dm: treewide: Rename auto_alloc_size members to be shorter
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <common.h>
8 #include <clk.h>
9 #include <dm.h>
10 #include <log.h>
11 #include <nand.h>
12 #include <reset.h>
13 #include <linux/bitfield.h>
14 #include <linux/bitops.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/ioport.h>
19
20 /* Bad block marker length */
21 #define FMC2_BBM_LEN                    2
22
23 /* ECC step size */
24 #define FMC2_ECC_STEP_SIZE              512
25
26 /* Command delay */
27 #define FMC2_RB_DELAY_US                30
28
29 /* Max chip enable */
30 #define FMC2_MAX_CE                     2
31
32 /* Timings */
33 #define FMC2_THIZ                       1
34 #define FMC2_TIO                        8000
35 #define FMC2_TSYNC                      3000
36 #define FMC2_PCR_TIMING_MASK            0xf
37 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
38
39 /* FMC2 Controller Registers */
40 #define FMC2_BCR1                       0x0
41 #define FMC2_PCR                        0x80
42 #define FMC2_SR                         0x84
43 #define FMC2_PMEM                       0x88
44 #define FMC2_PATT                       0x8c
45 #define FMC2_HECCR                      0x94
46 #define FMC2_BCHISR                     0x254
47 #define FMC2_BCHICR                     0x258
48 #define FMC2_BCHPBR1                    0x260
49 #define FMC2_BCHPBR2                    0x264
50 #define FMC2_BCHPBR3                    0x268
51 #define FMC2_BCHPBR4                    0x26c
52 #define FMC2_BCHDSR0                    0x27c
53 #define FMC2_BCHDSR1                    0x280
54 #define FMC2_BCHDSR2                    0x284
55 #define FMC2_BCHDSR3                    0x288
56 #define FMC2_BCHDSR4                    0x28c
57
58 /* Register: FMC2_BCR1 */
59 #define FMC2_BCR1_FMC2EN                BIT(31)
60
61 /* Register: FMC2_PCR */
62 #define FMC2_PCR_PWAITEN                BIT(1)
63 #define FMC2_PCR_PBKEN                  BIT(2)
64 #define FMC2_PCR_PWID                   GENMASK(5, 4)
65 #define FMC2_PCR_PWID_BUSWIDTH_8        0
66 #define FMC2_PCR_PWID_BUSWIDTH_16       1
67 #define FMC2_PCR_ECCEN                  BIT(6)
68 #define FMC2_PCR_ECCALG                 BIT(8)
69 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
70 #define FMC2_PCR_TCLR_DEFAULT           0xf
71 #define FMC2_PCR_TAR                    GENMASK(16, 13)
72 #define FMC2_PCR_TAR_DEFAULT            0xf
73 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
74 #define FMC2_PCR_ECCSS_512              1
75 #define FMC2_PCR_ECCSS_2048             3
76 #define FMC2_PCR_BCHECC                 BIT(24)
77 #define FMC2_PCR_WEN                    BIT(25)
78
79 /* Register: FMC2_SR */
80 #define FMC2_SR_NWRF                    BIT(6)
81
82 /* Register: FMC2_PMEM */
83 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
84 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
85 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
86 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
87 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
88
89 /* Register: FMC2_PATT */
90 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
91 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
92 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
93 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
94 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
95
96 /* Register: FMC2_BCHISR */
97 #define FMC2_BCHISR_DERF                BIT(1)
98 #define FMC2_BCHISR_EPBRF               BIT(4)
99
100 /* Register: FMC2_BCHICR */
101 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
102
103 /* Register: FMC2_BCHDSR0 */
104 #define FMC2_BCHDSR0_DUE                BIT(0)
105 #define FMC2_BCHDSR0_DEF                BIT(1)
106 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
107
108 /* Register: FMC2_BCHDSR1 */
109 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
110 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
111
112 /* Register: FMC2_BCHDSR2 */
113 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
114 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
115
116 /* Register: FMC2_BCHDSR3 */
117 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
118 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
119
120 /* Register: FMC2_BCHDSR4 */
121 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
122 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
123
124 #define FMC2_NSEC_PER_SEC               1000000000L
125
126 #define FMC2_TIMEOUT_5S                 5000000
127
128 enum stm32_fmc2_ecc {
129         FMC2_ECC_HAM = 1,
130         FMC2_ECC_BCH4 = 4,
131         FMC2_ECC_BCH8 = 8
132 };
133
134 struct stm32_fmc2_timings {
135         u8 tclr;
136         u8 tar;
137         u8 thiz;
138         u8 twait;
139         u8 thold_mem;
140         u8 tset_mem;
141         u8 thold_att;
142         u8 tset_att;
