Merge tag 'powerpc-6.6-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / raw / qcom_nandc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/bitops.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dma/qcom_adm.h>
11 #include <linux/dma/qcom_bam_dma.h>
12 #include <linux/module.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18
19 /* NANDc reg offsets */
20 #define NAND_FLASH_CMD                  0x00
21 #define NAND_ADDR0                      0x04
22 #define NAND_ADDR1                      0x08
23 #define NAND_FLASH_CHIP_SELECT          0x0c
24 #define NAND_EXEC_CMD                   0x10
25 #define NAND_FLASH_STATUS               0x14
26 #define NAND_BUFFER_STATUS              0x18
27 #define NAND_DEV0_CFG0                  0x20
28 #define NAND_DEV0_CFG1                  0x24
29 #define NAND_DEV0_ECC_CFG               0x28
30 #define NAND_AUTO_STATUS_EN             0x2c
31 #define NAND_DEV1_CFG0                  0x30
32 #define NAND_DEV1_CFG1                  0x34
33 #define NAND_READ_ID                    0x40
34 #define NAND_READ_STATUS                0x44
35 #define NAND_DEV_CMD0                   0xa0
36 #define NAND_DEV_CMD1                   0xa4
37 #define NAND_DEV_CMD2                   0xa8
38 #define NAND_DEV_CMD_VLD                0xac
39 #define SFLASHC_BURST_CFG               0xe0
40 #define NAND_ERASED_CW_DETECT_CFG       0xe8
41 #define NAND_ERASED_CW_DETECT_STATUS    0xec
42 #define NAND_EBI2_ECC_BUF_CFG           0xf0
43 #define FLASH_BUF_ACC                   0x100
44
45 #define NAND_CTRL                       0xf00
46 #define NAND_VERSION                    0xf08
47 #define NAND_READ_LOCATION_0            0xf20
48 #define NAND_READ_LOCATION_1            0xf24
49 #define NAND_READ_LOCATION_2            0xf28
50 #define NAND_READ_LOCATION_3            0xf2c
51 #define NAND_READ_LOCATION_LAST_CW_0    0xf40
52 #define NAND_READ_LOCATION_LAST_CW_1    0xf44
53 #define NAND_READ_LOCATION_LAST_CW_2    0xf48
54 #define NAND_READ_LOCATION_LAST_CW_3    0xf4c
55
56 /* dummy register offsets, used by write_reg_dma */
57 #define NAND_DEV_CMD1_RESTORE           0xdead
58 #define NAND_DEV_CMD_VLD_RESTORE        0xbeef
59
60 /* NAND_FLASH_CMD bits */
61 #define PAGE_ACC                        BIT(4)
62 #define LAST_PAGE                       BIT(5)
63
64 /* NAND_FLASH_CHIP_SELECT bits */
65 #define NAND_DEV_SEL                    0
66 #define DM_EN                           BIT(2)
67
68 /* NAND_FLASH_STATUS bits */
69 #define FS_OP_ERR                       BIT(4)
70 #define FS_READY_BSY_N                  BIT(5)
71 #define FS_MPU_ERR                      BIT(8)
72 #define FS_DEVICE_STS_ERR               BIT(16)
73 #define FS_DEVICE_WP                    BIT(23)
74
75 /* NAND_BUFFER_STATUS bits */
76 #define BS_UNCORRECTABLE_BIT            BIT(8)
77 #define BS_CORRECTABLE_ERR_MSK          0x1f
78
79 /* NAND_DEVn_CFG0 bits */
80 #define DISABLE_STATUS_AFTER_WRITE      4
81 #define CW_PER_PAGE                     6
82 #define UD_SIZE_BYTES                   9
83 #define UD_SIZE_BYTES_MASK              GENMASK(18, 9)
84 #define ECC_PARITY_SIZE_BYTES_RS        19
85 #define SPARE_SIZE_BYTES                23
86 #define SPARE_SIZE_BYTES_MASK           GENMASK(26, 23)
87 #define NUM_ADDR_CYCLES                 27
88 #define STATUS_BFR_READ                 30
89 #define SET_RD_MODE_AFTER_STATUS        31
90
91 /* NAND_DEVn_CFG0 bits */
92 #define DEV0_CFG1_ECC_DISABLE           0
93 #define WIDE_FLASH                      1
94 #define NAND_RECOVERY_CYCLES            2
95 #define CS_ACTIVE_BSY                   5
96 #define BAD_BLOCK_BYTE_NUM              6
97 #define BAD_BLOCK_IN_SPARE_AREA         16
98 #define WR_RD_BSY_GAP                   17
99 #define ENABLE_BCH_ECC                  27
100
101 /* NAND_DEV0_ECC_CFG bits */
102 #define ECC_CFG_ECC_DISABLE             0
103 #define ECC_SW_RESET                    1
104 #define ECC_MODE                        4
105 #define ECC_PARITY_SIZE_BYTES_BCH       8
106 #define ECC_NUM_DATA_BYTES              16
107 #define ECC_NUM_DATA_BYTES_MASK         GENMASK(25, 16)
108 #define ECC_FORCE_CLK_OPEN              30
109
110 /* NAND_DEV_CMD1 bits */
111 #define READ_ADDR                       0
112
113 /* NAND_DEV_CMD_VLD bits */
114 #define READ_START_VLD                  BIT(0)
115 #define READ_STOP_VLD                   BIT(1)
116 #define WRITE_START_VLD                 BIT(2)
117 #define ERASE_START_VLD                 BIT(3)
118 #define SEQ_READ_START_VLD              BIT(4)
119
120 /* NAND_EBI2_ECC_BUF_CFG bits */
121 #define NUM_STEPS                       0
122
123 /* NAND_ERASED_CW_DETECT_CFG bits */
124 #define ERASED_CW_ECC_MASK              1
125 #define AUTO_DETECT_RES                 0
126 #define MASK_ECC                        BIT(ERASED_CW_ECC_MASK)
127 #define RESET_ERASED_DET                BIT(AUTO_DETECT_RES)
128 #define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
129 #define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
130 #define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
131
132 /* NAND_ERASED_CW_DETECT_STATUS bits */
133 #define PAGE_ALL_ERASED                 BIT(7)
134 #define CODEWORD_ALL_ERASED             BIT(6)
135 #define PAGE_ERASED                     BIT(5)
136 #define CODEWORD_ERASED                 BIT(4)
137 #define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
138 #define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140 /* NAND_READ_LOCATION_n bits */
141 #define READ_LOCATION_OFFSET            0
142 #define READ_LOCATION_SIZE              16
143 #define READ_LOCATION_LAST              31
144
145 /* Version Mask */
146 #define NAND_VERSION_MAJOR_MASK         0xf0000000
147 #define NAND_VERSION_MAJOR_SHIFT        28
148 #define NAND_VERSION_MINOR_MASK         0x0fff0000
149 #define NAND_VERSION_MINOR_SHIFT        16
150
151 /* NAND OP_CMDs */
152 #define OP_PAGE_READ                    0x2
153 #define OP_PAGE_READ_WITH_ECC           0x3
154 #define OP_PAGE_READ_WITH_ECC_SPARE     0x4
155 #define OP_PAGE_READ_ONFI_READ          0x5
156 #define OP_PROGRAM_PAGE                 0x6
157 #define OP_PAGE_PROGRAM_WITH_ECC        0x7
158 #define OP_PROGRAM_PAGE_SPARE           0x9
159 #define OP_BLOCK_ERASE                  0xa
160 #define OP_CHECK_STATUS                 0xc
161 #define OP_FETCH_ID                     0xb
162 #define OP_RESET_DEVICE                 0xd
163
164 /* Default Value for NAND_DEV_CMD_VLD */
165 #define NAND_DEV_CMD_VLD_VAL            (READ_START_VLD | WRITE_START_VLD | \
166                                          ERASE_START_VLD | SEQ_READ_START_VLD)
167
168 /* NAND_CTRL bits */
169 #define BAM_MODE_EN                     BIT(0)
170
171 /*
172  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
173  * the driver calls the chunks 'step' or 'codeword' interchangeably
174  */
175 #define NANDC_STEP_SIZE                 512
176
177 /*
178  * the largest page size we support is 8K, this will have 16 steps/codewords
179  * of 512 bytes each
180  */
181 #define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
182
183 /* we read at most 3 registers per codeword scan */
184 #define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
185
186 /* ECC modes supported by the controller */
187 #define ECC_NONE        BIT(0)
188 #define ECC_RS_4BIT     BIT(1)
189 #define ECC_BCH_4BIT    BIT(2)
190 #define ECC_BCH_8BIT    BIT(3)
191
192 #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc)     \
193 nandc_set_reg(chip, reg,                        \
194               ((cw_offset) << READ_LOCATION_OFFSET) |           \
195               ((read_size) << READ_LOCATION_SIZE) |                     \
196               ((is_last_read_loc) << READ_LOCATION_LAST))
197
198 #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc)      \
199 nandc_set_reg(chip, reg,                        \
200               ((cw_offset) << READ_LOCATION_OFFSET) |           \
201               ((read_size) << READ_LOCATION_SIZE) |                     \
202               ((is_last_read_loc) << READ_LOCATION_LAST))
203 /*
204  * Returns the actual register address for all NAND_DEV_ registers
205  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
206  */
207 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
208
209 /* Returns the NAND register physical address */
210 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
211
212 /* Returns the dma address for reg read buffer */
213 #define reg_buf_dma_addr(chip, vaddr) \
214         ((chip)->reg_read_dma + \
215         ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
216
217 #define QPIC_PER_CW_CMD_ELEMENTS        32
218 #define QPIC_PER_CW_CMD_SGL             32
219 #define QPIC_PER_CW_DATA_SGL            8
220
221 #define QPIC_NAND_COMPLETION_TIMEOUT    msecs_to_jiffies(2000)
222
223 /*
224  * Flags used in DMA descriptor preparation helper functions
225  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
226  */
227 /* Don't set the EOT in current tx BAM sgl */
228 #define NAND_BAM_NO_EOT                 BIT(0)
229 /* Set the NWD flag in current BAM sgl */
230 #define NAND_BAM_NWD                    BIT(1)
231 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
232 #define NAND_BAM_NEXT_SGL               BIT(2)
233 /*
234  * Erased codeword status is being used two times in single transfer so this
235  * flag will determine the current value of erased codeword status register
236  */
237 #define NAND_ERASED_CW_SET              BIT(4)
238
239 #define MAX_ADDRESS_CYCLE               5
240
241 /*
242  * This data type corresponds to the BAM transaction which will be used for all
243  * NAND transfers.
244  * @bam_ce - the array of BAM command elements
245  * @cmd_sgl - sgl for NAND BAM command pipe
246  * @data_sgl - sgl for NAND BAM consumer/producer pipe
247  * @last_data_desc - last DMA desc in data channel (tx/rx).
248  * @last_cmd_desc - last DMA desc in command channel.
249  * @txn_done - completion for NAND transfer.
250  * @bam_ce_pos - the index in bam_ce which is available for next sgl
251  * @bam_ce_start - the index in bam_ce which marks the start position ce
252  *                 for current sgl. It will be used for size calculation
253  *                 for current sgl
254  * @cmd_sgl_pos - current index in command sgl.
255  * @cmd_sgl_start - start index in command sgl.
256  * @tx_sgl_pos - current index in data sgl for tx.
257  * @tx_sgl_start - start index in data sgl for tx.
258  * @rx_sgl_pos - current index in data sgl for rx.
259  * @rx_sgl_start - start index in data sgl for rx.
260  * @wait_second_completion - wait for second DMA desc completion before making
261  *                           the NAND transfer completion.
262  */
263 struct bam_transaction {
264         struct bam_cmd_element *bam_ce;
265         struct scatterlist *cmd_sgl;
266         struct scatterlist *data_sgl;
267         struct dma_async_tx_descriptor *last_data_desc;
268         struct dma_async_tx_descriptor *last_cmd_desc;
269         struct completion txn_done;
270         u32 bam_ce_pos;
271         u32 bam_ce_start;
272         u32 cmd_sgl_pos;
273         u32 cmd_sgl_start;
274         u32 tx_sgl_pos;
275         u32 tx_sgl_start;
276         u32 rx_sgl_pos;
277         u32 rx_sgl_start;
278         bool wait_second_completion;
279 };
280
281 /*
282  * This data type corresponds to the nand dma descriptor
283  * @dma_desc - low level DMA engine descriptor
284  * @list - list for desc_info
285  *
286  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
287  *            ADM
288  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
289  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
290  * @dir - DMA transfer direction
291  */
292 struct desc_info {
293         struct dma_async_tx_descriptor *dma_desc;
294         struct list_head node;
295
296         union {
297                 struct scatterlist adm_sgl;
298                 struct {
299                         struct scatterlist *bam_sgl;
300                         int sgl_cnt;
301                 };
302         };
303         enum dma_data_direction dir;
304 };
305
306 /*
307  * holds the current register values that we want to write. acts as a contiguous
308  * chunk of memory which we use to write the controller registers through DMA.
