mtd: rawnand: Clarify conditions to enable continuous reads
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47
48 #include "internals.h"
49
50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51                                        struct mtd_pairing_info *info)
52 {
53         int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54         int dist = 3;
55
56         if (page == lastpage)
57                 dist = 2;
58
59         if (!page || (page & 1)) {
60                 info->group = 0;
61                 info->pair = (page + 1) / 2;
62         } else {
63                 info->group = 1;
64                 info->pair = (page + 1 - dist) / 2;
65         }
66
67         return 0;
68 }
69
70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71                                         const struct mtd_pairing_info *info)
72 {
73         int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74         int page = info->pair * 2;
75         int dist = 3;
76
77         if (!info->group && !info->pair)
78                 return 0;
79
80         if (info->pair == lastpair && info->group)
81                 dist = 2;
82
83         if (!info->group)
84                 page--;
85         else if (info->pair)
86                 page += dist - 1;
87
88         if (page >= mtd->erasesize / mtd->writesize)
89                 return -EINVAL;
90
91         return page;
92 }
93
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95         .ngroups = 2,
96         .get_info = nand_pairing_dist3_get_info,
97         .get_wunit = nand_pairing_dist3_get_wunit,
98 };
99
100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102         int ret = 0;
103
104         /* Start address must align on block boundary */
105         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106                 pr_debug("%s: unaligned address\n", __func__);
107                 ret = -EINVAL;
108         }
109
110         /* Length must align on block boundary */
111         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112                 pr_debug("%s: length not block aligned\n", __func__);
113                 ret = -EINVAL;
114         }
115
116         return ret;
117 }
118
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130                        unsigned int src_off, unsigned int nbits)
131 {
132         unsigned int tmp, n;
133
134         dst += dst_off / 8;
135         dst_off %= 8;
136         src += src_off / 8;
137         src_off %= 8;
138
139         while (nbits) {
140                 n = min3(8 - dst_off, 8 - src_off, nbits);
141
142                 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143                 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144                 *dst |= tmp << dst_off;
145
146                 dst_off += n;
147                 if (dst_off >= 8) {
148                         dst++;
149                         dst_off -= 8;
150                 }
151
152                 src_off += n;
153                 if (src_off >= 8) {
154                         src++;
155                         src_off -= 8;
156                 }
157
158                 nbits -= n;
159         }
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *      PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174         /*
175          * cs should always lie between 0 and nanddev_ntargets(), when that's
176          * not the case it's a bug and the caller should be fixed.
177          */
178         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179                 return;
180
181         chip->cur_cs = cs;
182
183         if (chip->legacy.select_chip)
184                 chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
195 void nand_deselect_target(struct nand_chip *chip)
196 {
197         if (chip->legacy.select_chip)
198                 chip->legacy.select_chip(chip, -1);
199
200         chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
210 static void nand_release_device(struct nand_chip *chip)
211 {
212         /* Release the controller and the chip */
213         mutex_unlock(&chip->controller->lock);
214         mutex_unlock(&chip->lock);
215 }
216
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228         struct mtd_info *mtd = nand_to_mtd(chip);
229         int last_page = ((mtd->erasesize - mtd->writesize) >>
230                          chip->page_shift) & chip->pagemask;
231         unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232                 | NAND_BBM_LASTPAGE;
233
234         if (page == 0 && !(chip->options & bbm_flags))
235                 return 0;
236         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237                 return 0;
238         if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239                 return 1;
240         if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241                 return last_page;
242
243         return -EINVAL;
244 }
245
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255         int first_page, page_offset;
256         int res;
257         u8 bad;
258
259         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260         page_offset = nand_bbm_get_next_page(chip, 0);
261
262         while (page_offset >= 0) {
263                 res = chip->ecc.read_oob(chip, first_page + page_offset);
264                 if (res < 0)
265                         return res;
266
267                 bad = chip->oob_poi[chip->badblockpos];
268
269                 if (likely(chip->badblockbits == 8))
270                         res = bad != 0xFF;
271                 else
272                         res = hweight8(bad) < chip->badblockbits;
273                 if (res)
274                         return res;
275
276                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277         }
278
279         return 0;
280 }
281
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294         int i;
295
296         /* Skip touching the secure regions if present */
297         for (i = 0; i < chip->nr_secure_regions; i++) {
298                 const struct nand_secure_region *region = &chip->secure_regions[i];
299
300                 if (offset + size <= region->offset ||
301                     offset >= region->offset + region->size)
302                         continue;
303
304                 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305                          __func__, offset, offset + size);
306
307                 return true;
308         }
309
310         return false;
311 }
312
313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315         struct mtd_info *mtd = nand_to_mtd(chip);
316
317         if (chip->options & NAND_NO_BBM_QUIRK)
318                 return 0;
319
320         /* Check if the region is secured */
321         if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322                 return -EIO;
323
324         if (mtd_check_expert_analysis_mode())
325                 return 0;
326
327         if (chip->legacy.block_bad)
328                 return chip->legacy.block_bad(chip, ofs);
329
330         return nand_block_bad(chip, ofs);
331 }
332
333 /**
334  * nand_get_device - [GENERIC] Get chip for selected access
335  * @chip: NAND chip structure
336  *
337  * Lock the device and its controller for exclusive access
338  */
339 static void nand_get_device(struct nand_chip *chip)
340 {
341         /* Wait until the device is resumed. */
342         while (1) {
343                 mutex_lock(&chip->lock);
344                 if (!chip->suspended) {
345                         mutex_lock(&chip->controller->lock);
346                         return;
347                 }
348                 mutex_unlock(&chip->lock);
349
350                 wait_event(chip->resume_wq, !chip->suspended);
351         }
352 }
353
354 /**
355  * nand_check_wp - [GENERIC] check if the chip is write protected
356  * @chip: NAND chip object
357  *
358  * Check, if the device is write protected. The function expects, that the
359  * device is already selected.
360  */
361 static int nand_check_wp(struct nand_chip *chip)
362 {
363         u8 status;
364         int ret;
365
366         /* Broken xD cards report WP despite being writable */
367         if (chip->options & NAND_BROKEN_XD)
368                 return 0;
369
370         /* Check the WP bit */
371         ret = nand_status_op(chip, &status);
372         if (ret)
373                 return ret;
374
375         return status & NAND_STATUS_WP ? 0 : 1;
376 }
377
378 /**
379  * nand_fill_oob - [INTERN] Transfer client buffer to oob
380  * @chip: NAND chip object
381  * @oob: oob data buffer
382  * @len: oob data write length
383  * @ops: oob ops structure
384  */
385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386                               struct mtd_oob_ops *ops)
387 {
388         struct mtd_info *mtd = nand_to_mtd(chip);
389         int ret;
390
391         /*
392          * Initialise to all 0xFF, to avoid the possibility of left over OOB
393          * data from a previous OOB read.
394          */
395         memset(chip->oob_poi, 0xff, mtd->oobsize);
396
397         switch (ops->mode) {
398
399         case MTD_OPS_PLACE_OOB:
400         case MTD_OPS_RAW:
401                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402                 return oob + len;
403
404         case MTD_OPS_AUTO_OOB:
405                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406                                                   ops->ooboffs, len);
407                 BUG_ON(ret);
408                 return oob + len;
409
410         default:
411                 BUG();
412         }
413         return NULL;
414 }
415
416 /**
417  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418  * @chip: NAND chip object
419  * @to: offset to write to
420  * @ops: oob operation description structure
421  *
422  * NAND write out-of-band.
423  */
424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425                              struct mtd_oob_ops *ops)
426 {
427         struct mtd_info *mtd = nand_to_mtd(chip);
428         int chipnr, page, status, len, ret;
429
430         pr_debug("%s: to = 0x%08x, len = %i\n",
431                          __func__, (unsigned int)to, (int)ops->ooblen);
432
433         len = mtd_oobavail(mtd, ops);
434
435         /* Do not allow write past end of page */
436         if ((ops->ooboffs + ops->ooblen) > len) {
437                 pr_debug("%s: attempt to write past end of page\n",
438                                 __func__);
439                 return -EINVAL;
440         }
441
442         /* Check if the region is secured */
443         if (nand_region_is_secured(chip, to, ops->ooblen))
444                 return -EIO;
445
446         chipnr = (int)(to >> chip->chip_shift);
447
448         /*
449          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450          * of my DiskOnChip 2000 test units) will clear the whole data page too
451          * if we don't do this. I have no clue why, but I seem to have 'fixed'
452          * it in the doc2000 driver in August 1999.  dwmw2.
453          */
454         ret = nand_reset(chip, chipnr);
455         if (ret)
456                 return ret;
457
458         nand_select_target(chip, chipnr);
459
460         /* Shift to get page */
461         page = (int)(to >> chip->page_shift);
462
463         /* Check, if it is write protected */
464         if (nand_check_wp(chip)) {
465                 nand_deselect_target(chip);
466                 return -EROFS;
467         }
468
469         /* Invalidate the page cache, if we write to the cached page */
470         if (page == chip->pagecache.page)
471                 chip->pagecache.page = -1;
472
473         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474
475         if (ops->mode == MTD_OPS_RAW)
476                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477         else
478                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
479
480         nand_deselect_target(chip);
481
482         if (status)
483                 return status;
484
485         ops->oobretlen = ops->ooblen;
486
487         return 0;
488 }
489
490 /**
491  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492  * @chip: NAND chip object
493  * @ofs: offset from device start
494  *
495  * This is the default implementation, which can be overridden by a hardware
496  * specific driver. It provides the details for writing a bad block marker to a
497  * block.
498  */
499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501         struct mtd_info *mtd = nand_to_mtd(chip);
502         struct mtd_oob_ops ops;
503         uint8_t buf[2] = { 0, 0 };
504         int ret = 0, res, page_offset;
505
506         memset(&ops, 0, sizeof(ops));
507         ops.oobbuf = buf;
508         ops.ooboffs = chip->badblockpos;
509         if (chip->options & NAND_BUSWIDTH_16) {
510                 ops.ooboffs &= ~0x01;
511                 ops.len = ops.ooblen = 2;
512         } else {
513                 ops.len = ops.ooblen = 1;
514         }
515         ops.mode = MTD_OPS_PLACE_OOB;
516
517         page_offset = nand_bbm_get_next_page(chip, 0);
518
519         while (page_offset >= 0) {
520                 res = nand_do_write_oob(chip,
521                                         ofs + (page_offset * mtd->writesize),
522                                         &ops);
523
524                 if (!ret)
525                         ret = res;
526
527                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528         }
529
530         return ret;
531 }
532
533 /**
534  * nand_markbad_bbm - mark a block by updating the BBM
535  * @chip: NAND chip object
536  * @ofs: offset of the block to mark bad
537  */
538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540         if (chip->legacy.block_markbad)
541                 return chip->legacy.block_markbad(chip, ofs);
542
543         return nand_default_block_markbad(chip, ofs);
544 }
545
546 /**
547  * nand_block_markbad_lowlevel - mark a block bad
548  * @chip: NAND chip object
549  * @ofs: offset from device start
550  *
551  * This function performs the generic NAND bad block marking steps (i.e., bad
552  * block table(s) and/or marker(s)). We only allow the hardware driver to
553  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554  *
555  * We try operations in the following order:
556  *
557  *  (1) erase the affected block, to allow OOB marker to be written cleanly
558  *  (2) write bad block marker to OOB area of affected block (unless flag
559  *      NAND_BBT_NO_OOB_BBM is present)
560  *  (3) update the BBT
561  *
562  * Note that we retain the first error encountered in (2) or (3), finish the
563  * procedures, and dump the error in the end.
564 */
565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567         struct mtd_info *mtd = nand_to_mtd(chip);
568         int res, ret = 0;
569
570         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571                 struct erase_info einfo;
572
573                 /* Attempt erase before marking OOB */
574                 memset(&einfo, 0, sizeof(einfo));
575                 einfo.addr = ofs;
576                 einfo.len = 1ULL << chip->phys_erase_shift;
577                 nand_erase_nand(chip, &einfo, 0);
578
579                 /* Write bad block marker to OOB */
580                 nand_get_device(chip);
581
582                 ret = nand_markbad_bbm(chip, ofs);
583                 nand_release_device(chip);
584         }
585
586         /* Mark block bad in BBT */
587         if (chip->bbt) {
588                 res = nand_markbad_bbt(chip, ofs);
589                 if (!ret)
590                         ret = res;
591         }
592
593         if (!ret)
594                 mtd->ecc_stats.badblocks++;
595
596         return ret;
597 }
598
599 /**
600  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601  * @mtd: MTD device structure
602  * @ofs: offset from device start
603  *
604  * Check if the block is marked as reserved.
605  */
606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608         struct nand_chip *chip = mtd_to_nand(mtd);
609
610         if (!chip->bbt)
611                 return 0;
612         /* Return info from the table */
613         return nand_isreserved_bbt(chip, ofs);
614 }
615
616 /**
617  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618  * @chip: NAND chip object
619  * @ofs: offset from device start
620  * @allowbbt: 1, if its allowed to access the bbt area
621  *
622  * Check, if the block is bad. Either by reading the bad block table or
623  * calling of the scan function.
624  */
625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627         /* Return info from the table */
628         if (chip->bbt)
629                 return nand_isbad_bbt(chip, ofs, allowbbt);
630
631         return nand_isbad_bbm(chip, ofs);
632 }
633
634 /**
635  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636  * @chip: NAND chip structure
637  * @timeout_ms: Timeout in ms
638  *
639  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641  * returned.
642  *
643  * This helper is intended to be used when the controller does not have access
644  * to the NAND R/B pin.
645  *
646  * Be aware that calling this helper from an ->exec_op() implementation means
647  * ->exec_op() must be re-entrant.
648  *
649  * Return 0 if the NAND chip is ready, a negative error otherwise.
650  */
651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653         const struct nand_interface_config *conf;
654         u8 status = 0;
655         int ret;
656
657         if (!nand_has_exec_op(chip))
658                 return -ENOTSUPP;
659
660         /* Wait tWB before polling the STATUS reg. */
661         conf = nand_get_interface_config(chip);
662         ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663
664         ret = nand_status_op(chip, NULL);
665         if (ret)
666                 return ret;
667
668         /*
669          * +1 below is necessary because if we are now in the last fraction
670          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671          * small jiffy fraction - possibly leading to false timeout
672          */
673         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674         do {
675                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
676                                         false);
677                 if (ret)
678                         break;
679
680                 if (status & NAND_STATUS_READY)
681                         break;
682
683                 /*
684                  * Typical lowest execution time for a tR on most NANDs is 10us,
685                  * use this as polling delay before doing something smarter (ie.
686                  * deriving a delay from the timeout value, timeout_ms/ratio).
687                  */
688                 udelay(10);
689         } while (time_before(jiffies, timeout_ms));
690
691         /*
692          * We have to exit READ_STATUS mode in order to read real data on the
693          * bus in case the WAITRDY instruction is preceding a DATA_IN
694          * instruction.
695          */
696         nand_exit_status_op(chip);
697
698         if (ret)
699                 return ret;
700
701         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704
705 /**
706  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707  * @chip: NAND chip structure
708  * @gpiod: GPIO descriptor of R/B pin
709  * @timeout_ms: Timeout in ms
710  *
711  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712  * whitin the specified timeout, -ETIMEDOUT is returned.
713  *
714  * This helper is intended to be used when the controller has access to the
715  * NAND R/B pin over GPIO.
716  *
717  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718  */
719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720                       unsigned long timeout_ms)
721 {
722
723         /*
724          * Wait until R/B pin indicates chip is ready or timeout occurs.
725          * +1 below is necessary because if we are now in the last fraction
726          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727          * small jiffy fraction - possibly leading to false timeout.
728          */
729         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730         do {
731                 if (gpiod_get_value_cansleep(gpiod))
732                         return 0;
733
734                 cond_resched();
735         } while (time_before(jiffies, timeout_ms));
736
737         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740
741 /**
742  * panic_nand_wait - [GENERIC] wait until the command is done
743  * @chip: NAND chip structure
744  * @timeo: timeout
745  *
746  * Wait for command done. This is a helper function for nand_wait used when
747  * we are in interrupt context. May happen when in panic and trying to write
748  * an oops through mtdoops.
749  */
750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752         int i;
753         for (i = 0; i < timeo; i++) {
754                 if (chip->legacy.dev_ready) {
755                         if (chip->legacy.dev_ready(chip))
756                                 break;
757                 } else {
758                         int ret;
759                         u8 status;
760
761                         ret = nand_read_data_op(chip, &status, sizeof(status),
762                                                 true, false);
763                         if (ret)
764                                 return;
765
766                         if (status & NAND_STATUS_READY)
767                                 break;
768                 }
769                 mdelay(1);
770         }
771 }
772
773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775         return (chip->parameters.supports_set_get_features &&
776                 test_bit(addr, chip->parameters.get_feature_list));
777 }
778
779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781         return (chip->parameters.supports_set_get_features &&
782                 test_bit(addr, chip->parameters.set_feature_list));
783 }
784
785 /**
786  * nand_reset_interface - Reset data interface and timings
787  * @chip: The NAND chip
788  * @chipnr: Internal die id
789  *
790  * Reset the Data interface and timings to ONFI mode 0.
791  *
792  * Returns 0 for success or negative error code otherwise.
793  */
794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796         const struct nand_controller_ops *ops = chip->controller->ops;
797         int ret;
798
799         if (!nand_controller_can_setup_interface(chip))
800                 return 0;
801
802         /*
803          * The ONFI specification says:
804          * "
805          * To transition from NV-DDR or NV-DDR2 to the SDR data
806          * interface, the host shall use the Reset (FFh) command
807          * using SDR timing mode 0. A device in any timing mode is
808          * required to recognize Reset (FFh) command issued in SDR
809          * timing mode 0.
810          * "
811          *
812          * Configure the data interface in SDR mode and set the
813          * timings to timing mode 0.
814          */
815
816         chip->current_interface_config = nand_get_reset_interface_config();
817         ret = ops->setup_interface(chip, chipnr,
818                                    chip->current_interface_config);
819         if (ret)
820                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
821
822         return ret;
823 }
824
825 /**
826  * nand_setup_interface - Setup the best data interface and timings
827  * @chip: The NAND chip
828  * @chipnr: Internal die id
829  *
830  * Configure what has been reported to be the best data interface and NAND
831  * timings supported by the chip and the driver.
832  *
833  * Returns 0 for success or negative error code otherwise.
834  */
835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837         const struct nand_controller_ops *ops = chip->controller->ops;
838         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839         int ret;
840
841         if (!nand_controller_can_setup_interface(chip))
842                 return 0;
843
844         /*
845          * A nand_reset_interface() put both the NAND chip and the NAND
846          * controller in timings mode 0. If the default mode for this chip is
847          * also 0, no need to proceed to the change again. Plus, at probe time,
848          * nand_setup_interface() uses ->set/get_features() which would
849          * fail anyway as the parameter page is not available yet.
850          */
851         if (!chip->best_interface_config)
852                 return 0;
853
854         request = chip->best_interface_config->timings.mode;
855         if (nand_interface_is_sdr(chip->best_interface_config))
856                 request |= ONFI_DATA_INTERFACE_SDR;
857         else
858                 request |= ONFI_DATA_INTERFACE_NVDDR;
859         tmode_param[0] = request;
860
861         /* Change the mode on the chip side (if supported by the NAND chip) */
862         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863                 nand_select_target(chip, chipnr);
864                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865                                         tmode_param);
866                 nand_deselect_target(chip);
867                 if (ret)
868                         return ret;
869         }
870
871         /* Change the mode on the controller side */
872         ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873         if (ret)
874                 return ret;
875
876         /* Check the mode has been accepted by the chip, if supported */
877         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878                 goto update_interface_config;
879
880         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881         nand_select_target(chip, chipnr);
882         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883                                 tmode_param);
884         nand_deselect_target(chip);
885         if (ret)
886                 goto err_reset_chip;
887
888         if (request != tmode_param[0]) {
889                 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890                         nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891                         chip->best_interface_config->timings.mode);
892                 pr_debug("NAND chip would work in %s timing mode %d\n",
893                          tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894                          (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895                 goto err_reset_chip;
896         }
897
898 update_interface_config:
899         chip->current_interface_config = chip->best_interface_config;
900
901         return 0;
902
903 err_reset_chip:
904         /*
905          * Fallback to mode 0 if the chip explicitly did not ack the chosen
906          * timing mode.
907          */
908         nand_reset_interface(chip, chipnr);
909         nand_select_target(chip, chipnr);
910         nand_reset_op(chip);
911         nand_deselect_target(chip);
912
913         return ret;
914 }
915
916 /**
917  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918  *                                NAND controller and the NAND chip support
919  * @chip: the NAND chip
920  * @iface: the interface configuration (can eventually be updated)
921  * @spec_timings: specific timings, when not fitting the ONFI specification
922  *
923  * If specific timings are provided, use them. Otherwise, retrieve supported
924  * timing modes from ONFI information.
925  */
926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927                                  struct nand_interface_config *iface,
928                                  struct nand_sdr_timings *spec_timings)
929 {
930         const struct nand_controller_ops *ops = chip->controller->ops;
931         int best_mode = 0, mode, ret = -EOPNOTSUPP;
932
933         iface->type = NAND_SDR_IFACE;
934
935         if (spec_timings) {
936                 iface->timings.sdr = *spec_timings;
937                 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938
939                 /* Verify the controller supports the requested interface */
940                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941                                            iface);
942                 if (!ret) {
943                         chip->best_interface_config = iface;
944                         return ret;
945                 }
946
947                 /* Fallback to slower modes */
948                 best_mode = iface->timings.mode;
949         } else if (chip->parameters.onfi) {
950                 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951         }
952
953         for (mode = best_mode; mode >= 0; mode--) {
954                 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955
956                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957                                            iface);
958                 if (!ret) {
959                         chip->best_interface_config = iface;
960                         break;
961                 }
962         }
963
964         return ret;
965 }
966
967 /**
968  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969  *                                  NAND controller and the NAND chip support
970  * @chip: the NAND chip
971  * @iface: the interface configuration (can eventually be updated)
972  * @spec_timings: specific timings, when not fitting the ONFI specification
973  *
974  * If specific timings are provided, use them. Otherwise, retrieve supported
975  * timing modes from ONFI information.
976  */
977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978                                    struct nand_interface_config *iface,
979                                    struct nand_nvddr_timings *spec_timings)
980 {
981         const struct nand_controller_ops *ops = chip->controller->ops;
982         int best_mode = 0, mode, ret = -EOPNOTSUPP;
983
984         iface->type = NAND_NVDDR_IFACE;
985
986         if (spec_timings) {
987                 iface->timings.nvddr = *spec_timings;
988                 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989
990                 /* Verify the controller supports the requested interface */
991                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992                                            iface);
993                 if (!ret) {
994                         chip->best_interface_config = iface;
995                         return ret;
996                 }
997
998                 /* Fallback to slower modes */
999                 best_mode = iface->timings.mode;
1000         } else if (chip->parameters.onfi) {
1001                 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002         }
1003
1004         for (mode = best_mode; mode >= 0; mode--) {
1005                 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006
1007                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008                                            iface);
1009                 if (!ret) {
1010                         chip->best_interface_config = iface;
1011                         break;
1012                 }
1013         }
1014
1015         return ret;
1016 }
1017
1018 /**
1019  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020  *                            NAND controller and the NAND chip support
1021  * @chip: the NAND chip
1022  * @iface: the interface configuration (can eventually be updated)
1023  *
1024  * If specific timings are provided, use them. Otherwise, retrieve supported
1025  * timing modes from ONFI information.
1026  */
1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028                                     struct nand_interface_config *iface)
1029 {
1030         int ret;
1031
1032         /* Try the fastest timings: NV-DDR */
1033         ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034         if (!ret)
1035                 return 0;
1036
1037         /* Fallback to SDR timings otherwise */
1038         return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040
1041 /**
1042  * nand_choose_interface_config - find the best data interface and timings
1043  * @chip: The NAND chip
1044  *
1045  * Find the best data interface and NAND timings supported by the chip
1046  * and the driver. Eventually let the NAND manufacturer driver propose his own
1047  * set of timings.
1048  *
1049  * After this function nand_chip->interface_config is initialized with the best
1050  * timing mode available.