143 };
144
145 struct stm32_fmc2_nand {
146         struct nand_chip chip;
147         struct stm32_fmc2_timings timings;
148         int ncs;
149         int cs_used[FMC2_MAX_CE];
150 };
151
152 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
153 {
154         return container_of(chip, struct stm32_fmc2_nand, chip);
155 }
156
157 struct stm32_fmc2_nfc {
158         struct nand_hw_control base;
159         struct stm32_fmc2_nand nand;
160         struct nand_ecclayout ecclayout;
161         fdt_addr_t io_base;
162         fdt_addr_t data_base[FMC2_MAX_CE];
163         fdt_addr_t cmd_base[FMC2_MAX_CE];
164         fdt_addr_t addr_base[FMC2_MAX_CE];
165         struct clk clk;
166
167         u8 cs_assigned;
168         int cs_sel;
169 };
170
171 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
172 {
173         return container_of(base, struct stm32_fmc2_nfc, base);
174 }
175
176 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
177 {
178         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
179         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
180         struct stm32_fmc2_timings *timings = &nand->timings;
181         u32 pmem, patt;
182
183         /* Set tclr/tar timings */
184         clrsetbits_le32(nfc->io_base + FMC2_PCR,
185                         FMC2_PCR_TCLR | FMC2_PCR_TAR,
186                         FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
187                         FIELD_PREP(FMC2_PCR_TAR, timings->tar));
188
189         /* Set tset/twait/thold/thiz timings in common bank */
190         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
191         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
192         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
193         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
194         writel(pmem, nfc->io_base + FMC2_PMEM);
195
196         /* Set tset/twait/thold/thiz timings in attribut bank */
197         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
198         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
199         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
200         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
201         writel(patt, nfc->io_base + FMC2_PATT);
202 }
203
204 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
205 {
206         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
207         u32 pcr = 0, pcr_mask;
208
209         /* Configure ECC algorithm (default configuration is Hamming) */
210         pcr_mask = FMC2_PCR_ECCALG;
211         pcr_mask |= FMC2_PCR_BCHECC;
212         if (chip->ecc.strength == FMC2_ECC_BCH8) {
213                 pcr |= FMC2_PCR_ECCALG;
214                 pcr |= FMC2_PCR_BCHECC;
215         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
216                 pcr |= FMC2_PCR_ECCALG;
217         }
218
219         /* Set buswidth */
220         pcr_mask |= FMC2_PCR_PWID;
221         if (chip->options & NAND_BUSWIDTH_16)
222                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
223
224         /* Set ECC sector size */
225         pcr_mask |= FMC2_PCR_ECCSS;
226         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
227
228         clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
229 }
230
231 static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
232 {
233         struct nand_chip *chip = mtd_to_nand(mtd);
234         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
235         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
236
237         if (chipnr < 0 || chipnr >= nand->ncs)
238                 return;
239
240         if (nand->cs_used[chipnr] == nfc->cs_sel)
241                 return;
242
243         nfc->cs_sel = nand->cs_used[chipnr];
244         chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel];
245         chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel];
246
247         stm32_fmc2_nfc_setup(chip);
248         stm32_fmc2_nfc_timings_init(chip);
249 }
250
251 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
252                                            bool set)
253 {
254         u32 pcr;
255
256         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
257                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
258
259         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
260 }
261
262 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
263 {
264         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
265                         enable ? FMC2_PCR_ECCEN : 0);
266 }
267
268 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
269 {
270         writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
271 }
272
273 static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
274                                     unsigned int ctrl)
275 {
276         struct nand_chip *chip = mtd_to_nand(mtd);
