selftests/bpf: Make test_varlen work with 32-bit user-space arch
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / raw / s3c2410.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
9
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
11
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
15
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/nand_ecc.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <linux/platform_data/mtd-nand-s3c2410.h>
37
38 #define S3C2410_NFREG(x) (x)
39
40 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
41 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
42 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
43 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
44 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
45 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
46 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
47 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
48 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
49 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
50 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
51 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
52 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
53 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
54 #define S3C2410_NFCONF_EN               (1<<15)
55 #define S3C2410_NFCONF_INITECC          (1<<12)
56 #define S3C2410_NFCONF_nFCE             (1<<11)
57 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
58 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
59 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
60 #define S3C2410_NFSTAT_BUSY             (1<<0)
61 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
62 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
63 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
64 #define S3C2440_NFCONT_INITECC          (1<<4)
65 #define S3C2440_NFCONT_nFCE             (1<<1)
66 #define S3C2440_NFCONT_ENABLE           (1<<0)
67 #define S3C2440_NFSTAT_READY            (1<<0)
68 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
69 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
70 #define S3C2412_NFCONT_nFCE0            (1<<1)
71 #define S3C2412_NFSTAT_READY            (1<<0)
72
73 /* new oob placement block for use with hardware ecc generation
74  */
75 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
76                                  struct mtd_oob_region *oobregion)
77 {
78         if (section)
79                 return -ERANGE;
80
81         oobregion->offset = 0;
82         oobregion->length = 3;
83
84         return 0;
85 }
86
87 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
88                                   struct mtd_oob_region *oobregion)
89 {
90         if (section)
91                 return -ERANGE;
92
93         oobregion->offset = 8;
94         oobregion->length = 8;
95
96         return 0;
97 }
98
99 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
100         .ecc = s3c2410_ooblayout_ecc,
101         .free = s3c2410_ooblayout_free,
102 };
103
104 /* controller and mtd information */
105
106 struct s3c2410_nand_info;
107
108 /**
109  * struct s3c2410_nand_mtd - driver MTD structure
110  * @mtd: The MTD instance to pass to the MTD layer.
111  * @chip: The NAND chip information.
112  * @set: The platform information supplied for this set of NAND chips.
113  * @info: Link back to the hardware information.
114 */
115 struct s3c2410_nand_mtd {
116         struct nand_chip                chip;
117         struct s3c2410_nand_set         *set;
118         struct s3c2410_nand_info        *info;
119 };
120
121 enum s3c_cpu_type {
122         TYPE_S3C2410,
123         TYPE_S3C2412,
124         TYPE_S3C2440,
125 };
126
127 enum s3c_nand_clk_state {
128         CLOCK_DISABLE   = 0,
129         CLOCK_ENABLE,
130         CLOCK_SUSPEND,
131 };
132
133 /* overview of the s3c2410 nand state */
134
135 /**
136  * struct s3c2410_nand_info - NAND controller state.
137  * @mtds: An array of MTD instances on this controoler.
138  * @platform: The platform data for this board.
139  * @device: The platform device we bound to.
140  * @clk: The clock resource for this controller.
141  * @regs: The area mapped for the hardware registers.
142  * @sel_reg: Pointer to the register controlling the NAND selection.
143  * @sel_bit: The bit in @sel_reg to select the NAND chip.
144  * @mtd_count: The number of MTDs created from this controller.
145  * @save_sel: The contents of @sel_reg to be saved over suspend.
146  * @clk_rate: The clock rate from @clk.
147  * @clk_state: The current clock state.
148  * @cpu_type: The exact type of this controller.