1051  *
1052  * Returns 0 for success or negative error code otherwise.
1053  */
1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056         struct nand_interface_config *iface;
1057         int ret;
1058
1059         if (!nand_controller_can_setup_interface(chip))
1060                 return 0;
1061
1062         iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063         if (!iface)
1064                 return -ENOMEM;
1065
1066         if (chip->ops.choose_interface_config)
1067                 ret = chip->ops.choose_interface_config(chip, iface);
1068         else
1069                 ret = nand_choose_best_timings(chip, iface);
1070
1071         if (ret)
1072                 kfree(iface);
1073
1074         return ret;
1075 }
1076
1077 /**
1078  * nand_fill_column_cycles - fill the column cycles of an address
1079  * @chip: The NAND chip
1080  * @addrs: Array of address cycles to fill
1081  * @offset_in_page: The offset in the page
1082  *
1083  * Fills the first or the first two bytes of the @addrs field depending
1084  * on the NAND bus width and the page size.
1085  *
1086  * Returns the number of cycles needed to encode the column, or a negative
1087  * error code in case one of the arguments is invalid.
1088  */
1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090                                    unsigned int offset_in_page)
1091 {
1092         struct mtd_info *mtd = nand_to_mtd(chip);
1093
1094         /* Make sure the offset is less than the actual page size. */
1095         if (offset_in_page > mtd->writesize + mtd->oobsize)
1096                 return -EINVAL;
1097
1098         /*
1099          * On small page NANDs, there's a dedicated command to access the OOB
1100          * area, and the column address is relative to the start of the OOB
1101          * area, not the start of the page. Asjust the address accordingly.
1102          */
1103         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104                 offset_in_page -= mtd->writesize;
1105
1106         /*
1107          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108          * wide, then it must be divided by 2.
1109          */
1110         if (chip->options & NAND_BUSWIDTH_16) {
1111                 if (WARN_ON(offset_in_page % 2))
1112                         return -EINVAL;
1113
1114                 offset_in_page /= 2;
1115         }
1116
1117         addrs[0] = offset_in_page;
1118
1119         /*
1120          * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121          * need 2
1122          */
1123         if (mtd->writesize <= 512)
1124                 return 1;
1125
1126         addrs[1] = offset_in_page >> 8;
1127
1128         return 2;
1129 }
1130
1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132                                      unsigned int offset_in_page, void *buf,
1133                                      unsigned int len)
1134 {
1135         const struct nand_interface_config *conf =
1136                 nand_get_interface_config(chip);
1137         struct mtd_info *mtd = nand_to_mtd(chip);
1138         u8 addrs[4];
1139         struct nand_op_instr instrs[] = {
1140                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1141                 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144                 NAND_OP_DATA_IN(len, buf, 0),
1145         };
1146         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147         int ret;
1148
1149         /* Drop the DATA_IN instruction if len is set to 0. */
1150         if (!len)
1151                 op.ninstrs--;
1152
1153         if (offset_in_page >= mtd->writesize)
1154                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155         else if (offset_in_page >= 256 &&
1156                  !(chip->options & NAND_BUSWIDTH_16))
1157                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158
1159         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160         if (ret < 0)
1161                 return ret;
1162
1163         addrs[1] = page;
1164         addrs[2] = page >> 8;
1165
1166         if (chip->options & NAND_ROW_ADDR_3) {
1167                 addrs[3] = page >> 16;
1168                 instrs[1].ctx.addr.naddrs++;
1169         }
1170
1171         return nand_exec_op(chip, &op);
1172 }
1173
1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175                                      unsigned int offset_in_page, void *buf,
1176                                      unsigned int len)
1177 {
1178         const struct nand_interface_config *conf =
1179                 nand_get_interface_config(chip);
1180         u8 addrs[5];
1181         struct nand_op_instr instrs[] = {
1182                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1183                 NAND_OP_ADDR(4, addrs, 0),
1184                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187                 NAND_OP_DATA_IN(len, buf, 0),
1188         };
1189         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190         int ret;
1191
1192         /* Drop the DATA_IN instruction if len is set to 0. */
1193         if (!len)
1194                 op.ninstrs--;
1195
1196         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197         if (ret < 0)
1198                 return ret;
1199
1200         addrs[2] = page;
1201         addrs[3] = page >> 8;
1202
1203         if (chip->options & NAND_ROW_ADDR_3) {
1204                 addrs[4] = page >> 16;
1205                 instrs[1].ctx.addr.naddrs++;
1206         }
1207
1208         return nand_exec_op(chip, &op);
1209 }
1210
1211 static void rawnand_cap_cont_reads(struct nand_chip *chip)
1212 {
1213         struct nand_memory_organization *memorg;
1214         unsigned int pages_per_lun, first_lun, last_lun;
1215
1216         memorg = nanddev_get_memorg(&chip->base);
1217         pages_per_lun = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1218         first_lun = chip->cont_read.first_page / pages_per_lun;
1219         last_lun = chip->cont_read.last_page / pages_per_lun;
1220
1221         /* Prevent sequential cache reads across LUN boundaries */
1222         if (first_lun != last_lun)
1223                 chip->cont_read.pause_page = first_lun * pages_per_lun + pages_per_lun - 1;
1224         else
1225                 chip->cont_read.pause_page = chip->cont_read.last_page;
1226 }
1227
1228 static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1229                                           unsigned int offset_in_page, void *buf,
1230                                           unsigned int len, bool check_only)
1231 {
1232         const struct nand_interface_config *conf =
1233                 nand_get_interface_config(chip);
1234         u8 addrs[5];
1235         struct nand_op_instr start_instrs[] = {
1236                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1237                 NAND_OP_ADDR(4, addrs, 0),
1238                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1239                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1240                 NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1241                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1242                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1243                 NAND_OP_DATA_IN(len, buf, 0),
1244         };
1245         struct nand_op_instr cont_instrs[] = {
1246                 NAND_OP_CMD(page == chip->cont_read.pause_page ?
1247                             NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1248                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1249                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1250                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1251                 NAND_OP_DATA_IN(len, buf, 0),
1252         };
1253         struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1254         struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1255         int ret;
1256
1257         if (!len) {
1258                 start_op.ninstrs--;
1259                 cont_op.ninstrs--;
1260         }
1261
1262         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1263         if (ret < 0)
1264                 return ret;
1265
1266         addrs[2] = page;
1267         addrs[3] = page >> 8;
1268
1269         if (chip->options & NAND_ROW_ADDR_3) {
1270                 addrs[4] = page >> 16;
1271                 start_instrs[1].ctx.addr.naddrs++;
1272         }
1273
1274         /* Check if cache reads are supported */
1275         if (check_only) {
1276                 if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1277                         return -EOPNOTSUPP;
1278
1279                 return 0;
1280         }
1281
1282         if (page == chip->cont_read.first_page)
1283                 ret = nand_exec_op(chip, &start_op);
1284         else
1285                 ret = nand_exec_op(chip, &cont_op);
1286         if (ret)
1287                 return ret;
1288
1289         if (!chip->cont_read.ongoing)
1290                 return 0;
1291
1292         if (page == chip->cont_read.pause_page &&
1293             page != chip->cont_read.last_page) {
1294                 chip->cont_read.first_page = chip->cont_read.pause_page + 1;
1295                 rawnand_cap_cont_reads(chip);
1296         } else if (page == chip->cont_read.last_page) {
1297                 chip->cont_read.ongoing = false;
1298         }
1299
1300         return 0;
1301 }
1302
1303 static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1304 {
1305         return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1306 }
1307
1308 /**
1309  * nand_read_page_op - Do a READ PAGE operation
1310  * @chip: The NAND chip
1311  * @page: page to read
1312  * @offset_in_page: offset within the page
1313  * @buf: buffer used to store the data
1314  * @len: length of the buffer
1315  *
1316  * This function issues a READ PAGE operation.
1317  * This function does not select/unselect the CS line.
1318  *
1319  * Returns 0 on success, a negative error code otherwise.
1320  */
1321 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1322                       unsigned int offset_in_page, void *buf, unsigned int len)
1323 {
1324         struct mtd_info *mtd = nand_to_mtd(chip);
1325
1326         if (len && !buf)
1327                 return -EINVAL;
1328
1329         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1330                 return -EINVAL;
1331
1332         if (nand_has_exec_op(chip)) {
1333                 if (mtd->writesize > 512) {
1334                         if (rawnand_cont_read_ongoing(chip, page))
1335                                 return nand_lp_exec_cont_read_page_op(chip, page,
1336                                                                       offset_in_page,
1337                                                                       buf, len, false);
1338                         else
1339                                 return nand_lp_exec_read_page_op(chip, page,
1340                                                                  offset_in_page, buf,
1341                                                                  len);
1342                 }
1343
1344                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1345                                                  buf, len);
1346         }
1347
1348         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1349         if (len)
1350                 chip->legacy.read_buf(chip, buf, len);
1351
1352         return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(nand_read_page_op);
1355
1356 /**
1357  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1358  * @chip: The NAND chip
1359  * @page: parameter page to read
1360  * @buf: buffer used to store the data
1361  * @len: length of the buffer
1362  *
1363  * This function issues a READ PARAMETER PAGE operation.
1364  * This function does not select/unselect the CS line.
1365  *
1366  * Returns 0 on success, a negative error code otherwise.
1367  */
1368 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1369                             unsigned int len)
1370 {
1371         unsigned int i;
1372         u8 *p = buf;
1373
1374         if (len && !buf)
1375                 return -EINVAL;
1376
1377         if (nand_has_exec_op(chip)) {
1378                 const struct nand_interface_config *conf =
1379                         nand_get_interface_config(chip);
1380                 struct nand_op_instr instrs[] = {
1381                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1382                         NAND_OP_ADDR(1, &page,
1383                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
1384                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1385                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
1386                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1387                 };
1388                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1389
1390                 /* Drop the DATA_IN instruction if len is set to 0. */
1391                 if (!len)
1392                         op.ninstrs--;
1393
1394                 return nand_exec_op(chip, &op);
1395         }
1396
1397         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1398         for (i = 0; i < len; i++)
1399                 p[i] = chip->legacy.read_byte(chip);
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1406  * @chip: The NAND chip
1407  * @offset_in_page: offset within the page
1408  * @buf: buffer used to store the data
1409  * @len: length of the buffer
1410  * @force_8bit: force 8-bit bus access
1411  *
1412  * This function issues a CHANGE READ COLUMN operation.
1413  * This function does not select/unselect the CS line.
1414  *
1415  * Returns 0 on success, a negative error code otherwise.
1416  */
1417 int nand_change_read_column_op(struct nand_chip *chip,
1418                                unsigned int offset_in_page, void *buf,
1419                                unsigned int len, bool force_8bit)
1420 {
1421         struct mtd_info *mtd = nand_to_mtd(chip);
1422
1423         if (len && !buf)
1424                 return -EINVAL;
1425
1426         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1427                 return -EINVAL;
1428
1429         /* Small page NANDs do not support column change. */
1430         if (mtd->writesize <= 512)
1431                 return -ENOTSUPP;
1432
1433         if (nand_has_exec_op(chip)) {
1434                 const struct nand_interface_config *conf =
1435                         nand_get_interface_config(chip);
1436                 u8 addrs[2] = {};
1437                 struct nand_op_instr instrs[] = {
1438                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1439                         NAND_OP_ADDR(2, addrs, 0),
1440                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1441                                     NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1442                         NAND_OP_DATA_IN(len, buf, 0),
1443                 };
1444                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1445                 int ret;
1446
1447                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1448                 if (ret < 0)
1449                         return ret;
1450
1451                 /* Drop the DATA_IN instruction if len is set to 0. */
1452                 if (!len)
1453                         op.ninstrs--;
1454
1455                 instrs[3].ctx.data.force_8bit = force_8bit;
1456
1457                 return nand_exec_op(chip, &op);
1458         }
1459
1460         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1461         if (len)
1462                 chip->legacy.read_buf(chip, buf, len);
1463
1464         return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1467
1468 /**
1469  * nand_read_oob_op - Do a READ OOB operation
1470  * @chip: The NAND chip
1471  * @page: page to read
1472  * @offset_in_oob: offset within the OOB area
1473  * @buf: buffer used to store the data
1474  * @len: length of the buffer
1475  *
1476  * This function issues a READ OOB operation.
1477  * This function does not select/unselect the CS line.
1478  *
1479  * Returns 0 on success, a negative error code otherwise.
1480  */
1481 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1482                      unsigned int offset_in_oob, void *buf, unsigned int len)
1483 {
1484         struct mtd_info *mtd = nand_to_mtd(chip);
1485
1486         if (len && !buf)
1487                 return -EINVAL;
1488
1489         if (offset_in_oob + len > mtd->oobsize)
1490                 return -EINVAL;
1491
1492         if (nand_has_exec_op(chip))
1493                 return nand_read_page_op(chip, page,
1494                                          mtd->writesize + offset_in_oob,
1495                                          buf, len);
1496
1497         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1498         if (len)
1499                 chip->legacy.read_buf(chip, buf, len);
1500
1501         return 0;
1502 }
1503 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1504
1505 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1506                                   unsigned int offset_in_page, const void *buf,
1507                                   unsigned int len, bool prog)
1508 {
1509         const struct nand_interface_config *conf =
1510                 nand_get_interface_config(chip);
1511         struct mtd_info *mtd = nand_to_mtd(chip);
1512         u8 addrs[5] = {};
1513         struct nand_op_instr instrs[] = {
1514                 /*
1515                  * The first instruction will be dropped if we're dealing
1516                  * with a large page NAND and adjusted if we're dealing
1517                  * with a small page NAND and the page offset is > 255.
1518                  */
1519                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1520                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1521                 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1522                 NAND_OP_DATA_OUT(len, buf, 0),
1523                 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1524                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1525                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1526         };
1527         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1528         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1529
1530         if (naddrs < 0)
1531                 return naddrs;
1532
1533         addrs[naddrs++] = page;
1534         addrs[naddrs++] = page >> 8;
1535         if (chip->options & NAND_ROW_ADDR_3)
1536                 addrs[naddrs++] = page >> 16;
1537
1538         instrs[2].ctx.addr.naddrs = naddrs;
1539
1540         /* Drop the last two instructions if we're not programming the page. */
1541         if (!prog) {
1542                 op.ninstrs -= 2;
1543                 /* Also drop the DATA_OUT instruction if empty. */
1544                 if (!len)
1545                         op.ninstrs--;
1546         }
1547
1548         if (mtd->writesize <= 512) {
1549                 /*
1550                  * Small pages need some more tweaking: we have to adjust the
1551                  * first instruction depending on the page offset we're trying
1552                  * to access.
1553                  */
1554                 if (offset_in_page >= mtd->writesize)
1555                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1556                 else if (offset_in_page >= 256 &&
1557                          !(chip->options & NAND_BUSWIDTH_16))
1558                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1559         } else {
1560                 /*
1561                  * Drop the first command if we're dealing with a large page
1562                  * NAND.
1563                  */
1564                 op.instrs++;
1565                 op.ninstrs--;
1566         }
1567
1568         return nand_exec_op(chip, &op);
1569 }
1570
1571 /**
1572  * nand_prog_page_begin_op - starts a PROG PAGE operation
1573  * @chip: The NAND chip
1574  * @page: page to write
1575  * @offset_in_page: offset within the page
1576  * @buf: buffer containing the data to write to the page
1577  * @len: length of the buffer
1578  *
1579  * This function issues the first half of a PROG PAGE operation.
1580  * This function does not select/unselect the CS line.
1581  *
1582  * Returns 0 on success, a negative error code otherwise.
1583  */
1584 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1585                             unsigned int offset_in_page, const void *buf,
1586                             unsigned int len)
1587 {
1588         struct mtd_info *mtd = nand_to_mtd(chip);
1589
1590         if (len && !buf)
1591                 return -EINVAL;
1592
1593         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1594                 return -EINVAL;
1595
1596         if (nand_has_exec_op(chip))
1597                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1598                                               len, false);
1599
1600         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1601
1602         if (buf)
1603                 chip->legacy.write_buf(chip, buf, len);
1604
1605         return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1608
1609 /**
1610  * nand_prog_page_end_op - ends a PROG PAGE operation
1611  * @chip: The NAND chip
1612  *
1613  * This function issues the second half of a PROG PAGE operation.
1614  * This function does not select/unselect the CS line.
1615  *
1616  * Returns 0 on success, a negative error code otherwise.
1617  */
1618 int nand_prog_page_end_op(struct nand_chip *chip)
1619 {
1620         int ret;
1621         u8 status;
1622
1623         if (nand_has_exec_op(chip)) {
1624                 const struct nand_interface_config *conf =
1625                         nand_get_interface_config(chip);
1626                 struct nand_op_instr instrs[] = {
1627                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1628                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1629                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1630                                          0),
1631                 };
1632                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1633
1634                 ret = nand_exec_op(chip, &op);
1635                 if (ret)
1636                         return ret;
1637
1638                 ret = nand_status_op(chip, &status);
1639                 if (ret)
1640                         return ret;
1641         } else {
1642                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1643                 ret = chip->legacy.waitfunc(chip);
1644                 if (ret < 0)
1645                         return ret;
1646
1647                 status = ret;
1648         }
1649
1650         if (status & NAND_STATUS_FAIL)
1651                 return -EIO;
1652
1653         return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1656
1657 /**
1658  * nand_prog_page_op - Do a full PROG PAGE operation
1659  * @chip: The NAND chip
1660  * @page: page to write
1661  * @offset_in_page: offset within the page
1662  * @buf: buffer containing the data to write to the page
1663  * @len: length of the buffer
1664  *
1665  * This function issues a full PROG PAGE operation.
1666  * This function does not select/unselect the CS line.
1667  *
1668  * Returns 0 on success, a negative error code otherwise.
1669  */
1670 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1671                       unsigned int offset_in_page, const void *buf,
1672                       unsigned int len)
1673 {
1674         struct mtd_info *mtd = nand_to_mtd(chip);
1675         u8 status;
1676         int ret;
1677
1678         if (!len || !buf)
1679                 return -EINVAL;
1680
1681         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1682                 return -EINVAL;
1683
1684         if (nand_has_exec_op(chip)) {
1685                 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1686                                                 len, true);
1687                 if (ret)
1688                         return ret;
1689
1690                 ret = nand_status_op(chip, &status);
1691                 if (ret)
1692                         return ret;
1693         } else {
1694                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1695                                      page);
1696                 chip->legacy.write_buf(chip, buf, len);
1697                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1698                 ret = chip->legacy.waitfunc(chip);
1699                 if (ret < 0)
1700                         return ret;
1701
1702                 status = ret;
1703         }
1704
1705         if (status & NAND_STATUS_FAIL)
1706                 return -EIO;
1707
1708         return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1711
1712 /**
1713  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1714  * @chip: The NAND chip
1715  * @offset_in_page: offset within the page
1716  * @buf: buffer containing the data to send to the NAND
1717  * @len: length of the buffer
1718  * @force_8bit: force 8-bit bus access
1719  *
1720  * This function issues a CHANGE WRITE COLUMN operation.
1721  * This function does not select/unselect the CS line.
1722  *
1723  * Returns 0 on success, a negative error code otherwise.
1724  */
1725 int nand_change_write_column_op(struct nand_chip *chip,
1726                                 unsigned int offset_in_page,
1727                                 const void *buf, unsigned int len,
1728                                 bool force_8bit)
1729 {
1730         struct mtd_info *mtd = nand_to_mtd(chip);
1731
1732         if (len && !buf)
1733                 return -EINVAL;
1734
1735         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1736                 return -EINVAL;
1737
1738         /* Small page NANDs do not support column change. */
1739         if (mtd->writesize <= 512)
1740                 return -ENOTSUPP;
1741
1742         if (nand_has_exec_op(chip)) {
1743                 const struct nand_interface_config *conf =
1744                         nand_get_interface_config(chip);
1745                 u8 addrs[2];
1746                 struct nand_op_instr instrs[] = {
1747                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1748                         NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1749                         NAND_OP_DATA_OUT(len, buf, 0),
1750                 };
1751                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1752                 int ret;
1753
1754                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1755                 if (ret < 0)
1756                         return ret;
1757
1758                 instrs[2].ctx.data.force_8bit = force_8bit;
1759
1760                 /* Drop the DATA_OUT instruction if len is set to 0. */
1761                 if (!len)
1762                         op.ninstrs--;
1763
1764                 return nand_exec_op(chip, &op);
1765         }
1766
1767         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1768         if (len)
1769                 chip->legacy.write_buf(chip, buf, len);
1770
1771         return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1774
1775 /**
1776  * nand_readid_op - Do a READID operation
1777  * @chip: The NAND chip
1778  * @addr: address cycle to pass after the READID command
1779  * @buf: buffer used to store the ID
1780  * @len: length of the buffer
1781  *
1782  * This function sends a READID command and reads back the ID returned by the
1783  * NAND.
1784  * This function does not select/unselect the CS line.
1785  *
1786  * Returns 0 on success, a negative error code otherwise.
1787  */
1788 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1789                    unsigned int len)
1790 {
1791         unsigned int i;
1792         u8 *id = buf, *ddrbuf = NULL;
1793
1794         if (len && !buf)
1795                 return -EINVAL;
1796
1797         if (nand_has_exec_op(chip)) {
1798                 const struct nand_interface_config *conf =
1799                         nand_get_interface_config(chip);
1800                 struct nand_op_instr instrs[] = {
1801                         NAND_OP_CMD(NAND_CMD_READID, 0),
1802                         NAND_OP_ADDR(1, &addr,
1803                                      NAND_COMMON_TIMING_NS(conf, tADL_min)),
1804                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1805                 };
1806                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1807                 int ret;
1808
1809                 /* READ_ID data bytes are received twice in NV-DDR mode */
1810                 if (len && nand_interface_is_nvddr(conf)) {
1811                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1812                         if (!ddrbuf)
1813                                 return -ENOMEM;
1814
1815                         instrs[2].ctx.data.len *= 2;
1816                         instrs[2].ctx.data.buf.in = ddrbuf;
1817                 }
1818
1819                 /* Drop the DATA_IN instruction if len is set to 0. */
1820                 if (!len)
1821                         op.ninstrs--;
1822
1823                 ret = nand_exec_op(chip, &op);
1824                 if (!ret && len && nand_interface_is_nvddr(conf)) {
1825                         for (i = 0; i < len; i++)
1826                                 id[i] = ddrbuf[i * 2];
1827                 }
1828
1829                 kfree(ddrbuf);
1830
1831                 return ret;
1832         }
1833
1834         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1835
1836         for (i = 0; i < len; i++)
1837                 id[i] = chip->legacy.read_byte(chip);
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(nand_readid_op);
1842
1843 /**
1844  * nand_status_op - Do a STATUS operation
1845  * @chip: The NAND chip
1846  * @status: out variable to store the NAND status
1847  *
1848  * This function sends a STATUS command and reads back the status returned by
1849  * the NAND.
1850  * This function does not select/unselect the CS line.
1851  *
1852  * Returns 0 on success, a negative error code otherwise.
1853  */
1854 int nand_status_op(struct nand_chip *chip, u8 *status)
1855 {
1856         if (nand_has_exec_op(chip)) {
1857                 const struct nand_interface_config *conf =
1858                         nand_get_interface_config(chip);
1859                 u8 ddrstatus[2];
1860                 struct nand_op_instr instrs[] = {
1861                         NAND_OP_CMD(NAND_CMD_STATUS,
1862                                     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1863                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1864                 };
1865                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1866                 int ret;
1867
1868                 /* The status data byte will be received twice in NV-DDR mode */
1869                 if (status && nand_interface_is_nvddr(conf)) {
1870                         instrs[1].ctx.data.len *= 2;
1871                         instrs[1].ctx.data.buf.in = ddrstatus;
1872                 }
1873
1874                 if (!status)
1875                         op.ninstrs--;
1876
1877                 ret = nand_exec_op(chip, &op);
1878                 if (!ret && status && nand_interface_is_nvddr(conf))
1879                         *status = ddrstatus[0];
1880
1881                 return ret;
1882         }
1883
1884         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1885         if (status)
1886                 *status = chip->legacy.read_byte(chip);
1887
1888         return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(nand_status_op);
1891
1892 /**
1893  * nand_exit_status_op - Exit a STATUS operation
1894  * @chip: The NAND chip
1895  *
1896  * This function sends a READ0 command to cancel the effect of the STATUS
1897  * command to avoid reading only the status until a new read command is sent.