277         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
278
279         if (cmd == NAND_CMD_NONE)
280                 return;
281
282         if (ctrl & NAND_CLE) {
283                 writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
284                 return;
285         }
286
287         writeb(cmd, nfc->addr_base[nfc->cs_sel]);
288 }
289
290 /*
291  * Enable ECC logic and reset syndrome/parity bits previously calculated
292  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
293  */
294 static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
295 {
296         struct nand_chip *chip = mtd_to_nand(mtd);
297         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
298
299         stm32_fmc2_nfc_set_ecc(nfc, false);
300
301         if (chip->ecc.strength != FMC2_ECC_HAM) {
302                 clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
303                                 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
304
305                 stm32_fmc2_nfc_clear_bch_irq(nfc);
306         }
307
308         stm32_fmc2_nfc_set_ecc(nfc, true);
309 }
310
311 /*
312  * ECC Hamming calculation
313  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
314  * max of 1-bit)
315  */
316 static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
317                                         u8 *ecc)
318 {
319         struct nand_chip *chip = mtd_to_nand(mtd);
320         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
321         u32 heccr, sr;
322         int ret;
323
324         ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
325                                  sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
326         if (ret < 0) {
327                 pr_err("Ham timeout\n");
328                 return ret;
329         }
330
331         heccr = readl(nfc->io_base + FMC2_HECCR);
332
333         ecc[0] = heccr;
334         ecc[1] = heccr >> 8;
335         ecc[2] = heccr >> 16;
336
337         stm32_fmc2_nfc_set_ecc(nfc, false);
338
339         return 0;
340 }
341
342 static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
343                                       u8 *read_ecc, u8 *calc_ecc)
344 {
345         u8 bit_position = 0, b0, b1, b2;
346         u32 byte_addr = 0, b;
347         u32 i, shifting = 1;
348
349         /* Indicate which bit and byte is faulty (if any) */
350         b0 = read_ecc[0] ^ calc_ecc[0];
351         b1 = read_ecc[1] ^ calc_ecc[1];
352         b2 = read_ecc[2] ^ calc_ecc[2];
353         b = b0 | (b1 << 8) | (b2 << 16);
354
355         /* No errors */
356         if (likely(!b))
357                 return 0;
358
359         /* Calculate bit position */
360         for (i = 0; i < 3; i++) {
361                 switch (b % 4) {
362                 case 2:
363                         bit_position += shifting;
364                 case 1:
365                         break;
366                 default:
367                         return -EBADMSG;
368                 }
369                 shifting <<= 1;
370                 b >>= 2;
371         }
372
373         /* Calculate byte position */
374         shifting = 1;
375         for (i = 0; i < 9; i++) {
376                 switch (b % 4) {
377                 case 2:
378                         byte_addr += shifting;
379                 case 1:
380                         break;
381                 default:
382                         return -EBADMSG;
383                 }
384                 shifting <<= 1;
385                 b >>= 2;
386         }
387
388         /* Flip the bit */
389         dat[byte_addr] ^= (1 << bit_position);
390
391         return 1;
392 }
393
394 /*
395  * ECC BCH calculation and correction
396  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
397  * max of 4-bit/8-bit)
398  */
399
400 static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
401                                         u8 *ecc)
402 {
403         struct nand_chip *chip = mtd_to_nand(mtd);
404         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
405         u32 bchpbr, bchisr;
406         int ret;
407
408         /* Wait until the BCH code is ready */
409         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
410                                  bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
411         if (ret < 0) {
412                 pr_err("Bch timeout\n");
413                 return ret;
414         }
415
416         /* Read parity bits */
417         bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
418         ecc[0] = bchpbr;
419         ecc[1] = bchpbr >> 8;
420         ecc[2] = bchpbr >> 16;
421         ecc[3] = bchpbr >> 24;
422
423         bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
424         ecc[4] = bchpbr;
425         ecc[5] = bchpbr >> 8;
426         ecc[6] = bchpbr >> 16;
427