149  */
150 struct s3c2410_nand_info {
151         /* mtd info */
152         struct nand_controller          controller;
153         struct s3c2410_nand_mtd         *mtds;
154         struct s3c2410_platform_nand    *platform;
155
156         /* device info */
157         struct device                   *device;
158         struct clk                      *clk;
159         void __iomem                    *regs;
160         void __iomem                    *sel_reg;
161         int                             sel_bit;
162         int                             mtd_count;
163         unsigned long                   save_sel;
164         unsigned long                   clk_rate;
165         enum s3c_nand_clk_state         clk_state;
166
167         enum s3c_cpu_type               cpu_type;
168
169 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
170         struct notifier_block   freq_transition;
171 #endif
172 };
173
174 struct s3c24XX_nand_devtype_data {
175         enum s3c_cpu_type type;
176 };
177
178 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
179         .type = TYPE_S3C2410,
180 };
181
182 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
183         .type = TYPE_S3C2412,
184 };
185
186 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
187         .type = TYPE_S3C2440,
188 };
189
190 /* conversion functions */
191
192 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
193 {
194         return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
195                             chip);
196 }
197
198 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
199 {
200         return s3c2410_nand_mtd_toours(mtd)->info;
201 }
202
203 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
204 {
205         return platform_get_drvdata(dev);
206 }
207
208 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
209 {
210         return dev_get_platdata(&dev->dev);
211 }
212
213 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
214 {
215 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
216         return 1;
217 #else
218         return 0;
219 #endif
220 }
221
222 /**
223  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
224  * @info: The controller instance.
225  * @new_state: State to which clock should be set.
226  */
227 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
228                 enum s3c_nand_clk_state new_state)
229 {
230         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
231                 return;
232
233         if (info->clk_state == CLOCK_ENABLE) {
234                 if (new_state != CLOCK_ENABLE)
235                         clk_disable_unprepare(info->clk);
236         } else {
237                 if (new_state == CLOCK_ENABLE)
238                         clk_prepare_enable(info->clk);
239         }
240
241         info->clk_state = new_state;
242 }
243
244 /* timing calculations */
245
246 #define NS_IN_KHZ 1000000
247
248 /**
249  * s3c_nand_calc_rate - calculate timing data.
250  * @wanted: The cycle time in nanoseconds.
251  * @clk: The clock rate in kHz.
252  * @max: The maximum divider value.
253  *
254  * Calculate the timing value from the given parameters.
255  */
256 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
257 {
258         int result;
259
260         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
261
262         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
263
264         if (result > max) {
265                 pr_err("%d ns is too big for current clock rate %ld\n",
266                         wanted, clk);
267                 return -1;
268         }
269
270         if (result < 1)
271                 result = 1;
272
273         return result;
274 }
275
276 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
277
278 /* controller setup */
279
280 /**
281  * s3c2410_nand_setrate - setup controller timing information.
282  * @info: The controller instance.
283  *
284  * Given the information supplied by the platform, calculate and set
285  * the necessary timing registers in the hardware to generate the
286  * necessary timing cycles to the hardware.
287  */
288 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
289 {
290         struct s3c2410_platform_nand *plat = info->platform;
291         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
292         int tacls, twrph0, twrph1;
293         unsigned long clkrate = clk_get_rate(info->clk);
294         unsigned long set, cfg, mask;
295         unsigned long flags;
296
297         /* calculate the timing information for the controller */
298
299         info->clk_rate = clkrate;
300         clkrate /= 1000;        /* turn clock into kHz for ease of use */
301
302         if (plat != NULL) {
303                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
304                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
305                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
306         } else {
307                 /* default timings */
308                 tacls = tacls_max;
309                 twrph0 = 8;
310                 twrph1 = 8;
311         }
312
313         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
314                 dev_err(info->device, "cannot get suitable timings\n");
315                 return -EINVAL;
316         }
317
318         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
319                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
320                                                 twrph1, to_ns(twrph1, clkrate));
321
322         switch (info->cpu_type) {
323         case TYPE_S3C2410:
324                 mask = (S3C2410_NFCONF_TACLS(3) |
325                         S3C2410_NFCONF_TWRPH0(7) |
326                         S3C2410_NFCONF_TWRPH1(7));
327                 set = S3C2410_NFCONF_EN;
328                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
329                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
330                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
331                 break;
332
333         case TYPE_S3C2440:
334         case TYPE_S3C2412:
335                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
336                         S3C2440_NFCONF_TWRPH0(7) |
337                         S3C2440_NFCONF_TWRPH1(7));
338
339                 set = S3C2440_NFCONF_TACLS(tacls - 1);
340                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
341                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
342                 break;
343
344         default:
345                 BUG();
346         }
347
348         local_irq_save(flags);
349
350         cfg = readl(info->regs + S3C2410_NFCONF);
351         cfg &= ~mask;
352         cfg |= set;
353         writel(cfg, info->regs + S3C2410_NFCONF);
354
355         local_irq_restore(flags);
356
357         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
358
359         return 0;
360 }
361
362 /**
363  * s3c2410_nand_inithw - basic hardware initialisation
364  * @info: The hardware state.
