fd81a9500b8be97df25ce480be47d395022f2a0b
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #define LOG_CATEGORY UCLASS_MTD
8
9 #include <common.h>
10 #include <clk.h>
11 #include <dm.h>
12 #include <log.h>
13 #include <nand.h>
14 #include <reset.h>
15 #include <dm/device_compat.h>
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iopoll.h>
21 #include <linux/ioport.h>
22
23 /* Bad block marker length */
24 #define FMC2_BBM_LEN                    2
25
26 /* ECC step size */
27 #define FMC2_ECC_STEP_SIZE              512
28
29 /* Command delay */
30 #define FMC2_RB_DELAY_US                30
31
32 /* Max chip enable */
33 #define FMC2_MAX_CE                     2
34
35 /* Timings */
36 #define FMC2_THIZ                       1
37 #define FMC2_TIO                        8000
38 #define FMC2_TSYNC                      3000
39 #define FMC2_PCR_TIMING_MASK            0xf
40 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
41
42 /* FMC2 Controller Registers */
43 #define FMC2_BCR1                       0x0
44 #define FMC2_PCR                        0x80
45 #define FMC2_SR                         0x84
46 #define FMC2_PMEM                       0x88
47 #define FMC2_PATT                       0x8c
48 #define FMC2_HECCR                      0x94
49 #define FMC2_BCHISR                     0x254
50 #define FMC2_BCHICR                     0x258
51 #define FMC2_BCHPBR1                    0x260
52 #define FMC2_BCHPBR2                    0x264
53 #define FMC2_BCHPBR3                    0x268
54 #define FMC2_BCHPBR4                    0x26c
55 #define FMC2_BCHDSR0                    0x27c
56 #define FMC2_BCHDSR1                    0x280
57 #define FMC2_BCHDSR2                    0x284
58 #define FMC2_BCHDSR3                    0x288
59 #define FMC2_BCHDSR4                    0x28c
60
61 /* Register: FMC2_BCR1 */
62 #define FMC2_BCR1_FMC2EN                BIT(31)
63
64 /* Register: FMC2_PCR */
65 #define FMC2_PCR_PWAITEN                BIT(1)
66 #define FMC2_PCR_PBKEN                  BIT(2)
67 #define FMC2_PCR_PWID                   GENMASK(5, 4)
68 #define FMC2_PCR_PWID_BUSWIDTH_8        0
69 #define FMC2_PCR_PWID_BUSWIDTH_16       1
70 #define FMC2_PCR_ECCEN                  BIT(6)
71 #define FMC2_PCR_ECCALG                 BIT(8)
72 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
73 #define FMC2_PCR_TCLR_DEFAULT           0xf
74 #define FMC2_PCR_TAR                    GENMASK(16, 13)
75 #define FMC2_PCR_TAR_DEFAULT            0xf
76 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
77 #define FMC2_PCR_ECCSS_512              1
78 #define FMC2_PCR_ECCSS_2048             3
79 #define FMC2_PCR_BCHECC                 BIT(24)
80 #define FMC2_PCR_WEN                    BIT(25)
81
82 /* Register: FMC2_SR */
83 #define FMC2_SR_NWRF                    BIT(6)
84
85 /* Register: FMC2_PMEM */
86 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
87 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
88 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
89 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
90 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
91
92 /* Register: FMC2_PATT */
93 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
94 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
95 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
96 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
97 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
98
99 /* Register: FMC2_BCHISR */
100 #define FMC2_BCHISR_DERF                BIT(1)
101 #define FMC2_BCHISR_EPBRF               BIT(4)
102
103 /* Register: FMC2_BCHICR */
104 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
105
106 /* Register: FMC2_BCHDSR0 */
107 #define FMC2_BCHDSR0_DUE                BIT(0)
108 #define FMC2_BCHDSR0_DEF                BIT(1)
109 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
110
111 /* Register: FMC2_BCHDSR1 */
112 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
113 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
114
115 /* Register: FMC2_BCHDSR2 */
116 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
117 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
118
119 /* Register: FMC2_BCHDSR3 */
120 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
121 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
122
123 /* Register: FMC2_BCHDSR4 */
124 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
125 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
126
127 #define FMC2_NSEC_PER_SEC               1000000000L
128
129 #define FMC2_TIMEOUT_5S                 5000000
130
131 enum stm32_fmc2_ecc {
132         FMC2_ECC_HAM = 1,
133         FMC2_ECC_BCH4 = 4,
134         FMC2_ECC_BCH8 = 8
135 };
136
137 struct stm32_fmc2_timings {
138         u8 tclr;
139         u8 tar;
140         u8 thiz;
141         u8 twait;
142         u8 thold_mem;
143         u8 tset_mem;
