Merge tag 'mtd/for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand_ecc.h>
38 #include <linux/mtd/nand_bch.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/of.h>
44 #include <linux/gpio/consumer.h>
45
46 #include "internals.h"
47
48 /* Define default oob placement schemes for large and small page devices */
49 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
50                                  struct mtd_oob_region *oobregion)
51 {
52         struct nand_chip *chip = mtd_to_nand(mtd);
53         struct nand_ecc_ctrl *ecc = &chip->ecc;
54
55         if (section > 1)
56                 return -ERANGE;
57
58         if (!section) {
59                 oobregion->offset = 0;
60                 if (mtd->oobsize == 16)
61                         oobregion->length = 4;
62                 else
63                         oobregion->length = 3;
64         } else {
65                 if (mtd->oobsize == 8)
66                         return -ERANGE;
67
68                 oobregion->offset = 6;
69                 oobregion->length = ecc->total - 4;
70         }
71
72         return 0;
73 }
74
75 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
76                                   struct mtd_oob_region *oobregion)
77 {
78         if (section > 1)
79                 return -ERANGE;
80
81         if (mtd->oobsize == 16) {
82                 if (section)
83                         return -ERANGE;
84
85                 oobregion->length = 8;
86                 oobregion->offset = 8;
87         } else {
88                 oobregion->length = 2;
89                 if (!section)
90                         oobregion->offset = 3;
91                 else
92                         oobregion->offset = 6;
93         }
94
95         return 0;
96 }
97
98 const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
99         .ecc = nand_ooblayout_ecc_sp,
100         .free = nand_ooblayout_free_sp,
101 };
102 EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
103
104 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
105                                  struct mtd_oob_region *oobregion)
106 {
107         struct nand_chip *chip = mtd_to_nand(mtd);
108         struct nand_ecc_ctrl *ecc = &chip->ecc;
109
110         if (section || !ecc->total)
111                 return -ERANGE;
112
113         oobregion->length = ecc->total;
114         oobregion->offset = mtd->oobsize - oobregion->length;
115
116         return 0;
117 }
118
119 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
120                                   struct mtd_oob_region *oobregion)
121 {
122         struct nand_chip *chip = mtd_to_nand(mtd);
123         struct nand_ecc_ctrl *ecc = &chip->ecc;
124
125         if (section)
126                 return -ERANGE;
127
128         oobregion->length = mtd->oobsize - ecc->total - 2;
129         oobregion->offset = 2;
130
131         return 0;
132 }
133
134 const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
135         .ecc = nand_ooblayout_ecc_lp,
136         .free = nand_ooblayout_free_lp,
137 };
138 EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
139
140 /*
141  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
142  * are placed at a fixed offset.
143  */
144 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
145                                          struct mtd_oob_region *oobregion)
146 {
147         struct nand_chip *chip = mtd_to_nand(mtd);
148         struct nand_ecc_ctrl *ecc = &chip->ecc;
149
150         if (section)
151                 return -ERANGE;
152
153         switch (mtd->oobsize) {
154         case 64:
155                 oobregion->offset = 40;
156                 break;
157         case 128:
158                 oobregion->offset = 80;
159                 break;
160         default:
161                 return -EINVAL;
162         }
163
164         oobregion->length = ecc->total;
165         if (oobregion->offset + oobregion->length > mtd->oobsize)
166                 return -ERANGE;
167
168         return 0;
169 }
170
171 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
172                                           struct mtd_oob_region *oobregion)
173 {
174         struct nand_chip *chip = mtd_to_nand(mtd);
175         struct nand_ecc_ctrl *ecc = &chip->ecc;
176         int ecc_offset = 0;
177
178         if (section < 0 || section > 1)
179                 return -ERANGE;
180
181         switch (mtd->oobsize) {
182         case 64:
183                 ecc_offset = 40;
184                 break;
185         case 128:
186                 ecc_offset = 80;
187                 break;
188         default:
189                 return -EINVAL;
190         }
191
192         if (section == 0) {
193                 oobregion->offset = 2;
194                 oobregion->length = ecc_offset - 2;
195         } else {
196                 oobregion->offset = ecc_offset + ecc->total;
197                 oobregion->length = mtd->oobsize - oobregion->offset;
198         }
199
200         return 0;
201 }
202
203 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
204         .ecc = nand_ooblayout_ecc_lp_hamming,
205         .free = nand_ooblayout_free_lp_hamming,
206 };
207
208 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
209 {
210         int ret = 0;
211
212         /* Start address must align on block boundary */
213         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
214                 pr_debug("%s: unaligned address\n", __func__);
215                 ret = -EINVAL;
216         }
217
218         /* Length must align on block boundary */
219         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
220                 pr_debug("%s: length not block aligned\n", __func__);
221                 ret = -EINVAL;
222         }
223
224         return ret;
225 }
226
227 /**
228  * nand_select_target() - Select a NAND target (A.K.A. die)
229  * @chip: NAND chip object
230  * @cs: the CS line to select. Note that this CS id is always from the chip
231  *      PoV, not the controller one
232  *
233  * Select a NAND target so that further operations executed on @chip go to the
234  * selected NAND target.
235  */
236 void nand_select_target(struct nand_chip *chip, unsigned int cs)
237 {
238         /*
239          * cs should always lie between 0 and nanddev_ntargets(), when that's
240          * not the case it's a bug and the caller should be fixed.
241          */
242         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
243                 return;
244
245         chip->cur_cs = cs;
246
247         if (chip->legacy.select_chip)
248                 chip->legacy.select_chip(chip, cs);
249 }
250 EXPORT_SYMBOL_GPL(nand_select_target);
251
252 /**
253  * nand_deselect_target() - Deselect the currently selected target
254  * @chip: NAND chip object
255  *
256  * Deselect the currently selected NAND target. The result of operations
257  * executed on @chip after the target has been deselected is undefined.
258  */
259 void nand_deselect_target(struct nand_chip *chip)
260 {
261         if (chip->legacy.select_chip)
262                 chip->legacy.select_chip(chip, -1);
263
264         chip->cur_cs = -1;
265 }
266 EXPORT_SYMBOL_GPL(nand_deselect_target);
267
268 /**
269  * nand_release_device - [GENERIC] release chip
270  * @chip: NAND chip object
271  *
272  * Release chip lock and wake up anyone waiting on the device.
273  */
274 static void nand_release_device(struct nand_chip *chip)
275 {
276         /* Release the controller and the chip */
277         mutex_unlock(&chip->controller->lock);
278         mutex_unlock(&chip->lock);
279 }
280
281 /**
282  * nand_bbm_get_next_page - Get the next page for bad block markers
283  * @chip: NAND chip object
284  * @page: First page to start checking for bad block marker usage
285  *
286  * Returns an integer that corresponds to the page offset within a block, for
287  * a page that is used to store bad block markers. If no more pages are
288  * available, -EINVAL is returned.
289  */
290 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
291 {
292         struct mtd_info *mtd = nand_to_mtd(chip);
293         int last_page = ((mtd->erasesize - mtd->writesize) >>
294                          chip->page_shift) & chip->pagemask;
295
296         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
297                 return 0;
298         else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
299                 return 1;
300         else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
301                 return last_page;
302
303         return -EINVAL;
304 }
305
306 /**
307  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
308  * @chip: NAND chip object
309  * @ofs: offset from device start
310  *
311  * Check, if the block is bad.
312  */
313 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
314 {
315         int first_page, page_offset;
316         int res;
317         u8 bad;
318
319         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
320         page_offset = nand_bbm_get_next_page(chip, 0);
321
322         while (page_offset >= 0) {
323                 res = chip->ecc.read_oob(chip, first_page + page_offset);
324                 if (res < 0)
325                         return res;
326
327                 bad = chip->oob_poi[chip->badblockpos];
328
329                 if (likely(chip->badblockbits == 8))
330                         res = bad != 0xFF;
331                 else
332                         res = hweight8(bad) < chip->badblockbits;
333                 if (res)
334                         return res;
335
336                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
337         }
338
339         return 0;
340 }
341
342 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
343 {
344         if (chip->legacy.block_bad)
345                 return chip->legacy.block_bad(chip, ofs);
346
347         return nand_block_bad(chip, ofs);
348 }
349
350 /**
351  * nand_get_device - [GENERIC] Get chip for selected access
352  * @chip: NAND chip structure
353  *
354  * Lock the device and its controller for exclusive access
355  *
356  * Return: -EBUSY if the chip has been suspended, 0 otherwise
357  */
358 static int nand_get_device(struct nand_chip *chip)
359 {
360         mutex_lock(&chip->lock);
361         if (chip->suspended) {
362                 mutex_unlock(&chip->lock);
363                 return -EBUSY;
364         }
365         mutex_lock(&chip->controller->lock);
366
367         return 0;
368 }
369
370 /**
371  * nand_check_wp - [GENERIC] check if the chip is write protected
372  * @chip: NAND chip object
373  *
374  * Check, if the device is write protected. The function expects, that the
375  * device is already selected.
376  */
377 static int nand_check_wp(struct nand_chip *chip)
378 {
379         u8 status;
380         int ret;
381
382         /* Broken xD cards report WP despite being writable */
383         if (chip->options & NAND_BROKEN_XD)
384                 return 0;
385
386         /* Check the WP bit */
387         ret = nand_status_op(chip, &status);
388         if (ret)
389                 return ret;
390
391         return status & NAND_STATUS_WP ? 0 : 1;
392 }
393
394 /**
395  * nand_fill_oob - [INTERN] Transfer client buffer to oob
396  * @chip: NAND chip object
397  * @oob: oob data buffer
398  * @len: oob data write length
399  * @ops: oob ops structure
400  */
401 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
402                               struct mtd_oob_ops *ops)
403 {
404         struct mtd_info *mtd = nand_to_mtd(chip);
405         int ret;
406
407         /*
408          * Initialise to all 0xFF, to avoid the possibility of left over OOB
409          * data from a previous OOB read.
410          */
411         memset(chip->oob_poi, 0xff, mtd->oobsize);
412
413         switch (ops->mode) {
414
415         case MTD_OPS_PLACE_OOB:
416         case MTD_OPS_RAW:
417                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
418                 return oob + len;
419
420         case MTD_OPS_AUTO_OOB:
421                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
422                                                   ops->ooboffs, len);
423                 BUG_ON(ret);
424                 return oob + len;
425
426         default:
427                 BUG();
428         }
429         return NULL;
430 }
431
432 /**
433  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
434  * @chip: NAND chip object
435  * @to: offset to write to
436  * @ops: oob operation description structure
437  *
438  * NAND write out-of-band.
439  */
440 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
441                              struct mtd_oob_ops *ops)
442 {
443         struct mtd_info *mtd = nand_to_mtd(chip);
444         int chipnr, page, status, len, ret;
445
446         pr_debug("%s: to = 0x%08x, len = %i\n",
447                          __func__, (unsigned int)to, (int)ops->ooblen);
448
449         len = mtd_oobavail(mtd, ops);
450
451         /* Do not allow write past end of page */
452         if ((ops->ooboffs + ops->ooblen) > len) {
453                 pr_debug("%s: attempt to write past end of page\n",
454                                 __func__);
455                 return -EINVAL;
456         }
457
458         chipnr = (int)(to >> chip->chip_shift);
459
460         /*
461          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
462          * of my DiskOnChip 2000 test units) will clear the whole data page too
463          * if we don't do this. I have no clue why, but I seem to have 'fixed'
464          * it in the doc2000 driver in August 1999.  dwmw2.
465          */
466         ret = nand_reset(chip, chipnr);
467         if (ret)
468                 return ret;
469
470         nand_select_target(chip, chipnr);
471
472         /* Shift to get page */
473         page = (int)(to >> chip->page_shift);
474
475         /* Check, if it is write protected */
476         if (nand_check_wp(chip)) {
477                 nand_deselect_target(chip);
478                 return -EROFS;
479         }
480
481         /* Invalidate the page cache, if we write to the cached page */
482         if (page == chip->pagecache.page)
483                 chip->pagecache.page = -1;
484
485         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
486
487         if (ops->mode == MTD_OPS_RAW)
488                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
489         else
490                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
491
492         nand_deselect_target(chip);
493
494         if (status)
495                 return status;
496
497         ops->oobretlen = ops->ooblen;
498
499         return 0;
500 }
501
502 /**
503  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
504  * @chip: NAND chip object
505  * @ofs: offset from device start
506  *
507  * This is the default implementation, which can be overridden by a hardware
508  * specific driver. It provides the details for writing a bad block marker to a
509  * block.
510  */
511 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
512 {
513         struct mtd_info *mtd = nand_to_mtd(chip);
514         struct mtd_oob_ops ops;
515         uint8_t buf[2] = { 0, 0 };
516         int ret = 0, res, page_offset;
517
518         memset(&ops, 0, sizeof(ops));
519         ops.oobbuf = buf;
520         ops.ooboffs = chip->badblockpos;
521         if (chip->options & NAND_BUSWIDTH_16) {
522                 ops.ooboffs &= ~0x01;
523                 ops.len = ops.ooblen = 2;
524         } else {
525                 ops.len = ops.ooblen = 1;
526         }
527         ops.mode = MTD_OPS_PLACE_OOB;
528
529         page_offset = nand_bbm_get_next_page(chip, 0);
530
531         while (page_offset >= 0) {
532                 res = nand_do_write_oob(chip,
533                                         ofs + (page_offset * mtd->writesize),
534                                         &ops);
535
536                 if (!ret)
537                         ret = res;
538
539                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
540         }
541
542         return ret;
543 }
544
545 /**
546  * nand_markbad_bbm - mark a block by updating the BBM
547  * @chip: NAND chip object
548  * @ofs: offset of the block to mark bad
549  */
550 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
551 {
552         if (chip->legacy.block_markbad)
553                 return chip->legacy.block_markbad(chip, ofs);
554
555         return nand_default_block_markbad(chip, ofs);
556 }
557
558 /**
559  * nand_block_markbad_lowlevel - mark a block bad
560  * @chip: NAND chip object
561  * @ofs: offset from device start
562  *
563  * This function performs the generic NAND bad block marking steps (i.e., bad
564  * block table(s) and/or marker(s)). We only allow the hardware driver to
565  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
566  *
567  * We try operations in the following order:
568  *
569  *  (1) erase the affected block, to allow OOB marker to be written cleanly
570  *  (2) write bad block marker to OOB area of affected block (unless flag
571  *      NAND_BBT_NO_OOB_BBM is present)
572  *  (3) update the BBT
573  *
574  * Note that we retain the first error encountered in (2) or (3), finish the
575  * procedures, and dump the error in the end.
576 */
577 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
578 {
579         struct mtd_info *mtd = nand_to_mtd(chip);
580         int res, ret = 0;
581
582         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
583                 struct erase_info einfo;
584
585                 /* Attempt erase before marking OOB */
586                 memset(&einfo, 0, sizeof(einfo));
587                 einfo.addr = ofs;
588                 einfo.len = 1ULL << chip->phys_erase_shift;
589                 nand_erase_nand(chip, &einfo, 0);
590
591                 /* Write bad block marker to OOB */
592                 ret = nand_get_device(chip);
593                 if (ret)
594                         return ret;
595
596                 ret = nand_markbad_bbm(chip, ofs);
597                 nand_release_device(chip);
598         }
599
600         /* Mark block bad in BBT */
601         if (chip->bbt) {
602                 res = nand_markbad_bbt(chip, ofs);
603                 if (!ret)
604                         ret = res;
605         }
606
607         if (!ret)
608                 mtd->ecc_stats.badblocks++;
609
610         return ret;
611 }
612
613 /**
614  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
615  * @mtd: MTD device structure
616  * @ofs: offset from device start
617  *
618  * Check if the block is marked as reserved.
619  */
620 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
621 {
622         struct nand_chip *chip = mtd_to_nand(mtd);
623
624         if (!chip->bbt)
625                 return 0;
626         /* Return info from the table */
627         return nand_isreserved_bbt(chip, ofs);
628 }
629
630 /**
631  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
632  * @chip: NAND chip object
633  * @ofs: offset from device start
634  * @allowbbt: 1, if its allowed to access the bbt area
635  *
636  * Check, if the block is bad. Either by reading the bad block table or
637  * calling of the scan function.
638  */
639 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
640 {
641         /* Return info from the table */
642         if (chip->bbt)
643                 return nand_isbad_bbt(chip, ofs, allowbbt);
644
645         return nand_isbad_bbm(chip, ofs);
646 }
647
648 /**
649  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
650  * @chip: NAND chip structure
651  * @timeout_ms: Timeout in ms
652  *
653  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
654  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
655  * returned.
656  *
657  * This helper is intended to be used when the controller does not have access
658  * to the NAND R/B pin.
659  *
660  * Be aware that calling this helper from an ->exec_op() implementation means
661  * ->exec_op() must be re-entrant.
662  *
663  * Return 0 if the NAND chip is ready, a negative error otherwise.
664  */
665 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
666 {
667         const struct nand_sdr_timings *timings;
668         u8 status = 0;
669         int ret;
670
671         if (!nand_has_exec_op(chip))
672                 return -ENOTSUPP;
673
674         /* Wait tWB before polling the STATUS reg. */
675         timings = nand_get_sdr_timings(&chip->data_interface);
676         ndelay(PSEC_TO_NSEC(timings->tWB_max));
677
678         ret = nand_status_op(chip, NULL);
679         if (ret)
680                 return ret;
681
682         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
683         do {
684                 ret = nand_read_data_op(chip, &status, sizeof(status), true);
685                 if (ret)
686                         break;
687
688                 if (status & NAND_STATUS_READY)
689                         break;
690
691                 /*
692                  * Typical lowest execution time for a tR on most NANDs is 10us,
693                  * use this as polling delay before doing something smarter (ie.
694                  * deriving a delay from the timeout value, timeout_ms/ratio).
695                  */
696                 udelay(10);
697         } while (time_before(jiffies, timeout_ms));
698
699         /*
700          * We have to exit READ_STATUS mode in order to read real data on the
701          * bus in case the WAITRDY instruction is preceding a DATA_IN
702          * instruction.
703          */
704         nand_exit_status_op(chip);
705
706         if (ret)
707                 return ret;
708
709         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
710 };
711 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
712
713 /**
714  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
715  * @chip: NAND chip structure
716  * @gpiod: GPIO descriptor of R/B pin
717  * @timeout_ms: Timeout in ms
718  *
719  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
720  * whitin the specified timeout, -ETIMEDOUT is returned.
721  *
722  * This helper is intended to be used when the controller has access to the
723  * NAND R/B pin over GPIO.
724  *
725  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
726  */
727 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
728                       unsigned long timeout_ms)
729 {
730         /* Wait until R/B pin indicates chip is ready or timeout occurs */
731         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
732         do {
733                 if (gpiod_get_value_cansleep(gpiod))
734                         return 0;
735
736                 cond_resched();
737         } while (time_before(jiffies, timeout_ms));
738
739         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
740 };
741 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
742
743 /**
744  * panic_nand_wait - [GENERIC] wait until the command is done
745  * @chip: NAND chip structure
746  * @timeo: timeout
747  *
748  * Wait for command done. This is a helper function for nand_wait used when
749  * we are in interrupt context. May happen when in panic and trying to write
750  * an oops through mtdoops.
751  */
752 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
753 {
754         int i;
755         for (i = 0; i < timeo; i++) {
756                 if (chip->legacy.dev_ready) {
757                         if (chip->legacy.dev_ready(chip))
758                                 break;
759                 } else {
760                         int ret;
761                         u8 status;
762
763                         ret = nand_read_data_op(chip, &status, sizeof(status),
764                                                 true);
765                         if (ret)
766                                 return;
767
768                         if (status & NAND_STATUS_READY)
769                                 break;
770                 }
771                 mdelay(1);
772         }
773 }
774
775 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
776 {
777         return (chip->parameters.supports_set_get_features &&
778                 test_bit(addr, chip->parameters.get_feature_list));
779 }
780
781 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
782 {
783         return (chip->parameters.supports_set_get_features &&
784                 test_bit(addr, chip->parameters.set_feature_list));
785 }
786
787 /**
788  * nand_reset_data_interface - Reset data interface and timings
789  * @chip: The NAND chip
790  * @chipnr: Internal die id
791  *
792  * Reset the Data interface and timings to ONFI mode 0.
793  *
794  * Returns 0 for success or negative error code otherwise.
795  */
796 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
797 {
798         int ret;
799
800         if (!nand_has_setup_data_iface(chip))
801                 return 0;
802
803         /*
804          * The ONFI specification says:
805          * "
806          * To transition from NV-DDR or NV-DDR2 to the SDR data
807          * interface, the host shall use the Reset (FFh) command
808          * using SDR timing mode 0. A device in any timing mode is
809          * required to recognize Reset (FFh) command issued in SDR
810          * timing mode 0.
811          * "
812          *
813          * Configure the data interface in SDR mode and set the
814          * timings to timing mode 0.
815          */
816
817         onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
818         ret = chip->controller->ops->setup_data_interface(chip, chipnr,
819                                                         &chip->data_interface);
820         if (ret)
821                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
822
823         return ret;
824 }
825
826 /**
827  * nand_setup_data_interface - Setup the best data interface and timings
828  * @chip: The NAND chip
829  * @chipnr: Internal die id
830  *
831  * Find and configure the best data interface and NAND timings supported by
832  * the chip and the driver.
833  * First tries to retrieve supported timing modes from ONFI information,
834  * and if the NAND chip does not support ONFI, relies on the
835  * ->onfi_timing_mode_default specified in the nand_ids table.
836  *
837  * Returns 0 for success or negative error code otherwise.