365  *
366  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
367  * to setup the hardware access speeds and set the controller to be enabled.
368 */
369 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
370 {
371         int ret;
372
373         ret = s3c2410_nand_setrate(info);
374         if (ret < 0)
375                 return ret;
376
377         switch (info->cpu_type) {
378         case TYPE_S3C2410:
379         default:
380                 break;
381
382         case TYPE_S3C2440:
383         case TYPE_S3C2412:
384                 /* enable the controller and de-assert nFCE */
385
386                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
387         }
388
389         return 0;
390 }
391
392 /**
393  * s3c2410_nand_select_chip - select the given nand chip
394  * @this: NAND chip object.
395  * @chip: The chip number.
396  *
397  * This is called by the MTD layer to either select a given chip for the
398  * @mtd instance, or to indicate that the access has finished and the
399  * chip can be de-selected.
400  *
401  * The routine ensures that the nFCE line is correctly setup, and any
402  * platform specific selection code is called to route nFCE to the specific
403  * chip.
404  */
405 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
406 {
407         struct s3c2410_nand_info *info;
408         struct s3c2410_nand_mtd *nmtd;
409         unsigned long cur;
410
411         nmtd = nand_get_controller_data(this);
412         info = nmtd->info;
413
414         if (chip != -1)
415                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
416
417         cur = readl(info->sel_reg);
418
419         if (chip == -1) {
420                 cur |= info->sel_bit;
421         } else {
422                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
423                         dev_err(info->device, "invalid chip %d\n", chip);
424                         return;
425                 }
426
427                 if (info->platform != NULL) {
428                         if (info->platform->select_chip != NULL)
429                                 (info->platform->select_chip) (nmtd->set, chip);
430                 }
431
432                 cur &= ~info->sel_bit;
433         }
434
435         writel(cur, info->sel_reg);
436
437         if (chip == -1)
438                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
439 }
440
441 /* s3c2410_nand_hwcontrol
442  *
443  * Issue command and address cycles to the chip
444 */
445
446 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
447                                    unsigned int ctrl)
448 {
449         struct mtd_info *mtd = nand_to_mtd(chip);
450         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
451
452         if (cmd == NAND_CMD_NONE)
453                 return;
454
455         if (ctrl & NAND_CLE)
456                 writeb(cmd, info->regs + S3C2410_NFCMD);
457         else
458                 writeb(cmd, info->regs + S3C2410_NFADDR);
459 }
460
461 /* command and control functions */
462
463 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
464                                    unsigned int ctrl)
465 {
466         struct mtd_info *mtd = nand_to_mtd(chip);
467         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
468
469         if (cmd == NAND_CMD_NONE)
470                 return;
471
472         if (ctrl & NAND_CLE)
473                 writeb(cmd, info->regs + S3C2440_NFCMD);
474         else
475                 writeb(cmd, info->regs + S3C2440_NFADDR);
476 }
477
478 /* s3c2410_nand_devready()
479  *
480  * returns 0 if the nand is busy, 1 if it is ready
481 */
482
483 static int s3c2410_nand_devready(struct nand_chip *chip)
484 {
485         struct mtd_info *mtd = nand_to_mtd(chip);
486         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
487         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
488 }
489
490 static int s3c2440_nand_devready(struct nand_chip *chip)
491 {
492         struct mtd_info *mtd = nand_to_mtd(chip);
493         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
494         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
495 }
496
497 static int s3c2412_nand_devready(struct nand_chip *chip)
498 {
499         struct mtd_info *mtd = nand_to_mtd(chip);
500         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
501         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
502 }
503
504 /* ECC handling functions */
505
506 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
507                                      u_char *read_ecc, u_char *calc_ecc)
508 {
509         struct mtd_info *mtd = nand_to_mtd(chip);
510         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
511         unsigned int diff0, diff1, diff2;
512         unsigned int bit, byte;
513
514         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
515
516         diff0 = read_ecc[0] ^ calc_ecc[0];
517         diff1 = read_ecc[1] ^ calc_ecc[1];
518         diff2 = read_ecc[2] ^ calc_ecc[2];
519
520         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
521                  __func__, 3, read_ecc, 3, calc_ecc,
522                  diff0, diff1, diff2);
523
524         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
525                 return 0;               /* ECC is ok */
526
527         /* sometimes people do not think about using the ECC, so check
528          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
529          * the error, on the assumption that this is an un-eccd page.