144         u8 thold_att;
145         u8 tset_att;
146 };
147
148 struct stm32_fmc2_nand {
149         struct nand_chip chip;
150         struct stm32_fmc2_timings timings;
151         int ncs;
152         int cs_used[FMC2_MAX_CE];
153 };
154
155 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
156 {
157         return container_of(chip, struct stm32_fmc2_nand, chip);
158 }
159
160 struct stm32_fmc2_nfc {
161         struct nand_hw_control base;
162         struct stm32_fmc2_nand nand;
163         struct nand_ecclayout ecclayout;
164         fdt_addr_t io_base;
165         fdt_addr_t data_base[FMC2_MAX_CE];
166         fdt_addr_t cmd_base[FMC2_MAX_CE];
167         fdt_addr_t addr_base[FMC2_MAX_CE];
168         struct clk clk;
169
170         u8 cs_assigned;
171         int cs_sel;
172 };
173
174 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
175 {
176         return container_of(base, struct stm32_fmc2_nfc, base);
177 }
178
179 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
180 {
181         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
182         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
183         struct stm32_fmc2_timings *timings = &nand->timings;
184         u32 pmem, patt;
185
186         /* Set tclr/tar timings */
187         clrsetbits_le32(nfc->io_base + FMC2_PCR,
188                         FMC2_PCR_TCLR | FMC2_PCR_TAR,
189                         FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
190                         FIELD_PREP(FMC2_PCR_TAR, timings->tar));
191
192         /* Set tset/twait/thold/thiz timings in common bank */
193         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
194         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
195         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
196         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
197         writel(pmem, nfc->io_base + FMC2_PMEM);
198
199         /* Set tset/twait/thold/thiz timings in attribut bank */
200         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
201         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
202         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
203         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
204         writel(patt, nfc->io_base + FMC2_PATT);
205 }
206
207 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
208 {
209         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
210         u32 pcr = 0, pcr_mask;
211
212         /* Configure ECC algorithm (default configuration is Hamming) */
213         pcr_mask = FMC2_PCR_ECCALG;
214         pcr_mask |= FMC2_PCR_BCHECC;
215         if (chip->ecc.strength == FMC2_ECC_BCH8) {
216                 pcr |= FMC2_PCR_ECCALG;
217                 pcr |= FMC2_PCR_BCHECC;
218         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
219                 pcr |= FMC2_PCR_ECCALG;
220         }
221
222         /* Set buswidth */
223         pcr_mask |= FMC2_PCR_PWID;
224         if (chip->options & NAND_BUSWIDTH_16)
225                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
226
227         /* Set ECC sector size */
228         pcr_mask |= FMC2_PCR_ECCSS;
229         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
230
231         clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
232 }
233
234 static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
235 {
236         struct nand_chip *chip = mtd_to_nand(mtd);
237         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
238         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
239
240         if (chipnr < 0 || chipnr >= nand->ncs)
241                 return;
242
243         if (nand->cs_used[chipnr] == nfc->cs_sel)
244                 return;
245
246         nfc->cs_sel = nand->cs_used[chipnr];
247         chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel];
248         chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel];
249
250         stm32_fmc2_nfc_setup(chip);
251         stm32_fmc2_nfc_timings_init(chip);
252 }
253
254 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
255                                            bool set)
256 {
257         u32 pcr;
258
259         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
260                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
261
262         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
263 }
264
265 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
266 {
267         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
268                         enable ? FMC2_PCR_ECCEN : 0);
269 }
270
271 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
272 {
273         writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
274 }
275
276 static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
277                                     unsigned int ctrl)