1898  *
1899  * This function does not select/unselect the CS line.
1900  *
1901  * Returns 0 on success, a negative error code otherwise.
1902  */
1903 int nand_exit_status_op(struct nand_chip *chip)
1904 {
1905         if (nand_has_exec_op(chip)) {
1906                 struct nand_op_instr instrs[] = {
1907                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1908                 };
1909                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1910
1911                 return nand_exec_op(chip, &op);
1912         }
1913
1914         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1915
1916         return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(nand_exit_status_op);
1919
1920 /**
1921  * nand_erase_op - Do an erase operation
1922  * @chip: The NAND chip
1923  * @eraseblock: block to erase
1924  *
1925  * This function sends an ERASE command and waits for the NAND to be ready
1926  * before returning.
1927  * This function does not select/unselect the CS line.
1928  *
1929  * Returns 0 on success, a negative error code otherwise.
1930  */
1931 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1932 {
1933         unsigned int page = eraseblock <<
1934                             (chip->phys_erase_shift - chip->page_shift);
1935         int ret;
1936         u8 status;
1937
1938         if (nand_has_exec_op(chip)) {
1939                 const struct nand_interface_config *conf =
1940                         nand_get_interface_config(chip);
1941                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1942                 struct nand_op_instr instrs[] = {
1943                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1944                         NAND_OP_ADDR(2, addrs, 0),
1945                         NAND_OP_CMD(NAND_CMD_ERASE2,
1946                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1947                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1948                                          0),
1949                 };
1950                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1951
1952                 if (chip->options & NAND_ROW_ADDR_3)
1953                         instrs[1].ctx.addr.naddrs++;
1954
1955                 ret = nand_exec_op(chip, &op);
1956                 if (ret)
1957                         return ret;
1958
1959                 ret = nand_status_op(chip, &status);
1960                 if (ret)
1961                         return ret;
1962         } else {
1963                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1964                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1965
1966                 ret = chip->legacy.waitfunc(chip);
1967                 if (ret < 0)
1968                         return ret;
1969
1970                 status = ret;
1971         }
1972
1973         if (status & NAND_STATUS_FAIL)
1974                 return -EIO;
1975
1976         return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(nand_erase_op);
1979
1980 /**
1981  * nand_set_features_op - Do a SET FEATURES operation
1982  * @chip: The NAND chip
1983  * @feature: feature id
1984  * @data: 4 bytes of data
1985  *
1986  * This function sends a SET FEATURES command and waits for the NAND to be
1987  * ready before returning.
1988  * This function does not select/unselect the CS line.
1989  *
1990  * Returns 0 on success, a negative error code otherwise.
1991  */
1992 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1993                                 const void *data)
1994 {
1995         const u8 *params = data;
1996         int i, ret;
1997
1998         if (nand_has_exec_op(chip)) {
1999                 const struct nand_interface_config *conf =
2000                         nand_get_interface_config(chip);
2001                 struct nand_op_instr instrs[] = {
2002                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2003                         NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2004                                                                         tADL_min)),
2005                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2006                                               NAND_COMMON_TIMING_NS(conf,
2007                                                                     tWB_max)),
2008                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2009                                          0),
2010                 };
2011                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2012
2013                 return nand_exec_op(chip, &op);
2014         }
2015
2016         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2017         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2018                 chip->legacy.write_byte(chip, params[i]);
2019
2020         ret = chip->legacy.waitfunc(chip);
2021         if (ret < 0)
2022                 return ret;
2023
2024         if (ret & NAND_STATUS_FAIL)
2025                 return -EIO;
2026
2027         return 0;
2028 }
2029
2030 /**
2031  * nand_get_features_op - Do a GET FEATURES operation
2032  * @chip: The NAND chip
2033  * @feature: feature id
2034  * @data: 4 bytes of data
2035  *
2036  * This function sends a GET FEATURES command and waits for the NAND to be
2037  * ready before returning.
2038  * This function does not select/unselect the CS line.
2039  *
2040  * Returns 0 on success, a negative error code otherwise.
2041  */
2042 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2043                                 void *data)
2044 {
2045         u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2046         int i;
2047
2048         if (nand_has_exec_op(chip)) {
2049                 const struct nand_interface_config *conf =
2050                         nand_get_interface_config(chip);
2051                 struct nand_op_instr instrs[] = {
2052                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2053                         NAND_OP_ADDR(1, &feature,
2054                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
2055                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2056                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
2057                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2058                                              data, 0),
2059                 };
2060                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2061                 int ret;
2062
2063                 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
2064                 if (nand_interface_is_nvddr(conf)) {
2065                         instrs[3].ctx.data.len *= 2;
2066                         instrs[3].ctx.data.buf.in = ddrbuf;
2067                 }
2068
2069                 ret = nand_exec_op(chip, &op);
2070                 if (nand_interface_is_nvddr(conf)) {
2071                         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2072                                 params[i] = ddrbuf[i * 2];
2073                 }
2074
2075                 return ret;
2076         }
2077
2078         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2079         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2080                 params[i] = chip->legacy.read_byte(chip);
2081
2082         return 0;
2083 }
2084
2085 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2086                             unsigned int delay_ns)
2087 {
2088         if (nand_has_exec_op(chip)) {
2089                 struct nand_op_instr instrs[] = {
2090                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2091                                          PSEC_TO_NSEC(delay_ns)),
2092                 };
2093                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2094
2095                 return nand_exec_op(chip, &op);
2096         }
2097
2098         /* Apply delay or wait for ready/busy pin */
2099         if (!chip->legacy.dev_ready)
2100                 udelay(chip->legacy.chip_delay);
2101         else
2102                 nand_wait_ready(chip);
2103
2104         return 0;
2105 }
2106
2107 /**
2108  * nand_reset_op - Do a reset operation
2109  * @chip: The NAND chip
2110  *
2111  * This function sends a RESET command and waits for the NAND to be ready
2112  * before returning.
2113  * This function does not select/unselect the CS line.
2114  *
2115  * Returns 0 on success, a negative error code otherwise.
2116  */
2117 int nand_reset_op(struct nand_chip *chip)
2118 {
2119         if (nand_has_exec_op(chip)) {
2120                 const struct nand_interface_config *conf =
2121                         nand_get_interface_config(chip);
2122                 struct nand_op_instr instrs[] = {
2123                         NAND_OP_CMD(NAND_CMD_RESET,
2124                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2125                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2126                                          0),
2127                 };
2128                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2129
2130                 return nand_exec_op(chip, &op);
2131         }
2132
2133         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2134
2135         return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(nand_reset_op);
2138
2139 /**
2140  * nand_read_data_op - Read data from the NAND
2141  * @chip: The NAND chip
2142  * @buf: buffer used to store the data
2143  * @len: length of the buffer
2144  * @force_8bit: force 8-bit bus access
2145  * @check_only: do not actually run the command, only checks if the
2146  *              controller driver supports it
2147  *
2148  * This function does a raw data read on the bus. Usually used after launching
2149  * another NAND operation like nand_read_page_op().
2150  * This function does not select/unselect the CS line.
2151  *
2152  * Returns 0 on success, a negative error code otherwise.
2153  */
2154 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2155                       bool force_8bit, bool check_only)
2156 {
2157         if (!len || !buf)
2158                 return -EINVAL;
2159
2160         if (nand_has_exec_op(chip)) {
2161                 const struct nand_interface_config *conf =
2162                         nand_get_interface_config(chip);
2163                 struct nand_op_instr instrs[] = {
2164                         NAND_OP_DATA_IN(len, buf, 0),
2165                 };
2166                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2167                 u8 *ddrbuf = NULL;
2168                 int ret, i;
2169
2170                 instrs[0].ctx.data.force_8bit = force_8bit;
2171
2172                 /*
2173                  * Parameter payloads (ID, status, features, etc) do not go
2174                  * through the same pipeline as regular data, hence the
2175                  * force_8bit flag must be set and this also indicates that in
2176                  * case NV-DDR timings are being used the data will be received
2177                  * twice.
2178                  */
2179                 if (force_8bit && nand_interface_is_nvddr(conf)) {
2180                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2181                         if (!ddrbuf)
2182                                 return -ENOMEM;
2183
2184                         instrs[0].ctx.data.len *= 2;
2185                         instrs[0].ctx.data.buf.in = ddrbuf;
2186                 }
2187
2188                 if (check_only) {
2189                         ret = nand_check_op(chip, &op);
2190                         kfree(ddrbuf);
2191                         return ret;
2192                 }
2193
2194                 ret = nand_exec_op(chip, &op);
2195                 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2196                         u8 *dst = buf;
2197
2198                         for (i = 0; i < len; i++)
2199                                 dst[i] = ddrbuf[i * 2];
2200                 }
2201
2202                 kfree(ddrbuf);
2203
2204                 return ret;
2205         }
2206
2207         if (check_only)
2208                 return 0;
2209
2210         if (force_8bit) {
2211                 u8 *p = buf;
2212                 unsigned int i;
2213
2214                 for (i = 0; i < len; i++)
2215                         p[i] = chip->legacy.read_byte(chip);
2216         } else {
2217                 chip->legacy.read_buf(chip, buf, len);
2218         }
2219
2220         return 0;
2221 }
2222 EXPORT_SYMBOL_GPL(nand_read_data_op);
2223
2224 /**
2225  * nand_write_data_op - Write data from the NAND
2226  * @chip: The NAND chip
2227  * @buf: buffer containing the data to send on the bus
2228  * @len: length of the buffer
2229  * @force_8bit: force 8-bit bus access
2230  *
2231  * This function does a raw data write on the bus. Usually used after launching
2232  * another NAND operation like nand_write_page_begin_op().
2233  * This function does not select/unselect the CS line.
2234  *
2235  * Returns 0 on success, a negative error code otherwise.
2236  */
2237 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2238                        unsigned int len, bool force_8bit)
2239 {
2240         if (!len || !buf)
2241                 return -EINVAL;
2242
2243         if (nand_has_exec_op(chip)) {
2244                 struct nand_op_instr instrs[] = {
2245                         NAND_OP_DATA_OUT(len, buf, 0),
2246                 };
2247                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2248
2249                 instrs[0].ctx.data.force_8bit = force_8bit;
2250
2251                 return nand_exec_op(chip, &op);
2252         }
2253
2254         if (force_8bit) {
2255                 const u8 *p = buf;
2256                 unsigned int i;
2257
2258                 for (i = 0; i < len; i++)
2259                         chip->legacy.write_byte(chip, p[i]);
2260         } else {
2261                 chip->legacy.write_buf(chip, buf, len);
2262         }
2263
2264         return 0;
2265 }
2266 EXPORT_SYMBOL_GPL(nand_write_data_op);
2267
2268 /**
2269  * struct nand_op_parser_ctx - Context used by the parser
2270  * @instrs: array of all the instructions that must be addressed
2271  * @ninstrs: length of the @instrs array
2272  * @subop: Sub-operation to be passed to the NAND controller
2273  *
2274  * This structure is used by the core to split NAND operations into
2275  * sub-operations that can be handled by the NAND controller.
2276  */
2277 struct nand_op_parser_ctx {
2278         const struct nand_op_instr *instrs;
2279         unsigned int ninstrs;
2280         struct nand_subop subop;
2281 };
2282
2283 /**
2284  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2285  * @pat: the parser pattern element that matches @instr
2286  * @instr: pointer to the instruction to check
2287  * @start_offset: this is an in/out parameter. If @instr has already been
2288  *                split, then @start_offset is the offset from which to start
2289  *                (either an address cycle or an offset in the data buffer).
2290  *                Conversely, if the function returns true (ie. instr must be
2291  *                split), this parameter is updated to point to the first
2292  *                data/address cycle that has not been taken care of.
2293  *
2294  * Some NAND controllers are limited and cannot send X address cycles with a
2295  * unique operation, or cannot read/write more than Y bytes at the same time.
2296  * In this case, split the instruction that does not fit in a single
2297  * controller-operation into two or more chunks.
2298  *
2299  * Returns true if the instruction must be split, false otherwise.
2300  * The @start_offset parameter is also updated to the offset at which the next
2301  * bundle of instruction must start (if an address or a data instruction).
2302  */
2303 static bool
2304 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2305                                 const struct nand_op_instr *instr,
2306                                 unsigned int *start_offset)
2307 {
2308         switch (pat->type) {
2309         case NAND_OP_ADDR_INSTR:
2310                 if (!pat->ctx.addr.maxcycles)
2311                         break;
2312
2313                 if (instr->ctx.addr.naddrs - *start_offset >
2314                     pat->ctx.addr.maxcycles) {
2315                         *start_offset += pat->ctx.addr.maxcycles;
2316                         return true;
2317                 }
2318                 break;
2319
2320         case NAND_OP_DATA_IN_INSTR:
2321         case NAND_OP_DATA_OUT_INSTR:
2322                 if (!pat->ctx.data.maxlen)
2323                         break;
2324
2325                 if (instr->ctx.data.len - *start_offset >
2326                     pat->ctx.data.maxlen) {
2327                         *start_offset += pat->ctx.data.maxlen;
2328                         return true;
2329                 }
2330                 break;
2331
2332         default:
2333                 break;
2334         }
2335
2336         return false;
2337 }
2338
2339 /**
2340  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2341  *                            remaining in the parser context
2342  * @pat: the pattern to test
2343  * @ctx: the parser context structure to match with the pattern @pat
2344  *
2345  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2346  * Returns true if this is the case, false ortherwise. When true is returned,
2347  * @ctx->subop is updated with the set of instructions to be passed to the
2348  * controller driver.
2349  */
2350 static bool
2351 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2352                          struct nand_op_parser_ctx *ctx)
2353 {
2354         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2355         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2356         const struct nand_op_instr *instr = ctx->subop.instrs;
2357         unsigned int i, ninstrs;
2358
2359         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2360                 /*
2361                  * The pattern instruction does not match the operation
2362                  * instruction. If the instruction is marked optional in the
2363                  * pattern definition, we skip the pattern element and continue
2364                  * to the next one. If the element is mandatory, there's no
2365                  * match and we can return false directly.
2366                  */
2367                 if (instr->type != pat->elems[i].type) {
2368                         if (!pat->elems[i].optional)
2369                                 return false;
2370
2371                         continue;
2372                 }
2373
2374                 /*
2375                  * Now check the pattern element constraints. If the pattern is
2376                  * not able to handle the whole instruction in a single step,
2377                  * we have to split it.
2378                  * The last_instr_end_off value comes back updated to point to
2379                  * the position where we have to split the instruction (the
2380                  * start of the next subop chunk).
2381                  */
2382                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2383                                                     &instr_offset)) {
2384                         ninstrs++;
2385                         i++;
2386                         break;
2387                 }
2388
2389                 instr++;
2390                 ninstrs++;
2391                 instr_offset = 0;
2392         }
2393
2394         /*
2395          * This can happen if all instructions of a pattern are optional.
2396          * Still, if there's not at least one instruction handled by this
2397          * pattern, this is not a match, and we should try the next one (if
2398          * any).
2399          */
2400         if (!ninstrs)
2401                 return false;
2402
2403         /*
2404          * We had a match on the pattern head, but the pattern may be longer
2405          * than the instructions we're asked to execute. We need to make sure
2406          * there's no mandatory elements in the pattern tail.
2407          */
2408         for (; i < pat->nelems; i++) {
2409                 if (!pat->elems[i].optional)
2410                         return false;
2411         }
2412
2413         /*
2414          * We have a match: update the subop structure accordingly and return
2415          * true.
2416          */
2417         ctx->subop.ninstrs = ninstrs;
2418         ctx->subop.last_instr_end_off = instr_offset;
2419
2420         return true;
2421 }
2422
2423 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2424 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2425 {
2426         const struct nand_op_instr *instr;
2427         char *prefix = "      ";
2428         unsigned int i;
2429
2430         pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2431
2432         for (i = 0; i < ctx->ninstrs; i++) {
2433                 instr = &ctx->instrs[i];
2434
2435                 if (instr == &ctx->subop.instrs[0])
2436                         prefix = "    ->";
2437
2438                 nand_op_trace(prefix, instr);
2439
2440                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2441                         prefix = "      ";
2442         }
2443 }
2444 #else
2445 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2446 {
2447         /* NOP */
2448 }
2449 #endif
2450
2451 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2452                                   const struct nand_op_parser_ctx *b)
2453 {
2454         if (a->subop.ninstrs < b->subop.ninstrs)
2455                 return -1;
2456         else if (a->subop.ninstrs > b->subop.ninstrs)
2457                 return 1;
2458
2459         if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2460                 return -1;
2461         else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2462                 return 1;
2463
2464         return 0;
2465 }
2466
2467 /**
2468  * nand_op_parser_exec_op - exec_op parser
2469  * @chip: the NAND chip
2470  * @parser: patterns description provided by the controller driver
2471  * @op: the NAND operation to address
2472  * @check_only: when true, the function only checks if @op can be handled but
2473  *              does not execute the operation
2474  *
2475  * Helper function designed to ease integration of NAND controller drivers that
2476  * only support a limited set of instruction sequences. The supported sequences
2477  * are described in @parser, and the framework takes care of splitting @op into
2478  * multiple sub-operations (if required) and pass them back to the ->exec()
2479  * callback of the matching pattern if @check_only is set to false.
2480  *
2481  * NAND controller drivers should call this function from their own ->exec_op()
2482  * implementation.
2483  *
2484  * Returns 0 on success, a negative error code otherwise. A failure can be
2485  * caused by an unsupported operation (none of the supported patterns is able
2486  * to handle the requested operation), or an error returned by one of the
2487  * matching pattern->exec() hook.
2488  */
2489 int nand_op_parser_exec_op(struct nand_chip *chip,
2490                            const struct nand_op_parser *parser,
2491                            const struct nand_operation *op, bool check_only)
2492 {
2493         struct nand_op_parser_ctx ctx = {
2494                 .subop.cs = op->cs,
2495                 .subop.instrs = op->instrs,
2496                 .instrs = op->instrs,
2497                 .ninstrs = op->ninstrs,
2498         };
2499         unsigned int i;
2500
2501         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2502                 const struct nand_op_parser_pattern *pattern;
2503                 struct nand_op_parser_ctx best_ctx;
2504                 int ret, best_pattern = -1;
2505
2506                 for (i = 0; i < parser->npatterns; i++) {
2507                         struct nand_op_parser_ctx test_ctx = ctx;
2508
2509                         pattern = &parser->patterns[i];
2510                         if (!nand_op_parser_match_pat(pattern, &test_ctx))
2511                                 continue;
2512
2513                         if (best_pattern >= 0 &&
2514                             nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2515                                 continue;
2516
2517                         best_pattern = i;
2518                         best_ctx = test_ctx;
2519                 }
2520
2521                 if (best_pattern < 0) {
2522                         pr_debug("->exec_op() parser: pattern not found!\n");
2523                         return -ENOTSUPP;
2524                 }
2525
2526                 ctx = best_ctx;
2527                 nand_op_parser_trace(&ctx);
2528
2529                 if (!check_only) {
2530                         pattern = &parser->patterns[best_pattern];
2531                         ret = pattern->exec(chip, &ctx.subop);
2532                         if (ret)
2533                                 return ret;
2534                 }
2535
2536                 /*
2537                  * Update the context structure by pointing to the start of the
2538                  * next subop.
2539                  */
2540                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2541                 if (ctx.subop.last_instr_end_off)
2542                         ctx.subop.instrs -= 1;
2543
2544                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2545         }
2546
2547         return 0;
2548 }
2549 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2550
2551 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2552 {
2553         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2554                          instr->type == NAND_OP_DATA_OUT_INSTR);
2555 }
2556
2557 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2558                                       unsigned int instr_idx)
2559 {
2560         return subop && instr_idx < subop->ninstrs;
2561 }
2562
2563 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2564                                              unsigned int instr_idx)
2565 {
2566         if (instr_idx)
2567                 return 0;
2568
2569         return subop->first_instr_start_off;
2570 }
2571
2572 /**
2573  * nand_subop_get_addr_start_off - Get the start offset in an address array
2574  * @subop: The entire sub-operation
2575  * @instr_idx: Index of the instruction inside the sub-operation
2576  *
2577  * During driver development, one could be tempted to directly use the
2578  * ->addr.addrs field of address instructions. This is wrong as address
2579  * instructions might be split.
2580  *
2581  * Given an address instruction, returns the offset of the first cycle to issue.
2582  */
2583 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2584                                            unsigned int instr_idx)
2585 {
2586         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2587                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2588                 return 0;
2589
2590         return nand_subop_get_start_off(subop, instr_idx);
2591 }
2592 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2593
2594 /**
2595  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2596  * @subop: The entire sub-operation
2597  * @instr_idx: Index of the instruction inside the sub-operation
2598  *
2599  * During driver development, one could be tempted to directly use the
2600  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2601  * might be split.
2602  *
2603  * Given an address instruction, returns the number of address cycle to issue.
2604  */
2605 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2606                                          unsigned int instr_idx)
2607 {
2608         int start_off, end_off;
2609
2610         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2611                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2612                 return 0;
2613
2614         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2615
2616         if (instr_idx == subop->ninstrs - 1 &&
2617             subop->last_instr_end_off)
2618                 end_off = subop->last_instr_end_off;
2619         else
2620                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2621
2622         return end_off - start_off;
2623 }
2624 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2625
2626 /**
2627  * nand_subop_get_data_start_off - Get the start offset in a data array
2628  * @subop: The entire sub-operation
2629  * @instr_idx: Index of the instruction inside the sub-operation
2630  *
2631  * During driver development, one could be tempted to directly use the
2632  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2633  * instructions might be split.
2634  *
2635  * Given a data instruction, returns the offset to start from.
2636  */
2637 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2638                                            unsigned int instr_idx)
2639 {
2640         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2641                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2642                 return 0;
2643
2644         return nand_subop_get_start_off(subop, instr_idx);
2645 }
2646 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2647
2648 /**
2649  * nand_subop_get_data_len - Get the number of bytes to retrieve
2650  * @subop: The entire sub-operation
2651  * @instr_idx: Index of the instruction inside the sub-operation
2652  *
2653  * During driver development, one could be tempted to directly use the
2654  * ->data->len field of a data instruction. This is wrong as data instructions
2655  * might be split.
2656  *
2657  * Returns the length of the chunk of data to send/receive.
2658  */
2659 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2660                                      unsigned int instr_idx)
2661 {
2662         int start_off = 0, end_off;
2663
2664         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2665                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2666                 return 0;
2667
2668         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2669
2670         if (instr_idx == subop->ninstrs - 1 &&
2671             subop->last_instr_end_off)
2672                 end_off = subop->last_instr_end_off;
2673         else
2674                 end_off = subop->instrs[instr_idx].ctx.data.len;
2675
2676         return end_off - start_off;
2677 }
2678 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2679
2680 /**
2681  * nand_reset - Reset and initialize a NAND device
2682  * @chip: The NAND chip
2683  * @chipnr: Internal die id
2684  *
2685  * Save the timings data structure, then apply SDR timings mode 0 (see
2686  * nand_reset_interface for details), do the reset operation, and apply
2687  * back the previous timings.
2688  *
2689  * Returns 0 on success, a negative error code otherwise.
2690  */
2691 int nand_reset(struct nand_chip *chip, int chipnr)
2692 {
2693         int ret;
2694
2695         ret = nand_reset_interface(chip, chipnr);
2696         if (ret)
2697                 return ret;
2698
2699         /*
2700          * The CS line has to be released before we can apply the new NAND
2701          * interface settings, hence this weird nand_select_target()
2702          * nand_deselect_target() dance.
2703          */
2704         nand_select_target(chip, chipnr);
2705         ret = nand_reset_op(chip);
2706         nand_deselect_target(chip);
2707         if (ret)
2708                 return ret;
2709
2710         ret = nand_setup_interface(chip, chipnr);
2711         if (ret)
2712                 return ret;
2713
2714         return 0;
2715 }
2716 EXPORT_SYMBOL_GPL(nand_reset);
2717
2718 /**
2719  * nand_get_features - wrapper to perform a GET_FEATURE
2720  * @chip: NAND chip info structure
2721  * @addr: feature address
2722  * @subfeature_param: the subfeature parameters, a four bytes array
2723  *
2724  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2725  * operation cannot be handled.