309  */
310 struct nandc_regs {
311         __le32 cmd;
312         __le32 addr0;
313         __le32 addr1;
314         __le32 chip_sel;
315         __le32 exec;
316
317         __le32 cfg0;
318         __le32 cfg1;
319         __le32 ecc_bch_cfg;
320
321         __le32 clrflashstatus;
322         __le32 clrreadstatus;
323
324         __le32 cmd1;
325         __le32 vld;
326
327         __le32 orig_cmd1;
328         __le32 orig_vld;
329
330         __le32 ecc_buf_cfg;
331         __le32 read_location0;
332         __le32 read_location1;
333         __le32 read_location2;
334         __le32 read_location3;
335         __le32 read_location_last0;
336         __le32 read_location_last1;
337         __le32 read_location_last2;
338         __le32 read_location_last3;
339
340         __le32 erased_cw_detect_cfg_clr;
341         __le32 erased_cw_detect_cfg_set;
342 };
343
344 /*
345  * NAND controller data struct
346  *
347  * @dev:                        parent device
348  *
349  * @base:                       MMIO base
350  *
351  * @core_clk:                   controller clock
352  * @aon_clk:                    another controller clock
353  *
354  * @regs:                       a contiguous chunk of memory for DMA register
355  *                              writes. contains the register values to be
356  *                              written to controller
357  *
358  * @props:                      properties of current NAND controller,
359  *                              initialized via DT match data
360  *
361  * @controller:                 base controller structure
362  * @host_list:                  list containing all the chips attached to the
363  *                              controller
364  *
365  * @chan:                       dma channel
366  * @cmd_crci:                   ADM DMA CRCI for command flow control
367  * @data_crci:                  ADM DMA CRCI for data flow control
368  *
369  * @desc_list:                  DMA descriptor list (list of desc_infos)
370  *
371  * @data_buffer:                our local DMA buffer for page read/writes,
372  *                              used when we can't use the buffer provided
373  *                              by upper layers directly
374  * @reg_read_buf:               local buffer for reading back registers via DMA
375  *
376  * @base_phys:                  physical base address of controller registers
377  * @base_dma:                   dma base address of controller registers
378  * @reg_read_dma:               contains dma address for register read buffer
379  *
380  * @buf_size/count/start:       markers for chip->legacy.read_buf/write_buf
381  *                              functions
382  * @max_cwperpage:              maximum QPIC codewords required. calculated
383  *                              from all connected NAND devices pagesize
384  *
385  * @reg_read_pos:               marker for data read in reg_read_buf
386  *
387  * @cmd1/vld:                   some fixed controller register values
388  *
389  * @exec_opwrite:               flag to select correct number of code word
390  *                              while reading status
391  */
392 struct qcom_nand_controller {
393         struct device *dev;
394
395         void __iomem *base;
396
397         struct clk *core_clk;
398         struct clk *aon_clk;
399
400         struct nandc_regs *regs;
401         struct bam_transaction *bam_txn;
402
403         const struct qcom_nandc_props *props;
404
405         struct nand_controller controller;
406         struct list_head host_list;
407
408         union {
409                 /* will be used only by QPIC for BAM DMA */
410                 struct {
411                         struct dma_chan *tx_chan;
412                         struct dma_chan *rx_chan;
413                         struct dma_chan *cmd_chan;
414                 };
415
416                 /* will be used only by EBI2 for ADM DMA */
417                 struct {
418                         struct dma_chan *chan;
419                         unsigned int cmd_crci;
420                         unsigned int data_crci;
421                 };
422         };
423
424         struct list_head desc_list;
425
426         u8              *data_buffer;
427         __le32          *reg_read_buf;
428
429         phys_addr_t base_phys;
430         dma_addr_t base_dma;
431         dma_addr_t reg_read_dma;
432
433         int             buf_size;
434         int             buf_count;
435         int             buf_start;
436         unsigned int    max_cwperpage;
437
438         int reg_read_pos;
439
440         u32 cmd1, vld;
441         bool exec_opwrite;
442 };
443
444 /*
445  * NAND special boot partitions
446  *
447  * @page_offset:                offset of the partition where spare data is not protected
448  *                              by ECC (value in pages)
449  * @page_offset:                size of the partition where spare data is not protected
450  *                              by ECC (value in pages)
451  */
452 struct qcom_nand_boot_partition {
453         u32 page_offset;
454         u32 page_size;
455 };
456
457 /*
458  * Qcom op for each exec_op transfer
459  *
460  * @data_instr:                 data instruction pointer
461  * @data_instr_idx:             data instruction index
462  * @rdy_timeout_ms:             wait ready timeout in ms
463  * @rdy_delay_ns:               Additional delay in ns
464  * @addr1_reg:                  Address1 register value
465  * @addr2_reg:                  Address2 register value
466  * @cmd_reg:                    CMD register value
467  * @flag:                       flag for misc instruction
468  */
469 struct qcom_op {
470         const struct nand_op_instr *data_instr;
471         unsigned int data_instr_idx;
472         unsigned int rdy_timeout_ms;
473         unsigned int rdy_delay_ns;
474         u32 addr1_reg;
475         u32 addr2_reg;
476         u32 cmd_reg;
477         u8 flag;
478 };
479
480 /*
481  * NAND chip structure
482  *
483  * @boot_partitions:            array of boot partitions where offset and size of the
484  *                              boot partitions are stored
485  *
486  * @chip:                       base NAND chip structure
487  * @node:                       list node to add itself to host_list in
488  *                              qcom_nand_controller
489  *
490  * @nr_boot_partitions:         count of the boot partitions where spare data is not
491  *                              protected by ECC
492  *
493  * @cs:                         chip select value for this chip
494  * @cw_size:                    the number of bytes in a single step/codeword
495  *                              of a page, consisting of all data, ecc, spare
496  *                              and reserved bytes
497  * @cw_data:                    the number of bytes within a codeword protected
498  *                              by ECC
499  * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
500  *                              chip
501  *
502  * @last_command:               keeps track of last command on this chip. used
503  *                              for reading correct status
504  *
505  * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
506  *                              ecc/non-ecc mode for the current nand flash
507  *                              device
508  *
509  * @status:                     value to be returned if NAND_CMD_STATUS command
510  *                              is executed
511  * @codeword_fixup:             keep track of the current layout used by
512  *                              the driver for read/write operation.
513  * @use_ecc:                    request the controller to use ECC for the
514  *                              upcoming read/write
515  * @bch_enabled:                flag to tell whether BCH ECC mode is used
516  */
517 struct qcom_nand_host {
518         struct qcom_nand_boot_partition *boot_partitions;
519
520         struct nand_chip chip;
521         struct list_head node;
522
523         int nr_boot_partitions;
524
525         int cs;
526         int cw_size;
527         int cw_data;
528         int ecc_bytes_hw;
529         int spare_bytes;
530         int bbm_size;
531
532         int last_command;
533
534         u32 cfg0, cfg1;
535         u32 cfg0_raw, cfg1_raw;
536         u32 ecc_buf_cfg;
537         u32 ecc_bch_cfg;
538         u32 clrflashstatus;
539         u32 clrreadstatus;
540
541         u8 status;
542         bool codeword_fixup;
543         bool use_ecc;
544         bool bch_enabled;
545 };
546
547 /*
548  * This data type corresponds to the NAND controller properties which varies
549  * among different NAND controllers.
550  * @ecc_modes - ecc mode for NAND
551  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
552  * @is_bam - whether NAND controller is using BAM
553  * @is_qpic - whether NAND CTRL is part of qpic IP
554  * @qpic_v2 - flag to indicate QPIC IP version 2
555  * @use_codeword_fixup - whether NAND has different layout for boot partitions
556  */
557 struct qcom_nandc_props {
558         u32 ecc_modes;
559         u32 dev_cmd_reg_start;
560         bool is_bam;
561         bool is_qpic;
562         bool qpic_v2;
563         bool use_codeword_fixup;
564 };
565
566 /* Frees the BAM transaction memory */
567 static void free_bam_transaction(struct qcom_nand_controller *nandc)
568 {
569         struct bam_transaction *bam_txn = nandc->bam_txn;
570
571         devm_kfree(nandc->dev, bam_txn);
572 }
573
574 /* Allocates and Initializes the BAM transaction */
575 static struct bam_transaction *
576 alloc_bam_transaction(struct qcom_nand_controller *nandc)
577 {
578         struct bam_transaction *bam_txn;
579         size_t bam_txn_size;
580         unsigned int num_cw = nandc->max_cwperpage;
581         void *bam_txn_buf;
582
583         bam_txn_size =
584                 sizeof(*bam_txn) + num_cw *
585                 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
586                 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
587                 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
588
589         bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
590         if (!bam_txn_buf)
591                 return NULL;
592
593         bam_txn = bam_txn_buf;
594         bam_txn_buf += sizeof(*bam_txn);
595
596         bam_txn->bam_ce = bam_txn_buf;
597         bam_txn_buf +=
598                 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
599
600         bam_txn->cmd_sgl = bam_txn_buf;
601         bam_txn_buf +=
602                 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
603
604         bam_txn->data_sgl = bam_txn_buf;
605
606         init_completion(&bam_txn->txn_done);
607
608         return bam_txn;
609 }
610
611 /* Clears the BAM transaction indexes */
612 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
613 {
614         struct bam_transaction *bam_txn = nandc->bam_txn;
615
616         if (!nandc->props->is_bam)
617                 return;
618
619         bam_txn->bam_ce_pos = 0;
620         bam_txn->bam_ce_start = 0;
621         bam_txn->cmd_sgl_pos = 0;
622         bam_txn->cmd_sgl_start = 0;
623         bam_txn->tx_sgl_pos = 0;
624         bam_txn->tx_sgl_start = 0;
625         bam_txn->rx_sgl_pos = 0;
626         bam_txn->rx_sgl_start = 0;
627         bam_txn->last_data_desc = NULL;
628         bam_txn->wait_second_completion = false;
629
630         sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
631                       QPIC_PER_CW_CMD_SGL);
632         sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
633                       QPIC_PER_CW_DATA_SGL);
634
635         reinit_completion(&bam_txn->txn_done);
636 }
637
638 /* Callback for DMA descriptor completion */
639 static void qpic_bam_dma_done(void *data)
640 {
641         struct bam_transaction *bam_txn = data;
642
643         /*
644          * In case of data transfer with NAND, 2 callbacks will be generated.
645          * One for command channel and another one for data channel.
646          * If current transaction has data descriptors
647          * (i.e. wait_second_completion is true), then set this to false
648          * and wait for second DMA descriptor completion.
649          */
650         if (bam_txn->wait_second_completion)
651                 bam_txn->wait_second_completion = false;
652         else
653                 complete(&bam_txn->txn_done);
654 }
655
656 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
657 {
658         return container_of(chip, struct qcom_nand_host, chip);
659 }
660
661 static inline struct qcom_nand_controller *
662 get_qcom_nand_controller(struct nand_chip *chip)
663 {
664         return container_of(chip->controller, struct qcom_nand_controller,
665                             controller);
666 }
667
668 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
669 {
670         return ioread32(nandc->base + offset);
671 }
672
673 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
674                                u32 val)
675 {
676         iowrite32(val, nandc->base + offset);
677 }
678
679 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
680                                           bool is_cpu)
681 {
682         if (!nandc->props->is_bam)
683                 return;
684
685         if (is_cpu)
686                 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
687                                         MAX_REG_RD *
688                                         sizeof(*nandc->reg_read_buf),
689                                         DMA_FROM_DEVICE);
690         else
691                 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
692                                            MAX_REG_RD *
693                                            sizeof(*nandc->reg_read_buf),
694                                            DMA_FROM_DEVICE);
695 }
696
697 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
698 {
699         switch (offset) {
700         case NAND_FLASH_CMD:
701                 return &regs->cmd;
702         case NAND_ADDR0:
703                 return &regs->addr0;
704         case NAND_ADDR1:
705                 return &regs->addr1;
706         case NAND_FLASH_CHIP_SELECT:
707                 return &regs->chip_sel;
708         case NAND_EXEC_CMD:
709                 return &regs->exec;
710         case NAND_FLASH_STATUS:
711                 return &regs->clrflashstatus;
712         case NAND_DEV0_CFG0:
713                 return &regs->cfg0;
714         case NAND_DEV0_CFG1:
715                 return &regs->cfg1;
716         case NAND_DEV0_ECC_CFG:
717                 return &regs->ecc_bch_cfg;
718         case NAND_READ_STATUS:
719                 return &regs->clrreadstatus;
720         case NAND_DEV_CMD1:
721                 return &regs->cmd1;
722         case NAND_DEV_CMD1_RESTORE:
723                 return &regs->orig_cmd1;
724         case NAND_DEV_CMD_VLD:
725                 return &regs->vld;
726         case NAND_DEV_CMD_VLD_RESTORE:
727                 return &regs->orig_vld;
728         case NAND_EBI2_ECC_BUF_CFG:
729                 return &regs->ecc_buf_cfg;
730         case NAND_READ_LOCATION_0:
731                 return &regs->read_location0;
732         case NAND_READ_LOCATION_1:
733                 return &regs->read_location1;
734         case NAND_READ_LOCATION_2:
735                 return &regs->read_location2;
736         case NAND_READ_LOCATION_3:
737                 return &regs->read_location3;
738         case NAND_READ_LOCATION_LAST_CW_0:
739                 return &regs->read_location_last0;
740         case NAND_READ_LOCATION_LAST_CW_1:
741                 return &regs->read_location_last1;
742         case NAND_READ_LOCATION_LAST_CW_2:
743                 return &regs->read_location_last2;
744         case NAND_READ_LOCATION_LAST_CW_3:
745                 return &regs->read_location_last3;
746         default:
747                 return NULL;
748         }
749 }
750
751 static void nandc_set_reg(struct nand_chip *chip, int offset,
752                           u32 val)
753 {
754         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
755         struct nandc_regs *regs = nandc->regs;
756         __le32 *reg;
757
758         reg = offset_to_nandc_reg(regs, offset);
759
760         if (reg)
761                 *reg = cpu_to_le32(val);
762 }
763
764 /* Helper to check the code word, whether it is last cw or not */
765 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
766 {
767         return cw == (ecc->steps - 1);
768 }
769
770 /* helper to configure location register values */
771 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
772                                int cw_offset, int read_size, int is_last_read_loc)
773 {
774         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
775         struct nand_ecc_ctrl *ecc = &chip->ecc;
776         int reg_base = NAND_READ_LOCATION_0;
777
778         if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
779                 reg_base = NAND_READ_LOCATION_LAST_CW_0;
780
781         reg_base += reg * 4;
782
783         if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
784                 return nandc_set_read_loc_last(chip, reg_base, cw_offset,
785                                 read_size, is_last_read_loc);
786         else
787                 return nandc_set_read_loc_first(chip, reg_base, cw_offset,
788                                 read_size, is_last_read_loc);
789 }
790
791 /* helper to configure address register values */
792 static void set_address(struct qcom_nand_host *host, u16 column, int page)
793 {
794         struct nand_chip *chip = &host->chip;
795
796         if (chip->options & NAND_BUSWIDTH_16)
797                 column >>= 1;
798
799         nandc_set_reg(chip, NAND_ADDR0, page << 16 | column);
800         nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff);
801 }
802
803 /*
804  * update_rw_regs:      set up read/write register values, these will be
805  *                      written to the NAND controller registers via DMA
806  *
807  * @num_cw:             number of steps for the read/write operation
808  * @read:               read or write operation
809  * @cw  :               which code word
810  */
811 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
812 {
813         struct nand_chip *chip = &host->chip;
814         u32 cmd, cfg0, cfg1, ecc_bch_cfg;
815         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
816
817         if (read) {
818                 if (host->use_ecc)
819                         cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
820                 else
821                         cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
822         } else {
823                 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
824         }
825
826         if (host->use_ecc) {
827                 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
828                                 (num_cw - 1) << CW_PER_PAGE;
829
830                 cfg1 = host->cfg1;
831                 ecc_bch_cfg = host->ecc_bch_cfg;
832         } else {
833                 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
834                                 (num_cw - 1) << CW_PER_PAGE;
835
836                 cfg1 = host->cfg1_raw;
837                 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
838         }
839
840         nandc_set_reg(chip, NAND_FLASH_CMD, cmd);
841         nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0);
842         nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1);
843         nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
844         if (!nandc->props->qpic_v2)
845                 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
846         nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus);
847         nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus);
848         nandc_set_reg(chip, NAND_EXEC_CMD, 1);
849
850         if (read)
851                 nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
852                                    host->cw_data : host->cw_size, 1);
853 }
854
855 /*
856  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
857  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
858  * which will be submitted to DMA engine.
