Merge branch 'for-2023.07' of https://source.denx.de/u-boot/custodians/u-boot-mpc8xx
[platform/kernel/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #define LOG_CATEGORY UCLASS_MTD
8
9 #include <common.h>
10 #include <clk.h>
11 #include <dm.h>
12 #include <log.h>
13 #include <nand.h>
14 #include <reset.h>
15 #include <asm/gpio.h>
16 #include <dm/device_compat.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/iopoll.h>
22 #include <linux/ioport.h>
23 #include <linux/mtd/rawnand.h>
24
25 /* Bad block marker length */
26 #define FMC2_BBM_LEN                    2
27
28 /* ECC step size */
29 #define FMC2_ECC_STEP_SIZE              512
30
31 /* Command delay */
32 #define FMC2_RB_DELAY_US                30
33
34 /* Max chip enable */
35 #define FMC2_MAX_CE                     2
36
37 /* Timings */
38 #define FMC2_THIZ                       1
39 #define FMC2_TIO                        8000
40 #define FMC2_TSYNC                      3000
41 #define FMC2_PCR_TIMING_MASK            0xf
42 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
43
44 /* FMC2 Controller Registers */
45 #define FMC2_BCR1                       0x0
46 #define FMC2_PCR                        0x80
47 #define FMC2_SR                         0x84
48 #define FMC2_PMEM                       0x88
49 #define FMC2_PATT                       0x8c
50 #define FMC2_HECCR                      0x94
51 #define FMC2_BCHISR                     0x254
52 #define FMC2_BCHICR                     0x258
53 #define FMC2_BCHPBR1                    0x260
54 #define FMC2_BCHPBR2                    0x264
55 #define FMC2_BCHPBR3                    0x268
56 #define FMC2_BCHPBR4                    0x26c
57 #define FMC2_BCHDSR0                    0x27c
58 #define FMC2_BCHDSR1                    0x280
59 #define FMC2_BCHDSR2                    0x284
60 #define FMC2_BCHDSR3                    0x288
61 #define FMC2_BCHDSR4                    0x28c
62
63 /* Register: FMC2_BCR1 */
64 #define FMC2_BCR1_FMC2EN                BIT(31)
65
66 /* Register: FMC2_PCR */
67 #define FMC2_PCR_PWAITEN                BIT(1)
68 #define FMC2_PCR_PBKEN                  BIT(2)
69 #define FMC2_PCR_PWID                   GENMASK(5, 4)
70 #define FMC2_PCR_PWID_BUSWIDTH_8        0
71 #define FMC2_PCR_PWID_BUSWIDTH_16       1
72 #define FMC2_PCR_ECCEN                  BIT(6)
73 #define FMC2_PCR_ECCALG                 BIT(8)
74 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
75 #define FMC2_PCR_TCLR_DEFAULT           0xf
76 #define FMC2_PCR_TAR                    GENMASK(16, 13)
77 #define FMC2_PCR_TAR_DEFAULT            0xf
78 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
79 #define FMC2_PCR_ECCSS_512              1
80 #define FMC2_PCR_ECCSS_2048             3
81 #define FMC2_PCR_BCHECC                 BIT(24)
82 #define FMC2_PCR_WEN                    BIT(25)
83
84 /* Register: FMC2_SR */
85 #define FMC2_SR_NWRF                    BIT(6)
86
87 /* Register: FMC2_PMEM */
88 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
89 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
90 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
91 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
92 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
93
94 /* Register: FMC2_PATT */
95 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
96 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
97 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
98 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
99 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
100
101 /* Register: FMC2_BCHISR */
102 #define FMC2_BCHISR_DERF                BIT(1)
103 #define FMC2_BCHISR_EPBRF               BIT(4)
104
105 /* Register: FMC2_BCHICR */
106 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
107
108 /* Register: FMC2_BCHDSR0 */
109 #define FMC2_BCHDSR0_DUE                BIT(0)
110 #define FMC2_BCHDSR0_DEF                BIT(1)
111 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
112
113 /* Register: FMC2_BCHDSR1 */
114 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
115 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
116
117 /* Register: FMC2_BCHDSR2 */
118 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
119 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
120
121 /* Register: FMC2_BCHDSR3 */
122 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
123 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
124
125 /* Register: FMC2_BCHDSR4 */
126 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
127 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
128
129 #define FMC2_NSEC_PER_SEC               1000000000L
130
131 #define FMC2_TIMEOUT_5S                 5000000
132
133 enum stm32_fmc2_ecc {
134         FMC2_ECC_HAM = 1,
135         FMC2_ECC_BCH4 = 4,
136         FMC2_ECC_BCH8 = 8
137 };
138
139 struct stm32_fmc2_timings {
140         u8 tclr;
141         u8 tar;
142         u8 thiz;
143         u8 twait;