2726  */
2727 int nand_get_features(struct nand_chip *chip, int addr,
2728                       u8 *subfeature_param)
2729 {
2730         if (!nand_supports_get_features(chip, addr))
2731                 return -ENOTSUPP;
2732
2733         if (chip->legacy.get_features)
2734                 return chip->legacy.get_features(chip, addr, subfeature_param);
2735
2736         return nand_get_features_op(chip, addr, subfeature_param);
2737 }
2738
2739 /**
2740  * nand_set_features - wrapper to perform a SET_FEATURE
2741  * @chip: NAND chip info structure
2742  * @addr: feature address
2743  * @subfeature_param: the subfeature parameters, a four bytes array
2744  *
2745  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2746  * operation cannot be handled.
2747  */
2748 int nand_set_features(struct nand_chip *chip, int addr,
2749                       u8 *subfeature_param)
2750 {
2751         if (!nand_supports_set_features(chip, addr))
2752                 return -ENOTSUPP;
2753
2754         if (chip->legacy.set_features)
2755                 return chip->legacy.set_features(chip, addr, subfeature_param);
2756
2757         return nand_set_features_op(chip, addr, subfeature_param);
2758 }
2759
2760 /**
2761  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2762  * @buf: buffer to test
2763  * @len: buffer length
2764  * @bitflips_threshold: maximum number of bitflips
2765  *
2766  * Check if a buffer contains only 0xff, which means the underlying region
2767  * has been erased and is ready to be programmed.
2768  * The bitflips_threshold specify the maximum number of bitflips before
2769  * considering the region is not erased.
2770  * Note: The logic of this function has been extracted from the memweight
2771  * implementation, except that nand_check_erased_buf function exit before
2772  * testing the whole buffer if the number of bitflips exceed the
2773  * bitflips_threshold value.
2774  *
2775  * Returns a positive number of bitflips less than or equal to
2776  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2777  * threshold.
2778  */
2779 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2780 {
2781         const unsigned char *bitmap = buf;
2782         int bitflips = 0;
2783         int weight;
2784
2785         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2786              len--, bitmap++) {
2787                 weight = hweight8(*bitmap);
2788                 bitflips += BITS_PER_BYTE - weight;
2789                 if (unlikely(bitflips > bitflips_threshold))
2790                         return -EBADMSG;
2791         }
2792
2793         for (; len >= sizeof(long);
2794              len -= sizeof(long), bitmap += sizeof(long)) {
2795                 unsigned long d = *((unsigned long *)bitmap);
2796                 if (d == ~0UL)
2797                         continue;
2798                 weight = hweight_long(d);
2799                 bitflips += BITS_PER_LONG - weight;
2800                 if (unlikely(bitflips > bitflips_threshold))
2801                         return -EBADMSG;
2802         }
2803
2804         for (; len > 0; len--, bitmap++) {
2805                 weight = hweight8(*bitmap);
2806                 bitflips += BITS_PER_BYTE - weight;
2807                 if (unlikely(bitflips > bitflips_threshold))
2808                         return -EBADMSG;
2809         }
2810
2811         return bitflips;
2812 }
2813
2814 /**
2815  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2816  *                               0xff data
2817  * @data: data buffer to test
2818  * @datalen: data length
2819  * @ecc: ECC buffer
2820  * @ecclen: ECC length
2821  * @extraoob: extra OOB buffer
2822  * @extraooblen: extra OOB length
2823  * @bitflips_threshold: maximum number of bitflips
2824  *
2825  * Check if a data buffer and its associated ECC and OOB data contains only
2826  * 0xff pattern, which means the underlying region has been erased and is
2827  * ready to be programmed.
2828  * The bitflips_threshold specify the maximum number of bitflips before
2829  * considering the region as not erased.
2830  *
2831  * Note:
2832  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2833  *    different from the NAND page size. When fixing bitflips, ECC engines will
2834  *    report the number of errors per chunk, and the NAND core infrastructure
2835  *    expect you to return the maximum number of bitflips for the whole page.
2836  *    This is why you should always use this function on a single chunk and
2837  *    not on the whole page. After checking each chunk you should update your
2838  *    max_bitflips value accordingly.
2839  * 2/ When checking for bitflips in erased pages you should not only check
2840  *    the payload data but also their associated ECC data, because a user might
2841  *    have programmed almost all bits to 1 but a few. In this case, we
2842  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2843  *    this case.
2844  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2845  *    data are protected by the ECC engine.
2846  *    It could also be used if you support subpages and want to attach some
2847  *    extra OOB data to an ECC chunk.
2848  *
2849  * Returns a positive number of bitflips less than or equal to
2850  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2851  * threshold. In case of success, the passed buffers are filled with 0xff.
2852  */
2853 int nand_check_erased_ecc_chunk(void *data, int datalen,
2854                                 void *ecc, int ecclen,
2855                                 void *extraoob, int extraooblen,
2856                                 int bitflips_threshold)
2857 {
2858         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2859
2860         data_bitflips = nand_check_erased_buf(data, datalen,
2861                                               bitflips_threshold);
2862         if (data_bitflips < 0)
2863                 return data_bitflips;
2864
2865         bitflips_threshold -= data_bitflips;
2866
2867         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2868         if (ecc_bitflips < 0)
2869                 return ecc_bitflips;
2870
2871         bitflips_threshold -= ecc_bitflips;
2872
2873         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2874                                                   bitflips_threshold);
2875         if (extraoob_bitflips < 0)
2876                 return extraoob_bitflips;
2877
2878         if (data_bitflips)
2879                 memset(data, 0xff, datalen);
2880
2881         if (ecc_bitflips)
2882                 memset(ecc, 0xff, ecclen);
2883
2884         if (extraoob_bitflips)
2885                 memset(extraoob, 0xff, extraooblen);
2886
2887         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2888 }
2889 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2890
2891 /**
2892  * nand_read_page_raw_notsupp - dummy read raw page function
2893  * @chip: nand chip info structure
2894  * @buf: buffer to store read data
2895  * @oob_required: caller requires OOB data read to chip->oob_poi
2896  * @page: page number to read
2897  *
2898  * Returns -ENOTSUPP unconditionally.
2899  */
2900 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2901                                int oob_required, int page)
2902 {
2903         return -ENOTSUPP;
2904 }
2905
2906 /**
2907  * nand_read_page_raw - [INTERN] read raw page data without ecc
2908  * @chip: nand chip info structure
2909  * @buf: buffer to store read data
2910  * @oob_required: caller requires OOB data read to chip->oob_poi
2911  * @page: page number to read
2912  *
2913  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2914  */
2915 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2916                        int page)
2917 {
2918         struct mtd_info *mtd = nand_to_mtd(chip);
2919         int ret;
2920
2921         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2922         if (ret)
2923                 return ret;
2924
2925         if (oob_required) {
2926                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2927                                         false, false);
2928                 if (ret)
2929                         return ret;
2930         }
2931
2932         return 0;
2933 }
2934 EXPORT_SYMBOL(nand_read_page_raw);
2935
2936 /**
2937  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2938  * @chip: NAND chip info structure
2939  * @buf: buffer to store read data
2940  * @oob_required: caller requires OOB data read to chip->oob_poi
2941  * @page: page number to read
2942  *
2943  * This is a raw page read, ie. without any error detection/correction.
2944  * Monolithic means we are requesting all the relevant data (main plus
2945  * eventually OOB) to be loaded in the NAND cache and sent over the
2946  * bus (from the NAND chip to the NAND controller) in a single
2947  * operation. This is an alternative to nand_read_page_raw(), which
2948  * first reads the main data, and if the OOB data is requested too,
2949  * then reads more data on the bus.
2950  */
2951 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2952                                   int oob_required, int page)
2953 {
2954         struct mtd_info *mtd = nand_to_mtd(chip);
2955         unsigned int size = mtd->writesize;
2956         u8 *read_buf = buf;
2957         int ret;
2958
2959         if (oob_required) {
2960                 size += mtd->oobsize;
2961
2962                 if (buf != chip->data_buf)
2963                         read_buf = nand_get_data_buf(chip);
2964         }
2965
2966         ret = nand_read_page_op(chip, page, 0, read_buf, size);
2967         if (ret)
2968                 return ret;
2969
2970         if (buf != chip->data_buf)
2971                 memcpy(buf, read_buf, mtd->writesize);
2972
2973         return 0;
2974 }
2975 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2976
2977 /**
2978  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2979  * @chip: nand chip info structure
2980  * @buf: buffer to store read data
2981  * @oob_required: caller requires OOB data read to chip->oob_poi
2982  * @page: page number to read
2983  *
2984  * We need a special oob layout and handling even when OOB isn't used.
2985  */
2986 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2987                                        int oob_required, int page)
2988 {
2989         struct mtd_info *mtd = nand_to_mtd(chip);
2990         int eccsize = chip->ecc.size;
2991         int eccbytes = chip->ecc.bytes;
2992         uint8_t *oob = chip->oob_poi;
2993         int steps, size, ret;
2994
2995         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2996         if (ret)
2997                 return ret;
2998
2999         for (steps = chip->ecc.steps; steps > 0; steps--) {
3000                 ret = nand_read_data_op(chip, buf, eccsize, false, false);
3001                 if (ret)
3002                         return ret;
3003
3004                 buf += eccsize;
3005
3006                 if (chip->ecc.prepad) {
3007                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3008                                                 false, false);
3009                         if (ret)
3010                                 return ret;
3011
3012                         oob += chip->ecc.prepad;
3013                 }
3014
3015                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3016                 if (ret)
3017                         return ret;
3018
3019                 oob += eccbytes;
3020
3021                 if (chip->ecc.postpad) {
3022                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3023                                                 false, false);
3024                         if (ret)
3025                                 return ret;
3026
3027                         oob += chip->ecc.postpad;
3028                 }
3029         }
3030
3031         size = mtd->oobsize - (oob - chip->oob_poi);
3032         if (size) {
3033                 ret = nand_read_data_op(chip, oob, size, false, false);
3034                 if (ret)
3035                         return ret;
3036         }
3037
3038         return 0;
3039 }
3040
3041 /**
3042  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3043  * @chip: nand chip info structure
3044  * @buf: buffer to store read data
3045  * @oob_required: caller requires OOB data read to chip->oob_poi
3046  * @page: page number to read
3047  */
3048 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3049                                 int oob_required, int page)
3050 {
3051         struct mtd_info *mtd = nand_to_mtd(chip);
3052         int i, eccsize = chip->ecc.size, ret;
3053         int eccbytes = chip->ecc.bytes;
3054         int eccsteps = chip->ecc.steps;
3055         uint8_t *p = buf;
3056         uint8_t *ecc_calc = chip->ecc.calc_buf;
3057         uint8_t *ecc_code = chip->ecc.code_buf;
3058         unsigned int max_bitflips = 0;
3059
3060         chip->ecc.read_page_raw(chip, buf, 1, page);
3061
3062         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3063                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3064
3065         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3066                                          chip->ecc.total);
3067         if (ret)
3068                 return ret;
3069
3070         eccsteps = chip->ecc.steps;
3071         p = buf;
3072
3073         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3074                 int stat;
3075
3076                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3077                 if (stat < 0) {
3078                         mtd->ecc_stats.failed++;
3079                 } else {
3080                         mtd->ecc_stats.corrected += stat;
3081                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3082                 }
3083         }
3084         return max_bitflips;
3085 }
3086
3087 /**
3088  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3089  * @chip: nand chip info structure
3090  * @data_offs: offset of requested data within the page
3091  * @readlen: data length
3092  * @bufpoi: buffer to store read data
3093  * @page: page number to read
3094  */
3095 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3096                              uint32_t readlen, uint8_t *bufpoi, int page)
3097 {
3098         struct mtd_info *mtd = nand_to_mtd(chip);
3099         int start_step, end_step, num_steps, ret;
3100         uint8_t *p;
3101         int data_col_addr, i, gaps = 0;
3102         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3103         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3104         int index, section = 0;
3105         unsigned int max_bitflips = 0;
3106         struct mtd_oob_region oobregion = { };
3107
3108         /* Column address within the page aligned to ECC size (256bytes) */
3109         start_step = data_offs / chip->ecc.size;
3110         end_step = (data_offs + readlen - 1) / chip->ecc.size;
3111         num_steps = end_step - start_step + 1;
3112         index = start_step * chip->ecc.bytes;
3113
3114         /* Data size aligned to ECC ecc.size */
3115         datafrag_len = num_steps * chip->ecc.size;
3116         eccfrag_len = num_steps * chip->ecc.bytes;
3117
3118         data_col_addr = start_step * chip->ecc.size;
3119         /* If we read not a page aligned data */
3120         p = bufpoi + data_col_addr;
3121         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3122         if (ret)
3123                 return ret;
3124
3125         /* Calculate ECC */
3126         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3127                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3128
3129         /*
3130          * The performance is faster if we position offsets according to
3131          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3132          */
3133         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3134         if (ret)
3135                 return ret;
3136
3137         if (oobregion.length < eccfrag_len)
3138                 gaps = 1;
3139
3140         if (gaps) {
3141                 ret = nand_change_read_column_op(chip, mtd->writesize,
3142                                                  chip->oob_poi, mtd->oobsize,
3143                                                  false);
3144                 if (ret)
3145                         return ret;
3146         } else {
3147                 /*
3148                  * Send the command to read the particular ECC bytes take care
3149                  * about buswidth alignment in read_buf.
3150                  */
3151                 aligned_pos = oobregion.offset & ~(busw - 1);
3152                 aligned_len = eccfrag_len;
3153                 if (oobregion.offset & (busw - 1))
3154                         aligned_len++;
3155                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3156                     (busw - 1))
3157                         aligned_len++;
3158
3159                 ret = nand_change_read_column_op(chip,
3160                                                  mtd->writesize + aligned_pos,
3161                                                  &chip->oob_poi[aligned_pos],
3162                                                  aligned_len, false);
3163                 if (ret)
3164                         return ret;
3165         }
3166
3167         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3168                                          chip->oob_poi, index, eccfrag_len);
3169         if (ret)
3170                 return ret;
3171
3172         p = bufpoi + data_col_addr;
3173         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3174                 int stat;
3175
3176                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3177                                          &chip->ecc.calc_buf[i]);
3178                 if (stat == -EBADMSG &&
3179                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3180                         /* check for empty pages with bitflips */
3181                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3182                                                 &chip->ecc.code_buf[i],
3183                                                 chip->ecc.bytes,
3184                                                 NULL, 0,
3185                                                 chip->ecc.strength);
3186                 }
3187
3188                 if (stat < 0) {
3189                         mtd->ecc_stats.failed++;
3190                 } else {
3191                         mtd->ecc_stats.corrected += stat;
3192                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3193                 }
3194         }
3195         return max_bitflips;
3196 }
3197
3198 /**
3199  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3200  * @chip: nand chip info structure
3201  * @buf: buffer to store read data
3202  * @oob_required: caller requires OOB data read to chip->oob_poi
3203  * @page: page number to read
3204  *
3205  * Not for syndrome calculating ECC controllers which need a special oob layout.
3206  */
3207 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3208                                 int oob_required, int page)
3209 {
3210         struct mtd_info *mtd = nand_to_mtd(chip);
3211         int i, eccsize = chip->ecc.size, ret;
3212         int eccbytes = chip->ecc.bytes;
3213         int eccsteps = chip->ecc.steps;
3214         uint8_t *p = buf;
3215         uint8_t *ecc_calc = chip->ecc.calc_buf;
3216         uint8_t *ecc_code = chip->ecc.code_buf;
3217         unsigned int max_bitflips = 0;
3218
3219         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3220         if (ret)
3221                 return ret;
3222
3223         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3224                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3225
3226                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3227                 if (ret)
3228                         return ret;
3229
3230                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3231         }
3232
3233         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3234                                 false);
3235         if (ret)
3236                 return ret;
3237
3238         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3239                                          chip->ecc.total);
3240         if (ret)
3241                 return ret;
3242
3243         eccsteps = chip->ecc.steps;
3244         p = buf;
3245
3246         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3247                 int stat;
3248
3249                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3250                 if (stat == -EBADMSG &&
3251                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3252                         /* check for empty pages with bitflips */
3253                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3254                                                 &ecc_code[i], eccbytes,
3255                                                 NULL, 0,
3256                                                 chip->ecc.strength);
3257                 }
3258
3259                 if (stat < 0) {
3260                         mtd->ecc_stats.failed++;
3261                 } else {
3262                         mtd->ecc_stats.corrected += stat;
3263                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3264                 }
3265         }
3266         return max_bitflips;
3267 }
3268
3269 /**
3270  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3271  *                                  data read from OOB area
3272  * @chip: nand chip info structure
3273  * @buf: buffer to store read data
3274  * @oob_required: caller requires OOB data read to chip->oob_poi
3275  * @page: page number to read
3276  *
3277  * Hardware ECC for large page chips, which requires the ECC data to be
3278  * extracted from the OOB before the actual data is read.
3279  */
3280 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3281                                    int oob_required, int page)
3282 {
3283         struct mtd_info *mtd = nand_to_mtd(chip);
3284         int i, eccsize = chip->ecc.size, ret;
3285         int eccbytes = chip->ecc.bytes;
3286         int eccsteps = chip->ecc.steps;
3287         uint8_t *p = buf;
3288         uint8_t *ecc_code = chip->ecc.code_buf;
3289         unsigned int max_bitflips = 0;
3290
3291         /* Read the OOB area first */
3292         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3293         if (ret)
3294                 return ret;
3295
3296         /* Move read cursor to start of page */
3297         ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3298         if (ret)
3299                 return ret;
3300
3301         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3302                                          chip->ecc.total);
3303         if (ret)
3304                 return ret;
3305
3306         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3307                 int stat;
3308
3309                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3310
3311                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3312                 if (ret)
3313                         return ret;
3314
3315                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3316                 if (stat == -EBADMSG &&
3317                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3318                         /* check for empty pages with bitflips */
3319                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3320                                                            &ecc_code[i],
3321                                                            eccbytes, NULL, 0,
3322                                                            chip->ecc.strength);
3323                 }
3324
3325                 if (stat < 0) {
3326                         mtd->ecc_stats.failed++;
3327                 } else {
3328                         mtd->ecc_stats.corrected += stat;
3329                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3330                 }
3331         }
3332         return max_bitflips;
3333 }
3334 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3335
3336 /**
3337  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3338  * @chip: nand chip info structure
3339  * @buf: buffer to store read data
3340  * @oob_required: caller requires OOB data read to chip->oob_poi
3341  * @page: page number to read
3342  *
3343  * The hw generator calculates the error syndrome automatically. Therefore we
3344  * need a special oob layout and handling.
3345  */
3346 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3347                                    int oob_required, int page)
3348 {
3349         struct mtd_info *mtd = nand_to_mtd(chip);
3350         int ret, i, eccsize = chip->ecc.size;
3351         int eccbytes = chip->ecc.bytes;
3352         int eccsteps = chip->ecc.steps;
3353         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3354         uint8_t *p = buf;
3355         uint8_t *oob = chip->oob_poi;
3356         unsigned int max_bitflips = 0;
3357
3358         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3359         if (ret)
3360                 return ret;
3361
3362         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3363                 int stat;
3364
3365                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3366
3367                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3368                 if (ret)
3369                         return ret;
3370
3371                 if (chip->ecc.prepad) {
3372                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3373                                                 false, false);
3374                         if (ret)
3375                                 return ret;
3376
3377                         oob += chip->ecc.prepad;
3378                 }
3379
3380                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3381
3382                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3383                 if (ret)
3384                         return ret;
3385
3386                 stat = chip->ecc.correct(chip, p, oob, NULL);
3387
3388                 oob += eccbytes;
3389
3390                 if (chip->ecc.postpad) {
3391                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3392                                                 false, false);
3393                         if (ret)
3394                                 return ret;
3395
3396                         oob += chip->ecc.postpad;
3397                 }
3398
3399                 if (stat == -EBADMSG &&
3400                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3401                         /* check for empty pages with bitflips */
3402                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3403                                                            oob - eccpadbytes,
3404                                                            eccpadbytes,
3405                                                            NULL, 0,
3406                                                            chip->ecc.strength);
3407                 }
3408
3409                 if (stat < 0) {
3410                         mtd->ecc_stats.failed++;
3411                 } else {
3412                         mtd->ecc_stats.corrected += stat;
3413                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3414                 }
3415         }
3416
3417         /* Calculate remaining oob bytes */
3418         i = mtd->oobsize - (oob - chip->oob_poi);
3419         if (i) {
3420                 ret = nand_read_data_op(chip, oob, i, false, false);
3421                 if (ret)
3422                         return ret;
3423         }
3424
3425         return max_bitflips;
3426 }
3427
3428 /**
3429  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3430  * @chip: NAND chip object
3431  * @oob: oob destination address
3432  * @ops: oob ops structure
3433  * @len: size of oob to transfer
3434  */
3435 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3436                                   struct mtd_oob_ops *ops, size_t len)
3437 {
3438         struct mtd_info *mtd = nand_to_mtd(chip);
3439         int ret;
3440
3441         switch (ops->mode) {
3442
3443         case MTD_OPS_PLACE_OOB:
3444         case MTD_OPS_RAW:
3445                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3446                 return oob + len;
3447
3448         case MTD_OPS_AUTO_OOB:
3449                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3450                                                   ops->ooboffs, len);
3451                 BUG_ON(ret);
3452                 return oob + len;
3453
3454         default:
3455                 BUG();
3456         }
3457         return NULL;
3458 }
3459
3460 static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3461                                       u32 readlen, int col)
3462 {
3463         struct mtd_info *mtd = nand_to_mtd(chip);
3464         unsigned int end_page, end_col;
3465
3466         chip->cont_read.ongoing = false;
3467
3468         if (!chip->controller->supported_op.cont_read)
3469                 return;
3470
3471         end_page = DIV_ROUND_UP(col + readlen, mtd->writesize);
3472         end_col = (col + readlen) % mtd->writesize;
3473
3474         if (col)
3475                 page++;
3476
3477         if (end_col && end_page)
3478                 end_page--;
3479
3480         if (page + 1 > end_page)
3481                 return;
3482
3483         chip->cont_read.first_page = page;
3484         chip->cont_read.last_page = end_page;
3485         chip->cont_read.ongoing = true;
3486
3487         rawnand_cap_cont_reads(chip);
3488 }
3489
3490 static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3491 {
3492         if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3493                 return;
3494
3495         chip->cont_read.first_page++;
3496         if (chip->cont_read.first_page == chip->cont_read.pause_page)
3497                 chip->cont_read.first_page++;
3498         if (chip->cont_read.first_page >= chip->cont_read.last_page)
3499                 chip->cont_read.ongoing = false;
3500 }
3501
3502 /**
3503  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3504  * @chip: NAND chip object
3505  * @retry_mode: the retry mode to use
3506  *
3507  * Some vendors supply a special command to shift the Vt threshold, to be used
3508  * when there are too many bitflips in a page (i.e., ECC error). After setting
3509  * a new threshold, the host should retry reading the page.
3510  */
3511 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3512 {
3513         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3514
3515         if (retry_mode >= chip->read_retries)
3516                 return -EINVAL;
3517
3518         if (!chip->ops.setup_read_retry)
3519                 return -EOPNOTSUPP;
3520
3521         return chip->ops.setup_read_retry(chip, retry_mode);
3522 }
3523
3524 static void nand_wait_readrdy(struct nand_chip *chip)
3525 {
3526         const struct nand_interface_config *conf;
3527
3528         if (!(chip->options & NAND_NEED_READRDY))
3529                 return;
3530
3531         conf = nand_get_interface_config(chip);
3532         WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3533 }
3534
3535 /**
3536  * nand_do_read_ops - [INTERN] Read data with ECC
3537  * @chip: NAND chip object
3538  * @from: offset to read from
3539  * @ops: oob ops structure
3540  *
3541  * Internal function. Called with chip held.