859  */
860 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
861                                   struct dma_chan *chan,
862                                   unsigned long flags)
863 {
864         struct desc_info *desc;
865         struct scatterlist *sgl;
866         unsigned int sgl_cnt;
867         int ret;
868         struct bam_transaction *bam_txn = nandc->bam_txn;
869         enum dma_transfer_direction dir_eng;
870         struct dma_async_tx_descriptor *dma_desc;
871
872         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
873         if (!desc)
874                 return -ENOMEM;
875
876         if (chan == nandc->cmd_chan) {
877                 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
878                 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
879                 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
880                 dir_eng = DMA_MEM_TO_DEV;
881                 desc->dir = DMA_TO_DEVICE;
882         } else if (chan == nandc->tx_chan) {
883                 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
884                 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
885                 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
886                 dir_eng = DMA_MEM_TO_DEV;
887                 desc->dir = DMA_TO_DEVICE;
888         } else {
889                 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
890                 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
891                 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
892                 dir_eng = DMA_DEV_TO_MEM;
893                 desc->dir = DMA_FROM_DEVICE;
894         }
895
896         sg_mark_end(sgl + sgl_cnt - 1);
897         ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
898         if (ret == 0) {
899                 dev_err(nandc->dev, "failure in mapping desc\n");
900                 kfree(desc);
901                 return -ENOMEM;
902         }
903
904         desc->sgl_cnt = sgl_cnt;
905         desc->bam_sgl = sgl;
906
907         dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
908                                            flags);
909
910         if (!dma_desc) {
911                 dev_err(nandc->dev, "failure in prep desc\n");
912                 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
913                 kfree(desc);
914                 return -EINVAL;
915         }
916
917         desc->dma_desc = dma_desc;
918
919         /* update last data/command descriptor */
920         if (chan == nandc->cmd_chan)
921                 bam_txn->last_cmd_desc = dma_desc;
922         else
923                 bam_txn->last_data_desc = dma_desc;
924
925         list_add_tail(&desc->node, &nandc->desc_list);
926
927         return 0;
928 }
929
930 /*
931  * Prepares the command descriptor for BAM DMA which will be used for NAND
932  * register reads and writes. The command descriptor requires the command
933  * to be formed in command element type so this function uses the command
934  * element from bam transaction ce array and fills the same with required
935  * data. A single SGL can contain multiple command elements so
936  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
937  * after the current command element.
938  */
939 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
940                                  int reg_off, const void *vaddr,
941                                  int size, unsigned int flags)
942 {
943         int bam_ce_size;
944         int i, ret;
945         struct bam_cmd_element *bam_ce_buffer;
946         struct bam_transaction *bam_txn = nandc->bam_txn;
947
948         bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
949
950         /* fill the command desc */
951         for (i = 0; i < size; i++) {
952                 if (read)
953                         bam_prep_ce(&bam_ce_buffer[i],
954                                     nandc_reg_phys(nandc, reg_off + 4 * i),
955                                     BAM_READ_COMMAND,
956                                     reg_buf_dma_addr(nandc,
957                                                      (__le32 *)vaddr + i));
958                 else
959                         bam_prep_ce_le32(&bam_ce_buffer[i],
960                                          nandc_reg_phys(nandc, reg_off + 4 * i),
961                                          BAM_WRITE_COMMAND,
962                                          *((__le32 *)vaddr + i));
963         }
964
965         bam_txn->bam_ce_pos += size;
966
967         /* use the separate sgl after this command */
968         if (flags & NAND_BAM_NEXT_SGL) {
969                 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
970                 bam_ce_size = (bam_txn->bam_ce_pos -
971                                 bam_txn->bam_ce_start) *
972                                 sizeof(struct bam_cmd_element);
973                 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
974                            bam_ce_buffer, bam_ce_size);
975                 bam_txn->cmd_sgl_pos++;
976                 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
977
978                 if (flags & NAND_BAM_NWD) {
979                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
980                                                      DMA_PREP_FENCE |
981                                                      DMA_PREP_CMD);
982                         if (ret)
983                                 return ret;
984                 }
985         }
986
987         return 0;
988 }
989
990 /*
991  * Prepares the data descriptor for BAM DMA which will be used for NAND
992  * data reads and writes.
993  */
994 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
995                                   const void *vaddr,
996                                   int size, unsigned int flags)
997 {
998         int ret;
999         struct bam_transaction *bam_txn = nandc->bam_txn;
1000
1001         if (read) {
1002                 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
1003                            vaddr, size);
1004                 bam_txn->rx_sgl_pos++;
1005         } else {
1006                 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
1007                            vaddr, size);
1008                 bam_txn->tx_sgl_pos++;
1009
1010                 /*
1011                  * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
1012                  * is not set, form the DMA descriptor
1013                  */
1014                 if (!(flags & NAND_BAM_NO_EOT)) {
1015                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
1016                                                      DMA_PREP_INTERRUPT);
1017                         if (ret)
1018                                 return ret;
1019                 }
1020         }
1021
1022         return 0;
1023 }
1024
1025 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
1026                              int reg_off, const void *vaddr, int size,
1027                              bool flow_control)
1028 {
1029         struct desc_info *desc;
1030         struct dma_async_tx_descriptor *dma_desc;
1031         struct scatterlist *sgl;
1032         struct dma_slave_config slave_conf;
1033         struct qcom_adm_peripheral_config periph_conf = {};
1034         enum dma_transfer_direction dir_eng;
1035         int ret;
1036
1037         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1038         if (!desc)
1039                 return -ENOMEM;
1040
1041         sgl = &desc->adm_sgl;
1042
1043         sg_init_one(sgl, vaddr, size);
1044
1045         if (read) {
1046                 dir_eng = DMA_DEV_TO_MEM;
1047                 desc->dir = DMA_FROM_DEVICE;
1048         } else {
1049                 dir_eng = DMA_MEM_TO_DEV;
1050                 desc->dir = DMA_TO_DEVICE;
1051         }
1052
1053         ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
1054         if (ret == 0) {
1055                 ret = -ENOMEM;
1056                 goto err;
1057         }
1058
1059         memset(&slave_conf, 0x00, sizeof(slave_conf));
1060
1061         slave_conf.device_fc = flow_control;
1062         if (read) {
1063                 slave_conf.src_maxburst = 16;
1064                 slave_conf.src_addr = nandc->base_dma + reg_off;
1065                 if (nandc->data_crci) {
1066                         periph_conf.crci = nandc->data_crci;
1067                         slave_conf.peripheral_config = &periph_conf;
1068                         slave_conf.peripheral_size = sizeof(periph_conf);
1069                 }
1070         } else {
1071                 slave_conf.dst_maxburst = 16;
1072                 slave_conf.dst_addr = nandc->base_dma + reg_off;
1073                 if (nandc->cmd_crci) {
1074                         periph_conf.crci = nandc->cmd_crci;
1075                         slave_conf.peripheral_config = &periph_conf;
1076                         slave_conf.peripheral_size = sizeof(periph_conf);
1077                 }
1078         }
1079
1080         ret = dmaengine_slave_config(nandc->chan, &slave_conf);
1081         if (ret) {
1082                 dev_err(nandc->dev, "failed to configure dma channel\n");
1083                 goto err;
1084         }
1085
1086         dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
1087         if (!dma_desc) {
1088                 dev_err(nandc->dev, "failed to prepare desc\n");
1089                 ret = -EINVAL;
1090                 goto err;
1091         }
1092
1093         desc->dma_desc = dma_desc;
1094
1095         list_add_tail(&desc->node, &nandc->desc_list);
1096
1097         return 0;
1098 err:
1099         kfree(desc);
1100
1101         return ret;
1102 }
1103
1104 /*
1105  * read_reg_dma:        prepares a descriptor to read a given number of
1106  *                      contiguous registers to the reg_read_buf pointer
1107  *
1108  * @first:              offset of the first register in the contiguous block
1109  * @num_regs:           number of registers to read
1110  * @flags:              flags to control DMA descriptor preparation
1111  */
1112 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1113                         int num_regs, unsigned int flags)
1114 {
1115         bool flow_control = false;
1116         void *vaddr;
1117
1118         vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1119         nandc->reg_read_pos += num_regs;
1120
1121         if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1122                 first = dev_cmd_reg_addr(nandc, first);
1123
1124         if (nandc->props->is_bam)
1125                 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
1126                                              num_regs, flags);
1127
1128         if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1129                 flow_control = true;
1130
1131         return prep_adm_dma_desc(nandc, true, first, vaddr,
1132                                  num_regs * sizeof(u32), flow_control);
1133 }
1134
1135 /*
1136  * write_reg_dma:       prepares a descriptor to write a given number of
1137  *                      contiguous registers
1138  *
1139  * @first:              offset of the first register in the contiguous block
1140  * @num_regs:           number of registers to write
1141  * @flags:              flags to control DMA descriptor preparation
1142  */
1143 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1144                          int num_regs, unsigned int flags)
1145 {
1146         bool flow_control = false;
1147         struct nandc_regs *regs = nandc->regs;
1148         void *vaddr;
1149
1150         vaddr = offset_to_nandc_reg(regs, first);
1151
1152         if (first == NAND_ERASED_CW_DETECT_CFG) {
1153                 if (flags & NAND_ERASED_CW_SET)
1154                         vaddr = &regs->erased_cw_detect_cfg_set;
1155                 else
1156                         vaddr = &regs->erased_cw_detect_cfg_clr;
1157         }
1158
1159         if (first == NAND_EXEC_CMD)
1160                 flags |= NAND_BAM_NWD;
1161
1162         if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1163                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1164
1165         if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1166                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1167
1168         if (nandc->props->is_bam)
1169                 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1170                                              num_regs, flags);
1171
1172         if (first == NAND_FLASH_CMD)
1173                 flow_control = true;
1174
1175         return prep_adm_dma_desc(nandc, false, first, vaddr,
1176                                  num_regs * sizeof(u32), flow_control);
1177 }
1178
1179 /*
1180  * read_data_dma:       prepares a DMA descriptor to transfer data from the
1181  *                      controller's internal buffer to the buffer 'vaddr'
1182  *
1183  * @reg_off:            offset within the controller's data buffer
1184  * @vaddr:              virtual address of the buffer we want to write to
1185  * @size:               DMA transaction size in bytes
1186  * @flags:              flags to control DMA descriptor preparation
1187  */
1188 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1189                          const u8 *vaddr, int size, unsigned int flags)
1190 {
1191         if (nandc->props->is_bam)
1192                 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1193
1194         return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1195 }
1196
1197 /*
1198  * write_data_dma:      prepares a DMA descriptor to transfer data from
1199  *                      'vaddr' to the controller's internal buffer
1200  *
1201  * @reg_off:            offset within the controller's data buffer
1202  * @vaddr:              virtual address of the buffer we want to read from
1203  * @size:               DMA transaction size in bytes
1204  * @flags:              flags to control DMA descriptor preparation
1205  */
1206 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1207                           const u8 *vaddr, int size, unsigned int flags)
1208 {
1209         if (nandc->props->is_bam)
1210                 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1211
1212         return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1213 }
1214
1215 /*
1216  * Helper to prepare DMA descriptors for configuring registers
1217  * before reading a NAND page.
1218  */
1219 static void config_nand_page_read(struct nand_chip *chip)
1220 {
1221         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1222
1223         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1224         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1225         if (!nandc->props->qpic_v2)
1226                 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1227         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1228         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1229                       NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1230 }
1231
1232 /*
1233  * Helper to prepare DMA descriptors for configuring registers
1234  * before reading each codeword in NAND page.
1235  */
1236 static void
1237 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1238 {
1239         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1240         struct nand_ecc_ctrl *ecc = &chip->ecc;
1241
1242         int reg = NAND_READ_LOCATION_0;
1243
1244         if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1245                 reg = NAND_READ_LOCATION_LAST_CW_0;
1246
1247         if (nandc->props->is_bam)
1248                 write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL);
1249
1250         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1251         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1252
1253         if (use_ecc) {
1254                 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1255                 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1256                              NAND_BAM_NEXT_SGL);
1257         } else {
1258                 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1259         }
1260 }
1261
1262 /*
1263  * Helper to prepare dma descriptors to configure registers needed for reading a
1264  * single codeword in page
1265  */
1266 static void
1267 config_nand_single_cw_page_read(struct nand_chip *chip,
1268                                 bool use_ecc, int cw)
1269 {
1270         config_nand_page_read(chip);
1271         config_nand_cw_read(chip, use_ecc, cw);
1272 }
1273
1274 /*
1275  * Helper to prepare DMA descriptors used to configure registers needed for
1276  * before writing a NAND page.