144         u8 thold_mem;
145         u8 tset_mem;
146         u8 thold_att;
147         u8 tset_att;
148 };
149
150 struct stm32_fmc2_nand {
151         struct nand_chip chip;
152         struct stm32_fmc2_timings timings;
153         struct gpio_desc wp_gpio;
154         int ncs;
155         int cs_used[FMC2_MAX_CE];
156 };
157
158 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
159 {
160         return container_of(chip, struct stm32_fmc2_nand, chip);
161 }
162
163 struct stm32_fmc2_nfc {
164         struct nand_hw_control base;
165         struct stm32_fmc2_nand nand;
166         struct nand_ecclayout ecclayout;
167         fdt_addr_t io_base;
168         fdt_addr_t data_base[FMC2_MAX_CE];
169         fdt_addr_t cmd_base[FMC2_MAX_CE];
170         fdt_addr_t addr_base[FMC2_MAX_CE];
171         struct clk clk;
172
173         u8 cs_assigned;
174         int cs_sel;
175 };
176
177 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
178 {
179         return container_of(base, struct stm32_fmc2_nfc, base);
180 }
181
182 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
183 {
184         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
185         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
186         struct stm32_fmc2_timings *timings = &nand->timings;
187         u32 pmem, patt;
188
189         /* Set tclr/tar timings */
190         clrsetbits_le32(nfc->io_base + FMC2_PCR,
191                         FMC2_PCR_TCLR | FMC2_PCR_TAR,
192                         FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
193                         FIELD_PREP(FMC2_PCR_TAR, timings->tar));
194
195         /* Set tset/twait/thold/thiz timings in common bank */
196         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
197         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
198         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
199         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
200         writel(pmem, nfc->io_base + FMC2_PMEM);
201
202         /* Set tset/twait/thold/thiz timings in attribut bank */
203         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
204         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
205         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
206         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
207         writel(patt, nfc->io_base + FMC2_PATT);
208 }
209
210 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
211 {
212         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
213         u32 pcr = 0, pcr_mask;
214
215         /* Configure ECC algorithm (default configuration is Hamming) */
216         pcr_mask = FMC2_PCR_ECCALG;
217         pcr_mask |= FMC2_PCR_BCHECC;
218         if (chip->ecc.strength == FMC2_ECC_BCH8) {
219                 pcr |= FMC2_PCR_ECCALG;
220                 pcr |= FMC2_PCR_BCHECC;
221         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
222                 pcr |= FMC2_PCR_ECCALG;
223         }
224
225         /* Set buswidth */
226         pcr_mask |= FMC2_PCR_PWID;
227         if (chip->options & NAND_BUSWIDTH_16)
228                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
229
230         /* Set ECC sector size */
231         pcr_mask |= FMC2_PCR_ECCSS;
232         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
233
234         clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
235 }
236
237 static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
238 {
239         struct nand_chip *chip = mtd_to_nand(mtd);
240         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
241         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
242
243         if (chipnr < 0 || chipnr >= nand->ncs)
244                 return;
245
246         if (nand->cs_used[chipnr] == nfc->cs_sel)
247                 return;
248
249         nfc->cs_sel = nand->cs_used[chipnr];
250         chip->IO_ADDR_R = (void __iomem *)nfc->data_base[nfc->cs_sel];
251         chip->IO_ADDR_W = (void __iomem *)nfc->data_base[nfc->cs_sel];
252
253         stm32_fmc2_nfc_setup(chip);
254         stm32_fmc2_nfc_timings_init(chip);
255 }
256
257 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
258                                            bool set)
259 {
260         u32 pcr;
261
262         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
263                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
264
265         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
266 }
267
268 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
269 {
270         clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
271                         enable ? FMC2_PCR_ECCEN : 0);
272 }
273
274 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
275 {
276         writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
277 }
278
279 static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