3542  */
3543 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3544                             struct mtd_oob_ops *ops)
3545 {
3546         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3547         struct mtd_info *mtd = nand_to_mtd(chip);
3548         int ret = 0;
3549         uint32_t readlen = ops->len;
3550         uint32_t oobreadlen = ops->ooblen;
3551         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3552
3553         uint8_t *bufpoi, *oob, *buf;
3554         int use_bounce_buf;
3555         unsigned int max_bitflips = 0;
3556         int retry_mode = 0;
3557         bool ecc_fail = false;
3558
3559         /* Check if the region is secured */
3560         if (nand_region_is_secured(chip, from, readlen))
3561                 return -EIO;
3562
3563         chipnr = (int)(from >> chip->chip_shift);
3564         nand_select_target(chip, chipnr);
3565
3566         realpage = (int)(from >> chip->page_shift);
3567         page = realpage & chip->pagemask;
3568
3569         col = (int)(from & (mtd->writesize - 1));
3570
3571         buf = ops->datbuf;
3572         oob = ops->oobbuf;
3573         oob_required = oob ? 1 : 0;
3574
3575         rawnand_enable_cont_reads(chip, page, readlen, col);
3576
3577         while (1) {
3578                 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3579
3580                 bytes = min(mtd->writesize - col, readlen);
3581                 aligned = (bytes == mtd->writesize);
3582
3583                 if (!aligned)
3584                         use_bounce_buf = 1;
3585                 else if (chip->options & NAND_USES_DMA)
3586                         use_bounce_buf = !virt_addr_valid(buf) ||
3587                                          !IS_ALIGNED((unsigned long)buf,
3588                                                      chip->buf_align);
3589                 else
3590                         use_bounce_buf = 0;
3591
3592                 /* Is the current page in the buffer? */
3593                 if (realpage != chip->pagecache.page || oob) {
3594                         bufpoi = use_bounce_buf ? chip->data_buf : buf;
3595
3596                         if (use_bounce_buf && aligned)
3597                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3598                                                  __func__, buf);
3599
3600 read_retry:
3601                         /*
3602                          * Now read the page into the buffer.  Absent an error,
3603                          * the read methods return max bitflips per ecc step.
3604                          */
3605                         if (unlikely(ops->mode == MTD_OPS_RAW))
3606                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3607                                                               oob_required,
3608                                                               page);
3609                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3610                                  !oob)
3611                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3612                                                              bufpoi, page);
3613                         else
3614                                 ret = chip->ecc.read_page(chip, bufpoi,
3615                                                           oob_required, page);
3616                         if (ret < 0) {
3617                                 if (use_bounce_buf)
3618                                         /* Invalidate page cache */
3619                                         chip->pagecache.page = -1;
3620                                 break;
3621                         }
3622
3623                         /*
3624                          * Copy back the data in the initial buffer when reading
3625                          * partial pages or when a bounce buffer is required.
3626                          */
3627                         if (use_bounce_buf) {
3628                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3629                                     !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3630                                     (ops->mode != MTD_OPS_RAW)) {
3631                                         chip->pagecache.page = realpage;
3632                                         chip->pagecache.bitflips = ret;
3633                                 } else {
3634                                         /* Invalidate page cache */
3635                                         chip->pagecache.page = -1;
3636                                 }
3637                                 memcpy(buf, bufpoi + col, bytes);
3638                         }
3639
3640                         if (unlikely(oob)) {
3641                                 int toread = min(oobreadlen, max_oobsize);
3642
3643                                 if (toread) {
3644                                         oob = nand_transfer_oob(chip, oob, ops,
3645                                                                 toread);
3646                                         oobreadlen -= toread;
3647                                 }
3648                         }
3649
3650                         nand_wait_readrdy(chip);
3651
3652                         if (mtd->ecc_stats.failed - ecc_stats.failed) {
3653                                 if (retry_mode + 1 < chip->read_retries) {
3654                                         retry_mode++;
3655                                         ret = nand_setup_read_retry(chip,
3656                                                         retry_mode);
3657                                         if (ret < 0)
3658                                                 break;
3659
3660                                         /* Reset ecc_stats; retry */
3661                                         mtd->ecc_stats = ecc_stats;
3662                                         goto read_retry;
3663                                 } else {
3664                                         /* No more retry modes; real failure */
3665                                         ecc_fail = true;
3666                                 }
3667                         }
3668
3669                         buf += bytes;
3670                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3671                 } else {
3672                         memcpy(buf, chip->data_buf + col, bytes);
3673                         buf += bytes;
3674                         max_bitflips = max_t(unsigned int, max_bitflips,
3675                                              chip->pagecache.bitflips);
3676
3677                         rawnand_cont_read_skip_first_page(chip, page);
3678                 }
3679
3680                 readlen -= bytes;
3681
3682                 /* Reset to retry mode 0 */
3683                 if (retry_mode) {
3684                         ret = nand_setup_read_retry(chip, 0);
3685                         if (ret < 0)
3686                                 break;
3687                         retry_mode = 0;
3688                 }
3689
3690                 if (!readlen)
3691                         break;
3692
3693                 /* For subsequent reads align to page boundary */
3694                 col = 0;
3695                 /* Increment page address */
3696                 realpage++;
3697
3698                 page = realpage & chip->pagemask;
3699                 /* Check, if we cross a chip boundary */
3700                 if (!page) {
3701                         chipnr++;
3702                         nand_deselect_target(chip);
3703                         nand_select_target(chip, chipnr);
3704                 }
3705         }
3706         nand_deselect_target(chip);
3707
3708         ops->retlen = ops->len - (size_t) readlen;
3709         if (oob)
3710                 ops->oobretlen = ops->ooblen - oobreadlen;
3711
3712         if (ret < 0)
3713                 return ret;
3714
3715         if (ecc_fail)
3716                 return -EBADMSG;
3717
3718         return max_bitflips;
3719 }
3720
3721 /**
3722  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3723  * @chip: nand chip info structure
3724  * @page: page number to read
3725  */
3726 int nand_read_oob_std(struct nand_chip *chip, int page)
3727 {
3728         struct mtd_info *mtd = nand_to_mtd(chip);
3729
3730         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3731 }
3732 EXPORT_SYMBOL(nand_read_oob_std);
3733
3734 /**
3735  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3736  *                          with syndromes
3737  * @chip: nand chip info structure
3738  * @page: page number to read
3739  */
3740 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3741 {
3742         struct mtd_info *mtd = nand_to_mtd(chip);
3743         int length = mtd->oobsize;
3744         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3745         int eccsize = chip->ecc.size;
3746         uint8_t *bufpoi = chip->oob_poi;
3747         int i, toread, sndrnd = 0, pos, ret;
3748
3749         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3750         if (ret)
3751                 return ret;
3752
3753         for (i = 0; i < chip->ecc.steps; i++) {
3754                 if (sndrnd) {
3755                         int ret;
3756
3757                         pos = eccsize + i * (eccsize + chunk);
3758                         if (mtd->writesize > 512)
3759                                 ret = nand_change_read_column_op(chip, pos,
3760                                                                  NULL, 0,
3761                                                                  false);
3762                         else
3763                                 ret = nand_read_page_op(chip, page, pos, NULL,
3764                                                         0);
3765
3766                         if (ret)
3767                                 return ret;
3768                 } else
3769                         sndrnd = 1;
3770                 toread = min_t(int, length, chunk);
3771
3772                 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3773                 if (ret)
3774                         return ret;
3775
3776                 bufpoi += toread;
3777                 length -= toread;
3778         }
3779         if (length > 0) {
3780                 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3781                 if (ret)
3782                         return ret;
3783         }
3784
3785         return 0;
3786 }
3787
3788 /**
3789  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3790  * @chip: nand chip info structure
3791  * @page: page number to write
3792  */
3793 int nand_write_oob_std(struct nand_chip *chip, int page)
3794 {
3795         struct mtd_info *mtd = nand_to_mtd(chip);
3796
3797         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3798                                  mtd->oobsize);
3799 }
3800 EXPORT_SYMBOL(nand_write_oob_std);
3801
3802 /**
3803  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3804  *                           with syndrome - only for large page flash
3805  * @chip: nand chip info structure
3806  * @page: page number to write
3807  */
3808 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3809 {
3810         struct mtd_info *mtd = nand_to_mtd(chip);
3811         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3812         int eccsize = chip->ecc.size, length = mtd->oobsize;
3813         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3814         const uint8_t *bufpoi = chip->oob_poi;
3815
3816         /*
3817          * data-ecc-data-ecc ... ecc-oob
3818          * or
3819          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3820          */
3821         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3822                 pos = steps * (eccsize + chunk);
3823                 steps = 0;
3824         } else
3825                 pos = eccsize;
3826
3827         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3828         if (ret)
3829                 return ret;
3830
3831         for (i = 0; i < steps; i++) {
3832                 if (sndcmd) {
3833                         if (mtd->writesize <= 512) {
3834                                 uint32_t fill = 0xFFFFFFFF;
3835
3836                                 len = eccsize;
3837                                 while (len > 0) {
3838                                         int num = min_t(int, len, 4);
3839
3840                                         ret = nand_write_data_op(chip, &fill,
3841                                                                  num, false);
3842                                         if (ret)
3843                                                 return ret;
3844
3845                                         len -= num;
3846                                 }
3847                         } else {
3848                                 pos = eccsize + i * (eccsize + chunk);
3849                                 ret = nand_change_write_column_op(chip, pos,
3850                                                                   NULL, 0,
3851                                                                   false);
3852                                 if (ret)
3853                                         return ret;
3854                         }
3855                 } else
3856                         sndcmd = 1;
3857                 len = min_t(int, length, chunk);
3858
3859                 ret = nand_write_data_op(chip, bufpoi, len, false);
3860                 if (ret)
3861                         return ret;
3862
3863                 bufpoi += len;
3864                 length -= len;
3865         }
3866         if (length > 0) {
3867                 ret = nand_write_data_op(chip, bufpoi, length, false);
3868                 if (ret)
3869                         return ret;
3870         }
3871
3872         return nand_prog_page_end_op(chip);
3873 }
3874
3875 /**
3876  * nand_do_read_oob - [INTERN] NAND read out-of-band
3877  * @chip: NAND chip object
3878  * @from: offset to read from
3879  * @ops: oob operations description structure
3880  *
3881  * NAND read out-of-band data from the spare area.
3882  */
3883 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3884                             struct mtd_oob_ops *ops)
3885 {
3886         struct mtd_info *mtd = nand_to_mtd(chip);
3887         unsigned int max_bitflips = 0;
3888         int page, realpage, chipnr;
3889         struct mtd_ecc_stats stats;
3890         int readlen = ops->ooblen;
3891         int len;
3892         uint8_t *buf = ops->oobbuf;
3893         int ret = 0;
3894
3895         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3896                         __func__, (unsigned long long)from, readlen);
3897
3898         /* Check if the region is secured */
3899         if (nand_region_is_secured(chip, from, readlen))
3900                 return -EIO;
3901
3902         stats = mtd->ecc_stats;
3903
3904         len = mtd_oobavail(mtd, ops);
3905
3906         chipnr = (int)(from >> chip->chip_shift);
3907         nand_select_target(chip, chipnr);
3908
3909         /* Shift to get page */
3910         realpage = (int)(from >> chip->page_shift);
3911         page = realpage & chip->pagemask;
3912
3913         while (1) {
3914                 if (ops->mode == MTD_OPS_RAW)
3915                         ret = chip->ecc.read_oob_raw(chip, page);
3916                 else
3917                         ret = chip->ecc.read_oob(chip, page);
3918
3919                 if (ret < 0)
3920                         break;
3921
3922                 len = min(len, readlen);
3923                 buf = nand_transfer_oob(chip, buf, ops, len);
3924
3925                 nand_wait_readrdy(chip);
3926
3927                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3928
3929                 readlen -= len;
3930                 if (!readlen)
3931                         break;
3932
3933                 /* Increment page address */
3934                 realpage++;
3935
3936                 page = realpage & chip->pagemask;
3937                 /* Check, if we cross a chip boundary */
3938                 if (!page) {
3939                         chipnr++;
3940                         nand_deselect_target(chip);
3941                         nand_select_target(chip, chipnr);
3942                 }
3943         }
3944         nand_deselect_target(chip);
3945
3946         ops->oobretlen = ops->ooblen - readlen;
3947
3948         if (ret < 0)
3949                 return ret;
3950
3951         if (mtd->ecc_stats.failed - stats.failed)
3952                 return -EBADMSG;
3953
3954         return max_bitflips;
3955 }
3956
3957 /**
3958  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3959  * @mtd: MTD device structure
3960  * @from: offset to read from
3961  * @ops: oob operation description structure
3962  *
3963  * NAND read data and/or out-of-band data.
3964  */
3965 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3966                          struct mtd_oob_ops *ops)
3967 {
3968         struct nand_chip *chip = mtd_to_nand(mtd);
3969         struct mtd_ecc_stats old_stats;
3970         int ret;
3971
3972         ops->retlen = 0;
3973
3974         if (ops->mode != MTD_OPS_PLACE_OOB &&
3975             ops->mode != MTD_OPS_AUTO_OOB &&
3976             ops->mode != MTD_OPS_RAW)
3977                 return -ENOTSUPP;
3978
3979         nand_get_device(chip);
3980
3981         old_stats = mtd->ecc_stats;
3982
3983         if (!ops->datbuf)
3984                 ret = nand_do_read_oob(chip, from, ops);
3985         else
3986                 ret = nand_do_read_ops(chip, from, ops);
3987
3988         if (ops->stats) {
3989                 ops->stats->uncorrectable_errors +=
3990                         mtd->ecc_stats.failed - old_stats.failed;
3991                 ops->stats->corrected_bitflips +=
3992                         mtd->ecc_stats.corrected - old_stats.corrected;
3993         }
3994
3995         nand_release_device(chip);
3996         return ret;
3997 }
3998
3999 /**
4000  * nand_write_page_raw_notsupp - dummy raw page write function
4001  * @chip: nand chip info structure
4002  * @buf: data buffer
4003  * @oob_required: must write chip->oob_poi to OOB
4004  * @page: page number to write
4005  *
4006  * Returns -ENOTSUPP unconditionally.
4007  */
4008 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4009                                 int oob_required, int page)
4010 {
4011         return -ENOTSUPP;
4012 }
4013
4014 /**
4015  * nand_write_page_raw - [INTERN] raw page write function
4016  * @chip: nand chip info structure
4017  * @buf: data buffer
4018  * @oob_required: must write chip->oob_poi to OOB
4019  * @page: page number to write
4020  *
4021  * Not for syndrome calculating ECC controllers, which use a special oob layout.
4022  */
4023 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4024                         int oob_required, int page)
4025 {
4026         struct mtd_info *mtd = nand_to_mtd(chip);
4027         int ret;
4028
4029         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4030         if (ret)
4031                 return ret;
4032
4033         if (oob_required) {
4034                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4035                                          false);
4036                 if (ret)
4037                         return ret;
4038         }
4039
4040         return nand_prog_page_end_op(chip);
4041 }
4042 EXPORT_SYMBOL(nand_write_page_raw);
4043
4044 /**
4045  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4046  * @chip: NAND chip info structure
4047  * @buf: data buffer to write
4048  * @oob_required: must write chip->oob_poi to OOB
4049  * @page: page number to write
4050  *
4051  * This is a raw page write, ie. without any error detection/correction.
4052  * Monolithic means we are requesting all the relevant data (main plus
4053  * eventually OOB) to be sent over the bus and effectively programmed
4054  * into the NAND chip arrays in a single operation. This is an
4055  * alternative to nand_write_page_raw(), which first sends the main
4056  * data, then eventually send the OOB data by latching more data
4057  * cycles on the NAND bus, and finally sends the program command to
4058  * synchronyze the NAND chip cache.
4059  */
4060 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4061                                    int oob_required, int page)
4062 {
4063         struct mtd_info *mtd = nand_to_mtd(chip);
4064         unsigned int size = mtd->writesize;
4065         u8 *write_buf = (u8 *)buf;
4066
4067         if (oob_required) {
4068                 size += mtd->oobsize;
4069
4070                 if (buf != chip->data_buf) {
4071                         write_buf = nand_get_data_buf(chip);
4072                         memcpy(write_buf, buf, mtd->writesize);
4073                 }
4074         }
4075
4076         return nand_prog_page_op(chip, page, 0, write_buf, size);
4077 }
4078 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4079
4080 /**
4081  * nand_write_page_raw_syndrome - [INTERN] raw page write function
4082  * @chip: nand chip info structure
4083  * @buf: data buffer
4084  * @oob_required: must write chip->oob_poi to OOB
4085  * @page: page number to write
4086  *
4087  * We need a special oob layout and handling even when ECC isn't checked.
4088  */
4089 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4090                                         const uint8_t *buf, int oob_required,
4091                                         int page)
4092 {
4093         struct mtd_info *mtd = nand_to_mtd(chip);
4094         int eccsize = chip->ecc.size;
4095         int eccbytes = chip->ecc.bytes;
4096         uint8_t *oob = chip->oob_poi;
4097         int steps, size, ret;
4098
4099         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4100         if (ret)
4101                 return ret;
4102
4103         for (steps = chip->ecc.steps; steps > 0; steps--) {
4104                 ret = nand_write_data_op(chip, buf, eccsize, false);
4105                 if (ret)
4106                         return ret;
4107
4108                 buf += eccsize;
4109
4110                 if (chip->ecc.prepad) {
4111                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4112                                                  false);
4113                         if (ret)
4114                                 return ret;
4115
4116                         oob += chip->ecc.prepad;
4117                 }
4118
4119                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4120                 if (ret)
4121                         return ret;
4122
4123                 oob += eccbytes;
4124
4125                 if (chip->ecc.postpad) {
4126                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4127                                                  false);
4128                         if (ret)
4129                                 return ret;
4130
4131                         oob += chip->ecc.postpad;
4132                 }
4133         }
4134
4135         size = mtd->oobsize - (oob - chip->oob_poi);
4136         if (size) {
4137                 ret = nand_write_data_op(chip, oob, size, false);
4138                 if (ret)
4139                         return ret;
4140         }
4141
4142         return nand_prog_page_end_op(chip);
4143 }
4144 /**
4145  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4146  * @chip: nand chip info structure
4147  * @buf: data buffer
4148  * @oob_required: must write chip->oob_poi to OOB
4149  * @page: page number to write
4150  */
4151 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4152                                  int oob_required, int page)
4153 {
4154         struct mtd_info *mtd = nand_to_mtd(chip);
4155         int i, eccsize = chip->ecc.size, ret;
4156         int eccbytes = chip->ecc.bytes;
4157         int eccsteps = chip->ecc.steps;
4158         uint8_t *ecc_calc = chip->ecc.calc_buf;
4159         const uint8_t *p = buf;
4160
4161         /* Software ECC calculation */
4162         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4163                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4164
4165         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4166                                          chip->ecc.total);
4167         if (ret)
4168                 return ret;
4169
4170         return chip->ecc.write_page_raw(chip, buf, 1, page);
4171 }
4172
4173 /**
4174  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4175  * @chip: nand chip info structure
4176  * @buf: data buffer
4177  * @oob_required: must write chip->oob_poi to OOB
4178  * @page: page number to write
4179  */
4180 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4181                                  int oob_required, int page)
4182 {
4183         struct mtd_info *mtd = nand_to_mtd(chip);
4184         int i, eccsize = chip->ecc.size, ret;
4185         int eccbytes = chip->ecc.bytes;
4186         int eccsteps = chip->ecc.steps;
4187         uint8_t *ecc_calc = chip->ecc.calc_buf;
4188         const uint8_t *p = buf;
4189
4190         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4191         if (ret)
4192                 return ret;
4193
4194         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4195                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4196
4197                 ret = nand_write_data_op(chip, p, eccsize, false);
4198                 if (ret)
4199                         return ret;
4200
4201                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4202         }
4203
4204         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4205                                          chip->ecc.total);
4206         if (ret)
4207                 return ret;
4208
4209         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4210         if (ret)
4211                 return ret;
4212
4213         return nand_prog_page_end_op(chip);
4214 }
4215
4216
4217 /**
4218  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4219  * @chip:       nand chip info structure
4220  * @offset:     column address of subpage within the page
4221  * @data_len:   data length
4222  * @buf:        data buffer
4223  * @oob_required: must write chip->oob_poi to OOB
4224  * @page: page number to write
4225  */
4226 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4227                                     uint32_t data_len, const uint8_t *buf,
4228                                     int oob_required, int page)
4229 {
4230         struct mtd_info *mtd = nand_to_mtd(chip);
4231         uint8_t *oob_buf  = chip->oob_poi;
4232         uint8_t *ecc_calc = chip->ecc.calc_buf;
4233         int ecc_size      = chip->ecc.size;
4234         int ecc_bytes     = chip->ecc.bytes;
4235         int ecc_steps     = chip->ecc.steps;
4236         uint32_t start_step = offset / ecc_size;
4237         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4238         int oob_bytes       = mtd->oobsize / ecc_steps;
4239         int step, ret;
4240
4241         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4242         if (ret)
4243                 return ret;
4244
4245         for (step = 0; step < ecc_steps; step++) {
4246                 /* configure controller for WRITE access */
4247                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4248
4249                 /* write data (untouched subpages already masked by 0xFF) */
4250                 ret = nand_write_data_op(chip, buf, ecc_size, false);
4251                 if (ret)
4252                         return ret;
4253
4254                 /* mask ECC of un-touched subpages by padding 0xFF */
4255                 if ((step < start_step) || (step > end_step))
4256                         memset(ecc_calc, 0xff, ecc_bytes);
4257                 else
4258                         chip->ecc.calculate(chip, buf, ecc_calc);
4259
4260                 /* mask OOB of un-touched subpages by padding 0xFF */
4261                 /* if oob_required, preserve OOB metadata of written subpage */
4262                 if (!oob_required || (step < start_step) || (step > end_step))
4263                         memset(oob_buf, 0xff, oob_bytes);
4264
4265                 buf += ecc_size;
4266                 ecc_calc += ecc_bytes;
4267                 oob_buf  += oob_bytes;
4268         }
4269
4270         /* copy calculated ECC for whole page to chip->buffer->oob */
4271         /* this include masked-value(0xFF) for unwritten subpages */
4272         ecc_calc = chip->ecc.calc_buf;
4273         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4274                                          chip->ecc.total);
4275         if (ret)
4276                 return ret;
4277
4278         /* write OOB buffer to NAND device */
4279         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4280         if (ret)
4281                 return ret;
4282
4283         return nand_prog_page_end_op(chip);
4284 }
4285
4286
4287 /**
4288  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4289  * @chip: nand chip info structure
4290  * @buf: data buffer
4291  * @oob_required: must write chip->oob_poi to OOB
4292  * @page: page number to write
4293  *
4294  * The hw generator calculates the error syndrome automatically. Therefore we
4295  * need a special oob layout and handling.
4296  */
4297 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4298                                     int oob_required, int page)
4299 {
4300         struct mtd_info *mtd = nand_to_mtd(chip);
4301         int i, eccsize = chip->ecc.size;
4302         int eccbytes = chip->ecc.bytes;
4303         int eccsteps = chip->ecc.steps;
4304         const uint8_t *p = buf;
4305         uint8_t *oob = chip->oob_poi;
4306         int ret;
4307
4308         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4309         if (ret)
4310                 return ret;
4311
4312         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4313                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4314
4315                 ret = nand_write_data_op(chip, p, eccsize, false);
4316                 if (ret)
4317                         return ret;
4318
4319                 if (chip->ecc.prepad) {
4320                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4321                                                  false);
4322                         if (ret)
4323                                 return ret;
4324
4325                         oob += chip->ecc.prepad;
4326                 }
4327
4328                 chip->ecc.calculate(chip, p, oob);
4329
4330                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4331                 if (ret)
4332                         return ret;
4333
4334                 oob += eccbytes;
4335
4336                 if (chip->ecc.postpad) {
4337                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4338                                                  false);
4339                         if (ret)
4340                                 return ret;
4341
4342                         oob += chip->ecc.postpad;
4343                 }
4344         }
4345
4346         /* Calculate remaining oob bytes */
4347         i = mtd->oobsize - (oob - chip->oob_poi);
4348         if (i) {
4349                 ret = nand_write_data_op(chip, oob, i, false);
4350                 if (ret)
4351                         return ret;
4352         }
4353
4354         return nand_prog_page_end_op(chip);
4355 }
4356
4357 /**
4358  * nand_write_page - write one page
4359  * @chip: NAND chip descriptor
4360  * @offset: address offset within the page
4361  * @data_len: length of actual data to be written
4362  * @buf: the data to write
4363  * @oob_required: must write chip->oob_poi to OOB
4364  * @page: page number to write
4365  * @raw: use _raw version of write_page
4366  */
4367 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4368                            int data_len, const uint8_t *buf, int oob_required,
4369                            int page, int raw)
4370 {
4371         struct mtd_info *mtd = nand_to_mtd(chip);
4372         int status, subpage;
4373
4374         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4375                 chip->ecc.write_subpage)
4376                 subpage = offset || (data_len < mtd->writesize);
4377         else
4378                 subpage = 0;
4379
4380         if (unlikely(raw))
4381                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4382                                                   page);
4383         else if (subpage)
4384                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4385                                                  oob_required, page);
4386         else
4387                 status = chip->ecc.write_page(chip, buf, oob_required, page);
4388
4389         if (status < 0)
4390                 return status;
4391
4392         return 0;
4393 }
4394
4395 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4396
4397 /**
4398  * nand_do_write_ops - [INTERN] NAND write with ECC
4399  * @chip: NAND chip object
4400  * @to: offset to write to
4401  * @ops: oob operations description structure
4402  *
4403  * NAND write with ECC.