428         if (chip->ecc.strength == FMC2_ECC_BCH8) {
429                 ecc[7] = bchpbr >> 24;
430
431                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
432                 ecc[8] = bchpbr;
433                 ecc[9] = bchpbr >> 8;
434                 ecc[10] = bchpbr >> 16;
435                 ecc[11] = bchpbr >> 24;
436
437                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
438                 ecc[12] = bchpbr;
439         }
440
441         stm32_fmc2_nfc_set_ecc(nfc, false);
442
443         return 0;
444 }
445
446 static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
447                                       u8 *read_ecc, u8 *calc_ecc)
448 {
449         struct nand_chip *chip = mtd_to_nand(mtd);
450         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
451         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
452         u16 pos[8];
453         int i, ret, den, eccsize = chip->ecc.size;
454         unsigned int nb_errs = 0;
455
456         /* Wait until the decoding error is ready */
457         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
458                                  bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
459         if (ret < 0) {
460                 pr_err("Bch timeout\n");
461                 return ret;
462         }
463
464         bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
465         bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
466         bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
467         bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
468         bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
469
470         stm32_fmc2_nfc_set_ecc(nfc, false);
471
472         /* No errors found */
473         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
474                 return 0;
475
476         /* Too many errors detected */
477         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
478                 return -EBADMSG;
479
480         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
481         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
482         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
483         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
484         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
485         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
486         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
487         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
488
489         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
490         for (i = 0; i < den; i++) {
491                 if (pos[i] < eccsize * 8) {
492                         __change_bit(pos[i], (unsigned long *)dat);
493                         nb_errs++;
494                 }
495         }
496
497         return nb_errs;
498 }
499
500 static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
501                                     struct nand_chip *chip, u8 *buf,
502                                     int oob_required, int page)
503 {
504         int i, s, stat, eccsize = chip->ecc.size;
505         int eccbytes = chip->ecc.bytes;
506         int eccsteps = chip->ecc.steps;
507         int eccstrength = chip->ecc.strength;
508         u8 *p = buf;
509         u8 *ecc_calc = chip->buffers->ecccalc;
510         u8 *ecc_code = chip->buffers->ecccode;
511         unsigned int max_bitflips = 0;
512
513         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
514              s++, i += eccbytes, p += eccsize) {
515                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
516
517                 /* Read the nand page sector (512 bytes) */
518                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
519                 chip->read_buf(mtd, p, eccsize);
520
521                 /* Read the corresponding ECC bytes */
522                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
523                 chip->read_buf(mtd, ecc_code, eccbytes);
524
525                 /* Correct the data */
526                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
527                 if (stat == -EBADMSG)
528                         /* Check for empty pages with bitflips */
529                         stat = nand_check_erased_ecc_chunk(p, eccsize,
530                                                            ecc_code, eccbytes,
531                                                            NULL, 0,
532                                                            eccstrength);
533
534                 if (stat < 0) {
535                         mtd->ecc_stats.failed++;
536                 } else {
537                         mtd->ecc_stats.corrected += stat;
538                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
539                 }
540         }
541
542         /* Read oob */