530          */
531         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
532             && info->platform->ignore_unset_ecc)
533                 return 0;
534
535         /* Can we correct this ECC (ie, one row and column change).
536          * Note, this is similar to the 256 error code on smartmedia */
537
538         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
539             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
540             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
541                 /* calculate the bit position of the error */
542
543                 bit  = ((diff2 >> 3) & 1) |
544                        ((diff2 >> 4) & 2) |
545                        ((diff2 >> 5) & 4);
546
547                 /* calculate the byte position of the error */
548
549                 byte = ((diff2 << 7) & 0x100) |
550                        ((diff1 << 0) & 0x80)  |
551                        ((diff1 << 1) & 0x40)  |
552                        ((diff1 << 2) & 0x20)  |
553                        ((diff1 << 3) & 0x10)  |
554                        ((diff0 >> 4) & 0x08)  |
555                        ((diff0 >> 3) & 0x04)  |
556                        ((diff0 >> 2) & 0x02)  |
557                        ((diff0 >> 1) & 0x01);
558
559                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
560                         bit, byte);
561
562                 dat[byte] ^= (1 << bit);
563                 return 1;
564         }
565
566         /* if there is only one bit difference in the ECC, then
567          * one of only a row or column parity has changed, which
568          * means the error is most probably in the ECC itself */
569
570         diff0 |= (diff1 << 8);
571         diff0 |= (diff2 << 16);
572
573         /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
574         if ((diff0 & (diff0 - 1)) == 0)
575                 return 1;
576
577         return -1;
578 }
579
580 /* ECC functions
581  *
582  * These allow the s3c2410 and s3c2440 to use the controller's ECC
583  * generator block to ECC the data as it passes through]
584 */
585
586 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
587 {
588         struct s3c2410_nand_info *info;
589         unsigned long ctrl;
590
591         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
592         ctrl = readl(info->regs + S3C2410_NFCONF);
593         ctrl |= S3C2410_NFCONF_INITECC;
594         writel(ctrl, info->regs + S3C2410_NFCONF);
595 }
596
597 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
598 {
599         struct s3c2410_nand_info *info;
600         unsigned long ctrl;
601
602         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
603         ctrl = readl(info->regs + S3C2440_NFCONT);
604         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
605                info->regs + S3C2440_NFCONT);
606 }
607
608 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
609 {
610         struct s3c2410_nand_info *info;
611         unsigned long ctrl;
612
613         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
614         ctrl = readl(info->regs + S3C2440_NFCONT);
615         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
616 }
617
618 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
619                                       const u_char *dat, u_char *ecc_code)
620 {
621         struct mtd_info *mtd = nand_to_mtd(chip);
622         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
623
624         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
625         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
626         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
627
628         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
629
630         return 0;
631 }
632
633 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
634                                       const u_char *dat, u_char *ecc_code)
635 {
636         struct mtd_info *mtd = nand_to_mtd(chip);
637         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
639
640         ecc_code[0] = ecc;
641         ecc_code[1] = ecc >> 8;
642         ecc_code[2] = ecc >> 16;
643
644         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
645
646         return 0;
647 }
648
649 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
650                                       const u_char *dat, u_char *ecc_code)
651 {
652         struct mtd_info *mtd = nand_to_mtd(chip);
653         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
654         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
655
656         ecc_code[0] = ecc;
657         ecc_code[1] = ecc >> 8;
658         ecc_code[2] = ecc >> 16;
659
660         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
661
662         return 0;
663 }
664
665 /* over-ride the standard functions for a little more speed. We can
666  * use read/write block to move the data buffers to/from the controller
667 */
668
669 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
670 {
671         readsb(this->legacy.IO_ADDR_R, buf, len);
672 }
673
674 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
675 {
676         struct mtd_info *mtd = nand_to_mtd(this);
677         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
678
679         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
680
681         /* cleanup if we've got less than a word to do */
682         if (len & 3) {
683                 buf += len & ~3;
684
685                 for (; len & 3; len--)
686                         *buf++ = readb(info->regs + S3C2440_NFDATA);
687         }
688 }
689
690 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
691                                    int len)
692 {
693         writesb(this->legacy.IO_ADDR_W, buf, len);
694 }
695
696 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
697                                    int len)
698 {