4404  */
4405 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4406                              struct mtd_oob_ops *ops)
4407 {
4408         struct mtd_info *mtd = nand_to_mtd(chip);
4409         int chipnr, realpage, page, column;
4410         uint32_t writelen = ops->len;
4411
4412         uint32_t oobwritelen = ops->ooblen;
4413         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4414
4415         uint8_t *oob = ops->oobbuf;
4416         uint8_t *buf = ops->datbuf;
4417         int ret;
4418         int oob_required = oob ? 1 : 0;
4419
4420         ops->retlen = 0;
4421         if (!writelen)
4422                 return 0;
4423
4424         /* Reject writes, which are not page aligned */
4425         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4426                 pr_notice("%s: attempt to write non page aligned data\n",
4427                            __func__);
4428                 return -EINVAL;
4429         }
4430
4431         /* Check if the region is secured */
4432         if (nand_region_is_secured(chip, to, writelen))
4433                 return -EIO;
4434
4435         column = to & (mtd->writesize - 1);
4436
4437         chipnr = (int)(to >> chip->chip_shift);
4438         nand_select_target(chip, chipnr);
4439
4440         /* Check, if it is write protected */
4441         if (nand_check_wp(chip)) {
4442                 ret = -EIO;
4443                 goto err_out;
4444         }
4445
4446         realpage = (int)(to >> chip->page_shift);
4447         page = realpage & chip->pagemask;
4448
4449         /* Invalidate the page cache, when we write to the cached page */
4450         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4451             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4452                 chip->pagecache.page = -1;
4453
4454         /* Don't allow multipage oob writes with offset */
4455         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4456                 ret = -EINVAL;
4457                 goto err_out;
4458         }
4459
4460         while (1) {
4461                 int bytes = mtd->writesize;
4462                 uint8_t *wbuf = buf;
4463                 int use_bounce_buf;
4464                 int part_pagewr = (column || writelen < mtd->writesize);
4465
4466                 if (part_pagewr)
4467                         use_bounce_buf = 1;
4468                 else if (chip->options & NAND_USES_DMA)
4469                         use_bounce_buf = !virt_addr_valid(buf) ||
4470                                          !IS_ALIGNED((unsigned long)buf,
4471                                                      chip->buf_align);
4472                 else
4473                         use_bounce_buf = 0;
4474
4475                 /*
4476                  * Copy the data from the initial buffer when doing partial page
4477                  * writes or when a bounce buffer is required.
4478                  */
4479                 if (use_bounce_buf) {
4480                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4481                                          __func__, buf);
4482                         if (part_pagewr)
4483                                 bytes = min_t(int, bytes - column, writelen);
4484                         wbuf = nand_get_data_buf(chip);
4485                         memset(wbuf, 0xff, mtd->writesize);
4486                         memcpy(&wbuf[column], buf, bytes);
4487                 }
4488
4489                 if (unlikely(oob)) {
4490                         size_t len = min(oobwritelen, oobmaxlen);
4491                         oob = nand_fill_oob(chip, oob, len, ops);
4492                         oobwritelen -= len;
4493                 } else {
4494                         /* We still need to erase leftover OOB data */
4495                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4496                 }
4497
4498                 ret = nand_write_page(chip, column, bytes, wbuf,
4499                                       oob_required, page,
4500                                       (ops->mode == MTD_OPS_RAW));
4501                 if (ret)
4502                         break;
4503
4504                 writelen -= bytes;
4505                 if (!writelen)
4506                         break;
4507
4508                 column = 0;
4509                 buf += bytes;
4510                 realpage++;
4511
4512                 page = realpage & chip->pagemask;
4513                 /* Check, if we cross a chip boundary */
4514                 if (!page) {
4515                         chipnr++;
4516                         nand_deselect_target(chip);
4517                         nand_select_target(chip, chipnr);
4518                 }
4519         }
4520
4521         ops->retlen = ops->len - writelen;
4522         if (unlikely(oob))
4523                 ops->oobretlen = ops->ooblen;
4524
4525 err_out:
4526         nand_deselect_target(chip);
4527         return ret;
4528 }
4529
4530 /**
4531  * panic_nand_write - [MTD Interface] NAND write with ECC
4532  * @mtd: MTD device structure
4533  * @to: offset to write to
4534  * @len: number of bytes to write
4535  * @retlen: pointer to variable to store the number of written bytes
4536  * @buf: the data to write
4537  *
4538  * NAND write with ECC. Used when performing writes in interrupt context, this
4539  * may for example be called by mtdoops when writing an oops while in panic.
4540  */
4541 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4542                             size_t *retlen, const uint8_t *buf)
4543 {
4544         struct nand_chip *chip = mtd_to_nand(mtd);
4545         int chipnr = (int)(to >> chip->chip_shift);
4546         struct mtd_oob_ops ops;
4547         int ret;
4548
4549         nand_select_target(chip, chipnr);
4550
4551         /* Wait for the device to get ready */
4552         panic_nand_wait(chip, 400);
4553
4554         memset(&ops, 0, sizeof(ops));
4555         ops.len = len;
4556         ops.datbuf = (uint8_t *)buf;
4557         ops.mode = MTD_OPS_PLACE_OOB;
4558
4559         ret = nand_do_write_ops(chip, to, &ops);
4560
4561         *retlen = ops.retlen;
4562         return ret;
4563 }
4564
4565 /**
4566  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4567  * @mtd: MTD device structure
4568  * @to: offset to write to
4569  * @ops: oob operation description structure
4570  */
4571 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4572                           struct mtd_oob_ops *ops)
4573 {
4574         struct nand_chip *chip = mtd_to_nand(mtd);
4575         int ret = 0;
4576
4577         ops->retlen = 0;
4578
4579         nand_get_device(chip);
4580
4581         switch (ops->mode) {
4582         case MTD_OPS_PLACE_OOB:
4583         case MTD_OPS_AUTO_OOB:
4584         case MTD_OPS_RAW:
4585                 break;
4586
4587         default:
4588                 goto out;
4589         }
4590
4591         if (!ops->datbuf)
4592                 ret = nand_do_write_oob(chip, to, ops);
4593         else
4594                 ret = nand_do_write_ops(chip, to, ops);
4595
4596 out:
4597         nand_release_device(chip);
4598         return ret;
4599 }
4600
4601 /**
4602  * nand_erase - [MTD Interface] erase block(s)
4603  * @mtd: MTD device structure
4604  * @instr: erase instruction
4605  *
4606  * Erase one ore more blocks.
4607  */
4608 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4609 {
4610         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4611 }
4612
4613 /**
4614  * nand_erase_nand - [INTERN] erase block(s)
4615  * @chip: NAND chip object
4616  * @instr: erase instruction
4617  * @allowbbt: allow erasing the bbt area
4618  *
4619  * Erase one ore more blocks.
4620  */
4621 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4622                     int allowbbt)
4623 {
4624         int page, pages_per_block, ret, chipnr;
4625         loff_t len;
4626
4627         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4628                         __func__, (unsigned long long)instr->addr,
4629                         (unsigned long long)instr->len);
4630
4631         if (check_offs_len(chip, instr->addr, instr->len))
4632                 return -EINVAL;
4633
4634         /* Check if the region is secured */
4635         if (nand_region_is_secured(chip, instr->addr, instr->len))
4636                 return -EIO;
4637
4638         /* Grab the lock and see if the device is available */
4639         nand_get_device(chip);
4640
4641         /* Shift to get first page */
4642         page = (int)(instr->addr >> chip->page_shift);
4643         chipnr = (int)(instr->addr >> chip->chip_shift);
4644
4645         /* Calculate pages in each block */
4646         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4647
4648         /* Select the NAND device */
4649         nand_select_target(chip, chipnr);
4650
4651         /* Check, if it is write protected */
4652         if (nand_check_wp(chip)) {
4653                 pr_debug("%s: device is write protected!\n",
4654                                 __func__);
4655                 ret = -EIO;
4656                 goto erase_exit;
4657         }
4658
4659         /* Loop through the pages */
4660         len = instr->len;
4661
4662         while (len) {
4663                 loff_t ofs = (loff_t)page << chip->page_shift;
4664
4665                 /* Check if we have a bad block, we do not erase bad blocks! */
4666                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4667                                         chip->page_shift, allowbbt)) {
4668                         pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4669                                     __func__, (unsigned long long)ofs);
4670                         ret = -EIO;
4671                         goto erase_exit;
4672                 }
4673
4674                 /*
4675                  * Invalidate the page cache, if we erase the block which
4676                  * contains the current cached page.
4677                  */
4678                 if (page <= chip->pagecache.page && chip->pagecache.page <
4679                     (page + pages_per_block))
4680                         chip->pagecache.page = -1;
4681
4682                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4683                                     (chip->phys_erase_shift - chip->page_shift));
4684                 if (ret) {
4685                         pr_debug("%s: failed erase, page 0x%08x\n",
4686                                         __func__, page);
4687                         instr->fail_addr = ofs;
4688                         goto erase_exit;
4689                 }
4690
4691                 /* Increment page address and decrement length */
4692                 len -= (1ULL << chip->phys_erase_shift);
4693                 page += pages_per_block;
4694
4695                 /* Check, if we cross a chip boundary */
4696                 if (len && !(page & chip->pagemask)) {
4697                         chipnr++;
4698                         nand_deselect_target(chip);
4699                         nand_select_target(chip, chipnr);
4700                 }
4701         }
4702
4703         ret = 0;
4704 erase_exit:
4705
4706         /* Deselect and wake up anyone waiting on the device */
4707         nand_deselect_target(chip);
4708         nand_release_device(chip);
4709
4710         /* Return more or less happy */
4711         return ret;
4712 }
4713
4714 /**
4715  * nand_sync - [MTD Interface] sync
4716  * @mtd: MTD device structure
4717  *
4718  * Sync is actually a wait for chip ready function.
4719  */
4720 static void nand_sync(struct mtd_info *mtd)
4721 {
4722         struct nand_chip *chip = mtd_to_nand(mtd);
4723
4724         pr_debug("%s: called\n", __func__);
4725
4726         /* Grab the lock and see if the device is available */
4727         nand_get_device(chip);
4728         /* Release it and go back */
4729         nand_release_device(chip);
4730 }
4731
4732 /**
4733  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4734  * @mtd: MTD device structure
4735  * @offs: offset relative to mtd start
4736  */
4737 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4738 {
4739         struct nand_chip *chip = mtd_to_nand(mtd);
4740         int chipnr = (int)(offs >> chip->chip_shift);
4741         int ret;
4742
4743         /* Select the NAND device */
4744         nand_get_device(chip);
4745
4746         nand_select_target(chip, chipnr);
4747
4748         ret = nand_block_checkbad(chip, offs, 0);
4749
4750         nand_deselect_target(chip);
4751         nand_release_device(chip);
4752
4753         return ret;
4754 }
4755
4756 /**
4757  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4758  * @mtd: MTD device structure
4759  * @ofs: offset relative to mtd start
4760  */
4761 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4762 {
4763         int ret;
4764
4765         ret = nand_block_isbad(mtd, ofs);
4766         if (ret) {
4767                 /* If it was bad already, return success and do nothing */
4768                 if (ret > 0)
4769                         return 0;
4770                 return ret;
4771         }
4772
4773         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4774 }
4775
4776 /**
4777  * nand_suspend - [MTD Interface] Suspend the NAND flash
4778  * @mtd: MTD device structure
4779  *
4780  * Returns 0 for success or negative error code otherwise.
4781  */
4782 static int nand_suspend(struct mtd_info *mtd)
4783 {
4784         struct nand_chip *chip = mtd_to_nand(mtd);
4785         int ret = 0;
4786
4787         mutex_lock(&chip->lock);
4788         if (chip->ops.suspend)
4789                 ret = chip->ops.suspend(chip);
4790         if (!ret)
4791                 chip->suspended = 1;
4792         mutex_unlock(&chip->lock);
4793
4794         return ret;
4795 }
4796
4797 /**
4798  * nand_resume - [MTD Interface] Resume the NAND flash
4799  * @mtd: MTD device structure
4800  */
4801 static void nand_resume(struct mtd_info *mtd)
4802 {
4803         struct nand_chip *chip = mtd_to_nand(mtd);
4804
4805         mutex_lock(&chip->lock);
4806         if (chip->suspended) {
4807                 if (chip->ops.resume)
4808                         chip->ops.resume(chip);
4809                 chip->suspended = 0;
4810         } else {
4811                 pr_err("%s called for a chip which is not in suspended state\n",
4812                         __func__);
4813         }
4814         mutex_unlock(&chip->lock);
4815
4816         wake_up_all(&chip->resume_wq);
4817 }
4818
4819 /**
4820  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4821  *                 prevent further operations
4822  * @mtd: MTD device structure
4823  */
4824 static void nand_shutdown(struct mtd_info *mtd)
4825 {
4826         nand_suspend(mtd);
4827 }
4828
4829 /**
4830  * nand_lock - [MTD Interface] Lock the NAND flash
4831  * @mtd: MTD device structure
4832  * @ofs: offset byte address
4833  * @len: number of bytes to lock (must be a multiple of block/page size)
4834  */
4835 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4836 {
4837         struct nand_chip *chip = mtd_to_nand(mtd);
4838
4839         if (!chip->ops.lock_area)
4840                 return -ENOTSUPP;
4841
4842         return chip->ops.lock_area(chip, ofs, len);
4843 }
4844
4845 /**
4846  * nand_unlock - [MTD Interface] Unlock the NAND flash
4847  * @mtd: MTD device structure
4848  * @ofs: offset byte address
4849  * @len: number of bytes to unlock (must be a multiple of block/page size)
4850  */
4851 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4852 {
4853         struct nand_chip *chip = mtd_to_nand(mtd);
4854
4855         if (!chip->ops.unlock_area)
4856                 return -ENOTSUPP;
4857
4858         return chip->ops.unlock_area(chip, ofs, len);
4859 }
4860
4861 /* Set default functions */
4862 static void nand_set_defaults(struct nand_chip *chip)
4863 {
4864         /* If no controller is provided, use the dummy, legacy one. */
4865         if (!chip->controller) {
4866                 chip->controller = &chip->legacy.dummy_controller;
4867                 nand_controller_init(chip->controller);
4868         }
4869
4870         nand_legacy_set_defaults(chip);
4871
4872         if (!chip->buf_align)
4873                 chip->buf_align = 1;
4874 }
4875
4876 /* Sanitize ONFI strings so we can safely print them */
4877 void sanitize_string(uint8_t *s, size_t len)
4878 {
4879         ssize_t i;
4880
4881         /* Null terminate */
4882         s[len - 1] = 0;
4883
4884         /* Remove non printable chars */
4885         for (i = 0; i < len - 1; i++) {
4886                 if (s[i] < ' ' || s[i] > 127)
4887                         s[i] = '?';
4888         }
4889
4890         /* Remove trailing spaces */
4891         strim(s);
4892 }
4893
4894 /*
4895  * nand_id_has_period - Check if an ID string has a given wraparound period
4896  * @id_data: the ID string
4897  * @arrlen: the length of the @id_data array
4898  * @period: the period of repitition
4899  *
4900  * Check if an ID string is repeated within a given sequence of bytes at
4901  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4902  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4903  * if the repetition has a period of @period; otherwise, returns zero.
4904  */
4905 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4906 {
4907         int i, j;
4908         for (i = 0; i < period; i++)
4909                 for (j = i + period; j < arrlen; j += period)
4910                         if (id_data[i] != id_data[j])
4911                                 return 0;
4912         return 1;
4913 }
4914
4915 /*
4916  * nand_id_len - Get the length of an ID string returned by CMD_READID
4917  * @id_data: the ID string
4918  * @arrlen: the length of the @id_data array
4919
4920  * Returns the length of the ID string, according to known wraparound/trailing
4921  * zero patterns. If no pattern exists, returns the length of the array.
4922  */
4923 static int nand_id_len(u8 *id_data, int arrlen)
4924 {
4925         int last_nonzero, period;
4926
4927         /* Find last non-zero byte */
4928         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4929                 if (id_data[last_nonzero])
4930                         break;
4931
4932         /* All zeros */
4933         if (last_nonzero < 0)
4934                 return 0;
4935
4936         /* Calculate wraparound period */
4937         for (period = 1; period < arrlen; period++)
4938                 if (nand_id_has_period(id_data, arrlen, period))
4939                         break;
4940
4941         /* There's a repeated pattern */
4942         if (period < arrlen)
4943                 return period;
4944
4945         /* There are trailing zeros */
4946         if (last_nonzero < arrlen - 1)
4947                 return last_nonzero + 1;
4948
4949         /* No pattern detected */
4950         return arrlen;
4951 }
4952
4953 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4954 static int nand_get_bits_per_cell(u8 cellinfo)
4955 {
4956         int bits;
4957
4958         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4959         bits >>= NAND_CI_CELLTYPE_SHIFT;
4960         return bits + 1;
4961 }
4962
4963 /*
4964  * Many new NAND share similar device ID codes, which represent the size of the
4965  * chip. The rest of the parameters must be decoded according to generic or
4966  * manufacturer-specific "extended ID" decoding patterns.
4967  */
4968 void nand_decode_ext_id(struct nand_chip *chip)
4969 {
4970         struct nand_memory_organization *memorg;
4971         struct mtd_info *mtd = nand_to_mtd(chip);
4972         int extid;
4973         u8 *id_data = chip->id.data;
4974
4975         memorg = nanddev_get_memorg(&chip->base);
4976
4977         /* The 3rd id byte holds MLC / multichip data */
4978         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4979         /* The 4th id byte is the important one */
4980         extid = id_data[3];
4981
4982         /* Calc pagesize */
4983         memorg->pagesize = 1024 << (extid & 0x03);
4984         mtd->writesize = memorg->pagesize;
4985         extid >>= 2;
4986         /* Calc oobsize */
4987         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4988         mtd->oobsize = memorg->oobsize;
4989         extid >>= 2;
4990         /* Calc blocksize. Blocksize is multiples of 64KiB */
4991         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4992                                        memorg->pagesize;
4993         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4994         extid >>= 2;
4995         /* Get buswidth information */
4996         if (extid & 0x1)
4997                 chip->options |= NAND_BUSWIDTH_16;
4998 }
4999 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5000
5001 /*
5002  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5003  * decodes a matching ID table entry and assigns the MTD size parameters for
5004  * the chip.
5005  */
5006 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5007 {
5008         struct mtd_info *mtd = nand_to_mtd(chip);
5009         struct nand_memory_organization *memorg;
5010
5011         memorg = nanddev_get_memorg(&chip->base);
5012
5013         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5014         mtd->erasesize = type->erasesize;
5015         memorg->pagesize = type->pagesize;
5016         mtd->writesize = memorg->pagesize;
5017         memorg->oobsize = memorg->pagesize / 32;
5018         mtd->oobsize = memorg->oobsize;
5019
5020         /* All legacy ID NAND are small-page, SLC */
5021         memorg->bits_per_cell = 1;
5022 }
5023
5024 /*
5025  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5026  * heuristic patterns using various detected parameters (e.g., manufacturer,
5027  * page size, cell-type information).
5028  */
5029 static void nand_decode_bbm_options(struct nand_chip *chip)
5030 {
5031         struct mtd_info *mtd = nand_to_mtd(chip);
5032
5033         /* Set the bad block position */
5034         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5035                 chip->badblockpos = NAND_BBM_POS_LARGE;
5036         else
5037                 chip->badblockpos = NAND_BBM_POS_SMALL;
5038 }
5039
5040 static inline bool is_full_id_nand(struct nand_flash_dev *type)
5041 {
5042         return type->id_len;
5043 }
5044
5045 static bool find_full_id_nand(struct nand_chip *chip,
5046                               struct nand_flash_dev *type)
5047 {
5048         struct nand_device *base = &chip->base;
5049         struct nand_ecc_props requirements;
5050         struct mtd_info *mtd = nand_to_mtd(chip);
5051         struct nand_memory_organization *memorg;
5052         u8 *id_data = chip->id.data;
5053
5054         memorg = nanddev_get_memorg(&chip->base);
5055
5056         if (!strncmp(type->id, id_data, type->id_len)) {
5057                 memorg->pagesize = type->pagesize;
5058                 mtd->writesize = memorg->pagesize;
5059                 memorg->pages_per_eraseblock = type->erasesize /
5060                                                type->pagesize;
5061                 mtd->erasesize = type->erasesize;
5062                 memorg->oobsize = type->oobsize;
5063                 mtd->oobsize = memorg->oobsize;
5064
5065                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5066                 memorg->eraseblocks_per_lun =
5067                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5068                                            memorg->pagesize *
5069                                            memorg->pages_per_eraseblock);
5070                 chip->options |= type->options;
5071                 requirements.strength = NAND_ECC_STRENGTH(type);
5072                 requirements.step_size = NAND_ECC_STEP(type);
5073                 nanddev_set_ecc_requirements(base, &requirements);
5074
5075                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5076                 if (!chip->parameters.model)
5077                         return false;
5078
5079                 return true;
5080         }
5081         return false;
5082 }
5083
5084 /*
5085  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5086  * compliant and does not have a full-id or legacy-id entry in the nand_ids
5087  * table.
5088  */
5089 static void nand_manufacturer_detect(struct nand_chip *chip)
5090 {
5091         /*
5092          * Try manufacturer detection if available and use
5093          * nand_decode_ext_id() otherwise.
5094          */
5095         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5096             chip->manufacturer.desc->ops->detect) {
5097                 struct nand_memory_organization *memorg;
5098
5099                 memorg = nanddev_get_memorg(&chip->base);
5100
5101                 /* The 3rd id byte holds MLC / multichip data */
5102                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5103                 chip->manufacturer.desc->ops->detect(chip);
5104         } else {
5105                 nand_decode_ext_id(chip);
5106         }
5107 }
5108
5109 /*
5110  * Manufacturer initialization. This function is called for all NANDs including
5111  * ONFI and JEDEC compliant ones.
5112  * Manufacturer drivers should put all their specific initialization code in
5113  * their ->init() hook.
5114  */
5115 static int nand_manufacturer_init(struct nand_chip *chip)
5116 {
5117         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5118             !chip->manufacturer.desc->ops->init)
5119                 return 0;
5120
5121         return chip->manufacturer.desc->ops->init(chip);
5122 }
5123
5124 /*
5125  * Manufacturer cleanup. This function is called for all NANDs including
5126  * ONFI and JEDEC compliant ones.
5127  * Manufacturer drivers should put all their specific cleanup code in their
5128  * ->cleanup() hook.