278 {
279         struct nand_chip *chip = mtd_to_nand(mtd);
280         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
281
282         if (cmd == NAND_CMD_NONE)
283                 return;
284
285         if (ctrl & NAND_CLE) {
286                 writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
287                 return;
288         }
289
290         writeb(cmd, nfc->addr_base[nfc->cs_sel]);
291 }
292
293 /*
294  * Enable ECC logic and reset syndrome/parity bits previously calculated
295  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
296  */
297 static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
298 {
299         struct nand_chip *chip = mtd_to_nand(mtd);
300         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
301
302         stm32_fmc2_nfc_set_ecc(nfc, false);
303
304         if (chip->ecc.strength != FMC2_ECC_HAM) {
305                 clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
306                                 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
307
308                 stm32_fmc2_nfc_clear_bch_irq(nfc);
309         }
310
311         stm32_fmc2_nfc_set_ecc(nfc, true);
312 }
313
314 /*
315  * ECC Hamming calculation
316  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
317  * max of 1-bit)
318  */
319 static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
320                                         u8 *ecc)
321 {
322         struct nand_chip *chip = mtd_to_nand(mtd);
323         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
324         u32 heccr, sr;
325         int ret;
326
327         ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
328                                  sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
329         if (ret < 0) {
330                 log_err("Ham timeout\n");
331                 return ret;
332         }
333
334         heccr = readl(nfc->io_base + FMC2_HECCR);
335
336         ecc[0] = heccr;
337         ecc[1] = heccr >> 8;
338         ecc[2] = heccr >> 16;
339
340         stm32_fmc2_nfc_set_ecc(nfc, false);
341
342         return 0;
343 }
344
345 static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
346                                       u8 *read_ecc, u8 *calc_ecc)
347 {
348         u8 bit_position = 0, b0, b1, b2;
349         u32 byte_addr = 0, b;
350         u32 i, shifting = 1;
351
352         /* Indicate which bit and byte is faulty (if any) */
353         b0 = read_ecc[0] ^ calc_ecc[0];
354         b1 = read_ecc[1] ^ calc_ecc[1];
355         b2 = read_ecc[2] ^ calc_ecc[2];
356         b = b0 | (b1 << 8) | (b2 << 16);
357
358         /* No errors */
359         if (likely(!b))
360                 return 0;
361
362         /* Calculate bit position */
363         for (i = 0; i < 3; i++) {
364                 switch (b % 4) {
365                 case 2:
366                         bit_position += shifting;
367                 case 1:
368                         break;
369                 default:
370                         return -EBADMSG;
371                 }
372                 shifting <<= 1;
373                 b >>= 2;
374         }
375
376         /* Calculate byte position */
377         shifting = 1;
378         for (i = 0; i < 9; i++) {
379                 switch (b % 4) {
380                 case 2:
381                         byte_addr += shifting;
382                 case 1:
383                         break;
384                 default:
385                         return -EBADMSG;
386                 }
387                 shifting <<= 1;
388                 b >>= 2;
389         }
390
391         /* Flip the bit */
392         dat[byte_addr] ^= (1 << bit_position);
393
394         return 1;
395 }
396
397 /*
398  * ECC BCH calculation and correction
399  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
400  * max of 4-bit/8-bit)
401  */
402
403 static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
404                                         u8 *ecc)
405 {
406         struct nand_chip *chip = mtd_to_nand(mtd);
407         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
408         u32 bchpbr, bchisr;
409         int ret;
410
411         /* Wait until the BCH code is ready */
412         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
413                                  bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
414         if (ret < 0) {
415                 log_err("Bch timeout\n");
416                 return ret;
417         }
418
419         /* Read parity bits */
420         bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
421         ecc[0] = bchpbr;
422         ecc[1] = bchpbr >> 8;
423         ecc[2] = bchpbr >> 16;
424         ecc[3] = bchpbr >> 24;
425
426         bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
427         ecc[4] = bchpbr;