1277  */
1278 static void config_nand_page_write(struct nand_chip *chip)
1279 {
1280         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1281
1282         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1283         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1284         if (!nandc->props->qpic_v2)
1285                 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1286                               NAND_BAM_NEXT_SGL);
1287 }
1288
1289 /*
1290  * Helper to prepare DMA descriptors for configuring registers
1291  * before writing each codeword in NAND page.
1292  */
1293 static void config_nand_cw_write(struct nand_chip *chip)
1294 {
1295         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1296
1297         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1298         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1299
1300         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1301
1302         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1303         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1304 }
1305
1306 /* helpers to submit/free our list of dma descriptors */
1307 static int submit_descs(struct qcom_nand_controller *nandc)
1308 {
1309         struct desc_info *desc, *n;
1310         dma_cookie_t cookie = 0;
1311         struct bam_transaction *bam_txn = nandc->bam_txn;
1312         int ret = 0;
1313
1314         if (nandc->props->is_bam) {
1315                 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1316                         ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1317                         if (ret)
1318                                 goto err_unmap_free_desc;
1319                 }
1320
1321                 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1322                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
1323                                                    DMA_PREP_INTERRUPT);
1324                         if (ret)
1325                                 goto err_unmap_free_desc;
1326                 }
1327
1328                 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1329                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1330                                                    DMA_PREP_CMD);
1331                         if (ret)
1332                                 goto err_unmap_free_desc;
1333                 }
1334         }
1335
1336         list_for_each_entry(desc, &nandc->desc_list, node)
1337                 cookie = dmaengine_submit(desc->dma_desc);
1338
1339         if (nandc->props->is_bam) {
1340                 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1341                 bam_txn->last_cmd_desc->callback_param = bam_txn;
1342                 if (bam_txn->last_data_desc) {
1343                         bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1344                         bam_txn->last_data_desc->callback_param = bam_txn;
1345                         bam_txn->wait_second_completion = true;
1346                 }
1347
1348                 dma_async_issue_pending(nandc->tx_chan);
1349                 dma_async_issue_pending(nandc->rx_chan);
1350                 dma_async_issue_pending(nandc->cmd_chan);
1351
1352                 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1353                                                  QPIC_NAND_COMPLETION_TIMEOUT))
1354                         ret = -ETIMEDOUT;
1355         } else {
1356                 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1357                         ret = -ETIMEDOUT;
1358         }
1359
1360 err_unmap_free_desc:
1361         /*
1362          * Unmap the dma sg_list and free the desc allocated by both
1363          * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
1364          */
1365         list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1366                 list_del(&desc->node);
1367
1368                 if (nandc->props->is_bam)
1369                         dma_unmap_sg(nandc->dev, desc->bam_sgl,
1370                                      desc->sgl_cnt, desc->dir);
1371                 else
1372                         dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1373                                      desc->dir);
1374
1375                 kfree(desc);
1376         }
1377
1378         return ret;
1379 }
1380
1381 /* reset the register read buffer for next NAND operation */
1382 static void clear_read_regs(struct qcom_nand_controller *nandc)
1383 {
1384         nandc->reg_read_pos = 0;
1385         nandc_read_buffer_sync(nandc, false);
1386 }
1387
1388 /*
1389  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1390  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1391  *
1392  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1393  * but it notifies that it is an erased CW by placing special characters at
1394  * certain offsets in the buffer.
1395  *
1396  * verify if the page is erased or not, and fix up the page for RS ECC by
1397  * replacing the special characters with 0xff.
1398  */
1399 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1400 {
1401         u8 empty1, empty2;
1402
1403         /*
1404          * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1405          * is erased by looking for 0x54s at offsets 3 and 175 from the
1406          * beginning of each codeword
1407          */
1408
1409         empty1 = data_buf[3];
1410         empty2 = data_buf[175];
1411
1412         /*
1413          * if the erased codework markers, if they exist override them with
1414          * 0xffs
1415          */
1416         if ((empty1 == 0x54 && empty2 == 0xff) ||
1417             (empty1 == 0xff && empty2 == 0x54)) {
1418                 data_buf[3] = 0xff;
1419                 data_buf[175] = 0xff;
1420         }
1421
1422         /*
1423          * check if the entire chunk contains 0xffs or not. if it doesn't, then
1424          * restore the original values at the special offsets
1425          */
1426         if (memchr_inv(data_buf, 0xff, data_len)) {
1427                 data_buf[3] = empty1;
1428                 data_buf[175] = empty2;
1429
1430                 return false;
1431         }
1432
1433         return true;
1434 }
1435
1436 struct read_stats {
1437         __le32 flash;
1438         __le32 buffer;
1439         __le32 erased_cw;
1440 };
1441
1442 /* reads back FLASH_STATUS register set by the controller */
1443 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1444 {
1445         struct nand_chip *chip = &host->chip;
1446         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1447         int i;
1448
1449         nandc_read_buffer_sync(nandc, true);
1450
1451         for (i = 0; i < cw_cnt; i++) {
1452                 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1453
1454                 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1455                         return -EIO;
1456         }
1457
1458         return 0;
1459 }
1460
1461 /* performs raw read for one codeword */
1462 static int
1463 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1464                        u8 *data_buf, u8 *oob_buf, int page, int cw)
1465 {
1466         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1467         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1468         struct nand_ecc_ctrl *ecc = &chip->ecc;
1469         int data_size1, data_size2, oob_size1, oob_size2;
1470         int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1471         int raw_cw = cw;
1472
1473         nand_read_page_op(chip, page, 0, NULL, 0);
1474         nandc->buf_count = 0;
1475         nandc->buf_start = 0;
1476         clear_read_regs(nandc);
1477         host->use_ecc = false;
1478
1479         if (nandc->props->qpic_v2)
1480                 raw_cw = ecc->steps - 1;
1481
1482         clear_bam_transaction(nandc);
1483         set_address(host, host->cw_size * cw, page);
1484         update_rw_regs(host, 1, true, raw_cw);
1485         config_nand_page_read(chip);
1486
1487         data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1488         oob_size1 = host->bbm_size;
1489
1490         if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1491                 data_size2 = ecc->size - data_size1 -
1492                              ((ecc->steps - 1) * 4);
1493                 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1494                             host->spare_bytes;
1495         } else {
1496                 data_size2 = host->cw_data - data_size1;
1497                 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1498         }
1499
1500         if (nandc->props->is_bam) {
1501                 nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
1502                 read_loc += data_size1;
1503
1504                 nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
1505                 read_loc += oob_size1;
1506
1507                 nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
1508                 read_loc += data_size2;
1509
1510                 nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
1511         }
1512
1513         config_nand_cw_read(chip, false, raw_cw);
1514
1515         read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1516         reg_off += data_size1;
1517
1518         read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1519         reg_off += oob_size1;
1520
1521         read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1522         reg_off += data_size2;
1523
1524         read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1525
1526         ret = submit_descs(nandc);
1527         if (ret) {
1528                 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1529                 return ret;
1530         }
1531
1532         return check_flash_errors(host, 1);
1533 }
1534
1535 /*
1536  * Bitflips can happen in erased codewords also so this function counts the
1537  * number of 0 in each CW for which ECC engine returns the uncorrectable
1538  * error. The page will be assumed as erased if this count is less than or
1539  * equal to the ecc->strength for each CW.
1540  *
1541  * 1. Both DATA and OOB need to be checked for number of 0. The
1542  *    top-level API can be called with only data buf or OOB buf so use
1543  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1544  *    is null for copying the raw bytes.
1545  * 2. Perform raw read for all the CW which has uncorrectable errors.
1546  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1547  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1548  *    the number of bitflips in this area.
1549  */
1550 static int
1551 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1552                       u8 *oob_buf, unsigned long uncorrectable_cws,
1553                       int page, unsigned int max_bitflips)
1554 {
1555         struct nand_chip *chip = &host->chip;
1556         struct mtd_info *mtd = nand_to_mtd(chip);
1557         struct nand_ecc_ctrl *ecc = &chip->ecc;
1558         u8 *cw_data_buf, *cw_oob_buf;
1559         int cw, data_size, oob_size, ret;
1560
1561         if (!data_buf)
1562                 data_buf = nand_get_data_buf(chip);
1563
1564         if (!oob_buf) {
1565                 nand_get_data_buf(chip);
1566                 oob_buf = chip->oob_poi;
1567         }
1568
1569         for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1570                 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1571                         data_size = ecc->size - ((ecc->steps - 1) * 4);
1572                         oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1573                 } else {
1574                         data_size = host->cw_data;
1575                         oob_size = host->ecc_bytes_hw;
1576                 }
1577
1578                 /* determine starting buffer address for current CW */
1579                 cw_data_buf = data_buf + (cw * host->cw_data);
1580                 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1581
1582                 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1583                                              cw_oob_buf, page, cw);
1584                 if (ret)
1585                         return ret;
1586
1587                 /*
1588                  * make sure it isn't an erased page reported
1589                  * as not-erased by HW because of a few bitflips
1590                  */
1591                 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1592                                                   cw_oob_buf + host->bbm_size,
1593                                                   oob_size, NULL,
1594                                                   0, ecc->strength);
1595                 if (ret < 0) {
1596                         mtd->ecc_stats.failed++;
1597                 } else {
1598                         mtd->ecc_stats.corrected += ret;
1599                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1600                 }
1601         }
1602
1603         return max_bitflips;
1604 }
1605
1606 /*
1607  * reads back status registers set by the controller to notify page read
1608  * errors. this is equivalent to what 'ecc->correct()' would do.
1609  */
1610 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1611                              u8 *oob_buf, int page)
1612 {
1613         struct nand_chip *chip = &host->chip;
1614         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1615         struct mtd_info *mtd = nand_to_mtd(chip);
1616         struct nand_ecc_ctrl *ecc = &chip->ecc;
1617         unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1618         struct read_stats *buf;
1619         bool flash_op_err = false, erased;
1620         int i;
1621         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1622
1623         buf = (struct read_stats *)nandc->reg_read_buf;
1624         nandc_read_buffer_sync(nandc, true);
1625
1626         for (i = 0; i < ecc->steps; i++, buf++) {
1627                 u32 flash, buffer, erased_cw;
1628                 int data_len, oob_len;
1629
1630                 if (qcom_nandc_is_last_cw(ecc, i)) {
1631                         data_len = ecc->size - ((ecc->steps - 1) << 2);
1632                         oob_len = ecc->steps << 2;
1633                 } else {
1634                         data_len = host->cw_data;
1635                         oob_len = 0;
1636                 }
1637
1638                 flash = le32_to_cpu(buf->flash);
1639                 buffer = le32_to_cpu(buf->buffer);
1640                 erased_cw = le32_to_cpu(buf->erased_cw);
1641
1642                 /*
1643                  * Check ECC failure for each codeword. ECC failure can
1644                  * happen in either of the following conditions
1645                  * 1. If number of bitflips are greater than ECC engine
1646                  *    capability.
1647                  * 2. If this codeword contains all 0xff for which erased
1648                  *    codeword detection check will be done.
1649                  */
1650                 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1651                         /*
1652                          * For BCH ECC, ignore erased codeword errors, if
1653                          * ERASED_CW bits are set.
1654                          */
1655                         if (host->bch_enabled) {
1656                                 erased = (erased_cw & ERASED_CW) == ERASED_CW;
1657                         /*
1658                          * For RS ECC, HW reports the erased CW by placing
1659                          * special characters at certain offsets in the buffer.
1660                          * These special characters will be valid only if
1661                          * complete page is read i.e. data_buf is not NULL.
1662                          */
1663                         } else if (data_buf) {
1664                                 erased = erased_chunk_check_and_fixup(data_buf,
1665                                                                       data_len);
1666                         } else {
1667                                 erased = false;
1668                         }
1669
1670                         if (!erased)
1671                                 uncorrectable_cws |= BIT(i);
1672                 /*
1673                  * Check if MPU or any other operational error (timeout,
1674                  * device failure, etc.) happened for this codeword and
1675                  * make flash_op_err true. If flash_op_err is set, then
1676                  * EIO will be returned for page read.
1677                  */
1678                 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1679                         flash_op_err = true;
1680                 /*
1681                  * No ECC or operational errors happened. Check the number of
1682                  * bits corrected and update the ecc_stats.corrected.
