dev_info(info->device, "System booted from NAND\n");
822
823                 break;
824         }
825
826         chip->IO_ADDR_R = chip->IO_ADDR_W;
827
828         nmtd->info         = info;
829         nmtd->mtd.priv     = chip;
830         nmtd->mtd.owner    = THIS_MODULE;
831         nmtd->set          = set;
832
833         if (hardware_ecc) {
834                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
835                 chip->ecc.correct   = s3c2410_nand_correct_data;
836                 chip->ecc.mode      = NAND_ECC_HW;
837
838                 switch (info->cpu_type) {
839                 case TYPE_S3C2410:
840                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
841                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
842                         break;
843
844                 case TYPE_S3C2412:
845                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
846                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
847                         break;
848
849                 case TYPE_S3C2440:
850                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
851                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
852                         break;
853
854                 }
855         } else {
856                 chip->ecc.mode      = NAND_ECC_SOFT;
857         }
858
859         if (set->ecc_layout != NULL)
860                 chip->ecc.layout = set->ecc_layout;
861
862         if (set->disable_ecc)
863                 chip->ecc.mode  = NAND_ECC_NONE;
864
865         switch (chip->ecc.mode) {
866         case NAND_ECC_NONE:
867                 dev_info(info->device, "NAND ECC disabled\n");
868                 break;
869         case NAND_ECC_SOFT:
870                 dev_info(info->device, "NAND soft ECC\n");
871                 break;
872         case NAND_ECC_HW:
873                 dev_info(info->device, "NAND hardware ECC\n");
874                 break;
875         default:
876                 dev_info(info->device, "NAND ECC UNKNOWN\n");
877                 break;
878         }
879
880         /* If you use u-boot BBT creation code, specifying this flag will
881          * let the kernel fish out the BBT from the NAND, and also skip the
882          * full NAND scan that can take 1/2s or so. Little things... */
883         if (set->flash_bbt)
884                 chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
885 }
886
887 /**
888  * s3c2410_nand_update_chip - post probe update
889  * @info: The controller instance.
890  * @nmtd: The driver version of the MTD instance.
891  *
892  * This routine is called after the chip probe has successfully completed
893  * and the relevant per-chip information updated. This call ensure that
894  * we update the internal state accordingly.
895  *
896  * The internal state is currently limited to the ECC state information.
897 */
898 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
899                                      struct s3c2410_nand_mtd *nmtd)
900 {
901         struct nand_chip *chip = &nmtd->chip;
902
903         dev_dbg(info->device, "chip %p => page shift %d\n",
904                 chip, chip->page_shift);
905
906         if (chip->ecc.mode != NAND_ECC_HW)
907                 return;
908
909                 /* change the behaviour depending on wether we are using
910                  * the large or small page nand device */
911
912         if (chip->page_shift > 10) {
913                 chip->ecc.size      = 256;
914                 chip->ecc.bytes     = 3;
915         } else {
916                 chip->ecc.size      = 512;
917                 chip->ecc.bytes     = 3;
918                 chip->ecc.layout    = &nand_hw_eccoob;
919         }
920 }
921
922 /* s3c24xx_nand_probe
923  *
924  * called by device layer when it finds a device matching
925  * one our driver can handled. This code checks to see if
926  * it can allocate all necessary resources then calls the
927  * nand layer to look for devices
928 */
929 static int s3c24xx_nand_probe(struct platform_device *pdev)
930 {
931         struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
932         enum s3c_cpu_type cpu_type; 
933         struct s3c2410_nand_info *info;
934         struct s3c2410_nand_mtd *nmtd;
935         struct s3c2410_nand_set *sets;
936         struct resource *res;
937         int err = 0;
938         int size;
939         int nr_sets;
940         int setno;
941
942         cpu_type = platform_get_device_id(pdev)->driver_data;
943
944         pr_debug("s3c2410_nand_probe(%p)\n", pdev);
945
946         info = kzalloc(sizeof(*info), GFP_KERNEL);
947         if (info == NULL) {
948                 dev_err(&pdev->dev, "no memory for flash info\n");
949                 err = -ENOMEM;
950                 goto exit_error;
951         }
952
953         platform_set_drvdata(pdev, info);
954
955         spin_lock_init(&info->controller.lock);
956         init_waitqueue_head(&info->controller.wq);
957
958         /* get the clock source and enable it */
959
960         info->clk = clk_get(&pdev->dev, "nand");
961         if (IS_ERR(info->clk)) {
962                 dev_err(&pdev->dev, "failed to get clock\n");
963                 err = -ENOENT;
964                 goto exit_error;
965         }
966
967         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
968
969         /* allocate and map the resource */
970
971         /* currently we assume we have the one resource */
972         res  = pdev->resource;
973         size = resource_size(res);
974
975         info->area = request_mem_region(res->start, size, pdev->name);
976
977         if (info->area == NULL) {
978                 dev_err(&pdev->dev, "cannot reserve register region\n");
979                 err = -ENOENT;
980                 goto exit_error;
981         }
982
983         info->device     = &pdev->dev;
984         info->platform   = plat;