838  */
839 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
840 {
841         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
842                 chip->onfi_timing_mode_default,
843         };
844         int ret;
845
846         if (!nand_has_setup_data_iface(chip))
847                 return 0;
848
849         /* Change the mode on the chip side (if supported by the NAND chip) */
850         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
851                 nand_select_target(chip, chipnr);
852                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
853                                         tmode_param);
854                 nand_deselect_target(chip);
855                 if (ret)
856                         return ret;
857         }
858
859         /* Change the mode on the controller side */
860         ret = chip->controller->ops->setup_data_interface(chip, chipnr,
861                                                         &chip->data_interface);
862         if (ret)
863                 return ret;
864
865         /* Check the mode has been accepted by the chip, if supported */
866         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
867                 return 0;
868
869         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
870         nand_select_target(chip, chipnr);
871         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
872                                 tmode_param);
873         nand_deselect_target(chip);
874         if (ret)
875                 goto err_reset_chip;
876
877         if (tmode_param[0] != chip->onfi_timing_mode_default) {
878                 pr_warn("timing mode %d not acknowledged by the NAND chip\n",
879                         chip->onfi_timing_mode_default);
880                 goto err_reset_chip;
881         }
882
883         return 0;
884
885 err_reset_chip:
886         /*
887          * Fallback to mode 0 if the chip explicitly did not ack the chosen
888          * timing mode.
889          */
890         nand_reset_data_interface(chip, chipnr);
891         nand_select_target(chip, chipnr);
892         nand_reset_op(chip);
893         nand_deselect_target(chip);
894
895         return ret;
896 }
897
898 /**
899  * nand_init_data_interface - find the best data interface and timings
900  * @chip: The NAND chip
901  *
902  * Find the best data interface and NAND timings supported by the chip
903  * and the driver.
904  * First tries to retrieve supported timing modes from ONFI information,
905  * and if the NAND chip does not support ONFI, relies on the
906  * ->onfi_timing_mode_default specified in the nand_ids table. After this
907  * function nand_chip->data_interface is initialized with the best timing mode
908  * available.
909  *
910  * Returns 0 for success or negative error code otherwise.
911  */
912 static int nand_init_data_interface(struct nand_chip *chip)
913 {
914         int modes, mode, ret;
915
916         if (!nand_has_setup_data_iface(chip))
917                 return 0;
918
919         /*
920          * First try to identify the best timings from ONFI parameters and
921          * if the NAND does not support ONFI, fallback to the default ONFI
922          * timing mode.
923          */
924         if (chip->parameters.onfi) {
925                 modes = chip->parameters.onfi->async_timing_mode;
926         } else {
927                 if (!chip->onfi_timing_mode_default)
928                         return 0;
929
930                 modes = GENMASK(chip->onfi_timing_mode_default, 0);
931         }
932
933         for (mode = fls(modes) - 1; mode >= 0; mode--) {
934                 ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
935                 if (ret)
936                         continue;
937
938                 /*
939                  * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
940                  * controller supports the requested timings.
941                  */
942                 ret = chip->controller->ops->setup_data_interface(chip,
943                                                  NAND_DATA_IFACE_CHECK_ONLY,
944                                                  &chip->data_interface);
945                 if (!ret) {
946                         chip->onfi_timing_mode_default = mode;
947                         break;
948                 }
949         }
950
951         return 0;
952 }
953
954 /**
955  * nand_fill_column_cycles - fill the column cycles of an address
956  * @chip: The NAND chip
957  * @addrs: Array of address cycles to fill
958  * @offset_in_page: The offset in the page
959  *
960  * Fills the first or the first two bytes of the @addrs field depending
961  * on the NAND bus width and the page size.
962  *
963  * Returns the number of cycles needed to encode the column, or a negative
964  * error code in case one of the arguments is invalid.
965  */
966 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
967                                    unsigned int offset_in_page)
968 {
969         struct mtd_info *mtd = nand_to_mtd(chip);
970
971         /* Make sure the offset is less than the actual page size. */
972         if (offset_in_page > mtd->writesize + mtd->oobsize)
973                 return -EINVAL;
974
975         /*
976          * On small page NANDs, there's a dedicated command to access the OOB
977          * area, and the column address is relative to the start of the OOB
978          * area, not the start of the page. Asjust the address accordingly.
979          */
980         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
981                 offset_in_page -= mtd->writesize;
982
983         /*
984          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
985          * wide, then it must be divided by 2.
986          */
987         if (chip->options & NAND_BUSWIDTH_16) {
988                 if (WARN_ON(offset_in_page % 2))
989                         return -EINVAL;
990
991                 offset_in_page /= 2;
992         }
993
994         addrs[0] = offset_in_page;
995
996         /*
997          * Small page NANDs use 1 cycle for the columns, while large page NANDs
998          * need 2
999          */
1000         if (mtd->writesize <= 512)
1001                 return 1;
1002
1003         addrs[1] = offset_in_page >> 8;
1004
1005         return 2;
1006 }
1007
1008 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1009                                      unsigned int offset_in_page, void *buf,
1010                                      unsigned int len)
1011 {
1012         struct mtd_info *mtd = nand_to_mtd(chip);
1013         const struct nand_sdr_timings *sdr =
1014                 nand_get_sdr_timings(&chip->data_interface);
1015         u8 addrs[4];
1016         struct nand_op_instr instrs[] = {
1017                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1018                 NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
1019                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1020                                  PSEC_TO_NSEC(sdr->tRR_min)),
1021                 NAND_OP_DATA_IN(len, buf, 0),
1022         };
1023         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1024         int ret;
1025
1026         /* Drop the DATA_IN instruction if len is set to 0. */
1027         if (!len)
1028                 op.ninstrs--;
1029
1030         if (offset_in_page >= mtd->writesize)
1031                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1032         else if (offset_in_page >= 256 &&
1033                  !(chip->options & NAND_BUSWIDTH_16))
1034                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1035
1036         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1037         if (ret < 0)
1038                 return ret;
1039
1040         addrs[1] = page;
1041         addrs[2] = page >> 8;
1042
1043         if (chip->options & NAND_ROW_ADDR_3) {
1044                 addrs[3] = page >> 16;
1045                 instrs[1].ctx.addr.naddrs++;
1046         }
1047
1048         return nand_exec_op(chip, &op);
1049 }
1050
1051 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1052                                      unsigned int offset_in_page, void *buf,
1053                                      unsigned int len)
1054 {
1055         const struct nand_sdr_timings *sdr =
1056                 nand_get_sdr_timings(&chip->data_interface);
1057         u8 addrs[5];
1058         struct nand_op_instr instrs[] = {
1059                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1060                 NAND_OP_ADDR(4, addrs, 0),
1061                 NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
1062                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1063                                  PSEC_TO_NSEC(sdr->tRR_min)),
1064                 NAND_OP_DATA_IN(len, buf, 0),
1065         };
1066         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1067         int ret;
1068
1069         /* Drop the DATA_IN instruction if len is set to 0. */
1070         if (!len)
1071                 op.ninstrs--;
1072
1073         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1074         if (ret < 0)
1075                 return ret;
1076
1077         addrs[2] = page;
1078         addrs[3] = page >> 8;
1079
1080         if (chip->options & NAND_ROW_ADDR_3) {
1081                 addrs[4] = page >> 16;
1082                 instrs[1].ctx.addr.naddrs++;
1083         }
1084
1085         return nand_exec_op(chip, &op);
1086 }
1087
1088 /**
1089  * nand_read_page_op - Do a READ PAGE operation
1090  * @chip: The NAND chip
1091  * @page: page to read
1092  * @offset_in_page: offset within the page
1093  * @buf: buffer used to store the data
1094  * @len: length of the buffer
1095  *
1096  * This function issues a READ PAGE operation.
1097  * This function does not select/unselect the CS line.
1098  *
1099  * Returns 0 on success, a negative error code otherwise.
1100  */
1101 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1102                       unsigned int offset_in_page, void *buf, unsigned int len)
1103 {
1104         struct mtd_info *mtd = nand_to_mtd(chip);
1105
1106         if (len && !buf)
1107                 return -EINVAL;
1108
1109         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1110                 return -EINVAL;
1111
1112         if (nand_has_exec_op(chip)) {
1113                 if (mtd->writesize > 512)
1114                         return nand_lp_exec_read_page_op(chip, page,
1115                                                          offset_in_page, buf,
1116                                                          len);
1117
1118                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1119                                                  buf, len);
1120         }
1121
1122         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1123         if (len)
1124                 chip->legacy.read_buf(chip, buf, len);
1125
1126         return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nand_read_page_op);
1129
1130 /**
1131  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1132  * @chip: The NAND chip
1133  * @page: parameter page to read
1134  * @buf: buffer used to store the data
1135  * @len: length of the buffer
1136  *
1137  * This function issues a READ PARAMETER PAGE operation.
1138  * This function does not select/unselect the CS line.
1139  *
1140  * Returns 0 on success, a negative error code otherwise.
1141  */
1142 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1143                             unsigned int len)
1144 {
1145         unsigned int i;
1146         u8 *p = buf;
1147
1148         if (len && !buf)
1149                 return -EINVAL;
1150
1151         if (nand_has_exec_op(chip)) {
1152                 const struct nand_sdr_timings *sdr =
1153                         nand_get_sdr_timings(&chip->data_interface);
1154                 struct nand_op_instr instrs[] = {
1155                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1156                         NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
1157                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
1158                                          PSEC_TO_NSEC(sdr->tRR_min)),
1159                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1160                 };
1161                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1162
1163                 /* Drop the DATA_IN instruction if len is set to 0. */
1164                 if (!len)
1165                         op.ninstrs--;
1166
1167                 return nand_exec_op(chip, &op);
1168         }
1169
1170         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1171         for (i = 0; i < len; i++)
1172                 p[i] = chip->legacy.read_byte(chip);
1173
1174         return 0;
1175 }
1176
1177 /**
1178  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1179  * @chip: The NAND chip
1180  * @offset_in_page: offset within the page
1181  * @buf: buffer used to store the data
1182  * @len: length of the buffer
1183  * @force_8bit: force 8-bit bus access
1184  *
1185  * This function issues a CHANGE READ COLUMN operation.
1186  * This function does not select/unselect the CS line.
1187  *
1188  * Returns 0 on success, a negative error code otherwise.
1189  */
1190 int nand_change_read_column_op(struct nand_chip *chip,
1191                                unsigned int offset_in_page, void *buf,
1192                                unsigned int len, bool force_8bit)
1193 {
1194         struct mtd_info *mtd = nand_to_mtd(chip);
1195
1196         if (len && !buf)
1197                 return -EINVAL;
1198
1199         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1200                 return -EINVAL;
1201
1202         /* Small page NANDs do not support column change. */
1203         if (mtd->writesize <= 512)
1204                 return -ENOTSUPP;
1205
1206         if (nand_has_exec_op(chip)) {
1207                 const struct nand_sdr_timings *sdr =
1208                         nand_get_sdr_timings(&chip->data_interface);
1209                 u8 addrs[2] = {};
1210                 struct nand_op_instr instrs[] = {
1211                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1212                         NAND_OP_ADDR(2, addrs, 0),
1213                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1214                                     PSEC_TO_NSEC(sdr->tCCS_min)),
1215                         NAND_OP_DATA_IN(len, buf, 0),
1216                 };
1217                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1218                 int ret;
1219
1220                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1221                 if (ret < 0)
1222                         return ret;
1223
1224                 /* Drop the DATA_IN instruction if len is set to 0. */
1225                 if (!len)
1226                         op.ninstrs--;
1227
1228                 instrs[3].ctx.data.force_8bit = force_8bit;
1229
1230                 return nand_exec_op(chip, &op);
1231         }
1232
1233         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1234         if (len)
1235                 chip->legacy.read_buf(chip, buf, len);
1236
1237         return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1240
1241 /**
1242  * nand_read_oob_op - Do a READ OOB operation
1243  * @chip: The NAND chip
1244  * @page: page to read
1245  * @offset_in_oob: offset within the OOB area
1246  * @buf: buffer used to store the data
1247  * @len: length of the buffer
1248  *
1249  * This function issues a READ OOB operation.
1250  * This function does not select/unselect the CS line.
1251  *
1252  * Returns 0 on success, a negative error code otherwise.
1253  */
1254 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1255                      unsigned int offset_in_oob, void *buf, unsigned int len)
1256 {
1257         struct mtd_info *mtd = nand_to_mtd(chip);
1258
1259         if (len && !buf)
1260                 return -EINVAL;
1261
1262         if (offset_in_oob + len > mtd->oobsize)
1263                 return -EINVAL;
1264
1265         if (nand_has_exec_op(chip))
1266                 return nand_read_page_op(chip, page,
1267                                          mtd->writesize + offset_in_oob,
1268                                          buf, len);
1269
1270         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1271         if (len)
1272                 chip->legacy.read_buf(chip, buf, len);
1273
1274         return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1277
1278 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1279                                   unsigned int offset_in_page, const void *buf,
1280                                   unsigned int len, bool prog)
1281 {
1282         struct mtd_info *mtd = nand_to_mtd(chip);
1283         const struct nand_sdr_timings *sdr =
1284                 nand_get_sdr_timings(&chip->data_interface);
1285         u8 addrs[5] = {};
1286         struct nand_op_instr instrs[] = {
1287                 /*
1288                  * The first instruction will be dropped if we're dealing
1289                  * with a large page NAND and adjusted if we're dealing
1290                  * with a small page NAND and the page offset is > 255.
1291                  */
1292                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1293                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1294                 NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
1295                 NAND_OP_DATA_OUT(len, buf, 0),
1296                 NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
1297                 NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1298         };
1299         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1300         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1301         int ret;
1302         u8 status;
1303
1304         if (naddrs < 0)
1305                 return naddrs;
1306
1307         addrs[naddrs++] = page;
1308         addrs[naddrs++] = page >> 8;
1309         if (chip->options & NAND_ROW_ADDR_3)
1310                 addrs[naddrs++] = page >> 16;
1311
1312         instrs[2].ctx.addr.naddrs = naddrs;
1313
1314         /* Drop the last two instructions if we're not programming the page. */
1315         if (!prog) {
1316                 op.ninstrs -= 2;
1317                 /* Also drop the DATA_OUT instruction if empty. */
1318                 if (!len)
1319                         op.ninstrs--;
1320         }
1321
1322         if (mtd->writesize <= 512) {
1323                 /*
1324                  * Small pages need some more tweaking: we have to adjust the
1325                  * first instruction depending on the page offset we're trying
1326                  * to access.
1327                  */
1328                 if (offset_in_page >= mtd->writesize)
1329                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1330                 else if (offset_in_page >= 256 &&
1331                          !(chip->options & NAND_BUSWIDTH_16))
1332                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1333         } else {
1334                 /*
1335                  * Drop the first command if we're dealing with a large page
1336                  * NAND.
1337                  */
1338                 op.instrs++;
1339                 op.ninstrs--;
1340         }
1341
1342         ret = nand_exec_op(chip, &op);
1343         if (!prog || ret)
1344                 return ret;
1345
1346         ret = nand_status_op(chip, &status);
1347         if (ret)
1348                 return ret;
1349
1350         return status;
1351 }
1352
1353 /**
1354  * nand_prog_page_begin_op - starts a PROG PAGE operation
1355  * @chip: The NAND chip
1356  * @page: page to write
1357  * @offset_in_page: offset within the page
1358  * @buf: buffer containing the data to write to the page
1359  * @len: length of the buffer
1360  *
1361  * This function issues the first half of a PROG PAGE operation.
1362  * This function does not select/unselect the CS line.
1363  *
1364  * Returns 0 on success, a negative error code otherwise.
1365  */
1366 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1367                             unsigned int offset_in_page, const void *buf,
1368                             unsigned int len)
1369 {
1370         struct mtd_info *mtd = nand_to_mtd(chip);
1371
1372         if (len && !buf)
1373                 return -EINVAL;
1374
1375         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1376                 return -EINVAL;
1377
1378         if (nand_has_exec_op(chip))
1379                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1380                                               len, false);
1381
1382         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1383
1384         if (buf)
1385                 chip->legacy.write_buf(chip, buf, len);
1386
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1390
1391 /**
1392  * nand_prog_page_end_op - ends a PROG PAGE operation
1393  * @chip: The NAND chip
1394  *
1395  * This function issues the second half of a PROG PAGE operation.
1396  * This function does not select/unselect the CS line.
1397  *
1398  * Returns 0 on success, a negative error code otherwise.
1399  */
1400 int nand_prog_page_end_op(struct nand_chip *chip)
1401 {
1402         int ret;
1403         u8 status;
1404
1405         if (nand_has_exec_op(chip)) {
1406                 const struct nand_sdr_timings *sdr =
1407                         nand_get_sdr_timings(&chip->data_interface);
1408                 struct nand_op_instr instrs[] = {
1409                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1410                                     PSEC_TO_NSEC(sdr->tWB_max)),
1411                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
1412                 };
1413                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1414
1415                 ret = nand_exec_op(chip, &op);
1416                 if (ret)
1417                         return ret;
1418
1419                 ret = nand_status_op(chip, &status);
1420                 if (ret)
1421                         return ret;
1422         } else {
1423                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1424                 ret = chip->legacy.waitfunc(chip);
1425                 if (ret < 0)
1426                         return ret;
1427
1428                 status = ret;
1429         }
1430
1431         if (status & NAND_STATUS_FAIL)
1432                 return -EIO;
1433
1434         return 0;
1435 }
1436 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1437
1438 /**
1439  * nand_prog_page_op - Do a full PROG PAGE operation
1440  * @chip: The NAND chip
1441  * @page: page to write
1442  * @offset_in_page: offset within the page
1443  * @buf: buffer containing the data to write to the page
1444  * @len: length of the buffer
1445  *
1446  * This function issues a full PROG PAGE operation.
1447  * This function does not select/unselect the CS line.
1448  *
1449  * Returns 0 on success, a negative error code otherwise.
1450  */
1451 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1452                       unsigned int offset_in_page, const void *buf,
1453                       unsigned int len)
1454 {
1455         struct mtd_info *mtd = nand_to_mtd(chip);
1456         int status;
1457
1458         if (!len || !buf)
1459                 return -EINVAL;
1460
1461         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1462                 return -EINVAL;
1463
1464         if (nand_has_exec_op(chip)) {
1465                 status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1466                                                 len, true);
1467         } else {
1468                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1469                                      page);
1470                 chip->legacy.write_buf(chip, buf, len);
1471                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1472                 status = chip->legacy.waitfunc(chip);
1473         }
1474
1475         if (status & NAND_STATUS_FAIL)
1476                 return -EIO;
1477
1478         return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1481
1482 /**
1483  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1484  * @chip: The NAND chip
1485  * @offset_in_page: offset within the page
1486  * @buf: buffer containing the data to send to the NAND
1487  * @len: length of the buffer
1488  * @force_8bit: force 8-bit bus access
1489  *
1490  * This function issues a CHANGE WRITE COLUMN operation.
1491  * This function does not select/unselect the CS line.
1492  *
1493  * Returns 0 on success, a negative error code otherwise.
1494  */
1495 int nand_change_write_column_op(struct nand_chip *chip,
1496                                 unsigned int offset_in_page,
1497                                 const void *buf, unsigned int len,
1498                                 bool force_8bit)
1499 {
1500         struct mtd_info *mtd = nand_to_mtd(chip);
1501
1502         if (len && !buf)
1503                 return -EINVAL;
1504
1505         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1506                 return -EINVAL;
1507
1508         /* Small page NANDs do not support column change. */
1509         if (mtd->writesize <= 512)
1510                 return -ENOTSUPP;
1511
1512         if (nand_has_exec_op(chip)) {
1513                 const struct nand_sdr_timings *sdr =
1514                         nand_get_sdr_timings(&chip->data_interface);
1515                 u8 addrs[2];
1516                 struct nand_op_instr instrs[] = {
1517                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1518                         NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
1519                         NAND_OP_DATA_OUT(len, buf, 0),
1520                 };
1521                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1522                 int ret;
1523
1524                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1525                 if (ret < 0)
1526                         return ret;
1527
1528                 instrs[2].ctx.data.force_8bit = force_8bit;
1529
1530                 /* Drop the DATA_OUT instruction if len is set to 0. */
1531                 if (!len)
1532                         op.ninstrs--;
1533
1534                 return nand_exec_op(chip, &op);
1535         }
1536
1537         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1538         if (len)
1539                 chip->legacy.write_buf(chip, buf, len);
1540
1541         return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1544
1545 /**
1546  * nand_readid_op - Do a READID operation
1547  * @chip: The NAND chip
1548  * @addr: address cycle to pass after the READID command
1549  * @buf: buffer used to store the ID
1550  * @len: length of the buffer
1551  *
1552  * This function sends a READID command and reads back the ID returned by the
1553  * NAND.
1554  * This function does not select/unselect the CS line.
1555  *
1556  * Returns 0 on success, a negative error code otherwise.
1557  */
1558 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1559                    unsigned int len)
1560 {
1561         unsigned int i;
1562         u8 *id = buf;
1563
1564         if (len && !buf)
1565                 return -EINVAL;
1566
1567         if (nand_has_exec_op(chip)) {
1568                 const struct nand_sdr_timings *sdr =
1569                         nand_get_sdr_timings(&chip->data_interface);
1570                 struct nand_op_instr instrs[] = {
1571                         NAND_OP_CMD(NAND_CMD_READID, 0),
1572                         NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
1573                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1574                 };
1575                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1576
1577                 /* Drop the DATA_IN instruction if len is set to 0. */
1578                 if (!len)
1579                         op.ninstrs--;
1580
1581                 return nand_exec_op(chip, &op);
1582         }
1583
1584         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1585
1586         for (i = 0; i < len; i++)
1587                 id[i] = chip->legacy.read_byte(chip);
1588
1589         return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(nand_readid_op);
1592
1593 /**
1594  * nand_status_op - Do a STATUS operation
1595  * @chip: The NAND chip
1596  * @status: out variable to store the NAND status
1597  *
1598  * This function sends a STATUS command and reads back the status returned by
1599  * the NAND.
1600  * This function does not select/unselect the CS line.
1601  *
1602  * Returns 0 on success, a negative error code otherwise.
