powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / raw / pl35x-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARM PL35X NAND flash controller driver
4  *
5  * Copyright (C) 2017 Xilinx, Inc
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12
13 #include <linux/amba/bus.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29 #include <linux/clk.h>
30
31 #define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
32
33 /* SMC controller status register (RO) */
34 #define PL35X_SMC_MEMC_STATUS 0x0
35 #define   PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6)
36 /* SMC clear config register (WO) */
37 #define PL35X_SMC_MEMC_CFG_CLR 0xC
38 #define   PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1      BIT(1)
39 #define   PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1      BIT(4)
40 #define   PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1  BIT(6)
41 /* SMC direct command register (WO) */
42 #define PL35X_SMC_DIRECT_CMD 0x10
43 #define   PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
44 #define   PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
45 /* SMC set cycles register (WO) */
46 #define PL35X_SMC_CYCLES 0x14
47 #define   PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
48 #define   PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
49 #define   PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
50 #define   PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
51 #define   PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
52 #define   PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
53 #define   PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
54 /* SMC set opmode register (WO) */
55 #define PL35X_SMC_OPMODE 0x18
56 #define   PL35X_SMC_OPMODE_BW_8 0
57 #define   PL35X_SMC_OPMODE_BW_16 1
58 /* SMC ECC status register (RO) */
59 #define PL35X_SMC_ECC_STATUS 0x400
60 #define   PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
61 /* SMC ECC configuration register */
62 #define PL35X_SMC_ECC_CFG 0x404
63 #define   PL35X_SMC_ECC_CFG_MODE_MASK 0xC
64 #define   PL35X_SMC_ECC_CFG_MODE_BYPASS 0
65 #define   PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
66 #define   PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
67 #define   PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3
68 /* SMC ECC command 1 register */
69 #define PL35X_SMC_ECC_CMD1 0x408
70 #define   PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
71 #define   PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
72 #define   PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
73 #define   PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
74 /* SMC ECC command 2 register */
75 #define PL35X_SMC_ECC_CMD2 0x40C
76 #define   PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
77 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
78 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
79 #define   PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
80 /* SMC ECC value registers (RO) */
81 #define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
82 #define   PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
83 #define   PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
84 #define   PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
85
86 /* NAND AXI interface */
87 #define PL35X_SMC_CMD_PHASE 0
88 #define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
89 #define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
90 #define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
91 #define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
92 #define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
93 #define PL35X_SMC_DATA_PHASE BIT(19)
94 #define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
95 #define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
96
97 #define PL35X_NAND_MAX_CS 1
98 #define PL35X_NAND_LAST_XFER_SZ 4
99 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
100
101 #define PL35X_NAND_ECC_BITS_MASK 0xFFF
102 #define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
103 #define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
104
105 struct pl35x_nand_timings {
106         unsigned int t_rc:4;
107         unsigned int t_wc:4;
108         unsigned int t_rea:3;
109         unsigned int t_wp:3;
110         unsigned int t_clr:3;
111         unsigned int t_ar:3;
112         unsigned int t_rr:4;
113         unsigned int rsvd:8;
114 };
115
116 struct pl35x_nand {
117         struct list_head node;
118         struct nand_chip chip;
119         unsigned int cs;
120         unsigned int addr_cycles;
121         u32 ecc_cfg;
122         u32 timings;
123 };
124
125 /**
126  * struct pl35x_nandc - NAND flash controller driver structure
127  * @dev: Kernel device
128  * @conf_regs: SMC configuration registers for command phase
129  * @io_regs: NAND data registers for data phase
130  * @controller: Core NAND controller structure
131  * @chip: NAND chip information structure
132  * @selected_chip: NAND chip currently selected by the controller
133  * @assigned_cs: List of assigned CS
134  * @ecc_buf: Temporary buffer to extract ECC bytes
135  */
136 struct pl35x_nandc {
137         struct device *dev;
138         void __iomem *conf_regs;
139         void __iomem *io_regs;
140         struct nand_controller controller;
141         struct list_head chips;
142         struct nand_chip *selected_chip;
143         unsigned long assigned_cs;
144         u8 *ecc_buf;
145 };
146
147 static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
148 {
149         return container_of(ctrl, struct pl35x_nandc, controller);
150 }
151
152 static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
153 {
154         return container_of(chip, struct pl35x_nand, chip);
155 }
156
157 static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
158                                      struct mtd_oob_region *oobregion)
159 {
160         struct nand_chip *chip = mtd_to_nand(mtd);
161
162         if (section >= chip->ecc.steps)
163                 return -ERANGE;
164
165         oobregion->offset = (section * chip->ecc.bytes);
166         oobregion->length = chip->ecc.bytes;
167
168         return 0;
169 }
170
171 static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
172                                       struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175
176         if (section >= chip->ecc.steps)
