Merge tag 'nand/for-6.1' into mtd/next
[platform/kernel/linux-starfive.git] / drivers / mtd / nand / raw / nand_base.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Overview:
4  *   This is the generic MTD driver for NAND flash devices. It should be
5  *   capable of working with almost all NAND chips currently available.
6  *
7  *      Additional technical information is available on
8  *      http://www.linux-mtd.infradead.org/doc/nand.html
9  *
10  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
12  *
13  *  Credits:
14  *      David Woodhouse for adding multichip support
15  *
16  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17  *      rework for 2K page size chips
18  *
19  *  TODO:
20  *      Enable cached programming for 2k page size chips
21  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
22  *      if we have HW ECC support.
23  *      BBT table is not serialized, has to be fixed
24  */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/module.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand-ecc-sw-hamming.h>
39 #include <linux/mtd/nand-ecc-sw-bch.h>
40 #include <linux/interrupt.h>
41 #include <linux/bitops.h>
42 #include <linux/io.h>
43 #include <linux/mtd/partitions.h>
44 #include <linux/of.h>
45 #include <linux/of_gpio.h>
46 #include <linux/gpio/consumer.h>
47
48 #include "internals.h"
49
50 static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
51                                        struct mtd_pairing_info *info)
52 {
53         int lastpage = (mtd->erasesize / mtd->writesize) - 1;
54         int dist = 3;
55
56         if (page == lastpage)
57                 dist = 2;
58
59         if (!page || (page & 1)) {
60                 info->group = 0;
61                 info->pair = (page + 1) / 2;
62         } else {
63                 info->group = 1;
64                 info->pair = (page + 1 - dist) / 2;
65         }
66
67         return 0;
68 }
69
70 static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
71                                         const struct mtd_pairing_info *info)
72 {
73         int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
74         int page = info->pair * 2;
75         int dist = 3;
76
77         if (!info->group && !info->pair)
78                 return 0;
79
80         if (info->pair == lastpair && info->group)
81                 dist = 2;
82
83         if (!info->group)
84                 page--;
85         else if (info->pair)
86                 page += dist - 1;
87
88         if (page >= mtd->erasesize / mtd->writesize)
89                 return -EINVAL;
90
91         return page;
92 }
93
94 const struct mtd_pairing_scheme dist3_pairing_scheme = {
95         .ngroups = 2,
96         .get_info = nand_pairing_dist3_get_info,
97         .get_wunit = nand_pairing_dist3_get_wunit,
98 };
99
100 static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
101 {
102         int ret = 0;
103
104         /* Start address must align on block boundary */
105         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
106                 pr_debug("%s: unaligned address\n", __func__);
107                 ret = -EINVAL;
108         }
109
110         /* Length must align on block boundary */
111         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
112                 pr_debug("%s: length not block aligned\n", __func__);
113                 ret = -EINVAL;
114         }
115
116         return ret;
117 }
118
119 /**
120  * nand_extract_bits - Copy unaligned bits from one buffer to another one
121  * @dst: destination buffer
122  * @dst_off: bit offset at which the writing starts
123  * @src: source buffer
124  * @src_off: bit offset at which the reading starts
125  * @nbits: number of bits to copy from @src to @dst
126  *
127  * Copy bits from one memory region to another (overlap authorized).
128  */
129 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
130                        unsigned int src_off, unsigned int nbits)
131 {
132         unsigned int tmp, n;
133
134         dst += dst_off / 8;
135         dst_off %= 8;
136         src += src_off / 8;
137         src_off %= 8;
138
139         while (nbits) {
140                 n = min3(8 - dst_off, 8 - src_off, nbits);
141
142                 tmp = (*src >> src_off) & GENMASK(n - 1, 0);
143                 *dst &= ~GENMASK(n - 1 + dst_off, dst_off);
144                 *dst |= tmp << dst_off;
145
146                 dst_off += n;
147                 if (dst_off >= 8) {
148                         dst++;
149                         dst_off -= 8;
150                 }
151
152                 src_off += n;
153                 if (src_off >= 8) {
154                         src++;
155                         src_off -= 8;
156                 }
157
158                 nbits -= n;
159         }
160 }
161 EXPORT_SYMBOL_GPL(nand_extract_bits);
162
163 /**
164  * nand_select_target() - Select a NAND target (A.K.A. die)
165  * @chip: NAND chip object
166  * @cs: the CS line to select. Note that this CS id is always from the chip
167  *      PoV, not the controller one
168  *
169  * Select a NAND target so that further operations executed on @chip go to the
170  * selected NAND target.