1603  */
1604 int nand_status_op(struct nand_chip *chip, u8 *status)
1605 {
1606         if (nand_has_exec_op(chip)) {
1607                 const struct nand_sdr_timings *sdr =
1608                         nand_get_sdr_timings(&chip->data_interface);
1609                 struct nand_op_instr instrs[] = {
1610                         NAND_OP_CMD(NAND_CMD_STATUS,
1611                                     PSEC_TO_NSEC(sdr->tADL_min)),
1612                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1613                 };
1614                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1615
1616                 if (!status)
1617                         op.ninstrs--;
1618
1619                 return nand_exec_op(chip, &op);
1620         }
1621
1622         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1623         if (status)
1624                 *status = chip->legacy.read_byte(chip);
1625
1626         return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nand_status_op);
1629
1630 /**
1631  * nand_exit_status_op - Exit a STATUS operation
1632  * @chip: The NAND chip
1633  *
1634  * This function sends a READ0 command to cancel the effect of the STATUS
1635  * command to avoid reading only the status until a new read command is sent.
1636  *
1637  * This function does not select/unselect the CS line.
1638  *
1639  * Returns 0 on success, a negative error code otherwise.
1640  */
1641 int nand_exit_status_op(struct nand_chip *chip)
1642 {
1643         if (nand_has_exec_op(chip)) {
1644                 struct nand_op_instr instrs[] = {
1645                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1646                 };
1647                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1648
1649                 return nand_exec_op(chip, &op);
1650         }
1651
1652         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1653
1654         return 0;
1655 }
1656
1657 /**
1658  * nand_erase_op - Do an erase operation
1659  * @chip: The NAND chip
1660  * @eraseblock: block to erase
1661  *
1662  * This function sends an ERASE command and waits for the NAND to be ready
1663  * before returning.
1664  * This function does not select/unselect the CS line.
1665  *
1666  * Returns 0 on success, a negative error code otherwise.
1667  */
1668 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1669 {
1670         unsigned int page = eraseblock <<
1671                             (chip->phys_erase_shift - chip->page_shift);
1672         int ret;
1673         u8 status;
1674
1675         if (nand_has_exec_op(chip)) {
1676                 const struct nand_sdr_timings *sdr =
1677                         nand_get_sdr_timings(&chip->data_interface);
1678                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1679                 struct nand_op_instr instrs[] = {
1680                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1681                         NAND_OP_ADDR(2, addrs, 0),
1682                         NAND_OP_CMD(NAND_CMD_ERASE2,
1683                                     PSEC_TO_MSEC(sdr->tWB_max)),
1684                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
1685                 };
1686                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1687
1688                 if (chip->options & NAND_ROW_ADDR_3)
1689                         instrs[1].ctx.addr.naddrs++;
1690
1691                 ret = nand_exec_op(chip, &op);
1692                 if (ret)
1693                         return ret;
1694
1695                 ret = nand_status_op(chip, &status);
1696                 if (ret)
1697                         return ret;
1698         } else {
1699                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1700                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1701
1702                 ret = chip->legacy.waitfunc(chip);
1703                 if (ret < 0)
1704                         return ret;
1705
1706                 status = ret;
1707         }
1708
1709         if (status & NAND_STATUS_FAIL)
1710                 return -EIO;
1711
1712         return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(nand_erase_op);
1715
1716 /**
1717  * nand_set_features_op - Do a SET FEATURES operation
1718  * @chip: The NAND chip
1719  * @feature: feature id
1720  * @data: 4 bytes of data
1721  *
1722  * This function sends a SET FEATURES command and waits for the NAND to be
1723  * ready before returning.
1724  * This function does not select/unselect the CS line.
1725  *
1726  * Returns 0 on success, a negative error code otherwise.
1727  */
1728 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1729                                 const void *data)
1730 {
1731         const u8 *params = data;
1732         int i, ret;
1733
1734         if (nand_has_exec_op(chip)) {
1735                 const struct nand_sdr_timings *sdr =
1736                         nand_get_sdr_timings(&chip->data_interface);
1737                 struct nand_op_instr instrs[] = {
1738                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1739                         NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
1740                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1741                                               PSEC_TO_NSEC(sdr->tWB_max)),
1742                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
1743                 };
1744                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1745
1746                 return nand_exec_op(chip, &op);
1747         }
1748
1749         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1750         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1751                 chip->legacy.write_byte(chip, params[i]);
1752
1753         ret = chip->legacy.waitfunc(chip);
1754         if (ret < 0)
1755                 return ret;
1756
1757         if (ret & NAND_STATUS_FAIL)
1758                 return -EIO;
1759
1760         return 0;
1761 }
1762
1763 /**
1764  * nand_get_features_op - Do a GET FEATURES operation
1765  * @chip: The NAND chip
1766  * @feature: feature id
1767  * @data: 4 bytes of data
1768  *
1769  * This function sends a GET FEATURES command and waits for the NAND to be
1770  * ready before returning.
1771  * This function does not select/unselect the CS line.
1772  *
1773  * Returns 0 on success, a negative error code otherwise.
1774  */
1775 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1776                                 void *data)
1777 {
1778         u8 *params = data;
1779         int i;
1780
1781         if (nand_has_exec_op(chip)) {
1782                 const struct nand_sdr_timings *sdr =
1783                         nand_get_sdr_timings(&chip->data_interface);
1784                 struct nand_op_instr instrs[] = {
1785                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1786                         NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
1787                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
1788                                          PSEC_TO_NSEC(sdr->tRR_min)),
1789                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1790                                              data, 0),
1791                 };
1792                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1793
1794                 return nand_exec_op(chip, &op);
1795         }
1796
1797         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1798         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1799                 params[i] = chip->legacy.read_byte(chip);
1800
1801         return 0;
1802 }
1803
1804 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1805                             unsigned int delay_ns)
1806 {
1807         if (nand_has_exec_op(chip)) {
1808                 struct nand_op_instr instrs[] = {
1809                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1810                                          PSEC_TO_NSEC(delay_ns)),
1811                 };
1812                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1813
1814                 return nand_exec_op(chip, &op);
1815         }
1816
1817         /* Apply delay or wait for ready/busy pin */
1818         if (!chip->legacy.dev_ready)
1819                 udelay(chip->legacy.chip_delay);
1820         else
1821                 nand_wait_ready(chip);
1822
1823         return 0;
1824 }
1825
1826 /**
1827  * nand_reset_op - Do a reset operation
1828  * @chip: The NAND chip
1829  *
1830  * This function sends a RESET command and waits for the NAND to be ready
1831  * before returning.
1832  * This function does not select/unselect the CS line.
1833  *
1834  * Returns 0 on success, a negative error code otherwise.
1835  */
1836 int nand_reset_op(struct nand_chip *chip)
1837 {
1838         if (nand_has_exec_op(chip)) {
1839                 const struct nand_sdr_timings *sdr =
1840                         nand_get_sdr_timings(&chip->data_interface);
1841                 struct nand_op_instr instrs[] = {
1842                         NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
1843                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
1844                 };
1845                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1846
1847                 return nand_exec_op(chip, &op);
1848         }
1849
1850         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
1851
1852         return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(nand_reset_op);
1855
1856 /**
1857  * nand_read_data_op - Read data from the NAND
1858  * @chip: The NAND chip
1859  * @buf: buffer used to store the data
1860  * @len: length of the buffer
1861  * @force_8bit: force 8-bit bus access
1862  *
1863  * This function does a raw data read on the bus. Usually used after launching
1864  * another NAND operation like nand_read_page_op().
1865  * This function does not select/unselect the CS line.
1866  *
1867  * Returns 0 on success, a negative error code otherwise.
1868  */
1869 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1870                       bool force_8bit)
1871 {
1872         if (!len || !buf)
1873                 return -EINVAL;
1874
1875         if (nand_has_exec_op(chip)) {
1876                 struct nand_op_instr instrs[] = {
1877                         NAND_OP_DATA_IN(len, buf, 0),
1878                 };
1879                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1880
1881                 instrs[0].ctx.data.force_8bit = force_8bit;
1882
1883                 return nand_exec_op(chip, &op);
1884         }
1885
1886         if (force_8bit) {
1887                 u8 *p = buf;
1888                 unsigned int i;
1889
1890                 for (i = 0; i < len; i++)
1891                         p[i] = chip->legacy.read_byte(chip);
1892         } else {
1893                 chip->legacy.read_buf(chip, buf, len);
1894         }
1895
1896         return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(nand_read_data_op);
1899
1900 /**
1901  * nand_write_data_op - Write data from the NAND
1902  * @chip: The NAND chip
1903  * @buf: buffer containing the data to send on the bus
1904  * @len: length of the buffer
1905  * @force_8bit: force 8-bit bus access
1906  *
1907  * This function does a raw data write on the bus. Usually used after launching
1908  * another NAND operation like nand_write_page_begin_op().
1909  * This function does not select/unselect the CS line.
1910  *
1911  * Returns 0 on success, a negative error code otherwise.
1912  */
1913 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1914                        unsigned int len, bool force_8bit)
1915 {
1916         if (!len || !buf)
1917                 return -EINVAL;
1918
1919         if (nand_has_exec_op(chip)) {
1920                 struct nand_op_instr instrs[] = {
1921                         NAND_OP_DATA_OUT(len, buf, 0),
1922                 };
1923                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1924
1925                 instrs[0].ctx.data.force_8bit = force_8bit;
1926
1927                 return nand_exec_op(chip, &op);
1928         }
1929
1930         if (force_8bit) {
1931                 const u8 *p = buf;
1932                 unsigned int i;
1933
1934                 for (i = 0; i < len; i++)
1935                         chip->legacy.write_byte(chip, p[i]);
1936         } else {
1937                 chip->legacy.write_buf(chip, buf, len);
1938         }
1939
1940         return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nand_write_data_op);
1943
1944 /**
1945  * struct nand_op_parser_ctx - Context used by the parser
1946  * @instrs: array of all the instructions that must be addressed
1947  * @ninstrs: length of the @instrs array
1948  * @subop: Sub-operation to be passed to the NAND controller
1949  *
1950  * This structure is used by the core to split NAND operations into
1951  * sub-operations that can be handled by the NAND controller.
1952  */
1953 struct nand_op_parser_ctx {
1954         const struct nand_op_instr *instrs;
1955         unsigned int ninstrs;
1956         struct nand_subop subop;
1957 };
1958
1959 /**
1960  * nand_op_parser_must_split_instr - Checks if an instruction must be split
1961  * @pat: the parser pattern element that matches @instr
1962  * @instr: pointer to the instruction to check
1963  * @start_offset: this is an in/out parameter. If @instr has already been
1964  *                split, then @start_offset is the offset from which to start
1965  *                (either an address cycle or an offset in the data buffer).
1966  *                Conversely, if the function returns true (ie. instr must be
1967  *                split), this parameter is updated to point to the first
1968  *                data/address cycle that has not been taken care of.
1969  *
1970  * Some NAND controllers are limited and cannot send X address cycles with a
1971  * unique operation, or cannot read/write more than Y bytes at the same time.
1972  * In this case, split the instruction that does not fit in a single
1973  * controller-operation into two or more chunks.
1974  *
1975  * Returns true if the instruction must be split, false otherwise.
1976  * The @start_offset parameter is also updated to the offset at which the next
1977  * bundle of instruction must start (if an address or a data instruction).
1978  */
1979 static bool
1980 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
1981                                 const struct nand_op_instr *instr,
1982                                 unsigned int *start_offset)
1983 {
1984         switch (pat->type) {
1985         case NAND_OP_ADDR_INSTR:
1986                 if (!pat->ctx.addr.maxcycles)
1987                         break;
1988
1989                 if (instr->ctx.addr.naddrs - *start_offset >
1990                     pat->ctx.addr.maxcycles) {
1991                         *start_offset += pat->ctx.addr.maxcycles;
1992                         return true;
1993                 }
1994                 break;
1995
1996         case NAND_OP_DATA_IN_INSTR:
1997         case NAND_OP_DATA_OUT_INSTR:
1998                 if (!pat->ctx.data.maxlen)
1999                         break;
2000
2001                 if (instr->ctx.data.len - *start_offset >
2002                     pat->ctx.data.maxlen) {
2003                         *start_offset += pat->ctx.data.maxlen;
2004                         return true;
2005                 }
2006                 break;
2007
2008         default:
2009                 break;
2010         }
2011
2012         return false;
2013 }
2014
2015 /**
2016  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2017  *                            remaining in the parser context
2018  * @pat: the pattern to test
2019  * @ctx: the parser context structure to match with the pattern @pat
2020  *
2021  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2022  * Returns true if this is the case, false ortherwise. When true is returned,
2023  * @ctx->subop is updated with the set of instructions to be passed to the
2024  * controller driver.
2025  */
2026 static bool
2027 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2028                          struct nand_op_parser_ctx *ctx)
2029 {
2030         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2031         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2032         const struct nand_op_instr *instr = ctx->subop.instrs;
2033         unsigned int i, ninstrs;
2034
2035         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2036                 /*
2037                  * The pattern instruction does not match the operation
2038                  * instruction. If the instruction is marked optional in the
2039                  * pattern definition, we skip the pattern element and continue
2040                  * to the next one. If the element is mandatory, there's no
2041                  * match and we can return false directly.
2042                  */
2043                 if (instr->type != pat->elems[i].type) {
2044                         if (!pat->elems[i].optional)
2045                                 return false;
2046
2047                         continue;
2048                 }
2049
2050                 /*
2051                  * Now check the pattern element constraints. If the pattern is
2052                  * not able to handle the whole instruction in a single step,
2053                  * we have to split it.
2054                  * The last_instr_end_off value comes back updated to point to
2055                  * the position where we have to split the instruction (the
2056                  * start of the next subop chunk).
2057                  */
2058                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2059                                                     &instr_offset)) {
2060                         ninstrs++;
2061                         i++;
2062                         break;
2063                 }
2064
2065                 instr++;
2066                 ninstrs++;
2067                 instr_offset = 0;
2068         }
2069
2070         /*
2071          * This can happen if all instructions of a pattern are optional.
2072          * Still, if there's not at least one instruction handled by this
2073          * pattern, this is not a match, and we should try the next one (if
2074          * any).
2075          */
2076         if (!ninstrs)
2077                 return false;
2078
2079         /*
2080          * We had a match on the pattern head, but the pattern may be longer
2081          * than the instructions we're asked to execute. We need to make sure
2082          * there's no mandatory elements in the pattern tail.
2083          */
2084         for (; i < pat->nelems; i++) {
2085                 if (!pat->elems[i].optional)
2086                         return false;
2087         }
2088
2089         /*
2090          * We have a match: update the subop structure accordingly and return
2091          * true.
2092          */
2093         ctx->subop.ninstrs = ninstrs;
2094         ctx->subop.last_instr_end_off = instr_offset;
2095
2096         return true;
2097 }
2098
2099 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2100 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2101 {
2102         const struct nand_op_instr *instr;
2103         char *prefix = "      ";
2104         unsigned int i;
2105
2106         pr_debug("executing subop:\n");
2107
2108         for (i = 0; i < ctx->ninstrs; i++) {
2109                 instr = &ctx->instrs[i];
2110
2111                 if (instr == &ctx->subop.instrs[0])
2112                         prefix = "    ->";
2113
2114                 nand_op_trace(prefix, instr);
2115
2116                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2117                         prefix = "      ";
2118         }
2119 }
2120 #else
2121 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2122 {
2123         /* NOP */
2124 }
2125 #endif
2126
2127 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2128                                   const struct nand_op_parser_ctx *b)
2129 {
2130         if (a->subop.ninstrs < b->subop.ninstrs)
2131                 return -1;
2132         else if (a->subop.ninstrs > b->subop.ninstrs)
2133                 return 1;
2134
2135         if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2136                 return -1;
2137         else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2138                 return 1;
2139
2140         return 0;
2141 }
2142
2143 /**
2144  * nand_op_parser_exec_op - exec_op parser
2145  * @chip: the NAND chip
2146  * @parser: patterns description provided by the controller driver
2147  * @op: the NAND operation to address
2148  * @check_only: when true, the function only checks if @op can be handled but
2149  *              does not execute the operation
2150  *
2151  * Helper function designed to ease integration of NAND controller drivers that
2152  * only support a limited set of instruction sequences. The supported sequences
2153  * are described in @parser, and the framework takes care of splitting @op into
2154  * multiple sub-operations (if required) and pass them back to the ->exec()
2155  * callback of the matching pattern if @check_only is set to false.
2156  *
2157  * NAND controller drivers should call this function from their own ->exec_op()
2158  * implementation.
2159  *
2160  * Returns 0 on success, a negative error code otherwise. A failure can be
2161  * caused by an unsupported operation (none of the supported patterns is able
2162  * to handle the requested operation), or an error returned by one of the
2163  * matching pattern->exec() hook.
2164  */
2165 int nand_op_parser_exec_op(struct nand_chip *chip,
2166                            const struct nand_op_parser *parser,
2167                            const struct nand_operation *op, bool check_only)
2168 {
2169         struct nand_op_parser_ctx ctx = {
2170                 .subop.instrs = op->instrs,
2171                 .instrs = op->instrs,
2172                 .ninstrs = op->ninstrs,
2173         };
2174         unsigned int i;
2175
2176         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2177                 const struct nand_op_parser_pattern *pattern;
2178                 struct nand_op_parser_ctx best_ctx;
2179                 int ret, best_pattern = -1;
2180
2181                 for (i = 0; i < parser->npatterns; i++) {
2182                         struct nand_op_parser_ctx test_ctx = ctx;
2183
2184                         pattern = &parser->patterns[i];
2185                         if (!nand_op_parser_match_pat(pattern, &test_ctx))
2186                                 continue;
2187
2188                         if (best_pattern >= 0 &&
2189                             nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2190                                 continue;
2191
2192                         best_pattern = i;
2193                         best_ctx = test_ctx;
2194                 }
2195
2196                 if (best_pattern < 0) {
2197                         pr_debug("->exec_op() parser: pattern not found!\n");
2198                         return -ENOTSUPP;
2199                 }
2200
2201                 ctx = best_ctx;
2202                 nand_op_parser_trace(&ctx);
2203
2204                 if (!check_only) {
2205                         pattern = &parser->patterns[best_pattern];
2206                         ret = pattern->exec(chip, &ctx.subop);
2207                         if (ret)
2208                                 return ret;
2209                 }
2210
2211                 /*
2212                  * Update the context structure by pointing to the start of the
2213                  * next subop.
2214                  */
2215                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2216                 if (ctx.subop.last_instr_end_off)
2217                         ctx.subop.instrs -= 1;
2218
2219                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2220         }
2221
2222         return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2225
2226 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2227 {
2228         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2229                          instr->type == NAND_OP_DATA_OUT_INSTR);
2230 }
2231
2232 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2233                                       unsigned int instr_idx)
2234 {
2235         return subop && instr_idx < subop->ninstrs;
2236 }
2237
2238 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2239                                              unsigned int instr_idx)
2240 {
2241         if (instr_idx)
2242                 return 0;
2243
2244         return subop->first_instr_start_off;
2245 }
2246
2247 /**
2248  * nand_subop_get_addr_start_off - Get the start offset in an address array
2249  * @subop: The entire sub-operation
2250  * @instr_idx: Index of the instruction inside the sub-operation
2251  *
2252  * During driver development, one could be tempted to directly use the
2253  * ->addr.addrs field of address instructions. This is wrong as address
2254  * instructions might be split.
2255  *
2256  * Given an address instruction, returns the offset of the first cycle to issue.
2257  */
2258 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2259                                            unsigned int instr_idx)
2260 {
2261         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2262                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2263                 return 0;
2264
2265         return nand_subop_get_start_off(subop, instr_idx);
2266 }
2267 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2268
2269 /**
2270  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2271  * @subop: The entire sub-operation
2272  * @instr_idx: Index of the instruction inside the sub-operation
2273  *
2274  * During driver development, one could be tempted to directly use the
2275  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2276  * might be split.
2277  *
2278  * Given an address instruction, returns the number of address cycle to issue.
2279  */
2280 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2281                                          unsigned int instr_idx)
2282 {
2283         int start_off, end_off;
2284
2285         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2286                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2287                 return 0;
2288
2289         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2290
2291         if (instr_idx == subop->ninstrs - 1 &&
2292             subop->last_instr_end_off)
2293                 end_off = subop->last_instr_end_off;
2294         else
2295                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2296
2297         return end_off - start_off;
2298 }
2299 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2300
2301 /**
2302  * nand_subop_get_data_start_off - Get the start offset in a data array
2303  * @subop: The entire sub-operation
2304  * @instr_idx: Index of the instruction inside the sub-operation
2305  *
2306  * During driver development, one could be tempted to directly use the
2307  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2308  * instructions might be split.
2309  *
2310  * Given a data instruction, returns the offset to start from.
2311  */
2312 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2313                                            unsigned int instr_idx)
2314 {
2315         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2316                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2317                 return 0;
2318
2319         return nand_subop_get_start_off(subop, instr_idx);
2320 }
2321 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2322
2323 /**
2324  * nand_subop_get_data_len - Get the number of bytes to retrieve
2325  * @subop: The entire sub-operation
2326  * @instr_idx: Index of the instruction inside the sub-operation
2327  *
2328  * During driver development, one could be tempted to directly use the
2329  * ->data->len field of a data instruction. This is wrong as data instructions
2330  * might be split.
2331  *
2332  * Returns the length of the chunk of data to send/receive.
2333  */
2334 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2335                                      unsigned int instr_idx)
2336 {
2337         int start_off = 0, end_off;
2338
2339         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2340                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2341                 return 0;
2342
2343         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2344
2345         if (instr_idx == subop->ninstrs - 1 &&
2346             subop->last_instr_end_off)
2347                 end_off = subop->last_instr_end_off;
2348         else
2349                 end_off = subop->instrs[instr_idx].ctx.data.len;
2350
2351         return end_off - start_off;
2352 }
2353 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2354
2355 /**
2356  * nand_reset - Reset and initialize a NAND device
2357  * @chip: The NAND chip
2358  * @chipnr: Internal die id
2359  *
2360  * Save the timings data structure, then apply SDR timings mode 0 (see
2361  * nand_reset_data_interface for details), do the reset operation, and
2362  * apply back the previous timings.
2363  *
2364  * Returns 0 on success, a negative error code otherwise.
2365  */
2366 int nand_reset(struct nand_chip *chip, int chipnr)
2367 {
2368         struct nand_data_interface saved_data_intf = chip->data_interface;
2369         int ret;
2370
2371         ret = nand_reset_data_interface(chip, chipnr);
2372         if (ret)
2373                 return ret;
2374
2375         /*
2376          * The CS line has to be released before we can apply the new NAND
2377          * interface settings, hence this weird nand_select_target()
2378          * nand_deselect_target() dance.