1683                  */
1684                 } else {
1685                         unsigned int stat;
1686
1687                         stat = buffer & BS_CORRECTABLE_ERR_MSK;
1688                         mtd->ecc_stats.corrected += stat;
1689                         max_bitflips = max(max_bitflips, stat);
1690                 }
1691
1692                 if (data_buf)
1693                         data_buf += data_len;
1694                 if (oob_buf)
1695                         oob_buf += oob_len + ecc->bytes;
1696         }
1697
1698         if (flash_op_err)
1699                 return -EIO;
1700
1701         if (!uncorrectable_cws)
1702                 return max_bitflips;
1703
1704         return check_for_erased_page(host, data_buf_start, oob_buf_start,
1705                                      uncorrectable_cws, page,
1706                                      max_bitflips);
1707 }
1708
1709 /*
1710  * helper to perform the actual page read operation, used by ecc->read_page(),
1711  * ecc->read_oob()
1712  */
1713 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1714                          u8 *oob_buf, int page)
1715 {
1716         struct nand_chip *chip = &host->chip;
1717         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1718         struct nand_ecc_ctrl *ecc = &chip->ecc;
1719         u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1720         int i, ret;
1721
1722         config_nand_page_read(chip);
1723
1724         /* queue cmd descs for each codeword */
1725         for (i = 0; i < ecc->steps; i++) {
1726                 int data_size, oob_size;
1727
1728                 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1729                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1730                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1731                                    host->spare_bytes;
1732                 } else {
1733                         data_size = host->cw_data;
1734                         oob_size = host->ecc_bytes_hw + host->spare_bytes;
1735                 }
1736
1737                 if (nandc->props->is_bam) {
1738                         if (data_buf && oob_buf) {
1739                                 nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
1740                                 nandc_set_read_loc(chip, i, 1, data_size,
1741                                                    oob_size, 1);
1742                         } else if (data_buf) {
1743                                 nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
1744                         } else {
1745                                 nandc_set_read_loc(chip, i, 0, data_size,
1746                                                    oob_size, 1);
1747                         }
1748                 }
1749
1750                 config_nand_cw_read(chip, true, i);
1751
1752                 if (data_buf)
1753                         read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1754                                       data_size, 0);
1755
1756                 /*
1757                  * when ecc is enabled, the controller doesn't read the real
1758                  * or dummy bad block markers in each chunk. To maintain a
1759                  * consistent layout across RAW and ECC reads, we just
1760                  * leave the real/dummy BBM offsets empty (i.e, filled with
1761                  * 0xffs)
1762                  */
1763                 if (oob_buf) {
1764                         int j;
1765
1766                         for (j = 0; j < host->bbm_size; j++)
1767                                 *oob_buf++ = 0xff;
1768
1769                         read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1770                                       oob_buf, oob_size, 0);
1771                 }
1772
1773                 if (data_buf)
1774                         data_buf += data_size;
1775                 if (oob_buf)
1776                         oob_buf += oob_size;
1777         }
1778
1779         ret = submit_descs(nandc);
1780         if (ret) {
1781                 dev_err(nandc->dev, "failure to read page/oob\n");
1782                 return ret;
1783         }
1784
1785         return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1786 }
1787
1788 /*
1789  * a helper that copies the last step/codeword of a page (containing free oob)
1790  * into our local buffer
1791  */
1792 static int copy_last_cw(struct qcom_nand_host *host, int page)
1793 {
1794         struct nand_chip *chip = &host->chip;
1795         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1796         struct nand_ecc_ctrl *ecc = &chip->ecc;
1797         int size;
1798         int ret;
1799
1800         clear_read_regs(nandc);
1801
1802         size = host->use_ecc ? host->cw_data : host->cw_size;
1803
1804         /* prepare a clean read buffer */
1805         memset(nandc->data_buffer, 0xff, size);
1806
1807         set_address(host, host->cw_size * (ecc->steps - 1), page);
1808         update_rw_regs(host, 1, true, ecc->steps - 1);
1809
1810         config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
1811
1812         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1813
1814         ret = submit_descs(nandc);
1815         if (ret)
1816                 dev_err(nandc->dev, "failed to copy last codeword\n");
1817
1818         return ret;
1819 }
1820
1821 static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
1822 {
1823         struct qcom_nand_boot_partition *boot_partition;
1824         u32 start, end;
1825         int i;
1826
1827         /*
1828          * Since the frequent access will be to the non-boot partitions like rootfs,
1829          * optimize the page check by:
1830          *
1831          * 1. Checking if the page lies after the last boot partition.
1832          * 2. Checking from the boot partition end.
1833          */
1834
1835         /* First check the last boot partition */
1836         boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
1837         start = boot_partition->page_offset;
1838         end = start + boot_partition->page_size;
1839
1840         /* Page is after the last boot partition end. This is NOT a boot partition */
1841         if (page > end)
1842                 return false;
1843
1844         /* Actually check if it's a boot partition */
1845         if (page < end && page >= start)
1846                 return true;
1847
1848         /* Check the other boot partitions starting from the second-last partition */
1849         for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
1850                 boot_partition = &host->boot_partitions[i];
1851                 start = boot_partition->page_offset;
1852                 end = start + boot_partition->page_size;
1853
1854                 if (page < end && page >= start)
1855                         return true;
1856         }
1857
1858         return false;
1859 }
1860
1861 static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
1862 {
1863         bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
1864
1865         /* Skip conf write if we are already in the correct mode */
1866         if (codeword_fixup == host->codeword_fixup)
1867                 return;
1868
1869         host->codeword_fixup = codeword_fixup;
1870
1871         host->cw_data = codeword_fixup ? 512 : 516;
1872         host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
1873                             host->bbm_size - host->cw_data;
1874
1875         host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
1876         host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
1877                       host->cw_data << UD_SIZE_BYTES;
1878
1879         host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
1880         host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
1881         host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
1882 }
1883
1884 /* implements ecc->read_page() */
1885 static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
1886                                 int oob_required, int page)
1887 {
1888         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1889         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1890         struct nand_ecc_ctrl *ecc = &chip->ecc;
1891         u8 *data_buf, *oob_buf = NULL;
1892
1893         if (host->nr_boot_partitions)
1894                 qcom_nandc_codeword_fixup(host, page);
1895
1896         nand_read_page_op(chip, page, 0, NULL, 0);
1897         nandc->buf_count = 0;
1898         nandc->buf_start = 0;
1899         host->use_ecc = true;
1900         clear_read_regs(nandc);
1901         set_address(host, 0, page);
1902         update_rw_regs(host, ecc->steps, true, 0);
1903
1904         data_buf = buf;
1905         oob_buf = oob_required ? chip->oob_poi : NULL;
1906
1907         clear_bam_transaction(nandc);
1908
1909         return read_page_ecc(host, data_buf, oob_buf, page);
1910 }
1911
1912 /* implements ecc->read_page_raw() */
1913 static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf,
1914                                     int oob_required, int page)
1915 {
1916         struct mtd_info *mtd = nand_to_mtd(chip);
1917         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1918         struct nand_ecc_ctrl *ecc = &chip->ecc;
1919         int cw, ret;
1920         u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1921
1922         if (host->nr_boot_partitions)
1923                 qcom_nandc_codeword_fixup(host, page);
1924
1925         for (cw = 0; cw < ecc->steps; cw++) {
1926                 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1927                                              page, cw);
1928                 if (ret)
1929                         return ret;
1930
1931                 data_buf += host->cw_data;
1932                 oob_buf += ecc->bytes;
1933         }
1934
1935         return 0;
1936 }
1937
1938 /* implements ecc->read_oob() */
1939 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1940 {
1941         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1942         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1943         struct nand_ecc_ctrl *ecc = &chip->ecc;
1944
1945         if (host->nr_boot_partitions)
1946                 qcom_nandc_codeword_fixup(host, page);
1947
1948         clear_read_regs(nandc);
1949         clear_bam_transaction(nandc);
1950
1951         host->use_ecc = true;
1952         set_address(host, 0, page);
1953         update_rw_regs(host, ecc->steps, true, 0);
1954
1955         return read_page_ecc(host, NULL, chip->oob_poi, page);
1956 }
1957
1958 /* implements ecc->write_page() */
1959 static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
1960                                  int oob_required, int page)
1961 {
1962         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1963         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1964         struct nand_ecc_ctrl *ecc = &chip->ecc;
1965         u8 *data_buf, *oob_buf;
1966         int i, ret;
1967
1968         if (host->nr_boot_partitions)
1969                 qcom_nandc_codeword_fixup(host, page);
1970
1971         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1972
1973         set_address(host, 0, page);
1974         nandc->buf_count = 0;
1975         nandc->buf_start = 0;
1976         clear_read_regs(nandc);
1977         clear_bam_transaction(nandc);
1978
1979         data_buf = (u8 *)buf;
1980         oob_buf = chip->oob_poi;
1981
1982         host->use_ecc = true;
1983         update_rw_regs(host, ecc->steps, false, 0);
1984         config_nand_page_write(chip);
1985
1986         for (i = 0; i < ecc->steps; i++) {
1987                 int data_size, oob_size;
1988
1989                 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1990                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1991                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1992                                    host->spare_bytes;
1993                 } else {
1994                         data_size = host->cw_data;
1995                         oob_size = ecc->bytes;
1996                 }
1997
1998                 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1999                                i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2000
2001                 /*
2002                  * when ECC is enabled, we don't really need to write anything
2003                  * to oob for the first n - 1 codewords since these oob regions
2004                  * just contain ECC bytes that's written by the controller
2005                  * itself. For the last codeword, we skip the bbm positions and
2006                  * write to the free oob area.
2007                  */
2008                 if (qcom_nandc_is_last_cw(ecc, i)) {
2009                         oob_buf += host->bbm_size;
2010
2011                         write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2012                                        oob_buf, oob_size, 0);
2013                 }
2014
2015                 config_nand_cw_write(chip);
2016
2017                 data_buf += data_size;
2018                 oob_buf += oob_size;
2019         }
2020
2021         ret = submit_descs(nandc);
2022         if (ret) {
2023                 dev_err(nandc->dev, "failure to write page\n");
2024                 return ret;
2025         }
2026
2027         return nand_prog_page_end_op(chip);
2028 }
2029
2030 /* implements ecc->write_page_raw() */
2031 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2032                                      const u8 *buf, int oob_required,
2033                                      int page)
2034 {
2035         struct mtd_info *mtd = nand_to_mtd(chip);
2036         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2037         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2038         struct nand_ecc_ctrl *ecc = &chip->ecc;
2039         u8 *data_buf, *oob_buf;
2040         int i, ret;
2041
2042         if (host->nr_boot_partitions)
2043                 qcom_nandc_codeword_fixup(host, page);
2044
2045         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2046         clear_read_regs(nandc);
2047         clear_bam_transaction(nandc);
2048
2049         data_buf = (u8 *)buf;
2050         oob_buf = chip->oob_poi;
2051
2052         host->use_ecc = false;
2053         update_rw_regs(host, ecc->steps, false, 0);
2054         config_nand_page_write(chip);
2055
2056         for (i = 0; i < ecc->steps; i++) {
2057                 int data_size1, data_size2, oob_size1, oob_size2;
2058                 int reg_off = FLASH_BUF_ACC;
2059
2060                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2061                 oob_size1 = host->bbm_size;
2062
2063                 if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
2064                         data_size2 = ecc->size - data_size1 -
2065                                      ((ecc->steps - 1) << 2);
2066                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2067                                     host->spare_bytes;
2068                 } else {
2069                         data_size2 = host->cw_data - data_size1;
2070                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2071                 }
2072
2073                 write_data_dma(nandc, reg_off, data_buf, data_size1,
2074                                NAND_BAM_NO_EOT);
2075                 reg_off += data_size1;
2076                 data_buf += data_size1;
2077
2078                 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2079                                NAND_BAM_NO_EOT);
2080                 reg_off += oob_size1;
2081                 oob_buf += oob_size1;
2082
2083                 write_data_dma(nandc, reg_off, data_buf, data_size2,
2084                                NAND_BAM_NO_EOT);
2085                 reg_off += data_size2;
2086                 data_buf += data_size2;
2087
2088                 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2089                 oob_buf += oob_size2;
2090
2091                 config_nand_cw_write(chip);
2092         }
2093
2094         ret = submit_descs(nandc);
2095         if (ret) {
2096                 dev_err(nandc->dev, "failure to write raw page\n");
2097                 return ret;
2098         }
2099
2100         return nand_prog_page_end_op(chip);
2101 }
2102
2103 /*
2104  * implements ecc->write_oob()
2105  *
2106  * the NAND controller cannot write only data or only OOB within a codeword
2107  * since ECC is calculated for the combined codeword. So update the OOB from
2108  * chip->oob_poi, and pad the data area with OxFF before writing.
2109  */
2110 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2111 {
2112         struct mtd_info *mtd = nand_to_mtd(chip);
2113         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2114         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2115         struct nand_ecc_ctrl *ecc = &chip->ecc;
2116         u8 *oob = chip->oob_poi;
2117         int data_size, oob_size;
2118         int ret;
2119
2120         if (host->nr_boot_partitions)
2121                 qcom_nandc_codeword_fixup(host, page);
2122
2123         host->use_ecc = true;
2124         clear_bam_transaction(nandc);
2125
2126         /* calculate the data and oob size for the last codeword/step */
2127         data_size = ecc->size - ((ecc->steps - 1) << 2);
2128         oob_size = mtd->oobavail;
2129
2130         memset(nandc->data_buffer, 0xff, host->cw_data);
2131         /* override new oob content to last codeword */
2132         mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2133                                     0, mtd->oobavail);
2134
2135         set_address(host, host->cw_size * (ecc->steps - 1), page);
2136         update_rw_regs(host, 1, false, 0);
2137
2138         config_nand_page_write(chip);
2139         write_data_dma(nandc, FLASH_BUF_ACC,
2140                        nandc->data_buffer, data_size + oob_size, 0);
2141         config_nand_cw_write(chip);
2142
2143         ret = submit_descs(nandc);
2144         if (ret) {
2145                 dev_err(nandc->dev, "failure to write oob\n");
2146                 return ret;
2147         }
2148
2149         return nand_prog_page_end_op(chip);
2150 }
2151
2152 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2153 {
2154         struct mtd_info *mtd = nand_to_mtd(chip);
2155         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2156         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2157         struct nand_ecc_ctrl *ecc = &chip->ecc;
2158         int page, ret, bbpos, bad = 0;
2159
2160         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2161
2162         /*
2163          * configure registers for a raw sub page read, the address is set to
2164          * the beginning of the last codeword, we don't care about reading ecc
2165          * portion of oob. we just want the first few bytes from this codeword
2166          * that contains the BBM
2167          */
2168         host->use_ecc = false;
2169
2170         clear_bam_transaction(nandc);
2171         ret = copy_last_cw(host, page);
2172         if (ret)
2173                 goto err;
2174
2175         if (check_flash_errors(host, 1)) {
2176                 dev_warn(nandc->dev, "error when trying to read BBM\n");
2177                 goto err;
2178         }
2179
2180         bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2181
2182         bad = nandc->data_buffer[bbpos] != 0xff;
2183
2184         if (chip->options & NAND_BUSWIDTH_16)
2185                 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2186 err:
2187         return bad;
2188 }
2189
2190 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2191 {
2192         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2193         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2194         struct nand_ecc_ctrl *ecc = &chip->ecc;
2195         int page, ret;
2196
2197         clear_read_regs(nandc);
2198         clear_bam_transaction(nandc);
2199
2200         /*
2201          * to mark the BBM as bad, we flash the entire last codeword with 0s.