280                                     unsigned int ctrl)
281 {
282         struct nand_chip *chip = mtd_to_nand(mtd);
283         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
284
285         if (cmd == NAND_CMD_NONE)
286                 return;
287
288         if (ctrl & NAND_CLE) {
289                 writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
290                 return;
291         }
292
293         writeb(cmd, nfc->addr_base[nfc->cs_sel]);
294 }
295
296 /*
297  * Enable ECC logic and reset syndrome/parity bits previously calculated
298  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
299  */
300 static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
301 {
302         struct nand_chip *chip = mtd_to_nand(mtd);
303         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
304
305         stm32_fmc2_nfc_set_ecc(nfc, false);
306
307         if (chip->ecc.strength != FMC2_ECC_HAM) {
308                 clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
309                                 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
310
311                 stm32_fmc2_nfc_clear_bch_irq(nfc);
312         }
313
314         stm32_fmc2_nfc_set_ecc(nfc, true);
315 }
316
317 /*
318  * ECC Hamming calculation
319  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
320  * max of 1-bit)
321  */
322 static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
323                                         u8 *ecc)
324 {
325         struct nand_chip *chip = mtd_to_nand(mtd);
326         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
327         u32 heccr, sr;
328         int ret;
329
330         ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
331                                  sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
332         if (ret < 0) {
333                 log_err("Ham timeout\n");
334                 return ret;
335         }
336
337         heccr = readl(nfc->io_base + FMC2_HECCR);
338
339         ecc[0] = heccr;
340         ecc[1] = heccr >> 8;
341         ecc[2] = heccr >> 16;
342
343         stm32_fmc2_nfc_set_ecc(nfc, false);
344
345         return 0;
346 }
347
348 static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
349                                       u8 *read_ecc, u8 *calc_ecc)
350 {
351         u8 bit_position = 0, b0, b1, b2;
352         u32 byte_addr = 0, b;
353         u32 i, shifting = 1;
354
355         /* Indicate which bit and byte is faulty (if any) */
356         b0 = read_ecc[0] ^ calc_ecc[0];
357         b1 = read_ecc[1] ^ calc_ecc[1];
358         b2 = read_ecc[2] ^ calc_ecc[2];
359         b = b0 | (b1 << 8) | (b2 << 16);
360
361         /* No errors */
362         if (likely(!b))
363                 return 0;
364
365         /* Calculate bit position */
366         for (i = 0; i < 3; i++) {
367                 switch (b % 4) {
368                 case 2:
369                         bit_position += shifting;
370                 case 1:
371                         break;
372                 default:
373                         return -EBADMSG;
374                 }
375                 shifting <<= 1;
376                 b >>= 2;
377         }
378
379         /* Calculate byte position */
380         shifting = 1;
381         for (i = 0; i < 9; i++) {
382                 switch (b % 4) {
383                 case 2:
384                         byte_addr += shifting;
385                 case 1:
386                         break;
387                 default:
388                         return -EBADMSG;
389                 }
390                 shifting <<= 1;
391                 b >>= 2;
392         }
393
394         /* Flip the bit */
395         dat[byte_addr] ^= (1 << bit_position);
396
397         return 1;
398 }
399
400 /*
401  * ECC BCH calculation and correction
402  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
403  * max of 4-bit/8-bit)
404  */
405
406 static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
407                                         u8 *ecc)
408 {
409         struct nand_chip *chip = mtd_to_nand(mtd);
410         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
411         u32 bchpbr, bchisr;
412         int ret;
413
414         /* Wait until the BCH code is ready */
415         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
416                                  bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
417         if (ret < 0) {
418                 log_err("Bch timeout\n");
419                 return ret;
420         }
421
422         /* Read parity bits */
423         bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
424         ecc[0] = bchpbr;
425         ecc[1] = bchpbr >> 8;
426         ecc[2] = bchpbr >> 16;
427         ecc[3] = bchpbr >> 24;
428
429         bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
430         ecc[4] = bchpbr;
431         ecc[5] = bchpbr >> 8;
432         ecc[6] = bchpbr >> 16;