543         if (oob_required) {
544                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
545                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
546         }
547
548         return max_bitflips;
549 }
550
551 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent)
552 {
553         u32 pcr = readl(nfc->io_base + FMC2_PCR);
554
555         /* Set CS used to undefined */
556         nfc->cs_sel = -1;
557
558         /* Enable wait feature and nand flash memory bank */
559         pcr |= FMC2_PCR_PWAITEN;
560         pcr |= FMC2_PCR_PBKEN;
561
562         /* Set buswidth to 8 bits mode for identification */
563         pcr &= ~FMC2_PCR_PWID;
564
565         /* ECC logic is disabled */
566         pcr &= ~FMC2_PCR_ECCEN;
567
568         /* Default mode */
569         pcr &= ~FMC2_PCR_ECCALG;
570         pcr &= ~FMC2_PCR_BCHECC;
571         pcr &= ~FMC2_PCR_WEN;
572
573         /* Set default ECC sector size */
574         pcr &= ~FMC2_PCR_ECCSS;
575         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
576
577         /* Set default tclr/tar timings */
578         pcr &= ~FMC2_PCR_TCLR;
579         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
580         pcr &= ~FMC2_PCR_TAR;
581         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
582
583         /* Enable FMC2 controller */
584         if (!has_parent)
585                 setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
586
587         writel(pcr, nfc->io_base + FMC2_PCR);
588         writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
589         writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
590 }
591
592 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
593                                         const struct nand_sdr_timings *sdrt)
594 {
595         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
596         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
597         struct stm32_fmc2_timings *tims = &nand->timings;
598         unsigned long hclk = clk_get_rate(&nfc->clk);
599         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
600         unsigned long timing, tar, tclr, thiz, twait;
601         unsigned long tset_mem, tset_att, thold_mem, thold_att;
602
603         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
604         timing = DIV_ROUND_UP(tar, hclkp) - 1;
605         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
606
607         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
608         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
609         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
610
611         tims->thiz = FMC2_THIZ;
612         thiz = (tims->thiz + 1) * hclkp;
613
614         /*
615          * tWAIT > tRP
616          * tWAIT > tWP
617          * tWAIT > tREA + tIO
618          */
619         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
620         twait = max_t(unsigned long, twait, sdrt->tWP_min);
621         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
622         timing = DIV_ROUND_UP(twait, hclkp);
623         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
624
625         /*
626          * tSETUP_MEM > tCS - tWAIT
627          * tSETUP_MEM > tALS - tWAIT
628          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
629          */
630         tset_mem = hclkp;
631         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
632                 tset_mem = sdrt->tCS_min - twait;
633         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
634                 tset_mem = sdrt->tALS_min - twait;
635         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
636             (tset_mem < sdrt->tDS_min - (twait - thiz)))
637                 tset_mem = sdrt->tDS_min - (twait - thiz);
638         timing = DIV_ROUND_UP(tset_mem, hclkp);
639         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
640
641         /*
642          * tHOLD_MEM > tCH
643          * tHOLD_MEM > tREH - tSETUP_MEM
644          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
645          */
646         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
647         if (sdrt->tREH_min > tset_mem &&
648             (thold_mem < sdrt->tREH_min - tset_mem))
649                 thold_mem = sdrt->tREH_min - tset_mem;
650         if ((sdrt->tRC_min > tset_mem + twait) &&
651             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
652                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
653         if ((sdrt->tWC_min > tset_mem + twait) &&
654             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
655                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
656         timing = DIV_ROUND_UP(thold_mem, hclkp);
657         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
658
659         /*
660          * tSETUP_ATT > tCS - tWAIT
