powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47
48 #include "internals.h"
49
50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51                                        struct mtd_pairing_info *info)
52 {
53         int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54         int dist = 3;
55
56         if (page == lastpage)
57                 dist = 2;
58
59         if (!page || (page & 1)) {
60                 info->group = 0;
61                 info->pair = (page + 1) / 2;
62         } else {
63                 info->group = 1;
64                 info->pair = (page + 1 - dist) / 2;
65         }
66
67         return 0;
68 }
69
70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71                                         const struct mtd_pairing_info *info)
72 {
73         int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74         int page = info->pair * 2;
75         int dist = 3;
76
77         if (!info->group && !info->pair)
78                 return 0;
79
80         if (info->pair == lastpair && info->group)
81                 dist = 2;
82
83         if (!info->group)
84                 page--;
85         else if (info->pair)
86                 page += dist - 1;
87
88         if (page >= mtd->erasesize / mtd->writesize)
89                 return -EINVAL;
90
91         return page;
92 }
93
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95         .ngroups = 2,
96         .get_info = nand_pairing_dist3_get_info,
97         .get_wunit = nand_pairing_dist3_get_wunit,
98 };
99
100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102         int ret = 0;
103
104         /* Start address must align on block boundary */
105         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106                 pr_debug("%s: unaligned address\n", __func__);
107                 ret = -EINVAL;
108         }
109
110         /* Length must align on block boundary */
111         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112                 pr_debug("%s: length not block aligned\n", __func__);
113                 ret = -EINVAL;
114         }
115
116         return ret;
117 }
118
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130                        unsigned int src_off, unsigned int nbits)
131 {
132         unsigned int tmp, n;
133
134         dst += dst_off / 8;
135         dst_off %= 8;
136         src += src_off / 8;
137         src_off %= 8;
138
139         while (nbits) {
140                 n = min3(8 - dst_off, 8 - src_off, nbits);
141
142                 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143                 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144                 *dst |= tmp << dst_off;
145
146                 dst_off += n;
147                 if (dst_off >= 8) {
148                         dst++;
149                         dst_off -= 8;
150                 }
151
152                 src_off += n;
153                 if (src_off >= 8) {
154                         src++;
155                         src_off -= 8;
156                 }
157
158                 nbits -= n;
159         }
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *      PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174         /*
175          * cs should always lie between 0 and nanddev_ntargets(), when that's
176          * not the case it's a bug and the caller should be fixed.
177          */
178         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179                 return;
180
181         chip->cur_cs = cs;
182
183         if (chip->legacy.select_chip)
184                 chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
195 void nand_deselect_target(struct nand_chip *chip)
196 {
197         if (chip->legacy.select_chip)
198                 chip->legacy.select_chip(chip, -1);
199
200         chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
210 static void nand_release_device(struct nand_chip *chip)
211 {
212         /* Release the controller and the chip */
213         mutex_unlock(&chip->controller->lock);
214         mutex_unlock(&chip->lock);
215 }
216
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228         struct mtd_info *mtd = nand_to_mtd(chip);
229         int last_page = ((mtd->erasesize - mtd->writesize) >>
230                          chip->page_shift) & chip->pagemask;
231         unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232                 | NAND_BBM_LASTPAGE;
233
234         if (page == 0 && !(chip->options & bbm_flags))
235                 return 0;
236         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237                 return 0;
238         if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239                 return 1;
240         if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241                 return last_page;
242
243         return -EINVAL;
244 }
245
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255         int first_page, page_offset;
256         int res;
257         u8 bad;
258
259         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260         page_offset = nand_bbm_get_next_page(chip, 0);
261
262         while (page_offset >= 0) {
263                 res = chip->ecc.read_oob(chip, first_page + page_offset);
264                 if (res < 0)
265                         return res;
266
267                 bad = chip->oob_poi[chip->badblockpos];
268
269                 if (likely(chip->badblockbits == 8))
270                         res = bad != 0xFF;
271                 else
272                         res = hweight8(bad) < chip->badblockbits;
273                 if (res)
274                         return res;
275
276                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277         }
278
279         return 0;
280 }
281
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294         int i;
295
296         /* Skip touching the secure regions if present */
297         for (i = 0; i < chip->nr_secure_regions; i++) {
298                 const struct nand_secure_region *region = &chip->secure_regions[i];
299
300                 if (offset + size <= region->offset ||
301                     offset >= region->offset + region->size)
302                         continue;
303
304                 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305                          __func__, offset, offset + size);
306
307                 return true;
308         }
309
310         return false;
311 }
312
313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315         struct mtd_info *mtd = nand_to_mtd(chip);
316
317         if (chip->options & NAND_NO_BBM_QUIRK)
318                 return 0;
319
320         /* Check if the region is secured */
321         if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322                 return -EIO;
323
324         if (mtd_check_expert_analysis_mode())
325                 return 0;
326
327         if (chip->legacy.block_bad)
328                 return chip->legacy.block_bad(chip, ofs);
329
330         return nand_block_bad(chip, ofs);
331 }
332
333 /**
334  * nand_get_device - [GENERIC] Get chip for selected access
335  * @chip: NAND chip structure
336  *
337  * Lock the device and its controller for exclusive access
338  */
339 static void nand_get_device(struct nand_chip *chip)
340 {
341         /* Wait until the device is resumed. */
342         while (1) {
343                 mutex_lock(&chip->lock);
344                 if (!chip->suspended) {
345                         mutex_lock(&chip->controller->lock);
346                         return;
347                 }
348                 mutex_unlock(&chip->lock);
349
350                 wait_event(chip->resume_wq, !chip->suspended);
351         }
352 }
353
354 /**
355  * nand_check_wp - [GENERIC] check if the chip is write protected
356  * @chip: NAND chip object
357  *
358  * Check, if the device is write protected. The function expects, that the
359  * device is already selected.
360  */
361 static int nand_check_wp(struct nand_chip *chip)
362 {
363         u8 status;
364         int ret;
365
366         /* Broken xD cards report WP despite being writable */
367         if (chip->options & NAND_BROKEN_XD)
368                 return 0;
369
370         /* Check the WP bit */
371         ret = nand_status_op(chip, &status);
372         if (ret)
373                 return ret;
374
375         return status & NAND_STATUS_WP ? 0 : 1;
376 }
377
378 /**
379  * nand_fill_oob - [INTERN] Transfer client buffer to oob
380  * @chip: NAND chip object
381  * @oob: oob data buffer
382  * @len: oob data write length
383  * @ops: oob ops structure
384  */
385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386                               struct mtd_oob_ops *ops)
387 {
388         struct mtd_info *mtd = nand_to_mtd(chip);
389         int ret;
390
391         /*
392          * Initialise to all 0xFF, to avoid the possibility of left over OOB
393          * data from a previous OOB read.
394          */
395         memset(chip->oob_poi, 0xff, mtd->oobsize);
396
397         switch (ops->mode) {
398
399         case MTD_OPS_PLACE_OOB:
400         case MTD_OPS_RAW:
401                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402                 return oob + len;
403
404         case MTD_OPS_AUTO_OOB:
405                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406                                                   ops->ooboffs, len);
407                 BUG_ON(ret);
408                 return oob + len;
409
410         default:
411                 BUG();
412         }
413         return NULL;
414 }
415
416 /**
417  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418  * @chip: NAND chip object
419  * @to: offset to write to
420  * @ops: oob operation description structure
421  *
422  * NAND write out-of-band.
423  */
424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425                              struct mtd_oob_ops *ops)
426 {
427         struct mtd_info *mtd = nand_to_mtd(chip);
428         int chipnr, page, status, len, ret;
429
430         pr_debug("%s: to = 0x%08x, len = %i\n",
431                          __func__, (unsigned int)to, (int)ops->ooblen);
432
433         len = mtd_oobavail(mtd, ops);
434
435         /* Do not allow write past end of page */
436         if ((ops->ooboffs + ops->ooblen) > len) {
437                 pr_debug("%s: attempt to write past end of page\n",
438                                 __func__);
439                 return -EINVAL;
440         }
441
442         /* Check if the region is secured */
443         if (nand_region_is_secured(chip, to, ops->ooblen))
444                 return -EIO;
445
446         chipnr = (int)(to >> chip->chip_shift);
447
448         /*
449          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450          * of my DiskOnChip 2000 test units) will clear the whole data page too
451          * if we don't do this. I have no clue why, but I seem to have 'fixed'
452          * it in the doc2000 driver in August 1999.  dwmw2.
453          */
454         ret = nand_reset(chip, chipnr);
455         if (ret)
456                 return ret;
457
458         nand_select_target(chip, chipnr);
459
460         /* Shift to get page */
461         page = (int)(to >> chip->page_shift);
462
463         /* Check, if it is write protected */
464         if (nand_check_wp(chip)) {
465                 nand_deselect_target(chip);
466                 return -EROFS;
467         }
468
469         /* Invalidate the page cache, if we write to the cached page */
470         if (page == chip->pagecache.page)
471                 chip->pagecache.page = -1;
472
473         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474
475         if (ops->mode == MTD_OPS_RAW)
476                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477         else
478                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
479
480         nand_deselect_target(chip);
481
482         if (status)
483                 return status;
484
485         ops->oobretlen = ops->ooblen;
486
487         return 0;
488 }
489
490 /**
491  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492  * @chip: NAND chip object
493  * @ofs: offset from device start
494  *
495  * This is the default implementation, which can be overridden by a hardware
496  * specific driver. It provides the details for writing a bad block marker to a
497  * block.
498  */
499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501         struct mtd_info *mtd = nand_to_mtd(chip);
502         struct mtd_oob_ops ops;
503         uint8_t buf[2] = { 0, 0 };
504         int ret = 0, res, page_offset;
505
506         memset(&ops, 0, sizeof(ops));
507         ops.oobbuf = buf;
508         ops.ooboffs = chip->badblockpos;
509         if (chip->options & NAND_BUSWIDTH_16) {
510                 ops.ooboffs &= ~0x01;
511                 ops.len = ops.ooblen = 2;
512         } else {
513                 ops.len = ops.ooblen = 1;
514         }
515         ops.mode = MTD_OPS_PLACE_OOB;
516
517         page_offset = nand_bbm_get_next_page(chip, 0);
518
519         while (page_offset >= 0) {
520                 res = nand_do_write_oob(chip,
521                                         ofs + (page_offset * mtd->writesize),
522                                         &ops);
523
524                 if (!ret)
525                         ret = res;
526
527                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528         }
529
530         return ret;
531 }
532
533 /**
534  * nand_markbad_bbm - mark a block by updating the BBM
535  * @chip: NAND chip object
536  * @ofs: offset of the block to mark bad
537  */
538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540         if (chip->legacy.block_markbad)
541                 return chip->legacy.block_markbad(chip, ofs);
542
543         return nand_default_block_markbad(chip, ofs);
544 }
545
546 /**
547  * nand_block_markbad_lowlevel - mark a block bad
548  * @chip: NAND chip object
549  * @ofs: offset from device start
550  *
551  * This function performs the generic NAND bad block marking steps (i.e., bad
552  * block table(s) and/or marker(s)). We only allow the hardware driver to
553  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554  *
555  * We try operations in the following order:
556  *
557  *  (1) erase the affected block, to allow OOB marker to be written cleanly
558  *  (2) write bad block marker to OOB area of affected block (unless flag
559  *      NAND_BBT_NO_OOB_BBM is present)
560  *  (3) update the BBT
561  *
562  * Note that we retain the first error encountered in (2) or (3), finish the
563  * procedures, and dump the error in the end.
564 */
565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567         struct mtd_info *mtd = nand_to_mtd(chip);
568         int res, ret = 0;
569
570         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571                 struct erase_info einfo;
572
573                 /* Attempt erase before marking OOB */
574                 memset(&einfo, 0, sizeof(einfo));
575                 einfo.addr = ofs;
576                 einfo.len = 1ULL << chip->phys_erase_shift;
577                 nand_erase_nand(chip, &einfo, 0);
578
579                 /* Write bad block marker to OOB */
580                 nand_get_device(chip);
581
582                 ret = nand_markbad_bbm(chip, ofs);
583                 nand_release_device(chip);
584         }
585
586         /* Mark block bad in BBT */
587         if (chip->bbt) {
588                 res = nand_markbad_bbt(chip, ofs);
589                 if (!ret)
590                         ret = res;
591         }
592
593         if (!ret)
594                 mtd->ecc_stats.badblocks++;
595
596         return ret;
597 }
598
599 /**
600  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601  * @mtd: MTD device structure
602  * @ofs: offset from device start
603  *
604  * Check if the block is marked as reserved.
605  */
606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608         struct nand_chip *chip = mtd_to_nand(mtd);
609
610         if (!chip->bbt)
611                 return 0;
612         /* Return info from the table */
613         return nand_isreserved_bbt(chip, ofs);
614 }
615
616 /**
617  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618  * @chip: NAND chip object
619  * @ofs: offset from device start
620  * @allowbbt: 1, if its allowed to access the bbt area
621  *
622  * Check, if the block is bad. Either by reading the bad block table or
623  * calling of the scan function.
624  */
625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627         /* Return info from the table */
628         if (chip->bbt)
629                 return nand_isbad_bbt(chip, ofs, allowbbt);
630
631         return nand_isbad_bbm(chip, ofs);
632 }
633
634 /**
635  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636  * @chip: NAND chip structure
637  * @timeout_ms: Timeout in ms
638  *
639  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641  * returned.
642  *
643  * This helper is intended to be used when the controller does not have access
644  * to the NAND R/B pin.
645  *
646  * Be aware that calling this helper from an ->exec_op() implementation means
647  * ->exec_op() must be re-entrant.
648  *
649  * Return 0 if the NAND chip is ready, a negative error otherwise.
650  */
651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653         const struct nand_interface_config *conf;
654         u8 status = 0;
655         int ret;
656
657         if (!nand_has_exec_op(chip))
658                 return -ENOTSUPP;
659
660         /* Wait tWB before polling the STATUS reg. */
661         conf = nand_get_interface_config(chip);
662         ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663
664         ret = nand_status_op(chip, NULL);
665         if (ret)
666                 return ret;
667
668         /*
669          * +1 below is necessary because if we are now in the last fraction
670          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671          * small jiffy fraction - possibly leading to false timeout
672          */
673         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674         do {
675                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
676                                         false);
677                 if (ret)
678                         break;
679
680                 if (status & NAND_STATUS_READY)
681                         break;
682
683                 /*
684                  * Typical lowest execution time for a tR on most NANDs is 10us,
685                  * use this as polling delay before doing something smarter (ie.
686                  * deriving a delay from the timeout value, timeout_ms/ratio).
687                  */
688                 udelay(10);
689         } while (time_before(jiffies, timeout_ms));
690
691         /*
692          * We have to exit READ_STATUS mode in order to read real data on the
693          * bus in case the WAITRDY instruction is preceding a DATA_IN
694          * instruction.
695          */
696         nand_exit_status_op(chip);
697
698         if (ret)
699                 return ret;
700
701         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704
705 /**
706  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707  * @chip: NAND chip structure
708  * @gpiod: GPIO descriptor of R/B pin
709  * @timeout_ms: Timeout in ms
710  *
711  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712  * whitin the specified timeout, -ETIMEDOUT is returned.
713  *
714  * This helper is intended to be used when the controller has access to the
715  * NAND R/B pin over GPIO.
716  *
717  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718  */
719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720                       unsigned long timeout_ms)
721 {
722
723         /*
724          * Wait until R/B pin indicates chip is ready or timeout occurs.
725          * +1 below is necessary because if we are now in the last fraction
726          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727          * small jiffy fraction - possibly leading to false timeout.
728          */
729         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730         do {
731                 if (gpiod_get_value_cansleep(gpiod))
732                         return 0;
733
734                 cond_resched();
735         } while (time_before(jiffies, timeout_ms));
736
737         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740
741 /**
742  * panic_nand_wait - [GENERIC] wait until the command is done
743  * @chip: NAND chip structure
744  * @timeo: timeout
745  *
746  * Wait for command done. This is a helper function for nand_wait used when
747  * we are in interrupt context. May happen when in panic and trying to write
748  * an oops through mtdoops.
749  */
750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752         int i;
753         for (i = 0; i < timeo; i++) {
754                 if (chip->legacy.dev_ready) {
755                         if (chip->legacy.dev_ready(chip))
756                                 break;
757                 } else {
758                         int ret;
759                         u8 status;
760
761                         ret = nand_read_data_op(chip, &status, sizeof(status),
762                                                 true, false);
763                         if (ret)
764                                 return;
765
766                         if (status & NAND_STATUS_READY)
767                                 break;
768                 }
769                 mdelay(1);
770         }
771 }
772
773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775         return (chip->parameters.supports_set_get_features &&
776                 test_bit(addr, chip->parameters.get_feature_list));
777 }
778
779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781         return (chip->parameters.supports_set_get_features &&
782                 test_bit(addr, chip->parameters.set_feature_list));
783 }
784
785 /**
786  * nand_reset_interface - Reset data interface and timings
787  * @chip: The NAND chip
788  * @chipnr: Internal die id
789  *
790  * Reset the Data interface and timings to ONFI mode 0.
791  *
792  * Returns 0 for success or negative error code otherwise.
793  */
794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796         const struct nand_controller_ops *ops = chip->controller->ops;
797         int ret;
798
799         if (!nand_controller_can_setup_interface(chip))
800                 return 0;
801
802         /*
803          * The ONFI specification says:
804          * "
805          * To transition from NV-DDR or NV-DDR2 to the SDR data
806          * interface, the host shall use the Reset (FFh) command
807          * using SDR timing mode 0. A device in any timing mode is
808          * required to recognize Reset (FFh) command issued in SDR
809          * timing mode 0.
810          * "
811          *
812          * Configure the data interface in SDR mode and set the
813          * timings to timing mode 0.
814          */
815
816         chip->current_interface_config = nand_get_reset_interface_config();
817         ret = ops->setup_interface(chip, chipnr,
818                                    chip->current_interface_config);
819         if (ret)
820                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
821
822         return ret;
823 }
824
825 /**
826  * nand_setup_interface - Setup the best data interface and timings
827  * @chip: The NAND chip
828  * @chipnr: Internal die id
829  *
830  * Configure what has been reported to be the best data interface and NAND
831  * timings supported by the chip and the driver.
832  *
833  * Returns 0 for success or negative error code otherwise.
834  */
835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837         const struct nand_controller_ops *ops = chip->controller->ops;
838         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839         int ret;
840
841         if (!nand_controller_can_setup_interface(chip))
842                 return 0;
843
844         /*
845          * A nand_reset_interface() put both the NAND chip and the NAND
846          * controller in timings mode 0. If the default mode for this chip is
847          * also 0, no need to proceed to the change again. Plus, at probe time,
848          * nand_setup_interface() uses ->set/get_features() which would
849          * fail anyway as the parameter page is not available yet.
850          */
851         if (!chip->best_interface_config)
852                 return 0;
853
854         request = chip->best_interface_config->timings.mode;
855         if (nand_interface_is_sdr(chip->best_interface_config))
856                 request |= ONFI_DATA_INTERFACE_SDR;
857         else
858                 request |= ONFI_DATA_INTERFACE_NVDDR;
859         tmode_param[0] = request;
860
861         /* Change the mode on the chip side (if supported by the NAND chip) */
862         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863                 nand_select_target(chip, chipnr);
864                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865                                         tmode_param);
866                 nand_deselect_target(chip);
867                 if (ret)
868                         return ret;
869         }
870
871         /* Change the mode on the controller side */
872         ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873         if (ret)
874                 return ret;
875
876         /* Check the mode has been accepted by the chip, if supported */
877         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878                 goto update_interface_config;
879
880         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881         nand_select_target(chip, chipnr);
882         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883                                 tmode_param);
884         nand_deselect_target(chip);
885         if (ret)
886                 goto err_reset_chip;
887
888         if (request != tmode_param[0]) {
889                 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890                         nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891                         chip->best_interface_config->timings.mode);
892                 pr_debug("NAND chip would work in %s timing mode %d\n",
893                          tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894                          (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895                 goto err_reset_chip;
896         }
897
898 update_interface_config:
899         chip->current_interface_config = chip->best_interface_config;
900
901         return 0;
902
903 err_reset_chip:
904         /*
905          * Fallback to mode 0 if the chip explicitly did not ack the chosen
906          * timing mode.
907          */
908         nand_reset_interface(chip, chipnr);
909         nand_select_target(chip, chipnr);
910         nand_reset_op(chip);
911         nand_deselect_target(chip);
912
913         return ret;
914 }
915
916 /**
917  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918  *                                NAND controller and the NAND chip support
919  * @chip: the NAND chip
920  * @iface: the interface configuration (can eventually be updated)
921  * @spec_timings: specific timings, when not fitting the ONFI specification
922  *
923  * If specific timings are provided, use them. Otherwise, retrieve supported
924  * timing modes from ONFI information.
925  */
926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927                                  struct nand_interface_config *iface,
928                                  struct nand_sdr_timings *spec_timings)
929 {
930         const struct nand_controller_ops *ops = chip->controller->ops;
931         int best_mode = 0, mode, ret = -EOPNOTSUPP;
932
933         iface->type = NAND_SDR_IFACE;
934
935         if (spec_timings) {
936                 iface->timings.sdr = *spec_timings;
937                 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938
939                 /* Verify the controller supports the requested interface */
940                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941                                            iface);
942                 if (!ret) {
943                         chip->best_interface_config = iface;
944                         return ret;
945                 }
946
947                 /* Fallback to slower modes */
948                 best_mode = iface->timings.mode;
949         } else if (chip->parameters.onfi) {
950                 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951         }
952
953         for (mode = best_mode; mode >= 0; mode--) {
954                 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955
956                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957                                            iface);
958                 if (!ret) {
959                         chip->best_interface_config = iface;
960                         break;
961                 }
962         }
963
964         return ret;
965 }
966
967 /**
968  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969  *                                  NAND controller and the NAND chip support
970  * @chip: the NAND chip
971  * @iface: the interface configuration (can eventually be updated)
972  * @spec_timings: specific timings, when not fitting the ONFI specification
973  *
974  * If specific timings are provided, use them. Otherwise, retrieve supported
975  * timing modes from ONFI information.
976  */
977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978                                    struct nand_interface_config *iface,
979                                    struct nand_nvddr_timings *spec_timings)
980 {
981         const struct nand_controller_ops *ops = chip->controller->ops;
982         int best_mode = 0, mode, ret = -EOPNOTSUPP;
983
984         iface->type = NAND_NVDDR_IFACE;
985
986         if (spec_timings) {
987                 iface->timings.nvddr = *spec_timings;
988                 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989
990                 /* Verify the controller supports the requested interface */
991                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992                                            iface);
993                 if (!ret) {
994                         chip->best_interface_config = iface;
995                         return ret;
996                 }
997
998                 /* Fallback to slower modes */
999                 best_mode = iface->timings.mode;
1000         } else if (chip->parameters.onfi) {
1001                 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002         }
1003
1004         for (mode = best_mode; mode >= 0; mode--) {
1005                 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006
1007                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008                                            iface);
1009                 if (!ret) {
1010                         chip->best_interface_config = iface;
1011                         break;
1012                 }
1013         }
1014
1015         return ret;
1016 }
1017
1018 /**
1019  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020  *                            NAND controller and the NAND chip support
1021  * @chip: the NAND chip
1022  * @iface: the interface configuration (can eventually be updated)
1023  *
1024  * If specific timings are provided, use them. Otherwise, retrieve supported
1025  * timing modes from ONFI information.
1026  */
1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028                                     struct nand_interface_config *iface)
1029 {
1030         int ret;
1031
1032         /* Try the fastest timings: NV-DDR */
1033         ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034         if (!ret)
1035                 return 0;
1036
1037         /* Fallback to SDR timings otherwise */
1038         return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040
1041 /**
1042  * nand_choose_interface_config - find the best data interface and timings
1043  * @chip: The NAND chip
1044  *
1045  * Find the best data interface and NAND timings supported by the chip
1046  * and the driver. Eventually let the NAND manufacturer driver propose his own
1047  * set of timings.