2379          */
2380         nand_select_target(chip, chipnr);
2381         ret = nand_reset_op(chip);
2382         nand_deselect_target(chip);
2383         if (ret)
2384                 return ret;
2385
2386         /*
2387          * A nand_reset_data_interface() put both the NAND chip and the NAND
2388          * controller in timings mode 0. If the default mode for this chip is
2389          * also 0, no need to proceed to the change again. Plus, at probe time,
2390          * nand_setup_data_interface() uses ->set/get_features() which would
2391          * fail anyway as the parameter page is not available yet.
2392          */
2393         if (!chip->onfi_timing_mode_default)
2394                 return 0;
2395
2396         chip->data_interface = saved_data_intf;
2397         ret = nand_setup_data_interface(chip, chipnr);
2398         if (ret)
2399                 return ret;
2400
2401         return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(nand_reset);
2404
2405 /**
2406  * nand_get_features - wrapper to perform a GET_FEATURE
2407  * @chip: NAND chip info structure
2408  * @addr: feature address
2409  * @subfeature_param: the subfeature parameters, a four bytes array
2410  *
2411  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2412  * operation cannot be handled.
2413  */
2414 int nand_get_features(struct nand_chip *chip, int addr,
2415                       u8 *subfeature_param)
2416 {
2417         if (!nand_supports_get_features(chip, addr))
2418                 return -ENOTSUPP;
2419
2420         if (chip->legacy.get_features)
2421                 return chip->legacy.get_features(chip, addr, subfeature_param);
2422
2423         return nand_get_features_op(chip, addr, subfeature_param);
2424 }
2425
2426 /**
2427  * nand_set_features - wrapper to perform a SET_FEATURE
2428  * @chip: NAND chip info structure
2429  * @addr: feature address
2430  * @subfeature_param: the subfeature parameters, a four bytes array
2431  *
2432  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2433  * operation cannot be handled.
2434  */
2435 int nand_set_features(struct nand_chip *chip, int addr,
2436                       u8 *subfeature_param)
2437 {
2438         if (!nand_supports_set_features(chip, addr))
2439                 return -ENOTSUPP;
2440
2441         if (chip->legacy.set_features)
2442                 return chip->legacy.set_features(chip, addr, subfeature_param);
2443
2444         return nand_set_features_op(chip, addr, subfeature_param);
2445 }
2446
2447 /**
2448  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2449  * @buf: buffer to test
2450  * @len: buffer length
2451  * @bitflips_threshold: maximum number of bitflips
2452  *
2453  * Check if a buffer contains only 0xff, which means the underlying region
2454  * has been erased and is ready to be programmed.
2455  * The bitflips_threshold specify the maximum number of bitflips before
2456  * considering the region is not erased.
2457  * Note: The logic of this function has been extracted from the memweight
2458  * implementation, except that nand_check_erased_buf function exit before
2459  * testing the whole buffer if the number of bitflips exceed the
2460  * bitflips_threshold value.
2461  *
2462  * Returns a positive number of bitflips less than or equal to
2463  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2464  * threshold.
2465  */
2466 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2467 {
2468         const unsigned char *bitmap = buf;
2469         int bitflips = 0;
2470         int weight;
2471
2472         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2473              len--, bitmap++) {
2474                 weight = hweight8(*bitmap);
2475                 bitflips += BITS_PER_BYTE - weight;
2476                 if (unlikely(bitflips > bitflips_threshold))
2477                         return -EBADMSG;
2478         }
2479
2480         for (; len >= sizeof(long);
2481              len -= sizeof(long), bitmap += sizeof(long)) {
2482                 unsigned long d = *((unsigned long *)bitmap);
2483                 if (d == ~0UL)
2484                         continue;
2485                 weight = hweight_long(d);
2486                 bitflips += BITS_PER_LONG - weight;
2487                 if (unlikely(bitflips > bitflips_threshold))
2488                         return -EBADMSG;
2489         }
2490
2491         for (; len > 0; len--, bitmap++) {
2492                 weight = hweight8(*bitmap);
2493                 bitflips += BITS_PER_BYTE - weight;
2494                 if (unlikely(bitflips > bitflips_threshold))
2495                         return -EBADMSG;
2496         }
2497
2498         return bitflips;
2499 }
2500
2501 /**
2502  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2503  *                               0xff data
2504  * @data: data buffer to test
2505  * @datalen: data length
2506  * @ecc: ECC buffer
2507  * @ecclen: ECC length
2508  * @extraoob: extra OOB buffer
2509  * @extraooblen: extra OOB length
2510  * @bitflips_threshold: maximum number of bitflips
2511  *
2512  * Check if a data buffer and its associated ECC and OOB data contains only
2513  * 0xff pattern, which means the underlying region has been erased and is
2514  * ready to be programmed.
2515  * The bitflips_threshold specify the maximum number of bitflips before
2516  * considering the region as not erased.
2517  *
2518  * Note:
2519  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2520  *    different from the NAND page size. When fixing bitflips, ECC engines will
2521  *    report the number of errors per chunk, and the NAND core infrastructure
2522  *    expect you to return the maximum number of bitflips for the whole page.
2523  *    This is why you should always use this function on a single chunk and
2524  *    not on the whole page. After checking each chunk you should update your
2525  *    max_bitflips value accordingly.
2526  * 2/ When checking for bitflips in erased pages you should not only check
2527  *    the payload data but also their associated ECC data, because a user might
2528  *    have programmed almost all bits to 1 but a few. In this case, we
2529  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2530  *    this case.
2531  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2532  *    data are protected by the ECC engine.
2533  *    It could also be used if you support subpages and want to attach some
2534  *    extra OOB data to an ECC chunk.
2535  *
2536  * Returns a positive number of bitflips less than or equal to
2537  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2538  * threshold. In case of success, the passed buffers are filled with 0xff.
2539  */
2540 int nand_check_erased_ecc_chunk(void *data, int datalen,
2541                                 void *ecc, int ecclen,
2542                                 void *extraoob, int extraooblen,
2543                                 int bitflips_threshold)
2544 {
2545         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2546
2547         data_bitflips = nand_check_erased_buf(data, datalen,
2548                                               bitflips_threshold);
2549         if (data_bitflips < 0)
2550                 return data_bitflips;
2551
2552         bitflips_threshold -= data_bitflips;
2553
2554         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2555         if (ecc_bitflips < 0)
2556                 return ecc_bitflips;
2557
2558         bitflips_threshold -= ecc_bitflips;
2559
2560         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2561                                                   bitflips_threshold);
2562         if (extraoob_bitflips < 0)
2563                 return extraoob_bitflips;
2564
2565         if (data_bitflips)
2566                 memset(data, 0xff, datalen);
2567
2568         if (ecc_bitflips)
2569                 memset(ecc, 0xff, ecclen);
2570
2571         if (extraoob_bitflips)
2572                 memset(extraoob, 0xff, extraooblen);
2573
2574         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2575 }
2576 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2577
2578 /**
2579  * nand_read_page_raw_notsupp - dummy read raw page function
2580  * @chip: nand chip info structure
2581  * @buf: buffer to store read data
2582  * @oob_required: caller requires OOB data read to chip->oob_poi
2583  * @page: page number to read
2584  *
2585  * Returns -ENOTSUPP unconditionally.
2586  */
2587 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2588                                int oob_required, int page)
2589 {
2590         return -ENOTSUPP;
2591 }
2592
2593 /**
2594  * nand_read_page_raw - [INTERN] read raw page data without ecc
2595  * @chip: nand chip info structure
2596  * @buf: buffer to store read data
2597  * @oob_required: caller requires OOB data read to chip->oob_poi
2598  * @page: page number to read
2599  *
2600  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2601  */
2602 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2603                        int page)
2604 {
2605         struct mtd_info *mtd = nand_to_mtd(chip);
2606         int ret;
2607
2608         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2609         if (ret)
2610                 return ret;
2611
2612         if (oob_required) {
2613                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2614                                         false);
2615                 if (ret)
2616                         return ret;
2617         }
2618
2619         return 0;
2620 }
2621 EXPORT_SYMBOL(nand_read_page_raw);
2622
2623 /**
2624  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2625  * @chip: nand chip info structure
2626  * @buf: buffer to store read data
2627  * @oob_required: caller requires OOB data read to chip->oob_poi
2628  * @page: page number to read
2629  *
2630  * We need a special oob layout and handling even when OOB isn't used.
2631  */
2632 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2633                                        int oob_required, int page)
2634 {
2635         struct mtd_info *mtd = nand_to_mtd(chip);
2636         int eccsize = chip->ecc.size;
2637         int eccbytes = chip->ecc.bytes;
2638         uint8_t *oob = chip->oob_poi;
2639         int steps, size, ret;
2640
2641         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2642         if (ret)
2643                 return ret;
2644
2645         for (steps = chip->ecc.steps; steps > 0; steps--) {
2646                 ret = nand_read_data_op(chip, buf, eccsize, false);
2647                 if (ret)
2648                         return ret;
2649
2650                 buf += eccsize;
2651
2652                 if (chip->ecc.prepad) {
2653                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2654                                                 false);
2655                         if (ret)
2656                                 return ret;
2657
2658                         oob += chip->ecc.prepad;
2659                 }
2660
2661                 ret = nand_read_data_op(chip, oob, eccbytes, false);
2662                 if (ret)
2663                         return ret;
2664
2665                 oob += eccbytes;
2666
2667                 if (chip->ecc.postpad) {
2668                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2669                                                 false);
2670                         if (ret)
2671                                 return ret;
2672
2673                         oob += chip->ecc.postpad;
2674                 }
2675         }
2676
2677         size = mtd->oobsize - (oob - chip->oob_poi);
2678         if (size) {
2679                 ret = nand_read_data_op(chip, oob, size, false);
2680                 if (ret)
2681                         return ret;
2682         }
2683
2684         return 0;
2685 }
2686
2687 /**
2688  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2689  * @chip: nand chip info structure
2690  * @buf: buffer to store read data
2691  * @oob_required: caller requires OOB data read to chip->oob_poi
2692  * @page: page number to read
2693  */
2694 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2695                                 int oob_required, int page)
2696 {
2697         struct mtd_info *mtd = nand_to_mtd(chip);
2698         int i, eccsize = chip->ecc.size, ret;
2699         int eccbytes = chip->ecc.bytes;
2700         int eccsteps = chip->ecc.steps;
2701         uint8_t *p = buf;
2702         uint8_t *ecc_calc = chip->ecc.calc_buf;
2703         uint8_t *ecc_code = chip->ecc.code_buf;
2704         unsigned int max_bitflips = 0;
2705
2706         chip->ecc.read_page_raw(chip, buf, 1, page);
2707
2708         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2709                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2710
2711         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2712                                          chip->ecc.total);
2713         if (ret)
2714                 return ret;
2715
2716         eccsteps = chip->ecc.steps;
2717         p = buf;
2718
2719         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2720                 int stat;
2721
2722                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2723                 if (stat < 0) {
2724                         mtd->ecc_stats.failed++;
2725                 } else {
2726                         mtd->ecc_stats.corrected += stat;
2727                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2728                 }
2729         }
2730         return max_bitflips;
2731 }
2732
2733 /**
2734  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2735  * @chip: nand chip info structure
2736  * @data_offs: offset of requested data within the page
2737  * @readlen: data length
2738  * @bufpoi: buffer to store read data
2739  * @page: page number to read
2740  */
2741 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2742                              uint32_t readlen, uint8_t *bufpoi, int page)
2743 {
2744         struct mtd_info *mtd = nand_to_mtd(chip);
2745         int start_step, end_step, num_steps, ret;
2746         uint8_t *p;
2747         int data_col_addr, i, gaps = 0;
2748         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2749         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
2750         int index, section = 0;
2751         unsigned int max_bitflips = 0;
2752         struct mtd_oob_region oobregion = { };
2753
2754         /* Column address within the page aligned to ECC size (256bytes) */
2755         start_step = data_offs / chip->ecc.size;
2756         end_step = (data_offs + readlen - 1) / chip->ecc.size;
2757         num_steps = end_step - start_step + 1;
2758         index = start_step * chip->ecc.bytes;
2759
2760         /* Data size aligned to ECC ecc.size */
2761         datafrag_len = num_steps * chip->ecc.size;
2762         eccfrag_len = num_steps * chip->ecc.bytes;
2763
2764         data_col_addr = start_step * chip->ecc.size;
2765         /* If we read not a page aligned data */
2766         p = bufpoi + data_col_addr;
2767         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
2768         if (ret)
2769                 return ret;
2770
2771         /* Calculate ECC */
2772         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
2773                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
2774
2775         /*
2776          * The performance is faster if we position offsets according to
2777          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
2778          */
2779         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
2780         if (ret)
2781                 return ret;
2782
2783         if (oobregion.length < eccfrag_len)
2784                 gaps = 1;
2785
2786         if (gaps) {
2787                 ret = nand_change_read_column_op(chip, mtd->writesize,
2788                                                  chip->oob_poi, mtd->oobsize,
2789                                                  false);
2790                 if (ret)
2791                         return ret;
2792         } else {
2793                 /*
2794                  * Send the command to read the particular ECC bytes take care
2795                  * about buswidth alignment in read_buf.
2796                  */
2797                 aligned_pos = oobregion.offset & ~(busw - 1);
2798                 aligned_len = eccfrag_len;
2799                 if (oobregion.offset & (busw - 1))
2800                         aligned_len++;
2801                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
2802                     (busw - 1))
2803                         aligned_len++;
2804
2805                 ret = nand_change_read_column_op(chip,
2806                                                  mtd->writesize + aligned_pos,
2807                                                  &chip->oob_poi[aligned_pos],
2808                                                  aligned_len, false);
2809                 if (ret)
2810                         return ret;
2811         }
2812
2813         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
2814                                          chip->oob_poi, index, eccfrag_len);
2815         if (ret)
2816                 return ret;
2817
2818         p = bufpoi + data_col_addr;
2819         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
2820                 int stat;
2821
2822                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
2823                                          &chip->ecc.calc_buf[i]);
2824                 if (stat == -EBADMSG &&
2825                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2826                         /* check for empty pages with bitflips */
2827                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
2828                                                 &chip->ecc.code_buf[i],
2829                                                 chip->ecc.bytes,
2830                                                 NULL, 0,
2831                                                 chip->ecc.strength);
2832                 }
2833
2834                 if (stat < 0) {
2835                         mtd->ecc_stats.failed++;
2836                 } else {
2837                         mtd->ecc_stats.corrected += stat;
2838                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2839                 }
2840         }
2841         return max_bitflips;
2842 }
2843
2844 /**
2845  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
2846  * @chip: nand chip info structure
2847  * @buf: buffer to store read data
2848  * @oob_required: caller requires OOB data read to chip->oob_poi
2849  * @page: page number to read
2850  *
2851  * Not for syndrome calculating ECC controllers which need a special oob layout.
2852  */
2853 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
2854                                 int oob_required, int page)
2855 {
2856         struct mtd_info *mtd = nand_to_mtd(chip);
2857         int i, eccsize = chip->ecc.size, ret;
2858         int eccbytes = chip->ecc.bytes;
2859         int eccsteps = chip->ecc.steps;
2860         uint8_t *p = buf;
2861         uint8_t *ecc_calc = chip->ecc.calc_buf;
2862         uint8_t *ecc_code = chip->ecc.code_buf;
2863         unsigned int max_bitflips = 0;
2864
2865         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2866         if (ret)
2867                 return ret;
2868
2869         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2870                 chip->ecc.hwctl(chip, NAND_ECC_READ);
2871
2872                 ret = nand_read_data_op(chip, p, eccsize, false);
2873                 if (ret)
2874                         return ret;
2875
2876                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2877         }
2878
2879         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
2880         if (ret)
2881                 return ret;
2882
2883         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2884                                          chip->ecc.total);
2885         if (ret)
2886                 return ret;
2887
2888         eccsteps = chip->ecc.steps;
2889         p = buf;
2890
2891         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2892                 int stat;
2893
2894                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2895                 if (stat == -EBADMSG &&
2896                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2897                         /* check for empty pages with bitflips */
2898                         stat = nand_check_erased_ecc_chunk(p, eccsize,
2899                                                 &ecc_code[i], eccbytes,
2900                                                 NULL, 0,
2901                                                 chip->ecc.strength);
2902                 }
2903
2904                 if (stat < 0) {
2905                         mtd->ecc_stats.failed++;
2906                 } else {
2907                         mtd->ecc_stats.corrected += stat;
2908                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2909                 }
2910         }
2911         return max_bitflips;
2912 }
2913
2914 /**
2915  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
2916  * @chip: nand chip info structure
2917  * @buf: buffer to store read data
2918  * @oob_required: caller requires OOB data read to chip->oob_poi
2919  * @page: page number to read
2920  *
2921  * Hardware ECC for large page chips, require OOB to be read first. For this
2922  * ECC mode, the write_page method is re-used from ECC_HW. These methods
2923  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
2924  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
2925  * the data area, by overwriting the NAND manufacturer bad block markings.
2926  */
2927 static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
2928                                           int oob_required, int page)
2929 {
2930         struct mtd_info *mtd = nand_to_mtd(chip);
2931         int i, eccsize = chip->ecc.size, ret;
2932         int eccbytes = chip->ecc.bytes;
2933         int eccsteps = chip->ecc.steps;
2934         uint8_t *p = buf;
2935         uint8_t *ecc_code = chip->ecc.code_buf;
2936         uint8_t *ecc_calc = chip->ecc.calc_buf;
2937         unsigned int max_bitflips = 0;
2938
2939         /* Read the OOB area first */
2940         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
2941         if (ret)
2942                 return ret;
2943
2944         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2945         if (ret)
2946                 return ret;
2947
2948         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2949                                          chip->ecc.total);
2950         if (ret)
2951                 return ret;
2952
2953         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2954                 int stat;
2955
2956                 chip->ecc.hwctl(chip, NAND_ECC_READ);
2957
2958                 ret = nand_read_data_op(chip, p, eccsize, false);
2959                 if (ret)
2960                         return ret;
2961
2962                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2963
2964                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
2965                 if (stat == -EBADMSG &&
2966                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
2967                         /* check for empty pages with bitflips */
2968                         stat = nand_check_erased_ecc_chunk(p, eccsize,
2969                                                 &ecc_code[i], eccbytes,
2970                                                 NULL, 0,
2971                                                 chip->ecc.strength);
2972                 }
2973
2974                 if (stat < 0) {
2975                         mtd->ecc_stats.failed++;
2976                 } else {
2977                         mtd->ecc_stats.corrected += stat;
2978                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2979                 }
2980         }
2981         return max_bitflips;
2982 }
2983
2984 /**
2985  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
2986  * @chip: nand chip info structure
2987  * @buf: buffer to store read data
2988  * @oob_required: caller requires OOB data read to chip->oob_poi
2989  * @page: page number to read
2990  *
2991  * The hw generator calculates the error syndrome automatically. Therefore we
2992  * need a special oob layout and handling.
2993  */
2994 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
2995                                    int oob_required, int page)
2996 {
2997         struct mtd_info *mtd = nand_to_mtd(chip);
2998         int ret, i, eccsize = chip->ecc.size;
2999         int eccbytes = chip->ecc.bytes;
3000         int eccsteps = chip->ecc.steps;
3001         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3002         uint8_t *p = buf;
3003         uint8_t *oob = chip->oob_poi;
3004         unsigned int max_bitflips = 0;
3005
3006         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3007         if (ret)
3008                 return ret;
3009
3010         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3011                 int stat;
3012
3013                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3014
3015                 ret = nand_read_data_op(chip, p, eccsize, false);
3016                 if (ret)
3017                         return ret;
3018
3019                 if (chip->ecc.prepad) {
3020                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3021                                                 false);
3022                         if (ret)
3023                                 return ret;
3024
3025                         oob += chip->ecc.prepad;
3026                 }
3027
3028                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3029
3030                 ret = nand_read_data_op(chip, oob, eccbytes, false);
3031                 if (ret)
3032                         return ret;
3033
3034                 stat = chip->ecc.correct(chip, p, oob, NULL);
3035
3036                 oob += eccbytes;
3037
3038                 if (chip->ecc.postpad) {
3039                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3040                                                 false);
3041                         if (ret)
3042                                 return ret;
3043
3044                         oob += chip->ecc.postpad;
3045                 }
3046
3047                 if (stat == -EBADMSG &&
3048                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3049                         /* check for empty pages with bitflips */
3050                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3051                                                            oob - eccpadbytes,
3052                                                            eccpadbytes,
3053                                                            NULL, 0,
3054                                                            chip->ecc.strength);
3055                 }
3056
3057                 if (stat < 0) {
3058                         mtd->ecc_stats.failed++;
3059                 } else {
3060                         mtd->ecc_stats.corrected += stat;
3061                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3062                 }
3063         }
3064
3065         /* Calculate remaining oob bytes */
3066         i = mtd->oobsize - (oob - chip->oob_poi);
3067         if (i) {
3068                 ret = nand_read_data_op(chip, oob, i, false);
3069                 if (ret)
3070                         return ret;
3071         }
3072
3073         return max_bitflips;
3074 }
3075
3076 /**
3077  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3078  * @chip: NAND chip object
3079  * @oob: oob destination address
3080  * @ops: oob ops structure
3081  * @len: size of oob to transfer
3082  */
3083 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3084                                   struct mtd_oob_ops *ops, size_t len)
3085 {
3086         struct mtd_info *mtd = nand_to_mtd(chip);
3087         int ret;
3088
3089         switch (ops->mode) {
3090
3091         case MTD_OPS_PLACE_OOB:
3092         case MTD_OPS_RAW:
3093                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3094                 return oob + len;
3095
3096         case MTD_OPS_AUTO_OOB:
3097                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3098                                                   ops->ooboffs, len);
3099                 BUG_ON(ret);
3100                 return oob + len;
3101
3102         default:
3103                 BUG();
3104         }
3105         return NULL;
3106 }
3107
3108 /**
3109  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3110  * @chip: NAND chip object
3111  * @retry_mode: the retry mode to use
3112  *
3113  * Some vendors supply a special command to shift the Vt threshold, to be used
3114  * when there are too many bitflips in a page (i.e., ECC error). After setting
3115  * a new threshold, the host should retry reading the page.