661          * tSETUP_ATT > tCLS - tWAIT
662          * tSETUP_ATT > tALS - tWAIT
663          * tSETUP_ATT > tRHW - tHOLD_MEM
664          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
665          */
666         tset_att = hclkp;
667         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
668                 tset_att = sdrt->tCS_min - twait;
669         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
670                 tset_att = sdrt->tCLS_min - twait;
671         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
672                 tset_att = sdrt->tALS_min - twait;
673         if (sdrt->tRHW_min > thold_mem &&
674             (tset_att < sdrt->tRHW_min - thold_mem))
675                 tset_att = sdrt->tRHW_min - thold_mem;
676         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
677             (tset_att < sdrt->tDS_min - (twait - thiz)))
678                 tset_att = sdrt->tDS_min - (twait - thiz);
679         timing = DIV_ROUND_UP(tset_att, hclkp);
680         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
681
682         /*
683          * tHOLD_ATT > tALH
684          * tHOLD_ATT > tCH
685          * tHOLD_ATT > tCLH
686          * tHOLD_ATT > tCOH
687          * tHOLD_ATT > tDH
688          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
689          * tHOLD_ATT > tADL - tSETUP_MEM
690          * tHOLD_ATT > tWH - tSETUP_MEM
691          * tHOLD_ATT > tWHR - tSETUP_MEM
692          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
693          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
694          */
695         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
696         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
697         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
698         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
699         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
700         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
701             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
702                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
703         if (sdrt->tADL_min > tset_mem &&
704             (thold_att < sdrt->tADL_min - tset_mem))
705                 thold_att = sdrt->tADL_min - tset_mem;
706         if (sdrt->tWH_min > tset_mem &&
707             (thold_att < sdrt->tWH_min - tset_mem))
708                 thold_att = sdrt->tWH_min - tset_mem;
709         if (sdrt->tWHR_min > tset_mem &&
710             (thold_att < sdrt->tWHR_min - tset_mem))
711                 thold_att = sdrt->tWHR_min - tset_mem;
712         if ((sdrt->tRC_min > tset_att + twait) &&
713             (thold_att < sdrt->tRC_min - (tset_att + twait)))
714                 thold_att = sdrt->tRC_min - (tset_att + twait);
715         if ((sdrt->tWC_min > tset_att + twait) &&
716             (thold_att < sdrt->tWC_min - (tset_att + twait)))
717                 thold_att = sdrt->tWC_min - (tset_att + twait);
718         timing = DIV_ROUND_UP(thold_att, hclkp);
719         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
720 }
721
722 static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
723                                           const struct nand_data_interface *cf)
724 {
725         struct nand_chip *chip = mtd_to_nand(mtd);
726         const struct nand_sdr_timings *sdrt;
727
728         sdrt = nand_get_sdr_timings(cf);
729         if (IS_ERR(sdrt))
730                 return PTR_ERR(sdrt);
731
732         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
733                 return 0;
734
735         stm32_fmc2_nfc_calc_timings(chip, sdrt);
736         stm32_fmc2_nfc_timings_init(chip);
737
738         return 0;
739 }
740
741 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
742 {
743         chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
744
745         /*
746          * Specific callbacks to read/write a page depending on
747          * the algo used (Hamming, BCH).
748          */
749         if (chip->ecc.strength == FMC2_ECC_HAM) {
750                 /* Hamming is used */
751                 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
752                 chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
753                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
754                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
755                 return;
756         }
757
758         /* BCH is used */
759         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
760         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
761         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
762
763         if (chip->ecc.strength == FMC2_ECC_BCH8)
764                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
765         else
766                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