1048  *
1049  * After this function nand_chip->interface_config is initialized with the best
1050  * timing mode available.
1051  *
1052  * Returns 0 for success or negative error code otherwise.
1053  */
1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056         struct nand_interface_config *iface;
1057         int ret;
1058
1059         if (!nand_controller_can_setup_interface(chip))
1060                 return 0;
1061
1062         iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063         if (!iface)
1064                 return -ENOMEM;
1065
1066         if (chip->ops.choose_interface_config)
1067                 ret = chip->ops.choose_interface_config(chip, iface);
1068         else
1069                 ret = nand_choose_best_timings(chip, iface);
1070
1071         if (ret)
1072                 kfree(iface);
1073
1074         return ret;
1075 }
1076
1077 /**
1078  * nand_fill_column_cycles - fill the column cycles of an address
1079  * @chip: The NAND chip
1080  * @addrs: Array of address cycles to fill
1081  * @offset_in_page: The offset in the page
1082  *
1083  * Fills the first or the first two bytes of the @addrs field depending
1084  * on the NAND bus width and the page size.
1085  *
1086  * Returns the number of cycles needed to encode the column, or a negative
1087  * error code in case one of the arguments is invalid.
1088  */
1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090                                    unsigned int offset_in_page)
1091 {
1092         struct mtd_info *mtd = nand_to_mtd(chip);
1093
1094         /* Make sure the offset is less than the actual page size. */
1095         if (offset_in_page > mtd->writesize + mtd->oobsize)
1096                 return -EINVAL;
1097
1098         /*
1099          * On small page NANDs, there's a dedicated command to access the OOB
1100          * area, and the column address is relative to the start of the OOB
1101          * area, not the start of the page. Asjust the address accordingly.
1102          */
1103         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104                 offset_in_page -= mtd->writesize;
1105
1106         /*
1107          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108          * wide, then it must be divided by 2.
1109          */
1110         if (chip->options & NAND_BUSWIDTH_16) {
1111                 if (WARN_ON(offset_in_page % 2))
1112                         return -EINVAL;
1113
1114                 offset_in_page /= 2;
1115         }
1116
1117         addrs[0] = offset_in_page;
1118
1119         /*
1120          * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121          * need 2
1122          */
1123         if (mtd->writesize <= 512)
1124                 return 1;
1125
1126         addrs[1] = offset_in_page >> 8;
1127
1128         return 2;
1129 }
1130
1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132                                      unsigned int offset_in_page, void *buf,
1133                                      unsigned int len)
1134 {
1135         const struct nand_interface_config *conf =
1136                 nand_get_interface_config(chip);
1137         struct mtd_info *mtd = nand_to_mtd(chip);
1138         u8 addrs[4];
1139         struct nand_op_instr instrs[] = {
1140                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1141                 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144                 NAND_OP_DATA_IN(len, buf, 0),
1145         };
1146         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147         int ret;
1148
1149         /* Drop the DATA_IN instruction if len is set to 0. */
1150         if (!len)
1151                 op.ninstrs--;
1152
1153         if (offset_in_page >= mtd->writesize)
1154                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155         else if (offset_in_page >= 256 &&
1156                  !(chip->options & NAND_BUSWIDTH_16))
1157                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158
1159         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160         if (ret < 0)
1161                 return ret;
1162
1163         addrs[1] = page;
1164         addrs[2] = page >> 8;
1165
1166         if (chip->options & NAND_ROW_ADDR_3) {
1167                 addrs[3] = page >> 16;
1168                 instrs[1].ctx.addr.naddrs++;
1169         }
1170
1171         return nand_exec_op(chip, &op);
1172 }
1173
1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175                                      unsigned int offset_in_page, void *buf,
1176                                      unsigned int len)
1177 {
1178         const struct nand_interface_config *conf =
1179                 nand_get_interface_config(chip);
1180         u8 addrs[5];
1181         struct nand_op_instr instrs[] = {
1182                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1183                 NAND_OP_ADDR(4, addrs, 0),
1184                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187                 NAND_OP_DATA_IN(len, buf, 0),
1188         };
1189         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190         int ret;
1191
1192         /* Drop the DATA_IN instruction if len is set to 0. */
1193         if (!len)
1194                 op.ninstrs--;
1195
1196         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197         if (ret < 0)
1198                 return ret;
1199
1200         addrs[2] = page;
1201         addrs[3] = page >> 8;
1202
1203         if (chip->options & NAND_ROW_ADDR_3) {
1204                 addrs[4] = page >> 16;
1205                 instrs[1].ctx.addr.naddrs++;
1206         }
1207
1208         return nand_exec_op(chip, &op);
1209 }
1210
1211 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1212                                           unsigned int offset_in_page, void *buf,
1213                                           unsigned int len, bool check_only)
1214 {
1215         const struct nand_interface_config *conf =
1216                 nand_get_interface_config(chip);
1217         u8 addrs[5];
1218         struct nand_op_instr start_instrs[] = {
1219                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1220                 NAND_OP_ADDR(4, addrs, 0),
1221                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1222                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1223                 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1224                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1225                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1226                 NAND_OP_DATA_IN(len, buf, 0),
1227         };
1228         struct nand_op_instr cont_instrs[] = {
1229                 NAND_OP_CMD(page == chip->cont_read.last_page ?
1230                             NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1231                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1232                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1233                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1234                 NAND_OP_DATA_IN(len, buf, 0),
1235         };
1236         struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1237         struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1238         int ret;
1239
1240         if (!len) {
1241                 start_op.ninstrs--;
1242                 cont_op.ninstrs--;
1243         }
1244
1245         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1246         if (ret < 0)
1247                 return ret;
1248
1249         addrs[2] = page;
1250         addrs[3] = page >> 8;
1251
1252         if (chip->options & NAND_ROW_ADDR_3) {
1253                 addrs[4] = page >> 16;
1254                 start_instrs[1].ctx.addr.naddrs++;
1255         }
1256
1257         /* Check if cache reads are supported */
1258         if (check_only) {
1259                 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1260                         return -EOPNOTSUPP;
1261
1262                 return 0;
1263         }
1264
1265         if (page == chip->cont_read.first_page)
1266                 return nand_exec_op(chip, &start_op);
1267         else
1268                 return nand_exec_op(chip, &cont_op);
1269 }
1270
1271 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1272 {
1273         return chip->cont_read.ongoing &&
1274                 page >= chip->cont_read.first_page &&
1275                 page <= chip->cont_read.last_page;
1276 }
1277
1278 /**
1279  * nand_read_page_op - Do a READ PAGE operation
1280  * @chip: The NAND chip
1281  * @page: page to read
1282  * @offset_in_page: offset within the page
1283  * @buf: buffer used to store the data
1284  * @len: length of the buffer
1285  *
1286  * This function issues a READ PAGE operation.
1287  * This function does not select/unselect the CS line.
1288  *
1289  * Returns 0 on success, a negative error code otherwise.
1290  */
1291 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1292                       unsigned int offset_in_page, void *buf, unsigned int len)
1293 {
1294         struct mtd_info *mtd = nand_to_mtd(chip);
1295
1296         if (len && !buf)
1297                 return -EINVAL;
1298
1299         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1300                 return -EINVAL;
1301
1302         if (nand_has_exec_op(chip)) {
1303                 if (mtd->writesize > 512) {
1304                         if (rawnand_cont_read_ongoing(chip, page))
1305                                 return nand_lp_exec_cont_read_page_op(chip, page,
1306                                                                       offset_in_page,
1307                                                                       buf, len, false);
1308                         else
1309                                 return nand_lp_exec_read_page_op(chip, page,
1310                                                                  offset_in_page, buf,
1311                                                                  len);
1312                 }
1313
1314                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1315                                                  buf, len);
1316         }
1317
1318         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1319         if (len)
1320                 chip->legacy.read_buf(chip, buf, len);
1321
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(nand_read_page_op);
1325
1326 /**
1327  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1328  * @chip: The NAND chip
1329  * @page: parameter page to read
1330  * @buf: buffer used to store the data
1331  * @len: length of the buffer
1332  *
1333  * This function issues a READ PARAMETER PAGE operation.
1334  * This function does not select/unselect the CS line.
1335  *
1336  * Returns 0 on success, a negative error code otherwise.
1337  */
1338 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1339                             unsigned int len)
1340 {
1341         unsigned int i;
1342         u8 *p = buf;
1343
1344         if (len && !buf)
1345                 return -EINVAL;
1346
1347         if (nand_has_exec_op(chip)) {
1348                 const struct nand_interface_config *conf =
1349                         nand_get_interface_config(chip);
1350                 struct nand_op_instr instrs[] = {
1351                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1352                         NAND_OP_ADDR(1, &page,
1353                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
1354                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1355                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
1356                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1357                 };
1358                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1359
1360                 /* Drop the DATA_IN instruction if len is set to 0. */
1361                 if (!len)
1362                         op.ninstrs--;
1363
1364                 return nand_exec_op(chip, &op);
1365         }
1366
1367         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1368         for (i = 0; i < len; i++)
1369                 p[i] = chip->legacy.read_byte(chip);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1376  * @chip: The NAND chip
1377  * @offset_in_page: offset within the page
1378  * @buf: buffer used to store the data
1379  * @len: length of the buffer
1380  * @force_8bit: force 8-bit bus access
1381  *
1382  * This function issues a CHANGE READ COLUMN operation.
1383  * This function does not select/unselect the CS line.
1384  *
1385  * Returns 0 on success, a negative error code otherwise.
1386  */
1387 int nand_change_read_column_op(struct nand_chip *chip,
1388                                unsigned int offset_in_page, void *buf,
1389                                unsigned int len, bool force_8bit)
1390 {
1391         struct mtd_info *mtd = nand_to_mtd(chip);
1392
1393         if (len && !buf)
1394                 return -EINVAL;
1395
1396         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1397                 return -EINVAL;
1398
1399         /* Small page NANDs do not support column change. */
1400         if (mtd->writesize <= 512)
1401                 return -ENOTSUPP;
1402
1403         if (nand_has_exec_op(chip)) {
1404                 const struct nand_interface_config *conf =
1405                         nand_get_interface_config(chip);
1406                 u8 addrs[2] = {};
1407                 struct nand_op_instr instrs[] = {
1408                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1409                         NAND_OP_ADDR(2, addrs, 0),
1410                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1411                                     NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1412                         NAND_OP_DATA_IN(len, buf, 0),
1413                 };
1414                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1415                 int ret;
1416
1417                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1418                 if (ret < 0)
1419                         return ret;
1420
1421                 /* Drop the DATA_IN instruction if len is set to 0. */
1422                 if (!len)
1423                         op.ninstrs--;
1424
1425                 instrs[3].ctx.data.force_8bit = force_8bit;
1426
1427                 return nand_exec_op(chip, &op);
1428         }
1429
1430         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1431         if (len)
1432                 chip->legacy.read_buf(chip, buf, len);
1433
1434         return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1437
1438 /**
1439  * nand_read_oob_op - Do a READ OOB operation
1440  * @chip: The NAND chip
1441  * @page: page to read
1442  * @offset_in_oob: offset within the OOB area
1443  * @buf: buffer used to store the data
1444  * @len: length of the buffer
1445  *
1446  * This function issues a READ OOB operation.
1447  * This function does not select/unselect the CS line.
1448  *
1449  * Returns 0 on success, a negative error code otherwise.
1450  */
1451 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1452                      unsigned int offset_in_oob, void *buf, unsigned int len)
1453 {
1454         struct mtd_info *mtd = nand_to_mtd(chip);
1455
1456         if (len && !buf)
1457                 return -EINVAL;
1458
1459         if (offset_in_oob + len > mtd->oobsize)
1460                 return -EINVAL;
1461
1462         if (nand_has_exec_op(chip))
1463                 return nand_read_page_op(chip, page,
1464                                          mtd->writesize + offset_in_oob,
1465                                          buf, len);
1466
1467         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1468         if (len)
1469                 chip->legacy.read_buf(chip, buf, len);
1470
1471         return 0;
1472 }
1473 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1474
1475 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1476                                   unsigned int offset_in_page, const void *buf,
1477                                   unsigned int len, bool prog)
1478 {
1479         const struct nand_interface_config *conf =
1480                 nand_get_interface_config(chip);
1481         struct mtd_info *mtd = nand_to_mtd(chip);
1482         u8 addrs[5] = {};
1483         struct nand_op_instr instrs[] = {
1484                 /*
1485                  * The first instruction will be dropped if we're dealing
1486                  * with a large page NAND and adjusted if we're dealing
1487                  * with a small page NAND and the page offset is > 255.
1488                  */
1489                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1490                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1491                 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1492                 NAND_OP_DATA_OUT(len, buf, 0),
1493                 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1494                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1495                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1496         };
1497         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1498         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1499
1500         if (naddrs < 0)
1501                 return naddrs;
1502
1503         addrs[naddrs++] = page;
1504         addrs[naddrs++] = page >> 8;
1505         if (chip->options & NAND_ROW_ADDR_3)
1506                 addrs[naddrs++] = page >> 16;
1507
1508         instrs[2].ctx.addr.naddrs = naddrs;
1509
1510         /* Drop the last two instructions if we're not programming the page. */
1511         if (!prog) {
1512                 op.ninstrs -= 2;
1513                 /* Also drop the DATA_OUT instruction if empty. */
1514                 if (!len)
1515                         op.ninstrs--;
1516         }
1517
1518         if (mtd->writesize <= 512) {
1519                 /*
1520                  * Small pages need some more tweaking: we have to adjust the
1521                  * first instruction depending on the page offset we're trying
1522                  * to access.
1523                  */
1524                 if (offset_in_page >= mtd->writesize)
1525                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1526                 else if (offset_in_page >= 256 &&
1527                          !(chip->options & NAND_BUSWIDTH_16))
1528                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1529         } else {
1530                 /*
1531                  * Drop the first command if we're dealing with a large page
1532                  * NAND.
1533                  */
1534                 op.instrs++;
1535                 op.ninstrs--;
1536         }
1537
1538         return nand_exec_op(chip, &op);
1539 }
1540
1541 /**
1542  * nand_prog_page_begin_op - starts a PROG PAGE operation
1543  * @chip: The NAND chip
1544  * @page: page to write
1545  * @offset_in_page: offset within the page
1546  * @buf: buffer containing the data to write to the page
1547  * @len: length of the buffer
1548  *
1549  * This function issues the first half of a PROG PAGE operation.
1550  * This function does not select/unselect the CS line.
1551  *
1552  * Returns 0 on success, a negative error code otherwise.
1553  */
1554 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1555                             unsigned int offset_in_page, const void *buf,
1556                             unsigned int len)
1557 {
1558         struct mtd_info *mtd = nand_to_mtd(chip);
1559
1560         if (len && !buf)
1561                 return -EINVAL;
1562
1563         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1564                 return -EINVAL;
1565
1566         if (nand_has_exec_op(chip))
1567                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1568                                               len, false);
1569
1570         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1571
1572         if (buf)
1573                 chip->legacy.write_buf(chip, buf, len);
1574
1575         return 0;
1576 }
1577 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1578
1579 /**
1580  * nand_prog_page_end_op - ends a PROG PAGE operation
1581  * @chip: The NAND chip
1582  *
1583  * This function issues the second half of a PROG PAGE operation.
1584  * This function does not select/unselect the CS line.
1585  *
1586  * Returns 0 on success, a negative error code otherwise.
1587  */
1588 int nand_prog_page_end_op(struct nand_chip *chip)
1589 {
1590         int ret;
1591         u8 status;
1592
1593         if (nand_has_exec_op(chip)) {
1594                 const struct nand_interface_config *conf =
1595                         nand_get_interface_config(chip);
1596                 struct nand_op_instr instrs[] = {
1597                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1598                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1599                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1600                                          0),
1601                 };
1602                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1603
1604                 ret = nand_exec_op(chip, &op);
1605                 if (ret)
1606                         return ret;
1607
1608                 ret = nand_status_op(chip, &status);
1609                 if (ret)
1610                         return ret;
1611         } else {
1612                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1613                 ret = chip->legacy.waitfunc(chip);
1614                 if (ret < 0)
1615                         return ret;
1616
1617                 status = ret;
1618         }
1619
1620         if (status & NAND_STATUS_FAIL)
1621                 return -EIO;
1622
1623         return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1626
1627 /**
1628  * nand_prog_page_op - Do a full PROG PAGE operation
1629  * @chip: The NAND chip
1630  * @page: page to write
1631  * @offset_in_page: offset within the page
1632  * @buf: buffer containing the data to write to the page
1633  * @len: length of the buffer
1634  *
1635  * This function issues a full PROG PAGE operation.
1636  * This function does not select/unselect the CS line.
1637  *
1638  * Returns 0 on success, a negative error code otherwise.
1639  */
1640 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1641                       unsigned int offset_in_page, const void *buf,
1642                       unsigned int len)
1643 {
1644         struct mtd_info *mtd = nand_to_mtd(chip);
1645         u8 status;
1646         int ret;
1647
1648         if (!len || !buf)
1649                 return -EINVAL;
1650
1651         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1652                 return -EINVAL;
1653
1654         if (nand_has_exec_op(chip)) {
1655                 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1656                                                 len, true);
1657                 if (ret)
1658                         return ret;
1659
1660                 ret = nand_status_op(chip, &status);
1661                 if (ret)
1662                         return ret;
1663         } else {
1664                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1665                                      page);
1666                 chip->legacy.write_buf(chip, buf, len);
1667                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1668                 ret = chip->legacy.waitfunc(chip);
1669                 if (ret < 0)
1670                         return ret;
1671
1672                 status = ret;
1673         }
1674
1675         if (status & NAND_STATUS_FAIL)
1676                 return -EIO;
1677
1678         return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1681
1682 /**
1683  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1684  * @chip: The NAND chip
1685  * @offset_in_page: offset within the page
1686  * @buf: buffer containing the data to send to the NAND
1687  * @len: length of the buffer
1688  * @force_8bit: force 8-bit bus access
1689  *
1690  * This function issues a CHANGE WRITE COLUMN operation.
1691  * This function does not select/unselect the CS line.
1692  *
1693  * Returns 0 on success, a negative error code otherwise.
1694  */
1695 int nand_change_write_column_op(struct nand_chip *chip,
1696                                 unsigned int offset_in_page,
1697                                 const void *buf, unsigned int len,
1698                                 bool force_8bit)
1699 {
1700         struct mtd_info *mtd = nand_to_mtd(chip);
1701
1702         if (len && !buf)
1703                 return -EINVAL;
1704
1705         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1706                 return -EINVAL;
1707
1708         /* Small page NANDs do not support column change. */
1709         if (mtd->writesize <= 512)
1710                 return -ENOTSUPP;
1711
1712         if (nand_has_exec_op(chip)) {
1713                 const struct nand_interface_config *conf =
1714                         nand_get_interface_config(chip);
1715                 u8 addrs[2];
1716                 struct nand_op_instr instrs[] = {
1717                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1718                         NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1719                         NAND_OP_DATA_OUT(len, buf, 0),
1720                 };
1721                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1722                 int ret;
1723
1724                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1725                 if (ret < 0)
1726                         return ret;
1727
1728                 instrs[2].ctx.data.force_8bit = force_8bit;
1729
1730                 /* Drop the DATA_OUT instruction if len is set to 0. */
1731                 if (!len)
1732                         op.ninstrs--;
1733
1734                 return nand_exec_op(chip, &op);
1735         }
1736
1737         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1738         if (len)
1739                 chip->legacy.write_buf(chip, buf, len);
1740
1741         return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1744
1745 /**
1746  * nand_readid_op - Do a READID operation
1747  * @chip: The NAND chip
1748  * @addr: address cycle to pass after the READID command
1749  * @buf: buffer used to store the ID
1750  * @len: length of the buffer
1751  *
1752  * This function sends a READID command and reads back the ID returned by the
1753  * NAND.
1754  * This function does not select/unselect the CS line.
1755  *
1756  * Returns 0 on success, a negative error code otherwise.
1757  */
1758 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1759                    unsigned int len)
1760 {
1761         unsigned int i;
1762         u8 *id = buf, *ddrbuf = NULL;
1763
1764         if (len && !buf)
1765                 return -EINVAL;
1766
1767         if (nand_has_exec_op(chip)) {
1768                 const struct nand_interface_config *conf =
1769                         nand_get_interface_config(chip);
1770                 struct nand_op_instr instrs[] = {
1771                         NAND_OP_CMD(NAND_CMD_READID, 0),
1772                         NAND_OP_ADDR(1, &addr,
1773                                      NAND_COMMON_TIMING_NS(conf, tADL_min)),
1774                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1775                 };
1776                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1777                 int ret;
1778
1779                 /* READ_ID data bytes are received twice in NV-DDR mode */
1780                 if (len && nand_interface_is_nvddr(conf)) {
1781                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1782                         if (!ddrbuf)
1783                                 return -ENOMEM;
1784
1785                         instrs[2].ctx.data.len *= 2;
1786                         instrs[2].ctx.data.buf.in = ddrbuf;
1787                 }
1788
1789                 /* Drop the DATA_IN instruction if len is set to 0. */
1790                 if (!len)
1791                         op.ninstrs--;
1792
1793                 ret = nand_exec_op(chip, &op);
1794                 if (!ret && len && nand_interface_is_nvddr(conf)) {
1795                         for (i = 0; i < len; i++)
1796                                 id[i] = ddrbuf[i * 2];
1797                 }
1798
1799                 kfree(ddrbuf);
1800
1801                 return ret;
1802         }
1803
1804         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1805
1806         for (i = 0; i < len; i++)
1807                 id[i] = chip->legacy.read_byte(chip);
1808
1809         return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(nand_readid_op);
1812
1813 /**
1814  * nand_status_op - Do a STATUS operation
1815  * @chip: The NAND chip
1816  * @status: out variable to store the NAND status
1817  *
1818  * This function sends a STATUS command and reads back the status returned by
1819  * the NAND.
1820  * This function does not select/unselect the CS line.
1821  *
1822  * Returns 0 on success, a negative error code otherwise.
1823  */
1824 int nand_status_op(struct nand_chip *chip, u8 *status)
1825 {
1826         if (nand_has_exec_op(chip)) {
1827                 const struct nand_interface_config *conf =
1828                         nand_get_interface_config(chip);
1829                 u8 ddrstatus[2];
1830                 struct nand_op_instr instrs[] = {
1831                         NAND_OP_CMD(NAND_CMD_STATUS,
1832                                     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1833                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1834                 };
1835                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1836                 int ret;
1837
1838                 /* The status data byte will be received twice in NV-DDR mode */
1839                 if (status && nand_interface_is_nvddr(conf)) {
1840                         instrs[1].ctx.data.len *= 2;
1841                         instrs[1].ctx.data.buf.in = ddrstatus;
1842                 }
1843
1844                 if (!status)
1845                         op.ninstrs--;
1846
1847                 ret = nand_exec_op(chip, &op);
1848                 if (!ret && status && nand_interface_is_nvddr(conf))
1849                         *status = ddrstatus[0];
1850
1851                 return ret;
1852         }
1853
1854         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1855         if (status)
1856                 *status = chip->legacy.read_byte(chip);
1857
1858         return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(nand_status_op);
1861
1862 /**
1863  * nand_exit_status_op - Exit a STATUS operation
1864  * @chip: The NAND chip
1865  *
1866  * This function sends a READ0 command to cancel the effect of the STATUS
1867  * command to avoid reading only the status until a new read command is sent.
1868  *
1869  * This function does not select/unselect the CS line.
1870  *
1871  * Returns 0 on success, a negative error code otherwise.