433
434         if (chip->ecc.strength == FMC2_ECC_BCH8) {
435                 ecc[7] = bchpbr >> 24;
436
437                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
438                 ecc[8] = bchpbr;
439                 ecc[9] = bchpbr >> 8;
440                 ecc[10] = bchpbr >> 16;
441                 ecc[11] = bchpbr >> 24;
442
443                 bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
444                 ecc[12] = bchpbr;
445         }
446
447         stm32_fmc2_nfc_set_ecc(nfc, false);
448
449         return 0;
450 }
451
452 static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
453                                       u8 *read_ecc, u8 *calc_ecc)
454 {
455         struct nand_chip *chip = mtd_to_nand(mtd);
456         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
457         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
458         u16 pos[8];
459         int i, ret, den, eccsize = chip->ecc.size;
460         unsigned int nb_errs = 0;
461
462         /* Wait until the decoding error is ready */
463         ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
464                                  bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
465         if (ret < 0) {
466                 log_err("Bch timeout\n");
467                 return ret;
468         }
469
470         bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
471         bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
472         bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
473         bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
474         bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);
475
476         stm32_fmc2_nfc_set_ecc(nfc, false);
477
478         /* No errors found */
479         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
480                 return 0;
481
482         /* Too many errors detected */
483         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
484                 return -EBADMSG;
485
486         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
487         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
488         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
489         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
490         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
491         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
492         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
493         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
494
495         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
496         for (i = 0; i < den; i++) {
497                 if (pos[i] < eccsize * 8) {
498                         __change_bit(pos[i], (unsigned long *)dat);
499                         nb_errs++;
500                 }
501         }
502
503         return nb_errs;
504 }
505
506 static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
507                                     struct nand_chip *chip, u8 *buf,
508                                     int oob_required, int page)
509 {
510         int i, s, stat, eccsize = chip->ecc.size;
511         int eccbytes = chip->ecc.bytes;
512         int eccsteps = chip->ecc.steps;
513         int eccstrength = chip->ecc.strength;
514         u8 *p = buf;
515         u8 *ecc_calc = chip->buffers->ecccalc;
516         u8 *ecc_code = chip->buffers->ecccode;
517         unsigned int max_bitflips = 0;
518
519         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
520              s++, i += eccbytes, p += eccsize) {
521                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
522
523                 /* Read the nand page sector (512 bytes) */
524                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
525                 chip->read_buf(mtd, p, eccsize);
526
527                 /* Read the corresponding ECC bytes */
528                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
529                 chip->read_buf(mtd, ecc_code, eccbytes);
530
531                 /* Correct the data */
532                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
533                 if (stat == -EBADMSG)
534                         /* Check for empty pages with bitflips */
535                         stat = nand_check_erased_ecc_chunk(p, eccsize,
536                                                            ecc_code, eccbytes,
537                                                            NULL, 0,
538                                                            eccstrength);
539
540                 if (stat < 0) {
541                         mtd->ecc_stats.failed++;
542                 } else {
543                         mtd->ecc_stats.corrected += stat;
544                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
545                 }
546         }
547
548         /* Read oob */
549         if (oob_required) {