699         struct mtd_info *mtd = nand_to_mtd(this);
700         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
701
702         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
703
704         /* cleanup any fractional write */
705         if (len & 3) {
706                 buf += len & ~3;
707
708                 for (; len & 3; len--, buf++)
709                         writeb(*buf, info->regs + S3C2440_NFDATA);
710         }
711 }
712
713 /* cpufreq driver support */
714
715 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
716
717 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
718                                           unsigned long val, void *data)
719 {
720         struct s3c2410_nand_info *info;
721         unsigned long newclk;
722
723         info = container_of(nb, struct s3c2410_nand_info, freq_transition);
724         newclk = clk_get_rate(info->clk);
725
726         if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
727             (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
728                 s3c2410_nand_setrate(info);
729         }
730
731         return 0;
732 }
733
734 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
735 {
736         info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
737
738         return cpufreq_register_notifier(&info->freq_transition,
739                                          CPUFREQ_TRANSITION_NOTIFIER);
740 }
741
742 static inline void
743 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
744 {
745         cpufreq_unregister_notifier(&info->freq_transition,
746                                     CPUFREQ_TRANSITION_NOTIFIER);
747 }
748
749 #else
750 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
751 {
752         return 0;
753 }
754
755 static inline void
756 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
757 {
758 }
759 #endif
760
761 /* device management functions */
762
763 static int s3c24xx_nand_remove(struct platform_device *pdev)
764 {
765         struct s3c2410_nand_info *info = to_nand_info(pdev);
766
767         if (info == NULL)
768                 return 0;
769
770         s3c2410_nand_cpufreq_deregister(info);
771
772         /* Release all our mtds  and their partitions, then go through
773          * freeing the resources used
774          */
775
776         if (info->mtds != NULL) {
777                 struct s3c2410_nand_mtd *ptr = info->mtds;
778                 int mtdno;
779
780                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
781                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
782                         WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
783                         nand_cleanup(&ptr->chip);
784                 }
785         }
786
787         /* free the common resources */
788
789         if (!IS_ERR(info->clk))
790                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
791
792         return 0;
793 }
794
795 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
796                                       struct s3c2410_nand_mtd *mtd,
797                                       struct s3c2410_nand_set *set)
798 {
799         if (set) {
800                 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
801
802                 mtdinfo->name = set->name;
803
804                 return mtd_device_register(mtdinfo, set->partitions,
805                                            set->nr_partitions);
806         }
807
808         return -ENODEV;
809 }
810
811 static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
812                                         const struct nand_data_interface *conf)
813 {
814         struct mtd_info *mtd = nand_to_mtd(chip);
815         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
816         struct s3c2410_platform_nand *pdata = info->platform;
817         const struct nand_sdr_timings *timings;
818         int tacls;
819
820         timings = nand_get_sdr_timings(conf);
821         if (IS_ERR(timings))
822                 return -ENOTSUPP;
823
824         tacls = timings->tCLS_min - timings->tWP_min;
825         if (tacls < 0)
826                 tacls = 0;
827
828         pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
829         pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
830         pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
831
832         return s3c2410_nand_setrate(info);
833 }
834
835 /**
836  * s3c2410_nand_init_chip - initialise a single instance of an chip
837  * @info: The base NAND controller the chip is on.
838  * @nmtd: The new controller MTD instance to fill in.
839  * @set: The information passed from the board specific platform data.
840  *
841  * Initialise the given @nmtd from the information in @info and @set. This
842  * readies the structure for use with the MTD layer functions by ensuring
843  * all pointers are setup and the necessary control routines selected.
844  */
845 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
846                                    struct s3c2410_nand_mtd *nmtd,
847                                    struct s3c2410_nand_set *set)
848 {
849         struct device_node *np = info->device->of_node;
850         struct nand_chip *chip = &nmtd->chip;
851         void __iomem *regs = info->regs;
852
853         nand_set_flash_node(chip, set->of_node);
854
855         chip->legacy.write_buf    = s3c2410_nand_write_buf;
856         chip->legacy.read_buf     = s3c2410_nand_read_buf;
857         chip->legacy.select_chip  = s3c2410_nand_select_chip;
858         chip->legacy.chip_delay   = 50;
859         nand_set_controller_data(chip, nmtd);
860         chip->options      = set->options;
861         chip->controller   = &info->controller;
862
863         /*
864          * let's keep behavior unchanged for legacy boards booting via pdata and
865          * auto-detect timings only when booting with a device tree.