5129  */
5130 static void nand_manufacturer_cleanup(struct nand_chip *chip)
5131 {
5132         /* Release manufacturer private data */
5133         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5134             chip->manufacturer.desc->ops->cleanup)
5135                 chip->manufacturer.desc->ops->cleanup(chip);
5136 }
5137
5138 static const char *
5139 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5140 {
5141         return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5142 }
5143
5144 static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5145 {
5146         /* Use an arbitrary size for the check */
5147         if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5148                 chip->controller->supported_op.data_only_read = 1;
5149 }
5150
5151 static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5152 {
5153         /* The supported_op fields should not be set by individual drivers */
5154         WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5155
5156         if (!nand_has_exec_op(chip))
5157                 return;
5158
5159         rawnand_check_data_only_read_support(chip);
5160 }
5161
5162 static void rawnand_check_cont_read_support(struct nand_chip *chip)
5163 {
5164         struct mtd_info *mtd = nand_to_mtd(chip);
5165
5166         if (!chip->parameters.supports_read_cache)
5167                 return;
5168
5169         if (chip->read_retries)
5170                 return;
5171
5172         if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5173                                             mtd->writesize, true))
5174                 chip->controller->supported_op.cont_read = 1;
5175 }
5176
5177 static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5178 {
5179         /* The supported_op fields should not be set by individual drivers */
5180         WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5181
5182         /*
5183          * Too many devices do not support sequential cached reads with on-die
5184          * ECC correction enabled, so in this case refuse to perform the
5185          * automation.
5186          */
5187         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5188                 return;
5189
5190         if (!nand_has_exec_op(chip))
5191                 return;
5192
5193         rawnand_check_cont_read_support(chip);
5194 }
5195
5196 /*
5197  * Get the flash and manufacturer id and lookup if the type is supported.
5198  */
5199 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5200 {
5201         const struct nand_manufacturer_desc *manufacturer_desc;
5202         struct mtd_info *mtd = nand_to_mtd(chip);
5203         struct nand_memory_organization *memorg;
5204         int busw, ret;
5205         u8 *id_data = chip->id.data;
5206         u8 maf_id, dev_id;
5207         u64 targetsize;
5208
5209         /*
5210          * Let's start by initializing memorg fields that might be left
5211          * unassigned by the ID-based detection logic.
5212          */
5213         memorg = nanddev_get_memorg(&chip->base);
5214         memorg->planes_per_lun = 1;
5215         memorg->luns_per_target = 1;
5216
5217         /*
5218          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5219          * after power-up.
5220          */
5221         ret = nand_reset(chip, 0);
5222         if (ret)
5223                 return ret;
5224
5225         /* Select the device */
5226         nand_select_target(chip, 0);
5227
5228         rawnand_early_check_supported_ops(chip);
5229
5230         /* Send the command for reading device ID */
5231         ret = nand_readid_op(chip, 0, id_data, 2);
5232         if (ret)
5233                 return ret;
5234
5235         /* Read manufacturer and device IDs */
5236         maf_id = id_data[0];
5237         dev_id = id_data[1];
5238
5239         /*
5240          * Try again to make sure, as some systems the bus-hold or other
5241          * interface concerns can cause random data which looks like a
5242          * possibly credible NAND flash to appear. If the two results do
5243          * not match, ignore the device completely.
5244          */
5245
5246         /* Read entire ID string */
5247         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5248         if (ret)
5249                 return ret;
5250
5251         if (id_data[0] != maf_id || id_data[1] != dev_id) {
5252                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5253                         maf_id, dev_id, id_data[0], id_data[1]);
5254                 return -ENODEV;
5255         }
5256
5257         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5258
5259         /* Try to identify manufacturer */
5260         manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5261         chip->manufacturer.desc = manufacturer_desc;
5262
5263         if (!type)
5264                 type = nand_flash_ids;
5265
5266         /*
5267          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5268          * override it.
5269          * This is required to make sure initial NAND bus width set by the
5270          * NAND controller driver is coherent with the real NAND bus width
5271          * (extracted by auto-detection code).
5272          */
5273         busw = chip->options & NAND_BUSWIDTH_16;
5274
5275         /*
5276          * The flag is only set (never cleared), reset it to its default value
5277          * before starting auto-detection.
5278          */
5279         chip->options &= ~NAND_BUSWIDTH_16;
5280
5281         for (; type->name != NULL; type++) {
5282                 if (is_full_id_nand(type)) {
5283                         if (find_full_id_nand(chip, type))
5284                                 goto ident_done;
5285                 } else if (dev_id == type->dev_id) {
5286                         break;
5287                 }
5288         }
5289
5290         if (!type->name || !type->pagesize) {
5291                 /* Check if the chip is ONFI compliant */
5292                 ret = nand_onfi_detect(chip);
5293                 if (ret < 0)
5294                         return ret;
5295                 else if (ret)
5296                         goto ident_done;
5297
5298                 /* Check if the chip is JEDEC compliant */
5299                 ret = nand_jedec_detect(chip);
5300                 if (ret < 0)
5301                         return ret;
5302                 else if (ret)
5303                         goto ident_done;
5304         }
5305
5306         if (!type->name)
5307                 return -ENODEV;
5308
5309         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5310         if (!chip->parameters.model)
5311                 return -ENOMEM;
5312
5313         if (!type->pagesize)
5314                 nand_manufacturer_detect(chip);
5315         else
5316                 nand_decode_id(chip, type);
5317
5318         /* Get chip options */
5319         chip->options |= type->options;
5320
5321         memorg->eraseblocks_per_lun =
5322                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5323                                            memorg->pagesize *
5324                                            memorg->pages_per_eraseblock);
5325
5326 ident_done:
5327         if (!mtd->name)
5328                 mtd->name = chip->parameters.model;
5329
5330         if (chip->options & NAND_BUSWIDTH_AUTO) {
5331                 WARN_ON(busw & NAND_BUSWIDTH_16);
5332                 nand_set_defaults(chip);
5333         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5334                 /*
5335                  * Check, if buswidth is correct. Hardware drivers should set
5336                  * chip correct!
5337                  */
5338                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5339                         maf_id, dev_id);
5340                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5341                         mtd->name);
5342                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5343                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5344                 ret = -EINVAL;
5345
5346                 goto free_detect_allocation;
5347         }
5348
5349         nand_decode_bbm_options(chip);
5350
5351         /* Calculate the address shift from the page size */
5352         chip->page_shift = ffs(mtd->writesize) - 1;
5353         /* Convert chipsize to number of pages per chip -1 */
5354         targetsize = nanddev_target_size(&chip->base);
5355         chip->pagemask = (targetsize >> chip->page_shift) - 1;
5356
5357         chip->bbt_erase_shift = chip->phys_erase_shift =
5358                 ffs(mtd->erasesize) - 1;
5359         if (targetsize & 0xffffffff)
5360                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5361         else {
5362                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5363                 chip->chip_shift += 32 - 1;
5364         }
5365
5366         if (chip->chip_shift - chip->page_shift > 16)
5367                 chip->options |= NAND_ROW_ADDR_3;
5368
5369         chip->badblockbits = 8;
5370
5371         nand_legacy_adjust_cmdfunc(chip);
5372
5373         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374                 maf_id, dev_id);
5375         pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376                 chip->parameters.model);
5377         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5378                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5379                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5380         return 0;
5381
5382 free_detect_allocation:
5383         kfree(chip->parameters.model);
5384
5385         return ret;
5386 }
5387
5388 static enum nand_ecc_engine_type
5389 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5390 {
5391         enum nand_ecc_legacy_mode {
5392                 NAND_ECC_INVALID,
5393                 NAND_ECC_NONE,
5394                 NAND_ECC_SOFT,
5395                 NAND_ECC_SOFT_BCH,
5396                 NAND_ECC_HW,
5397                 NAND_ECC_HW_SYNDROME,
5398                 NAND_ECC_ON_DIE,
5399         };
5400         const char * const nand_ecc_legacy_modes[] = {
5401                 [NAND_ECC_NONE]         = "none",
5402                 [NAND_ECC_SOFT]         = "soft",
5403                 [NAND_ECC_SOFT_BCH]     = "soft_bch",
5404                 [NAND_ECC_HW]           = "hw",
5405                 [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5406                 [NAND_ECC_ON_DIE]       = "on-die",
5407         };
5408         enum nand_ecc_legacy_mode eng_type;
5409         const char *pm;
5410         int err;
5411
5412         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5413         if (err)
5414                 return NAND_ECC_ENGINE_TYPE_INVALID;
5415
5416         for (eng_type = NAND_ECC_NONE;
5417              eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5418                 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5419                         switch (eng_type) {
5420                         case NAND_ECC_NONE:
5421                                 return NAND_ECC_ENGINE_TYPE_NONE;
5422                         case NAND_ECC_SOFT:
5423                         case NAND_ECC_SOFT_BCH:
5424                                 return NAND_ECC_ENGINE_TYPE_SOFT;
5425                         case NAND_ECC_HW:
5426                         case NAND_ECC_HW_SYNDROME:
5427                                 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5428                         case NAND_ECC_ON_DIE:
5429                                 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5430                         default:
5431                                 break;
5432                         }
5433                 }
5434         }
5435
5436         return NAND_ECC_ENGINE_TYPE_INVALID;
5437 }
5438
5439 static enum nand_ecc_placement
5440 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5441 {
5442         const char *pm;
5443         int err;
5444
5445         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5446         if (!err) {
5447                 if (!strcasecmp(pm, "hw_syndrome"))
5448                         return NAND_ECC_PLACEMENT_INTERLEAVED;
5449         }
5450
5451         return NAND_ECC_PLACEMENT_UNKNOWN;
5452 }
5453
5454 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5455 {
5456         const char *pm;
5457         int err;
5458
5459         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5460         if (!err) {
5461                 if (!strcasecmp(pm, "soft"))
5462                         return NAND_ECC_ALGO_HAMMING;
5463                 else if (!strcasecmp(pm, "soft_bch"))
5464                         return NAND_ECC_ALGO_BCH;
5465         }
5466
5467         return NAND_ECC_ALGO_UNKNOWN;
5468 }
5469
5470 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5471 {
5472         struct device_node *dn = nand_get_flash_node(chip);
5473         struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5474
5475         if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5476                 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5477
5478         if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5479                 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5480
5481         if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5482                 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5483 }
5484
5485 static int of_get_nand_bus_width(struct nand_chip *chip)
5486 {
5487         struct device_node *dn = nand_get_flash_node(chip);
5488         u32 val;
5489         int ret;
5490
5491         ret = of_property_read_u32(dn, "nand-bus-width", &val);
5492         if (ret == -EINVAL)
5493                 /* Buswidth defaults to 8 if the property does not exist .*/
5494                 return 0;
5495         else if (ret)
5496                 return ret;
5497
5498         if (val == 16)
5499                 chip->options |= NAND_BUSWIDTH_16;
5500         else if (val != 8)
5501                 return -EINVAL;
5502         return 0;
5503 }
5504
5505 static int of_get_nand_secure_regions(struct nand_chip *chip)
5506 {
5507         struct device_node *dn = nand_get_flash_node(chip);
5508         struct property *prop;
5509         int nr_elem, i, j;
5510
5511         /* Only proceed if the "secure-regions" property is present in DT */
5512         prop = of_find_property(dn, "secure-regions", NULL);
5513         if (!prop)
5514                 return 0;
5515
5516         nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5517         if (nr_elem <= 0)
5518                 return nr_elem;
5519
5520         chip->nr_secure_regions = nr_elem / 2;
5521         chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5522                                        GFP_KERNEL);
5523         if (!chip->secure_regions)
5524                 return -ENOMEM;
5525
5526         for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5527                 of_property_read_u64_index(dn, "secure-regions", j,
5528                                            &chip->secure_regions[i].offset);
5529                 of_property_read_u64_index(dn, "secure-regions", j + 1,
5530                                            &chip->secure_regions[i].size);
5531         }
5532
5533         return 0;
5534 }
5535
5536 /**
5537  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5538  * @dev: Device that will be parsed. Also used for managed allocations.
5539  * @cs_array: Array of GPIO desc pointers allocated on success
5540  * @ncs_array: Number of entries in @cs_array updated on success.
5541  * @return 0 on success, an error otherwise.
5542  */
5543 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5544                              unsigned int *ncs_array)
5545 {
5546         struct gpio_desc **descs;
5547         int ndescs, i;
5548
5549         ndescs = gpiod_count(dev, "cs");
5550         if (ndescs < 0) {
5551                 dev_dbg(dev, "No valid cs-gpios property\n");
5552                 return 0;
5553         }
5554
5555         descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5556         if (!descs)
5557                 return -ENOMEM;
5558
5559         for (i = 0; i < ndescs; i++) {
5560                 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5561                                                     GPIOD_OUT_HIGH);
5562                 if (IS_ERR(descs[i]))
5563                         return PTR_ERR(descs[i]);
5564         }
5565
5566         *ncs_array = ndescs;
5567         *cs_array = descs;
5568
5569         return 0;
5570 }
5571 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5572
5573 static int rawnand_dt_init(struct nand_chip *chip)
5574 {
5575         struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5576         struct device_node *dn = nand_get_flash_node(chip);
5577         int ret;
5578
5579         if (!dn)
5580                 return 0;
5581
5582         ret = of_get_nand_bus_width(chip);
5583         if (ret)
5584                 return ret;
5585
5586         if (of_property_read_bool(dn, "nand-is-boot-medium"))
5587                 chip->options |= NAND_IS_BOOT_MEDIUM;
5588
5589         if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5590                 chip->bbt_options |= NAND_BBT_USE_FLASH;
5591
5592         of_get_nand_ecc_user_config(nand);
5593         of_get_nand_ecc_legacy_user_config(chip);
5594
5595         /*
5596          * If neither the user nor the NAND controller have requested a specific
5597          * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5598          */
5599         nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5600
5601         /*
5602          * Use the user requested engine type, unless there is none, in this
5603          * case default to the NAND controller choice, otherwise fallback to
5604          * the raw NAND default one.
5605          */
5606         if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5607                 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5608         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5609                 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5610
5611         chip->ecc.placement = nand->ecc.user_conf.placement;
5612         chip->ecc.algo = nand->ecc.user_conf.algo;
5613         chip->ecc.strength = nand->ecc.user_conf.strength;
5614         chip->ecc.size = nand->ecc.user_conf.step_size;
5615
5616         return 0;
5617 }
5618
5619 /**
5620  * nand_scan_ident - Scan for the NAND device
5621  * @chip: NAND chip object
5622  * @maxchips: number of chips to scan for
5623  * @table: alternative NAND ID table
5624  *
5625  * This is the first phase of the normal nand_scan() function. It reads the
5626  * flash ID and sets up MTD fields accordingly.
5627  *
5628  * This helper used to be called directly from controller drivers that needed
5629  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5630  * prevented dynamic allocations during this phase which was unconvenient and
5631  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5632  */
5633 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5634                            struct nand_flash_dev *table)
5635 {
5636         struct mtd_info *mtd = nand_to_mtd(chip);
5637         struct nand_memory_organization *memorg;
5638         int nand_maf_id, nand_dev_id;
5639         unsigned int i;
5640         int ret;
5641
5642         memorg = nanddev_get_memorg(&chip->base);
5643
5644         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5645         chip->cur_cs = -1;
5646
5647         mutex_init(&chip->lock);
5648         init_waitqueue_head(&chip->resume_wq);
5649
5650         /* Enforce the right timings for reset/detection */
5651         chip->current_interface_config = nand_get_reset_interface_config();
5652
5653         ret = rawnand_dt_init(chip);
5654         if (ret)
5655                 return ret;
5656
5657         if (!mtd->name && mtd->dev.parent)
5658                 mtd->name = dev_name(mtd->dev.parent);
5659
5660         /* Set the default functions */
5661         nand_set_defaults(chip);
5662
5663         ret = nand_legacy_check_hooks(chip);
5664         if (ret)
5665                 return ret;
5666
5667         memorg->ntargets = maxchips;
5668
5669         /* Read the flash type */
5670         ret = nand_detect(chip, table);
5671         if (ret) {
5672                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5673                         pr_warn("No NAND device found\n");
5674                 nand_deselect_target(chip);
5675                 return ret;
5676         }
5677
5678         nand_maf_id = chip->id.data[0];
5679         nand_dev_id = chip->id.data[1];
5680
5681         nand_deselect_target(chip);
5682
5683         /* Check for a chip array */
5684         for (i = 1; i < maxchips; i++) {
5685                 u8 id[2];
5686
5687                 /* See comment in nand_get_flash_type for reset */
5688                 ret = nand_reset(chip, i);
5689                 if (ret)
5690                         break;
5691
5692                 nand_select_target(chip, i);
5693                 /* Send the command for reading device ID */
5694                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5695                 if (ret)
5696                         break;
5697                 /* Read manufacturer and device IDs */
5698                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5699                         nand_deselect_target(chip);
5700                         break;
5701                 }
5702                 nand_deselect_target(chip);
5703         }
5704         if (i > 1)
5705                 pr_info("%d chips detected\n", i);
5706
5707         /* Store the number of chips and calc total size for mtd */
5708         memorg->ntargets = i;
5709         mtd->size = i * nanddev_target_size(&chip->base);
5710
5711         return 0;
5712 }
5713
5714 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5715 {
5716         kfree(chip->parameters.model);
5717         kfree(chip->parameters.onfi);
5718 }
5719
5720 int rawnand_sw_hamming_init(struct nand_chip *chip)
5721 {
5722         struct nand_ecc_sw_hamming_conf *engine_conf;
5723         struct nand_device *base = &chip->base;
5724         int ret;
5725
5726         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5727         base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5728         base->ecc.user_conf.strength = chip->ecc.strength;
5729         base->ecc.user_conf.step_size = chip->ecc.size;
5730
5731         ret = nand_ecc_sw_hamming_init_ctx(base);
5732         if (ret)
5733                 return ret;
5734
5735         engine_conf = base->ecc.ctx.priv;
5736
5737         if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5738                 engine_conf->sm_order = true;
5739
5740         chip->ecc.size = base->ecc.ctx.conf.step_size;
5741         chip->ecc.strength = base->ecc.ctx.conf.strength;
5742         chip->ecc.total = base->ecc.ctx.total;
5743         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5744         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5745
5746         return 0;
5747 }
5748 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5749
5750 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5751                                  const unsigned char *buf,
5752                                  unsigned char *code)
5753 {
5754         struct nand_device *base = &chip->base;
5755
5756         return nand_ecc_sw_hamming_calculate(base, buf, code);
5757 }
5758 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5759
5760 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5761                                unsigned char *buf,
5762                                unsigned char *read_ecc,
5763                                unsigned char *calc_ecc)
5764 {
5765         struct nand_device *base = &chip->base;
5766
5767         return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5768 }
5769 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5770
5771 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5772 {
5773         struct nand_device *base = &chip->base;
5774
5775         nand_ecc_sw_hamming_cleanup_ctx(base);
5776 }
5777 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5778
5779 int rawnand_sw_bch_init(struct nand_chip *chip)
5780 {
5781         struct nand_device *base = &chip->base;
5782         const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5783         int ret;
5784
5785         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5786         base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5787         base->ecc.user_conf.step_size = chip->ecc.size;
5788         base->ecc.user_conf.strength = chip->ecc.strength;
5789
5790         ret = nand_ecc_sw_bch_init_ctx(base);
5791         if (ret)
5792                 return ret;
5793
5794         chip->ecc.size = ecc_conf->step_size;
5795         chip->ecc.strength = ecc_conf->strength;
5796         chip->ecc.total = base->ecc.ctx.total;
5797         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5798         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5799
5800         return 0;
5801 }
5802 EXPORT_SYMBOL(rawnand_sw_bch_init);
5803
5804 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5805                                     const unsigned char *buf,
5806                                     unsigned char *code)
5807 {
5808         struct nand_device *base = &chip->base;
5809
5810         return nand_ecc_sw_bch_calculate(base, buf, code);
5811 }
5812
5813 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5814                            unsigned char *read_ecc, unsigned char *calc_ecc)
5815 {
5816         struct nand_device *base = &chip->base;
5817
5818         return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5819 }
5820 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5821
5822 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5823 {
5824         struct nand_device *base = &chip->base;
5825
5826         nand_ecc_sw_bch_cleanup_ctx(base);
5827 }
5828 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5829
5830 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5831 {
5832         struct nand_ecc_ctrl *ecc = &chip->ecc;
5833
5834         switch (ecc->placement) {
5835         case NAND_ECC_PLACEMENT_UNKNOWN:
5836         case NAND_ECC_PLACEMENT_OOB:
5837                 /* Use standard hwecc read page function? */
5838                 if (!ecc->read_page)
5839                         ecc->read_page = nand_read_page_hwecc;
5840                 if (!ecc->write_page)
5841                         ecc->write_page = nand_write_page_hwecc;
5842                 if (!ecc->read_page_raw)
5843                         ecc->read_page_raw = nand_read_page_raw;
5844                 if (!ecc->write_page_raw)
5845                         ecc->write_page_raw = nand_write_page_raw;
5846                 if (!ecc->read_oob)
5847                         ecc->read_oob = nand_read_oob_std;
5848                 if (!ecc->write_oob)
5849                         ecc->write_oob = nand_write_oob_std;
5850                 if (!ecc->read_subpage)
5851                         ecc->read_subpage = nand_read_subpage;
5852                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5853                         ecc->write_subpage = nand_write_subpage_hwecc;
5854                 fallthrough;
5855
5856         case NAND_ECC_PLACEMENT_INTERLEAVED:
5857                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5858                     (!ecc->read_page ||
5859                      ecc->read_page == nand_read_page_hwecc ||
5860                      !ecc->write_page ||
5861                      ecc->write_page == nand_write_page_hwecc)) {
5862                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5863                         return -EINVAL;
5864                 }
5865                 /* Use standard syndrome read/write page function? */
5866                 if (!ecc->read_page)
5867                         ecc->read_page = nand_read_page_syndrome;
5868                 if (!ecc->write_page)
5869                         ecc->write_page = nand_write_page_syndrome;
5870                 if (!ecc->read_page_raw)
5871                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5872                 if (!ecc->write_page_raw)
5873                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5874                 if (!ecc->read_oob)
5875                         ecc->read_oob = nand_read_oob_syndrome;
5876                 if (!ecc->write_oob)
5877                         ecc->write_oob = nand_write_oob_syndrome;
5878                 break;
5879
5880         default:
5881                 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5882                         ecc->placement);
5883                 return -EINVAL;
5884         }
5885
5886         return 0;
5887 }
5888
5889 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5890 {
5891         struct mtd_info *mtd = nand_to_mtd(chip);
5892         struct nand_device *nanddev = mtd_to_nanddev(mtd);
5893         struct nand_ecc_ctrl *ecc = &chip->ecc;
5894         int ret;
5895
5896         if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5897                 return -EINVAL;
5898
5899         switch (ecc->algo) {
5900         case NAND_ECC_ALGO_HAMMING:
5901                 ecc->calculate = rawnand_sw_hamming_calculate;
5902                 ecc->correct = rawnand_sw_hamming_correct;
5903                 ecc->read_page = nand_read_page_swecc;
5904                 ecc->read_subpage = nand_read_subpage;
5905                 ecc->write_page = nand_write_page_swecc;
5906                 if (!ecc->read_page_raw)
5907                         ecc->read_page_raw = nand_read_page_raw;
5908                 if (!ecc->write_page_raw)
5909                         ecc->write_page_raw = nand_write_page_raw;
5910                 ecc->read_oob = nand_read_oob_std;
5911                 ecc->write_oob = nand_write_oob_std;
5912                 if (!ecc->size)
5913                         ecc->size = 256;
5914                 ecc->bytes = 3;
5915                 ecc->strength = 1;
5916
5917                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5918                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5919
5920                 ret = rawnand_sw_hamming_init(chip);
5921                 if (ret) {
5922                         WARN(1, "Hamming ECC initialization failed!\n");
5923                         return ret;
5924                 }
5925
5926                 return 0;
5927         case NAND_ECC_ALGO_BCH:
5928                 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5929                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5930                         return -EINVAL;
5931                 }
5932                 ecc->calculate = rawnand_sw_bch_calculate;
5933                 ecc->correct = rawnand_sw_bch_correct;
5934                 ecc->read_page = nand_read_page_swecc;
5935                 ecc->read_subpage = nand_read_subpage;
5936                 ecc->write_page = nand_write_page_swecc;
5937                 if (!ecc->read_page_raw)
5938                         ecc->read_page_raw = nand_read_page_raw;
5939                 if (!ecc->write_page_raw)
5940                         ecc->write_page_raw = nand_write_page_raw;
5941                 ecc->read_oob = nand_read_oob_std;
5942                 ecc->write_oob = nand_write_oob_std;
5943
5944                 /*
5945                  * We can only maximize ECC config when the default layout is
5946                  * used, otherwise we don't know how many bytes can really be
5947                  * used.