177                 return -ERANGE;
178
179         oobregion->offset = (section * chip->ecc.bytes) + 8;
180         oobregion->length = 8;
181
182         return 0;
183 }
184
185 static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
186         .ecc = pl35x_ecc_ooblayout16_ecc,
187         .free = pl35x_ecc_ooblayout16_free,
188 };
189
190 /* Generic flash bbt decriptors */
191 static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
192 static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
193
194 static struct nand_bbt_descr bbt_main_descr = {
195         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
196                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
197         .offs = 4,
198         .len = 4,
199         .veroffs = 20,
200         .maxblocks = 4,
201         .pattern = bbt_pattern
202 };
203
204 static struct nand_bbt_descr bbt_mirror_descr = {
205         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
206                 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
207         .offs = 4,
208         .len = 4,
209         .veroffs = 20,
210         .maxblocks = 4,
211         .pattern = mirror_pattern
212 };
213
214 static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
215 {
216         writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
217                PL35X_SMC_DIRECT_CMD_UPD_REGS,
218                nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
219 }
220
221 static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
222 {
223         if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
224                 return -EINVAL;
225
226         writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
227         pl35x_smc_update_regs(nfc);
228
229         return 0;
230 }
231
232 static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
233 {
234         writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
235                nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
236 }
237
238 static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
239 {
240         u32 reg;
241         int ret;
242
243         ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
244                                  reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
245                                  10, 1000000);
246         if (ret)
247                 dev_err(nfc->dev,
248                         "Timeout polling on NAND controller interrupt (0x%x)\n",
249                         reg);
250
251         pl35x_smc_clear_irq(nfc);
252
253         return ret;
254 }
255
256 static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
257 {
258         u32 reg;
259         int ret;
260
261         ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
262                                  !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
263                                  10, 1000000);
264         if (ret)
265                 dev_err(nfc->dev,
266                         "Timeout polling on ECC controller interrupt\n");
267
268         return ret;
269 }
270
271 static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
272                                   struct nand_chip *chip,
273                                   unsigned int mode)
274 {
275         struct pl35x_nand *plnand;
276         u32 ecc_cfg;
277
278         ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
279         ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
280         ecc_cfg |= mode;
281         writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
282
283         if (chip) {
284                 plnand = to_pl35x_nand(chip);
285                 plnand->ecc_cfg = ecc_cfg;
286         }
287
288         if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
289                 return pl35x_smc_wait_for_ecc_done(nfc);
290
291         return 0;
292 }
293
294 static void pl35x_smc_force_byte_access(struct nand_chip *chip,
295                                         bool force_8bit)
296 {
297         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
298         int ret;
299
300         if (!(chip->options & NAND_BUSWIDTH_16))
301                 return;
302
303         if (force_8bit)
304                 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
305         else
306                 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
307
308         if (ret)
309                 dev_err(nfc->dev, "Error in Buswidth\n");
310 }
311
312 static void pl35x_nand_select_target(struct nand_chip *chip,
313                                      unsigned int die_nr)
314 {
315         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
316         struct pl35x_nand *plnand = to_pl35x_nand(chip);
317
318         if (chip == nfc->selected_chip)
319                 return;
320
321         /* Setup the timings */
322         writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
323         pl35x_smc_update_regs(nfc);
324
325         /* Configure the ECC engine */
326         writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
327
328         nfc->selected_chip = chip;
329 }
330
331 static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
332                                     unsigned int len, bool force_8bit,
333                                     unsigned int flags, unsigned int last_flags)
334 {
335         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
336         unsigned int buf_end = len / 4;
337         unsigned int in_start = round_down(len, 4);
338         unsigned int data_phase_addr;
339         u32 *buf32 = (u32 *)in;
340         u8 *buf8 = (u8 *)in;
341         int i;
342
343         if (force_8bit)
344                 pl35x_smc_force_byte_access(chip, true);
345
346         for (i = 0; i < buf_end; i++) {
347                 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
348                 if (i + 1 == buf_end)
349                         data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
350
351                 buf32[i] = readl(nfc->io_regs + data_phase_addr);
352         }
353
354         /* No working extra flags on unaligned data accesses */
355         for (i = in_start; i < len; i++)
356                 buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
357
358         if (force_8bit)
359                 pl35x_smc_force_byte_access(chip, false);
360 }
361