1872  */
1873 int nand_exit_status_op(struct nand_chip *chip)
1874 {
1875         if (nand_has_exec_op(chip)) {
1876                 struct nand_op_instr instrs[] = {
1877                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1878                 };
1879                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1880
1881                 return nand_exec_op(chip, &op);
1882         }
1883
1884         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1885
1886         return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1889
1890 /**
1891  * nand_erase_op - Do an erase operation
1892  * @chip: The NAND chip
1893  * @eraseblock: block to erase
1894  *
1895  * This function sends an ERASE command and waits for the NAND to be ready
1896  * before returning.
1897  * This function does not select/unselect the CS line.
1898  *
1899  * Returns 0 on success, a negative error code otherwise.
1900  */
1901 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1902 {
1903         unsigned int page = eraseblock <<
1904                             (chip->phys_erase_shift - chip->page_shift);
1905         int ret;
1906         u8 status;
1907
1908         if (nand_has_exec_op(chip)) {
1909                 const struct nand_interface_config *conf =
1910                         nand_get_interface_config(chip);
1911                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1912                 struct nand_op_instr instrs[] = {
1913                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1914                         NAND_OP_ADDR(2, addrs, 0),
1915                         NAND_OP_CMD(NAND_CMD_ERASE2,
1916                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1917                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1918                                          0),
1919                 };
1920                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1921
1922                 if (chip->options & NAND_ROW_ADDR_3)
1923                         instrs[1].ctx.addr.naddrs++;
1924
1925                 ret = nand_exec_op(chip, &op);
1926                 if (ret)
1927                         return ret;
1928
1929                 ret = nand_status_op(chip, &status);
1930                 if (ret)
1931                         return ret;
1932         } else {
1933                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1934                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1935
1936                 ret = chip->legacy.waitfunc(chip);
1937                 if (ret < 0)
1938                         return ret;
1939
1940                 status = ret;
1941         }
1942
1943         if (status & NAND_STATUS_FAIL)
1944                 return -EIO;
1945
1946         return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(nand_erase_op);
1949
1950 /**
1951  * nand_set_features_op - Do a SET FEATURES operation
1952  * @chip: The NAND chip
1953  * @feature: feature id
1954  * @data: 4 bytes of data
1955  *
1956  * This function sends a SET FEATURES command and waits for the NAND to be
1957  * ready before returning.
1958  * This function does not select/unselect the CS line.
1959  *
1960  * Returns 0 on success, a negative error code otherwise.
1961  */
1962 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1963                                 const void *data)
1964 {
1965         const u8 *params = data;
1966         int i, ret;
1967
1968         if (nand_has_exec_op(chip)) {
1969                 const struct nand_interface_config *conf =
1970                         nand_get_interface_config(chip);
1971                 struct nand_op_instr instrs[] = {
1972                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1973                         NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1974                                                                         tADL_min)),
1975                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1976                                               NAND_COMMON_TIMING_NS(conf,
1977                                                                     tWB_max)),
1978                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1979                                          0),
1980                 };
1981                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1982
1983                 return nand_exec_op(chip, &op);
1984         }
1985
1986         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1987         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1988                 chip->legacy.write_byte(chip, params[i]);
1989
1990         ret = chip->legacy.waitfunc(chip);
1991         if (ret < 0)
1992                 return ret;
1993
1994         if (ret & NAND_STATUS_FAIL)
1995                 return -EIO;
1996
1997         return 0;
1998 }
1999
2000 /**
2001  * nand_get_features_op - Do a GET FEATURES operation
2002  * @chip: The NAND chip
2003  * @feature: feature id
2004  * @data: 4 bytes of data
2005  *
2006  * This function sends a GET FEATURES command and waits for the NAND to be
2007  * ready before returning.
2008  * This function does not select/unselect the CS line.
2009  *
2010  * Returns 0 on success, a negative error code otherwise.
2011  */
2012 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2013                                 void *data)
2014 {
2015         u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2016         int i;
2017
2018         if (nand_has_exec_op(chip)) {
2019                 const struct nand_interface_config *conf =
2020                         nand_get_interface_config(chip);
2021                 struct nand_op_instr instrs[] = {
2022                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2023                         NAND_OP_ADDR(1, &feature,
2024                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
2025                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2026                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
2027                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2028                                              data, 0),
2029                 };
2030                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2031                 int ret;
2032
2033                 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2034                 if (nand_interface_is_nvddr(conf)) {
2035                         instrs[3].ctx.data.len *= 2;
2036                         instrs[3].ctx.data.buf.in = ddrbuf;
2037                 }
2038
2039                 ret = nand_exec_op(chip, &op);
2040                 if (nand_interface_is_nvddr(conf)) {
2041                         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2042                                 params[i] = ddrbuf[i * 2];
2043                 }
2044
2045                 return ret;
2046         }
2047
2048         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2049         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2050                 params[i] = chip->legacy.read_byte(chip);
2051
2052         return 0;
2053 }
2054
2055 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2056                             unsigned int delay_ns)
2057 {
2058         if (nand_has_exec_op(chip)) {
2059                 struct nand_op_instr instrs[] = {
2060                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2061                                          PSEC_TO_NSEC(delay_ns)),
2062                 };
2063                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2064
2065                 return nand_exec_op(chip, &op);
2066         }
2067
2068         /* Apply delay or wait for ready/busy pin */
2069         if (!chip->legacy.dev_ready)
2070                 udelay(chip->legacy.chip_delay);
2071         else
2072                 nand_wait_ready(chip);
2073
2074         return 0;
2075 }
2076
2077 /**
2078  * nand_reset_op - Do a reset operation
2079  * @chip: The NAND chip
2080  *
2081  * This function sends a RESET command and waits for the NAND to be ready
2082  * before returning.
2083  * This function does not select/unselect the CS line.
2084  *
2085  * Returns 0 on success, a negative error code otherwise.
2086  */
2087 int nand_reset_op(struct nand_chip *chip)
2088 {
2089         if (nand_has_exec_op(chip)) {
2090                 const struct nand_interface_config *conf =
2091                         nand_get_interface_config(chip);
2092                 struct nand_op_instr instrs[] = {
2093                         NAND_OP_CMD(NAND_CMD_RESET,
2094                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2095                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2096                                          0),
2097                 };
2098                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2099
2100                 return nand_exec_op(chip, &op);
2101         }
2102
2103         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2104
2105         return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(nand_reset_op);
2108
2109 /**
2110  * nand_read_data_op - Read data from the NAND
2111  * @chip: The NAND chip
2112  * @buf: buffer used to store the data
2113  * @len: length of the buffer
2114  * @force_8bit: force 8-bit bus access
2115  * @check_only: do not actually run the command, only checks if the
2116  *              controller driver supports it
2117  *
2118  * This function does a raw data read on the bus. Usually used after launching
2119  * another NAND operation like nand_read_page_op().
2120  * This function does not select/unselect the CS line.
2121  *
2122  * Returns 0 on success, a negative error code otherwise.
2123  */
2124 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2125                       bool force_8bit, bool check_only)
2126 {
2127         if (!len || !buf)
2128                 return -EINVAL;
2129
2130         if (nand_has_exec_op(chip)) {
2131                 const struct nand_interface_config *conf =
2132                         nand_get_interface_config(chip);
2133                 struct nand_op_instr instrs[] = {
2134                         NAND_OP_DATA_IN(len, buf, 0),
2135                 };
2136                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2137                 u8 *ddrbuf = NULL;
2138                 int ret, i;
2139
2140                 instrs[0].ctx.data.force_8bit = force_8bit;
2141
2142                 /*
2143                  * Parameter payloads (ID, status, features, etc) do not go
2144                  * through the same pipeline as regular data, hence the
2145                  * force_8bit flag must be set and this also indicates that in
2146                  * case NV-DDR timings are being used the data will be received
2147                  * twice.
2148                  */
2149                 if (force_8bit && nand_interface_is_nvddr(conf)) {
2150                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2151                         if (!ddrbuf)
2152                                 return -ENOMEM;
2153
2154                         instrs[0].ctx.data.len *= 2;
2155                         instrs[0].ctx.data.buf.in = ddrbuf;
2156                 }
2157
2158                 if (check_only) {
2159                         ret = nand_check_op(chip, &op);
2160                         kfree(ddrbuf);
2161                         return ret;
2162                 }
2163
2164                 ret = nand_exec_op(chip, &op);
2165                 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2166                         u8 *dst = buf;
2167
2168                         for (i = 0; i < len; i++)
2169                                 dst[i] = ddrbuf[i * 2];
2170                 }
2171
2172                 kfree(ddrbuf);
2173
2174                 return ret;
2175         }
2176
2177         if (check_only)
2178                 return 0;
2179
2180         if (force_8bit) {
2181                 u8 *p = buf;
2182                 unsigned int i;
2183
2184                 for (i = 0; i < len; i++)
2185                         p[i] = chip->legacy.read_byte(chip);
2186         } else {
2187                 chip->legacy.read_buf(chip, buf, len);
2188         }
2189
2190         return 0;
2191 }
2192 EXPORT_SYMBOL_GPL(nand_read_data_op);
2193
2194 /**
2195  * nand_write_data_op - Write data from the NAND
2196  * @chip: The NAND chip
2197  * @buf: buffer containing the data to send on the bus
2198  * @len: length of the buffer
2199  * @force_8bit: force 8-bit bus access
2200  *
2201  * This function does a raw data write on the bus. Usually used after launching
2202  * another NAND operation like nand_write_page_begin_op().
2203  * This function does not select/unselect the CS line.
2204  *
2205  * Returns 0 on success, a negative error code otherwise.
2206  */
2207 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2208                        unsigned int len, bool force_8bit)
2209 {
2210         if (!len || !buf)
2211                 return -EINVAL;
2212
2213         if (nand_has_exec_op(chip)) {
2214                 struct nand_op_instr instrs[] = {
2215                         NAND_OP_DATA_OUT(len, buf, 0),
2216                 };
2217                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2218
2219                 instrs[0].ctx.data.force_8bit = force_8bit;
2220
2221                 return nand_exec_op(chip, &op);
2222         }
2223
2224         if (force_8bit) {
2225                 const u8 *p = buf;
2226                 unsigned int i;
2227
2228                 for (i = 0; i < len; i++)
2229                         chip->legacy.write_byte(chip, p[i]);
2230         } else {
2231                 chip->legacy.write_buf(chip, buf, len);
2232         }
2233
2234         return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(nand_write_data_op);
2237
2238 /**
2239  * struct nand_op_parser_ctx - Context used by the parser
2240  * @instrs: array of all the instructions that must be addressed
2241  * @ninstrs: length of the @instrs array
2242  * @subop: Sub-operation to be passed to the NAND controller
2243  *
2244  * This structure is used by the core to split NAND operations into
2245  * sub-operations that can be handled by the NAND controller.
2246  */
2247 struct nand_op_parser_ctx {
2248         const struct nand_op_instr *instrs;
2249         unsigned int ninstrs;
2250         struct nand_subop subop;
2251 };
2252
2253 /**
2254  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2255  * @pat: the parser pattern element that matches @instr
2256  * @instr: pointer to the instruction to check
2257  * @start_offset: this is an in/out parameter. If @instr has already been
2258  *                split, then @start_offset is the offset from which to start
2259  *                (either an address cycle or an offset in the data buffer).
2260  *                Conversely, if the function returns true (ie. instr must be
2261  *                split), this parameter is updated to point to the first
2262  *                data/address cycle that has not been taken care of.
2263  *
2264  * Some NAND controllers are limited and cannot send X address cycles with a
2265  * unique operation, or cannot read/write more than Y bytes at the same time.
2266  * In this case, split the instruction that does not fit in a single
2267  * controller-operation into two or more chunks.
2268  *
2269  * Returns true if the instruction must be split, false otherwise.
2270  * The @start_offset parameter is also updated to the offset at which the next
2271  * bundle of instruction must start (if an address or a data instruction).
2272  */
2273 static bool
2274 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2275                                 const struct nand_op_instr *instr,
2276                                 unsigned int *start_offset)
2277 {
2278         switch (pat->type) {
2279         case NAND_OP_ADDR_INSTR:
2280                 if (!pat->ctx.addr.maxcycles)
2281                         break;
2282
2283                 if (instr->ctx.addr.naddrs - *start_offset >
2284                     pat->ctx.addr.maxcycles) {
2285                         *start_offset += pat->ctx.addr.maxcycles;
2286                         return true;
2287                 }
2288                 break;
2289
2290         case NAND_OP_DATA_IN_INSTR:
2291         case NAND_OP_DATA_OUT_INSTR:
2292                 if (!pat->ctx.data.maxlen)
2293                         break;
2294
2295                 if (instr->ctx.data.len - *start_offset >
2296                     pat->ctx.data.maxlen) {
2297                         *start_offset += pat->ctx.data.maxlen;
2298                         return true;
2299                 }
2300                 break;
2301
2302         default:
2303                 break;
2304         }
2305
2306         return false;
2307 }
2308
2309 /**
2310  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2311  *                            remaining in the parser context
2312  * @pat: the pattern to test
2313  * @ctx: the parser context structure to match with the pattern @pat
2314  *
2315  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2316  * Returns true if this is the case, false ortherwise. When true is returned,
2317  * @ctx->subop is updated with the set of instructions to be passed to the
2318  * controller driver.
2319  */
2320 static bool
2321 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2322                          struct nand_op_parser_ctx *ctx)
2323 {
2324         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2325         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2326         const struct nand_op_instr *instr = ctx->subop.instrs;
2327         unsigned int i, ninstrs;
2328
2329         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2330                 /*
2331                  * The pattern instruction does not match the operation
2332                  * instruction. If the instruction is marked optional in the
2333                  * pattern definition, we skip the pattern element and continue
2334                  * to the next one. If the element is mandatory, there's no
2335                  * match and we can return false directly.
2336                  */
2337                 if (instr->type != pat->elems[i].type) {
2338                         if (!pat->elems[i].optional)
2339                                 return false;
2340
2341                         continue;
2342                 }
2343
2344                 /*
2345                  * Now check the pattern element constraints. If the pattern is
2346                  * not able to handle the whole instruction in a single step,
2347                  * we have to split it.
2348                  * The last_instr_end_off value comes back updated to point to
2349                  * the position where we have to split the instruction (the
2350                  * start of the next subop chunk).
2351                  */
2352                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2353                                                     &instr_offset)) {
2354                         ninstrs++;
2355                         i++;
2356                         break;
2357                 }
2358
2359                 instr++;
2360                 ninstrs++;
2361                 instr_offset = 0;
2362         }
2363
2364         /*
2365          * This can happen if all instructions of a pattern are optional.
2366          * Still, if there's not at least one instruction handled by this
2367          * pattern, this is not a match, and we should try the next one (if
2368          * any).
2369          */
2370         if (!ninstrs)
2371                 return false;
2372
2373         /*
2374          * We had a match on the pattern head, but the pattern may be longer
2375          * than the instructions we're asked to execute. We need to make sure
2376          * there's no mandatory elements in the pattern tail.
2377          */
2378         for (; i < pat->nelems; i++) {
2379                 if (!pat->elems[i].optional)
2380                         return false;
2381         }
2382
2383         /*
2384          * We have a match: update the subop structure accordingly and return
2385          * true.
2386          */
2387         ctx->subop.ninstrs = ninstrs;
2388         ctx->subop.last_instr_end_off = instr_offset;
2389
2390         return true;
2391 }
2392
2393 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2394 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2395 {
2396         const struct nand_op_instr *instr;
2397         char *prefix = "      ";
2398         unsigned int i;
2399
2400         pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2401
2402         for (i = 0; i < ctx->ninstrs; i++) {
2403                 instr = &ctx->instrs[i];
2404
2405                 if (instr == &ctx->subop.instrs[0])
2406                         prefix = "    ->";
2407
2408                 nand_op_trace(prefix, instr);
2409
2410                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2411                         prefix = "      ";
2412         }
2413 }
2414 #else
2415 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2416 {
2417         /* NOP */
2418 }
2419 #endif
2420
2421 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2422                                   const struct nand_op_parser_ctx *b)
2423 {
2424         if (a->subop.ninstrs < b->subop.ninstrs)
2425                 return -1;
2426         else if (a->subop.ninstrs > b->subop.ninstrs)
2427                 return 1;
2428
2429         if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2430                 return -1;
2431         else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2432                 return 1;
2433
2434         return 0;
2435 }
2436
2437 /**
2438  * nand_op_parser_exec_op - exec_op parser
2439  * @chip: the NAND chip
2440  * @parser: patterns description provided by the controller driver
2441  * @op: the NAND operation to address
2442  * @check_only: when true, the function only checks if @op can be handled but
2443  *              does not execute the operation
2444  *
2445  * Helper function designed to ease integration of NAND controller drivers that
2446  * only support a limited set of instruction sequences. The supported sequences
2447  * are described in @parser, and the framework takes care of splitting @op into
2448  * multiple sub-operations (if required) and pass them back to the ->exec()
2449  * callback of the matching pattern if @check_only is set to false.
2450  *
2451  * NAND controller drivers should call this function from their own ->exec_op()
2452  * implementation.
2453  *
2454  * Returns 0 on success, a negative error code otherwise. A failure can be
2455  * caused by an unsupported operation (none of the supported patterns is able
2456  * to handle the requested operation), or an error returned by one of the
2457  * matching pattern->exec() hook.
2458  */
2459 int nand_op_parser_exec_op(struct nand_chip *chip,
2460                            const struct nand_op_parser *parser,
2461                            const struct nand_operation *op, bool check_only)
2462 {
2463         struct nand_op_parser_ctx ctx = {
2464                 .subop.cs = op->cs,
2465                 .subop.instrs = op->instrs,
2466                 .instrs = op->instrs,
2467                 .ninstrs = op->ninstrs,
2468         };
2469         unsigned int i;
2470
2471         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2472                 const struct nand_op_parser_pattern *pattern;
2473                 struct nand_op_parser_ctx best_ctx;
2474                 int ret, best_pattern = -1;
2475
2476                 for (i = 0; i < parser->npatterns; i++) {
2477                         struct nand_op_parser_ctx test_ctx = ctx;
2478
2479                         pattern = &parser->patterns[i];
2480                         if (!nand_op_parser_match_pat(pattern, &test_ctx))
2481                                 continue;
2482
2483                         if (best_pattern >= 0 &&
2484                             nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2485                                 continue;
2486
2487                         best_pattern = i;
2488                         best_ctx = test_ctx;
2489                 }
2490
2491                 if (best_pattern < 0) {
2492                         pr_debug("->exec_op() parser: pattern not found!\n");
2493                         return -ENOTSUPP;
2494                 }
2495
2496                 ctx = best_ctx;
2497                 nand_op_parser_trace(&ctx);
2498
2499                 if (!check_only) {
2500                         pattern = &parser->patterns[best_pattern];
2501                         ret = pattern->exec(chip, &ctx.subop);
2502                         if (ret)
2503                                 return ret;
2504                 }
2505
2506                 /*
2507                  * Update the context structure by pointing to the start of the
2508                  * next subop.
2509                  */
2510                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2511                 if (ctx.subop.last_instr_end_off)
2512                         ctx.subop.instrs -= 1;
2513
2514                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2515         }
2516
2517         return 0;
2518 }
2519 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2520
2521 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2522 {
2523         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2524                          instr->type == NAND_OP_DATA_OUT_INSTR);
2525 }
2526
2527 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2528                                       unsigned int instr_idx)
2529 {
2530         return subop && instr_idx < subop->ninstrs;
2531 }
2532
2533 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2534                                              unsigned int instr_idx)
2535 {
2536         if (instr_idx)
2537                 return 0;
2538
2539         return subop->first_instr_start_off;
2540 }
2541
2542 /**
2543  * nand_subop_get_addr_start_off - Get the start offset in an address array
2544  * @subop: The entire sub-operation
2545  * @instr_idx: Index of the instruction inside the sub-operation
2546  *
2547  * During driver development, one could be tempted to directly use the
2548  * ->addr.addrs field of address instructions. This is wrong as address
2549  * instructions might be split.
2550  *
2551  * Given an address instruction, returns the offset of the first cycle to issue.
2552  */
2553 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2554                                            unsigned int instr_idx)
2555 {
2556         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2557                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2558                 return 0;
2559
2560         return nand_subop_get_start_off(subop, instr_idx);
2561 }
2562 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2563
2564 /**
2565  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2566  * @subop: The entire sub-operation
2567  * @instr_idx: Index of the instruction inside the sub-operation
2568  *
2569  * During driver development, one could be tempted to directly use the
2570  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2571  * might be split.
2572  *
2573  * Given an address instruction, returns the number of address cycle to issue.
2574  */
2575 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2576                                          unsigned int instr_idx)
2577 {
2578         int start_off, end_off;
2579
2580         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2581                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2582                 return 0;
2583
2584         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2585
2586         if (instr_idx == subop->ninstrs - 1 &&
2587             subop->last_instr_end_off)
2588                 end_off = subop->last_instr_end_off;
2589         else
2590                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2591
2592         return end_off - start_off;
2593 }
2594 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2595
2596 /**
2597  * nand_subop_get_data_start_off - Get the start offset in a data array
2598  * @subop: The entire sub-operation
2599  * @instr_idx: Index of the instruction inside the sub-operation
2600  *
2601  * During driver development, one could be tempted to directly use the
2602  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2603  * instructions might be split.
2604  *
2605  * Given a data instruction, returns the offset to start from.
2606  */
2607 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2608                                            unsigned int instr_idx)
2609 {
2610         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2611                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2612                 return 0;
2613
2614         return nand_subop_get_start_off(subop, instr_idx);
2615 }
2616 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2617
2618 /**
2619  * nand_subop_get_data_len - Get the number of bytes to retrieve
2620  * @subop: The entire sub-operation
2621  * @instr_idx: Index of the instruction inside the sub-operation
2622  *
2623  * During driver development, one could be tempted to directly use the
2624  * ->data->len field of a data instruction. This is wrong as data instructions
2625  * might be split.
2626  *
2627  * Returns the length of the chunk of data to send/receive.
2628  */
2629 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2630                                      unsigned int instr_idx)
2631 {
2632         int start_off = 0, end_off;
2633
2634         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2635                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2636                 return 0;
2637
2638         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2639
2640         if (instr_idx == subop->ninstrs - 1 &&
2641             subop->last_instr_end_off)
2642                 end_off = subop->last_instr_end_off;
2643         else
2644                 end_off = subop->instrs[instr_idx].ctx.data.len;
2645
2646         return end_off - start_off;
2647 }
2648 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2649
2650 /**
2651  * nand_reset - Reset and initialize a NAND device
2652  * @chip: The NAND chip
2653  * @chipnr: Internal die id
2654  *
2655  * Save the timings data structure, then apply SDR timings mode 0 (see
2656  * nand_reset_interface for details), do the reset operation, and apply
2657  * back the previous timings.
2658  *
2659  * Returns 0 on success, a negative error code otherwise.
2660  */
2661 int nand_reset(struct nand_chip *chip, int chipnr)
2662 {
2663         int ret;
2664
2665         ret = nand_reset_interface(chip, chipnr);
2666         if (ret)
2667                 return ret;
2668
2669         /*
2670          * The CS line has to be released before we can apply the new NAND
2671          * interface settings, hence this weird nand_select_target()
2672          * nand_deselect_target() dance.
2673          */
2674         nand_select_target(chip, chipnr);
2675         ret = nand_reset_op(chip);
2676         nand_deselect_target(chip);
2677         if (ret)
2678                 return ret;
2679
2680         ret = nand_setup_interface(chip, chipnr);
2681         if (ret)
2682                 return ret;
2683
2684         return 0;
2685 }
2686 EXPORT_SYMBOL_GPL(nand_reset);
2687
2688 /**
2689  * nand_get_features - wrapper to perform a GET_FEATURE
2690  * @chip: NAND chip info structure
2691  * @addr: feature address
2692  * @subfeature_param: the subfeature parameters, a four bytes array
2693  *
2694  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2695  * operation cannot be handled.