866          */
867         if (!np)
868                 chip->options |= NAND_KEEP_TIMINGS;
869
870         switch (info->cpu_type) {
871         case TYPE_S3C2410:
872                 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
873                 info->sel_reg   = regs + S3C2410_NFCONF;
874                 info->sel_bit   = S3C2410_NFCONF_nFCE;
875                 chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
876                 chip->legacy.dev_ready = s3c2410_nand_devready;
877                 break;
878
879         case TYPE_S3C2440:
880                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
881                 info->sel_reg   = regs + S3C2440_NFCONT;
882                 info->sel_bit   = S3C2440_NFCONT_nFCE;
883                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
884                 chip->legacy.dev_ready = s3c2440_nand_devready;
885                 chip->legacy.read_buf  = s3c2440_nand_read_buf;
886                 chip->legacy.write_buf  = s3c2440_nand_write_buf;
887                 break;
888
889         case TYPE_S3C2412:
890                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
891                 info->sel_reg   = regs + S3C2440_NFCONT;
892                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
893                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
894                 chip->legacy.dev_ready = s3c2412_nand_devready;
895
896                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
897                         dev_info(info->device, "System booted from NAND\n");
898
899                 break;
900         }
901
902         chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
903
904         nmtd->info         = info;
905         nmtd->set          = set;
906
907         chip->ecc.mode = info->platform->ecc_mode;
908
909         /*
910          * If you use u-boot BBT creation code, specifying this flag will
911          * let the kernel fish out the BBT from the NAND.
912          */
913         if (set->flash_bbt)
914                 chip->bbt_options |= NAND_BBT_USE_FLASH;
915 }
916
917 /**
918  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
919  * @chip: The NAND chip
920  *
921  * This hook is called by the core after the identification of the NAND chip,
922  * once the relevant per-chip information is up to date.. This call ensure that
923  * we update the internal state accordingly.
924  *
925  * The internal state is currently limited to the ECC state information.
926 */
927 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
928 {
929         struct mtd_info *mtd = nand_to_mtd(chip);
930         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
931
932         switch (chip->ecc.mode) {
933
934         case NAND_ECC_NONE:
935                 dev_info(info->device, "ECC disabled\n");
936                 break;
937
938         case NAND_ECC_SOFT:
939                 /*
940                  * This driver expects Hamming based ECC when ecc_mode is set
941                  * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
942                  * avoid adding an extra ecc_algo field to
943                  * s3c2410_platform_nand.
944                  */
945                 chip->ecc.algo = NAND_ECC_HAMMING;
946                 dev_info(info->device, "soft ECC\n");
947                 break;
948
949         case NAND_ECC_HW:
950                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
951                 chip->ecc.correct   = s3c2410_nand_correct_data;
952                 chip->ecc.strength  = 1;
953
954                 switch (info->cpu_type) {
955                 case TYPE_S3C2410:
956                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
957                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
958                         break;
959
960                 case TYPE_S3C2412:
961                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
962                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
963                         break;
964
965                 case TYPE_S3C2440:
966                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
967                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
968                         break;
969                 }
970
971                 dev_dbg(info->device, "chip %p => page shift %d\n",
972                         chip, chip->page_shift);
973
974                 /* change the behaviour depending on whether we are using
975                  * the large or small page nand device */
976                 if (chip->page_shift > 10) {
977                         chip->ecc.size      = 256;
978                         chip->ecc.bytes     = 3;
979                 } else {
980                         chip->ecc.size      = 512;
981                         chip->ecc.bytes     = 3;
982                         mtd_set_ooblayout(nand_to_mtd(chip),
983                                           &s3c2410_ooblayout_ops);
984                 }
985