362 static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
363                                      int len, bool force_8bit,
364                                      unsigned int flags,
365                                      unsigned int last_flags)
366 {
367         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
368         unsigned int buf_end = len / 4;
369         unsigned int in_start = round_down(len, 4);
370         const u32 *buf32 = (const u32 *)out;
371         const u8 *buf8 = (const u8 *)out;
372         unsigned int data_phase_addr;
373         int i;
374
375         if (force_8bit)
376                 pl35x_smc_force_byte_access(chip, true);
377
378         for (i = 0; i < buf_end; i++) {
379                 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
380                 if (i + 1 == buf_end)
381                         data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
382
383                 writel(buf32[i], nfc->io_regs + data_phase_addr);
384         }
385
386         /* No working extra flags on unaligned data accesses */
387         for (i = in_start; i < len; i++)
388                 writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
389
390         if (force_8bit)
391                 pl35x_smc_force_byte_access(chip, false);
392 }
393
394 static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
395                                    unsigned char *read_ecc,
396                                    unsigned char *calc_ecc)
397 {
398         unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
399         unsigned short calc_ecc_lower, calc_ecc_upper;
400         unsigned short byte_addr, bit_addr;
401
402         read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
403                          PL35X_NAND_ECC_BITS_MASK;
404         read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
405                          PL35X_NAND_ECC_BITS_MASK;
406
407         calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
408                          PL35X_NAND_ECC_BITS_MASK;
409         calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
410                          PL35X_NAND_ECC_BITS_MASK;
411
412         ecc_odd = read_ecc_lower ^ calc_ecc_lower;
413         ecc_even = read_ecc_upper ^ calc_ecc_upper;
414
415         /* No error */
416         if (likely(!ecc_odd && !ecc_even))
417                 return 0;
418
419         /* One error in the main data; to be corrected */
420         if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
421                 /* Bits [11:3] of error code give the byte offset */
422                 byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
423                 /* Bits [2:0] of error code give the bit offset */
424                 bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
425                 /* Toggle the faulty bit */
426                 buf[byte_addr] ^= (BIT(bit_addr));
427
428                 return 1;
429         }
430
431         /* One error in the ECC data; no action needed */
432         if (hweight32(ecc_odd | ecc_even) == 1)
433                 return 1;
434
435         return -EBADMSG;
436 }
437
438 static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
439                                         u8 *ecc_array)
440 {
441         u32 ecc_value = ~ecc_reg;
442         unsigned int ecc_byte;
443
444         for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
445                 ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
446 }
447
448 static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
449                                     struct nand_chip *chip, u8 *read_ecc)
450 {
451         u32 ecc_value;
452         int chunk;
453
454         for (chunk = 0; chunk < chip->ecc.steps;
455              chunk++, read_ecc += chip->ecc.bytes) {
456                 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
457                 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
458                         return -EINVAL;
459
460                 pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
461         }
462
463         return 0;
464 }
465
466 static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
467                                          struct nand_chip *chip, u8 *data,
468                                          u8 *read_ecc)
469 {
470         struct mtd_info *mtd = nand_to_mtd(chip);
471         unsigned int max_bitflips = 0, chunk;
472         u8 calc_ecc[3];
473         u32 ecc_value;
474         int stats;
475
476         for (chunk = 0; chunk < chip->ecc.steps;
477              chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
478                 /* Read ECC value for each chunk */
479                 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
480
481                 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
482                         return -EINVAL;
483
484                 if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
485                         mtd->ecc_stats.failed++;
486                         continue;
487                 }
488
489                 pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
490                 stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
491                 if (stats < 0) {
492                         mtd->ecc_stats.failed++;
493                 } else {
494                         mtd->ecc_stats.corrected += stats;
495                         max_bitflips = max_t(unsigned int, max_bitflips, stats);
496                 }
497         }
498
499         return max_bitflips;
500 }
501
502 static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
503                                        const u8 *buf, int oob_required,
504                                        int page)
505 {
506         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
507         struct pl35x_nand *plnand = to_pl35x_nand(chip);
508         struct mtd_info *mtd = nand_to_mtd(chip);
509         unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
510         unsigned int nrows = plnand->addr_cycles;
511         u32 addr1 = 0, addr2 = 0, row;
512         u32 cmd_addr;
513         int i, ret;
514
515         ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
516         if (ret)
517                 return ret;
518
519         cmd_addr = PL35X_SMC_CMD_PHASE |