550                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
551                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
552         }
553
554         return max_bitflips;
555 }
556
557 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc, bool has_parent)
558 {
559         u32 pcr = readl(nfc->io_base + FMC2_PCR);
560
561         /* Set CS used to undefined */
562         nfc->cs_sel = -1;
563
564         /* Enable wait feature and nand flash memory bank */
565         pcr |= FMC2_PCR_PWAITEN;
566         pcr |= FMC2_PCR_PBKEN;
567
568         /* Set buswidth to 8 bits mode for identification */
569         pcr &= ~FMC2_PCR_PWID;
570
571         /* ECC logic is disabled */
572         pcr &= ~FMC2_PCR_ECCEN;
573
574         /* Default mode */
575         pcr &= ~FMC2_PCR_ECCALG;
576         pcr &= ~FMC2_PCR_BCHECC;
577         pcr &= ~FMC2_PCR_WEN;
578
579         /* Set default ECC sector size */
580         pcr &= ~FMC2_PCR_ECCSS;
581         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
582
583         /* Set default tclr/tar timings */
584         pcr &= ~FMC2_PCR_TCLR;
585         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
586         pcr &= ~FMC2_PCR_TAR;
587         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
588
589         /* Enable FMC2 controller */
590         if (!has_parent)
591                 setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);
592
593         writel(pcr, nfc->io_base + FMC2_PCR);
594         writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
595         writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
596 }
597
598 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
599                                         const struct nand_sdr_timings *sdrt)
600 {
601         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
602         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
603         struct stm32_fmc2_timings *tims = &nand->timings;
604         unsigned long hclk = clk_get_rate(&nfc->clk);
605         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
606         unsigned long timing, tar, tclr, thiz, twait;
607         unsigned long tset_mem, tset_att, thold_mem, thold_att;
608
609         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
610         timing = DIV_ROUND_UP(tar, hclkp) - 1;
611         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
612
613         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
614         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
615         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
616
617         tims->thiz = FMC2_THIZ;
618         thiz = (tims->thiz + 1) * hclkp;
619
620         /*
621          * tWAIT > tRP
622          * tWAIT > tWP
623          * tWAIT > tREA + tIO
624          */
625         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
626         twait = max_t(unsigned long, twait, sdrt->tWP_min);
627         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
628         timing = DIV_ROUND_UP(twait, hclkp);
629         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
630
631         /*
632          * tSETUP_MEM > tCS - tWAIT
633          * tSETUP_MEM > tALS - tWAIT
634          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
635          */
636         tset_mem = hclkp;
637         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
638                 tset_mem = sdrt->tCS_min - twait;
639         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
640                 tset_mem = sdrt->tALS_min - twait;
641         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
642             (tset_mem < sdrt->tDS_min - (twait - thiz)))
643                 tset_mem = sdrt->tDS_min - (twait - thiz);
644         timing = DIV_ROUND_UP(tset_mem, hclkp);
645         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
646
647         /*
648          * tHOLD_MEM > tCH
649          * tHOLD_MEM > tREH - tSETUP_MEM
650          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
651          */
652         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
653         if (sdrt->tREH_min > tset_mem &&
654             (thold_mem < sdrt->tREH_min - tset_mem))
655                 thold_mem = sdrt->tREH_min - tset_mem;
656         if ((sdrt->tRC_min > tset_mem + twait) &&
657             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
658                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
659         if ((sdrt->tWC_min > tset_mem + twait) &&
660             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
661                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
662         timing = DIV_ROUND_UP(thold_mem, hclkp);
663         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
664
665         /*
666          * tSETUP_ATT > tCS - tWAIT
667          * tSETUP_ATT > tCLS - tWAIT
668          * tSETUP_ATT > tALS - tWAIT