985         info->regs       = ioremap(res->start, size);
986         info->cpu_type   = cpu_type;
987
988         if (info->regs == NULL) {
989                 dev_err(&pdev->dev, "cannot reserve register region\n");
990                 err = -EIO;
991                 goto exit_error;
992         }
993
994         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
995
996         /* initialise the hardware */
997
998         err = s3c2410_nand_inithw(info);
999         if (err != 0)
1000                 goto exit_error;
1001
1002         sets = (plat != NULL) ? plat->sets : NULL;
1003         nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1004
1005         info->mtd_count = nr_sets;
1006
1007         /* allocate our information */
1008
1009         size = nr_sets * sizeof(*info->mtds);
1010         info->mtds = kzalloc(size, GFP_KERNEL);
1011         if (info->mtds == NULL) {
1012                 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1013                 err = -ENOMEM;
1014                 goto exit_error;
1015         }
1016
1017         /* initialise all possible chips */
1018
1019         nmtd = info->mtds;
1020
1021         for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1022                 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1023
1024                 s3c2410_nand_init_chip(info, nmtd, sets);
1025
1026                 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1027                                                  (sets) ? sets->nr_chips : 1,
1028                                                  NULL);
1029
1030                 if (nmtd->scan_res == 0) {
1031                         s3c2410_nand_update_chip(info, nmtd);
1032                         nand_scan_tail(&nmtd->mtd);
1033                         s3c2410_nand_add_partition(info, nmtd, sets);
1034                 }
1035
1036                 if (sets != NULL)
1037                         sets++;
1038         }
1039
1040         err = s3c2410_nand_cpufreq_register(info);
1041         if (err < 0) {
1042                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1043                 goto exit_error;
1044         }
1045
1046         if (allow_clk_suspend(info)) {
1047                 dev_info(&pdev->dev, "clock idle support enabled\n");
1048                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1049         }
1050
1051         pr_debug("initialised ok\n");
1052         return 0;
1053
1054  exit_error:
1055         s3c24xx_nand_remove(pdev);
1056
1057         if (err == 0)
1058                 err = -EINVAL;
1059         return err;
1060 }
1061
1062 /* PM Support */
1063 #ifdef CONFIG_PM
1064
1065 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1066 {
1067         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1068
1069         if (info) {
1070                 info->save_sel = readl(info->sel_reg);
1071
1072                 /* For the moment, we must ensure nFCE is high during
1073                  * the time we are suspended. This really should be
1074                  * handled by suspending the MTDs we are using, but
1075                  * that is currently not the case. */
1076
1077                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1078
1079                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1080         }
1081
1082         return 0;
1083 }
1084
1085 static int s3c24xx_nand_resume(struct platform_device *dev)
1086 {
1087         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1088         unsigned long sel;
1089
1090         if (info) {
1091                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1092                 s3c2410_nand_inithw(info);
1093
1094                 /* Restore the state of the nFCE line. */
1095
1096                 sel = readl(info->sel_reg);
1097                 sel &= ~info->sel_bit;
1098                 sel |= info->save_sel & info->sel_bit;
1099                 writel(sel, info->sel_reg);
1100
1101                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1102         }
1103
1104         return 0;
1105 }
1106
1107 #else
1108 #define s3c24xx_nand_suspend NULL
1109 #define s3c24xx_nand_resume NULL
1110 #endif
1111
1112 /* driver device registration */
1113
1114 static struct platform_device_id s3c24xx_driver_ids[] = {
1115         {
1116                 .name           = "s3c2410-nand",
1117                 .driver_data    = TYPE_S3C2410,
1118         }, {
1119                 .name           = "s3c2440-nand",
1120                 .driver_data    = TYPE_S3C2440,
1121         }, {
1122                 .name           = "s3c2412-nand",
1123                 .driver_data    = TYPE_S3C2412,
1124         }, {
1125                 .name           = "s3c6400-nand",
1126                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1127         },
1128         { }
1129 };
1130
1131 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1132
1133 static struct platform_driver s3c24xx_nand_driver = {
1134         .probe          = s3c24xx_nand_probe,
1135         .remove         = s3c24xx_nand_remove,
1136         .suspend        = s3c24xx_nand_suspend,
1137         .resume         = s3c24xx_nand_resume,
1138         .id_table       = s3c24xx_driver_ids,
1139         .driver         = {
1140                 .name   = "s3c24xx-nand",
1141                 .owner  = THIS_MODULE,
1142         },
1143 };
1144
1145 static int __init s3c2410_nand_init(void)
1146 {
1147         printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1148
1149         return platform_driver_register(&s3c24xx_nand_driver);
1150 }
1151
1152 static void __exit s3c2410_nand_exit(void)
1153 {
1154         platform_driver_unregister(&s3c24xx_nand_driver);
1155 }
1156
1157 module_init(s3c2410_nand_init);
1158 module_exit(s3c2410_nand_exit);
1159
1160 MODULE_LICENSE("GPL");
1161 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1162 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");