2696  */
2697 int nand_get_features(struct nand_chip *chip, int addr,
2698                       u8 *subfeature_param)
2699 {
2700         if (!nand_supports_get_features(chip, addr))
2701                 return -ENOTSUPP;
2702
2703         if (chip->legacy.get_features)
2704                 return chip->legacy.get_features(chip, addr, subfeature_param);
2705
2706         return nand_get_features_op(chip, addr, subfeature_param);
2707 }
2708
2709 /**
2710  * nand_set_features - wrapper to perform a SET_FEATURE
2711  * @chip: NAND chip info structure
2712  * @addr: feature address
2713  * @subfeature_param: the subfeature parameters, a four bytes array
2714  *
2715  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2716  * operation cannot be handled.
2717  */
2718 int nand_set_features(struct nand_chip *chip, int addr,
2719                       u8 *subfeature_param)
2720 {
2721         if (!nand_supports_set_features(chip, addr))
2722                 return -ENOTSUPP;
2723
2724         if (chip->legacy.set_features)
2725                 return chip->legacy.set_features(chip, addr, subfeature_param);
2726
2727         return nand_set_features_op(chip, addr, subfeature_param);
2728 }
2729
2730 /**
2731  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2732  * @buf: buffer to test
2733  * @len: buffer length
2734  * @bitflips_threshold: maximum number of bitflips
2735  *
2736  * Check if a buffer contains only 0xff, which means the underlying region
2737  * has been erased and is ready to be programmed.
2738  * The bitflips_threshold specify the maximum number of bitflips before
2739  * considering the region is not erased.
2740  * Note: The logic of this function has been extracted from the memweight
2741  * implementation, except that nand_check_erased_buf function exit before
2742  * testing the whole buffer if the number of bitflips exceed the
2743  * bitflips_threshold value.
2744  *
2745  * Returns a positive number of bitflips less than or equal to
2746  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2747  * threshold.
2748  */
2749 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2750 {
2751         const unsigned char *bitmap = buf;
2752         int bitflips = 0;
2753         int weight;
2754
2755         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2756              len--, bitmap++) {
2757                 weight = hweight8(*bitmap);
2758                 bitflips += BITS_PER_BYTE - weight;
2759                 if (unlikely(bitflips > bitflips_threshold))
2760                         return -EBADMSG;
2761         }
2762
2763         for (; len >= sizeof(long);
2764              len -= sizeof(long), bitmap += sizeof(long)) {
2765                 unsigned long d = *((unsigned long *)bitmap);
2766                 if (d == ~0UL)
2767                         continue;
2768                 weight = hweight_long(d);
2769                 bitflips += BITS_PER_LONG - weight;
2770                 if (unlikely(bitflips > bitflips_threshold))
2771                         return -EBADMSG;
2772         }
2773
2774         for (; len > 0; len--, bitmap++) {
2775                 weight = hweight8(*bitmap);
2776                 bitflips += BITS_PER_BYTE - weight;
2777                 if (unlikely(bitflips > bitflips_threshold))
2778                         return -EBADMSG;
2779         }
2780
2781         return bitflips;
2782 }
2783
2784 /**
2785  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2786  *                               0xff data
2787  * @data: data buffer to test
2788  * @datalen: data length
2789  * @ecc: ECC buffer
2790  * @ecclen: ECC length
2791  * @extraoob: extra OOB buffer
2792  * @extraooblen: extra OOB length
2793  * @bitflips_threshold: maximum number of bitflips
2794  *
2795  * Check if a data buffer and its associated ECC and OOB data contains only
2796  * 0xff pattern, which means the underlying region has been erased and is
2797  * ready to be programmed.
2798  * The bitflips_threshold specify the maximum number of bitflips before
2799  * considering the region as not erased.
2800  *
2801  * Note:
2802  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2803  *    different from the NAND page size. When fixing bitflips, ECC engines will
2804  *    report the number of errors per chunk, and the NAND core infrastructure
2805  *    expect you to return the maximum number of bitflips for the whole page.
2806  *    This is why you should always use this function on a single chunk and
2807  *    not on the whole page. After checking each chunk you should update your
2808  *    max_bitflips value accordingly.
2809  * 2/ When checking for bitflips in erased pages you should not only check
2810  *    the payload data but also their associated ECC data, because a user might
2811  *    have programmed almost all bits to 1 but a few. In this case, we
2812  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2813  *    this case.
2814  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2815  *    data are protected by the ECC engine.
2816  *    It could also be used if you support subpages and want to attach some
2817  *    extra OOB data to an ECC chunk.
2818  *
2819  * Returns a positive number of bitflips less than or equal to
2820  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2821  * threshold. In case of success, the passed buffers are filled with 0xff.
2822  */
2823 int nand_check_erased_ecc_chunk(void *data, int datalen,
2824                                 void *ecc, int ecclen,
2825                                 void *extraoob, int extraooblen,
2826                                 int bitflips_threshold)
2827 {
2828         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2829
2830         data_bitflips = nand_check_erased_buf(data, datalen,
2831                                               bitflips_threshold);
2832         if (data_bitflips < 0)
2833                 return data_bitflips;
2834
2835         bitflips_threshold -= data_bitflips;
2836
2837         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2838         if (ecc_bitflips < 0)
2839                 return ecc_bitflips;
2840
2841         bitflips_threshold -= ecc_bitflips;
2842
2843         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2844                                                   bitflips_threshold);
2845         if (extraoob_bitflips < 0)
2846                 return extraoob_bitflips;
2847
2848         if (data_bitflips)
2849                 memset(data, 0xff, datalen);
2850
2851         if (ecc_bitflips)
2852                 memset(ecc, 0xff, ecclen);
2853
2854         if (extraoob_bitflips)
2855                 memset(extraoob, 0xff, extraooblen);
2856
2857         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2858 }
2859 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2860
2861 /**
2862  * nand_read_page_raw_notsupp - dummy read raw page function
2863  * @chip: nand chip info structure
2864  * @buf: buffer to store read data
2865  * @oob_required: caller requires OOB data read to chip->oob_poi
2866  * @page: page number to read
2867  *
2868  * Returns -ENOTSUPP unconditionally.
2869  */
2870 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2871                                int oob_required, int page)
2872 {
2873         return -ENOTSUPP;
2874 }
2875
2876 /**
2877  * nand_read_page_raw - [INTERN] read raw page data without ecc
2878  * @chip: nand chip info structure
2879  * @buf: buffer to store read data
2880  * @oob_required: caller requires OOB data read to chip->oob_poi
2881  * @page: page number to read
2882  *
2883  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2884  */
2885 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2886                        int page)
2887 {
2888         struct mtd_info *mtd = nand_to_mtd(chip);
2889         int ret;
2890
2891         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2892         if (ret)
2893                 return ret;
2894
2895         if (oob_required) {
2896                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2897                                         false, false);
2898                 if (ret)
2899                         return ret;
2900         }
2901
2902         return 0;
2903 }
2904 EXPORT_SYMBOL(nand_read_page_raw);
2905
2906 /**
2907  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2908  * @chip: NAND chip info structure
2909  * @buf: buffer to store read data
2910  * @oob_required: caller requires OOB data read to chip->oob_poi
2911  * @page: page number to read
2912  *
2913  * This is a raw page read, ie. without any error detection/correction.
2914  * Monolithic means we are requesting all the relevant data (main plus
2915  * eventually OOB) to be loaded in the NAND cache and sent over the
2916  * bus (from the NAND chip to the NAND controller) in a single
2917  * operation. This is an alternative to nand_read_page_raw(), which
2918  * first reads the main data, and if the OOB data is requested too,
2919  * then reads more data on the bus.
2920  */
2921 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2922                                   int oob_required, int page)
2923 {
2924         struct mtd_info *mtd = nand_to_mtd(chip);
2925         unsigned int size = mtd->writesize;
2926         u8 *read_buf = buf;
2927         int ret;
2928
2929         if (oob_required) {
2930                 size += mtd->oobsize;
2931
2932                 if (buf != chip->data_buf)
2933                         read_buf = nand_get_data_buf(chip);
2934         }
2935
2936         ret = nand_read_page_op(chip, page, 0, read_buf, size);
2937         if (ret)
2938                 return ret;
2939
2940         if (buf != chip->data_buf)
2941                 memcpy(buf, read_buf, mtd->writesize);
2942
2943         return 0;
2944 }
2945 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2946
2947 /**
2948  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2949  * @chip: nand chip info structure
2950  * @buf: buffer to store read data
2951  * @oob_required: caller requires OOB data read to chip->oob_poi
2952  * @page: page number to read
2953  *
2954  * We need a special oob layout and handling even when OOB isn't used.
2955  */
2956 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2957                                        int oob_required, int page)
2958 {
2959         struct mtd_info *mtd = nand_to_mtd(chip);
2960         int eccsize = chip->ecc.size;
2961         int eccbytes = chip->ecc.bytes;
2962         uint8_t *oob = chip->oob_poi;
2963         int steps, size, ret;
2964
2965         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2966         if (ret)
2967                 return ret;
2968
2969         for (steps = chip->ecc.steps; steps > 0; steps--) {
2970                 ret = nand_read_data_op(chip, buf, eccsize, false, false);
2971                 if (ret)
2972                         return ret;
2973
2974                 buf += eccsize;
2975
2976                 if (chip->ecc.prepad) {
2977                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2978                                                 false, false);
2979                         if (ret)
2980                                 return ret;
2981
2982                         oob += chip->ecc.prepad;
2983                 }
2984
2985                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2986                 if (ret)
2987                         return ret;
2988
2989                 oob += eccbytes;
2990
2991                 if (chip->ecc.postpad) {
2992                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2993                                                 false, false);
2994                         if (ret)
2995                                 return ret;
2996
2997                         oob += chip->ecc.postpad;
2998                 }
2999         }
3000
3001         size = mtd->oobsize - (oob - chip->oob_poi);
3002         if (size) {
3003                 ret = nand_read_data_op(chip, oob, size, false, false);
3004                 if (ret)
3005                         return ret;
3006         }
3007
3008         return 0;
3009 }
3010
3011 /**
3012  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3013  * @chip: nand chip info structure
3014  * @buf: buffer to store read data
3015  * @oob_required: caller requires OOB data read to chip->oob_poi
3016  * @page: page number to read
3017  */
3018 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3019                                 int oob_required, int page)
3020 {
3021         struct mtd_info *mtd = nand_to_mtd(chip);
3022         int i, eccsize = chip->ecc.size, ret;
3023         int eccbytes = chip->ecc.bytes;
3024         int eccsteps = chip->ecc.steps;
3025         uint8_t *p = buf;
3026         uint8_t *ecc_calc = chip->ecc.calc_buf;
3027         uint8_t *ecc_code = chip->ecc.code_buf;
3028         unsigned int max_bitflips = 0;
3029
3030         chip->ecc.read_page_raw(chip, buf, 1, page);
3031
3032         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3033                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3034
3035         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3036                                          chip->ecc.total);
3037         if (ret)
3038                 return ret;
3039
3040         eccsteps = chip->ecc.steps;
3041         p = buf;
3042
3043         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3044                 int stat;
3045
3046                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3047                 if (stat < 0) {
3048                         mtd->ecc_stats.failed++;
3049                 } else {
3050                         mtd->ecc_stats.corrected += stat;
3051                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3052                 }
3053         }
3054         return max_bitflips;
3055 }
3056
3057 /**
3058  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3059  * @chip: nand chip info structure
3060  * @data_offs: offset of requested data within the page
3061  * @readlen: data length
3062  * @bufpoi: buffer to store read data
3063  * @page: page number to read
3064  */
3065 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3066                              uint32_t readlen, uint8_t *bufpoi, int page)
3067 {
3068         struct mtd_info *mtd = nand_to_mtd(chip);
3069         int start_step, end_step, num_steps, ret;
3070         uint8_t *p;
3071         int data_col_addr, i, gaps = 0;
3072         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3073         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3074         int index, section = 0;
3075         unsigned int max_bitflips = 0;
3076         struct mtd_oob_region oobregion = { };
3077
3078         /* Column address within the page aligned to ECC size (256bytes) */
3079         start_step = data_offs / chip->ecc.size;
3080         end_step = (data_offs + readlen - 1) / chip->ecc.size;
3081         num_steps = end_step - start_step + 1;
3082         index = start_step * chip->ecc.bytes;
3083
3084         /* Data size aligned to ECC ecc.size */
3085         datafrag_len = num_steps * chip->ecc.size;
3086         eccfrag_len = num_steps * chip->ecc.bytes;
3087
3088         data_col_addr = start_step * chip->ecc.size;
3089         /* If we read not a page aligned data */
3090         p = bufpoi + data_col_addr;
3091         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3092         if (ret)
3093                 return ret;
3094
3095         /* Calculate ECC */
3096         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3097                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3098
3099         /*
3100          * The performance is faster if we position offsets according to
3101          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3102          */
3103         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3104         if (ret)
3105                 return ret;
3106
3107         if (oobregion.length < eccfrag_len)
3108                 gaps = 1;
3109
3110         if (gaps) {
3111                 ret = nand_change_read_column_op(chip, mtd->writesize,
3112                                                  chip->oob_poi, mtd->oobsize,
3113                                                  false);
3114                 if (ret)
3115                         return ret;
3116         } else {
3117                 /*
3118                  * Send the command to read the particular ECC bytes take care
3119                  * about buswidth alignment in read_buf.
3120                  */
3121                 aligned_pos = oobregion.offset & ~(busw - 1);
3122                 aligned_len = eccfrag_len;
3123                 if (oobregion.offset & (busw - 1))
3124                         aligned_len++;
3125                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3126                     (busw - 1))
3127                         aligned_len++;
3128
3129                 ret = nand_change_read_column_op(chip,
3130                                                  mtd->writesize + aligned_pos,
3131                                                  &chip->oob_poi[aligned_pos],
3132                                                  aligned_len, false);
3133                 if (ret)
3134                         return ret;
3135         }
3136
3137         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3138                                          chip->oob_poi, index, eccfrag_len);
3139         if (ret)
3140                 return ret;
3141
3142         p = bufpoi + data_col_addr;
3143         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3144                 int stat;
3145
3146                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3147                                          &chip->ecc.calc_buf[i]);
3148                 if (stat == -EBADMSG &&
3149                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3150                         /* check for empty pages with bitflips */
3151                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3152                                                 &chip->ecc.code_buf[i],
3153                                                 chip->ecc.bytes,
3154                                                 NULL, 0,
3155                                                 chip->ecc.strength);
3156                 }
3157
3158                 if (stat < 0) {
3159                         mtd->ecc_stats.failed++;
3160                 } else {
3161                         mtd->ecc_stats.corrected += stat;
3162                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3163                 }
3164         }
3165         return max_bitflips;
3166 }
3167
3168 /**
3169  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3170  * @chip: nand chip info structure
3171  * @buf: buffer to store read data
3172  * @oob_required: caller requires OOB data read to chip->oob_poi
3173  * @page: page number to read
3174  *
3175  * Not for syndrome calculating ECC controllers which need a special oob layout.
3176  */
3177 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3178                                 int oob_required, int page)
3179 {
3180         struct mtd_info *mtd = nand_to_mtd(chip);
3181         int i, eccsize = chip->ecc.size, ret;
3182         int eccbytes = chip->ecc.bytes;
3183         int eccsteps = chip->ecc.steps;
3184         uint8_t *p = buf;
3185         uint8_t *ecc_calc = chip->ecc.calc_buf;
3186         uint8_t *ecc_code = chip->ecc.code_buf;
3187         unsigned int max_bitflips = 0;
3188
3189         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3190         if (ret)
3191                 return ret;
3192
3193         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3194                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3195
3196                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3197                 if (ret)
3198                         return ret;
3199
3200                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3201         }
3202
3203         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3204                                 false);
3205         if (ret)
3206                 return ret;
3207
3208         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3209                                          chip->ecc.total);
3210         if (ret)
3211                 return ret;
3212
3213         eccsteps = chip->ecc.steps;
3214         p = buf;
3215
3216         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3217                 int stat;
3218
3219                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3220                 if (stat == -EBADMSG &&
3221                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3222                         /* check for empty pages with bitflips */
3223                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3224                                                 &ecc_code[i], eccbytes,
3225                                                 NULL, 0,
3226                                                 chip->ecc.strength);
3227                 }
3228
3229                 if (stat < 0) {
3230                         mtd->ecc_stats.failed++;
3231                 } else {
3232                         mtd->ecc_stats.corrected += stat;
3233                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3234                 }
3235         }
3236         return max_bitflips;
3237 }
3238
3239 /**
3240  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3241  *                                  data read from OOB area
3242  * @chip: nand chip info structure
3243  * @buf: buffer to store read data
3244  * @oob_required: caller requires OOB data read to chip->oob_poi
3245  * @page: page number to read
3246  *
3247  * Hardware ECC for large page chips, which requires the ECC data to be
3248  * extracted from the OOB before the actual data is read.
3249  */
3250 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3251                                    int oob_required, int page)
3252 {
3253         struct mtd_info *mtd = nand_to_mtd(chip);
3254         int i, eccsize = chip->ecc.size, ret;
3255         int eccbytes = chip->ecc.bytes;
3256         int eccsteps = chip->ecc.steps;
3257         uint8_t *p = buf;
3258         uint8_t *ecc_code = chip->ecc.code_buf;
3259         unsigned int max_bitflips = 0;
3260
3261         /* Read the OOB area first */
3262         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3263         if (ret)
3264                 return ret;
3265
3266         /* Move read cursor to start of page */
3267         ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3268         if (ret)
3269                 return ret;
3270
3271         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3272                                          chip->ecc.total);
3273         if (ret)
3274                 return ret;
3275
3276         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3277                 int stat;
3278
3279                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3280
3281                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3282                 if (ret)
3283                         return ret;
3284
3285                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3286                 if (stat == -EBADMSG &&
3287                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3288                         /* check for empty pages with bitflips */
3289                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3290                                                            &ecc_code[i],
3291                                                            eccbytes, NULL, 0,
3292                                                            chip->ecc.strength);
3293                 }
3294
3295                 if (stat < 0) {
3296                         mtd->ecc_stats.failed++;
3297                 } else {
3298                         mtd->ecc_stats.corrected += stat;
3299                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3300                 }
3301         }
3302         return max_bitflips;
3303 }
3304 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3305
3306 /**
3307  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3308  * @chip: nand chip info structure
3309  * @buf: buffer to store read data
3310  * @oob_required: caller requires OOB data read to chip->oob_poi
3311  * @page: page number to read
3312  *
3313  * The hw generator calculates the error syndrome automatically. Therefore we
3314  * need a special oob layout and handling.
3315  */
3316 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3317                                    int oob_required, int page)
3318 {
3319         struct mtd_info *mtd = nand_to_mtd(chip);
3320         int ret, i, eccsize = chip->ecc.size;
3321         int eccbytes = chip->ecc.bytes;
3322         int eccsteps = chip->ecc.steps;
3323         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3324         uint8_t *p = buf;
3325         uint8_t *oob = chip->oob_poi;
3326         unsigned int max_bitflips = 0;
3327
3328         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3329         if (ret)
3330                 return ret;
3331
3332         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3333                 int stat;
3334
3335                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3336
3337                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3338                 if (ret)
3339                         return ret;
3340
3341                 if (chip->ecc.prepad) {
3342                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3343                                                 false, false);
3344                         if (ret)
3345                                 return ret;
3346
3347                         oob += chip->ecc.prepad;
3348                 }
3349
3350                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3351
3352                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3353                 if (ret)
3354                         return ret;
3355
3356                 stat = chip->ecc.correct(chip, p, oob, NULL);
3357
3358                 oob += eccbytes;
3359
3360                 if (chip->ecc.postpad) {
3361                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3362                                                 false, false);
3363                         if (ret)
3364                                 return ret;
3365
3366                         oob += chip->ecc.postpad;
3367                 }
3368
3369                 if (stat == -EBADMSG &&
3370                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3371                         /* check for empty pages with bitflips */
3372                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3373                                                            oob - eccpadbytes,
3374                                                            eccpadbytes,
3375                                                            NULL, 0,
3376                                                            chip->ecc.strength);
3377                 }
3378
3379                 if (stat < 0) {
3380                         mtd->ecc_stats.failed++;
3381                 } else {
3382                         mtd->ecc_stats.corrected += stat;
3383                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3384                 }
3385         }
3386
3387         /* Calculate remaining oob bytes */
3388         i = mtd->oobsize - (oob - chip->oob_poi);
3389         if (i) {
3390                 ret = nand_read_data_op(chip, oob, i, false, false);
3391                 if (ret)
3392                         return ret;
3393         }
3394
3395         return max_bitflips;
3396 }
3397
3398 /**
3399  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3400  * @chip: NAND chip object
3401  * @oob: oob destination address
3402  * @ops: oob ops structure
3403  * @len: size of oob to transfer
3404  */
3405 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3406                                   struct mtd_oob_ops *ops, size_t len)
3407 {
3408         struct mtd_info *mtd = nand_to_mtd(chip);
3409         int ret;
3410
3411         switch (ops->mode) {
3412
3413         case MTD_OPS_PLACE_OOB:
3414         case MTD_OPS_RAW:
3415                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3416                 return oob + len;
3417
3418         case MTD_OPS_AUTO_OOB:
3419                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3420                                                   ops->ooboffs, len);
3421                 BUG_ON(ret);
3422                 return oob + len;
3423
3424         default:
3425                 BUG();
3426         }
3427         return NULL;
3428 }
3429
3430 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3431                                       u32 readlen, int col)
3432 {
3433         struct mtd_info *mtd = nand_to_mtd(chip);
3434
3435         if (!chip->controller->supported_op.cont_read)
3436                 return;
3437
3438         if ((col && col + readlen < (3 * mtd->writesize)) ||
3439             (!col && readlen < (2 * mtd->writesize))) {
3440                 chip->cont_read.ongoing = false;
3441                 return;
3442         }
3443
3444         chip->cont_read.ongoing = true;
3445         chip->cont_read.first_page = page;
3446         if (col)
3447                 chip->cont_read.first_page++;
3448         chip->cont_read.last_page = page + ((readlen >> chip->page_shift) & chip->pagemask);
3449 }
3450
3451 /**
3452  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3453  * @chip: NAND chip object
3454  * @retry_mode: the retry mode to use
3455  *
3456  * Some vendors supply a special command to shift the Vt threshold, to be used
3457  * when there are too many bitflips in a page (i.e., ECC error). After setting
3458  * a new threshold, the host should retry reading the page.
3459  */
3460 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3461 {
3462         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3463
3464         if (retry_mode >= chip->read_retries)
3465                 return -EINVAL;
3466
3467         if (!chip->ops.setup_read_retry)
3468                 return -EOPNOTSUPP;
3469
3470         return chip->ops.setup_read_retry(chip, retry_mode);
3471 }
3472
3473 static void nand_wait_readrdy(struct nand_chip *chip)
3474 {
3475         const struct nand_interface_config *conf;
3476
3477         if (!(chip->options & NAND_NEED_READRDY))
3478                 return;
3479
3480         conf = nand_get_interface_config(chip);
3481         WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3482 }
3483
3484 /**
3485  * nand_do_read_ops - [INTERN] Read data with ECC
3486  * @chip: NAND chip object
3487  * @from: offset to read from
3488  * @ops: oob ops structure
3489  *
3490  * Internal function. Called with chip held.