3116  */
3117 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3118 {
3119         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3120
3121         if (retry_mode >= chip->read_retries)
3122                 return -EINVAL;
3123
3124         if (!chip->setup_read_retry)
3125                 return -EOPNOTSUPP;
3126
3127         return chip->setup_read_retry(chip, retry_mode);
3128 }
3129
3130 static void nand_wait_readrdy(struct nand_chip *chip)
3131 {
3132         const struct nand_sdr_timings *sdr;
3133
3134         if (!(chip->options & NAND_NEED_READRDY))
3135                 return;
3136
3137         sdr = nand_get_sdr_timings(&chip->data_interface);
3138         WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
3139 }
3140
3141 /**
3142  * nand_do_read_ops - [INTERN] Read data with ECC
3143  * @chip: NAND chip object
3144  * @from: offset to read from
3145  * @ops: oob ops structure
3146  *
3147  * Internal function. Called with chip held.
3148  */
3149 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3150                             struct mtd_oob_ops *ops)
3151 {
3152         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3153         struct mtd_info *mtd = nand_to_mtd(chip);
3154         int ret = 0;
3155         uint32_t readlen = ops->len;
3156         uint32_t oobreadlen = ops->ooblen;
3157         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3158
3159         uint8_t *bufpoi, *oob, *buf;
3160         int use_bufpoi;
3161         unsigned int max_bitflips = 0;
3162         int retry_mode = 0;
3163         bool ecc_fail = false;
3164
3165         chipnr = (int)(from >> chip->chip_shift);
3166         nand_select_target(chip, chipnr);
3167
3168         realpage = (int)(from >> chip->page_shift);
3169         page = realpage & chip->pagemask;
3170
3171         col = (int)(from & (mtd->writesize - 1));
3172
3173         buf = ops->datbuf;
3174         oob = ops->oobbuf;
3175         oob_required = oob ? 1 : 0;
3176
3177         while (1) {
3178                 unsigned int ecc_failures = mtd->ecc_stats.failed;
3179
3180                 bytes = min(mtd->writesize - col, readlen);
3181                 aligned = (bytes == mtd->writesize);
3182
3183                 if (!aligned)
3184                         use_bufpoi = 1;
3185                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
3186                         use_bufpoi = !virt_addr_valid(buf) ||
3187                                      !IS_ALIGNED((unsigned long)buf,
3188                                                  chip->buf_align);
3189                 else
3190                         use_bufpoi = 0;
3191
3192                 /* Is the current page in the buffer? */
3193                 if (realpage != chip->pagecache.page || oob) {
3194                         bufpoi = use_bufpoi ? chip->data_buf : buf;
3195
3196                         if (use_bufpoi && aligned)
3197                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3198                                                  __func__, buf);
3199
3200 read_retry:
3201                         /*
3202                          * Now read the page into the buffer.  Absent an error,
3203                          * the read methods return max bitflips per ecc step.
3204                          */
3205                         if (unlikely(ops->mode == MTD_OPS_RAW))
3206                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3207                                                               oob_required,
3208                                                               page);
3209                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3210                                  !oob)
3211                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3212                                                              bufpoi, page);
3213                         else
3214                                 ret = chip->ecc.read_page(chip, bufpoi,
3215                                                           oob_required, page);
3216                         if (ret < 0) {
3217                                 if (use_bufpoi)
3218                                         /* Invalidate page cache */
3219                                         chip->pagecache.page = -1;
3220                                 break;
3221                         }
3222
3223                         /* Transfer not aligned data */
3224                         if (use_bufpoi) {
3225                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3226                                     !(mtd->ecc_stats.failed - ecc_failures) &&
3227                                     (ops->mode != MTD_OPS_RAW)) {
3228                                         chip->pagecache.page = realpage;
3229                                         chip->pagecache.bitflips = ret;
3230                                 } else {
3231                                         /* Invalidate page cache */
3232                                         chip->pagecache.page = -1;
3233                                 }
3234                                 memcpy(buf, chip->data_buf + col, bytes);
3235                         }
3236
3237                         if (unlikely(oob)) {
3238                                 int toread = min(oobreadlen, max_oobsize);
3239
3240                                 if (toread) {
3241                                         oob = nand_transfer_oob(chip, oob, ops,
3242                                                                 toread);
3243                                         oobreadlen -= toread;
3244                                 }
3245                         }
3246
3247                         nand_wait_readrdy(chip);
3248
3249                         if (mtd->ecc_stats.failed - ecc_failures) {
3250                                 if (retry_mode + 1 < chip->read_retries) {
3251                                         retry_mode++;
3252                                         ret = nand_setup_read_retry(chip,
3253                                                         retry_mode);
3254                                         if (ret < 0)
3255                                                 break;
3256
3257                                         /* Reset failures; retry */
3258                                         mtd->ecc_stats.failed = ecc_failures;
3259                                         goto read_retry;
3260                                 } else {
3261                                         /* No more retry modes; real failure */
3262                                         ecc_fail = true;
3263                                 }
3264                         }
3265
3266                         buf += bytes;
3267                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3268                 } else {
3269                         memcpy(buf, chip->data_buf + col, bytes);
3270                         buf += bytes;
3271                         max_bitflips = max_t(unsigned int, max_bitflips,
3272                                              chip->pagecache.bitflips);
3273                 }
3274
3275                 readlen -= bytes;
3276
3277                 /* Reset to retry mode 0 */
3278                 if (retry_mode) {
3279                         ret = nand_setup_read_retry(chip, 0);
3280                         if (ret < 0)
3281                                 break;
3282                         retry_mode = 0;
3283                 }
3284
3285                 if (!readlen)
3286                         break;
3287
3288                 /* For subsequent reads align to page boundary */
3289                 col = 0;
3290                 /* Increment page address */
3291                 realpage++;
3292
3293                 page = realpage & chip->pagemask;
3294                 /* Check, if we cross a chip boundary */
3295                 if (!page) {
3296                         chipnr++;
3297                         nand_deselect_target(chip);
3298                         nand_select_target(chip, chipnr);
3299                 }
3300         }
3301         nand_deselect_target(chip);
3302
3303         ops->retlen = ops->len - (size_t) readlen;
3304         if (oob)
3305                 ops->oobretlen = ops->ooblen - oobreadlen;
3306
3307         if (ret < 0)
3308                 return ret;
3309
3310         if (ecc_fail)
3311                 return -EBADMSG;
3312
3313         return max_bitflips;
3314 }
3315
3316 /**
3317  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3318  * @chip: nand chip info structure
3319  * @page: page number to read
3320  */
3321 int nand_read_oob_std(struct nand_chip *chip, int page)
3322 {
3323         struct mtd_info *mtd = nand_to_mtd(chip);
3324
3325         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3326 }
3327 EXPORT_SYMBOL(nand_read_oob_std);
3328
3329 /**
3330  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3331  *                          with syndromes
3332  * @chip: nand chip info structure
3333  * @page: page number to read
3334  */
3335 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3336 {
3337         struct mtd_info *mtd = nand_to_mtd(chip);
3338         int length = mtd->oobsize;
3339         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3340         int eccsize = chip->ecc.size;
3341         uint8_t *bufpoi = chip->oob_poi;
3342         int i, toread, sndrnd = 0, pos, ret;
3343
3344         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3345         if (ret)
3346                 return ret;
3347
3348         for (i = 0; i < chip->ecc.steps; i++) {
3349                 if (sndrnd) {
3350                         int ret;
3351
3352                         pos = eccsize + i * (eccsize + chunk);
3353                         if (mtd->writesize > 512)
3354                                 ret = nand_change_read_column_op(chip, pos,
3355                                                                  NULL, 0,
3356                                                                  false);
3357                         else
3358                                 ret = nand_read_page_op(chip, page, pos, NULL,
3359                                                         0);
3360
3361                         if (ret)
3362                                 return ret;
3363                 } else
3364                         sndrnd = 1;
3365                 toread = min_t(int, length, chunk);
3366
3367                 ret = nand_read_data_op(chip, bufpoi, toread, false);
3368                 if (ret)
3369                         return ret;
3370
3371                 bufpoi += toread;
3372                 length -= toread;
3373         }
3374         if (length > 0) {
3375                 ret = nand_read_data_op(chip, bufpoi, length, false);
3376                 if (ret)
3377                         return ret;
3378         }
3379
3380         return 0;
3381 }
3382
3383 /**
3384  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3385  * @chip: nand chip info structure
3386  * @page: page number to write
3387  */
3388 int nand_write_oob_std(struct nand_chip *chip, int page)
3389 {
3390         struct mtd_info *mtd = nand_to_mtd(chip);
3391
3392         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3393                                  mtd->oobsize);
3394 }
3395 EXPORT_SYMBOL(nand_write_oob_std);
3396
3397 /**
3398  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3399  *                           with syndrome - only for large page flash
3400  * @chip: nand chip info structure
3401  * @page: page number to write
3402  */
3403 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3404 {
3405         struct mtd_info *mtd = nand_to_mtd(chip);
3406         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3407         int eccsize = chip->ecc.size, length = mtd->oobsize;
3408         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3409         const uint8_t *bufpoi = chip->oob_poi;
3410
3411         /*
3412          * data-ecc-data-ecc ... ecc-oob
3413          * or
3414          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3415          */
3416         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3417                 pos = steps * (eccsize + chunk);
3418                 steps = 0;
3419         } else
3420                 pos = eccsize;
3421
3422         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3423         if (ret)
3424                 return ret;
3425
3426         for (i = 0; i < steps; i++) {
3427                 if (sndcmd) {
3428                         if (mtd->writesize <= 512) {
3429                                 uint32_t fill = 0xFFFFFFFF;
3430
3431                                 len = eccsize;
3432                                 while (len > 0) {
3433                                         int num = min_t(int, len, 4);
3434
3435                                         ret = nand_write_data_op(chip, &fill,
3436                                                                  num, false);
3437                                         if (ret)
3438                                                 return ret;
3439
3440                                         len -= num;
3441                                 }
3442                         } else {
3443                                 pos = eccsize + i * (eccsize + chunk);
3444                                 ret = nand_change_write_column_op(chip, pos,
3445                                                                   NULL, 0,
3446                                                                   false);
3447                                 if (ret)
3448                                         return ret;
3449                         }
3450                 } else
3451                         sndcmd = 1;
3452                 len = min_t(int, length, chunk);
3453
3454                 ret = nand_write_data_op(chip, bufpoi, len, false);
3455                 if (ret)
3456                         return ret;
3457
3458                 bufpoi += len;
3459                 length -= len;
3460         }
3461         if (length > 0) {
3462                 ret = nand_write_data_op(chip, bufpoi, length, false);
3463                 if (ret)
3464                         return ret;
3465         }
3466
3467         return nand_prog_page_end_op(chip);
3468 }
3469
3470 /**
3471  * nand_do_read_oob - [INTERN] NAND read out-of-band
3472  * @chip: NAND chip object
3473  * @from: offset to read from
3474  * @ops: oob operations description structure
3475  *
3476  * NAND read out-of-band data from the spare area.
3477  */
3478 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3479                             struct mtd_oob_ops *ops)
3480 {
3481         struct mtd_info *mtd = nand_to_mtd(chip);
3482         unsigned int max_bitflips = 0;
3483         int page, realpage, chipnr;
3484         struct mtd_ecc_stats stats;
3485         int readlen = ops->ooblen;
3486         int len;
3487         uint8_t *buf = ops->oobbuf;
3488         int ret = 0;
3489
3490         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3491                         __func__, (unsigned long long)from, readlen);
3492
3493         stats = mtd->ecc_stats;
3494
3495         len = mtd_oobavail(mtd, ops);
3496
3497         chipnr = (int)(from >> chip->chip_shift);
3498         nand_select_target(chip, chipnr);
3499
3500         /* Shift to get page */
3501         realpage = (int)(from >> chip->page_shift);
3502         page = realpage & chip->pagemask;
3503
3504         while (1) {
3505                 if (ops->mode == MTD_OPS_RAW)
3506                         ret = chip->ecc.read_oob_raw(chip, page);
3507                 else
3508                         ret = chip->ecc.read_oob(chip, page);
3509
3510                 if (ret < 0)
3511                         break;
3512
3513                 len = min(len, readlen);
3514                 buf = nand_transfer_oob(chip, buf, ops, len);
3515
3516                 nand_wait_readrdy(chip);
3517
3518                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3519
3520                 readlen -= len;
3521                 if (!readlen)
3522                         break;
3523
3524                 /* Increment page address */
3525                 realpage++;
3526
3527                 page = realpage & chip->pagemask;
3528                 /* Check, if we cross a chip boundary */
3529                 if (!page) {
3530                         chipnr++;
3531                         nand_deselect_target(chip);
3532                         nand_select_target(chip, chipnr);
3533                 }
3534         }
3535         nand_deselect_target(chip);
3536
3537         ops->oobretlen = ops->ooblen - readlen;
3538
3539         if (ret < 0)
3540                 return ret;
3541
3542         if (mtd->ecc_stats.failed - stats.failed)
3543                 return -EBADMSG;
3544
3545         return max_bitflips;
3546 }
3547
3548 /**
3549  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3550  * @mtd: MTD device structure
3551  * @from: offset to read from
3552  * @ops: oob operation description structure
3553  *
3554  * NAND read data and/or out-of-band data.
3555  */
3556 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3557                          struct mtd_oob_ops *ops)
3558 {
3559         struct nand_chip *chip = mtd_to_nand(mtd);
3560         int ret;
3561
3562         ops->retlen = 0;
3563
3564         if (ops->mode != MTD_OPS_PLACE_OOB &&
3565             ops->mode != MTD_OPS_AUTO_OOB &&
3566             ops->mode != MTD_OPS_RAW)
3567                 return -ENOTSUPP;
3568
3569         ret = nand_get_device(chip);
3570         if (ret)
3571                 return ret;
3572
3573         if (!ops->datbuf)
3574                 ret = nand_do_read_oob(chip, from, ops);
3575         else
3576                 ret = nand_do_read_ops(chip, from, ops);
3577
3578         nand_release_device(chip);
3579         return ret;
3580 }
3581
3582 /**
3583  * nand_write_page_raw_notsupp - dummy raw page write function
3584  * @chip: nand chip info structure
3585  * @buf: data buffer
3586  * @oob_required: must write chip->oob_poi to OOB
3587  * @page: page number to write
3588  *
3589  * Returns -ENOTSUPP unconditionally.
3590  */
3591 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3592                                 int oob_required, int page)
3593 {
3594         return -ENOTSUPP;
3595 }
3596
3597 /**
3598  * nand_write_page_raw - [INTERN] raw page write function
3599  * @chip: nand chip info structure
3600  * @buf: data buffer
3601  * @oob_required: must write chip->oob_poi to OOB
3602  * @page: page number to write
3603  *
3604  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3605  */
3606 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3607                         int oob_required, int page)
3608 {
3609         struct mtd_info *mtd = nand_to_mtd(chip);
3610         int ret;
3611
3612         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3613         if (ret)
3614                 return ret;
3615
3616         if (oob_required) {
3617                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3618                                          false);
3619                 if (ret)
3620                         return ret;
3621         }
3622
3623         return nand_prog_page_end_op(chip);
3624 }
3625 EXPORT_SYMBOL(nand_write_page_raw);
3626
3627 /**
3628  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3629  * @chip: nand chip info structure
3630  * @buf: data buffer
3631  * @oob_required: must write chip->oob_poi to OOB
3632  * @page: page number to write
3633  *
3634  * We need a special oob layout and handling even when ECC isn't checked.
3635  */
3636 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3637                                         const uint8_t *buf, int oob_required,
3638                                         int page)
3639 {
3640         struct mtd_info *mtd = nand_to_mtd(chip);
3641         int eccsize = chip->ecc.size;
3642         int eccbytes = chip->ecc.bytes;
3643         uint8_t *oob = chip->oob_poi;
3644         int steps, size, ret;
3645
3646         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3647         if (ret)
3648                 return ret;
3649
3650         for (steps = chip->ecc.steps; steps > 0; steps--) {
3651                 ret = nand_write_data_op(chip, buf, eccsize, false);
3652                 if (ret)
3653                         return ret;
3654
3655                 buf += eccsize;
3656
3657                 if (chip->ecc.prepad) {
3658                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3659                                                  false);
3660                         if (ret)
3661                                 return ret;
3662
3663                         oob += chip->ecc.prepad;
3664                 }
3665
3666                 ret = nand_write_data_op(chip, oob, eccbytes, false);
3667                 if (ret)
3668                         return ret;
3669
3670                 oob += eccbytes;
3671
3672                 if (chip->ecc.postpad) {
3673                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3674                                                  false);
3675                         if (ret)
3676                                 return ret;
3677
3678                         oob += chip->ecc.postpad;
3679                 }
3680         }
3681
3682         size = mtd->oobsize - (oob - chip->oob_poi);
3683         if (size) {
3684                 ret = nand_write_data_op(chip, oob, size, false);
3685                 if (ret)
3686                         return ret;
3687         }
3688
3689         return nand_prog_page_end_op(chip);
3690 }
3691 /**
3692  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3693  * @chip: nand chip info structure
3694  * @buf: data buffer
3695  * @oob_required: must write chip->oob_poi to OOB
3696  * @page: page number to write
3697  */
3698 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
3699                                  int oob_required, int page)
3700 {
3701         struct mtd_info *mtd = nand_to_mtd(chip);
3702         int i, eccsize = chip->ecc.size, ret;
3703         int eccbytes = chip->ecc.bytes;
3704         int eccsteps = chip->ecc.steps;
3705         uint8_t *ecc_calc = chip->ecc.calc_buf;
3706         const uint8_t *p = buf;
3707
3708         /* Software ECC calculation */
3709         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3710                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3711
3712         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3713                                          chip->ecc.total);
3714         if (ret)
3715                 return ret;
3716
3717         return chip->ecc.write_page_raw(chip, buf, 1, page);
3718 }
3719
3720 /**
3721  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
3722  * @chip: nand chip info structure
3723  * @buf: data buffer
3724  * @oob_required: must write chip->oob_poi to OOB
3725  * @page: page number to write
3726  */
3727 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
3728                                  int oob_required, int page)
3729 {
3730         struct mtd_info *mtd = nand_to_mtd(chip);
3731         int i, eccsize = chip->ecc.size, ret;
3732         int eccbytes = chip->ecc.bytes;
3733         int eccsteps = chip->ecc.steps;
3734         uint8_t *ecc_calc = chip->ecc.calc_buf;
3735         const uint8_t *p = buf;
3736
3737         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3738         if (ret)
3739                 return ret;
3740
3741         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3742                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3743
3744                 ret = nand_write_data_op(chip, p, eccsize, false);
3745                 if (ret)
3746                         return ret;
3747
3748                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3749         }
3750
3751         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3752                                          chip->ecc.total);
3753         if (ret)
3754                 return ret;
3755
3756         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3757         if (ret)
3758                 return ret;
3759
3760         return nand_prog_page_end_op(chip);
3761 }
3762
3763
3764 /**
3765  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
3766  * @chip:       nand chip info structure
3767  * @offset:     column address of subpage within the page
3768  * @data_len:   data length
3769  * @buf:        data buffer
3770  * @oob_required: must write chip->oob_poi to OOB
3771  * @page: page number to write
3772  */
3773 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
3774                                     uint32_t data_len, const uint8_t *buf,
3775                                     int oob_required, int page)
3776 {
3777         struct mtd_info *mtd = nand_to_mtd(chip);
3778         uint8_t *oob_buf  = chip->oob_poi;
3779         uint8_t *ecc_calc = chip->ecc.calc_buf;
3780         int ecc_size      = chip->ecc.size;
3781         int ecc_bytes     = chip->ecc.bytes;
3782         int ecc_steps     = chip->ecc.steps;
3783         uint32_t start_step = offset / ecc_size;
3784         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
3785         int oob_bytes       = mtd->oobsize / ecc_steps;
3786         int step, ret;
3787
3788         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3789         if (ret)
3790                 return ret;
3791
3792         for (step = 0; step < ecc_steps; step++) {
3793                 /* configure controller for WRITE access */
3794                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3795
3796                 /* write data (untouched subpages already masked by 0xFF) */
3797                 ret = nand_write_data_op(chip, buf, ecc_size, false);
3798                 if (ret)
3799                         return ret;
3800
3801                 /* mask ECC of un-touched subpages by padding 0xFF */
3802                 if ((step < start_step) || (step > end_step))
3803                         memset(ecc_calc, 0xff, ecc_bytes);
3804                 else
3805                         chip->ecc.calculate(chip, buf, ecc_calc);
3806
3807                 /* mask OOB of un-touched subpages by padding 0xFF */
3808                 /* if oob_required, preserve OOB metadata of written subpage */
3809                 if (!oob_required || (step < start_step) || (step > end_step))
3810                         memset(oob_buf, 0xff, oob_bytes);
3811
3812                 buf += ecc_size;
3813                 ecc_calc += ecc_bytes;
3814                 oob_buf  += oob_bytes;
3815         }
3816
3817         /* copy calculated ECC for whole page to chip->buffer->oob */
3818         /* this include masked-value(0xFF) for unwritten subpages */
3819         ecc_calc = chip->ecc.calc_buf;
3820         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
3821                                          chip->ecc.total);
3822         if (ret)
3823                 return ret;
3824
3825         /* write OOB buffer to NAND device */
3826         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
3827         if (ret)
3828                 return ret;
3829
3830         return nand_prog_page_end_op(chip);
3831 }
3832
3833
3834 /**
3835  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
3836  * @chip: nand chip info structure
3837  * @buf: data buffer
3838  * @oob_required: must write chip->oob_poi to OOB
3839  * @page: page number to write
3840  *
3841  * The hw generator calculates the error syndrome automatically. Therefore we
3842  * need a special oob layout and handling.