2202          * we don't care about the rest of the content in the codeword since
2203          * we aren't going to use this block again
2204          */
2205         memset(nandc->data_buffer, 0x00, host->cw_size);
2206
2207         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2208
2209         /* prepare write */
2210         host->use_ecc = false;
2211         set_address(host, host->cw_size * (ecc->steps - 1), page);
2212         update_rw_regs(host, 1, false, ecc->steps - 1);
2213
2214         config_nand_page_write(chip);
2215         write_data_dma(nandc, FLASH_BUF_ACC,
2216                        nandc->data_buffer, host->cw_size, 0);
2217         config_nand_cw_write(chip);
2218
2219         ret = submit_descs(nandc);
2220         if (ret) {
2221                 dev_err(nandc->dev, "failure to update BBM\n");
2222                 return ret;
2223         }
2224
2225         return nand_prog_page_end_op(chip);
2226 }
2227
2228 /*
2229  * NAND controller page layout info
2230  *
2231  * Layout with ECC enabled:
2232  *
2233  * |----------------------|  |---------------------------------|
2234  * |           xx.......yy|  |             *********xx.......yy|
2235  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2236  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2237  * |           xx.......yy|  |             *********xx.......yy|
2238  * |----------------------|  |---------------------------------|
2239  *     codeword 1,2..n-1                  codeword n
2240  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2241  *
2242  * n = Number of codewords in the page
2243  * . = ECC bytes
2244  * * = Spare/free bytes
2245  * x = Unused byte(s)
2246  * y = Reserved byte(s)
2247  *
2248  * 2K page: n = 4, spare = 16 bytes
2249  * 4K page: n = 8, spare = 32 bytes
2250  * 8K page: n = 16, spare = 64 bytes
2251  *
2252  * the qcom nand controller operates at a sub page/codeword level. each
2253  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2254  * the number of ECC bytes vary based on the ECC strength and the bus width.
2255  *
2256  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2257  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2258  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2259  *
2260  * When we access a page with ECC enabled, the reserved bytes(s) are not
2261  * accessible at all. When reading, we fill up these unreadable positions
2262  * with 0xffs. When writing, the controller skips writing the inaccessible
2263  * bytes.
2264  *
2265  * Layout with ECC disabled:
2266  *
2267  * |------------------------------|  |---------------------------------------|
2268  * |         yy          xx.......|  |         bb          *********xx.......|
2269  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2270  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2271  * |         yy          xx.......|  |         bb          *********xx.......|
2272  * |------------------------------|  |---------------------------------------|
2273  *         codeword 1,2..n-1                        codeword n
2274  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2275  *
2276  * n = Number of codewords in the page
2277  * . = ECC bytes
2278  * * = Spare/free bytes
2279  * x = Unused byte(s)
2280  * y = Dummy Bad Bock byte(s)
2281  * b = Real Bad Block byte(s)
2282  * size1/size2 = function of codeword size and 'n'
2283  *
2284  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2285  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2286  * Block Markers. In the last codeword, this position contains the real BBM
2287  *
2288  * In order to have a consistent layout between RAW and ECC modes, we assume
2289  * the following OOB layout arrangement:
2290  *
2291  * |-----------|  |--------------------|
2292  * |yyxx.......|  |bb*********xx.......|
2293  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2294  * |yyxx.......|  |bb*********xx.......|
2295  * |yyxx.......|  |bb*********xx.......|
2296  * |-----------|  |--------------------|
2297  *  first n - 1       nth OOB region
2298  *  OOB regions
2299  *
2300  * n = Number of codewords in the page
2301  * . = ECC bytes
2302  * * = FREE OOB bytes
2303  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2304  * x = Unused byte(s)
2305  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2306  *
2307  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2308  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2309  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2310  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2311  * the sum of the three).
2312  */
2313 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2314                                    struct mtd_oob_region *oobregion)
2315 {
2316         struct nand_chip *chip = mtd_to_nand(mtd);
2317         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2318         struct nand_ecc_ctrl *ecc = &chip->ecc;
2319
2320         if (section > 1)
2321                 return -ERANGE;
2322
2323         if (!section) {
2324                 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2325                                     host->bbm_size;
2326                 oobregion->offset = 0;
2327         } else {
2328                 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2329                 oobregion->offset = mtd->oobsize - oobregion->length;
2330         }
2331
2332         return 0;
2333 }
2334
2335 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2336                                     struct mtd_oob_region *oobregion)
2337 {
2338         struct nand_chip *chip = mtd_to_nand(mtd);
2339         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2340         struct nand_ecc_ctrl *ecc = &chip->ecc;
2341
2342         if (section)
2343                 return -ERANGE;
2344
2345         oobregion->length = ecc->steps * 4;
2346         oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2347
2348         return 0;
2349 }
2350
2351 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2352         .ecc = qcom_nand_ooblayout_ecc,
2353         .free = qcom_nand_ooblayout_free,
2354 };
2355
2356 static int
2357 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2358 {
2359         return strength == 4 ? 12 : 16;
2360 }
2361
2362 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2363                      NANDC_STEP_SIZE, 4, 8);
2364
2365 static int qcom_nand_attach_chip(struct nand_chip *chip)
2366 {
2367         struct mtd_info *mtd = nand_to_mtd(chip);
2368         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2369         struct nand_ecc_ctrl *ecc = &chip->ecc;
2370         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2371         int cwperpage, bad_block_byte, ret;
2372         bool wide_bus;
2373         int ecc_mode = 1;
2374
2375         /* controller only supports 512 bytes data steps */
2376         ecc->size = NANDC_STEP_SIZE;
2377         wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2378         cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2379
2380         /*
2381          * Each CW has 4 available OOB bytes which will be protected with ECC
2382          * so remaining bytes can be used for ECC.
2383          */
2384         ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2385                                    mtd->oobsize - (cwperpage * 4));
2386         if (ret) {
2387                 dev_err(nandc->dev, "No valid ECC settings possible\n");
2388                 return ret;
2389         }
2390
2391         if (ecc->strength >= 8) {
2392                 /* 8 bit ECC defaults to BCH ECC on all platforms */
2393                 host->bch_enabled = true;
2394                 ecc_mode = 1;
2395
2396                 if (wide_bus) {
2397                         host->ecc_bytes_hw = 14;
2398                         host->spare_bytes = 0;
2399                         host->bbm_size = 2;
2400                 } else {
2401                         host->ecc_bytes_hw = 13;
2402                         host->spare_bytes = 2;
2403                         host->bbm_size = 1;
2404                 }
2405         } else {
2406                 /*
2407                  * if the controller supports BCH for 4 bit ECC, the controller
2408                  * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2409                  * always 10 bytes
2410                  */
2411                 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2412                         /* BCH */
2413                         host->bch_enabled = true;
2414                         ecc_mode = 0;
2415
2416                         if (wide_bus) {
2417                                 host->ecc_bytes_hw = 8;
2418                                 host->spare_bytes = 2;
2419                                 host->bbm_size = 2;
2420                         } else {
2421                                 host->ecc_bytes_hw = 7;
2422                                 host->spare_bytes = 4;
2423                                 host->bbm_size = 1;
2424                         }
2425                 } else {
2426                         /* RS */
2427                         host->ecc_bytes_hw = 10;
2428
2429                         if (wide_bus) {
2430                                 host->spare_bytes = 0;
2431                                 host->bbm_size = 2;
2432                         } else {
2433                                 host->spare_bytes = 1;
2434                                 host->bbm_size = 1;
2435                         }
2436                 }
2437         }
2438
2439         /*
2440          * we consider ecc->bytes as the sum of all the non-data content in a
2441          * step. It gives us a clean representation of the oob area (even if
2442          * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2443          * ECC and 12 bytes for 4 bit ECC
2444          */
2445         ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2446
2447         ecc->read_page          = qcom_nandc_read_page;
2448         ecc->read_page_raw      = qcom_nandc_read_page_raw;
2449         ecc->read_oob           = qcom_nandc_read_oob;
2450         ecc->write_page         = qcom_nandc_write_page;
2451         ecc->write_page_raw     = qcom_nandc_write_page_raw;
2452         ecc->write_oob          = qcom_nandc_write_oob;
2453
2454         ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2455
2456         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2457         /* Free the initially allocated BAM transaction for reading the ONFI params */
2458         if (nandc->props->is_bam)
2459                 free_bam_transaction(nandc);
2460
2461         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2462                                      cwperpage);
2463
2464         /* Now allocate the BAM transaction based on updated max_cwperpage */
2465         if (nandc->props->is_bam) {
2466                 nandc->bam_txn = alloc_bam_transaction(nandc);
2467                 if (!nandc->bam_txn) {
2468                         dev_err(nandc->dev,
2469                                 "failed to allocate bam transaction\n");
2470                         return -ENOMEM;
2471                 }
2472         }
2473
2474         /*
2475          * DATA_UD_BYTES varies based on whether the read/write command protects
2476          * spare data with ECC too. We protect spare data by default, so we set
2477          * it to main + spare data, which are 512 and 4 bytes respectively.
2478          */
2479         host->cw_data = 516;
2480
2481         /*
2482          * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2483          * for 8 bit ECC
2484          */
2485         host->cw_size = host->cw_data + ecc->bytes;
2486         bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2487
2488         host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2489                                 | host->cw_data << UD_SIZE_BYTES
2490                                 | 0 << DISABLE_STATUS_AFTER_WRITE
2491                                 | 5 << NUM_ADDR_CYCLES
2492                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2493                                 | 0 << STATUS_BFR_READ
2494                                 | 1 << SET_RD_MODE_AFTER_STATUS
2495                                 | host->spare_bytes << SPARE_SIZE_BYTES;
2496
2497         host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2498                                 | 0 <<  CS_ACTIVE_BSY
2499                                 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2500                                 | 0 << BAD_BLOCK_IN_SPARE_AREA
2501                                 | 2 << WR_RD_BSY_GAP
2502                                 | wide_bus << WIDE_FLASH
2503                                 | host->bch_enabled << ENABLE_BCH_ECC;
2504
2505         host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2506                                 | host->cw_size << UD_SIZE_BYTES
2507                                 | 5 << NUM_ADDR_CYCLES
2508                                 | 0 << SPARE_SIZE_BYTES;
2509
2510         host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2511                                 | 0 << CS_ACTIVE_BSY
2512                                 | 17 << BAD_BLOCK_BYTE_NUM
2513                                 | 1 << BAD_BLOCK_IN_SPARE_AREA
2514                                 | 2 << WR_RD_BSY_GAP
2515                                 | wide_bus << WIDE_FLASH
2516                                 | 1 << DEV0_CFG1_ECC_DISABLE;
2517
2518         host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2519                                 | 0 << ECC_SW_RESET
2520                                 | host->cw_data << ECC_NUM_DATA_BYTES
2521                                 | 1 << ECC_FORCE_CLK_OPEN
2522                                 | ecc_mode << ECC_MODE
2523                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2524
2525         if (!nandc->props->qpic_v2)
2526                 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2527
2528         host->clrflashstatus = FS_READY_BSY_N;
2529         host->clrreadstatus = 0xc0;
2530         nandc->regs->erased_cw_detect_cfg_clr =
2531                 cpu_to_le32(CLR_ERASED_PAGE_DET);
2532         nandc->regs->erased_cw_detect_cfg_set =
2533                 cpu_to_le32(SET_ERASED_PAGE_DET);
2534
2535         dev_dbg(nandc->dev,
2536                 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2537                 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2538                 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2539                 cwperpage);
2540
2541         return 0;
2542 }
2543
2544 static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode,
2545                                struct qcom_op *q_op)
2546 {
2547         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2548         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2549         int cmd;
2550
2551         switch (opcode) {
2552         case NAND_CMD_RESET:
2553                 cmd = OP_RESET_DEVICE;
2554                 break;
2555         case NAND_CMD_READID:
2556                 cmd = OP_FETCH_ID;
2557                 break;
2558         case NAND_CMD_PARAM:
2559                 if (nandc->props->qpic_v2)
2560                         cmd = OP_PAGE_READ_ONFI_READ;
2561                 else
2562                         cmd = OP_PAGE_READ;
2563                 break;
2564         case NAND_CMD_ERASE1:
2565         case NAND_CMD_ERASE2:
2566                 cmd = OP_BLOCK_ERASE;
2567                 break;
2568         case NAND_CMD_STATUS:
2569                 cmd = OP_CHECK_STATUS;
2570                 break;
2571         case NAND_CMD_PAGEPROG:
2572                 cmd = OP_PROGRAM_PAGE;
2573                 q_op->flag = OP_PROGRAM_PAGE;
2574                 nandc->exec_opwrite = true;
2575                 break;
2576         case NAND_CMD_READ0:
2577         case NAND_CMD_READSTART:
2578                 if (host->use_ecc)
2579                         cmd = OP_PAGE_READ_WITH_ECC;
2580                 else
2581                         cmd = OP_PAGE_READ;
2582                 break;
2583         default:
2584                 dev_err(nandc->dev, "Opcode not supported: %u\n", opcode);
2585                 return -EOPNOTSUPP;
2586         }
2587
2588         return cmd;
2589 }
2590
2591 /* NAND framework ->exec_op() hooks and related helpers */
2592 static int qcom_parse_instructions(struct nand_chip *chip,
2593                                     const struct nand_subop *subop,
2594                                     struct qcom_op *q_op)
2595 {
2596         const struct nand_op_instr *instr = NULL;
2597         unsigned int op_id;
2598         int i, ret;
2599
2600         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2601                 unsigned int offset, naddrs;
2602                 const u8 *addrs;
2603
2604                 instr = &subop->instrs[op_id];
2605
2606                 switch (instr->type) {
2607                 case NAND_OP_CMD_INSTR:
2608                         ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op);
2609                         if (ret < 0)
2610                                 return ret;
2611
2612                         q_op->cmd_reg = ret;
2613                         q_op->rdy_delay_ns = instr->delay_ns;
2614                         break;
2615
2616                 case NAND_OP_ADDR_INSTR:
2617                         offset = nand_subop_get_addr_start_off(subop, op_id);
2618                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2619                         addrs = &instr->ctx.addr.addrs[offset];
2620
2621                         for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
2622                                 q_op->addr1_reg |= addrs[i] << (i * 8);
2623
2624                         if (naddrs > 4)
2625                                 q_op->addr2_reg |= addrs[4];
2626
2627                         q_op->rdy_delay_ns = instr->delay_ns;
2628                         break;
2629
2630                 case NAND_OP_DATA_IN_INSTR:
2631                         q_op->data_instr = instr;
2632                         q_op->data_instr_idx = op_id;
2633                         q_op->rdy_delay_ns = instr->delay_ns;
2634                         fallthrough;
2635                 case NAND_OP_DATA_OUT_INSTR:
2636                         q_op->rdy_delay_ns = instr->delay_ns;
2637                         break;
2638
2639                 case NAND_OP_WAITRDY_INSTR:
2640                         q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
2641                         q_op->rdy_delay_ns = instr->delay_ns;
2642                         break;
2643                 }
2644         }
2645
2646         return 0;
2647 }
2648
2649 static void qcom_delay_ns(unsigned int ns)
2650 {
2651         if (!ns)
2652                 return;
2653