520                    PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
521                    PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
522
523         for (i = 0, row = first_row; row < nrows; i++, row++) {
524                 u8 addr = page >> ((i * 8) & 0xFF);
525
526                 if (row < 4)
527                         addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
528                 else
529                         addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
530         }
531
532         /* Send the command and address cycles */
533         writel(addr1, nfc->io_regs + cmd_addr);
534         if (plnand->addr_cycles > 4)
535                 writel(addr2, nfc->io_regs + cmd_addr);
536
537         /* Write the data with the engine enabled */
538         pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
539                                  0, PL35X_SMC_DATA_PHASE_ECC_LAST);
540         ret = pl35x_smc_wait_for_ecc_done(nfc);
541         if (ret)
542                 goto disable_ecc_engine;
543
544         /* Copy the HW calculated ECC bytes in the OOB buffer */
545         ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
546         if (ret)
547                 goto disable_ecc_engine;
548
549         if (!oob_required)
550                 memset(chip->oob_poi, 0xFF, mtd->oobsize);
551
552         ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
553                                          0, chip->ecc.total);
554         if (ret)
555                 goto disable_ecc_engine;
556
557         /* Write the spare area with ECC bytes */
558         pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
559                                  PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
560                                  PL35X_SMC_CMD_PHASE_CMD1_VALID |
561                                  PL35X_SMC_DATA_PHASE_CLEAR_CS);
562         ret = pl35x_smc_wait_for_irq(nfc);
563         if (ret)
564                 goto disable_ecc_engine;
565
566 disable_ecc_engine:
567         pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
568
569         return ret;
570 }
571
572 /*
573  * This functions reads data and checks the data integrity by comparing hardware
574  * generated ECC values and read ECC values from spare area.
575  *
576  * There is a limitation with SMC controller: ECC_LAST must be set on the
577  * last data access to tell the ECC engine not to expect any further data.
578  * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
579  * and doing a last 4-byte transfer with the additional bit set. The last block
580  * should be aligned with the end of an ECC block. Because of this limitation,
581  * it is not possible to use the core routines.
582  */
583 static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
584                                       u8 *buf, int oob_required, int page)
585 {
586         const struct nand_sdr_timings *sdr =
587                 nand_get_sdr_timings(nand_get_interface_config(chip));
588         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
589         struct pl35x_nand *plnand = to_pl35x_nand(chip);
590         struct mtd_info *mtd = nand_to_mtd(chip);
591         unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
592         unsigned int nrows = plnand->addr_cycles;
593         unsigned int addr1 = 0, addr2 = 0, row;
594         u32 cmd_addr;
595         int i, ret;
596
597         ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
598         if (ret)
599                 return ret;
600
601         cmd_addr = PL35X_SMC_CMD_PHASE |
602                    PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
603                    PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
604                    PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
605                    PL35X_SMC_CMD_PHASE_CMD1_VALID;
606
607         for (i = 0, row = first_row; row < nrows; i++, row++) {
608                 u8 addr = page >> ((i * 8) & 0xFF);
609
610                 if (row < 4)
611                         addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
612                 else
613                         addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
614         }
615
616         /* Send the command and address cycles */
617         writel(addr1, nfc->io_regs + cmd_addr);
618         if (plnand->addr_cycles > 4)
619                 writel(addr2, nfc->io_regs + cmd_addr);
620
621         /* Wait the data to be available in the NAND cache */
622         ndelay(PSEC_TO_NSEC(sdr->tRR_min));
623         ret = pl35x_smc_wait_for_irq(nfc);
624         if (ret)
625                 goto disable_ecc_engine;
626
627         /* Retrieve the raw data with the engine enabled */
628         pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
629                                 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
630         ret = pl35x_smc_wait_for_ecc_done(nfc);
631         if (ret)
632                 goto disable_ecc_engine;
633
634         /* Retrieve the stored ECC bytes */
635         pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
636                                 0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
637         ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
638                                          chip->ecc.total);
639         if (ret)
640                 goto disable_ecc_engine;
641
642         pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
643
644         /* Correct the data and report failures */
645         return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
646
647 disable_ecc_engine:
648         pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
649
650         return ret;
651 }
652
653 static int pl35x_nand_exec_op(struct nand_chip *chip,
654                               const struct nand_subop *subop)
655 {
656         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
657         const struct nand_op_instr *instr, *data_instr = NULL;
658         unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
659         u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
660         unsigned int op_id, len, offset, rdy_del_ns;
661         int last_instr_type = -1;
662         bool cmd1_valid = false;
663         const u8 *addrs;
664         int i, ret;
665
666         for (op_id = 0; op_id < subop->ninstrs; op_id++) {