3843  */
3844 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
3845                                     int oob_required, int page)
3846 {
3847         struct mtd_info *mtd = nand_to_mtd(chip);
3848         int i, eccsize = chip->ecc.size;
3849         int eccbytes = chip->ecc.bytes;
3850         int eccsteps = chip->ecc.steps;
3851         const uint8_t *p = buf;
3852         uint8_t *oob = chip->oob_poi;
3853         int ret;
3854
3855         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3856         if (ret)
3857                 return ret;
3858
3859         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3860                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
3861
3862                 ret = nand_write_data_op(chip, p, eccsize, false);
3863                 if (ret)
3864                         return ret;
3865
3866                 if (chip->ecc.prepad) {
3867                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3868                                                  false);
3869                         if (ret)
3870                                 return ret;
3871
3872                         oob += chip->ecc.prepad;
3873                 }
3874
3875                 chip->ecc.calculate(chip, p, oob);
3876
3877                 ret = nand_write_data_op(chip, oob, eccbytes, false);
3878                 if (ret)
3879                         return ret;
3880
3881                 oob += eccbytes;
3882
3883                 if (chip->ecc.postpad) {
3884                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3885                                                  false);
3886                         if (ret)
3887                                 return ret;
3888
3889                         oob += chip->ecc.postpad;
3890                 }
3891         }
3892
3893         /* Calculate remaining oob bytes */
3894         i = mtd->oobsize - (oob - chip->oob_poi);
3895         if (i) {
3896                 ret = nand_write_data_op(chip, oob, i, false);
3897                 if (ret)
3898                         return ret;
3899         }
3900
3901         return nand_prog_page_end_op(chip);
3902 }
3903
3904 /**
3905  * nand_write_page - write one page
3906  * @chip: NAND chip descriptor
3907  * @offset: address offset within the page
3908  * @data_len: length of actual data to be written
3909  * @buf: the data to write
3910  * @oob_required: must write chip->oob_poi to OOB
3911  * @page: page number to write
3912  * @raw: use _raw version of write_page
3913  */
3914 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
3915                            int data_len, const uint8_t *buf, int oob_required,
3916                            int page, int raw)
3917 {
3918         struct mtd_info *mtd = nand_to_mtd(chip);
3919         int status, subpage;
3920
3921         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3922                 chip->ecc.write_subpage)
3923                 subpage = offset || (data_len < mtd->writesize);
3924         else
3925                 subpage = 0;
3926
3927         if (unlikely(raw))
3928                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
3929                                                   page);
3930         else if (subpage)
3931                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
3932                                                  oob_required, page);
3933         else
3934                 status = chip->ecc.write_page(chip, buf, oob_required, page);
3935
3936         if (status < 0)
3937                 return status;
3938
3939         return 0;
3940 }
3941
3942 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
3943
3944 /**
3945  * nand_do_write_ops - [INTERN] NAND write with ECC
3946  * @chip: NAND chip object
3947  * @to: offset to write to
3948  * @ops: oob operations description structure
3949  *
3950  * NAND write with ECC.
3951  */
3952 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
3953                              struct mtd_oob_ops *ops)
3954 {
3955         struct mtd_info *mtd = nand_to_mtd(chip);
3956         int chipnr, realpage, page, column;
3957         uint32_t writelen = ops->len;
3958
3959         uint32_t oobwritelen = ops->ooblen;
3960         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
3961
3962         uint8_t *oob = ops->oobbuf;
3963         uint8_t *buf = ops->datbuf;
3964         int ret;
3965         int oob_required = oob ? 1 : 0;
3966
3967         ops->retlen = 0;
3968         if (!writelen)
3969                 return 0;
3970
3971         /* Reject writes, which are not page aligned */
3972         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
3973                 pr_notice("%s: attempt to write non page aligned data\n",
3974                            __func__);
3975                 return -EINVAL;
3976         }
3977
3978         column = to & (mtd->writesize - 1);
3979
3980         chipnr = (int)(to >> chip->chip_shift);
3981         nand_select_target(chip, chipnr);
3982
3983         /* Check, if it is write protected */
3984         if (nand_check_wp(chip)) {
3985                 ret = -EIO;
3986                 goto err_out;
3987         }
3988
3989         realpage = (int)(to >> chip->page_shift);
3990         page = realpage & chip->pagemask;
3991
3992         /* Invalidate the page cache, when we write to the cached page */
3993         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
3994             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
3995                 chip->pagecache.page = -1;
3996
3997         /* Don't allow multipage oob writes with offset */
3998         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
3999                 ret = -EINVAL;
4000                 goto err_out;
4001         }
4002
4003         while (1) {
4004                 int bytes = mtd->writesize;
4005                 uint8_t *wbuf = buf;
4006                 int use_bufpoi;
4007                 int part_pagewr = (column || writelen < mtd->writesize);
4008
4009                 if (part_pagewr)
4010                         use_bufpoi = 1;
4011                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
4012                         use_bufpoi = !virt_addr_valid(buf) ||
4013                                      !IS_ALIGNED((unsigned long)buf,
4014                                                  chip->buf_align);
4015                 else
4016                         use_bufpoi = 0;
4017
4018                 /* Partial page write?, or need to use bounce buffer */
4019                 if (use_bufpoi) {
4020                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4021                                          __func__, buf);
4022                         if (part_pagewr)
4023                                 bytes = min_t(int, bytes - column, writelen);
4024                         wbuf = nand_get_data_buf(chip);
4025                         memset(wbuf, 0xff, mtd->writesize);
4026                         memcpy(&wbuf[column], buf, bytes);
4027                 }
4028
4029                 if (unlikely(oob)) {
4030                         size_t len = min(oobwritelen, oobmaxlen);
4031                         oob = nand_fill_oob(chip, oob, len, ops);
4032                         oobwritelen -= len;
4033                 } else {
4034                         /* We still need to erase leftover OOB data */
4035                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4036                 }
4037
4038                 ret = nand_write_page(chip, column, bytes, wbuf,
4039                                       oob_required, page,
4040                                       (ops->mode == MTD_OPS_RAW));
4041                 if (ret)
4042                         break;
4043
4044                 writelen -= bytes;
4045                 if (!writelen)
4046                         break;
4047
4048                 column = 0;
4049                 buf += bytes;
4050                 realpage++;
4051
4052                 page = realpage & chip->pagemask;
4053                 /* Check, if we cross a chip boundary */
4054                 if (!page) {
4055                         chipnr++;
4056                         nand_deselect_target(chip);
4057                         nand_select_target(chip, chipnr);
4058                 }
4059         }
4060
4061         ops->retlen = ops->len - writelen;
4062         if (unlikely(oob))
4063                 ops->oobretlen = ops->ooblen;
4064
4065 err_out:
4066         nand_deselect_target(chip);
4067         return ret;
4068 }
4069
4070 /**
4071  * panic_nand_write - [MTD Interface] NAND write with ECC
4072  * @mtd: MTD device structure
4073  * @to: offset to write to
4074  * @len: number of bytes to write
4075  * @retlen: pointer to variable to store the number of written bytes
4076  * @buf: the data to write
4077  *
4078  * NAND write with ECC. Used when performing writes in interrupt context, this
4079  * may for example be called by mtdoops when writing an oops while in panic.
4080  */
4081 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4082                             size_t *retlen, const uint8_t *buf)
4083 {
4084         struct nand_chip *chip = mtd_to_nand(mtd);
4085         int chipnr = (int)(to >> chip->chip_shift);
4086         struct mtd_oob_ops ops;
4087         int ret;
4088
4089         nand_select_target(chip, chipnr);
4090
4091         /* Wait for the device to get ready */
4092         panic_nand_wait(chip, 400);
4093
4094         memset(&ops, 0, sizeof(ops));
4095         ops.len = len;
4096         ops.datbuf = (uint8_t *)buf;
4097         ops.mode = MTD_OPS_PLACE_OOB;
4098
4099         ret = nand_do_write_ops(chip, to, &ops);
4100
4101         *retlen = ops.retlen;
4102         return ret;
4103 }
4104
4105 /**
4106  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4107  * @mtd: MTD device structure
4108  * @to: offset to write to
4109  * @ops: oob operation description structure
4110  */
4111 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4112                           struct mtd_oob_ops *ops)
4113 {
4114         struct nand_chip *chip = mtd_to_nand(mtd);
4115         int ret = -ENOTSUPP;
4116
4117         ops->retlen = 0;
4118
4119         ret = nand_get_device(chip);
4120         if (ret)
4121                 return ret;
4122
4123         switch (ops->mode) {
4124         case MTD_OPS_PLACE_OOB:
4125         case MTD_OPS_AUTO_OOB:
4126         case MTD_OPS_RAW:
4127                 break;
4128
4129         default:
4130                 goto out;
4131         }
4132
4133         if (!ops->datbuf)
4134                 ret = nand_do_write_oob(chip, to, ops);
4135         else
4136                 ret = nand_do_write_ops(chip, to, ops);
4137
4138 out:
4139         nand_release_device(chip);
4140         return ret;
4141 }
4142
4143 /**
4144  * nand_erase - [MTD Interface] erase block(s)
4145  * @mtd: MTD device structure
4146  * @instr: erase instruction
4147  *
4148  * Erase one ore more blocks.
4149  */
4150 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4151 {
4152         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4153 }
4154
4155 /**
4156  * nand_erase_nand - [INTERN] erase block(s)
4157  * @chip: NAND chip object
4158  * @instr: erase instruction
4159  * @allowbbt: allow erasing the bbt area
4160  *
4161  * Erase one ore more blocks.
4162  */
4163 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4164                     int allowbbt)
4165 {
4166         int page, pages_per_block, ret, chipnr;
4167         loff_t len;
4168
4169         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4170                         __func__, (unsigned long long)instr->addr,
4171                         (unsigned long long)instr->len);
4172
4173         if (check_offs_len(chip, instr->addr, instr->len))
4174                 return -EINVAL;
4175
4176         /* Grab the lock and see if the device is available */
4177         ret = nand_get_device(chip);
4178         if (ret)
4179                 return ret;
4180
4181         /* Shift to get first page */
4182         page = (int)(instr->addr >> chip->page_shift);
4183         chipnr = (int)(instr->addr >> chip->chip_shift);
4184
4185         /* Calculate pages in each block */
4186         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4187
4188         /* Select the NAND device */
4189         nand_select_target(chip, chipnr);
4190
4191         /* Check, if it is write protected */
4192         if (nand_check_wp(chip)) {
4193                 pr_debug("%s: device is write protected!\n",
4194                                 __func__);
4195                 ret = -EIO;
4196                 goto erase_exit;
4197         }
4198
4199         /* Loop through the pages */
4200         len = instr->len;
4201
4202         while (len) {
4203                 /* Check if we have a bad block, we do not erase bad blocks! */
4204                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4205                                         chip->page_shift, allowbbt)) {
4206                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
4207                                     __func__, page);
4208                         ret = -EIO;
4209                         goto erase_exit;
4210                 }
4211
4212                 /*
4213                  * Invalidate the page cache, if we erase the block which
4214                  * contains the current cached page.
4215                  */
4216                 if (page <= chip->pagecache.page && chip->pagecache.page <
4217                     (page + pages_per_block))
4218                         chip->pagecache.page = -1;
4219
4220                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4221                                     (chip->phys_erase_shift - chip->page_shift));
4222                 if (ret) {
4223                         pr_debug("%s: failed erase, page 0x%08x\n",
4224                                         __func__, page);
4225                         instr->fail_addr =
4226                                 ((loff_t)page << chip->page_shift);
4227                         goto erase_exit;
4228                 }
4229
4230                 /* Increment page address and decrement length */
4231                 len -= (1ULL << chip->phys_erase_shift);
4232                 page += pages_per_block;
4233
4234                 /* Check, if we cross a chip boundary */
4235                 if (len && !(page & chip->pagemask)) {
4236                         chipnr++;
4237                         nand_deselect_target(chip);
4238                         nand_select_target(chip, chipnr);
4239                 }
4240         }
4241
4242         ret = 0;
4243 erase_exit:
4244
4245         /* Deselect and wake up anyone waiting on the device */
4246         nand_deselect_target(chip);
4247         nand_release_device(chip);
4248
4249         /* Return more or less happy */
4250         return ret;
4251 }
4252
4253 /**
4254  * nand_sync - [MTD Interface] sync
4255  * @mtd: MTD device structure
4256  *
4257  * Sync is actually a wait for chip ready function.
4258  */
4259 static void nand_sync(struct mtd_info *mtd)
4260 {
4261         struct nand_chip *chip = mtd_to_nand(mtd);
4262
4263         pr_debug("%s: called\n", __func__);
4264
4265         /* Grab the lock and see if the device is available */
4266         WARN_ON(nand_get_device(chip));
4267         /* Release it and go back */
4268         nand_release_device(chip);
4269 }
4270
4271 /**
4272  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4273  * @mtd: MTD device structure
4274  * @offs: offset relative to mtd start
4275  */
4276 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4277 {
4278         struct nand_chip *chip = mtd_to_nand(mtd);
4279         int chipnr = (int)(offs >> chip->chip_shift);
4280         int ret;
4281
4282         /* Select the NAND device */
4283         ret = nand_get_device(chip);
4284         if (ret)
4285                 return ret;
4286
4287         nand_select_target(chip, chipnr);
4288
4289         ret = nand_block_checkbad(chip, offs, 0);
4290
4291         nand_deselect_target(chip);
4292         nand_release_device(chip);
4293
4294         return ret;
4295 }
4296
4297 /**
4298  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4299  * @mtd: MTD device structure
4300  * @ofs: offset relative to mtd start
4301  */
4302 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4303 {
4304         int ret;
4305
4306         ret = nand_block_isbad(mtd, ofs);
4307         if (ret) {
4308                 /* If it was bad already, return success and do nothing */
4309                 if (ret > 0)
4310                         return 0;
4311                 return ret;
4312         }
4313
4314         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4315 }
4316
4317 /**
4318  * nand_suspend - [MTD Interface] Suspend the NAND flash
4319  * @mtd: MTD device structure
4320  */
4321 static int nand_suspend(struct mtd_info *mtd)
4322 {
4323         struct nand_chip *chip = mtd_to_nand(mtd);
4324
4325         mutex_lock(&chip->lock);
4326         chip->suspended = 1;
4327         mutex_unlock(&chip->lock);
4328
4329         return 0;
4330 }
4331
4332 /**
4333  * nand_resume - [MTD Interface] Resume the NAND flash
4334  * @mtd: MTD device structure
4335  */
4336 static void nand_resume(struct mtd_info *mtd)
4337 {
4338         struct nand_chip *chip = mtd_to_nand(mtd);
4339
4340         mutex_lock(&chip->lock);
4341         if (chip->suspended)
4342                 chip->suspended = 0;
4343         else
4344                 pr_err("%s called for a chip which is not in suspended state\n",
4345                         __func__);
4346         mutex_unlock(&chip->lock);
4347 }
4348
4349 /**
4350  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4351  *                 prevent further operations
4352  * @mtd: MTD device structure
4353  */
4354 static void nand_shutdown(struct mtd_info *mtd)
4355 {
4356         nand_suspend(mtd);
4357 }
4358
4359 /* Set default functions */
4360 static void nand_set_defaults(struct nand_chip *chip)
4361 {
4362         /* If no controller is provided, use the dummy, legacy one. */
4363         if (!chip->controller) {
4364                 chip->controller = &chip->legacy.dummy_controller;
4365                 nand_controller_init(chip->controller);
4366         }
4367
4368         nand_legacy_set_defaults(chip);
4369
4370         if (!chip->buf_align)
4371                 chip->buf_align = 1;
4372 }
4373
4374 /* Sanitize ONFI strings so we can safely print them */
4375 void sanitize_string(uint8_t *s, size_t len)
4376 {
4377         ssize_t i;
4378
4379         /* Null terminate */
4380         s[len - 1] = 0;
4381
4382         /* Remove non printable chars */
4383         for (i = 0; i < len - 1; i++) {
4384                 if (s[i] < ' ' || s[i] > 127)
4385                         s[i] = '?';
4386         }
4387
4388         /* Remove trailing spaces */
4389         strim(s);
4390 }
4391
4392 /*
4393  * nand_id_has_period - Check if an ID string has a given wraparound period
4394  * @id_data: the ID string
4395  * @arrlen: the length of the @id_data array
4396  * @period: the period of repitition
4397  *
4398  * Check if an ID string is repeated within a given sequence of bytes at
4399  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4400  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4401  * if the repetition has a period of @period; otherwise, returns zero.
4402  */
4403 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4404 {
4405         int i, j;
4406         for (i = 0; i < period; i++)
4407                 for (j = i + period; j < arrlen; j += period)
4408                         if (id_data[i] != id_data[j])
4409                                 return 0;
4410         return 1;
4411 }
4412
4413 /*
4414  * nand_id_len - Get the length of an ID string returned by CMD_READID
4415  * @id_data: the ID string
4416  * @arrlen: the length of the @id_data array
4417
4418  * Returns the length of the ID string, according to known wraparound/trailing
4419  * zero patterns. If no pattern exists, returns the length of the array.
4420  */
4421 static int nand_id_len(u8 *id_data, int arrlen)
4422 {
4423         int last_nonzero, period;
4424
4425         /* Find last non-zero byte */
4426         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4427                 if (id_data[last_nonzero])
4428                         break;
4429
4430         /* All zeros */
4431         if (last_nonzero < 0)
4432                 return 0;
4433
4434         /* Calculate wraparound period */
4435         for (period = 1; period < arrlen; period++)
4436                 if (nand_id_has_period(id_data, arrlen, period))
4437                         break;
4438
4439         /* There's a repeated pattern */
4440         if (period < arrlen)
4441                 return period;
4442
4443         /* There are trailing zeros */
4444         if (last_nonzero < arrlen - 1)
4445                 return last_nonzero + 1;
4446
4447         /* No pattern detected */
4448         return arrlen;
4449 }
4450
4451 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4452 static int nand_get_bits_per_cell(u8 cellinfo)
4453 {
4454         int bits;
4455
4456         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4457         bits >>= NAND_CI_CELLTYPE_SHIFT;
4458         return bits + 1;
4459 }
4460
4461 /*
4462  * Many new NAND share similar device ID codes, which represent the size of the
4463  * chip. The rest of the parameters must be decoded according to generic or
4464  * manufacturer-specific "extended ID" decoding patterns.
4465  */
4466 void nand_decode_ext_id(struct nand_chip *chip)
4467 {
4468         struct nand_memory_organization *memorg;
4469         struct mtd_info *mtd = nand_to_mtd(chip);
4470         int extid;
4471         u8 *id_data = chip->id.data;
4472
4473         memorg = nanddev_get_memorg(&chip->base);
4474
4475         /* The 3rd id byte holds MLC / multichip data */
4476         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4477         /* The 4th id byte is the important one */
4478         extid = id_data[3];
4479
4480         /* Calc pagesize */
4481         memorg->pagesize = 1024 << (extid & 0x03);
4482         mtd->writesize = memorg->pagesize;
4483         extid >>= 2;
4484         /* Calc oobsize */
4485         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4486         mtd->oobsize = memorg->oobsize;
4487         extid >>= 2;
4488         /* Calc blocksize. Blocksize is multiples of 64KiB */
4489         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4490                                        memorg->pagesize;
4491         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4492         extid >>= 2;
4493         /* Get buswidth information */
4494         if (extid & 0x1)
4495                 chip->options |= NAND_BUSWIDTH_16;
4496 }
4497 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4498
4499 /*
4500  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4501  * decodes a matching ID table entry and assigns the MTD size parameters for
4502  * the chip.
4503  */
4504 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4505 {
4506         struct mtd_info *mtd = nand_to_mtd(chip);
4507         struct nand_memory_organization *memorg;
4508
4509         memorg = nanddev_get_memorg(&chip->base);
4510
4511         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4512         mtd->erasesize = type->erasesize;
4513         memorg->pagesize = type->pagesize;
4514         mtd->writesize = memorg->pagesize;
4515         memorg->oobsize = memorg->pagesize / 32;
4516         mtd->oobsize = memorg->oobsize;
4517
4518         /* All legacy ID NAND are small-page, SLC */
4519         memorg->bits_per_cell = 1;
4520 }
4521
4522 /*
4523  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4524  * heuristic patterns using various detected parameters (e.g., manufacturer,
4525  * page size, cell-type information).
4526  */
4527 static void nand_decode_bbm_options(struct nand_chip *chip)
4528 {
4529         struct mtd_info *mtd = nand_to_mtd(chip);
4530
4531         /* Set the bad block position */
4532         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4533                 chip->badblockpos = NAND_BBM_POS_LARGE;
4534         else
4535                 chip->badblockpos = NAND_BBM_POS_SMALL;
4536 }
4537
4538 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4539 {
4540         return type->id_len;
4541 }
4542
4543 static bool find_full_id_nand(struct nand_chip *chip,
4544                               struct nand_flash_dev *type)
4545 {
4546         struct mtd_info *mtd = nand_to_mtd(chip);
4547         struct nand_memory_organization *memorg;
4548         u8 *id_data = chip->id.data;
4549
4550         memorg = nanddev_get_memorg(&chip->base);
4551
4552         if (!strncmp(type->id, id_data, type->id_len)) {
4553                 memorg->pagesize = type->pagesize;
4554                 mtd->writesize = memorg->pagesize;
4555                 memorg->pages_per_eraseblock = type->erasesize /
4556                                                type->pagesize;
4557                 mtd->erasesize = type->erasesize;
4558                 memorg->oobsize = type->oobsize;
4559                 mtd->oobsize = memorg->oobsize;
4560
4561                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4562                 memorg->eraseblocks_per_lun =
4563                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4564                                            memorg->pagesize *
4565                                            memorg->pages_per_eraseblock);
4566                 chip->options |= type->options;
4567                 chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
4568                 chip->base.eccreq.step_size = NAND_ECC_STEP(type);
4569                 chip->onfi_timing_mode_default =
4570                                         type->onfi_timing_mode_default;
4571
4572                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4573                 if (!chip->parameters.model)
4574                         return false;
4575
4576                 return true;
4577         }
4578         return false;
4579 }
4580
4581 /*
4582  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4583  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4584  * table.