767 }
768
769 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
770 {
771         /* Hamming */
772         if (strength == FMC2_ECC_HAM)
773                 return 4;
774
775         /* BCH8 */
776         if (strength == FMC2_ECC_BCH8)
777                 return 14;
778
779         /* BCH4 */
780         return 8;
781 }
782
783 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
784                      FMC2_ECC_STEP_SIZE,
785                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
786
787 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
788 {
789         struct stm32_fmc2_nand *nand = &nfc->nand;
790         u32 cs[FMC2_MAX_CE];
791         int ret, i;
792
793         if (!ofnode_get_property(node, "reg", &nand->ncs))
794                 return -EINVAL;
795
796         nand->ncs /= sizeof(u32);
797         if (!nand->ncs) {
798                 pr_err("Invalid reg property size\n");
799                 return -EINVAL;
800         }
801
802         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
803         if (ret < 0) {
804                 pr_err("Could not retrieve reg property\n");
805                 return -EINVAL;
806         }
807
808         for (i = 0; i < nand->ncs; i++) {
809                 if (cs[i] >= FMC2_MAX_CE) {
810                         pr_err("Invalid reg value: %d\n",
811                                nand->cs_used[i]);
812                         return -EINVAL;
813                 }
814
815                 if (nfc->cs_assigned & BIT(cs[i])) {
816                         pr_err("Cs already assigned: %d\n",
817                                nand->cs_used[i]);
818                         return -EINVAL;
819                 }
820
821                 nfc->cs_assigned |= BIT(cs[i]);
822                 nand->cs_used[i] = cs[i];
823         }
824
825         nand->chip.flash_node = ofnode_to_offset(node);
826
827         return 0;
828 }
829
830 static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
831                                    struct stm32_fmc2_nfc *nfc)
832 {
833         ofnode child;
834         int ret, nchips = 0;
835
836         dev_for_each_subnode(child, dev)
837                 nchips++;
838
839         if (!nchips) {
840                 pr_err("NAND chip not defined\n");
841                 return -EINVAL;
842         }
843
844         if (nchips > 1) {
845                 pr_err("Too many NAND chips defined\n");
846                 return -EINVAL;
847         }
848
849         dev_for_each_subnode(child, dev) {
850                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
851                 if (ret)
852                         return ret;
853         }
854
855         return 0;
856 }
857
858 static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev)
859 {
860         struct udevice *pdev = dev_get_parent(dev);
861         struct udevice *cdev = NULL;
862         bool ebi_found = false;
863
864         if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev),
865                                                 "st,stm32mp1-fmc2-ebi"))
866                 ebi_found = true;
867
868         if (ofnode_device_is_compatible(dev_ofnode(dev),
869                                         "st,stm32mp1-fmc2-nfc")) {
870                 if (ebi_found)
871                         cdev = pdev;
872
873                 return cdev;
874         }
875
876         if (!ebi_found)
877                 cdev = dev;
878
879         return cdev;
880 }
881
882 static int stm32_fmc2_nfc_probe(struct udevice *dev)
883 {
884         struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
885         struct stm32_fmc2_nand *nand = &nfc->nand;
886         struct nand_chip *chip = &nand->chip;
887         struct mtd_info *mtd = &chip->mtd;
888         struct nand_ecclayout *ecclayout;
889         struct udevice *cdev;
890         struct reset_ctl reset;
891         int oob_index, chip_cs, mem_region, ret;
892         unsigned int i;
893         int start_region = 0;
894         fdt_addr_t addr;
895
896         spin_lock_init(&nfc->controller.lock);
897         init_waitqueue_head(&nfc->controller.wq);
898
899         cdev = stm32_fmc2_nfc_get_cdev(dev);
900         if (!cdev)
901                 return -EINVAL;
902
903         ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
904         if (ret)
905                 return ret;
906
907         nfc->io_base = dev_read_addr(cdev);
908         if (nfc->io_base == FDT_ADDR_T_NONE)
909                 return -EINVAL;
910
911         if (dev == cdev)
912                 start_region = 1;
913
914         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
915              chip_cs++, mem_region += 3) {
916                 if (!(nfc->cs_assigned & BIT(chip_cs)))
917                         continue;
918
919                 addr = dev_read_addr_index(dev, mem_region);