667                 instr = &subop->instrs[op_id];
668
669                 switch (instr->type) {
670                 case NAND_OP_CMD_INSTR:
671                         if (!cmds) {
672                                 cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
673                         } else {
674                                 cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
675                                 if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
676                                         cmd1_valid = true;
677                         }
678                         cmds++;
679                         break;
680
681                 case NAND_OP_ADDR_INSTR:
682                         offset = nand_subop_get_addr_start_off(subop, op_id);
683                         naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
684                         addrs = &instr->ctx.addr.addrs[offset];
685                         cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
686
687                         for (i = offset; i < naddrs; i++) {
688                                 if (i < 4)
689                                         addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
690                                 else
691                                         addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
692                         }
693                         break;
694
695                 case NAND_OP_DATA_IN_INSTR:
696                 case NAND_OP_DATA_OUT_INSTR:
697                         data_instr = instr;
698                         len = nand_subop_get_data_len(subop, op_id);
699                         break;
700
701                 case NAND_OP_WAITRDY_INSTR:
702                         rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
703                         rdy_del_ns = instr->delay_ns;
704                         break;
705                 }
706
707                 last_instr_type = instr->type;
708         }
709
710         /* Command phase */
711         cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
712                     (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
713         writel(addr1, nfc->io_regs + cmd_addr);
714         if (naddrs > 4)
715                 writel(addr2, nfc->io_regs + cmd_addr);
716
717         /* Data phase */
718         if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
719                 last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
720                 if (cmds == 2)
721                         last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
722
723                 pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
724                                          len, data_instr->ctx.data.force_8bit,
725                                          0, last_flags);
726         }
727
728         if (rdy_tim_ms) {
729                 ndelay(rdy_del_ns);
730                 ret = pl35x_smc_wait_for_irq(nfc);
731                 if (ret)
732                         return ret;
733         }
734
735         if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
736                 pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
737                                         len, data_instr->ctx.data.force_8bit,
738                                         0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
739
740         return 0;
741 }
742
743 static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
744         NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
745                                NAND_OP_PARSER_PAT_CMD_ELEM(true),
746                                NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
747                                NAND_OP_PARSER_PAT_CMD_ELEM(true),
748                                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
749                                NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
750         NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
751                                NAND_OP_PARSER_PAT_CMD_ELEM(false),
752                                NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
753                                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
754                                NAND_OP_PARSER_PAT_CMD_ELEM(false),
755                                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
756         NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
757                                NAND_OP_PARSER_PAT_CMD_ELEM(false),
758                                NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
759                                NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
760                                NAND_OP_PARSER_PAT_CMD_ELEM(true),
761                                NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
762         );
763
764 static int pl35x_nfc_exec_op(struct nand_chip *chip,
765                              const struct nand_operation *op,
766                              bool check_only)
767 {
768         if (!check_only)
769                 pl35x_nand_select_target(chip, op->cs);
770
771         return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
772                                       op, check_only);
773 }
774
775 static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
776                                      const struct nand_interface_config *conf)
777 {
778         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
779         struct pl35x_nand *plnand = to_pl35x_nand(chip);
780         struct pl35x_nand_timings tmgs = {};
781         const struct nand_sdr_timings *sdr;
782         unsigned int period_ns, val;
783         struct clk *mclk;
784
785         sdr = nand_get_sdr_timings(conf);
786         if (IS_ERR(sdr))
787                 return PTR_ERR(sdr);
788
789         mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
790         if (IS_ERR(mclk)) {
791                 dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
792                 return PTR_ERR(mclk);
793         }
794
795         /*
796          * SDR timings are given in pico-seconds while NFC timings must be
797          * expressed in NAND controller clock cycles. We use the TO_CYCLE()
798          * macro to convert from one to the other.