986                 dev_info(info->device, "hardware ECC\n");
987                 break;
988
989         default:
990                 dev_err(info->device, "invalid ECC mode!\n");
991                 return -EINVAL;
992         }
993
994         if (chip->bbt_options & NAND_BBT_USE_FLASH)
995                 chip->options |= NAND_SKIP_BBTSCAN;
996
997         return 0;
998 }
999
1000 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1001         .attach_chip = s3c2410_nand_attach_chip,
1002         .setup_data_interface = s3c2410_nand_setup_data_interface,
1003 };
1004
1005 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1006         {
1007                 .compatible = "samsung,s3c2410-nand",
1008                 .data = &s3c2410_nand_devtype_data,
1009         }, {
1010                 /* also compatible with s3c6400 */
1011                 .compatible = "samsung,s3c2412-nand",
1012                 .data = &s3c2412_nand_devtype_data,
1013         }, {
1014                 .compatible = "samsung,s3c2440-nand",
1015                 .data = &s3c2440_nand_devtype_data,
1016         },
1017         { /* sentinel */ }
1018 };
1019 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1020
1021 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1022 {
1023         const struct s3c24XX_nand_devtype_data *devtype_data;
1024         struct s3c2410_platform_nand *pdata;
1025         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1026         struct device_node *np = pdev->dev.of_node, *child;
1027         struct s3c2410_nand_set *sets;
1028
1029         devtype_data = of_device_get_match_data(&pdev->dev);
1030         if (!devtype_data)
1031                 return -ENODEV;
1032
1033         info->cpu_type = devtype_data->type;
1034
1035         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1036         if (!pdata)
1037                 return -ENOMEM;
1038
1039         pdev->dev.platform_data = pdata;
1040
1041         pdata->nr_sets = of_get_child_count(np);
1042         if (!pdata->nr_sets)
1043                 return 0;
1044
1045         sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1046                             GFP_KERNEL);
1047         if (!sets)
1048                 return -ENOMEM;
1049
1050         pdata->sets = sets;
1051
1052         for_each_available_child_of_node(np, child) {
1053                 sets->name = (char *)child->name;
1054                 sets->of_node = child;
1055                 sets->nr_chips = 1;
1056
1057                 of_node_get(child);
1058
1059                 sets++;
1060         }
1061
1062         return 0;
1063 }
1064
1065 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1066 {
1067         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1068
1069         info->cpu_type = platform_get_device_id(pdev)->driver_data;
1070
1071         return 0;
1072 }
1073
1074 /* s3c24xx_nand_probe
1075  *
1076  * called by device layer when it finds a device matching
1077  * one our driver can handled. This code checks to see if
1078  * it can allocate all necessary resources then calls the
1079  * nand layer to look for devices
1080 */
1081 static int s3c24xx_nand_probe(struct platform_device *pdev)
1082 {
1083         struct s3c2410_platform_nand *plat;
1084         struct s3c2410_nand_info *info;
1085         struct s3c2410_nand_mtd *nmtd;
1086         struct s3c2410_nand_set *sets;
1087         struct resource *res;
1088         int err = 0;
1089         int size;
1090         int nr_sets;
1091         int setno;
1092
1093         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1094         if (info == NULL) {
1095                 err = -ENOMEM;
1096                 goto exit_error;
1097         }
1098
1099         platform_set_drvdata(pdev, info);
1100
1101         nand_controller_init(&info->controller);
1102         info->controller.ops = &s3c24xx_nand_controller_ops;
1103
1104         /* get the clock source and enable it */
1105
1106         info->clk = devm_clk_get(&pdev->dev, "nand");
1107         if (IS_ERR(info->clk)) {
1108                 dev_err(&pdev->dev, "failed to get clock\n");
1109                 err = -ENOENT;
1110                 goto exit_error;
1111         }
1112
1113         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1114
1115         if (pdev->dev.of_node)
1116                 err = s3c24xx_nand_probe_dt(pdev);
1117         else
1118                 err = s3c24xx_nand_probe_pdata(pdev);
1119
1120         if (err)
1121                 goto exit_error;
1122
1123         plat = to_nand_plat(pdev);
1124
1125         /* allocate and map the resource */
1126
1127         /* currently we assume we have the one resource */
1128         res = pdev->resource;
1129         size = resource_size(res);
1130
1131         info->device    = &pdev->dev;
1132         info->platform  = plat;
1133
1134         info->regs = devm_ioremap_resource(&pdev->dev, res);
1135         if (IS_ERR(info->regs)) {
1136                 err = PTR_ERR(info->regs);
1137                 goto exit_error;
1138         }
1139
1140         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1141