3491  */
3492 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3493                             struct mtd_oob_ops *ops)
3494 {
3495         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3496         struct mtd_info *mtd = nand_to_mtd(chip);
3497         int ret = 0;
3498         uint32_t readlen = ops->len;
3499         uint32_t oobreadlen = ops->ooblen;
3500         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3501
3502         uint8_t *bufpoi, *oob, *buf;
3503         int use_bounce_buf;
3504         unsigned int max_bitflips = 0;
3505         int retry_mode = 0;
3506         bool ecc_fail = false;
3507
3508         /* Check if the region is secured */
3509         if (nand_region_is_secured(chip, from, readlen))
3510                 return -EIO;
3511
3512         chipnr = (int)(from >> chip->chip_shift);
3513         nand_select_target(chip, chipnr);
3514
3515         realpage = (int)(from >> chip->page_shift);
3516         page = realpage & chip->pagemask;
3517
3518         col = (int)(from & (mtd->writesize - 1));
3519
3520         buf = ops->datbuf;
3521         oob = ops->oobbuf;
3522         oob_required = oob ? 1 : 0;
3523
3524         rawnand_enable_cont_reads(chip, page, readlen, col);
3525
3526         while (1) {
3527                 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3528
3529                 bytes = min(mtd->writesize - col, readlen);
3530                 aligned = (bytes == mtd->writesize);
3531
3532                 if (!aligned)
3533                         use_bounce_buf = 1;
3534                 else if (chip->options & NAND_USES_DMA)
3535                         use_bounce_buf = !virt_addr_valid(buf) ||
3536                                          !IS_ALIGNED((unsigned long)buf,
3537                                                      chip->buf_align);
3538                 else
3539                         use_bounce_buf = 0;
3540
3541                 /* Is the current page in the buffer? */
3542                 if (realpage != chip->pagecache.page || oob) {
3543                         bufpoi = use_bounce_buf ? chip->data_buf : buf;
3544
3545                         if (use_bounce_buf && aligned)
3546                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3547                                                  __func__, buf);
3548
3549 read_retry:
3550                         /*
3551                          * Now read the page into the buffer.  Absent an error,
3552                          * the read methods return max bitflips per ecc step.
3553                          */
3554                         if (unlikely(ops->mode == MTD_OPS_RAW))
3555                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3556                                                               oob_required,
3557                                                               page);
3558                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3559                                  !oob)
3560                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3561                                                              bufpoi, page);
3562                         else
3563                                 ret = chip->ecc.read_page(chip, bufpoi,
3564                                                           oob_required, page);
3565                         if (ret < 0) {
3566                                 if (use_bounce_buf)
3567                                         /* Invalidate page cache */
3568                                         chip->pagecache.page = -1;
3569                                 break;
3570                         }
3571
3572                         /*
3573                          * Copy back the data in the initial buffer when reading
3574                          * partial pages or when a bounce buffer is required.
3575                          */
3576                         if (use_bounce_buf) {
3577                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3578                                     !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3579                                     (ops->mode != MTD_OPS_RAW)) {
3580                                         chip->pagecache.page = realpage;
3581                                         chip->pagecache.bitflips = ret;
3582                                 } else {
3583                                         /* Invalidate page cache */
3584                                         chip->pagecache.page = -1;
3585                                 }
3586                                 memcpy(buf, bufpoi + col, bytes);
3587                         }
3588
3589                         if (unlikely(oob)) {
3590                                 int toread = min(oobreadlen, max_oobsize);
3591
3592                                 if (toread) {
3593                                         oob = nand_transfer_oob(chip, oob, ops,
3594                                                                 toread);
3595                                         oobreadlen -= toread;
3596                                 }
3597                         }
3598
3599                         nand_wait_readrdy(chip);
3600
3601                         if (mtd->ecc_stats.failed - ecc_stats.failed) {
3602                                 if (retry_mode + 1 < chip->read_retries) {
3603                                         retry_mode++;
3604                                         ret = nand_setup_read_retry(chip,
3605                                                         retry_mode);
3606                                         if (ret < 0)
3607                                                 break;
3608
3609                                         /* Reset ecc_stats; retry */
3610                                         mtd->ecc_stats = ecc_stats;
3611                                         goto read_retry;
3612                                 } else {
3613                                         /* No more retry modes; real failure */
3614                                         ecc_fail = true;
3615                                 }
3616                         }
3617
3618                         buf += bytes;
3619                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3620                 } else {
3621                         memcpy(buf, chip->data_buf + col, bytes);
3622                         buf += bytes;
3623                         max_bitflips = max_t(unsigned int, max_bitflips,
3624                                              chip->pagecache.bitflips);
3625                 }
3626
3627                 readlen -= bytes;
3628
3629                 /* Reset to retry mode 0 */
3630                 if (retry_mode) {
3631                         ret = nand_setup_read_retry(chip, 0);
3632                         if (ret < 0)
3633                                 break;
3634                         retry_mode = 0;
3635                 }
3636
3637                 if (!readlen)
3638                         break;
3639
3640                 /* For subsequent reads align to page boundary */
3641                 col = 0;
3642                 /* Increment page address */
3643                 realpage++;
3644
3645                 page = realpage & chip->pagemask;
3646                 /* Check, if we cross a chip boundary */
3647                 if (!page) {
3648                         chipnr++;
3649                         nand_deselect_target(chip);
3650                         nand_select_target(chip, chipnr);
3651                 }
3652         }
3653         nand_deselect_target(chip);
3654
3655         ops->retlen = ops->len - (size_t) readlen;
3656         if (oob)
3657                 ops->oobretlen = ops->ooblen - oobreadlen;
3658
3659         if (ret < 0)
3660                 return ret;
3661
3662         if (ecc_fail)
3663                 return -EBADMSG;
3664
3665         return max_bitflips;
3666 }
3667
3668 /**
3669  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3670  * @chip: nand chip info structure
3671  * @page: page number to read
3672  */
3673 int nand_read_oob_std(struct nand_chip *chip, int page)
3674 {
3675         struct mtd_info *mtd = nand_to_mtd(chip);
3676
3677         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3678 }
3679 EXPORT_SYMBOL(nand_read_oob_std);
3680
3681 /**
3682  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3683  *                          with syndromes
3684  * @chip: nand chip info structure
3685  * @page: page number to read
3686  */
3687 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3688 {
3689         struct mtd_info *mtd = nand_to_mtd(chip);
3690         int length = mtd->oobsize;
3691         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3692         int eccsize = chip->ecc.size;
3693         uint8_t *bufpoi = chip->oob_poi;
3694         int i, toread, sndrnd = 0, pos, ret;
3695
3696         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3697         if (ret)
3698                 return ret;
3699
3700         for (i = 0; i < chip->ecc.steps; i++) {
3701                 if (sndrnd) {
3702                         int ret;
3703
3704                         pos = eccsize + i * (eccsize + chunk);
3705                         if (mtd->writesize > 512)
3706                                 ret = nand_change_read_column_op(chip, pos,
3707                                                                  NULL, 0,
3708                                                                  false);
3709                         else
3710                                 ret = nand_read_page_op(chip, page, pos, NULL,
3711                                                         0);
3712
3713                         if (ret)
3714                                 return ret;
3715                 } else
3716                         sndrnd = 1;
3717                 toread = min_t(int, length, chunk);
3718
3719                 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3720                 if (ret)
3721                         return ret;
3722
3723                 bufpoi += toread;
3724                 length -= toread;
3725         }
3726         if (length > 0) {
3727                 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3728                 if (ret)
3729                         return ret;
3730         }
3731
3732         return 0;
3733 }
3734
3735 /**
3736  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3737  * @chip: nand chip info structure
3738  * @page: page number to write
3739  */
3740 int nand_write_oob_std(struct nand_chip *chip, int page)
3741 {
3742         struct mtd_info *mtd = nand_to_mtd(chip);
3743
3744         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3745                                  mtd->oobsize);
3746 }
3747 EXPORT_SYMBOL(nand_write_oob_std);
3748
3749 /**
3750  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3751  *                           with syndrome - only for large page flash
3752  * @chip: nand chip info structure
3753  * @page: page number to write
3754  */
3755 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3756 {
3757         struct mtd_info *mtd = nand_to_mtd(chip);
3758         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3759         int eccsize = chip->ecc.size, length = mtd->oobsize;
3760         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3761         const uint8_t *bufpoi = chip->oob_poi;
3762
3763         /*
3764          * data-ecc-data-ecc ... ecc-oob
3765          * or
3766          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3767          */
3768         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3769                 pos = steps * (eccsize + chunk);
3770                 steps = 0;
3771         } else
3772                 pos = eccsize;
3773
3774         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3775         if (ret)
3776                 return ret;
3777
3778         for (i = 0; i < steps; i++) {
3779                 if (sndcmd) {
3780                         if (mtd->writesize <= 512) {
3781                                 uint32_t fill = 0xFFFFFFFF;
3782
3783                                 len = eccsize;
3784                                 while (len > 0) {
3785                                         int num = min_t(int, len, 4);
3786
3787                                         ret = nand_write_data_op(chip, &fill,
3788                                                                  num, false);
3789                                         if (ret)
3790                                                 return ret;
3791
3792                                         len -= num;
3793                                 }
3794                         } else {
3795                                 pos = eccsize + i * (eccsize + chunk);
3796                                 ret = nand_change_write_column_op(chip, pos,
3797                                                                   NULL, 0,
3798                                                                   false);
3799                                 if (ret)
3800                                         return ret;
3801                         }
3802                 } else
3803                         sndcmd = 1;
3804                 len = min_t(int, length, chunk);
3805
3806                 ret = nand_write_data_op(chip, bufpoi, len, false);
3807                 if (ret)
3808                         return ret;
3809
3810                 bufpoi += len;
3811                 length -= len;
3812         }
3813         if (length > 0) {
3814                 ret = nand_write_data_op(chip, bufpoi, length, false);
3815                 if (ret)
3816                         return ret;
3817         }
3818
3819         return nand_prog_page_end_op(chip);
3820 }
3821
3822 /**
3823  * nand_do_read_oob - [INTERN] NAND read out-of-band
3824  * @chip: NAND chip object
3825  * @from: offset to read from
3826  * @ops: oob operations description structure
3827  *
3828  * NAND read out-of-band data from the spare area.
3829  */
3830 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3831                             struct mtd_oob_ops *ops)
3832 {
3833         struct mtd_info *mtd = nand_to_mtd(chip);
3834         unsigned int max_bitflips = 0;
3835         int page, realpage, chipnr;
3836         struct mtd_ecc_stats stats;
3837         int readlen = ops->ooblen;
3838         int len;
3839         uint8_t *buf = ops->oobbuf;
3840         int ret = 0;
3841
3842         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3843                         __func__, (unsigned long long)from, readlen);
3844
3845         /* Check if the region is secured */
3846         if (nand_region_is_secured(chip, from, readlen))
3847                 return -EIO;
3848
3849         stats = mtd->ecc_stats;
3850
3851         len = mtd_oobavail(mtd, ops);
3852
3853         chipnr = (int)(from >> chip->chip_shift);
3854         nand_select_target(chip, chipnr);
3855
3856         /* Shift to get page */
3857         realpage = (int)(from >> chip->page_shift);
3858         page = realpage & chip->pagemask;
3859
3860         while (1) {
3861                 if (ops->mode == MTD_OPS_RAW)
3862                         ret = chip->ecc.read_oob_raw(chip, page);
3863                 else
3864                         ret = chip->ecc.read_oob(chip, page);
3865
3866                 if (ret < 0)
3867                         break;
3868
3869                 len = min(len, readlen);
3870                 buf = nand_transfer_oob(chip, buf, ops, len);
3871
3872                 nand_wait_readrdy(chip);
3873
3874                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3875
3876                 readlen -= len;
3877                 if (!readlen)
3878                         break;
3879
3880                 /* Increment page address */
3881                 realpage++;
3882
3883                 page = realpage & chip->pagemask;
3884                 /* Check, if we cross a chip boundary */
3885                 if (!page) {
3886                         chipnr++;
3887                         nand_deselect_target(chip);
3888                         nand_select_target(chip, chipnr);
3889                 }
3890         }
3891         nand_deselect_target(chip);
3892
3893         ops->oobretlen = ops->ooblen - readlen;
3894
3895         if (ret < 0)
3896                 return ret;
3897
3898         if (mtd->ecc_stats.failed - stats.failed)
3899                 return -EBADMSG;
3900
3901         return max_bitflips;
3902 }
3903
3904 /**
3905  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3906  * @mtd: MTD device structure
3907  * @from: offset to read from
3908  * @ops: oob operation description structure
3909  *
3910  * NAND read data and/or out-of-band data.
3911  */
3912 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3913                          struct mtd_oob_ops *ops)
3914 {
3915         struct nand_chip *chip = mtd_to_nand(mtd);
3916         struct mtd_ecc_stats old_stats;
3917         int ret;
3918
3919         ops->retlen = 0;
3920
3921         if (ops->mode != MTD_OPS_PLACE_OOB &&
3922             ops->mode != MTD_OPS_AUTO_OOB &&
3923             ops->mode != MTD_OPS_RAW)
3924                 return -ENOTSUPP;
3925
3926         nand_get_device(chip);
3927
3928         old_stats = mtd->ecc_stats;
3929
3930         if (!ops->datbuf)
3931                 ret = nand_do_read_oob(chip, from, ops);
3932         else
3933                 ret = nand_do_read_ops(chip, from, ops);
3934
3935         if (ops->stats) {
3936                 ops->stats->uncorrectable_errors +=
3937                         mtd->ecc_stats.failed - old_stats.failed;
3938                 ops->stats->corrected_bitflips +=
3939                         mtd->ecc_stats.corrected - old_stats.corrected;
3940         }
3941
3942         nand_release_device(chip);
3943         return ret;
3944 }
3945
3946 /**
3947  * nand_write_page_raw_notsupp - dummy raw page write function
3948  * @chip: nand chip info structure
3949  * @buf: data buffer
3950  * @oob_required: must write chip->oob_poi to OOB
3951  * @page: page number to write
3952  *
3953  * Returns -ENOTSUPP unconditionally.
3954  */
3955 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3956                                 int oob_required, int page)
3957 {
3958         return -ENOTSUPP;
3959 }
3960
3961 /**
3962  * nand_write_page_raw - [INTERN] raw page write function
3963  * @chip: nand chip info structure
3964  * @buf: data buffer
3965  * @oob_required: must write chip->oob_poi to OOB
3966  * @page: page number to write
3967  *
3968  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3969  */
3970 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3971                         int oob_required, int page)
3972 {
3973         struct mtd_info *mtd = nand_to_mtd(chip);
3974         int ret;
3975
3976         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3977         if (ret)
3978                 return ret;
3979
3980         if (oob_required) {
3981                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3982                                          false);
3983                 if (ret)
3984                         return ret;
3985         }
3986
3987         return nand_prog_page_end_op(chip);
3988 }
3989 EXPORT_SYMBOL(nand_write_page_raw);
3990
3991 /**
3992  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3993  * @chip: NAND chip info structure
3994  * @buf: data buffer to write
3995  * @oob_required: must write chip->oob_poi to OOB
3996  * @page: page number to write
3997  *
3998  * This is a raw page write, ie. without any error detection/correction.
3999  * Monolithic means we are requesting all the relevant data (main plus
4000  * eventually OOB) to be sent over the bus and effectively programmed
4001  * into the NAND chip arrays in a single operation. This is an
4002  * alternative to nand_write_page_raw(), which first sends the main
4003  * data, then eventually send the OOB data by latching more data
4004  * cycles on the NAND bus, and finally sends the program command to
4005  * synchronyze the NAND chip cache.
4006  */
4007 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4008                                    int oob_required, int page)
4009 {
4010         struct mtd_info *mtd = nand_to_mtd(chip);
4011         unsigned int size = mtd->writesize;
4012         u8 *write_buf = (u8 *)buf;
4013
4014         if (oob_required) {
4015                 size += mtd->oobsize;
4016
4017                 if (buf != chip->data_buf) {
4018                         write_buf = nand_get_data_buf(chip);
4019                         memcpy(write_buf, buf, mtd->writesize);
4020                 }
4021         }
4022
4023         return nand_prog_page_op(chip, page, 0, write_buf, size);
4024 }
4025 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4026
4027 /**
4028  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4029  * @chip: nand chip info structure
4030  * @buf: data buffer
4031  * @oob_required: must write chip->oob_poi to OOB
4032  * @page: page number to write
4033  *
4034  * We need a special oob layout and handling even when ECC isn't checked.
4035  */
4036 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4037                                         const uint8_t *buf, int oob_required,
4038                                         int page)
4039 {
4040         struct mtd_info *mtd = nand_to_mtd(chip);
4041         int eccsize = chip->ecc.size;
4042         int eccbytes = chip->ecc.bytes;
4043         uint8_t *oob = chip->oob_poi;
4044         int steps, size, ret;
4045
4046         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4047         if (ret)
4048                 return ret;
4049
4050         for (steps = chip->ecc.steps; steps > 0; steps--) {
4051                 ret = nand_write_data_op(chip, buf, eccsize, false);
4052                 if (ret)
4053                         return ret;
4054
4055                 buf += eccsize;
4056
4057                 if (chip->ecc.prepad) {
4058                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4059                                                  false);
4060                         if (ret)
4061                                 return ret;
4062
4063                         oob += chip->ecc.prepad;
4064                 }
4065
4066                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4067                 if (ret)
4068                         return ret;
4069
4070                 oob += eccbytes;
4071
4072                 if (chip->ecc.postpad) {
4073                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4074                                                  false);
4075                         if (ret)
4076                                 return ret;
4077
4078                         oob += chip->ecc.postpad;
4079                 }
4080         }
4081
4082         size = mtd->oobsize - (oob - chip->oob_poi);
4083         if (size) {
4084                 ret = nand_write_data_op(chip, oob, size, false);
4085                 if (ret)
4086                         return ret;
4087         }
4088
4089         return nand_prog_page_end_op(chip);
4090 }
4091 /**
4092  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4093  * @chip: nand chip info structure
4094  * @buf: data buffer
4095  * @oob_required: must write chip->oob_poi to OOB
4096  * @page: page number to write
4097  */
4098 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4099                                  int oob_required, int page)
4100 {
4101         struct mtd_info *mtd = nand_to_mtd(chip);
4102         int i, eccsize = chip->ecc.size, ret;
4103         int eccbytes = chip->ecc.bytes;
4104         int eccsteps = chip->ecc.steps;
4105         uint8_t *ecc_calc = chip->ecc.calc_buf;
4106         const uint8_t *p = buf;
4107
4108         /* Software ECC calculation */
4109         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4110                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4111
4112         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4113                                          chip->ecc.total);
4114         if (ret)
4115                 return ret;
4116
4117         return chip->ecc.write_page_raw(chip, buf, 1, page);
4118 }
4119
4120 /**
4121  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4122  * @chip: nand chip info structure
4123  * @buf: data buffer
4124  * @oob_required: must write chip->oob_poi to OOB
4125  * @page: page number to write
4126  */
4127 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4128                                  int oob_required, int page)
4129 {
4130         struct mtd_info *mtd = nand_to_mtd(chip);
4131         int i, eccsize = chip->ecc.size, ret;
4132         int eccbytes = chip->ecc.bytes;
4133         int eccsteps = chip->ecc.steps;
4134         uint8_t *ecc_calc = chip->ecc.calc_buf;
4135         const uint8_t *p = buf;
4136
4137         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4138         if (ret)
4139                 return ret;
4140
4141         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4142                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4143
4144                 ret = nand_write_data_op(chip, p, eccsize, false);
4145                 if (ret)
4146                         return ret;
4147
4148                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4149         }
4150
4151         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4152                                          chip->ecc.total);
4153         if (ret)
4154                 return ret;
4155
4156         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4157         if (ret)
4158                 return ret;
4159
4160         return nand_prog_page_end_op(chip);
4161 }
4162
4163
4164 /**
4165  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4166  * @chip:       nand chip info structure
4167  * @offset:     column address of subpage within the page
4168  * @data_len:   data length
4169  * @buf:        data buffer
4170  * @oob_required: must write chip->oob_poi to OOB
4171  * @page: page number to write
4172  */
4173 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4174                                     uint32_t data_len, const uint8_t *buf,
4175                                     int oob_required, int page)
4176 {
4177         struct mtd_info *mtd = nand_to_mtd(chip);
4178         uint8_t *oob_buf  = chip->oob_poi;
4179         uint8_t *ecc_calc = chip->ecc.calc_buf;
4180         int ecc_size      = chip->ecc.size;
4181         int ecc_bytes     = chip->ecc.bytes;
4182         int ecc_steps     = chip->ecc.steps;
4183         uint32_t start_step = offset / ecc_size;
4184         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4185         int oob_bytes       = mtd->oobsize / ecc_steps;
4186         int step, ret;
4187
4188         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4189         if (ret)
4190                 return ret;
4191
4192         for (step = 0; step < ecc_steps; step++) {
4193                 /* configure controller for WRITE access */
4194                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4195
4196                 /* write data (untouched subpages already masked by 0xFF) */
4197                 ret = nand_write_data_op(chip, buf, ecc_size, false);
4198                 if (ret)
4199                         return ret;
4200
4201                 /* mask ECC of un-touched subpages by padding 0xFF */
4202                 if ((step < start_step) || (step > end_step))
4203                         memset(ecc_calc, 0xff, ecc_bytes);
4204                 else
4205                         chip->ecc.calculate(chip, buf, ecc_calc);
4206
4207                 /* mask OOB of un-touched subpages by padding 0xFF */
4208                 /* if oob_required, preserve OOB metadata of written subpage */
4209                 if (!oob_required || (step < start_step) || (step > end_step))
4210                         memset(oob_buf, 0xff, oob_bytes);
4211
4212                 buf += ecc_size;
4213                 ecc_calc += ecc_bytes;
4214                 oob_buf  += oob_bytes;
4215         }
4216
4217         /* copy calculated ECC for whole page to chip->buffer->oob */
4218         /* this include masked-value(0xFF) for unwritten subpages */
4219         ecc_calc = chip->ecc.calc_buf;
4220         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4221                                          chip->ecc.total);
4222         if (ret)
4223                 return ret;
4224
4225         /* write OOB buffer to NAND device */
4226         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4227         if (ret)
4228                 return ret;
4229
4230         return nand_prog_page_end_op(chip);
4231 }
4232
4233
4234 /**
4235  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4236  * @chip: nand chip info structure
4237  * @buf: data buffer
4238  * @oob_required: must write chip->oob_poi to OOB
4239  * @page: page number to write
4240  *
4241  * The hw generator calculates the error syndrome automatically. Therefore we
4242  * need a special oob layout and handling.
4243  */
4244 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4245                                     int oob_required, int page)
4246 {
4247         struct mtd_info *mtd = nand_to_mtd(chip);
4248         int i, eccsize = chip->ecc.size;
4249         int eccbytes = chip->ecc.bytes;
4250         int eccsteps = chip->ecc.steps;
4251         const uint8_t *p = buf;
4252         uint8_t *oob = chip->oob_poi;
4253         int ret;
4254
4255         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4256         if (ret)
4257                 return ret;
4258
4259         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4260                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4261
4262                 ret = nand_write_data_op(chip, p, eccsize, false);
4263                 if (ret)
4264                         return ret;
4265
4266                 if (chip->ecc.prepad) {
4267                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4268                                                  false);
4269                         if (ret)
4270                                 return ret;
4271
4272                         oob += chip->ecc.prepad;
4273                 }
4274
4275                 chip->ecc.calculate(chip, p, oob);
4276
4277                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4278                 if (ret)
4279                         return ret;
4280
4281                 oob += eccbytes;
4282
4283                 if (chip->ecc.postpad) {
4284                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4285                                                  false);
4286                         if (ret)
4287                                 return ret;
4288
4289                         oob += chip->ecc.postpad;
4290                 }
4291         }
4292
4293         /* Calculate remaining oob bytes */
4294         i = mtd->oobsize - (oob - chip->oob_poi);
4295         if (i) {
4296                 ret = nand_write_data_op(chip, oob, i, false);
4297                 if (ret)
4298                         return ret;
4299         }
4300
4301         return nand_prog_page_end_op(chip);
4302 }
4303
4304 /**
4305  * nand_write_page - write one page
4306  * @chip: NAND chip descriptor
4307  * @offset: address offset within the page
4308  * @data_len: length of actual data to be written
4309  * @buf: the data to write
4310  * @oob_required: must write chip->oob_poi to OOB
4311  * @page: page number to write
4312  * @raw: use _raw version of write_page
4313  */
4314 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4315                            int data_len, const uint8_t *buf, int oob_required,
4316                            int page, int raw)
4317 {
4318         struct mtd_info *mtd = nand_to_mtd(chip);
4319         int status, subpage;
4320
4321         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4322                 chip->ecc.write_subpage)
4323                 subpage = offset || (data_len < mtd->writesize);
4324         else
4325                 subpage = 0;
4326
4327         if (unlikely(raw))
4328                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4329                                                   page);
4330         else if (subpage)
4331                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4332                                                  oob_required, page);
4333         else
4334                 status = chip->ecc.write_page(chip, buf, oob_required, page);
4335
4336         if (status < 0)
4337                 return status;
4338
4339         return 0;
4340 }
4341
4342 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4343
4344 /**
4345  * nand_do_write_ops - [INTERN] NAND write with ECC
4346  * @chip: NAND chip object
4347  * @to: offset to write to
4348  * @ops: oob operations description structure
4349  *
4350  * NAND write with ECC.