669          * tSETUP_ATT > tRHW - tHOLD_MEM
670          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
671          */
672         tset_att = hclkp;
673         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
674                 tset_att = sdrt->tCS_min - twait;
675         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
676                 tset_att = sdrt->tCLS_min - twait;
677         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
678                 tset_att = sdrt->tALS_min - twait;
679         if (sdrt->tRHW_min > thold_mem &&
680             (tset_att < sdrt->tRHW_min - thold_mem))
681                 tset_att = sdrt->tRHW_min - thold_mem;
682         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
683             (tset_att < sdrt->tDS_min - (twait - thiz)))
684                 tset_att = sdrt->tDS_min - (twait - thiz);
685         timing = DIV_ROUND_UP(tset_att, hclkp);
686         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
687
688         /*
689          * tHOLD_ATT > tALH
690          * tHOLD_ATT > tCH
691          * tHOLD_ATT > tCLH
692          * tHOLD_ATT > tCOH
693          * tHOLD_ATT > tDH
694          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
695          * tHOLD_ATT > tADL - tSETUP_MEM
696          * tHOLD_ATT > tWH - tSETUP_MEM
697          * tHOLD_ATT > tWHR - tSETUP_MEM
698          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
699          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
700          */
701         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
702         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
703         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
704         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
705         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
706         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
707             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
708                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
709         if (sdrt->tADL_min > tset_mem &&
710             (thold_att < sdrt->tADL_min - tset_mem))
711                 thold_att = sdrt->tADL_min - tset_mem;
712         if (sdrt->tWH_min > tset_mem &&
713             (thold_att < sdrt->tWH_min - tset_mem))
714                 thold_att = sdrt->tWH_min - tset_mem;
715         if (sdrt->tWHR_min > tset_mem &&
716             (thold_att < sdrt->tWHR_min - tset_mem))
717                 thold_att = sdrt->tWHR_min - tset_mem;
718         if ((sdrt->tRC_min > tset_att + twait) &&
719             (thold_att < sdrt->tRC_min - (tset_att + twait)))
720                 thold_att = sdrt->tRC_min - (tset_att + twait);
721         if ((sdrt->tWC_min > tset_att + twait) &&
722             (thold_att < sdrt->tWC_min - (tset_att + twait)))
723                 thold_att = sdrt->tWC_min - (tset_att + twait);
724         timing = DIV_ROUND_UP(thold_att, hclkp);
725         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
726 }
727
728 static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
729                                           const struct nand_data_interface *cf)
730 {
731         struct nand_chip *chip = mtd_to_nand(mtd);
732         const struct nand_sdr_timings *sdrt;
733
734         sdrt = nand_get_sdr_timings(cf);
735         if (IS_ERR(sdrt))
736                 return PTR_ERR(sdrt);
737
738         if (sdrt->tRC_min < 30000)
739                 return -EOPNOTSUPP;
740
741         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
742                 return 0;
743
744         stm32_fmc2_nfc_calc_timings(chip, sdrt);
745         stm32_fmc2_nfc_timings_init(chip);
746
747         return 0;
748 }
749
750 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
751 {
752         chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
753
754         /*
755          * Specific callbacks to read/write a page depending on
756          * the algo used (Hamming, BCH).
757          */
758         if (chip->ecc.strength == FMC2_ECC_HAM) {
759                 /* Hamming is used */
760                 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
761                 chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
762                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
763                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
764                 return;
765         }
766
767         /* BCH is used */
768         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
769         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
770         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
771
772         if (chip->ecc.strength == FMC2_ECC_BCH8)
773                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
774         else
775                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
776 }
777
778 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