2654         if (ns < 10000)
2655                 ndelay(ns);
2656         else
2657                 udelay(DIV_ROUND_UP(ns, 1000));
2658 }
2659
2660 static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
2661 {
2662         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2663         unsigned long start = jiffies + msecs_to_jiffies(time_ms);
2664         u32 flash;
2665
2666         nandc_read_buffer_sync(nandc, true);
2667
2668         do {
2669                 flash = le32_to_cpu(nandc->reg_read_buf[0]);
2670                 if (flash & FS_READY_BSY_N)
2671                         return 0;
2672                 cpu_relax();
2673         } while (time_after(start, jiffies));
2674
2675         dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash);
2676
2677         return -ETIMEDOUT;
2678 }
2679
2680 static int qcom_read_status_exec(struct nand_chip *chip,
2681                                  const struct nand_subop *subop)
2682 {
2683         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2684         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2685         struct nand_ecc_ctrl *ecc = &chip->ecc;
2686         struct qcom_op q_op = {};
2687         const struct nand_op_instr *instr = NULL;
2688         unsigned int op_id = 0;
2689         unsigned int len = 0;
2690         int ret, num_cw, i;
2691         u32 flash_status;
2692
2693         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2694
2695         ret = qcom_parse_instructions(chip, subop, &q_op);
2696         if (ret)
2697                 return ret;
2698
2699         num_cw = nandc->exec_opwrite ? ecc->steps : 1;
2700         nandc->exec_opwrite = false;
2701
2702         nandc->buf_count = 0;
2703         nandc->buf_start = 0;
2704         host->use_ecc = false;
2705
2706         clear_read_regs(nandc);
2707         clear_bam_transaction(nandc);
2708
2709         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2710         nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2711
2712         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
2713         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2714         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
2715
2716         ret = submit_descs(nandc);
2717         if (ret) {
2718                 dev_err(nandc->dev, "failure in submitting status descriptor\n");
2719                 goto err_out;
2720         }
2721
2722         nandc_read_buffer_sync(nandc, true);
2723
2724         for (i = 0; i < num_cw; i++) {
2725                 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
2726
2727                 if (flash_status & FS_MPU_ERR)
2728                         host->status &= ~NAND_STATUS_WP;
2729
2730                 if (flash_status & FS_OP_ERR ||
2731                     (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR)))
2732                         host->status |= NAND_STATUS_FAIL;
2733         }
2734
2735         flash_status = host->status;
2736         instr = q_op.data_instr;
2737         op_id = q_op.data_instr_idx;
2738         len = nand_subop_get_data_len(subop, op_id);
2739         memcpy(instr->ctx.data.buf.in, &flash_status, len);
2740
2741 err_out:
2742         return ret;
2743 }
2744
2745 static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2746 {
2747         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2748         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2749         struct qcom_op q_op = {};
2750         const struct nand_op_instr *instr = NULL;
2751         unsigned int op_id = 0;
2752         unsigned int len = 0;
2753         int ret;
2754
2755         ret = qcom_parse_instructions(chip, subop, &q_op);
2756         if (ret)
2757                 return ret;
2758
2759         nandc->buf_count = 0;
2760         nandc->buf_start = 0;
2761         host->use_ecc = false;
2762
2763         clear_read_regs(nandc);
2764         clear_bam_transaction(nandc);
2765
2766         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2767         nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg);
2768         nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg);
2769         nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
2770                       nandc->props->is_bam ? 0 : DM_EN);
2771
2772         nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2773
2774         write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
2775         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2776
2777         read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
2778
2779         ret = submit_descs(nandc);
2780         if (ret) {
2781                 dev_err(nandc->dev, "failure in submitting read id descriptor\n");
2782                 goto err_out;
2783         }
2784
2785         instr = q_op.data_instr;
2786         op_id = q_op.data_instr_idx;
2787         len = nand_subop_get_data_len(subop, op_id);
2788
2789         nandc_read_buffer_sync(nandc, true);
2790         memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);
2791
2792 err_out:
2793         return ret;
2794 }
2795
2796 static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2797 {
2798         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2799         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2800         struct qcom_op q_op = {};
2801         int ret;
2802         int instrs = 1;
2803
2804         ret = qcom_parse_instructions(chip, subop, &q_op);
2805         if (ret)
2806                 return ret;
2807
2808         if (q_op.flag == OP_PROGRAM_PAGE) {
2809                 goto wait_rdy;
2810         } else if (q_op.cmd_reg == OP_BLOCK_ERASE) {
2811                 q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2812                 nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg);
2813                 nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg);
2814                 nandc_set_reg(chip, NAND_DEV0_CFG0,
2815                               host->cfg0_raw & ~(7 << CW_PER_PAGE));
2816                 nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw);
2817                 instrs = 3;
2818         } else {
2819                 return 0;
2820         }
2821
2822         nandc->buf_count = 0;
2823         nandc->buf_start = 0;
2824         host->use_ecc = false;
2825
2826         clear_read_regs(nandc);
2827         clear_bam_transaction(nandc);
2828
2829         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2830         nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2831
2832         write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
2833         (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0,
2834         2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc,
2835         NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
2836
2837         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
2838         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
2839
2840         ret = submit_descs(nandc);
2841         if (ret) {
2842                 dev_err(nandc->dev, "failure in submitting misc descriptor\n");
2843                 goto err_out;
2844         }
2845
2846 wait_rdy:
2847         qcom_delay_ns(q_op.rdy_delay_ns);
2848         ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
2849
2850 err_out:
2851         return ret;
2852 }
2853
2854 static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_subop *subop)
2855 {
2856         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2857         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2858         struct qcom_op q_op = {};
2859         const struct nand_op_instr *instr = NULL;
2860         unsigned int op_id = 0;
2861         unsigned int len = 0;
2862         int ret;
2863
2864         ret = qcom_parse_instructions(chip, subop, &q_op);
2865         if (ret)
2866                 return ret;
2867
2868         q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2869
2870         nandc->buf_count = 0;
2871         nandc->buf_start = 0;
2872         host->use_ecc = false;
2873         clear_read_regs(nandc);
2874         clear_bam_transaction(nandc);
2875
2876         nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg);
2877
2878         nandc_set_reg(chip, NAND_ADDR0, 0);
2879         nandc_set_reg(chip, NAND_ADDR1, 0);
2880         nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
2881                                         | 512 << UD_SIZE_BYTES
2882                                         | 5 << NUM_ADDR_CYCLES
2883                                         | 0 << SPARE_SIZE_BYTES);
2884         nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
2885                                         | 0 << CS_ACTIVE_BSY
2886                                         | 17 << BAD_BLOCK_BYTE_NUM
2887                                         | 1 << BAD_BLOCK_IN_SPARE_AREA
2888                                         | 2 << WR_RD_BSY_GAP
2889                                         | 0 << WIDE_FLASH
2890                                         | 1 << DEV0_CFG1_ECC_DISABLE);
2891         if (!nandc->props->qpic_v2)
2892                 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
2893
2894         /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
2895         if (!nandc->props->qpic_v2) {
2896                 nandc_set_reg(chip, NAND_DEV_CMD_VLD,
2897                               (nandc->vld & ~READ_START_VLD));
2898                 nandc_set_reg(chip, NAND_DEV_CMD1,
2899                               (nandc->cmd1 & ~(0xFF << READ_ADDR))
2900                               | NAND_CMD_PARAM << READ_ADDR);
2901         }
2902
2903         nandc_set_reg(chip, NAND_EXEC_CMD, 1);
2904
2905         if (!nandc->props->qpic_v2) {
2906                 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
2907                 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
2908         }
2909
2910         instr = q_op.data_instr;
2911         op_id = q_op.data_instr_idx;
2912         len = nand_subop_get_data_len(subop, op_id);
2913
2914         nandc_set_read_loc(chip, 0, 0, 0, len, 1);
2915
2916         if (!nandc->props->qpic_v2) {
2917                 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
2918                 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
2919         }
2920
2921         nandc->buf_count = len;
2922         memset(nandc->data_buffer, 0xff, nandc->buf_count);
2923
2924         config_nand_single_cw_page_read(chip, false, 0);
2925
2926         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
2927                       nandc->buf_count, 0);
2928
2929         /* restore CMD1 and VLD regs */
2930         if (!nandc->props->qpic_v2) {
2931                 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
2932                 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
2933         }
2934
2935         ret = submit_descs(nandc);
2936         if (ret) {
2937                 dev_err(nandc->dev, "failure in submitting param page descriptor\n");
2938                 goto err_out;
2939         }
2940
2941         ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
2942         if (ret)
2943                 goto err_out;
2944
2945         memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len);
2946
2947 err_out:
2948         return ret;
2949 }
2950
2951 static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER(
2952                 NAND_OP_PARSER_PATTERN(
2953                         qcom_read_id_type_exec,
2954                         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2955                         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2956                         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2957                 NAND_OP_PARSER_PATTERN(
2958                         qcom_read_status_exec,
2959                         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2960                         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2961                 NAND_OP_PARSER_PATTERN(
2962                         qcom_param_page_type_exec,
2963                         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2964                         NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2965                         NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2966                         NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)),
2967                 NAND_OP_PARSER_PATTERN(
2968                         qcom_misc_cmd_type_exec,
2969                         NAND_OP_PARSER_PAT_CMD_ELEM(false),
2970                         NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE),
2971                         NAND_OP_PARSER_PAT_CMD_ELEM(true),
2972                         NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2973                 );
2974
2975 static int qcom_check_op(struct nand_chip *chip,
2976                          const struct nand_operation *op)
2977 {
2978         const struct nand_op_instr *instr;
2979         int op_id;
2980
2981         for (op_id = 0; op_id < op->ninstrs; op_id++) {
2982                 instr = &op->instrs[op_id];
2983
2984                 switch (instr->type) {
2985                 case NAND_OP_CMD_INSTR:
2986                         if (instr->ctx.cmd.opcode != NAND_CMD_RESET  &&
2987                             instr->ctx.cmd.opcode != NAND_CMD_READID &&
2988                             instr->ctx.cmd.opcode != NAND_CMD_PARAM  &&
2989                             instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
2990                             instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
2991                             instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
2992                             instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
2993                             instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
2994                             instr->ctx.cmd.opcode != NAND_CMD_READSTART)
2995                                 return -EOPNOTSUPP;
2996                         break;
2997                 default:
2998                         break;
2999                 }
3000         }
3001
3002         return 0;
3003 }
3004
3005 static int qcom_nand_exec_op(struct nand_chip *chip,
3006                              const struct nand_operation *op, bool check_only)
3007 {
3008         if (check_only)
3009                 return qcom_check_op(chip, op);
3010
3011         return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only);
3012 }
3013
3014 static const struct nand_controller_ops qcom_nandc_ops = {
3015         .attach_chip = qcom_nand_attach_chip,
3016         .exec_op = qcom_nand_exec_op,
3017 };
3018
3019 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
3020 {
3021         if (nandc->props->is_bam) {
3022                 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
3023                         dma_unmap_single(nandc->dev, nandc->reg_read_dma,
3024                                          MAX_REG_RD *
3025                                          sizeof(*nandc->reg_read_buf),
3026                                          DMA_FROM_DEVICE);
3027
3028                 if (nandc->tx_chan)
3029                         dma_release_channel(nandc->tx_chan);
3030
3031                 if (nandc->rx_chan)
3032                         dma_release_channel(nandc->rx_chan);
3033
3034                 if (nandc->cmd_chan)
3035                         dma_release_channel(nandc->cmd_chan);
3036         } else {
3037                 if (nandc->chan)
3038                         dma_release_channel(nandc->chan);
3039         }
3040 }
3041
3042 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
3043 {
3044         int ret;
3045
3046         ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
3047         if (ret) {
3048                 dev_err(nandc->dev, "failed to set DMA mask\n");
3049                 return ret;
3050         }
3051
3052         /*
3053          * we use the internal buffer for reading ONFI params, reading small
3054          * data like ID and status, and preforming read-copy-write operations
3055          * when writing to a codeword partially. 532 is the maximum possible
3056          * size of a codeword for our nand controller
3057          */
3058         nandc->buf_size = 532;
3059
3060         nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
3061         if (!nandc->data_buffer)
3062                 return -ENOMEM;
3063
3064         nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
3065         if (!nandc->regs)
3066                 return -ENOMEM;
3067
3068         nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
3069                                            sizeof(*nandc->reg_read_buf),
3070                                            GFP_KERNEL);
3071         if (!nandc->reg_read_buf)
3072                 return -ENOMEM;
3073
3074         if (nandc->props->is_bam) {
3075                 nandc->reg_read_dma =
3076                         dma_map_single(nandc->dev, nandc->reg_read_buf,
3077                                        MAX_REG_RD *
3078                                        sizeof(*nandc->reg_read_buf),
3079                                        DMA_FROM_DEVICE);
3080                 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
3081                         dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
3082                         return -EIO;
3083                 }
3084
3085                 nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
3086                 if (IS_ERR(nandc->tx_chan)) {
3087                         ret = PTR_ERR(nandc->tx_chan);
3088                         nandc->tx_chan = NULL;
3089                         dev_err_probe(nandc->dev, ret,
3090                                       "tx DMA channel request failed\n");
3091                         goto unalloc;
3092                 }
3093
3094                 nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
3095                 if (IS_ERR(nandc->rx_chan)) {
3096                         ret = PTR_ERR(nandc->rx_chan);
3097                         nandc->rx_chan = NULL;
3098                         dev_err_probe(nandc->dev, ret,
3099                                       "rx DMA channel request failed\n");
3100                         goto unalloc;
3101                 }
3102
3103                 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
3104                 if (IS_ERR(nandc->cmd_chan)) {
3105                         ret = PTR_ERR(nandc->cmd_chan);
3106                         nandc->cmd_chan = NULL;
3107                         dev_err_probe(nandc->dev, ret,
3108                                       "cmd DMA channel request failed\n");
3109                         goto unalloc;
3110                 }
3111
3112                 /*
3113                  * Initially allocate BAM transaction to read ONFI param page.