4351  */
4352 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4353                              struct mtd_oob_ops *ops)
4354 {
4355         struct mtd_info *mtd = nand_to_mtd(chip);
4356         int chipnr, realpage, page, column;
4357         uint32_t writelen = ops->len;
4358
4359         uint32_t oobwritelen = ops->ooblen;
4360         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4361
4362         uint8_t *oob = ops->oobbuf;
4363         uint8_t *buf = ops->datbuf;
4364         int ret;
4365         int oob_required = oob ? 1 : 0;
4366
4367         ops->retlen = 0;
4368         if (!writelen)
4369                 return 0;
4370
4371         /* Reject writes, which are not page aligned */
4372         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4373                 pr_notice("%s: attempt to write non page aligned data\n",
4374                            __func__);
4375                 return -EINVAL;
4376         }
4377
4378         /* Check if the region is secured */
4379         if (nand_region_is_secured(chip, to, writelen))
4380                 return -EIO;
4381
4382         column = to & (mtd->writesize - 1);
4383
4384         chipnr = (int)(to >> chip->chip_shift);
4385         nand_select_target(chip, chipnr);
4386
4387         /* Check, if it is write protected */
4388         if (nand_check_wp(chip)) {
4389                 ret = -EIO;
4390                 goto err_out;
4391         }
4392
4393         realpage = (int)(to >> chip->page_shift);
4394         page = realpage & chip->pagemask;
4395
4396         /* Invalidate the page cache, when we write to the cached page */
4397         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4398             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4399                 chip->pagecache.page = -1;
4400
4401         /* Don't allow multipage oob writes with offset */
4402         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4403                 ret = -EINVAL;
4404                 goto err_out;
4405         }
4406
4407         while (1) {
4408                 int bytes = mtd->writesize;
4409                 uint8_t *wbuf = buf;
4410                 int use_bounce_buf;
4411                 int part_pagewr = (column || writelen < mtd->writesize);
4412
4413                 if (part_pagewr)
4414                         use_bounce_buf = 1;
4415                 else if (chip->options & NAND_USES_DMA)
4416                         use_bounce_buf = !virt_addr_valid(buf) ||
4417                                          !IS_ALIGNED((unsigned long)buf,
4418                                                      chip->buf_align);
4419                 else
4420                         use_bounce_buf = 0;
4421
4422                 /*
4423                  * Copy the data from the initial buffer when doing partial page
4424                  * writes or when a bounce buffer is required.
4425                  */
4426                 if (use_bounce_buf) {
4427                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4428                                          __func__, buf);
4429                         if (part_pagewr)
4430                                 bytes = min_t(int, bytes - column, writelen);
4431                         wbuf = nand_get_data_buf(chip);
4432                         memset(wbuf, 0xff, mtd->writesize);
4433                         memcpy(&wbuf[column], buf, bytes);
4434                 }
4435
4436                 if (unlikely(oob)) {
4437                         size_t len = min(oobwritelen, oobmaxlen);
4438                         oob = nand_fill_oob(chip, oob, len, ops);
4439                         oobwritelen -= len;
4440                 } else {
4441                         /* We still need to erase leftover OOB data */
4442                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4443                 }
4444
4445                 ret = nand_write_page(chip, column, bytes, wbuf,
4446                                       oob_required, page,
4447                                       (ops->mode == MTD_OPS_RAW));
4448                 if (ret)
4449                         break;
4450
4451                 writelen -= bytes;
4452                 if (!writelen)
4453                         break;
4454
4455                 column = 0;
4456                 buf += bytes;
4457                 realpage++;
4458
4459                 page = realpage & chip->pagemask;
4460                 /* Check, if we cross a chip boundary */
4461                 if (!page) {
4462                         chipnr++;
4463                         nand_deselect_target(chip);
4464                         nand_select_target(chip, chipnr);
4465                 }
4466         }
4467
4468         ops->retlen = ops->len - writelen;
4469         if (unlikely(oob))
4470                 ops->oobretlen = ops->ooblen;
4471
4472 err_out:
4473         nand_deselect_target(chip);
4474         return ret;
4475 }
4476
4477 /**
4478  * panic_nand_write - [MTD Interface] NAND write with ECC
4479  * @mtd: MTD device structure
4480  * @to: offset to write to
4481  * @len: number of bytes to write
4482  * @retlen: pointer to variable to store the number of written bytes
4483  * @buf: the data to write
4484  *
4485  * NAND write with ECC. Used when performing writes in interrupt context, this
4486  * may for example be called by mtdoops when writing an oops while in panic.
4487  */
4488 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4489                             size_t *retlen, const uint8_t *buf)
4490 {
4491         struct nand_chip *chip = mtd_to_nand(mtd);
4492         int chipnr = (int)(to >> chip->chip_shift);
4493         struct mtd_oob_ops ops;
4494         int ret;
4495
4496         nand_select_target(chip, chipnr);
4497
4498         /* Wait for the device to get ready */
4499         panic_nand_wait(chip, 400);
4500
4501         memset(&ops, 0, sizeof(ops));
4502         ops.len = len;
4503         ops.datbuf = (uint8_t *)buf;
4504         ops.mode = MTD_OPS_PLACE_OOB;
4505
4506         ret = nand_do_write_ops(chip, to, &ops);
4507
4508         *retlen = ops.retlen;
4509         return ret;
4510 }
4511
4512 /**
4513  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4514  * @mtd: MTD device structure
4515  * @to: offset to write to
4516  * @ops: oob operation description structure
4517  */
4518 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4519                           struct mtd_oob_ops *ops)
4520 {
4521         struct nand_chip *chip = mtd_to_nand(mtd);
4522         int ret = 0;
4523
4524         ops->retlen = 0;
4525
4526         nand_get_device(chip);
4527
4528         switch (ops->mode) {
4529         case MTD_OPS_PLACE_OOB:
4530         case MTD_OPS_AUTO_OOB:
4531         case MTD_OPS_RAW:
4532                 break;
4533
4534         default:
4535                 goto out;
4536         }
4537
4538         if (!ops->datbuf)
4539                 ret = nand_do_write_oob(chip, to, ops);
4540         else
4541                 ret = nand_do_write_ops(chip, to, ops);
4542
4543 out:
4544         nand_release_device(chip);
4545         return ret;
4546 }
4547
4548 /**
4549  * nand_erase - [MTD Interface] erase block(s)
4550  * @mtd: MTD device structure
4551  * @instr: erase instruction
4552  *
4553  * Erase one ore more blocks.
4554  */
4555 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4556 {
4557         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4558 }
4559
4560 /**
4561  * nand_erase_nand - [INTERN] erase block(s)
4562  * @chip: NAND chip object
4563  * @instr: erase instruction
4564  * @allowbbt: allow erasing the bbt area
4565  *
4566  * Erase one ore more blocks.
4567  */
4568 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4569                     int allowbbt)
4570 {
4571         int page, pages_per_block, ret, chipnr;
4572         loff_t len;
4573
4574         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4575                         __func__, (unsigned long long)instr->addr,
4576                         (unsigned long long)instr->len);
4577
4578         if (check_offs_len(chip, instr->addr, instr->len))
4579                 return -EINVAL;
4580
4581         /* Check if the region is secured */
4582         if (nand_region_is_secured(chip, instr->addr, instr->len))
4583                 return -EIO;
4584
4585         /* Grab the lock and see if the device is available */
4586         nand_get_device(chip);
4587
4588         /* Shift to get first page */
4589         page = (int)(instr->addr >> chip->page_shift);
4590         chipnr = (int)(instr->addr >> chip->chip_shift);
4591
4592         /* Calculate pages in each block */
4593         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4594
4595         /* Select the NAND device */
4596         nand_select_target(chip, chipnr);
4597
4598         /* Check, if it is write protected */
4599         if (nand_check_wp(chip)) {
4600                 pr_debug("%s: device is write protected!\n",
4601                                 __func__);
4602                 ret = -EIO;
4603                 goto erase_exit;
4604         }
4605
4606         /* Loop through the pages */
4607         len = instr->len;
4608
4609         while (len) {
4610                 loff_t ofs = (loff_t)page << chip->page_shift;
4611
4612                 /* Check if we have a bad block, we do not erase bad blocks! */
4613                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4614                                         chip->page_shift, allowbbt)) {
4615                         pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4616                                     __func__, (unsigned long long)ofs);
4617                         ret = -EIO;
4618                         goto erase_exit;
4619                 }
4620
4621                 /*
4622                  * Invalidate the page cache, if we erase the block which
4623                  * contains the current cached page.
4624                  */
4625                 if (page <= chip->pagecache.page && chip->pagecache.page <
4626                     (page + pages_per_block))
4627                         chip->pagecache.page = -1;
4628
4629                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4630                                     (chip->phys_erase_shift - chip->page_shift));
4631                 if (ret) {
4632                         pr_debug("%s: failed erase, page 0x%08x\n",
4633                                         __func__, page);
4634                         instr->fail_addr = ofs;
4635                         goto erase_exit;
4636                 }
4637
4638                 /* Increment page address and decrement length */
4639                 len -= (1ULL << chip->phys_erase_shift);
4640                 page += pages_per_block;
4641
4642                 /* Check, if we cross a chip boundary */
4643                 if (len && !(page & chip->pagemask)) {
4644                         chipnr++;
4645                         nand_deselect_target(chip);
4646                         nand_select_target(chip, chipnr);
4647                 }
4648         }
4649
4650         ret = 0;
4651 erase_exit:
4652
4653         /* Deselect and wake up anyone waiting on the device */
4654         nand_deselect_target(chip);
4655         nand_release_device(chip);
4656
4657         /* Return more or less happy */
4658         return ret;
4659 }
4660
4661 /**
4662  * nand_sync - [MTD Interface] sync
4663  * @mtd: MTD device structure
4664  *
4665  * Sync is actually a wait for chip ready function.
4666  */
4667 static void nand_sync(struct mtd_info *mtd)
4668 {
4669         struct nand_chip *chip = mtd_to_nand(mtd);
4670
4671         pr_debug("%s: called\n", __func__);
4672
4673         /* Grab the lock and see if the device is available */
4674         nand_get_device(chip);
4675         /* Release it and go back */
4676         nand_release_device(chip);
4677 }
4678
4679 /**
4680  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4681  * @mtd: MTD device structure
4682  * @offs: offset relative to mtd start
4683  */
4684 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4685 {
4686         struct nand_chip *chip = mtd_to_nand(mtd);
4687         int chipnr = (int)(offs >> chip->chip_shift);
4688         int ret;
4689
4690         /* Select the NAND device */
4691         nand_get_device(chip);
4692
4693         nand_select_target(chip, chipnr);
4694
4695         ret = nand_block_checkbad(chip, offs, 0);
4696
4697         nand_deselect_target(chip);
4698         nand_release_device(chip);
4699
4700         return ret;
4701 }
4702
4703 /**
4704  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4705  * @mtd: MTD device structure
4706  * @ofs: offset relative to mtd start
4707  */
4708 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4709 {
4710         int ret;
4711
4712         ret = nand_block_isbad(mtd, ofs);
4713         if (ret) {
4714                 /* If it was bad already, return success and do nothing */
4715                 if (ret > 0)
4716                         return 0;
4717                 return ret;
4718         }
4719
4720         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4721 }
4722
4723 /**
4724  * nand_suspend - [MTD Interface] Suspend the NAND flash
4725  * @mtd: MTD device structure
4726  *
4727  * Returns 0 for success or negative error code otherwise.
4728  */
4729 static int nand_suspend(struct mtd_info *mtd)
4730 {
4731         struct nand_chip *chip = mtd_to_nand(mtd);
4732         int ret = 0;
4733
4734         mutex_lock(&chip->lock);
4735         if (chip->ops.suspend)
4736                 ret = chip->ops.suspend(chip);
4737         if (!ret)
4738                 chip->suspended = 1;
4739         mutex_unlock(&chip->lock);
4740
4741         return ret;
4742 }
4743
4744 /**
4745  * nand_resume - [MTD Interface] Resume the NAND flash
4746  * @mtd: MTD device structure
4747  */
4748 static void nand_resume(struct mtd_info *mtd)
4749 {
4750         struct nand_chip *chip = mtd_to_nand(mtd);
4751
4752         mutex_lock(&chip->lock);
4753         if (chip->suspended) {
4754                 if (chip->ops.resume)
4755                         chip->ops.resume(chip);
4756                 chip->suspended = 0;
4757         } else {
4758                 pr_err("%s called for a chip which is not in suspended state\n",
4759                         __func__);
4760         }
4761         mutex_unlock(&chip->lock);
4762
4763         wake_up_all(&chip->resume_wq);
4764 }
4765
4766 /**
4767  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4768  *                 prevent further operations
4769  * @mtd: MTD device structure
4770  */
4771 static void nand_shutdown(struct mtd_info *mtd)
4772 {
4773         nand_suspend(mtd);
4774 }
4775
4776 /**
4777  * nand_lock - [MTD Interface] Lock the NAND flash
4778  * @mtd: MTD device structure
4779  * @ofs: offset byte address
4780  * @len: number of bytes to lock (must be a multiple of block/page size)
4781  */
4782 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4783 {
4784         struct nand_chip *chip = mtd_to_nand(mtd);
4785
4786         if (!chip->ops.lock_area)
4787                 return -ENOTSUPP;
4788
4789         return chip->ops.lock_area(chip, ofs, len);
4790 }
4791
4792 /**
4793  * nand_unlock - [MTD Interface] Unlock the NAND flash
4794  * @mtd: MTD device structure
4795  * @ofs: offset byte address
4796  * @len: number of bytes to unlock (must be a multiple of block/page size)
4797  */
4798 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4799 {
4800         struct nand_chip *chip = mtd_to_nand(mtd);
4801
4802         if (!chip->ops.unlock_area)
4803                 return -ENOTSUPP;
4804
4805         return chip->ops.unlock_area(chip, ofs, len);
4806 }
4807
4808 /* Set default functions */
4809 static void nand_set_defaults(struct nand_chip *chip)
4810 {
4811         /* If no controller is provided, use the dummy, legacy one. */
4812         if (!chip->controller) {
4813                 chip->controller = &chip->legacy.dummy_controller;
4814                 nand_controller_init(chip->controller);
4815         }
4816
4817         nand_legacy_set_defaults(chip);
4818
4819         if (!chip->buf_align)
4820                 chip->buf_align = 1;
4821 }
4822
4823 /* Sanitize ONFI strings so we can safely print them */
4824 void sanitize_string(uint8_t *s, size_t len)
4825 {
4826         ssize_t i;
4827
4828         /* Null terminate */
4829         s[len - 1] = 0;
4830
4831         /* Remove non printable chars */
4832         for (i = 0; i < len - 1; i++) {
4833                 if (s[i] < ' ' || s[i] > 127)
4834                         s[i] = '?';
4835         }
4836
4837         /* Remove trailing spaces */
4838         strim(s);
4839 }
4840
4841 /*
4842  * nand_id_has_period - Check if an ID string has a given wraparound period
4843  * @id_data: the ID string
4844  * @arrlen: the length of the @id_data array
4845  * @period: the period of repitition
4846  *
4847  * Check if an ID string is repeated within a given sequence of bytes at
4848  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4849  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4850  * if the repetition has a period of @period; otherwise, returns zero.
4851  */
4852 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4853 {
4854         int i, j;
4855         for (i = 0; i < period; i++)
4856                 for (j = i + period; j < arrlen; j += period)
4857                         if (id_data[i] != id_data[j])
4858                                 return 0;
4859         return 1;
4860 }
4861
4862 /*
4863  * nand_id_len - Get the length of an ID string returned by CMD_READID
4864  * @id_data: the ID string
4865  * @arrlen: the length of the @id_data array
4866
4867  * Returns the length of the ID string, according to known wraparound/trailing
4868  * zero patterns. If no pattern exists, returns the length of the array.
4869  */
4870 static int nand_id_len(u8 *id_data, int arrlen)
4871 {
4872         int last_nonzero, period;
4873
4874         /* Find last non-zero byte */
4875         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4876                 if (id_data[last_nonzero])
4877                         break;
4878
4879         /* All zeros */
4880         if (last_nonzero < 0)
4881                 return 0;
4882
4883         /* Calculate wraparound period */
4884         for (period = 1; period < arrlen; period++)
4885                 if (nand_id_has_period(id_data, arrlen, period))
4886                         break;
4887
4888         /* There's a repeated pattern */
4889         if (period < arrlen)
4890                 return period;
4891
4892         /* There are trailing zeros */
4893         if (last_nonzero < arrlen - 1)
4894                 return last_nonzero + 1;
4895
4896         /* No pattern detected */
4897         return arrlen;
4898 }
4899
4900 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4901 static int nand_get_bits_per_cell(u8 cellinfo)
4902 {
4903         int bits;
4904
4905         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4906         bits >>= NAND_CI_CELLTYPE_SHIFT;
4907         return bits + 1;
4908 }
4909
4910 /*
4911  * Many new NAND share similar device ID codes, which represent the size of the
4912  * chip. The rest of the parameters must be decoded according to generic or
4913  * manufacturer-specific "extended ID" decoding patterns.
4914  */
4915 void nand_decode_ext_id(struct nand_chip *chip)
4916 {
4917         struct nand_memory_organization *memorg;
4918         struct mtd_info *mtd = nand_to_mtd(chip);
4919         int extid;
4920         u8 *id_data = chip->id.data;
4921
4922         memorg = nanddev_get_memorg(&chip->base);
4923
4924         /* The 3rd id byte holds MLC / multichip data */
4925         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4926         /* The 4th id byte is the important one */
4927         extid = id_data[3];
4928
4929         /* Calc pagesize */
4930         memorg->pagesize = 1024 << (extid & 0x03);
4931         mtd->writesize = memorg->pagesize;
4932         extid >>= 2;
4933         /* Calc oobsize */
4934         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4935         mtd->oobsize = memorg->oobsize;
4936         extid >>= 2;
4937         /* Calc blocksize. Blocksize is multiples of 64KiB */
4938         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4939                                        memorg->pagesize;
4940         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4941         extid >>= 2;
4942         /* Get buswidth information */
4943         if (extid & 0x1)
4944                 chip->options |= NAND_BUSWIDTH_16;
4945 }
4946 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4947
4948 /*
4949  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4950  * decodes a matching ID table entry and assigns the MTD size parameters for
4951  * the chip.
4952  */
4953 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4954 {
4955         struct mtd_info *mtd = nand_to_mtd(chip);
4956         struct nand_memory_organization *memorg;
4957
4958         memorg = nanddev_get_memorg(&chip->base);
4959
4960         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4961         mtd->erasesize = type->erasesize;
4962         memorg->pagesize = type->pagesize;
4963         mtd->writesize = memorg->pagesize;
4964         memorg->oobsize = memorg->pagesize / 32;
4965         mtd->oobsize = memorg->oobsize;
4966
4967         /* All legacy ID NAND are small-page, SLC */
4968         memorg->bits_per_cell = 1;
4969 }
4970
4971 /*
4972  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4973  * heuristic patterns using various detected parameters (e.g., manufacturer,
4974  * page size, cell-type information).
4975  */
4976 static void nand_decode_bbm_options(struct nand_chip *chip)
4977 {
4978         struct mtd_info *mtd = nand_to_mtd(chip);
4979
4980         /* Set the bad block position */
4981         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4982                 chip->badblockpos = NAND_BBM_POS_LARGE;
4983         else
4984                 chip->badblockpos = NAND_BBM_POS_SMALL;
4985 }
4986
4987 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4988 {
4989         return type->id_len;
4990 }
4991
4992 static bool find_full_id_nand(struct nand_chip *chip,
4993                               struct nand_flash_dev *type)
4994 {
4995         struct nand_device *base = &chip->base;
4996         struct nand_ecc_props requirements;
4997         struct mtd_info *mtd = nand_to_mtd(chip);
4998         struct nand_memory_organization *memorg;
4999         u8 *id_data = chip->id.data;
5000
5001         memorg = nanddev_get_memorg(&chip->base);
5002
5003         if (!strncmp(type->id, id_data, type->id_len)) {
5004                 memorg->pagesize = type->pagesize;
5005                 mtd->writesize = memorg->pagesize;
5006                 memorg->pages_per_eraseblock = type->erasesize /
5007                                                type->pagesize;
5008                 mtd->erasesize = type->erasesize;
5009                 memorg->oobsize = type->oobsize;
5010                 mtd->oobsize = memorg->oobsize;
5011
5012                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5013                 memorg->eraseblocks_per_lun =
5014                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5015                                            memorg->pagesize *
5016                                            memorg->pages_per_eraseblock);
5017                 chip->options |= type->options;
5018                 requirements.strength = NAND_ECC_STRENGTH(type);
5019                 requirements.step_size = NAND_ECC_STEP(type);
5020                 nanddev_set_ecc_requirements(base, &requirements);
5021
5022                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5023                 if (!chip->parameters.model)
5024                         return false;
5025
5026                 return true;
5027         }
5028         return false;
5029 }
5030
5031 /*
5032  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5033  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5034  * table.
5035  */
5036 static void nand_manufacturer_detect(struct nand_chip *chip)
5037 {
5038         /*
5039          * Try manufacturer detection if available and use
5040          * nand_decode_ext_id() otherwise.
5041          */
5042         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5043             chip->manufacturer.desc->ops->detect) {
5044                 struct nand_memory_organization *memorg;
5045
5046                 memorg = nanddev_get_memorg(&chip->base);
5047
5048                 /* The 3rd id byte holds MLC / multichip data */
5049                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5050                 chip->manufacturer.desc->ops->detect(chip);
5051         } else {
5052                 nand_decode_ext_id(chip);
5053         }
5054 }
5055
5056 /*
5057  * Manufacturer initialization. This function is called for all NANDs including
5058  * ONFI and JEDEC compliant ones.
5059  * Manufacturer drivers should put all their specific initialization code in
5060  * their ->init() hook.
5061  */
5062 static int nand_manufacturer_init(struct nand_chip *chip)
5063 {
5064         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5065             !chip->manufacturer.desc->ops->init)
5066                 return 0;
5067
5068         return chip->manufacturer.desc->ops->init(chip);
5069 }
5070
5071 /*
5072  * Manufacturer cleanup. This function is called for all NANDs including
5073  * ONFI and JEDEC compliant ones.
5074  * Manufacturer drivers should put all their specific cleanup code in their
5075  * ->cleanup() hook.