4585  */
4586 static void nand_manufacturer_detect(struct nand_chip *chip)
4587 {
4588         /*
4589          * Try manufacturer detection if available and use
4590          * nand_decode_ext_id() otherwise.
4591          */
4592         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4593             chip->manufacturer.desc->ops->detect) {
4594                 struct nand_memory_organization *memorg;
4595
4596                 memorg = nanddev_get_memorg(&chip->base);
4597
4598                 /* The 3rd id byte holds MLC / multichip data */
4599                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4600                 chip->manufacturer.desc->ops->detect(chip);
4601         } else {
4602                 nand_decode_ext_id(chip);
4603         }
4604 }
4605
4606 /*
4607  * Manufacturer initialization. This function is called for all NANDs including
4608  * ONFI and JEDEC compliant ones.
4609  * Manufacturer drivers should put all their specific initialization code in
4610  * their ->init() hook.
4611  */
4612 static int nand_manufacturer_init(struct nand_chip *chip)
4613 {
4614         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4615             !chip->manufacturer.desc->ops->init)
4616                 return 0;
4617
4618         return chip->manufacturer.desc->ops->init(chip);
4619 }
4620
4621 /*
4622  * Manufacturer cleanup. This function is called for all NANDs including
4623  * ONFI and JEDEC compliant ones.
4624  * Manufacturer drivers should put all their specific cleanup code in their
4625  * ->cleanup() hook.
4626  */
4627 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4628 {
4629         /* Release manufacturer private data */
4630         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4631             chip->manufacturer.desc->ops->cleanup)
4632                 chip->manufacturer.desc->ops->cleanup(chip);
4633 }
4634
4635 static const char *
4636 nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
4637 {
4638         return manufacturer ? manufacturer->name : "Unknown";
4639 }
4640
4641 /*
4642  * Get the flash and manufacturer id and lookup if the type is supported.
4643  */
4644 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4645 {
4646         const struct nand_manufacturer *manufacturer;
4647         struct mtd_info *mtd = nand_to_mtd(chip);
4648         struct nand_memory_organization *memorg;
4649         int busw, ret;
4650         u8 *id_data = chip->id.data;
4651         u8 maf_id, dev_id;
4652         u64 targetsize;
4653
4654         /*
4655          * Let's start by initializing memorg fields that might be left
4656          * unassigned by the ID-based detection logic.
4657          */
4658         memorg = nanddev_get_memorg(&chip->base);
4659         memorg->planes_per_lun = 1;
4660         memorg->luns_per_target = 1;
4661
4662         /*
4663          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4664          * after power-up.
4665          */
4666         ret = nand_reset(chip, 0);
4667         if (ret)
4668                 return ret;
4669
4670         /* Select the device */
4671         nand_select_target(chip, 0);
4672
4673         /* Send the command for reading device ID */
4674         ret = nand_readid_op(chip, 0, id_data, 2);
4675         if (ret)
4676                 return ret;
4677
4678         /* Read manufacturer and device IDs */
4679         maf_id = id_data[0];
4680         dev_id = id_data[1];
4681
4682         /*
4683          * Try again to make sure, as some systems the bus-hold or other
4684          * interface concerns can cause random data which looks like a
4685          * possibly credible NAND flash to appear. If the two results do
4686          * not match, ignore the device completely.
4687          */
4688
4689         /* Read entire ID string */
4690         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
4691         if (ret)
4692                 return ret;
4693
4694         if (id_data[0] != maf_id || id_data[1] != dev_id) {
4695                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4696                         maf_id, dev_id, id_data[0], id_data[1]);
4697                 return -ENODEV;
4698         }
4699
4700         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
4701
4702         /* Try to identify manufacturer */
4703         manufacturer = nand_get_manufacturer(maf_id);
4704         chip->manufacturer.desc = manufacturer;
4705
4706         if (!type)
4707                 type = nand_flash_ids;
4708
4709         /*
4710          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
4711          * override it.
4712          * This is required to make sure initial NAND bus width set by the
4713          * NAND controller driver is coherent with the real NAND bus width
4714          * (extracted by auto-detection code).
4715          */
4716         busw = chip->options & NAND_BUSWIDTH_16;
4717
4718         /*
4719          * The flag is only set (never cleared), reset it to its default value
4720          * before starting auto-detection.
4721          */
4722         chip->options &= ~NAND_BUSWIDTH_16;
4723
4724         for (; type->name != NULL; type++) {
4725                 if (is_full_id_nand(type)) {
4726                         if (find_full_id_nand(chip, type))
4727                                 goto ident_done;
4728                 } else if (dev_id == type->dev_id) {
4729                         break;
4730                 }
4731         }
4732
4733         if (!type->name || !type->pagesize) {
4734                 /* Check if the chip is ONFI compliant */
4735                 ret = nand_onfi_detect(chip);
4736                 if (ret < 0)
4737                         return ret;
4738                 else if (ret)
4739                         goto ident_done;
4740
4741                 /* Check if the chip is JEDEC compliant */
4742                 ret = nand_jedec_detect(chip);
4743                 if (ret < 0)
4744                         return ret;
4745                 else if (ret)
4746                         goto ident_done;
4747         }
4748
4749         if (!type->name)
4750                 return -ENODEV;
4751
4752         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4753         if (!chip->parameters.model)
4754                 return -ENOMEM;
4755
4756         if (!type->pagesize)
4757                 nand_manufacturer_detect(chip);
4758         else
4759                 nand_decode_id(chip, type);
4760
4761         /* Get chip options */
4762         chip->options |= type->options;
4763
4764         memorg->eraseblocks_per_lun =
4765                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4766                                            memorg->pagesize *
4767                                            memorg->pages_per_eraseblock);
4768
4769 ident_done:
4770         if (!mtd->name)
4771                 mtd->name = chip->parameters.model;
4772
4773         if (chip->options & NAND_BUSWIDTH_AUTO) {
4774                 WARN_ON(busw & NAND_BUSWIDTH_16);
4775                 nand_set_defaults(chip);
4776         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
4777                 /*
4778                  * Check, if buswidth is correct. Hardware drivers should set
4779                  * chip correct!
4780                  */
4781                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4782                         maf_id, dev_id);
4783                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4784                         mtd->name);
4785                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
4786                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
4787                 ret = -EINVAL;
4788
4789                 goto free_detect_allocation;
4790         }
4791
4792         nand_decode_bbm_options(chip);
4793
4794         /* Calculate the address shift from the page size */
4795         chip->page_shift = ffs(mtd->writesize) - 1;
4796         /* Convert chipsize to number of pages per chip -1 */
4797         targetsize = nanddev_target_size(&chip->base);
4798         chip->pagemask = (targetsize >> chip->page_shift) - 1;
4799
4800         chip->bbt_erase_shift = chip->phys_erase_shift =
4801                 ffs(mtd->erasesize) - 1;
4802         if (targetsize & 0xffffffff)
4803                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
4804         else {
4805                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
4806                 chip->chip_shift += 32 - 1;
4807         }
4808
4809         if (chip->chip_shift - chip->page_shift > 16)
4810                 chip->options |= NAND_ROW_ADDR_3;
4811
4812         chip->badblockbits = 8;
4813
4814         nand_legacy_adjust_cmdfunc(chip);
4815
4816         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
4817                 maf_id, dev_id);
4818         pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
4819                 chip->parameters.model);
4820         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4821                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4822                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4823         return 0;
4824
4825 free_detect_allocation:
4826         kfree(chip->parameters.model);
4827
4828         return ret;
4829 }
4830
4831 static const char * const nand_ecc_modes[] = {
4832         [NAND_ECC_NONE]         = "none",
4833         [NAND_ECC_SOFT]         = "soft",
4834         [NAND_ECC_HW]           = "hw",
4835         [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
4836         [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
4837         [NAND_ECC_ON_DIE]       = "on-die",
4838 };
4839
4840 static int of_get_nand_ecc_mode(struct device_node *np)
4841 {
4842         const char *pm;
4843         int err, i;
4844
4845         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4846         if (err < 0)
4847                 return err;
4848
4849         for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
4850                 if (!strcasecmp(pm, nand_ecc_modes[i]))
4851                         return i;
4852
4853         /*
4854          * For backward compatibility we support few obsoleted values that don't
4855          * have their mappings into nand_ecc_modes_t anymore (they were merged
4856          * with other enums).
4857          */
4858         if (!strcasecmp(pm, "soft_bch"))
4859                 return NAND_ECC_SOFT;
4860
4861         return -ENODEV;
4862 }
4863
4864 static const char * const nand_ecc_algos[] = {
4865         [NAND_ECC_HAMMING]      = "hamming",
4866         [NAND_ECC_BCH]          = "bch",
4867         [NAND_ECC_RS]           = "rs",
4868 };
4869
4870 static int of_get_nand_ecc_algo(struct device_node *np)
4871 {
4872         const char *pm;
4873         int err, i;
4874
4875         err = of_property_read_string(np, "nand-ecc-algo", &pm);
4876         if (!err) {
4877                 for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
4878                         if (!strcasecmp(pm, nand_ecc_algos[i]))
4879                                 return i;
4880                 return -ENODEV;
4881         }
4882
4883         /*
4884          * For backward compatibility we also read "nand-ecc-mode" checking
4885          * for some obsoleted values that were specifying ECC algorithm.
4886          */
4887         err = of_property_read_string(np, "nand-ecc-mode", &pm);
4888         if (err < 0)
4889                 return err;
4890
4891         if (!strcasecmp(pm, "soft"))
4892                 return NAND_ECC_HAMMING;
4893         else if (!strcasecmp(pm, "soft_bch"))
4894                 return NAND_ECC_BCH;
4895
4896         return -ENODEV;
4897 }
4898
4899 static int of_get_nand_ecc_step_size(struct device_node *np)
4900 {
4901         int ret;
4902         u32 val;
4903
4904         ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
4905         return ret ? ret : val;
4906 }
4907
4908 static int of_get_nand_ecc_strength(struct device_node *np)
4909 {
4910         int ret;
4911         u32 val;
4912
4913         ret = of_property_read_u32(np, "nand-ecc-strength", &val);
4914         return ret ? ret : val;
4915 }
4916
4917 static int of_get_nand_bus_width(struct device_node *np)
4918 {
4919         u32 val;
4920
4921         if (of_property_read_u32(np, "nand-bus-width", &val))
4922                 return 8;
4923
4924         switch (val) {
4925         case 8:
4926         case 16:
4927                 return val;
4928         default:
4929                 return -EIO;
4930         }
4931 }
4932
4933 static bool of_get_nand_on_flash_bbt(struct device_node *np)
4934 {
4935         return of_property_read_bool(np, "nand-on-flash-bbt");
4936 }
4937
4938 static int nand_dt_init(struct nand_chip *chip)
4939 {
4940         struct device_node *dn = nand_get_flash_node(chip);
4941         int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4942
4943         if (!dn)
4944                 return 0;
4945
4946         if (of_get_nand_bus_width(dn) == 16)
4947                 chip->options |= NAND_BUSWIDTH_16;
4948
4949         if (of_property_read_bool(dn, "nand-is-boot-medium"))
4950                 chip->options |= NAND_IS_BOOT_MEDIUM;
4951
4952         if (of_get_nand_on_flash_bbt(dn))
4953                 chip->bbt_options |= NAND_BBT_USE_FLASH;
4954
4955         ecc_mode = of_get_nand_ecc_mode(dn);
4956         ecc_algo = of_get_nand_ecc_algo(dn);
4957         ecc_strength = of_get_nand_ecc_strength(dn);
4958         ecc_step = of_get_nand_ecc_step_size(dn);
4959
4960         if (ecc_mode >= 0)
4961                 chip->ecc.mode = ecc_mode;
4962
4963         if (ecc_algo >= 0)
4964                 chip->ecc.algo = ecc_algo;
4965
4966         if (ecc_strength >= 0)
4967                 chip->ecc.strength = ecc_strength;
4968
4969         if (ecc_step > 0)
4970                 chip->ecc.size = ecc_step;
4971
4972         if (of_property_read_bool(dn, "nand-ecc-maximize"))
4973                 chip->ecc.options |= NAND_ECC_MAXIMIZE;
4974
4975         return 0;
4976 }
4977
4978 /**
4979  * nand_scan_ident - Scan for the NAND device
4980  * @chip: NAND chip object
4981  * @maxchips: number of chips to scan for
4982  * @table: alternative NAND ID table
4983  *
4984  * This is the first phase of the normal nand_scan() function. It reads the
4985  * flash ID and sets up MTD fields accordingly.
4986  *
4987  * This helper used to be called directly from controller drivers that needed
4988  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
4989  * prevented dynamic allocations during this phase which was unconvenient and
4990  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
4991  */
4992 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
4993                            struct nand_flash_dev *table)
4994 {
4995         struct mtd_info *mtd = nand_to_mtd(chip);
4996         struct nand_memory_organization *memorg;
4997         int nand_maf_id, nand_dev_id;
4998         unsigned int i;
4999         int ret;
5000
5001         memorg = nanddev_get_memorg(&chip->base);
5002
5003         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5004         chip->cur_cs = -1;
5005
5006         mutex_init(&chip->lock);
5007
5008         /* Enforce the right timings for reset/detection */
5009         onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
5010
5011         ret = nand_dt_init(chip);
5012         if (ret)
5013                 return ret;
5014
5015         if (!mtd->name && mtd->dev.parent)
5016                 mtd->name = dev_name(mtd->dev.parent);
5017
5018         /* Set the default functions */
5019         nand_set_defaults(chip);
5020
5021         ret = nand_legacy_check_hooks(chip);
5022         if (ret)
5023                 return ret;
5024
5025         memorg->ntargets = maxchips;
5026
5027         /* Read the flash type */
5028         ret = nand_detect(chip, table);
5029         if (ret) {
5030                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5031                         pr_warn("No NAND device found\n");
5032                 nand_deselect_target(chip);
5033                 return ret;
5034         }
5035
5036         nand_maf_id = chip->id.data[0];
5037         nand_dev_id = chip->id.data[1];
5038
5039         nand_deselect_target(chip);
5040
5041         /* Check for a chip array */
5042         for (i = 1; i < maxchips; i++) {
5043                 u8 id[2];
5044
5045                 /* See comment in nand_get_flash_type for reset */
5046                 ret = nand_reset(chip, i);
5047                 if (ret)
5048                         break;
5049
5050                 nand_select_target(chip, i);
5051                 /* Send the command for reading device ID */
5052                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5053                 if (ret)
5054                         break;
5055                 /* Read manufacturer and device IDs */
5056                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5057                         nand_deselect_target(chip);
5058                         break;
5059                 }
5060                 nand_deselect_target(chip);
5061         }
5062         if (i > 1)
5063                 pr_info("%d chips detected\n", i);
5064
5065         /* Store the number of chips and calc total size for mtd */
5066         memorg->ntargets = i;
5067         mtd->size = i * nanddev_target_size(&chip->base);
5068
5069         return 0;
5070 }
5071
5072 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5073 {
5074         kfree(chip->parameters.model);
5075         kfree(chip->parameters.onfi);
5076 }
5077
5078 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5079 {
5080         struct mtd_info *mtd = nand_to_mtd(chip);
5081         struct nand_ecc_ctrl *ecc = &chip->ecc;
5082
5083         if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
5084                 return -EINVAL;
5085
5086         switch (ecc->algo) {
5087         case NAND_ECC_HAMMING:
5088                 ecc->calculate = nand_calculate_ecc;
5089                 ecc->correct = nand_correct_data;
5090                 ecc->read_page = nand_read_page_swecc;
5091                 ecc->read_subpage = nand_read_subpage;
5092                 ecc->write_page = nand_write_page_swecc;
5093                 ecc->read_page_raw = nand_read_page_raw;
5094                 ecc->write_page_raw = nand_write_page_raw;
5095                 ecc->read_oob = nand_read_oob_std;
5096                 ecc->write_oob = nand_write_oob_std;
5097                 if (!ecc->size)
5098                         ecc->size = 256;
5099                 ecc->bytes = 3;
5100                 ecc->strength = 1;
5101
5102                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5103                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5104
5105                 return 0;
5106         case NAND_ECC_BCH:
5107                 if (!mtd_nand_has_bch()) {
5108                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5109                         return -EINVAL;
5110                 }
5111                 ecc->calculate = nand_bch_calculate_ecc;
5112                 ecc->correct = nand_bch_correct_data;
5113                 ecc->read_page = nand_read_page_swecc;
5114                 ecc->read_subpage = nand_read_subpage;
5115                 ecc->write_page = nand_write_page_swecc;
5116                 ecc->read_page_raw = nand_read_page_raw;
5117                 ecc->write_page_raw = nand_write_page_raw;
5118                 ecc->read_oob = nand_read_oob_std;
5119                 ecc->write_oob = nand_write_oob_std;
5120
5121                 /*
5122                 * Board driver should supply ecc.size and ecc.strength
5123                 * values to select how many bits are correctable.
5124                 * Otherwise, default to 4 bits for large page devices.
5125                 */
5126                 if (!ecc->size && (mtd->oobsize >= 64)) {
5127                         ecc->size = 512;
5128                         ecc->strength = 4;
5129                 }
5130
5131                 /*
5132                  * if no ecc placement scheme was provided pickup the default
5133                  * large page one.
5134                  */
5135                 if (!mtd->ooblayout) {
5136                         /* handle large page devices only */
5137                         if (mtd->oobsize < 64) {
5138                                 WARN(1, "OOB layout is required when using software BCH on small pages\n");
5139                                 return -EINVAL;
5140                         }
5141
5142                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
5143
5144                 }
5145
5146                 /*
5147                  * We can only maximize ECC config when the default layout is
5148                  * used, otherwise we don't know how many bytes can really be
5149                  * used.
5150                  */
5151                 if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
5152                     ecc->options & NAND_ECC_MAXIMIZE) {
5153                         int steps, bytes;
5154
5155                         /* Always prefer 1k blocks over 512bytes ones */
5156                         ecc->size = 1024;
5157                         steps = mtd->writesize / ecc->size;
5158
5159                         /* Reserve 2 bytes for the BBM */
5160                         bytes = (mtd->oobsize - 2) / steps;
5161                         ecc->strength = bytes * 8 / fls(8 * ecc->size);
5162                 }
5163
5164                 /* See nand_bch_init() for details. */
5165                 ecc->bytes = 0;
5166                 ecc->priv = nand_bch_init(mtd);
5167                 if (!ecc->priv) {
5168                         WARN(1, "BCH ECC initialization failed!\n");
5169                         return -EINVAL;
5170                 }
5171                 return 0;
5172         default:
5173                 WARN(1, "Unsupported ECC algorithm!\n");
5174                 return -EINVAL;
5175         }
5176 }
5177
5178 /**
5179  * nand_check_ecc_caps - check the sanity of preset ECC settings
5180  * @chip: nand chip info structure
5181  * @caps: ECC caps info structure
5182  * @oobavail: OOB size that the ECC engine can use
5183  *
5184  * When ECC step size and strength are already set, check if they are supported
5185  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5186  * On success, the calculated ECC bytes is set.
5187  */
5188 static int
5189 nand_check_ecc_caps(struct nand_chip *chip,
5190                     const struct nand_ecc_caps *caps, int oobavail)
5191 {
5192         struct mtd_info *mtd = nand_to_mtd(chip);
5193         const struct nand_ecc_step_info *stepinfo;
5194         int preset_step = chip->ecc.size;
5195         int preset_strength = chip->ecc.strength;
5196         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5197         int i, j;
5198
5199         for (i = 0; i < caps->nstepinfos; i++) {
5200                 stepinfo = &caps->stepinfos[i];
5201
5202                 if (stepinfo->stepsize != preset_step)
5203                         continue;
5204
5205                 for (j = 0; j < stepinfo->nstrengths; j++) {
5206                         if (stepinfo->strengths[j] != preset_strength)
5207                                 continue;
5208
5209                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5210                                                          preset_strength);
5211                         if (WARN_ON_ONCE(ecc_bytes < 0))
5212                                 return ecc_bytes;
5213
5214                         if (ecc_bytes * nsteps > oobavail) {
5215                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5216                                        preset_step, preset_strength);
5217                                 return -ENOSPC;
5218                         }
5219
5220                         chip->ecc.bytes = ecc_bytes;
5221
5222                         return 0;
5223                 }
5224         }
5225
5226         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5227                preset_step, preset_strength);
5228
5229         return -ENOTSUPP;
5230 }
5231
5232 /**
5233  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5234  * @chip: nand chip info structure
5235  * @caps: ECC engine caps info structure
5236  * @oobavail: OOB size that the ECC engine can use
5237  *
5238  * If a chip's ECC requirement is provided, try to meet it with the least
5239  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5240  * On success, the chosen ECC settings are set.
5241  */
5242 static int
5243 nand_match_ecc_req(struct nand_chip *chip,
5244                    const struct nand_ecc_caps *caps, int oobavail)
5245 {
5246         struct mtd_info *mtd = nand_to_mtd(chip);
5247         const struct nand_ecc_step_info *stepinfo;
5248         int req_step = chip->base.eccreq.step_size;
5249         int req_strength = chip->base.eccreq.strength;
5250         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5251         int best_step, best_strength, best_ecc_bytes;
5252         int best_ecc_bytes_total = INT_MAX;
5253         int i, j;
5254
5255         /* No information provided by the NAND chip */
5256         if (!req_step || !req_strength)
5257                 return -ENOTSUPP;
5258
5259         /* number of correctable bits the chip requires in a page */
5260         req_corr = mtd->writesize / req_step * req_strength;
5261
5262         for (i = 0; i < caps->nstepinfos; i++) {
5263                 stepinfo = &caps->stepinfos[i];
5264                 step_size = stepinfo->stepsize;
5265
5266                 for (j = 0; j < stepinfo->nstrengths; j++) {
5267                         strength = stepinfo->strengths[j];
5268
5269                         /*
5270                          * If both step size and strength are smaller than the
5271                          * chip's requirement, it is not easy to compare the
5272                          * resulted reliability.