428         ecc[5] = bchpbr >> 8;
429         ecc[6] = bchpbr >> 16;
430
431         if (chip->ecc.strength == FMC2_ECC_BCH8) {
432                 ecc[7] = bchpbr >> 24;
433
434                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
435                 ecc[8] = bchpbr;
436                 ecc[9] = bchpbr >> 8;
437                 ecc[10] = bchpbr >> 16;
438                 ecc[11] = bchpbr >> 24;
439
440                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
441                 ecc[12] = bchpbr;
442         }
443
444         stm32_fmc2_nfc_set_ecc(nfc, false);
445
446         return 0;
447 }
448
449 static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
450                                       u8 *read_ecc, u8 *calc_ecc)
451 {
452         struct nand_chip *chip = mtd_to_nand(mtd);
453         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
454         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
455         u16 pos[8];
456         int i, ret, den, eccsize = chip->ecc.size;
457         unsigned int nb_errs = 0;
458
459         /* Wait until the decoding error is ready */
460         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
461                                  bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
462         if (ret < 0) {
463                 log_err("Bch timeout\n");
464                 return ret;
465         }
466
467         bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
468         bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
469         bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
470         bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
471         bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
472
473         stm32_fmc2_nfc_set_ecc(nfc, false);
474
475         /* No errors found */
476         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
477                 return 0;
478
479         /* Too many errors detected */
480         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
481                 return -EBADMSG;
482
483         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
484         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
485         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
486         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
487         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
488         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
489         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
490         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
491
492         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
493         for (i = 0; i < den; i++) {
494                 if (pos[i] < eccsize * 8) {
495                         __change_bit(pos[i], (unsigned long *)dat);
496                         nb_errs++;
497                 }
498         }
499
500         return nb_errs;
501 }
502
503 static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
504                                     struct nand_chip *chip, u8 *buf,
505                                     int oob_required, int page)
506 {
507         int i, s, stat, eccsize = chip->ecc.size;
508         int eccbytes = chip->ecc.bytes;
509         int eccsteps = chip->ecc.steps;
510         int eccstrength = chip->ecc.strength;
511         u8 *p = buf;
512         u8 *ecc_calc = chip->buffers->ecccalc;
513         u8 *ecc_code = chip->buffers->ecccode;
514         unsigned int max_bitflips = 0;
515
516         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
517              s++, i += eccbytes, p += eccsize) {
518                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
519
520                 /* Read the nand page sector (512 bytes) */
521                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
522                 chip->read_buf(mtd, p, eccsize);
523
524                 /* Read the corresponding ECC bytes */
525                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
526                 chip->read_buf(mtd, ecc_code, eccbytes);
527
528                 /* Correct the data */
529                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
530                 if (stat == -EBADMSG)
531                         /* Check for empty pages with bitflips */
532                         stat = nand_check_erased_ecc_chunk(p, eccsize,
533                                                            ecc_code, eccbytes,
534                                                            NULL, 0,
535                                                            eccstrength);
536
537                 if (stat < 0) {
538                         mtd->ecc_stats.failed++;
539                 } else {
540                         mtd->ecc_stats.corrected += stat;
541                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