3114                  * After detecting all the devices, this BAM transaction will
3115                  * be freed and the next BAM transaction will be allocated with
3116                  * maximum codeword size
3117                  */
3118                 nandc->max_cwperpage = 1;
3119                 nandc->bam_txn = alloc_bam_transaction(nandc);
3120                 if (!nandc->bam_txn) {
3121                         dev_err(nandc->dev,
3122                                 "failed to allocate bam transaction\n");
3123                         ret = -ENOMEM;
3124                         goto unalloc;
3125                 }
3126         } else {
3127                 nandc->chan = dma_request_chan(nandc->dev, "rxtx");
3128                 if (IS_ERR(nandc->chan)) {
3129                         ret = PTR_ERR(nandc->chan);
3130                         nandc->chan = NULL;
3131                         dev_err_probe(nandc->dev, ret,
3132                                       "rxtx DMA channel request failed\n");
3133                         return ret;
3134                 }
3135         }
3136
3137         INIT_LIST_HEAD(&nandc->desc_list);
3138         INIT_LIST_HEAD(&nandc->host_list);
3139
3140         nand_controller_init(&nandc->controller);
3141         nandc->controller.ops = &qcom_nandc_ops;
3142
3143         return 0;
3144 unalloc:
3145         qcom_nandc_unalloc(nandc);
3146         return ret;
3147 }
3148
3149 /* one time setup of a few nand controller registers */
3150 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
3151 {
3152         u32 nand_ctrl;
3153
3154         /* kill onenand */
3155         if (!nandc->props->is_qpic)
3156                 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
3157
3158         if (!nandc->props->qpic_v2)
3159                 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
3160                             NAND_DEV_CMD_VLD_VAL);
3161
3162         /* enable ADM or BAM DMA */
3163         if (nandc->props->is_bam) {
3164                 nand_ctrl = nandc_read(nandc, NAND_CTRL);
3165
3166                 /*
3167                  *NAND_CTRL is an operational registers, and CPU
3168                  * access to operational registers are read only
3169                  * in BAM mode. So update the NAND_CTRL register
3170                  * only if it is not in BAM mode. In most cases BAM
3171                  * mode will be enabled in bootloader
3172                  */
3173                 if (!(nand_ctrl & BAM_MODE_EN))
3174                         nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
3175         } else {
3176                 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
3177         }
3178
3179         /* save the original values of these registers */
3180         if (!nandc->props->qpic_v2) {
3181                 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
3182                 nandc->vld = NAND_DEV_CMD_VLD_VAL;
3183         }
3184
3185         return 0;
3186 }
3187
3188 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
3189
3190 static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
3191                                                 struct qcom_nand_host *host,
3192                                                 struct device_node *dn)
3193 {
3194         struct nand_chip *chip = &host->chip;
3195         struct mtd_info *mtd = nand_to_mtd(chip);
3196         struct qcom_nand_boot_partition *boot_partition;
3197         struct device *dev = nandc->dev;
3198         int partitions_count, i, j, ret;
3199
3200         if (!of_property_present(dn, "qcom,boot-partitions"))
3201                 return 0;
3202
3203         partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
3204         if (partitions_count <= 0) {
3205                 dev_err(dev, "Error parsing boot partition\n");
3206                 return partitions_count ? partitions_count : -EINVAL;
3207         }
3208
3209         host->nr_boot_partitions = partitions_count / 2;
3210         host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
3211                                              sizeof(*host->boot_partitions), GFP_KERNEL);
3212         if (!host->boot_partitions) {
3213                 host->nr_boot_partitions = 0;
3214                 return -ENOMEM;
3215         }
3216
3217         for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
3218                 boot_partition = &host->boot_partitions[i];
3219
3220                 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
3221                                                  &boot_partition->page_offset);
3222                 if (ret) {
3223                         dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
3224                         host->nr_boot_partitions = 0;
3225                         return ret;
3226                 }
3227
3228                 if (boot_partition->page_offset % mtd->writesize) {
3229                         dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
3230                                 i);
3231                         host->nr_boot_partitions = 0;
3232                         return -EINVAL;
3233                 }
3234                 /* Convert offset to nand pages */
3235                 boot_partition->page_offset /= mtd->writesize;
3236
3237                 ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
3238                                                  &boot_partition->page_size);
3239                 if (ret) {
3240                         dev_err(dev, "Error parsing boot partition size at index %d\n", i);
3241                         host->nr_boot_partitions = 0;
3242                         return ret;
3243                 }
3244
3245                 if (boot_partition->page_size % mtd->writesize) {
3246                         dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
3247                                 i);
3248                         host->nr_boot_partitions = 0;
3249                         return -EINVAL;
3250                 }
3251                 /* Convert size to nand pages */
3252                 boot_partition->page_size /= mtd->writesize;
3253         }
3254
3255         return 0;
3256 }
3257
3258 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
3259                                             struct qcom_nand_host *host,
3260                                             struct device_node *dn)
3261 {
3262         struct nand_chip *chip = &host->chip;
3263         struct mtd_info *mtd = nand_to_mtd(chip);
3264         struct device *dev = nandc->dev;
3265         int ret;
3266
3267         ret = of_property_read_u32(dn, "reg", &host->cs);
3268         if (ret) {
3269                 dev_err(dev, "can't get chip-select\n");
3270                 return -ENXIO;
3271         }
3272
3273         nand_set_flash_node(chip, dn);
3274         mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
3275         if (!mtd->name)
3276                 return -ENOMEM;
3277
3278         mtd->owner = THIS_MODULE;
3279         mtd->dev.parent = dev;
3280
3281         /*
3282          * the bad block marker is readable only when we read the last codeword
3283          * of a page with ECC disabled. currently, the nand_base and nand_bbt
3284          * helpers don't allow us to read BB from a nand chip with ECC
3285          * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
3286          * and block_markbad helpers until we permanently switch to using
3287          * MTD_OPS_RAW for all drivers (with the help of badblockbits)
3288          */
3289         chip->legacy.block_bad          = qcom_nandc_block_bad;
3290         chip->legacy.block_markbad      = qcom_nandc_block_markbad;
3291
3292         chip->controller = &nandc->controller;
3293         chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
3294                          NAND_SKIP_BBTSCAN;
3295
3296         /* set up initial status value */
3297         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
3298
3299         ret = nand_scan(chip, 1);
3300         if (ret)
3301                 return ret;
3302
3303         ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
3304         if (ret)
3305                 goto err;
3306
3307         if (nandc->props->use_codeword_fixup) {
3308                 ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
3309                 if (ret)
3310                         goto err;
3311         }
3312
3313         return 0;
3314
3315 err:
3316         nand_cleanup(chip);
3317         return ret;
3318 }
3319
3320 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
3321 {
3322         struct device *dev = nandc->dev;
3323         struct device_node *dn = dev->of_node, *child;
3324         struct qcom_nand_host *host;
3325         int ret = -ENODEV;
3326
3327         for_each_available_child_of_node(dn, child) {
3328                 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3329                 if (!host) {
3330                         of_node_put(child);
3331                         return -ENOMEM;
3332                 }
3333
3334                 ret = qcom_nand_host_init_and_register(nandc, host, child);
3335                 if (ret) {
3336                         devm_kfree(dev, host);
3337                         continue;
3338                 }
3339
3340                 list_add_tail(&host->node, &nandc->host_list);
3341         }
3342
3343         return ret;
3344 }
3345
3346 /* parse custom DT properties here */
3347 static int qcom_nandc_parse_dt(struct platform_device *pdev)
3348 {
3349         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3350         struct device_node *np = nandc->dev->of_node;
3351         int ret;
3352
3353         if (!nandc->props->is_bam) {
3354                 ret = of_property_read_u32(np, "qcom,cmd-crci",
3355                                            &nandc->cmd_crci);
3356                 if (ret) {
3357                         dev_err(nandc->dev, "command CRCI unspecified\n");
3358                         return ret;
3359                 }
3360
3361                 ret = of_property_read_u32(np, "qcom,data-crci",
3362                                            &nandc->data_crci);
3363                 if (ret) {
3364                         dev_err(nandc->dev, "data CRCI unspecified\n");
3365                         return ret;
3366                 }
3367         }
3368
3369         return 0;
3370 }
3371
3372 static int qcom_nandc_probe(struct platform_device *pdev)
3373 {
3374         struct qcom_nand_controller *nandc;
3375         const void *dev_data;
3376         struct device *dev = &pdev->dev;
3377         struct resource *res;
3378         int ret;
3379
3380         nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
3381         if (!nandc)
3382                 return -ENOMEM;
3383
3384         platform_set_drvdata(pdev, nandc);
3385         nandc->dev = dev;
3386
3387         dev_data = of_device_get_match_data(dev);
3388         if (!dev_data) {
3389                 dev_err(&pdev->dev, "failed to get device data\n");
3390                 return -ENODEV;
3391         }
3392
3393         nandc->props = dev_data;
3394
3395         nandc->core_clk = devm_clk_get(dev, "core");
3396         if (IS_ERR(nandc->core_clk))
3397                 return PTR_ERR(nandc->core_clk);
3398
3399         nandc->aon_clk = devm_clk_get(dev, "aon");
3400         if (IS_ERR(nandc->aon_clk))
3401                 return PTR_ERR(nandc->aon_clk);
3402
3403         ret = qcom_nandc_parse_dt(pdev);
3404         if (ret)
3405                 return ret;
3406
3407         nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3408         if (IS_ERR(nandc->base))
3409                 return PTR_ERR(nandc->base);
3410
3411         nandc->base_phys = res->start;
3412         nandc->base_dma = dma_map_resource(dev, res->start,
3413                                            resource_size(res),
3414                                            DMA_BIDIRECTIONAL, 0);
3415         if (dma_mapping_error(dev, nandc->base_dma))
3416                 return -ENXIO;
3417
3418         ret = clk_prepare_enable(nandc->core_clk);
3419         if (ret)
3420                 goto err_core_clk;
3421
3422         ret = clk_prepare_enable(nandc->aon_clk);
3423         if (ret)
3424                 goto err_aon_clk;
3425
3426         ret = qcom_nandc_alloc(nandc);
3427         if (ret)
3428                 goto err_nandc_alloc;
3429
3430         ret = qcom_nandc_setup(nandc);
3431         if (ret)
3432                 goto err_setup;
3433
3434         ret = qcom_probe_nand_devices(nandc);
3435         if (ret)
3436                 goto err_setup;
3437
3438         return 0;
3439
3440 err_setup:
3441         qcom_nandc_unalloc(nandc);
3442 err_nandc_alloc:
3443         clk_disable_unprepare(nandc->aon_clk);
3444 err_aon_clk:
3445         clk_disable_unprepare(nandc->core_clk);
3446 err_core_clk:
3447         dma_unmap_resource(dev, nandc->base_dma, resource_size(res),
3448                            DMA_BIDIRECTIONAL, 0);
3449         return ret;
3450 }
3451
3452 static void qcom_nandc_remove(struct platform_device *pdev)
3453 {
3454         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3455         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3456         struct qcom_nand_host *host;
3457         struct nand_chip *chip;
3458         int ret;
3459
3460         list_for_each_entry(host, &nandc->host_list, node) {
3461                 chip = &host->chip;
3462                 ret = mtd_device_unregister(nand_to_mtd(chip));
3463                 WARN_ON(ret);
3464                 nand_cleanup(chip);
3465         }
3466
3467         qcom_nandc_unalloc(nandc);
3468
3469         clk_disable_unprepare(nandc->aon_clk);
3470         clk_disable_unprepare(nandc->core_clk);
3471
3472         dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3473                            DMA_BIDIRECTIONAL, 0);
3474 }
3475
3476 static const struct qcom_nandc_props ipq806x_nandc_props = {
3477         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3478         .is_bam = false,
3479         .use_codeword_fixup = true,
3480         .dev_cmd_reg_start = 0x0,
3481 };
3482
3483 static const struct qcom_nandc_props ipq4019_nandc_props = {
3484         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3485         .is_bam = true,
3486         .is_qpic = true,
3487         .dev_cmd_reg_start = 0x0,
3488 };
3489
3490 static const struct qcom_nandc_props ipq8074_nandc_props = {
3491         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3492         .is_bam = true,
3493         .is_qpic = true,
3494         .dev_cmd_reg_start = 0x7000,
3495 };
3496
3497 static const struct qcom_nandc_props sdx55_nandc_props = {
3498         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3499         .is_bam = true,
3500         .is_qpic = true,
3501         .qpic_v2 = true,
3502         .dev_cmd_reg_start = 0x7000,
3503 };
3504
3505 /*
3506  * data will hold a struct pointer containing more differences once we support
3507  * more controller variants
3508  */
3509 static const struct of_device_id qcom_nandc_of_match[] = {
3510         {
3511                 .compatible = "qcom,ipq806x-nand",
3512                 .data = &ipq806x_nandc_props,
3513         },
3514         {
3515                 .compatible = "qcom,ipq4019-nand",
3516                 .data = &ipq4019_nandc_props,
3517         },
3518         {
3519                 .compatible = "qcom,ipq6018-nand",
3520                 .data = &ipq8074_nandc_props,
3521         },
3522         {
3523                 .compatible = "qcom,ipq8074-nand",
3524                 .data = &ipq8074_nandc_props,
3525         },
3526         {
3527                 .compatible = "qcom,sdx55-nand",
3528                 .data = &sdx55_nandc_props,
3529         },
3530         {}
3531 };
3532 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3533
3534 static struct platform_driver qcom_nandc_driver = {
3535         .driver = {
3536                 .name = "qcom-nandc",
3537                 .of_match_table = qcom_nandc_of_match,
3538         },
3539         .probe   = qcom_nandc_probe,
3540         .remove_new = qcom_nandc_remove,
3541 };
3542 module_platform_driver(qcom_nandc_driver);
3543
3544 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3545 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3546 MODULE_LICENSE("GPL v2");