5273                          */
5274                         if (step_size < req_step && strength < req_strength)
5275                                 continue;
5276
5277                         if (mtd->writesize % step_size)
5278                                 continue;
5279
5280                         nsteps = mtd->writesize / step_size;
5281
5282                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5283                         if (WARN_ON_ONCE(ecc_bytes < 0))
5284                                 continue;
5285                         ecc_bytes_total = ecc_bytes * nsteps;
5286
5287                         if (ecc_bytes_total > oobavail ||
5288                             strength * nsteps < req_corr)
5289                                 continue;
5290
5291                         /*
5292                          * We assume the best is to meet the chip's requrement
5293                          * with the least number of ECC bytes.
5294                          */
5295                         if (ecc_bytes_total < best_ecc_bytes_total) {
5296                                 best_ecc_bytes_total = ecc_bytes_total;
5297                                 best_step = step_size;
5298                                 best_strength = strength;
5299                                 best_ecc_bytes = ecc_bytes;
5300                         }
5301                 }
5302         }
5303
5304         if (best_ecc_bytes_total == INT_MAX)
5305                 return -ENOTSUPP;
5306
5307         chip->ecc.size = best_step;
5308         chip->ecc.strength = best_strength;
5309         chip->ecc.bytes = best_ecc_bytes;
5310
5311         return 0;
5312 }
5313
5314 /**
5315  * nand_maximize_ecc - choose the max ECC strength available
5316  * @chip: nand chip info structure
5317  * @caps: ECC engine caps info structure
5318  * @oobavail: OOB size that the ECC engine can use
5319  *
5320  * Choose the max ECC strength that is supported on the controller, and can fit
5321  * within the chip's OOB.  On success, the chosen ECC settings are set.
5322  */
5323 static int
5324 nand_maximize_ecc(struct nand_chip *chip,
5325                   const struct nand_ecc_caps *caps, int oobavail)
5326 {
5327         struct mtd_info *mtd = nand_to_mtd(chip);
5328         const struct nand_ecc_step_info *stepinfo;
5329         int step_size, strength, nsteps, ecc_bytes, corr;
5330         int best_corr = 0;
5331         int best_step = 0;
5332         int best_strength, best_ecc_bytes;
5333         int i, j;
5334
5335         for (i = 0; i < caps->nstepinfos; i++) {
5336                 stepinfo = &caps->stepinfos[i];
5337                 step_size = stepinfo->stepsize;
5338
5339                 /* If chip->ecc.size is already set, respect it */
5340                 if (chip->ecc.size && step_size != chip->ecc.size)
5341                         continue;
5342
5343                 for (j = 0; j < stepinfo->nstrengths; j++) {
5344                         strength = stepinfo->strengths[j];
5345
5346                         if (mtd->writesize % step_size)
5347                                 continue;
5348
5349                         nsteps = mtd->writesize / step_size;
5350
5351                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5352                         if (WARN_ON_ONCE(ecc_bytes < 0))
5353                                 continue;
5354
5355                         if (ecc_bytes * nsteps > oobavail)
5356                                 continue;
5357
5358                         corr = strength * nsteps;
5359
5360                         /*
5361                          * If the number of correctable bits is the same,
5362                          * bigger step_size has more reliability.
5363                          */
5364                         if (corr > best_corr ||
5365                             (corr == best_corr && step_size > best_step)) {
5366                                 best_corr = corr;
5367                                 best_step = step_size;
5368                                 best_strength = strength;
5369                                 best_ecc_bytes = ecc_bytes;
5370                         }
5371                 }
5372         }
5373
5374         if (!best_corr)
5375                 return -ENOTSUPP;
5376
5377         chip->ecc.size = best_step;
5378         chip->ecc.strength = best_strength;
5379         chip->ecc.bytes = best_ecc_bytes;
5380
5381         return 0;
5382 }
5383
5384 /**
5385  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5386  * @chip: nand chip info structure
5387  * @caps: ECC engine caps info structure
5388  * @oobavail: OOB size that the ECC engine can use
5389  *
5390  * Choose the ECC configuration according to following logic
5391  *
5392  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5393  *    then check if it is supported by this controller.
5394  * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
5395  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5396  *    to the chip's requirement. If available OOB size can't fit the chip
5397  *    requirement then fallback to the maximum ECC step size and ECC strength.
5398  *
5399  * On success, the chosen ECC settings are set.
5400  */
5401 int nand_ecc_choose_conf(struct nand_chip *chip,
5402                          const struct nand_ecc_caps *caps, int oobavail)
5403 {
5404         struct mtd_info *mtd = nand_to_mtd(chip);
5405
5406         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5407                 return -EINVAL;
5408
5409         if (chip->ecc.size && chip->ecc.strength)
5410                 return nand_check_ecc_caps(chip, caps, oobavail);
5411
5412         if (chip->ecc.options & NAND_ECC_MAXIMIZE)
5413                 return nand_maximize_ecc(chip, caps, oobavail);
5414
5415         if (!nand_match_ecc_req(chip, caps, oobavail))
5416                 return 0;
5417
5418         return nand_maximize_ecc(chip, caps, oobavail);
5419 }
5420 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
5421
5422 /*
5423  * Check if the chip configuration meet the datasheet requirements.
5424
5425  * If our configuration corrects A bits per B bytes and the minimum
5426  * required correction level is X bits per Y bytes, then we must ensure
5427  * both of the following are true:
5428  *
5429  * (1) A / B >= X / Y
5430  * (2) A >= X
5431  *
5432  * Requirement (1) ensures we can correct for the required bitflip density.
5433  * Requirement (2) ensures we can correct even when all bitflips are clumped
5434  * in the same sector.
5435  */
5436 static bool nand_ecc_strength_good(struct nand_chip *chip)
5437 {
5438         struct mtd_info *mtd = nand_to_mtd(chip);
5439         struct nand_ecc_ctrl *ecc = &chip->ecc;
5440         int corr, ds_corr;
5441
5442         if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
5443                 /* Not enough information */
5444                 return true;
5445
5446         /*
5447          * We get the number of corrected bits per page to compare
5448          * the correction density.
5449          */
5450         corr = (mtd->writesize * ecc->strength) / ecc->size;
5451         ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
5452                   chip->base.eccreq.step_size;
5453
5454         return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
5455 }
5456
5457 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
5458 {
5459         struct nand_chip *chip = container_of(nand, struct nand_chip,
5460                                               base);
5461         unsigned int eb = nanddev_pos_to_row(nand, pos);
5462         int ret;
5463
5464         eb >>= nand->rowconv.eraseblock_addr_shift;
5465
5466         nand_select_target(chip, pos->target);
5467         ret = nand_erase_op(chip, eb);
5468         nand_deselect_target(chip);
5469
5470         return ret;
5471 }
5472
5473 static int rawnand_markbad(struct nand_device *nand,
5474                            const struct nand_pos *pos)
5475 {
5476         struct nand_chip *chip = container_of(nand, struct nand_chip,
5477                                               base);
5478
5479         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5480 }
5481
5482 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
5483 {
5484         struct nand_chip *chip = container_of(nand, struct nand_chip,
5485                                               base);
5486         int ret;
5487
5488         nand_select_target(chip, pos->target);
5489         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
5490         nand_deselect_target(chip);
5491
5492         return ret;
5493 }
5494
5495 static const struct nand_ops rawnand_ops = {
5496         .erase = rawnand_erase,
5497         .markbad = rawnand_markbad,
5498         .isbad = rawnand_isbad,
5499 };
5500
5501 /**
5502  * nand_scan_tail - Scan for the NAND device
5503  * @chip: NAND chip object
5504  *
5505  * This is the second phase of the normal nand_scan() function. It fills out
5506  * all the uninitialized function pointers with the defaults and scans for a
5507  * bad block table if appropriate.
5508  */
5509 static int nand_scan_tail(struct nand_chip *chip)
5510 {
5511         struct mtd_info *mtd = nand_to_mtd(chip);
5512         struct nand_ecc_ctrl *ecc = &chip->ecc;
5513         int ret, i;
5514
5515         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
5516         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
5517                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
5518                 return -EINVAL;
5519         }
5520
5521         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
5522         if (!chip->data_buf)
5523                 return -ENOMEM;
5524
5525         /*
5526          * FIXME: some NAND manufacturer drivers expect the first die to be
5527          * selected when manufacturer->init() is called. They should be fixed
5528          * to explictly select the relevant die when interacting with the NAND
5529          * chip.
5530          */
5531         nand_select_target(chip, 0);
5532         ret = nand_manufacturer_init(chip);
5533         nand_deselect_target(chip);
5534         if (ret)
5535                 goto err_free_buf;
5536
5537         /* Set the internal oob buffer location, just after the page data */
5538         chip->oob_poi = chip->data_buf + mtd->writesize;
5539
5540         /*
5541          * If no default placement scheme is given, select an appropriate one.
5542          */
5543         if (!mtd->ooblayout &&
5544             !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
5545                 switch (mtd->oobsize) {
5546                 case 8:
5547                 case 16:
5548                         mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
5549                         break;
5550                 case 64:
5551                 case 128:
5552                         mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
5553                         break;
5554                 default:
5555                         /*
5556                          * Expose the whole OOB area to users if ECC_NONE
5557                          * is passed. We could do that for all kind of
5558                          * ->oobsize, but we must keep the old large/small
5559                          * page with ECC layout when ->oobsize <= 128 for
5560                          * compatibility reasons.
5561                          */
5562                         if (ecc->mode == NAND_ECC_NONE) {
5563                                 mtd_set_ooblayout(mtd,
5564                                                 &nand_ooblayout_lp_ops);
5565                                 break;
5566                         }
5567
5568                         WARN(1, "No oob scheme defined for oobsize %d\n",
5569                                 mtd->oobsize);
5570                         ret = -EINVAL;
5571                         goto err_nand_manuf_cleanup;
5572                 }
5573         }
5574
5575         /*
5576          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
5577          * selected and we have 256 byte pagesize fallback to software ECC
5578          */
5579
5580         switch (ecc->mode) {
5581         case NAND_ECC_HW_OOB_FIRST:
5582                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
5583                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
5584                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5585                         ret = -EINVAL;
5586                         goto err_nand_manuf_cleanup;
5587                 }
5588                 if (!ecc->read_page)
5589                         ecc->read_page = nand_read_page_hwecc_oob_first;
5590                 /* fall through */
5591
5592         case NAND_ECC_HW:
5593                 /* Use standard hwecc read page function? */
5594                 if (!ecc->read_page)
5595                         ecc->read_page = nand_read_page_hwecc;
5596                 if (!ecc->write_page)
5597                         ecc->write_page = nand_write_page_hwecc;
5598                 if (!ecc->read_page_raw)
5599                         ecc->read_page_raw = nand_read_page_raw;
5600                 if (!ecc->write_page_raw)
5601                         ecc->write_page_raw = nand_write_page_raw;
5602                 if (!ecc->read_oob)
5603                         ecc->read_oob = nand_read_oob_std;
5604                 if (!ecc->write_oob)
5605                         ecc->write_oob = nand_write_oob_std;
5606                 if (!ecc->read_subpage)
5607                         ecc->read_subpage = nand_read_subpage;
5608                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5609                         ecc->write_subpage = nand_write_subpage_hwecc;
5610                 /* fall through */
5611
5612         case NAND_ECC_HW_SYNDROME:
5613                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5614                     (!ecc->read_page ||
5615                      ecc->read_page == nand_read_page_hwecc ||
5616                      !ecc->write_page ||
5617                      ecc->write_page == nand_write_page_hwecc)) {
5618                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5619                         ret = -EINVAL;
5620                         goto err_nand_manuf_cleanup;
5621                 }
5622                 /* Use standard syndrome read/write page function? */
5623                 if (!ecc->read_page)
5624                         ecc->read_page = nand_read_page_syndrome;
5625                 if (!ecc->write_page)
5626                         ecc->write_page = nand_write_page_syndrome;
5627                 if (!ecc->read_page_raw)
5628                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5629                 if (!ecc->write_page_raw)
5630                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5631                 if (!ecc->read_oob)
5632                         ecc->read_oob = nand_read_oob_syndrome;
5633                 if (!ecc->write_oob)
5634                         ecc->write_oob = nand_write_oob_syndrome;
5635
5636                 if (mtd->writesize >= ecc->size) {
5637                         if (!ecc->strength) {
5638                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
5639                                 ret = -EINVAL;
5640                                 goto err_nand_manuf_cleanup;
5641                         }
5642                         break;
5643                 }
5644                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
5645                         ecc->size, mtd->writesize);
5646                 ecc->mode = NAND_ECC_SOFT;
5647                 ecc->algo = NAND_ECC_HAMMING;
5648                 /* fall through */
5649
5650         case NAND_ECC_SOFT:
5651                 ret = nand_set_ecc_soft_ops(chip);
5652                 if (ret) {
5653                         ret = -EINVAL;
5654                         goto err_nand_manuf_cleanup;
5655                 }
5656                 break;
5657
5658         case NAND_ECC_ON_DIE:
5659                 if (!ecc->read_page || !ecc->write_page) {
5660                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
5661                         ret = -EINVAL;
5662                         goto err_nand_manuf_cleanup;
5663                 }
5664                 if (!ecc->read_oob)
5665                         ecc->read_oob = nand_read_oob_std;
5666                 if (!ecc->write_oob)
5667                         ecc->write_oob = nand_write_oob_std;
5668                 break;
5669
5670         case NAND_ECC_NONE:
5671                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
5672                 ecc->read_page = nand_read_page_raw;
5673                 ecc->write_page = nand_write_page_raw;
5674                 ecc->read_oob = nand_read_oob_std;
5675                 ecc->read_page_raw = nand_read_page_raw;
5676                 ecc->write_page_raw = nand_write_page_raw;
5677                 ecc->write_oob = nand_write_oob_std;
5678                 ecc->size = mtd->writesize;
5679                 ecc->bytes = 0;
5680                 ecc->strength = 0;
5681                 break;
5682
5683         default:
5684                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
5685                 ret = -EINVAL;
5686                 goto err_nand_manuf_cleanup;
5687         }
5688
5689         if (ecc->correct || ecc->calculate) {
5690                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5691                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
5692                 if (!ecc->calc_buf || !ecc->code_buf) {
5693                         ret = -ENOMEM;
5694                         goto err_nand_manuf_cleanup;
5695                 }
5696         }
5697
5698         /* For many systems, the standard OOB write also works for raw */
5699         if (!ecc->read_oob_raw)
5700                 ecc->read_oob_raw = ecc->read_oob;
5701         if (!ecc->write_oob_raw)
5702                 ecc->write_oob_raw = ecc->write_oob;
5703
5704         /* propagate ecc info to mtd_info */
5705         mtd->ecc_strength = ecc->strength;
5706         mtd->ecc_step_size = ecc->size;
5707
5708         /*
5709          * Set the number of read / write steps for one page depending on ECC
5710          * mode.
5711          */
5712         ecc->steps = mtd->writesize / ecc->size;
5713         if (ecc->steps * ecc->size != mtd->writesize) {
5714                 WARN(1, "Invalid ECC parameters\n");
5715                 ret = -EINVAL;
5716                 goto err_nand_manuf_cleanup;
5717         }
5718         ecc->total = ecc->steps * ecc->bytes;
5719         if (ecc->total > mtd->oobsize) {
5720                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
5721                 ret = -EINVAL;
5722                 goto err_nand_manuf_cleanup;
5723         }
5724
5725         /*
5726          * The number of bytes available for a client to place data into
5727          * the out of band area.
5728          */
5729         ret = mtd_ooblayout_count_freebytes(mtd);
5730         if (ret < 0)
5731                 ret = 0;
5732
5733         mtd->oobavail = ret;
5734
5735         /* ECC sanity check: warn if it's too weak */
5736         if (!nand_ecc_strength_good(chip))
5737                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
5738                         mtd->name);
5739
5740         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
5741         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
5742                 switch (ecc->steps) {
5743                 case 2:
5744                         mtd->subpage_sft = 1;
5745                         break;
5746                 case 4:
5747                 case 8:
5748                 case 16:
5749                         mtd->subpage_sft = 2;
5750                         break;
5751                 }
5752         }
5753         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
5754
5755         /* Invalidate the pagebuffer reference */
5756         chip->pagecache.page = -1;
5757
5758         /* Large page NAND with SOFT_ECC should support subpage reads */
5759         switch (ecc->mode) {
5760         case NAND_ECC_SOFT:
5761                 if (chip->page_shift > 9)
5762                         chip->options |= NAND_SUBPAGE_READ;
5763                 break;
5764
5765         default:
5766                 break;
5767         }
5768
5769         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
5770         if (ret)
5771                 goto err_nand_manuf_cleanup;
5772
5773         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
5774         if (chip->options & NAND_ROM)
5775                 mtd->flags = MTD_CAP_ROM;
5776
5777         /* Fill in remaining MTD driver data */
5778         mtd->_erase = nand_erase;
5779         mtd->_point = NULL;
5780         mtd->_unpoint = NULL;
5781         mtd->_panic_write = panic_nand_write;
5782         mtd->_read_oob = nand_read_oob;
5783         mtd->_write_oob = nand_write_oob;
5784         mtd->_sync = nand_sync;
5785         mtd->_lock = NULL;
5786         mtd->_unlock = NULL;
5787         mtd->_suspend = nand_suspend;
5788         mtd->_resume = nand_resume;
5789         mtd->_reboot = nand_shutdown;
5790         mtd->_block_isreserved = nand_block_isreserved;
5791         mtd->_block_isbad = nand_block_isbad;
5792         mtd->_block_markbad = nand_block_markbad;
5793         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
5794
5795         /*
5796          * Initialize bitflip_threshold to its default prior scan_bbt() call.
5797          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
5798          * properly set.
5799          */
5800         if (!mtd->bitflip_threshold)
5801                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
5802
5803         /* Initialize the ->data_interface field. */
5804         ret = nand_init_data_interface(chip);
5805         if (ret)
5806                 goto err_nanddev_cleanup;
5807
5808         /* Enter fastest possible mode on all dies. */
5809         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
5810                 ret = nand_setup_data_interface(chip, i);
5811                 if (ret)
5812                         goto err_nanddev_cleanup;
5813         }
5814
5815         /* Check, if we should skip the bad block table scan */
5816         if (chip->options & NAND_SKIP_BBTSCAN)
5817                 return 0;
5818
5819         /* Build bad block table */
5820         ret = nand_create_bbt(chip);
5821         if (ret)
5822                 goto err_nanddev_cleanup;
5823
5824         return 0;
5825
5826
5827 err_nanddev_cleanup:
5828         nanddev_cleanup(&chip->base);
5829
5830 err_nand_manuf_cleanup:
5831         nand_manufacturer_cleanup(chip);
5832
5833 err_free_buf:
5834         kfree(chip->data_buf);
5835         kfree(ecc->code_buf);
5836         kfree(ecc->calc_buf);
5837
5838         return ret;
5839 }
5840
5841 static int nand_attach(struct nand_chip *chip)
5842 {
5843         if (chip->controller->ops && chip->controller->ops->attach_chip)
5844                 return chip->controller->ops->attach_chip(chip);
5845
5846         return 0;
5847 }
5848
5849 static void nand_detach(struct nand_chip *chip)
5850 {
5851         if (chip->controller->ops && chip->controller->ops->detach_chip)
5852                 chip->controller->ops->detach_chip(chip);
5853 }
5854
5855 /**
5856  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
5857  * @chip: NAND chip object
5858  * @maxchips: number of chips to scan for.
5859  * @ids: optional flash IDs table
5860  *
5861  * This fills out all the uninitialized function pointers with the defaults.
5862  * The flash ID is read and the mtd/chip structures are filled with the
5863  * appropriate values.
5864  */
5865 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
5866                        struct nand_flash_dev *ids)
5867 {
5868         int ret;
5869
5870         if (!maxchips)
5871                 return -EINVAL;
5872
5873         ret = nand_scan_ident(chip, maxchips, ids);
5874         if (ret)
5875                 return ret;
5876
5877         ret = nand_attach(chip);
5878         if (ret)
5879                 goto cleanup_ident;
5880
5881         ret = nand_scan_tail(chip);
5882         if (ret)
5883                 goto detach_chip;
5884
5885         return 0;
5886
5887 detach_chip:
5888         nand_detach(chip);
5889 cleanup_ident:
5890         nand_scan_ident_cleanup(chip);
5891
5892         return ret;
5893 }
5894 EXPORT_SYMBOL(nand_scan_with_ids);
5895
5896 /**
5897  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
5898  * @chip: NAND chip object
5899  */
5900 void nand_cleanup(struct nand_chip *chip)
5901 {
5902         if (chip->ecc.mode == NAND_ECC_SOFT &&
5903             chip->ecc.algo == NAND_ECC_BCH)
5904                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
5905
5906         /* Free bad block table memory */
5907         kfree(chip->bbt);
5908         kfree(chip->data_buf);
5909         kfree(chip->ecc.code_buf);
5910         kfree(chip->ecc.calc_buf);
5911
5912         /* Free bad block descriptor memory */
5913         if (chip->badblock_pattern && chip->badblock_pattern->options
5914                         & NAND_BBT_DYNAMICSTRUCT)
5915                 kfree(chip->badblock_pattern);
5916
5917         /* Free manufacturer priv data. */
5918         nand_manufacturer_cleanup(chip);
5919
5920         /* Free controller specific allocations after chip identification */
5921         nand_detach(chip);
5922
5923         /* Free identification phase allocations */
5924         nand_scan_ident_cleanup(chip);
5925 }
5926
5927 EXPORT_SYMBOL_GPL(nand_cleanup);
5928
5929 /**
5930  * nand_release - [NAND Interface] Unregister the MTD device and free resources
5931  *                held by the NAND device
5932  * @chip: NAND chip object
5933  */
5934 void nand_release(struct nand_chip *chip)
5935 {
5936         mtd_device_unregister(nand_to_mtd(chip));
5937         nand_cleanup(chip);
5938 }
5939 EXPORT_SYMBOL_GPL(nand_release);
5940
5941 MODULE_LICENSE("GPL");
5942 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
5943 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
5944 MODULE_DESCRIPTION("Generic NAND flash driver code");