542                 }
543         }
544
545         /* Read oob */
546         if (oob_required) {
547                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
548                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
549         }
550
551         return max_bitflips;
552 }
553
554 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent)
555 {
556         u32 pcr = readl(nfc->io_base + FMC2_PCR);
557
558         /* Set CS used to undefined */
559         nfc->cs_sel = -1;
560
561         /* Enable wait feature and nand flash memory bank */
562         pcr |= FMC2_PCR_PWAITEN;
563         pcr |= FMC2_PCR_PBKEN;
564
565         /* Set buswidth to 8 bits mode for identification */
566         pcr &= ~FMC2_PCR_PWID;
567
568         /* ECC logic is disabled */
569         pcr &= ~FMC2_PCR_ECCEN;
570
571         /* Default mode */
572         pcr &= ~FMC2_PCR_ECCALG;
573         pcr &= ~FMC2_PCR_BCHECC;
574         pcr &= ~FMC2_PCR_WEN;
575
576         /* Set default ECC sector size */
577         pcr &= ~FMC2_PCR_ECCSS;
578         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
579
580         /* Set default tclr/tar timings */
581         pcr &= ~FMC2_PCR_TCLR;
582         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
583         pcr &= ~FMC2_PCR_TAR;
584         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
585
586         /* Enable FMC2 controller */
587         if (!has_parent)
588                 setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
589
590         writel(pcr, nfc->io_base + FMC2_PCR);
591         writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
592         writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
593 }
594
595 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
596                                         const struct nand_sdr_timings *sdrt)
597 {
598         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
599         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
600         struct stm32_fmc2_timings *tims = &nand->timings;
601         unsigned long hclk = clk_get_rate(&nfc->clk);
602         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
603         unsigned long timing, tar, tclr, thiz, twait;
604         unsigned long tset_mem, tset_att, thold_mem, thold_att;
605
606         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
607         timing = DIV_ROUND_UP(tar, hclkp) - 1;
608         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
609
610         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
611         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
612         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
613
614         tims->thiz = FMC2_THIZ;
615         thiz = (tims->thiz + 1) * hclkp;
616
617         /*
618          * tWAIT > tRP
619          * tWAIT > tWP
620          * tWAIT > tREA + tIO
621          */
622         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
623         twait = max_t(unsigned long, twait, sdrt->tWP_min);
624         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
625         timing = DIV_ROUND_UP(twait, hclkp);
626         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
627
628         /*
629          * tSETUP_MEM > tCS - tWAIT
630          * tSETUP_MEM > tALS - tWAIT
631          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
632          */
633         tset_mem = hclkp;
634         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
635                 tset_mem = sdrt->tCS_min - twait;
636         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
637                 tset_mem = sdrt->tALS_min - twait;
638         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
639             (tset_mem < sdrt->tDS_min - (twait - thiz)))
640                 tset_mem = sdrt->tDS_min - (twait - thiz);
641         timing = DIV_ROUND_UP(tset_mem, hclkp);
642         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
643
644         /*
645          * tHOLD_MEM > tCH
646          * tHOLD_MEM > tREH - tSETUP_MEM
647          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
648          */
649         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
650         if (sdrt->tREH_min > tset_mem &&
651             (thold_mem < sdrt->tREH_min - tset_mem))
652                 thold_mem = sdrt->tREH_min - tset_mem;
653         if ((sdrt->tRC_min > tset_mem + twait) &&
654             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
655                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
656         if ((sdrt->tWC_min > tset_mem + twait) &&
657             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
658                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
659         timing = DIV_ROUND_UP(thold_mem, hclkp);