920                 if (addr == FDT_ADDR_T_NONE) {
921                         pr_err("Resource data_base not found for cs%d",
922                                chip_cs);
923                         return ret;
924                 }
925                 nfc->data_base[chip_cs] = addr;
926
927                 addr = dev_read_addr_index(dev, mem_region + 1);
928                 if (addr == FDT_ADDR_T_NONE) {
929                         pr_err("Resource cmd_base not found for cs%d",
930                                chip_cs);
931                         return ret;
932                 }
933                 nfc->cmd_base[chip_cs] = addr;
934
935                 addr = dev_read_addr_index(dev, mem_region + 2);
936                 if (addr == FDT_ADDR_T_NONE) {
937                         pr_err("Resource addr_base not found for cs%d",
938                                chip_cs);
939                         return ret;
940                 }
941                 nfc->addr_base[chip_cs] = addr;
942         }
943
944         /* Enable the clock */
945         ret = clk_get_by_index(cdev, 0, &nfc->clk);
946         if (ret)
947                 return ret;
948
949         ret = clk_enable(&nfc->clk);
950         if (ret)
951                 return ret;
952
953         /* Reset */
954         ret = reset_get_by_index(dev, 0, &reset);
955         if (!ret) {
956                 reset_assert(&reset);
957                 udelay(2);
958                 reset_deassert(&reset);
959         }
960
961         stm32_fmc2_nfc_init(nfc, dev != cdev);
962
963         chip->controller = &nfc->base;
964         chip->select_chip = stm32_fmc2_nfc_select_chip;
965         chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
966         chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
967         chip->chip_delay = FMC2_RB_DELAY_US;
968         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
969                          NAND_USE_BOUNCE_BUFFER;
970
971         /* Default ECC settings */
972         chip->ecc.mode = NAND_ECC_HW;
973         chip->ecc.size = FMC2_ECC_STEP_SIZE;
974         chip->ecc.strength = FMC2_ECC_BCH8;
975
976         ret = nand_scan_ident(mtd, nand->ncs, NULL);
977         if (ret)
978                 return ret;
979
980         /*
981          * Only NAND_ECC_HW mode is actually supported
982          * Hamming => ecc.strength = 1
983          * BCH4 => ecc.strength = 4
984          * BCH8 => ecc.strength = 8
985          * ECC sector size = 512
986          */
987         if (chip->ecc.mode != NAND_ECC_HW) {
988                 pr_err("Nand_ecc_mode is not well defined in the DT\n");
989                 return -EINVAL;
990         }
991
992         ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
993                                   mtd->oobsize - FMC2_BBM_LEN);
994         if (ret) {
995                 pr_err("No valid ECC settings set\n");
996                 return ret;
997         }
998
999         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1000                 chip->bbt_options |= NAND_BBT_NO_OOB;
1001
1002         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1003
1004         /* Define ECC layout */
1005         ecclayout = &nfc->ecclayout;
1006         ecclayout->eccbytes = chip->ecc.bytes *
1007                               (mtd->writesize / chip->ecc.size);
1008         oob_index = FMC2_BBM_LEN;
1009         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1010                 ecclayout->eccpos[i] = oob_index;
1011         ecclayout->oobfree->offset = oob_index;
1012         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1013         chip->ecc.layout = ecclayout;
1014
1015         if (chip->options & NAND_BUSWIDTH_16)
1016                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1017
1018         ret = nand_scan_tail(mtd);
1019         if (ret)
1020                 return ret;
1021
1022         return nand_register(0, mtd);
1023 }
1024
1025 static const struct udevice_id stm32_fmc2_nfc_match[] = {
1026         { .compatible = "st,stm32mp15-fmc2" },
1027         { .compatible = "st,stm32mp1-fmc2-nfc" },
1028         { /* Sentinel */ }
1029 };
1030
1031 U_BOOT_DRIVER(stm32_fmc2_nfc) = {
1032         .name = "stm32_fmc2_nfc",
1033         .id = UCLASS_MTD,
1034         .of_match = stm32_fmc2_nfc_match,
1035         .probe = stm32_fmc2_nfc_probe,
1036         .priv_auto      = sizeof(struct stm32_fmc2_nfc),
1037 };
1038
1039 void board_nand_init(void)
1040 {
1041         struct udevice *dev;
1042         int ret;
1043
1044         ret = uclass_get_device_by_driver(UCLASS_MTD,
1045                                           DM_GET_DRIVER(stm32_fmc2_nfc),
1046                                           &dev);
1047         if (ret && ret != -ENODEV)
1048                 pr_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
1049                        ret);
1050 }