1142         if (!plat->sets || plat->nr_sets < 1) {
1143                 err = -EINVAL;
1144                 goto exit_error;
1145         }
1146
1147         sets = plat->sets;
1148         nr_sets = plat->nr_sets;
1149
1150         info->mtd_count = nr_sets;
1151
1152         /* allocate our information */
1153
1154         size = nr_sets * sizeof(*info->mtds);
1155         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1156         if (info->mtds == NULL) {
1157                 err = -ENOMEM;
1158                 goto exit_error;
1159         }
1160
1161         /* initialise all possible chips */
1162
1163         nmtd = info->mtds;
1164
1165         for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1166                 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1167
1168                 pr_debug("initialising set %d (%p, info %p)\n",
1169                          setno, nmtd, info);
1170
1171                 mtd->dev.parent = &pdev->dev;
1172                 s3c2410_nand_init_chip(info, nmtd, sets);
1173
1174                 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1175                 if (err)
1176                         goto exit_error;
1177
1178                 s3c2410_nand_add_partition(info, nmtd, sets);
1179         }
1180
1181         /* initialise the hardware */
1182         err = s3c2410_nand_inithw(info);
1183         if (err != 0)
1184                 goto exit_error;
1185
1186         err = s3c2410_nand_cpufreq_register(info);
1187         if (err < 0) {
1188                 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1189                 goto exit_error;
1190         }
1191
1192         if (allow_clk_suspend(info)) {
1193                 dev_info(&pdev->dev, "clock idle support enabled\n");
1194                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1195         }
1196
1197         return 0;
1198
1199  exit_error:
1200         s3c24xx_nand_remove(pdev);
1201
1202         if (err == 0)
1203                 err = -EINVAL;
1204         return err;
1205 }
1206
1207 /* PM Support */
1208 #ifdef CONFIG_PM
1209
1210 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1211 {
1212         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1213
1214         if (info) {
1215                 info->save_sel = readl(info->sel_reg);
1216
1217                 /* For the moment, we must ensure nFCE is high during
1218                  * the time we are suspended. This really should be
1219                  * handled by suspending the MTDs we are using, but
1220                  * that is currently not the case. */
1221
1222                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1223
1224                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1225         }
1226
1227         return 0;
1228 }
1229
1230 static int s3c24xx_nand_resume(struct platform_device *dev)
1231 {
1232         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1233         unsigned long sel;
1234
1235         if (info) {
1236                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1237                 s3c2410_nand_inithw(info);
1238
1239                 /* Restore the state of the nFCE line. */
1240
1241                 sel = readl(info->sel_reg);
1242                 sel &= ~info->sel_bit;
1243                 sel |= info->save_sel & info->sel_bit;
1244                 writel(sel, info->sel_reg);
1245
1246                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1247         }
1248
1249         return 0;
1250 }
1251
1252 #else
1253 #define s3c24xx_nand_suspend NULL
1254 #define s3c24xx_nand_resume NULL
1255 #endif
1256
1257 /* driver device registration */
1258
1259 static const struct platform_device_id s3c24xx_driver_ids[] = {
1260         {
1261                 .name           = "s3c2410-nand",
1262                 .driver_data    = TYPE_S3C2410,
1263         }, {
1264                 .name           = "s3c2440-nand",
1265                 .driver_data    = TYPE_S3C2440,
1266         }, {
1267                 .name           = "s3c2412-nand",
1268                 .driver_data    = TYPE_S3C2412,
1269         }, {
1270                 .name           = "s3c6400-nand",
1271                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1272         },
1273         { }
1274 };
1275
1276 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1277
1278 static struct platform_driver s3c24xx_nand_driver = {
1279         .probe          = s3c24xx_nand_probe,
1280         .remove         = s3c24xx_nand_remove,
1281         .suspend        = s3c24xx_nand_suspend,
1282         .resume         = s3c24xx_nand_resume,
1283         .id_table       = s3c24xx_driver_ids,
1284         .driver         = {
1285                 .name   = "s3c24xx-nand",
1286                 .of_match_table = s3c24xx_nand_dt_ids,
1287         },
1288 };
1289
1290 module_platform_driver(s3c24xx_nand_driver);
1291
1292 MODULE_LICENSE("GPL");
1293 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1294 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");