799          */
800         period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
801
802         /*
803          * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
804          * written anywhere in the datasheet but is an empirical observation.
805          */
806         val = TO_CYCLES(sdr->tRC_min, period_ns);
807         if (sdr->tRC_min <= 20000)
808                 val++;
809
810         tmgs.t_rc = val;
811         if (tmgs.t_rc != val || tmgs.t_rc < 2)
812                 return -EINVAL;
813
814         val = TO_CYCLES(sdr->tWC_min, period_ns);
815         tmgs.t_wc = val;
816         if (tmgs.t_wc != val || tmgs.t_wc < 2)
817                 return -EINVAL;
818
819         /*
820          * For all SDR modes, PL35X SMC needs tREA_max being 1,
821          * this is also an empirical result.
822          */
823         tmgs.t_rea = 1;
824
825         val = TO_CYCLES(sdr->tWP_min, period_ns);
826         tmgs.t_wp = val;
827         if (tmgs.t_wp != val || tmgs.t_wp < 1)
828                 return -EINVAL;
829
830         val = TO_CYCLES(sdr->tCLR_min, period_ns);
831         tmgs.t_clr = val;
832         if (tmgs.t_clr != val)
833                 return -EINVAL;
834
835         val = TO_CYCLES(sdr->tAR_min, period_ns);
836         tmgs.t_ar = val;
837         if (tmgs.t_ar != val)
838                 return -EINVAL;
839
840         val = TO_CYCLES(sdr->tRR_min, period_ns);
841         tmgs.t_rr = val;
842         if (tmgs.t_rr != val)
843                 return -EINVAL;
844
845         if (cs == NAND_DATA_IFACE_CHECK_ONLY)
846                 return 0;
847
848         plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
849                           PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
850                           PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
851                           PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
852                           PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
853                           PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
854                           PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
855
856         return 0;
857 }
858
859 static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
860                                       struct nand_chip *chip,
861                                       unsigned int pg_sz)
862 {
863         struct pl35x_nand *plnand = to_pl35x_nand(chip);
864         u32 sz;
865
866         switch (pg_sz) {
867         case SZ_512:
868                 sz = 1;
869                 break;
870         case SZ_1K:
871                 sz = 2;
872                 break;
873         case SZ_2K:
874                 sz = 3;
875                 break;
876         default:
877                 sz = 0;
878                 break;
879         }
880
881         plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
882         plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
883         plnand->ecc_cfg |= sz;
884         writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
885 }
886
887 static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
888                                              struct nand_chip *chip)
889 {
890         struct mtd_info *mtd = nand_to_mtd(chip);
891         int ret = 0;
892
893         if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
894                 dev_err(nfc->dev,
895                         "The hardware ECC engine is limited to pages up to 2kiB\n");
896                 return -EOPNOTSUPP;
897         }
898
899         chip->ecc.strength = 1;
900         chip->ecc.bytes = 3;
901         chip->ecc.size = SZ_512;
902         chip->ecc.steps = mtd->writesize / chip->ecc.size;
903         chip->ecc.read_page = pl35x_nand_read_page_hwecc;
904         chip->ecc.write_page = pl35x_nand_write_page_hwecc;
905         chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
906         pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
907
908         nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