5076  */
5077 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5078 {
5079         /* Release manufacturer private data */
5080         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5081             chip->manufacturer.desc->ops->cleanup)
5082                 chip->manufacturer.desc->ops->cleanup(chip);
5083 }
5084
5085 static const char *
5086 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5087 {
5088         return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5089 }
5090
5091 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5092 {
5093         /* Use an arbitrary size for the check */
5094         if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5095                 chip->controller->supported_op.data_only_read = 1;
5096 }
5097
5098 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5099 {
5100         /* The supported_op fields should not be set by individual drivers */
5101         WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5102
5103         if (!nand_has_exec_op(chip))
5104                 return;
5105
5106         rawnand_check_data_only_read_support(chip);
5107 }
5108
5109 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5110 {
5111         struct mtd_info *mtd = nand_to_mtd(chip);
5112
5113         if (chip->read_retries)
5114                 return;
5115
5116         if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5117                                             mtd->writesize, true))
5118                 chip->controller->supported_op.cont_read = 1;
5119 }
5120
5121 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5122 {
5123         /* The supported_op fields should not be set by individual drivers */
5124         WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5125
5126         if (!nand_has_exec_op(chip))
5127                 return;
5128
5129         rawnand_check_cont_read_support(chip);
5130 }
5131
5132 /*
5133  * Get the flash and manufacturer id and lookup if the type is supported.
5134  */
5135 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5136 {
5137         const struct nand_manufacturer_desc *manufacturer_desc;
5138         struct mtd_info *mtd = nand_to_mtd(chip);
5139         struct nand_memory_organization *memorg;
5140         int busw, ret;
5141         u8 *id_data = chip->id.data;
5142         u8 maf_id, dev_id;
5143         u64 targetsize;
5144
5145         /*
5146          * Let's start by initializing memorg fields that might be left
5147          * unassigned by the ID-based detection logic.
5148          */
5149         memorg = nanddev_get_memorg(&chip->base);
5150         memorg->planes_per_lun = 1;
5151         memorg->luns_per_target = 1;
5152
5153         /*
5154          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5155          * after power-up.
5156          */
5157         ret = nand_reset(chip, 0);
5158         if (ret)
5159                 return ret;
5160
5161         /* Select the device */
5162         nand_select_target(chip, 0);
5163
5164         rawnand_early_check_supported_ops(chip);
5165
5166         /* Send the command for reading device ID */
5167         ret = nand_readid_op(chip, 0, id_data, 2);
5168         if (ret)
5169                 return ret;
5170
5171         /* Read manufacturer and device IDs */
5172         maf_id = id_data[0];
5173         dev_id = id_data[1];
5174
5175         /*
5176          * Try again to make sure, as some systems the bus-hold or other
5177          * interface concerns can cause random data which looks like a
5178          * possibly credible NAND flash to appear. If the two results do
5179          * not match, ignore the device completely.
5180          */
5181
5182         /* Read entire ID string */
5183         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5184         if (ret)
5185                 return ret;
5186
5187         if (id_data[0] != maf_id || id_data[1] != dev_id) {
5188                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5189                         maf_id, dev_id, id_data[0], id_data[1]);
5190                 return -ENODEV;
5191         }
5192
5193         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5194
5195         /* Try to identify manufacturer */
5196         manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5197         chip->manufacturer.desc = manufacturer_desc;
5198
5199         if (!type)
5200                 type = nand_flash_ids;
5201
5202         /*
5203          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5204          * override it.
5205          * This is required to make sure initial NAND bus width set by the
5206          * NAND controller driver is coherent with the real NAND bus width
5207          * (extracted by auto-detection code).
5208          */
5209         busw = chip->options & NAND_BUSWIDTH_16;
5210
5211         /*
5212          * The flag is only set (never cleared), reset it to its default value
5213          * before starting auto-detection.
5214          */
5215         chip->options &= ~NAND_BUSWIDTH_16;
5216
5217         for (; type->name != NULL; type++) {
5218                 if (is_full_id_nand(type)) {
5219                         if (find_full_id_nand(chip, type))
5220                                 goto ident_done;
5221                 } else if (dev_id == type->dev_id) {
5222                         break;
5223                 }
5224         }
5225
5226         if (!type->name || !type->pagesize) {
5227                 /* Check if the chip is ONFI compliant */
5228                 ret = nand_onfi_detect(chip);
5229                 if (ret < 0)
5230                         return ret;
5231                 else if (ret)
5232                         goto ident_done;
5233
5234                 /* Check if the chip is JEDEC compliant */
5235                 ret = nand_jedec_detect(chip);
5236                 if (ret < 0)
5237                         return ret;
5238                 else if (ret)
5239                         goto ident_done;
5240         }
5241
5242         if (!type->name)
5243                 return -ENODEV;
5244
5245         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5246         if (!chip->parameters.model)
5247                 return -ENOMEM;
5248
5249         if (!type->pagesize)
5250                 nand_manufacturer_detect(chip);
5251         else
5252                 nand_decode_id(chip, type);
5253
5254         /* Get chip options */
5255         chip->options |= type->options;
5256
5257         memorg->eraseblocks_per_lun =
5258                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5259                                            memorg->pagesize *
5260                                            memorg->pages_per_eraseblock);
5261
5262 ident_done:
5263         if (!mtd->name)
5264                 mtd->name = chip->parameters.model;
5265
5266         if (chip->options & NAND_BUSWIDTH_AUTO) {
5267                 WARN_ON(busw & NAND_BUSWIDTH_16);
5268                 nand_set_defaults(chip);
5269         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5270                 /*
5271                  * Check, if buswidth is correct. Hardware drivers should set
5272                  * chip correct!
5273                  */
5274                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5275                         maf_id, dev_id);
5276                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5277                         mtd->name);
5278                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5279                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5280                 ret = -EINVAL;
5281
5282                 goto free_detect_allocation;
5283         }
5284
5285         nand_decode_bbm_options(chip);
5286
5287         /* Calculate the address shift from the page size */
5288         chip->page_shift = ffs(mtd->writesize) - 1;
5289         /* Convert chipsize to number of pages per chip -1 */
5290         targetsize = nanddev_target_size(&chip->base);
5291         chip->pagemask = (targetsize >> chip->page_shift) - 1;
5292
5293         chip->bbt_erase_shift = chip->phys_erase_shift =
5294                 ffs(mtd->erasesize) - 1;
5295         if (targetsize & 0xffffffff)
5296                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5297         else {
5298                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5299                 chip->chip_shift += 32 - 1;
5300         }
5301
5302         if (chip->chip_shift - chip->page_shift > 16)
5303                 chip->options |= NAND_ROW_ADDR_3;
5304
5305         chip->badblockbits = 8;
5306
5307         nand_legacy_adjust_cmdfunc(chip);
5308
5309         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5310                 maf_id, dev_id);
5311         pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5312                 chip->parameters.model);
5313         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5314                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5315                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5316         return 0;
5317
5318 free_detect_allocation:
5319         kfree(chip->parameters.model);
5320
5321         return ret;
5322 }
5323
5324 static enum nand_ecc_engine_type
5325 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5326 {
5327         enum nand_ecc_legacy_mode {
5328                 NAND_ECC_INVALID,
5329                 NAND_ECC_NONE,
5330                 NAND_ECC_SOFT,
5331                 NAND_ECC_SOFT_BCH,
5332                 NAND_ECC_HW,
5333                 NAND_ECC_HW_SYNDROME,
5334                 NAND_ECC_ON_DIE,
5335         };
5336         const char * const nand_ecc_legacy_modes[] = {
5337                 [NAND_ECC_NONE]         = "none",
5338                 [NAND_ECC_SOFT]         = "soft",
5339                 [NAND_ECC_SOFT_BCH]     = "soft_bch",
5340                 [NAND_ECC_HW]           = "hw",
5341                 [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5342                 [NAND_ECC_ON_DIE]       = "on-die",
5343         };
5344         enum nand_ecc_legacy_mode eng_type;
5345         const char *pm;
5346         int err;
5347
5348         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5349         if (err)
5350                 return NAND_ECC_ENGINE_TYPE_INVALID;
5351
5352         for (eng_type = NAND_ECC_NONE;
5353              eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5354                 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5355                         switch (eng_type) {
5356                         case NAND_ECC_NONE:
5357                                 return NAND_ECC_ENGINE_TYPE_NONE;
5358                         case NAND_ECC_SOFT:
5359                         case NAND_ECC_SOFT_BCH:
5360                                 return NAND_ECC_ENGINE_TYPE_SOFT;
5361                         case NAND_ECC_HW:
5362                         case NAND_ECC_HW_SYNDROME:
5363                                 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5364                         case NAND_ECC_ON_DIE:
5365                                 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5366                         default:
5367                                 break;
5368                         }
5369                 }
5370         }
5371
5372         return NAND_ECC_ENGINE_TYPE_INVALID;
5373 }
5374
5375 static enum nand_ecc_placement
5376 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5377 {
5378         const char *pm;
5379         int err;
5380
5381         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5382         if (!err) {
5383                 if (!strcasecmp(pm, "hw_syndrome"))
5384                         return NAND_ECC_PLACEMENT_INTERLEAVED;
5385         }
5386
5387         return NAND_ECC_PLACEMENT_UNKNOWN;
5388 }
5389
5390 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5391 {
5392         const char *pm;
5393         int err;
5394
5395         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5396         if (!err) {
5397                 if (!strcasecmp(pm, "soft"))
5398                         return NAND_ECC_ALGO_HAMMING;
5399                 else if (!strcasecmp(pm, "soft_bch"))
5400                         return NAND_ECC_ALGO_BCH;
5401         }
5402
5403         return NAND_ECC_ALGO_UNKNOWN;
5404 }
5405
5406 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5407 {
5408         struct device_node *dn = nand_get_flash_node(chip);
5409         struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5410
5411         if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5412                 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5413
5414         if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5415                 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5416
5417         if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5418                 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5419 }
5420
5421 static int of_get_nand_bus_width(struct nand_chip *chip)
5422 {
5423         struct device_node *dn = nand_get_flash_node(chip);
5424         u32 val;
5425         int ret;
5426
5427         ret = of_property_read_u32(dn, "nand-bus-width", &val);
5428         if (ret == -EINVAL)
5429                 /* Buswidth defaults to 8 if the property does not exist .*/
5430                 return 0;
5431         else if (ret)
5432                 return ret;
5433
5434         if (val == 16)
5435                 chip->options |= NAND_BUSWIDTH_16;
5436         else if (val != 8)
5437                 return -EINVAL;
5438         return 0;
5439 }
5440
5441 static int of_get_nand_secure_regions(struct nand_chip *chip)
5442 {
5443         struct device_node *dn = nand_get_flash_node(chip);
5444         struct property *prop;
5445         int nr_elem, i, j;
5446
5447         /* Only proceed if the "secure-regions" property is present in DT */
5448         prop = of_find_property(dn, "secure-regions", NULL);
5449         if (!prop)
5450                 return 0;
5451
5452         nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5453         if (nr_elem <= 0)
5454                 return nr_elem;
5455
5456         chip->nr_secure_regions = nr_elem / 2;
5457         chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5458                                        GFP_KERNEL);
5459         if (!chip->secure_regions)
5460                 return -ENOMEM;
5461
5462         for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5463                 of_property_read_u64_index(dn, "secure-regions", j,
5464                                            &chip->secure_regions[i].offset);
5465                 of_property_read_u64_index(dn, "secure-regions", j + 1,
5466                                            &chip->secure_regions[i].size);
5467         }
5468
5469         return 0;
5470 }
5471
5472 /**
5473  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5474  * @dev: Device that will be parsed. Also used for managed allocations.
5475  * @cs_array: Array of GPIO desc pointers allocated on success
5476  * @ncs_array: Number of entries in @cs_array updated on success.
5477  * @return 0 on success, an error otherwise.
5478  */
5479 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5480                              unsigned int *ncs_array)
5481 {
5482         struct gpio_desc **descs;
5483         int ndescs, i;
5484
5485         ndescs = gpiod_count(dev, "cs");
5486         if (ndescs < 0) {
5487                 dev_dbg(dev, "No valid cs-gpios property\n");
5488                 return 0;
5489         }
5490
5491         descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5492         if (!descs)
5493                 return -ENOMEM;
5494
5495         for (i = 0; i < ndescs; i++) {
5496                 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5497                                                     GPIOD_OUT_HIGH);
5498                 if (IS_ERR(descs[i]))
5499                         return PTR_ERR(descs[i]);
5500         }
5501
5502         *ncs_array = ndescs;
5503         *cs_array = descs;
5504
5505         return 0;
5506 }
5507 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5508
5509 static int rawnand_dt_init(struct nand_chip *chip)
5510 {
5511         struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5512         struct device_node *dn = nand_get_flash_node(chip);
5513         int ret;
5514
5515         if (!dn)
5516                 return 0;
5517
5518         ret = of_get_nand_bus_width(chip);
5519         if (ret)
5520                 return ret;
5521
5522         if (of_property_read_bool(dn, "nand-is-boot-medium"))
5523                 chip->options |= NAND_IS_BOOT_MEDIUM;
5524
5525         if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5526                 chip->bbt_options |= NAND_BBT_USE_FLASH;
5527
5528         of_get_nand_ecc_user_config(nand);
5529         of_get_nand_ecc_legacy_user_config(chip);
5530
5531         /*
5532          * If neither the user nor the NAND controller have requested a specific
5533          * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5534          */
5535         nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5536
5537         /*
5538          * Use the user requested engine type, unless there is none, in this
5539          * case default to the NAND controller choice, otherwise fallback to
5540          * the raw NAND default one.
5541          */
5542         if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5543                 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5544         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5545                 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5546
5547         chip->ecc.placement = nand->ecc.user_conf.placement;
5548         chip->ecc.algo = nand->ecc.user_conf.algo;
5549         chip->ecc.strength = nand->ecc.user_conf.strength;
5550         chip->ecc.size = nand->ecc.user_conf.step_size;
5551
5552         return 0;
5553 }
5554
5555 /**
5556  * nand_scan_ident - Scan for the NAND device
5557  * @chip: NAND chip object
5558  * @maxchips: number of chips to scan for
5559  * @table: alternative NAND ID table
5560  *
5561  * This is the first phase of the normal nand_scan() function. It reads the
5562  * flash ID and sets up MTD fields accordingly.
5563  *
5564  * This helper used to be called directly from controller drivers that needed
5565  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5566  * prevented dynamic allocations during this phase which was unconvenient and
5567  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5568  */
5569 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5570                            struct nand_flash_dev *table)
5571 {
5572         struct mtd_info *mtd = nand_to_mtd(chip);
5573         struct nand_memory_organization *memorg;
5574         int nand_maf_id, nand_dev_id;
5575         unsigned int i;
5576         int ret;
5577
5578         memorg = nanddev_get_memorg(&chip->base);
5579
5580         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5581         chip->cur_cs = -1;
5582
5583         mutex_init(&chip->lock);
5584         init_waitqueue_head(&chip->resume_wq);
5585
5586         /* Enforce the right timings for reset/detection */
5587         chip->current_interface_config = nand_get_reset_interface_config();
5588
5589         ret = rawnand_dt_init(chip);
5590         if (ret)
5591                 return ret;
5592
5593         if (!mtd->name && mtd->dev.parent)
5594                 mtd->name = dev_name(mtd->dev.parent);
5595
5596         /* Set the default functions */
5597         nand_set_defaults(chip);
5598
5599         ret = nand_legacy_check_hooks(chip);
5600         if (ret)
5601                 return ret;
5602
5603         memorg->ntargets = maxchips;
5604
5605         /* Read the flash type */
5606         ret = nand_detect(chip, table);
5607         if (ret) {
5608                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5609                         pr_warn("No NAND device found\n");
5610                 nand_deselect_target(chip);
5611                 return ret;
5612         }
5613
5614         nand_maf_id = chip->id.data[0];
5615         nand_dev_id = chip->id.data[1];
5616
5617         nand_deselect_target(chip);
5618
5619         /* Check for a chip array */
5620         for (i = 1; i < maxchips; i++) {
5621                 u8 id[2];
5622
5623                 /* See comment in nand_get_flash_type for reset */
5624                 ret = nand_reset(chip, i);
5625                 if (ret)
5626                         break;
5627
5628                 nand_select_target(chip, i);
5629                 /* Send the command for reading device ID */
5630                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5631                 if (ret)
5632                         break;
5633                 /* Read manufacturer and device IDs */
5634                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5635                         nand_deselect_target(chip);
5636                         break;
5637                 }
5638                 nand_deselect_target(chip);
5639         }
5640         if (i > 1)
5641                 pr_info("%d chips detected\n", i);
5642
5643         /* Store the number of chips and calc total size for mtd */
5644         memorg->ntargets = i;
5645         mtd->size = i * nanddev_target_size(&chip->base);
5646
5647         return 0;
5648 }
5649
5650 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5651 {
5652         kfree(chip->parameters.model);
5653         kfree(chip->parameters.onfi);
5654 }
5655
5656 int rawnand_sw_hamming_init(struct nand_chip *chip)
5657 {
5658         struct nand_ecc_sw_hamming_conf *engine_conf;
5659         struct nand_device *base = &chip->base;
5660         int ret;
5661
5662         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5663         base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5664         base->ecc.user_conf.strength = chip->ecc.strength;
5665         base->ecc.user_conf.step_size = chip->ecc.size;
5666
5667         ret = nand_ecc_sw_hamming_init_ctx(base);
5668         if (ret)
5669                 return ret;
5670
5671         engine_conf = base->ecc.ctx.priv;
5672
5673         if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5674                 engine_conf->sm_order = true;
5675
5676         chip->ecc.size = base->ecc.ctx.conf.step_size;
5677         chip->ecc.strength = base->ecc.ctx.conf.strength;
5678         chip->ecc.total = base->ecc.ctx.total;
5679         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5680         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5681
5682         return 0;
5683 }
5684 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5685
5686 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5687                                  const unsigned char *buf,
5688                                  unsigned char *code)
5689 {
5690         struct nand_device *base = &chip->base;
5691
5692         return nand_ecc_sw_hamming_calculate(base, buf, code);
5693 }
5694 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5695
5696 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5697                                unsigned char *buf,
5698                                unsigned char *read_ecc,
5699                                unsigned char *calc_ecc)
5700 {
5701         struct nand_device *base = &chip->base;
5702
5703         return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5704 }
5705 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5706
5707 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5708 {
5709         struct nand_device *base = &chip->base;
5710
5711         nand_ecc_sw_hamming_cleanup_ctx(base);
5712 }
5713 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5714
5715 int rawnand_sw_bch_init(struct nand_chip *chip)
5716 {
5717         struct nand_device *base = &chip->base;
5718         const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5719         int ret;
5720
5721         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5722         base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5723         base->ecc.user_conf.step_size = chip->ecc.size;
5724         base->ecc.user_conf.strength = chip->ecc.strength;
5725
5726         ret = nand_ecc_sw_bch_init_ctx(base);
5727         if (ret)
5728                 return ret;
5729
5730         chip->ecc.size = ecc_conf->step_size;
5731         chip->ecc.strength = ecc_conf->strength;
5732         chip->ecc.total = base->ecc.ctx.total;
5733         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5734         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5735
5736         return 0;
5737 }
5738 EXPORT_SYMBOL(rawnand_sw_bch_init);
5739
5740 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5741                                     const unsigned char *buf,
5742                                     unsigned char *code)
5743 {
5744         struct nand_device *base = &chip->base;
5745
5746         return nand_ecc_sw_bch_calculate(base, buf, code);
5747 }
5748
5749 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5750                            unsigned char *read_ecc, unsigned char *calc_ecc)
5751 {
5752         struct nand_device *base = &chip->base;
5753
5754         return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5755 }
5756 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5757
5758 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5759 {
5760         struct nand_device *base = &chip->base;
5761
5762         nand_ecc_sw_bch_cleanup_ctx(base);
5763 }
5764 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5765
5766 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5767 {
5768         struct nand_ecc_ctrl *ecc = &chip->ecc;
5769
5770         switch (ecc->placement) {
5771         case NAND_ECC_PLACEMENT_UNKNOWN:
5772         case NAND_ECC_PLACEMENT_OOB:
5773                 /* Use standard hwecc read page function? */
5774                 if (!ecc->read_page)
5775                         ecc->read_page = nand_read_page_hwecc;
5776                 if (!ecc->write_page)
5777                         ecc->write_page = nand_write_page_hwecc;
5778                 if (!ecc->read_page_raw)
5779                         ecc->read_page_raw = nand_read_page_raw;
5780                 if (!ecc->write_page_raw)
5781                         ecc->write_page_raw = nand_write_page_raw;
5782                 if (!ecc->read_oob)
5783                         ecc->read_oob = nand_read_oob_std;
5784                 if (!ecc->write_oob)
5785                         ecc->write_oob = nand_write_oob_std;
5786                 if (!ecc->read_subpage)
5787                         ecc->read_subpage = nand_read_subpage;
5788                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5789                         ecc->write_subpage = nand_write_subpage_hwecc;
5790                 fallthrough;
5791
5792         case NAND_ECC_PLACEMENT_INTERLEAVED:
5793                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5794                     (!ecc->read_page ||
5795                      ecc->read_page == nand_read_page_hwecc ||
5796                      !ecc->write_page ||
5797                      ecc->write_page == nand_write_page_hwecc)) {
5798                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5799                         return -EINVAL;
5800                 }
5801                 /* Use standard syndrome read/write page function? */
5802                 if (!ecc->read_page)
5803                         ecc->read_page = nand_read_page_syndrome;
5804                 if (!ecc->write_page)
5805                         ecc->write_page = nand_write_page_syndrome;
5806                 if (!ecc->read_page_raw)
5807                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5808                 if (!ecc->write_page_raw)
5809                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5810                 if (!ecc->read_oob)
5811                         ecc->read_oob = nand_read_oob_syndrome;
5812                 if (!ecc->write_oob)
5813                         ecc->write_oob = nand_write_oob_syndrome;
5814                 break;
5815
5816         default:
5817                 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5818                         ecc->placement);
5819                 return -EINVAL;
5820         }
5821
5822         return 0;
5823 }
5824
5825 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5826 {
5827         struct mtd_info *mtd = nand_to_mtd(chip);
5828         struct nand_device *nanddev = mtd_to_nanddev(mtd);
5829         struct nand_ecc_ctrl *ecc = &chip->ecc;
5830         int ret;
5831
5832         if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5833                 return -EINVAL;
5834
5835         switch (ecc->algo) {
5836         case NAND_ECC_ALGO_HAMMING:
5837                 ecc->calculate = rawnand_sw_hamming_calculate;
5838                 ecc->correct = rawnand_sw_hamming_correct;
5839                 ecc->read_page = nand_read_page_swecc;
5840                 ecc->read_subpage = nand_read_subpage;
5841                 ecc->write_page = nand_write_page_swecc;
5842                 if (!ecc->read_page_raw)
5843                         ecc->read_page_raw = nand_read_page_raw;
5844                 if (!ecc->write_page_raw)
5845                         ecc->write_page_raw = nand_write_page_raw;
5846                 ecc->read_oob = nand_read_oob_std;
5847                 ecc->write_oob = nand_write_oob_std;
5848                 if (!ecc->size)
5849                         ecc->size = 256;
5850                 ecc->bytes = 3;
5851                 ecc->strength = 1;
5852
5853                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5854                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5855
5856                 ret = rawnand_sw_hamming_init(chip);
5857                 if (ret) {
5858                         WARN(1, "Hamming ECC initialization failed!\n");
5859                         return ret;
5860                 }
5861
5862                 return 0;
5863         case NAND_ECC_ALGO_BCH:
5864                 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5865                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5866                         return -EINVAL;
5867                 }
5868                 ecc->calculate = rawnand_sw_bch_calculate;
5869                 ecc->correct = rawnand_sw_bch_correct;
5870                 ecc->read_page = nand_read_page_swecc;
5871                 ecc->read_subpage = nand_read_subpage;
5872                 ecc->write_page = nand_write_page_swecc;
5873                 if (!ecc->read_page_raw)
5874                         ecc->read_page_raw = nand_read_page_raw;
5875                 if (!ecc->write_page_raw)
5876                         ecc->write_page_raw = nand_write_page_raw;
5877                 ecc->read_oob = nand_read_oob_std;
5878                 ecc->write_oob = nand_write_oob_std;
5879
5880                 /*
5881                  * We can only maximize ECC config when the default layout is
5882                  * used, otherwise we don't know how many bytes can really be
5883                  * used.