5948                  */
5949                 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5950                     mtd->ooblayout != nand_get_large_page_ooblayout())
5951                         nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5952
5953                 ret = rawnand_sw_bch_init(chip);
5954                 if (ret) {
5955                         WARN(1, "BCH ECC initialization failed!\n");
5956                         return ret;
5957                 }
5958
5959                 return 0;
5960         default:
5961                 WARN(1, "Unsupported ECC algorithm!\n");
5962                 return -EINVAL;
5963         }
5964 }
5965
5966 /**
5967  * nand_check_ecc_caps - check the sanity of preset ECC settings
5968  * @chip: nand chip info structure
5969  * @caps: ECC caps info structure
5970  * @oobavail: OOB size that the ECC engine can use
5971  *
5972  * When ECC step size and strength are already set, check if they are supported
5973  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5974  * On success, the calculated ECC bytes is set.
5975  */
5976 static int
5977 nand_check_ecc_caps(struct nand_chip *chip,
5978                     const struct nand_ecc_caps *caps, int oobavail)
5979 {
5980         struct mtd_info *mtd = nand_to_mtd(chip);
5981         const struct nand_ecc_step_info *stepinfo;
5982         int preset_step = chip->ecc.size;
5983         int preset_strength = chip->ecc.strength;
5984         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5985         int i, j;
5986
5987         for (i = 0; i < caps->nstepinfos; i++) {
5988                 stepinfo = &caps->stepinfos[i];
5989
5990                 if (stepinfo->stepsize != preset_step)
5991                         continue;
5992
5993                 for (j = 0; j < stepinfo->nstrengths; j++) {
5994                         if (stepinfo->strengths[j] != preset_strength)
5995                                 continue;
5996
5997                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5998                                                          preset_strength);
5999                         if (WARN_ON_ONCE(ecc_bytes < 0))
6000                                 return ecc_bytes;
6001
6002                         if (ecc_bytes * nsteps > oobavail) {
6003                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6004                                        preset_step, preset_strength);
6005                                 return -ENOSPC;
6006                         }
6007
6008                         chip->ecc.bytes = ecc_bytes;
6009
6010                         return 0;
6011                 }
6012         }
6013
6014         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6015                preset_step, preset_strength);
6016
6017         return -ENOTSUPP;
6018 }
6019
6020 /**
6021  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6022  * @chip: nand chip info structure
6023  * @caps: ECC engine caps info structure
6024  * @oobavail: OOB size that the ECC engine can use
6025  *
6026  * If a chip's ECC requirement is provided, try to meet it with the least
6027  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6028  * On success, the chosen ECC settings are set.
6029  */
6030 static int
6031 nand_match_ecc_req(struct nand_chip *chip,
6032                    const struct nand_ecc_caps *caps, int oobavail)
6033 {
6034         const struct nand_ecc_props *requirements =
6035                 nanddev_get_ecc_requirements(&chip->base);
6036         struct mtd_info *mtd = nand_to_mtd(chip);
6037         const struct nand_ecc_step_info *stepinfo;
6038         int req_step = requirements->step_size;
6039         int req_strength = requirements->strength;
6040         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6041         int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6042         int best_ecc_bytes_total = INT_MAX;
6043         int i, j;
6044
6045         /* No information provided by the NAND chip */
6046         if (!req_step || !req_strength)
6047                 return -ENOTSUPP;
6048
6049         /* number of correctable bits the chip requires in a page */
6050         req_corr = mtd->writesize / req_step * req_strength;
6051
6052         for (i = 0; i < caps->nstepinfos; i++) {
6053                 stepinfo = &caps->stepinfos[i];
6054                 step_size = stepinfo->stepsize;
6055
6056                 for (j = 0; j < stepinfo->nstrengths; j++) {
6057                         strength = stepinfo->strengths[j];
6058
6059                         /*
6060                          * If both step size and strength are smaller than the
6061                          * chip's requirement, it is not easy to compare the
6062                          * resulted reliability.
6063                          */
6064                         if (step_size < req_step && strength < req_strength)
6065                                 continue;
6066
6067                         if (mtd->writesize % step_size)
6068                                 continue;
6069
6070                         nsteps = mtd->writesize / step_size;
6071
6072                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6073                         if (WARN_ON_ONCE(ecc_bytes < 0))
6074                                 continue;
6075                         ecc_bytes_total = ecc_bytes * nsteps;
6076
6077                         if (ecc_bytes_total > oobavail ||
6078                             strength * nsteps < req_corr)
6079                                 continue;
6080
6081                         /*
6082                          * We assume the best is to meet the chip's requrement
6083                          * with the least number of ECC bytes.
6084                          */
6085                         if (ecc_bytes_total < best_ecc_bytes_total) {
6086                                 best_ecc_bytes_total = ecc_bytes_total;
6087                                 best_step = step_size;
6088                                 best_strength = strength;
6089                                 best_ecc_bytes = ecc_bytes;
6090                         }
6091                 }
6092         }
6093
6094         if (best_ecc_bytes_total == INT_MAX)
6095                 return -ENOTSUPP;
6096
6097         chip->ecc.size = best_step;
6098         chip->ecc.strength = best_strength;
6099         chip->ecc.bytes = best_ecc_bytes;
6100
6101         return 0;
6102 }
6103
6104 /**
6105  * nand_maximize_ecc - choose the max ECC strength available
6106  * @chip: nand chip info structure
6107  * @caps: ECC engine caps info structure
6108  * @oobavail: OOB size that the ECC engine can use
6109  *
6110  * Choose the max ECC strength that is supported on the controller, and can fit
6111  * within the chip's OOB.  On success, the chosen ECC settings are set.
6112  */
6113 static int
6114 nand_maximize_ecc(struct nand_chip *chip,
6115                   const struct nand_ecc_caps *caps, int oobavail)
6116 {
6117         struct mtd_info *mtd = nand_to_mtd(chip);
6118         const struct nand_ecc_step_info *stepinfo;
6119         int step_size, strength, nsteps, ecc_bytes, corr;
6120         int best_corr = 0;
6121         int best_step = 0;
6122         int best_strength = 0, best_ecc_bytes = 0;
6123         int i, j;
6124
6125         for (i = 0; i < caps->nstepinfos; i++) {
6126                 stepinfo = &caps->stepinfos[i];
6127                 step_size = stepinfo->stepsize;
6128
6129                 /* If chip->ecc.size is already set, respect it */
6130                 if (chip->ecc.size && step_size != chip->ecc.size)
6131                         continue;
6132
6133                 for (j = 0; j < stepinfo->nstrengths; j++) {
6134                         strength = stepinfo->strengths[j];
6135
6136                         if (mtd->writesize % step_size)
6137                                 continue;
6138
6139                         nsteps = mtd->writesize / step_size;
6140
6141                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6142                         if (WARN_ON_ONCE(ecc_bytes < 0))
6143                                 continue;
6144
6145                         if (ecc_bytes * nsteps > oobavail)
6146                                 continue;
6147
6148                         corr = strength * nsteps;
6149
6150                         /*
6151                          * If the number of correctable bits is the same,
6152                          * bigger step_size has more reliability.
6153                          */
6154                         if (corr > best_corr ||
6155                             (corr == best_corr && step_size > best_step)) {
6156                                 best_corr = corr;
6157                                 best_step = step_size;
6158                                 best_strength = strength;
6159                                 best_ecc_bytes = ecc_bytes;
6160                         }
6161                 }
6162         }
6163
6164         if (!best_corr)
6165                 return -ENOTSUPP;
6166
6167         chip->ecc.size = best_step;
6168         chip->ecc.strength = best_strength;
6169         chip->ecc.bytes = best_ecc_bytes;
6170
6171         return 0;
6172 }
6173
6174 /**
6175  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6176  * @chip: nand chip info structure
6177  * @caps: ECC engine caps info structure
6178  * @oobavail: OOB size that the ECC engine can use
6179  *
6180  * Choose the ECC configuration according to following logic.
6181  *
6182  * 1. If both ECC step size and ECC strength are already set (usually by DT)
6183  *    then check if it is supported by this controller.
6184  * 2. If the user provided the nand-ecc-maximize property, then select maximum
6185  *    ECC strength.
6186  * 3. Otherwise, try to match the ECC step size and ECC strength closest
6187  *    to the chip's requirement. If available OOB size can't fit the chip
6188  *    requirement then fallback to the maximum ECC step size and ECC strength.
6189  *
6190  * On success, the chosen ECC settings are set.
6191  */
6192 int nand_ecc_choose_conf(struct nand_chip *chip,
6193                          const struct nand_ecc_caps *caps, int oobavail)
6194 {
6195         struct mtd_info *mtd = nand_to_mtd(chip);
6196         struct nand_device *nanddev = mtd_to_nanddev(mtd);
6197
6198         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6199                 return -EINVAL;
6200
6201         if (chip->ecc.size && chip->ecc.strength)
6202                 return nand_check_ecc_caps(chip, caps, oobavail);
6203
6204         if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6205                 return nand_maximize_ecc(chip, caps, oobavail);
6206
6207         if (!nand_match_ecc_req(chip, caps, oobavail))
6208                 return 0;
6209
6210         return nand_maximize_ecc(chip, caps, oobavail);
6211 }
6212 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6213
6214 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6215 {
6216         struct nand_chip *chip = container_of(nand, struct nand_chip,
6217                                               base);
6218         unsigned int eb = nanddev_pos_to_row(nand, pos);
6219         int ret;
6220
6221         eb >>= nand->rowconv.eraseblock_addr_shift;
6222
6223         nand_select_target(chip, pos->target);
6224         ret = nand_erase_op(chip, eb);
6225         nand_deselect_target(chip);
6226
6227         return ret;
6228 }
6229
6230 static int rawnand_markbad(struct nand_device *nand,
6231                            const struct nand_pos *pos)
6232 {
6233         struct nand_chip *chip = container_of(nand, struct nand_chip,
6234                                               base);
6235
6236         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6237 }
6238
6239 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6240 {
6241         struct nand_chip *chip = container_of(nand, struct nand_chip,
6242                                               base);
6243         int ret;
6244
6245         nand_select_target(chip, pos->target);
6246         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6247         nand_deselect_target(chip);
6248
6249         return ret;
6250 }
6251
6252 static const struct nand_ops rawnand_ops = {
6253         .erase = rawnand_erase,
6254         .markbad = rawnand_markbad,
6255         .isbad = rawnand_isbad,
6256 };
6257
6258 /**
6259  * nand_scan_tail - Scan for the NAND device
6260  * @chip: NAND chip object
6261  *
6262  * This is the second phase of the normal nand_scan() function. It fills out
6263  * all the uninitialized function pointers with the defaults and scans for a
6264  * bad block table if appropriate.
6265  */
6266 static int nand_scan_tail(struct nand_chip *chip)
6267 {
6268         struct mtd_info *mtd = nand_to_mtd(chip);
6269         struct nand_ecc_ctrl *ecc = &chip->ecc;
6270         int ret, i;
6271
6272         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6273         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6274                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6275                 return -EINVAL;
6276         }
6277
6278         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6279         if (!chip->data_buf)
6280                 return -ENOMEM;
6281
6282         /*
6283          * FIXME: some NAND manufacturer drivers expect the first die to be
6284          * selected when manufacturer->init() is called. They should be fixed
6285          * to explictly select the relevant die when interacting with the NAND
6286          * chip.
6287          */
6288         nand_select_target(chip, 0);
6289         ret = nand_manufacturer_init(chip);
6290         nand_deselect_target(chip);
6291         if (ret)
6292                 goto err_free_buf;
6293
6294         /* Set the internal oob buffer location, just after the page data */
6295         chip->oob_poi = chip->data_buf + mtd->writesize;
6296
6297         /*
6298          * If no default placement scheme is given, select an appropriate one.
6299          */
6300         if (!mtd->ooblayout &&
6301             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6302               ecc->algo == NAND_ECC_ALGO_BCH) &&
6303             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6304               ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6305                 switch (mtd->oobsize) {
6306                 case 8:
6307                 case 16:
6308                         mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6309                         break;
6310                 case 64:
6311                 case 128:
6312                         mtd_set_ooblayout(mtd,
6313                                           nand_get_large_page_hamming_ooblayout());
6314                         break;
6315                 default:
6316                         /*
6317                          * Expose the whole OOB area to users if ECC_NONE
6318                          * is passed. We could do that for all kind of
6319                          * ->oobsize, but we must keep the old large/small
6320                          * page with ECC layout when ->oobsize <= 128 for
6321                          * compatibility reasons.
6322                          */
6323                         if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6324                                 mtd_set_ooblayout(mtd,
6325                                                   nand_get_large_page_ooblayout());
6326                                 break;
6327                         }
6328
6329                         WARN(1, "No oob scheme defined for oobsize %d\n",
6330                                 mtd->oobsize);
6331                         ret = -EINVAL;
6332                         goto err_nand_manuf_cleanup;
6333                 }
6334         }
6335
6336         /*
6337          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6338          * selected and we have 256 byte pagesize fallback to software ECC
6339          */
6340
6341         switch (ecc->engine_type) {
6342         case NAND_ECC_ENGINE_TYPE_ON_HOST:
6343                 ret = nand_set_ecc_on_host_ops(chip);
6344                 if (ret)
6345                         goto err_nand_manuf_cleanup;
6346
6347                 if (mtd->writesize >= ecc->size) {
6348                         if (!ecc->strength) {
6349                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6350                                 ret = -EINVAL;
6351                                 goto err_nand_manuf_cleanup;
6352                         }
6353                         break;
6354                 }
6355                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6356                         ecc->size, mtd->writesize);
6357                 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6358                 ecc->algo = NAND_ECC_ALGO_HAMMING;
6359                 fallthrough;
6360
6361         case NAND_ECC_ENGINE_TYPE_SOFT:
6362                 ret = nand_set_ecc_soft_ops(chip);
6363                 if (ret)
6364                         goto err_nand_manuf_cleanup;
6365                 break;
6366
6367         case NAND_ECC_ENGINE_TYPE_ON_DIE:
6368                 if (!ecc->read_page || !ecc->write_page) {
6369                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6370                         ret = -EINVAL;
6371                         goto err_nand_manuf_cleanup;
6372                 }
6373                 if (!ecc->read_oob)
6374                         ecc->read_oob = nand_read_oob_std;
6375                 if (!ecc->write_oob)
6376                         ecc->write_oob = nand_write_oob_std;
6377                 break;
6378
6379         case NAND_ECC_ENGINE_TYPE_NONE:
6380                 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6381                 ecc->read_page = nand_read_page_raw;
6382                 ecc->write_page = nand_write_page_raw;
6383                 ecc->read_oob = nand_read_oob_std;
6384                 ecc->read_page_raw = nand_read_page_raw;
6385                 ecc->write_page_raw = nand_write_page_raw;
6386                 ecc->write_oob = nand_write_oob_std;
6387                 ecc->size = mtd->writesize;
6388                 ecc->bytes = 0;
6389                 ecc->strength = 0;
6390                 break;
6391
6392         default:
6393                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6394                 ret = -EINVAL;
6395                 goto err_nand_manuf_cleanup;
6396         }
6397
6398         if (ecc->correct || ecc->calculate) {
6399                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6400                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6401                 if (!ecc->calc_buf || !ecc->code_buf) {
6402                         ret = -ENOMEM;
6403                         goto err_nand_manuf_cleanup;
6404                 }
6405         }
6406
6407         /* For many systems, the standard OOB write also works for raw */
6408         if (!ecc->read_oob_raw)
6409                 ecc->read_oob_raw = ecc->read_oob;
6410         if (!ecc->write_oob_raw)
6411                 ecc->write_oob_raw = ecc->write_oob;
6412
6413         /* propagate ecc info to mtd_info */
6414         mtd->ecc_strength = ecc->strength;
6415         mtd->ecc_step_size = ecc->size;
6416
6417         /*
6418          * Set the number of read / write steps for one page depending on ECC
6419          * mode.
6420          */
6421         if (!ecc->steps)
6422                 ecc->steps = mtd->writesize / ecc->size;
6423         if (ecc->steps * ecc->size != mtd->writesize) {
6424                 WARN(1, "Invalid ECC parameters\n");
6425                 ret = -EINVAL;
6426                 goto err_nand_manuf_cleanup;
6427         }
6428
6429         if (!ecc->total) {
6430                 ecc->total = ecc->steps * ecc->bytes;
6431                 chip->base.ecc.ctx.total = ecc->total;
6432         }
6433
6434         if (ecc->total > mtd->oobsize) {
6435                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6436                 ret = -EINVAL;
6437                 goto err_nand_manuf_cleanup;
6438         }
6439
6440         /*
6441          * The number of bytes available for a client to place data into
6442          * the out of band area.
6443          */
6444         ret = mtd_ooblayout_count_freebytes(mtd);
6445         if (ret < 0)
6446                 ret = 0;
6447
6448         mtd->oobavail = ret;
6449
6450         /* ECC sanity check: warn if it's too weak */
6451         if (!nand_ecc_is_strong_enough(&chip->base))
6452                 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6453                         mtd->name, chip->ecc.strength, chip->ecc.size,
6454                         nanddev_get_ecc_requirements(&chip->base)->strength,
6455                         nanddev_get_ecc_requirements(&chip->base)->step_size);
6456
6457         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6458         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6459                 switch (ecc->steps) {
6460                 case 2:
6461                         mtd->subpage_sft = 1;
6462                         break;
6463                 case 4:
6464                 case 8:
6465                 case 16:
6466                         mtd->subpage_sft = 2;
6467                         break;
6468                 }
6469         }
6470         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6471
6472         /* Invalidate the pagebuffer reference */
6473         chip->pagecache.page = -1;
6474
6475         /* Large page NAND with SOFT_ECC should support subpage reads */
6476         switch (ecc->engine_type) {
6477         case NAND_ECC_ENGINE_TYPE_SOFT:
6478                 if (chip->page_shift > 9)
6479                         chip->options |= NAND_SUBPAGE_READ;
6480                 break;
6481
6482         default:
6483                 break;
6484         }
6485
6486         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6487         if (ret)
6488                 goto err_nand_manuf_cleanup;
6489
6490         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6491         if (chip->options & NAND_ROM)
6492                 mtd->flags = MTD_CAP_ROM;
6493
6494         /* Fill in remaining MTD driver data */
6495         mtd->_erase = nand_erase;
6496         mtd->_point = NULL;
6497         mtd->_unpoint = NULL;
6498         mtd->_panic_write = panic_nand_write;
6499         mtd->_read_oob = nand_read_oob;
6500         mtd->_write_oob = nand_write_oob;
6501         mtd->_sync = nand_sync;
6502         mtd->_lock = nand_lock;
6503         mtd->_unlock = nand_unlock;
6504         mtd->_suspend = nand_suspend;
6505         mtd->_resume = nand_resume;
6506         mtd->_reboot = nand_shutdown;
6507         mtd->_block_isreserved = nand_block_isreserved;
6508         mtd->_block_isbad = nand_block_isbad;
6509         mtd->_block_markbad = nand_block_markbad;
6510         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6511
6512         /*
6513          * Initialize bitflip_threshold to its default prior scan_bbt() call.
6514          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6515          * properly set.
6516          */
6517         if (!mtd->bitflip_threshold)
6518                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6519
6520         /* Find the fastest data interface for this chip */
6521         ret = nand_choose_interface_config(chip);
6522         if (ret)
6523                 goto err_nanddev_cleanup;
6524
6525         /* Enter fastest possible mode on all dies. */
6526         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6527                 ret = nand_setup_interface(chip, i);
6528                 if (ret)
6529                         goto err_free_interface_config;
6530         }
6531
6532         rawnand_late_check_supported_ops(chip);
6533
6534         /*
6535          * Look for secure regions in the NAND chip. These regions are supposed
6536          * to be protected by a secure element like Trustzone. So the read/write
6537          * accesses to these regions will be blocked in the runtime by this
6538          * driver.
6539          */
6540         ret = of_get_nand_secure_regions(chip);
6541         if (ret)
6542                 goto err_free_interface_config;
6543
6544         /* Check, if we should skip the bad block table scan */
6545         if (chip->options & NAND_SKIP_BBTSCAN)
6546                 return 0;
6547
6548         /* Build bad block table */
6549         ret = nand_create_bbt(chip);
6550         if (ret)
6551                 goto err_free_secure_regions;
6552
6553         return 0;
6554
6555 err_free_secure_regions:
6556         kfree(chip->secure_regions);
6557
6558 err_free_interface_config:
6559         kfree(chip->best_interface_config);
6560
6561 err_nanddev_cleanup:
6562         nanddev_cleanup(&chip->base);
6563
6564 err_nand_manuf_cleanup:
6565         nand_manufacturer_cleanup(chip);
6566
6567 err_free_buf:
6568         kfree(chip->data_buf);
6569         kfree(ecc->code_buf);
6570         kfree(ecc->calc_buf);
6571
6572         return ret;
6573 }
6574
6575 static int nand_attach(struct nand_chip *chip)
6576 {
6577         if (chip->controller->ops && chip->controller->ops->attach_chip)
6578                 return chip->controller->ops->attach_chip(chip);
6579
6580         return 0;
6581 }
6582
6583 static void nand_detach(struct nand_chip *chip)
6584 {
6585         if (chip->controller->ops && chip->controller->ops->detach_chip)
6586                 chip->controller->ops->detach_chip(chip);
6587 }
6588
6589 /**
6590  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6591  * @chip: NAND chip object
6592  * @maxchips: number of chips to scan for.
6593  * @ids: optional flash IDs table
6594  *
6595  * This fills out all the uninitialized function pointers with the defaults.
6596  * The flash ID is read and the mtd/chip structures are filled with the
6597  * appropriate values.
6598  */
6599 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6600                        struct nand_flash_dev *ids)
6601 {
6602         int ret;
6603
6604         if (!maxchips)
6605                 return -EINVAL;
6606
6607         ret = nand_scan_ident(chip, maxchips, ids);
6608         if (ret)
6609                 return ret;
6610
6611         ret = nand_attach(chip);
6612         if (ret)
6613                 goto cleanup_ident;
6614
6615         ret = nand_scan_tail(chip);
6616         if (ret)
6617                 goto detach_chip;
6618
6619         return 0;
6620
6621 detach_chip:
6622         nand_detach(chip);
6623 cleanup_ident:
6624         nand_scan_ident_cleanup(chip);
6625
6626         return ret;
6627 }
6628 EXPORT_SYMBOL(nand_scan_with_ids);
6629
6630 /**
6631  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6632  * @chip: NAND chip object
6633  */
6634 void nand_cleanup(struct nand_chip *chip)
6635 {
6636         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6637                 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6638                         rawnand_sw_hamming_cleanup(chip);
6639                 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6640                         rawnand_sw_bch_cleanup(chip);
6641         }
6642
6643         nanddev_cleanup(&chip->base);
6644
6645         /* Free secure regions data */
6646         kfree(chip->secure_regions);
6647
6648         /* Free bad block table memory */
6649         kfree(chip->bbt);
6650         kfree(chip->data_buf);
6651         kfree(chip->ecc.code_buf);
6652         kfree(chip->ecc.calc_buf);
6653
6654         /* Free bad block descriptor memory */
6655         if (chip->badblock_pattern && chip->badblock_pattern->options
6656                         & NAND_BBT_DYNAMICSTRUCT)
6657                 kfree(chip->badblock_pattern);
6658
6659         /* Free the data interface */
6660         kfree(chip->best_interface_config);
6661
6662         /* Free manufacturer priv data. */
6663         nand_manufacturer_cleanup(chip);
6664
6665         /* Free controller specific allocations after chip identification */
6666         nand_detach(chip);
6667
6668         /* Free identification phase allocations */
6669         nand_scan_ident_cleanup(chip);
6670 }
6671
6672 EXPORT_SYMBOL_GPL(nand_cleanup);
6673
6674 MODULE_LICENSE("GPL");
6675 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6676 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6677 MODULE_DESCRIPTION("Generic NAND flash driver code");