909                                     GFP_KERNEL);
910         if (!nfc->ecc_buf)
911                 return -ENOMEM;
912
913         switch (mtd->oobsize) {
914         case 16:
915                 /* Legacy Xilinx layout */
916                 mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
917                 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
918                 break;
919         case 64:
920                 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
921                 break;
922         default:
923                 dev_err(nfc->dev, "Unsupported OOB size\n");
924                 return -EOPNOTSUPP;
925         }
926
927         return ret;
928 }
929
930 static int pl35x_nand_attach_chip(struct nand_chip *chip)
931 {
932         const struct nand_ecc_props *requirements =
933                 nanddev_get_ecc_requirements(&chip->base);
934         struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
935         struct pl35x_nand *plnand = to_pl35x_nand(chip);
936         struct mtd_info *mtd = nand_to_mtd(chip);
937         int ret;
938
939         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
940             (!chip->ecc.size || !chip->ecc.strength)) {
941                 if (requirements->step_size && requirements->strength) {
942                         chip->ecc.size = requirements->step_size;
943                         chip->ecc.strength = requirements->strength;
944                 } else {
945                         dev_info(nfc->dev,
946                                  "No minimum ECC strength, using 1b/512B\n");
947                         chip->ecc.size = 512;
948                         chip->ecc.strength = 1;
949                 }
950         }
951
952         if (mtd->writesize <= SZ_512)
953                 plnand->addr_cycles = 1;
954         else
955                 plnand->addr_cycles = 2;
956
957         if (chip->options & NAND_ROW_ADDR_3)
958                 plnand->addr_cycles += 3;
959         else
960                 plnand->addr_cycles += 2;
961
962         switch (chip->ecc.engine_type) {
963         case NAND_ECC_ENGINE_TYPE_ON_DIE:
964                 /* Keep these legacy BBT descriptors for ON_DIE situations */
965                 chip->bbt_td = &bbt_main_descr;
966                 chip->bbt_md = &bbt_mirror_descr;
967                 fallthrough;
968         case NAND_ECC_ENGINE_TYPE_NONE:
969         case NAND_ECC_ENGINE_TYPE_SOFT:
970                 break;
971         case NAND_ECC_ENGINE_TYPE_ON_HOST:
972                 ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
973                 if (ret)
974                         return ret;
975                 break;
976         default:
977                 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
978                         chip->ecc.engine_type);
979                 return -EINVAL;
980         }
981
982         return 0;
983 }
984
985 static const struct nand_controller_ops pl35x_nandc_ops = {
986         .attach_chip = pl35x_nand_attach_chip,
987         .exec_op = pl35x_nfc_exec_op,
988         .setup_interface = pl35x_nfc_setup_interface,
989 };
990
991 static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
992 {
993         int ret;
994
995         /* Disable interrupts and clear their status */
996         writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
997                PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
998                PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
999                nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
1000
1001         /* Set default bus width to 8-bit */
1002         ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
1003         if (ret)
1004                 return ret;
1005
1006         /* Ensure the ECC controller is bypassed by default */
1007         ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
1008         if (ret)
1009                 return ret;
1010
1011         /*
1012          * Configure the commands that the ECC block uses to detect the
1013          * operations it should start/end.