660         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
661
662         /*
663          * tSETUP_ATT > tCS - tWAIT
664          * tSETUP_ATT > tCLS - tWAIT
665          * tSETUP_ATT > tALS - tWAIT
666          * tSETUP_ATT > tRHW - tHOLD_MEM
667          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
668          */
669         tset_att = hclkp;
670         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
671                 tset_att = sdrt->tCS_min - twait;
672         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
673                 tset_att = sdrt->tCLS_min - twait;
674         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
675                 tset_att = sdrt->tALS_min - twait;
676         if (sdrt->tRHW_min > thold_mem &&
677             (tset_att < sdrt->tRHW_min - thold_mem))
678                 tset_att = sdrt->tRHW_min - thold_mem;
679         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
680             (tset_att < sdrt->tDS_min - (twait - thiz)))
681                 tset_att = sdrt->tDS_min - (twait - thiz);
682         timing = DIV_ROUND_UP(tset_att, hclkp);
683         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
684
685         /*
686          * tHOLD_ATT > tALH
687          * tHOLD_ATT > tCH
688          * tHOLD_ATT > tCLH
689          * tHOLD_ATT > tCOH
690          * tHOLD_ATT > tDH
691          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
692          * tHOLD_ATT > tADL - tSETUP_MEM
693          * tHOLD_ATT > tWH - tSETUP_MEM
694          * tHOLD_ATT > tWHR - tSETUP_MEM
695          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
696          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
697          */
698         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
699         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
700         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
701         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
702         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
703         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
704             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
705                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
706         if (sdrt->tADL_min > tset_mem &&
707             (thold_att < sdrt->tADL_min - tset_mem))
708                 thold_att = sdrt->tADL_min - tset_mem;
709         if (sdrt->tWH_min > tset_mem &&
710             (thold_att < sdrt->tWH_min - tset_mem))
711                 thold_att = sdrt->tWH_min - tset_mem;
712         if (sdrt->tWHR_min > tset_mem &&
713             (thold_att < sdrt->tWHR_min - tset_mem))
714                 thold_att = sdrt->tWHR_min - tset_mem;
715         if ((sdrt->tRC_min > tset_att + twait) &&
716             (thold_att < sdrt->tRC_min - (tset_att + twait)))
717                 thold_att = sdrt->tRC_min - (tset_att + twait);
718         if ((sdrt->tWC_min > tset_att + twait) &&
719             (thold_att < sdrt->tWC_min - (tset_att + twait)))
720                 thold_att = sdrt->tWC_min - (tset_att + twait);
721         timing = DIV_ROUND_UP(thold_att, hclkp);
722         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
723 }
724
725 static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
726                                           const struct nand_data_interface *cf)
727 {
728         struct nand_chip *chip = mtd_to_nand(mtd);
729         const struct nand_sdr_timings *sdrt;
730
731         sdrt = nand_get_sdr_timings(cf);
732         if (IS_ERR(sdrt))
733                 return PTR_ERR(sdrt);
734
735         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
736                 return 0;
737
738         stm32_fmc2_nfc_calc_timings(chip, sdrt);
739         stm32_fmc2_nfc_timings_init(chip);
740
741         return 0;
742 }
743
744 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
745 {
746         chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
747
748         /*
749          * Specific callbacks to read/write a page depending on
750          * the algo used (Hamming, BCH).
751          */
752         if (chip->ecc.strength == FMC2_ECC_HAM) {
753                 /* Hamming is used */
754                 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
755                 chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
756                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
757                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
758                 return;
759         }
760
761         /* BCH is used */
762         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
763         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
764         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
765
766         if (chip->ecc.strength == FMC2_ECC_BCH8)