5884                  */
5885                 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5886                     mtd->ooblayout != nand_get_large_page_ooblayout())
5887                         nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5888
5889                 ret = rawnand_sw_bch_init(chip);
5890                 if (ret) {
5891                         WARN(1, "BCH ECC initialization failed!\n");
5892                         return ret;
5893                 }
5894
5895                 return 0;
5896         default:
5897                 WARN(1, "Unsupported ECC algorithm!\n");
5898                 return -EINVAL;
5899         }
5900 }
5901
5902 /**
5903  * nand_check_ecc_caps - check the sanity of preset ECC settings
5904  * @chip: nand chip info structure
5905  * @caps: ECC caps info structure
5906  * @oobavail: OOB size that the ECC engine can use
5907  *
5908  * When ECC step size and strength are already set, check if they are supported
5909  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5910  * On success, the calculated ECC bytes is set.
5911  */
5912 static int
5913 nand_check_ecc_caps(struct nand_chip *chip,
5914                     const struct nand_ecc_caps *caps, int oobavail)
5915 {
5916         struct mtd_info *mtd = nand_to_mtd(chip);
5917         const struct nand_ecc_step_info *stepinfo;
5918         int preset_step = chip->ecc.size;
5919         int preset_strength = chip->ecc.strength;
5920         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5921         int i, j;
5922
5923         for (i = 0; i < caps->nstepinfos; i++) {
5924                 stepinfo = &caps->stepinfos[i];
5925
5926                 if (stepinfo->stepsize != preset_step)
5927                         continue;
5928
5929                 for (j = 0; j < stepinfo->nstrengths; j++) {
5930                         if (stepinfo->strengths[j] != preset_strength)
5931                                 continue;
5932
5933                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5934                                                          preset_strength);
5935                         if (WARN_ON_ONCE(ecc_bytes < 0))
5936                                 return ecc_bytes;
5937
5938                         if (ecc_bytes * nsteps > oobavail) {
5939                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5940                                        preset_step, preset_strength);
5941                                 return -ENOSPC;
5942                         }
5943
5944                         chip->ecc.bytes = ecc_bytes;
5945
5946                         return 0;
5947                 }
5948         }
5949
5950         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5951                preset_step, preset_strength);
5952
5953         return -ENOTSUPP;
5954 }
5955
5956 /**
5957  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5958  * @chip: nand chip info structure
5959  * @caps: ECC engine caps info structure
5960  * @oobavail: OOB size that the ECC engine can use
5961  *
5962  * If a chip's ECC requirement is provided, try to meet it with the least
5963  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5964  * On success, the chosen ECC settings are set.
5965  */
5966 static int
5967 nand_match_ecc_req(struct nand_chip *chip,
5968                    const struct nand_ecc_caps *caps, int oobavail)
5969 {
5970         const struct nand_ecc_props *requirements =
5971                 nanddev_get_ecc_requirements(&chip->base);
5972         struct mtd_info *mtd = nand_to_mtd(chip);
5973         const struct nand_ecc_step_info *stepinfo;
5974         int req_step = requirements->step_size;
5975         int req_strength = requirements->strength;
5976         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5977         int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
5978         int best_ecc_bytes_total = INT_MAX;
5979         int i, j;
5980
5981         /* No information provided by the NAND chip */
5982         if (!req_step || !req_strength)
5983                 return -ENOTSUPP;
5984
5985         /* number of correctable bits the chip requires in a page */
5986         req_corr = mtd->writesize / req_step * req_strength;
5987
5988         for (i = 0; i < caps->nstepinfos; i++) {
5989                 stepinfo = &caps->stepinfos[i];
5990                 step_size = stepinfo->stepsize;
5991
5992                 for (j = 0; j < stepinfo->nstrengths; j++) {
5993                         strength = stepinfo->strengths[j];
5994
5995                         /*
5996                          * If both step size and strength are smaller than the
5997                          * chip's requirement, it is not easy to compare the
5998                          * resulted reliability.
5999                          */
6000                         if (step_size < req_step && strength < req_strength)
6001                                 continue;
6002
6003                         if (mtd->writesize % step_size)
6004                                 continue;
6005
6006                         nsteps = mtd->writesize / step_size;
6007
6008                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6009                         if (WARN_ON_ONCE(ecc_bytes < 0))
6010                                 continue;
6011                         ecc_bytes_total = ecc_bytes * nsteps;
6012
6013                         if (ecc_bytes_total > oobavail ||
6014                             strength * nsteps < req_corr)
6015                                 continue;
6016
6017                         /*
6018                          * We assume the best is to meet the chip's requrement
6019                          * with the least number of ECC bytes.
6020                          */
6021                         if (ecc_bytes_total < best_ecc_bytes_total) {
6022                                 best_ecc_bytes_total = ecc_bytes_total;
6023                                 best_step = step_size;
6024                                 best_strength = strength;
6025                                 best_ecc_bytes = ecc_bytes;
6026                         }
6027                 }
6028         }
6029
6030         if (best_ecc_bytes_total == INT_MAX)
6031                 return -ENOTSUPP;
6032
6033         chip->ecc.size = best_step;
6034         chip->ecc.strength = best_strength;
6035         chip->ecc.bytes = best_ecc_bytes;
6036
6037         return 0;
6038 }
6039
6040 /**
6041  * nand_maximize_ecc - choose the max ECC strength available
6042  * @chip: nand chip info structure
6043  * @caps: ECC engine caps info structure
6044  * @oobavail: OOB size that the ECC engine can use
6045  *
6046  * Choose the max ECC strength that is supported on the controller, and can fit
6047  * within the chip's OOB.  On success, the chosen ECC settings are set.
6048  */
6049 static int
6050 nand_maximize_ecc(struct nand_chip *chip,
6051                   const struct nand_ecc_caps *caps, int oobavail)
6052 {
6053         struct mtd_info *mtd = nand_to_mtd(chip);
6054         const struct nand_ecc_step_info *stepinfo;
6055         int step_size, strength, nsteps, ecc_bytes, corr;
6056         int best_corr = 0;
6057         int best_step = 0;
6058         int best_strength = 0, best_ecc_bytes = 0;
6059         int i, j;
6060
6061         for (i = 0; i < caps->nstepinfos; i++) {
6062                 stepinfo = &caps->stepinfos[i];
6063                 step_size = stepinfo->stepsize;
6064
6065                 /* If chip->ecc.size is already set, respect it */
6066                 if (chip->ecc.size && step_size != chip->ecc.size)
6067                         continue;
6068
6069                 for (j = 0; j < stepinfo->nstrengths; j++) {
6070                         strength = stepinfo->strengths[j];
6071
6072                         if (mtd->writesize % step_size)
6073                                 continue;
6074
6075                         nsteps = mtd->writesize / step_size;
6076
6077                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6078                         if (WARN_ON_ONCE(ecc_bytes < 0))
6079                                 continue;
6080
6081                         if (ecc_bytes * nsteps > oobavail)
6082                                 continue;
6083
6084                         corr = strength * nsteps;
6085
6086                         /*
6087                          * If the number of correctable bits is the same,
6088                          * bigger step_size has more reliability.
6089                          */
6090                         if (corr > best_corr ||
6091                             (corr == best_corr && step_size > best_step)) {
6092                                 best_corr = corr;
6093                                 best_step = step_size;
6094                                 best_strength = strength;
6095                                 best_ecc_bytes = ecc_bytes;
6096                         }
6097                 }
6098         }
6099
6100         if (!best_corr)
6101                 return -ENOTSUPP;
6102
6103         chip->ecc.size = best_step;
6104         chip->ecc.strength = best_strength;
6105         chip->ecc.bytes = best_ecc_bytes;
6106
6107         return 0;
6108 }
6109
6110 /**
6111  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6112  * @chip: nand chip info structure
6113  * @caps: ECC engine caps info structure
6114  * @oobavail: OOB size that the ECC engine can use
6115  *
6116  * Choose the ECC configuration according to following logic.
6117  *
6118  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6119  *    then check if it is supported by this controller.
6120  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6121  *    ECC strength.
6122  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6123  *    to the chip's requirement. If available OOB size can't fit the chip
6124  *    requirement then fallback to the maximum ECC step size and ECC strength.
6125  *
6126  * On success, the chosen ECC settings are set.
6127  */
6128 int nand_ecc_choose_conf(struct nand_chip *chip,
6129                          const struct nand_ecc_caps *caps, int oobavail)
6130 {
6131         struct mtd_info *mtd = nand_to_mtd(chip);
6132         struct nand_device *nanddev = mtd_to_nanddev(mtd);
6133
6134         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6135                 return -EINVAL;
6136
6137         if (chip->ecc.size && chip->ecc.strength)
6138                 return nand_check_ecc_caps(chip, caps, oobavail);
6139
6140         if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6141                 return nand_maximize_ecc(chip, caps, oobavail);
6142
6143         if (!nand_match_ecc_req(chip, caps, oobavail))
6144                 return 0;
6145
6146         return nand_maximize_ecc(chip, caps, oobavail);
6147 }
6148 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6149
6150 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6151 {
6152         struct nand_chip *chip = container_of(nand, struct nand_chip,
6153                                               base);
6154         unsigned int eb = nanddev_pos_to_row(nand, pos);
6155         int ret;
6156
6157         eb >>= nand->rowconv.eraseblock_addr_shift;
6158
6159         nand_select_target(chip, pos->target);
6160         ret = nand_erase_op(chip, eb);
6161         nand_deselect_target(chip);
6162
6163         return ret;
6164 }
6165
6166 static int rawnand_markbad(struct nand_device *nand,
6167                            const struct nand_pos *pos)
6168 {
6169         struct nand_chip *chip = container_of(nand, struct nand_chip,
6170                                               base);
6171
6172         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6173 }
6174
6175 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6176 {
6177         struct nand_chip *chip = container_of(nand, struct nand_chip,
6178                                               base);
6179         int ret;
6180
6181         nand_select_target(chip, pos->target);
6182         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6183         nand_deselect_target(chip);
6184
6185         return ret;
6186 }
6187
6188 static const struct nand_ops rawnand_ops = {
6189         .erase = rawnand_erase,
6190         .markbad = rawnand_markbad,
6191         .isbad = rawnand_isbad,
6192 };
6193
6194 /**
6195  * nand_scan_tail - Scan for the NAND device
6196  * @chip: NAND chip object
6197  *
6198  * This is the second phase of the normal nand_scan() function. It fills out
6199  * all the uninitialized function pointers with the defaults and scans for a
6200  * bad block table if appropriate.
6201  */
6202 static int nand_scan_tail(struct nand_chip *chip)
6203 {
6204         struct mtd_info *mtd = nand_to_mtd(chip);
6205         struct nand_ecc_ctrl *ecc = &chip->ecc;
6206         int ret, i;
6207
6208         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6209         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6210                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6211                 return -EINVAL;
6212         }
6213
6214         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6215         if (!chip->data_buf)
6216                 return -ENOMEM;
6217
6218         /*
6219          * FIXME: some NAND manufacturer drivers expect the first die to be
6220          * selected when manufacturer->init() is called. They should be fixed
6221          * to explictly select the relevant die when interacting with the NAND
6222          * chip.
6223          */
6224         nand_select_target(chip, 0);
6225         ret = nand_manufacturer_init(chip);
6226         nand_deselect_target(chip);
6227         if (ret)
6228                 goto err_free_buf;
6229
6230         /* Set the internal oob buffer location, just after the page data */
6231         chip->oob_poi = chip->data_buf + mtd->writesize;
6232
6233         /*
6234          * If no default placement scheme is given, select an appropriate one.
6235          */
6236         if (!mtd->ooblayout &&
6237             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6238               ecc->algo == NAND_ECC_ALGO_BCH) &&
6239             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6240               ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6241                 switch (mtd->oobsize) {
6242                 case 8:
6243                 case 16:
6244                         mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6245                         break;
6246                 case 64:
6247                 case 128:
6248                         mtd_set_ooblayout(mtd,
6249                                           nand_get_large_page_hamming_ooblayout());
6250                         break;
6251                 default:
6252                         /*
6253                          * Expose the whole OOB area to users if ECC_NONE
6254                          * is passed. We could do that for all kind of
6255                          * ->oobsize, but we must keep the old large/small
6256                          * page with ECC layout when ->oobsize <= 128 for
6257                          * compatibility reasons.
6258                          */
6259                         if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6260                                 mtd_set_ooblayout(mtd,
6261                                                   nand_get_large_page_ooblayout());
6262                                 break;
6263                         }
6264
6265                         WARN(1, "No oob scheme defined for oobsize %d\n",
6266                                 mtd->oobsize);
6267                         ret = -EINVAL;
6268                         goto err_nand_manuf_cleanup;
6269                 }
6270         }
6271
6272         /*
6273          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6274          * selected and we have 256 byte pagesize fallback to software ECC
6275          */
6276
6277         switch (ecc->engine_type) {
6278         case NAND_ECC_ENGINE_TYPE_ON_HOST:
6279                 ret = nand_set_ecc_on_host_ops(chip);
6280                 if (ret)
6281                         goto err_nand_manuf_cleanup;
6282
6283                 if (mtd->writesize >= ecc->size) {
6284                         if (!ecc->strength) {
6285                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6286                                 ret = -EINVAL;
6287                                 goto err_nand_manuf_cleanup;
6288                         }
6289                         break;
6290                 }
6291                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6292                         ecc->size, mtd->writesize);
6293                 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6294                 ecc->algo = NAND_ECC_ALGO_HAMMING;
6295                 fallthrough;
6296
6297         case NAND_ECC_ENGINE_TYPE_SOFT:
6298                 ret = nand_set_ecc_soft_ops(chip);
6299                 if (ret)
6300                         goto err_nand_manuf_cleanup;
6301                 break;
6302
6303         case NAND_ECC_ENGINE_TYPE_ON_DIE:
6304                 if (!ecc->read_page || !ecc->write_page) {
6305                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6306                         ret = -EINVAL;
6307                         goto err_nand_manuf_cleanup;
6308                 }
6309                 if (!ecc->read_oob)
6310                         ecc->read_oob = nand_read_oob_std;
6311                 if (!ecc->write_oob)
6312                         ecc->write_oob = nand_write_oob_std;
6313                 break;
6314
6315         case NAND_ECC_ENGINE_TYPE_NONE:
6316                 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6317                 ecc->read_page = nand_read_page_raw;
6318                 ecc->write_page = nand_write_page_raw;
6319                 ecc->read_oob = nand_read_oob_std;
6320                 ecc->read_page_raw = nand_read_page_raw;
6321                 ecc->write_page_raw = nand_write_page_raw;
6322                 ecc->write_oob = nand_write_oob_std;
6323                 ecc->size = mtd->writesize;
6324                 ecc->bytes = 0;
6325                 ecc->strength = 0;
6326                 break;
6327
6328         default:
6329                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6330                 ret = -EINVAL;
6331                 goto err_nand_manuf_cleanup;
6332         }
6333
6334         if (ecc->correct || ecc->calculate) {
6335                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6336                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6337                 if (!ecc->calc_buf || !ecc->code_buf) {
6338                         ret = -ENOMEM;
6339                         goto err_nand_manuf_cleanup;
6340                 }
6341         }
6342
6343         /* For many systems, the standard OOB write also works for raw */
6344         if (!ecc->read_oob_raw)
6345                 ecc->read_oob_raw = ecc->read_oob;
6346         if (!ecc->write_oob_raw)
6347                 ecc->write_oob_raw = ecc->write_oob;
6348
6349         /* propagate ecc info to mtd_info */
6350         mtd->ecc_strength = ecc->strength;
6351         mtd->ecc_step_size = ecc->size;
6352
6353         /*
6354          * Set the number of read / write steps for one page depending on ECC
6355          * mode.
6356          */
6357         if (!ecc->steps)
6358                 ecc->steps = mtd->writesize / ecc->size;
6359         if (ecc->steps * ecc->size != mtd->writesize) {
6360                 WARN(1, "Invalid ECC parameters\n");
6361                 ret = -EINVAL;
6362                 goto err_nand_manuf_cleanup;
6363         }
6364
6365         if (!ecc->total) {
6366                 ecc->total = ecc->steps * ecc->bytes;
6367                 chip->base.ecc.ctx.total = ecc->total;
6368         }
6369
6370         if (ecc->total > mtd->oobsize) {
6371                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6372                 ret = -EINVAL;
6373                 goto err_nand_manuf_cleanup;
6374         }
6375
6376         /*
6377          * The number of bytes available for a client to place data into
6378          * the out of band area.
6379          */
6380         ret = mtd_ooblayout_count_freebytes(mtd);
6381         if (ret < 0)
6382                 ret = 0;
6383
6384         mtd->oobavail = ret;
6385
6386         /* ECC sanity check: warn if it's too weak */
6387         if (!nand_ecc_is_strong_enough(&chip->base))
6388                 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6389                         mtd->name, chip->ecc.strength, chip->ecc.size,
6390                         nanddev_get_ecc_requirements(&chip->base)->strength,
6391                         nanddev_get_ecc_requirements(&chip->base)->step_size);
6392
6393         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6394         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6395                 switch (ecc->steps) {
6396                 case 2:
6397                         mtd->subpage_sft = 1;
6398                         break;
6399                 case 4:
6400                 case 8:
6401                 case 16:
6402                         mtd->subpage_sft = 2;
6403                         break;
6404                 }
6405         }
6406         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6407
6408         /* Invalidate the pagebuffer reference */
6409         chip->pagecache.page = -1;
6410
6411         /* Large page NAND with SOFT_ECC should support subpage reads */
6412         switch (ecc->engine_type) {
6413         case NAND_ECC_ENGINE_TYPE_SOFT:
6414                 if (chip->page_shift > 9)
6415                         chip->options |= NAND_SUBPAGE_READ;
6416                 break;
6417
6418         default:
6419                 break;
6420         }
6421
6422         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6423         if (ret)
6424                 goto err_nand_manuf_cleanup;
6425
6426         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6427         if (chip->options & NAND_ROM)
6428                 mtd->flags = MTD_CAP_ROM;
6429
6430         /* Fill in remaining MTD driver data */
6431         mtd->_erase = nand_erase;
6432         mtd->_point = NULL;
6433         mtd->_unpoint = NULL;
6434         mtd->_panic_write = panic_nand_write;
6435         mtd->_read_oob = nand_read_oob;
6436         mtd->_write_oob = nand_write_oob;
6437         mtd->_sync = nand_sync;
6438         mtd->_lock = nand_lock;
6439         mtd->_unlock = nand_unlock;
6440         mtd->_suspend = nand_suspend;
6441         mtd->_resume = nand_resume;
6442         mtd->_reboot = nand_shutdown;
6443         mtd->_block_isreserved = nand_block_isreserved;
6444         mtd->_block_isbad = nand_block_isbad;
6445         mtd->_block_markbad = nand_block_markbad;
6446         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6447
6448         /*
6449          * Initialize bitflip_threshold to its default prior scan_bbt() call.
6450          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6451          * properly set.
6452          */
6453         if (!mtd->bitflip_threshold)
6454                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6455
6456         /* Find the fastest data interface for this chip */
6457         ret = nand_choose_interface_config(chip);
6458         if (ret)
6459                 goto err_nanddev_cleanup;
6460
6461         /* Enter fastest possible mode on all dies. */
6462         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6463                 ret = nand_setup_interface(chip, i);
6464                 if (ret)
6465                         goto err_free_interface_config;
6466         }
6467
6468         rawnand_late_check_supported_ops(chip);
6469
6470         /*
6471          * Look for secure regions in the NAND chip. These regions are supposed
6472          * to be protected by a secure element like Trustzone. So the read/write
6473          * accesses to these regions will be blocked in the runtime by this
6474          * driver.
6475          */
6476         ret = of_get_nand_secure_regions(chip);
6477         if (ret)
6478                 goto err_free_interface_config;
6479
6480         /* Check, if we should skip the bad block table scan */
6481         if (chip->options & NAND_SKIP_BBTSCAN)
6482                 return 0;
6483
6484         /* Build bad block table */
6485         ret = nand_create_bbt(chip);
6486         if (ret)
6487                 goto err_free_secure_regions;
6488
6489         return 0;
6490
6491 err_free_secure_regions:
6492         kfree(chip->secure_regions);
6493
6494 err_free_interface_config:
6495         kfree(chip->best_interface_config);
6496
6497 err_nanddev_cleanup:
6498         nanddev_cleanup(&chip->base);
6499
6500 err_nand_manuf_cleanup:
6501         nand_manufacturer_cleanup(chip);
6502
6503 err_free_buf:
6504         kfree(chip->data_buf);
6505         kfree(ecc->code_buf);
6506         kfree(ecc->calc_buf);
6507
6508         return ret;
6509 }
6510
6511 static int nand_attach(struct nand_chip *chip)
6512 {
6513         if (chip->controller->ops && chip->controller->ops->attach_chip)
6514                 return chip->controller->ops->attach_chip(chip);
6515
6516         return 0;
6517 }
6518
6519 static void nand_detach(struct nand_chip *chip)
6520 {
6521         if (chip->controller->ops && chip->controller->ops->detach_chip)
6522                 chip->controller->ops->detach_chip(chip);
6523 }
6524
6525 /**
6526  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6527  * @chip: NAND chip object
6528  * @maxchips: number of chips to scan for.
6529  * @ids: optional flash IDs table
6530  *
6531  * This fills out all the uninitialized function pointers with the defaults.
6532  * The flash ID is read and the mtd/chip structures are filled with the
6533  * appropriate values.
6534  */
6535 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6536                        struct nand_flash_dev *ids)
6537 {
6538         int ret;
6539
6540         if (!maxchips)
6541                 return -EINVAL;
6542
6543         ret = nand_scan_ident(chip, maxchips, ids);
6544         if (ret)
6545                 return ret;
6546
6547         ret = nand_attach(chip);
6548         if (ret)
6549                 goto cleanup_ident;
6550
6551         ret = nand_scan_tail(chip);
6552         if (ret)
6553                 goto detach_chip;
6554
6555         return 0;
6556
6557 detach_chip:
6558         nand_detach(chip);
6559 cleanup_ident:
6560         nand_scan_ident_cleanup(chip);
6561
6562         return ret;
6563 }
6564 EXPORT_SYMBOL(nand_scan_with_ids);
6565
6566 /**
6567  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6568  * @chip: NAND chip object
6569  */
6570 void nand_cleanup(struct nand_chip *chip)
6571 {
6572         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6573                 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6574                         rawnand_sw_hamming_cleanup(chip);
6575                 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6576                         rawnand_sw_bch_cleanup(chip);
6577         }
6578
6579         nanddev_cleanup(&chip->base);
6580
6581         /* Free secure regions data */
6582         kfree(chip->secure_regions);
6583
6584         /* Free bad block table memory */
6585         kfree(chip->bbt);
6586         kfree(chip->data_buf);
6587         kfree(chip->ecc.code_buf);
6588         kfree(chip->ecc.calc_buf);
6589
6590         /* Free bad block descriptor memory */
6591         if (chip->badblock_pattern && chip->badblock_pattern->options
6592                         & NAND_BBT_DYNAMICSTRUCT)
6593                 kfree(chip->badblock_pattern);
6594
6595         /* Free the data interface */
6596         kfree(chip->best_interface_config);
6597
6598         /* Free manufacturer priv data. */
6599         nand_manufacturer_cleanup(chip);
6600
6601         /* Free controller specific allocations after chip identification */
6602         nand_detach(chip);
6603
6604         /* Free identification phase allocations */
6605         nand_scan_ident_cleanup(chip);
6606 }
6607
6608 EXPORT_SYMBOL_GPL(nand_cleanup);
6609
6610 MODULE_LICENSE("GPL");
6611 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6612 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6613 MODULE_DESCRIPTION("Generic NAND flash driver code");