1014          */
1015         writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
1016                PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
1017                PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
1018                PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
1019                nfc->conf_regs + PL35X_SMC_ECC_CMD1);
1020         writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
1021                PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
1022                PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
1023                PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
1024                nfc->conf_regs + PL35X_SMC_ECC_CMD2);
1025
1026         return 0;
1027 }
1028
1029 static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
1030                                 struct device_node *np)
1031 {
1032         struct pl35x_nand *plnand;
1033         struct nand_chip *chip;
1034         struct mtd_info *mtd;
1035         int cs, ret;
1036
1037         plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
1038         if (!plnand)
1039                 return -ENOMEM;
1040
1041         ret = of_property_read_u32(np, "reg", &cs);
1042         if (ret)
1043                 return ret;
1044
1045         if (cs >= PL35X_NAND_MAX_CS) {
1046                 dev_err(nfc->dev, "Wrong CS %d\n", cs);
1047                 return -EINVAL;
1048         }
1049
1050         if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1051                 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1052                 return -EINVAL;
1053         }
1054
1055         plnand->cs = cs;
1056
1057         chip = &plnand->chip;
1058         chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1059         chip->bbt_options = NAND_BBT_USE_FLASH;
1060         chip->controller = &nfc->controller;
1061         mtd = nand_to_mtd(chip);
1062         mtd->dev.parent = nfc->dev;
1063         nand_set_flash_node(chip, np);
1064         if (!mtd->name) {
1065                 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1066                                            "%s", PL35X_NANDC_DRIVER_NAME);
1067                 if (!mtd->name) {
1068                         dev_err(nfc->dev, "Failed to allocate mtd->name\n");
1069                         return -ENOMEM;
1070                 }
1071         }
1072
1073         ret = nand_scan(chip, 1);
1074         if (ret)
1075                 return ret;
1076
1077         ret = mtd_device_register(mtd, NULL, 0);
1078         if (ret) {
1079                 nand_cleanup(chip);
1080                 return ret;
1081         }
1082
1083         list_add_tail(&plnand->node, &nfc->chips);
1084
1085         return ret;
1086 }
1087
1088 static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
1089 {
1090         struct pl35x_nand *plnand, *tmp;
1091         struct nand_chip *chip;
1092         int ret;
1093
1094         list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
1095                 chip = &plnand->chip;
1096                 ret = mtd_device_unregister(nand_to_mtd(chip));
1097                 WARN_ON(ret);
1098                 nand_cleanup(chip);
1099                 list_del(&plnand->node);
1100         }
1101 }
1102
1103 static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
1104 {
1105         struct device_node *np = nfc->dev->of_node, *nand_np;
1106         int nchips = of_get_child_count(np);
1107         int ret;
1108
1109         if (!nchips || nchips > PL35X_NAND_MAX_CS) {
1110                 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1111                         nchips);
1112                 return -EINVAL;
1113         }
1114
1115         for_each_child_of_node(np, nand_np) {
1116                 ret = pl35x_nand_chip_init(nfc, nand_np);
1117                 if (ret) {
1118                         of_node_put(nand_np);
1119                         pl35x_nand_chips_cleanup(nfc);
1120                         break;
1121                 }
1122         }
1123
1124         return ret;
1125 }
1126
1127 static int pl35x_nand_probe(struct platform_device *pdev)
1128 {
1129         struct device *smc_dev = pdev->dev.parent;
1130         struct amba_device *smc_amba = to_amba_device(smc_dev);
1131         struct pl35x_nandc *nfc;
1132         u32 ret;
1133
1134         nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1135         if (!nfc)
1136                 return -ENOMEM;
1137
1138         nfc->dev = &pdev->dev;
1139         nand_controller_init(&nfc->controller);
1140         nfc->controller.ops = &pl35x_nandc_ops;
1141         INIT_LIST_HEAD(&nfc->chips);
1142
1143         nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
1144         if (IS_ERR(nfc->conf_regs))
1145                 return PTR_ERR(nfc->conf_regs);
1146
1147         nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
1148         if (IS_ERR(nfc->io_regs))
1149                 return PTR_ERR(nfc->io_regs);
1150
1151         ret = pl35x_nand_reset_state(nfc);
1152         if (ret)
1153                 return ret;
1154
1155         ret = pl35x_nand_chips_init(nfc);
1156         if (ret)
1157                 return ret;
1158
1159         platform_set_drvdata(pdev, nfc);
1160
1161         return 0;
1162 }
1163
1164 static void pl35x_nand_remove(struct platform_device *pdev)
1165 {
1166         struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
1167
1168         pl35x_nand_chips_cleanup(nfc);
1169 }
1170
1171 static const struct of_device_id pl35x_nand_of_match[] = {
1172         { .compatible = "arm,pl353-nand-r2p1" },
1173         {},
1174 };
1175 MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
1176
1177 static struct platform_driver pl35x_nandc_driver = {
1178         .probe = pl35x_nand_probe,
1179         .remove_new = pl35x_nand_remove,
1180         .driver = {
1181                 .name = PL35X_NANDC_DRIVER_NAME,
1182                 .of_match_table = pl35x_nand_of_match,
1183         },
1184 };
1185 module_platform_driver(pl35x_nandc_driver);
1186
1187 MODULE_AUTHOR("Xilinx, Inc.");
1188 MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
1189 MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
1190 MODULE_LICENSE("GPL");