779 {
780         /* Hamming */
781         if (strength == FMC2_ECC_HAM)
782                 return 4;
783
784         /* BCH8 */
785         if (strength == FMC2_ECC_BCH8)
786                 return 14;
787
788         /* BCH4 */
789         return 8;
790 }
791
792 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
793                      FMC2_ECC_STEP_SIZE,
794                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
795
796 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
797 {
798         struct stm32_fmc2_nand *nand = &nfc->nand;
799         u32 cs[FMC2_MAX_CE];
800         int ret, i;
801
802         if (!ofnode_get_property(node, "reg", &nand->ncs))
803                 return -EINVAL;
804
805         nand->ncs /= sizeof(u32);
806         if (!nand->ncs) {
807                 log_err("Invalid reg property size\n");
808                 return -EINVAL;
809         }
810
811         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
812         if (ret < 0) {
813                 log_err("Could not retrieve reg property\n");
814                 return -EINVAL;
815         }
816
817         for (i = 0; i < nand->ncs; i++) {
818                 if (cs[i] >= FMC2_MAX_CE) {
819                         log_err("Invalid reg value: %d\n", nand->cs_used[i]);
820                         return -EINVAL;
821                 }
822
823                 if (nfc->cs_assigned & BIT(cs[i])) {
824                         log_err("Cs already assigned: %d\n", nand->cs_used[i]);
825                         return -EINVAL;
826                 }
827
828                 nfc->cs_assigned |= BIT(cs[i]);
829                 nand->cs_used[i] = cs[i];
830         }
831
832         gpio_request_by_name_nodev(node, "wp-gpios", 0, &nand->wp_gpio,
833                                    GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
834
835         nand->chip.flash_node = node;
836
837         return 0;
838 }
839
840 static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
841                                    struct stm32_fmc2_nfc *nfc)
842 {
843         ofnode child;
844         int ret, nchips = 0;
845
846         dev_for_each_subnode(child, dev)
847                 nchips++;
848
849         if (!nchips) {
850                 log_err("NAND chip not defined\n");
851                 return -EINVAL;
852         }
853
854         if (nchips > 1) {
855                 log_err("Too many NAND chips defined\n");
856                 return -EINVAL;
857         }
858
859         dev_for_each_subnode(child, dev) {
860                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
861                 if (ret)
862                         return ret;
863         }
864
865         return 0;
866 }
867
868 static struct udevice *stm32_fmc2_nfc_get_cdev(struct udevice *dev)
869 {
870         struct udevice *pdev = dev_get_parent(dev);
871         struct udevice *cdev = NULL;
872         bool ebi_found = false;
873
874         if (pdev && ofnode_device_is_compatible(dev_ofnode(pdev),
875                                                 "st,stm32mp1-fmc2-ebi"))
876                 ebi_found = true;
877
878         if (ofnode_device_is_compatible(dev_ofnode(dev),
879                                         "st,stm32mp1-fmc2-nfc")) {
880                 if (ebi_found)
881                         cdev = pdev;
882
883                 return cdev;
884         }
885
886         if (!ebi_found)
887                 cdev = dev;
888
889         return cdev;
890 }
891
892 static int stm32_fmc2_nfc_probe(struct udevice *dev)
893 {
894         struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
895         struct stm32_fmc2_nand *nand = &nfc->nand;
896         struct nand_chip *chip = &nand->chip;
897         struct mtd_info *mtd = &chip->mtd;
898         struct nand_ecclayout *ecclayout;
899         struct udevice *cdev;
900         struct reset_ctl reset;
901         int oob_index, chip_cs, mem_region, ret;
902         unsigned int i;
903         int start_region = 0;
904         fdt_addr_t addr;
905
906         spin_lock_init(&nfc->controller.lock);
907         init_waitqueue_head(&nfc->controller.wq);
908
909         cdev = stm32_fmc2_nfc_get_cdev(dev);
910         if (!cdev)
911                 return -EINVAL;
912
913         ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
914         if (ret)
915                 return ret;
916
917         nfc->io_base = dev_read_addr(cdev);
918         if (nfc->io_base == FDT_ADDR_T_NONE)
919                 return -EINVAL;
920
921         if (dev == cdev)
922                 start_region = 1;
923
924         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
925              chip_cs++, mem_region += 3) {
926                 if (!(nfc->cs_assigned & BIT(chip_cs)))
927                         continue;
928
929                 addr = dev_read_addr_index(dev, mem_region);
930                 if (addr == FDT_ADDR_T_NONE) {