767                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
768         else
769                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
770 }
771
772 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
773 {
774         /* Hamming */
775         if (strength == FMC2_ECC_HAM)
776                 return 4;
777
778         /* BCH8 */
779         if (strength == FMC2_ECC_BCH8)
780                 return 14;
781
782         /* BCH4 */
783         return 8;
784 }
785
786 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
787                      FMC2_ECC_STEP_SIZE,
788                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
789
790 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
791 {
792         struct stm32_fmc2_nand *nand = &nfc->nand;
793         u32 cs[FMC2_MAX_CE];
794         int ret, i;
795
796         if (!ofnode_get_property(node, "reg", &nand->ncs))
797                 return -EINVAL;
798
799         nand->ncs /= sizeof(u32);
800         if (!nand->ncs) {
801                 log_err("Invalid reg property size\n");
802                 return -EINVAL;
803         }
804
805         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
806         if (ret < 0) {
807                 log_err("Could not retrieve reg property\n");
808                 return -EINVAL;
809         }
810
811         for (i = 0; i < nand->ncs; i++) {
812                 if (cs[i] >= FMC2_MAX_CE) {
813                         log_err("Invalid reg value: %d\n", nand->cs_used[i]);
814                         return -EINVAL;
815                 }
816
817                 if (nfc->cs_assigned & BIT(cs[i])) {
818                         log_err("Cs already assigned: %d\n", nand->cs_used[i]);
819                         return -EINVAL;
820                 }
821
822                 nfc->cs_assigned |= BIT(cs[i]);
823                 nand->cs_used[i] = cs[i];
824         }
825
826         nand->chip.flash_node = ofnode_to_offset(node);
827
828         return 0;
829 }
830
831 static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
832                                    struct stm32_fmc2_nfc *nfc)
833 {
834         ofnode child;
835         int ret, nchips = 0;
836
837         dev_for_each_subnode(child, dev)
838                 nchips++;
839
840         if (!nchips) {
841                 log_err("NAND chip not defined\n");
842                 return -EINVAL;
843         }
844
845         if (nchips > 1) {
846                 log_err("Too many NAND chips defined\n");
847                 return -EINVAL;
848         }
849
850         dev_for_each_subnode(child, dev) {
851                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
852                 if (ret)
853                         return ret;
854         }
855
856         return 0;
857 }
858
859 static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev)
860 {
861         struct udevice *pdev = dev_get_parent(dev);
862         struct udevice *cdev = NULL;
863         bool ebi_found = false;
864
865         if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev),
866                                                 "st,stm32mp1-fmc2-ebi"))
867                 ebi_found = true;
868
869         if (ofnode_device_is_compatible(dev_ofnode(dev),
870                                         "st,stm32mp1-fmc2-nfc")) {
871                 if (ebi_found)
872                         cdev = pdev;
873
874                 return cdev;
875         }
876
877         if (!ebi_found)
878                 cdev = dev;
879
880         return cdev;
881 }
882
883 static int stm32_fmc2_nfc_probe(struct udevice *dev)
884 {
885         struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
886         struct stm32_fmc2_nand *nand = &nfc->nand;
887         struct nand_chip *chip = &nand->chip;
888         struct mtd_info *mtd = &chip->mtd;
889         struct nand_ecclayout *ecclayout;
890         struct udevice *cdev;
891         struct reset_ctl reset;
892         int oob_index, chip_cs, mem_region, ret;
893         unsigned int i;
894         int start_region = 0;
895         fdt_addr_t addr;
896
897         spin_lock_init(&nfc->controller.lock);
898         init_waitqueue_head(&nfc->controller.wq);
899
900         cdev = stm32_fmc2_nfc_get_cdev(dev);
901         if (!cdev)
902                 return -EINVAL;
903
904         ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
905         if (ret)
906                 return ret;
907
908         nfc->io_base = dev_read_addr(cdev);
909         if (nfc->io_base == FDT_ADDR_T_NONE)
910                 return -EINVAL;
911
912         if (dev == cdev)
913                 start_region = 1;
914
915         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
916              chip_cs++, mem_region += 3) {
917                 if (!(nfc->cs_assigned & BIT(chip_cs)))
918                         continue;
919