931                         dev_err(dev, "Resource data_base not found for cs%d", chip_cs);
932                         return ret;
933                 }
934                 nfc->data_base[chip_cs] = addr;
935
936                 addr = dev_read_addr_index(dev, mem_region + 1);
937                 if (addr == FDT_ADDR_T_NONE) {
938                         dev_err(dev, "Resource cmd_base not found for cs%d", chip_cs);
939                         return ret;
940                 }
941                 nfc->cmd_base[chip_cs] = addr;
942
943                 addr = dev_read_addr_index(dev, mem_region + 2);
944                 if (addr == FDT_ADDR_T_NONE) {
945                         dev_err(dev, "Resource addr_base not found for cs%d", chip_cs);
946                         return ret;
947                 }
948                 nfc->addr_base[chip_cs] = addr;
949         }
950
951         /* Enable the clock */
952         ret = clk_get_by_index(cdev, 0, &nfc->clk);
953         if (ret)
954                 return ret;
955
956         ret = clk_enable(&nfc->clk);
957         if (ret)
958                 return ret;
959
960         /* Reset */
961         ret = reset_get_by_index(dev, 0, &reset);
962         if (!ret) {
963                 reset_assert(&reset);
964                 udelay(2);
965                 reset_deassert(&reset);
966         }
967
968         stm32_fmc2_nfc_init(nfc, dev != cdev);
969
970         chip->controller = &nfc->base;
971         chip->select_chip = stm32_fmc2_nfc_select_chip;
972         chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
973         chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
974         chip->chip_delay = FMC2_RB_DELAY_US;
975         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
976                          NAND_USE_BOUNCE_BUFFER;
977
978         /* Default ECC settings */
979         chip->ecc.mode = NAND_ECC_HW;
980         chip->ecc.size = FMC2_ECC_STEP_SIZE;
981         chip->ecc.strength = FMC2_ECC_BCH8;
982
983         /* Disable Write Protect */
984         if (dm_gpio_is_valid(&nand->wp_gpio))
985                 dm_gpio_set_value(&nand->wp_gpio, 0);
986
987         ret = nand_scan_ident(mtd, nand->ncs, NULL);
988         if (ret)
989                 return ret;
990
991         /*
992          * Only NAND_ECC_HW mode is actually supported
993          * Hamming => ecc.strength = 1
994          * BCH4 => ecc.strength = 4
995          * BCH8 => ecc.strength = 8
996          * ECC sector size = 512
997          */
998         if (chip->ecc.mode != NAND_ECC_HW) {
999                 dev_err(dev, "Nand_ecc_mode is not well defined in the DT\n");
1000                 return -EINVAL;
1001         }
1002
1003         ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
1004                                   mtd->oobsize - FMC2_BBM_LEN);
1005         if (ret) {
1006                 dev_err(dev, "No valid ECC settings set\n");
1007                 return ret;
1008         }
1009
1010         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1011                 chip->bbt_options |= NAND_BBT_NO_OOB;
1012
1013         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1014
1015         /* Define ECC layout */
1016         ecclayout = &nfc->ecclayout;
1017         ecclayout->eccbytes = chip->ecc.bytes *
1018                               (mtd->writesize / chip->ecc.size);
1019         oob_index = FMC2_BBM_LEN;
1020         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1021                 ecclayout->eccpos[i] = oob_index;
1022         ecclayout->oobfree->offset = oob_index;
1023         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1024         chip->ecc.layout = ecclayout;
1025
1026         if (chip->options & NAND_BUSWIDTH_16)
1027                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1028
1029         ret = nand_scan_tail(mtd);
1030         if (ret)
1031                 return ret;
1032
1033         return nand_register(0, mtd);
1034 }
1035
1036 static const struct udevice_id stm32_fmc2_nfc_match[] = {
1037         { .compatible = "st,stm32mp15-fmc2" },
1038         { .compatible = "st,stm32mp1-fmc2-nfc" },
1039         { /* Sentinel */ }
1040 };
1041
1042 U_BOOT_DRIVER(stm32_fmc2_nfc) = {
1043         .name = "stm32_fmc2_nfc",
1044         .id = UCLASS_MTD,
1045         .of_match = stm32_fmc2_nfc_match,
1046         .probe = stm32_fmc2_nfc_probe,
1047         .priv_auto      = sizeof(struct stm32_fmc2_nfc),
1048 };
1049
1050 void board_nand_init(void)
1051 {
1052         struct udevice *dev;
1053         int ret;
1054
1055         ret = uclass_get_device_by_driver(UCLASS_MTD,
1056                                           DM_DRIVER_GET(stm32_fmc2_nfc),
1057                                           &dev);
1058         if (ret && ret != -ENODEV)
1059                 log_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
1060                         ret);
1061 }