920                 addr = dev_read_addr_index(dev, mem_region);
921                 if (addr == FDT_ADDR_T_NONE) {
922                         dev_err(dev, "Resource data_base not found for cs%d", chip_cs);
923                         return ret;
924                 }
925                 nfc->data_base[chip_cs] = addr;
926
927                 addr = dev_read_addr_index(dev, mem_region + 1);
928                 if (addr == FDT_ADDR_T_NONE) {
929                         dev_err(dev, "Resource cmd_base not found for cs%d", chip_cs);
930                         return ret;
931                 }
932                 nfc->cmd_base[chip_cs] = addr;
933
934                 addr = dev_read_addr_index(dev, mem_region + 2);
935                 if (addr == FDT_ADDR_T_NONE) {
936                         dev_err(dev, "Resource addr_base not found for cs%d", chip_cs);
937                         return ret;
938                 }
939                 nfc->addr_base[chip_cs] = addr;
940         }
941
942         /* Enable the clock */
943         ret = clk_get_by_index(cdev, 0, &nfc->clk);
944         if (ret)
945                 return ret;
946
947         ret = clk_enable(&nfc->clk);
948         if (ret)
949                 return ret;
950
951         /* Reset */
952         ret = reset_get_by_index(dev, 0, &reset);
953         if (!ret) {
954                 reset_assert(&reset);
955                 udelay(2);
956                 reset_deassert(&reset);
957         }
958
959         stm32_fmc2_nfc_init(nfc, dev != cdev);
960
961         chip->controller = &nfc->base;
962         chip->select_chip = stm32_fmc2_nfc_select_chip;
963         chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
964         chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
965         chip->chip_delay = FMC2_RB_DELAY_US;
966         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
967                          NAND_USE_BOUNCE_BUFFER;
968
969         /* Default ECC settings */
970         chip->ecc.mode = NAND_ECC_HW;
971         chip->ecc.size = FMC2_ECC_STEP_SIZE;
972         chip->ecc.strength = FMC2_ECC_BCH8;
973
974         ret = nand_scan_ident(mtd, nand->ncs, NULL);
975         if (ret)
976                 return ret;
977
978         /*
979          * Only NAND_ECC_HW mode is actually supported
980          * Hamming => ecc.strength = 1
981          * BCH4 => ecc.strength = 4
982          * BCH8 => ecc.strength = 8
983          * ECC sector size = 512
984          */
985         if (chip->ecc.mode != NAND_ECC_HW) {
986                 dev_err(dev, "Nand_ecc_mode is not well defined in the DT\n");
987                 return -EINVAL;
988         }
989
990         ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
991                                   mtd->oobsize - FMC2_BBM_LEN);
992         if (ret) {
993                 dev_err(dev, "No valid ECC settings set\n");
994                 return ret;
995         }
996
997         if (chip->bbt_options & NAND_BBT_USE_FLASH)
998                 chip->bbt_options |= NAND_BBT_NO_OOB;
999
1000         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1001
1002         /* Define ECC layout */
1003         ecclayout = &nfc->ecclayout;
1004         ecclayout->eccbytes = chip->ecc.bytes *
1005                               (mtd->writesize / chip->ecc.size);
1006         oob_index = FMC2_BBM_LEN;
1007         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1008                 ecclayout->eccpos[i] = oob_index;
1009         ecclayout->oobfree->offset = oob_index;
1010         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1011         chip->ecc.layout = ecclayout;
1012
1013         if (chip->options & NAND_BUSWIDTH_16)
1014                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1015
1016         ret = nand_scan_tail(mtd);
1017         if (ret)
1018                 return ret;
1019
1020         return nand_register(0, mtd);
1021 }
1022
1023 static const struct udevice_id stm32_fmc2_nfc_match[] = {
1024         { .compatible = "st,stm32mp15-fmc2" },
1025         { .compatible = "st,stm32mp1-fmc2-nfc" },
1026         { /* Sentinel */ }
1027 };
1028
1029 U_BOOT_DRIVER(stm32_fmc2_nfc) = {
1030         .name = "stm32_fmc2_nfc",
1031         .id = UCLASS_MTD,
1032         .of_match = stm32_fmc2_nfc_match,
1033         .probe = stm32_fmc2_nfc_probe,
1034         .priv_auto      = sizeof(struct stm32_fmc2_nfc),
1035 };
1036
1037 void board_nand_init(void)
1038 {
1039         struct udevice *dev;
1040         int ret;
1041
1042         ret = uclass_get_device_by_driver(UCLASS_MTD,
1043                                           DM_DRIVER_GET(stm32_fmc2_nfc),
1044                                           &dev);
1045         if (ret && ret != -ENODEV)
1046                 log_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
1047                         ret);
1048 }