171  */
172 void nand_select_target(struct nand_chip *chip, unsigned int cs)
173 {
174         /*
175          * cs should always lie between 0 and nanddev_ntargets(), when that's
176          * not the case it's a bug and the caller should be fixed.
177          */
178         if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
179                 return;
180
181         chip->cur_cs = cs;
182
183         if (chip->legacy.select_chip)
184                 chip->legacy.select_chip(chip, cs);
185 }
186 EXPORT_SYMBOL_GPL(nand_select_target);
187
188 /**
189  * nand_deselect_target() - Deselect the currently selected target
190  * @chip: NAND chip object
191  *
192  * Deselect the currently selected NAND target. The result of operations
193  * executed on @chip after the target has been deselected is undefined.
194  */
195 void nand_deselect_target(struct nand_chip *chip)
196 {
197         if (chip->legacy.select_chip)
198                 chip->legacy.select_chip(chip, -1);
199
200         chip->cur_cs = -1;
201 }
202 EXPORT_SYMBOL_GPL(nand_deselect_target);
203
204 /**
205  * nand_release_device - [GENERIC] release chip
206  * @chip: NAND chip object
207  *
208  * Release chip lock and wake up anyone waiting on the device.
209  */
210 static void nand_release_device(struct nand_chip *chip)
211 {
212         /* Release the controller and the chip */
213         mutex_unlock(&chip->controller->lock);
214         mutex_unlock(&chip->lock);
215 }
216
217 /**
218  * nand_bbm_get_next_page - Get the next page for bad block markers
219  * @chip: NAND chip object
220  * @page: First page to start checking for bad block marker usage
221  *
222  * Returns an integer that corresponds to the page offset within a block, for
223  * a page that is used to store bad block markers. If no more pages are
224  * available, -EINVAL is returned.
225  */
226 int nand_bbm_get_next_page(struct nand_chip *chip, int page)
227 {
228         struct mtd_info *mtd = nand_to_mtd(chip);
229         int last_page = ((mtd->erasesize - mtd->writesize) >>
230                          chip->page_shift) & chip->pagemask;
231         unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
232                 | NAND_BBM_LASTPAGE;
233
234         if (page == 0 && !(chip->options & bbm_flags))
235                 return 0;
236         if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
237                 return 0;
238         if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
239                 return 1;
240         if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
241                 return last_page;
242
243         return -EINVAL;
244 }
245
246 /**
247  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
248  * @chip: NAND chip object
249  * @ofs: offset from device start
250  *
251  * Check, if the block is bad.
252  */
253 static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
254 {
255         int first_page, page_offset;
256         int res;
257         u8 bad;
258
259         first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
260         page_offset = nand_bbm_get_next_page(chip, 0);
261
262         while (page_offset >= 0) {
263                 res = chip->ecc.read_oob(chip, first_page + page_offset);
264                 if (res < 0)
265                         return res;
266
267                 bad = chip->oob_poi[chip->badblockpos];
268
269                 if (likely(chip->badblockbits == 8))
270                         res = bad != 0xFF;
271                 else
272                         res = hweight8(bad) < chip->badblockbits;
273                 if (res)
274                         return res;
275
276                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
277         }
278
279         return 0;
280 }
281
282 /**
283  * nand_region_is_secured() - Check if the region is secured
284  * @chip: NAND chip object
285  * @offset: Offset of the region to check
286  * @size: Size of the region to check
287  *
288  * Checks if the region is secured by comparing the offset and size with the
289  * list of secure regions obtained from DT. Returns true if the region is
290  * secured else false.
291  */
292 static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
293 {
294         int i;
295
296         /* Skip touching the secure regions if present */
297         for (i = 0; i < chip->nr_secure_regions; i++) {
298                 const struct nand_secure_region *region = &chip->secure_regions[i];
299
300                 if (offset + size <= region->offset ||
301                     offset >= region->offset + region->size)
302                         continue;
303
304                 pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
305                          __func__, offset, offset + size);
306
307                 return true;
308         }
309
310         return false;
311 }
312
313 static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
314 {
315         struct mtd_info *mtd = nand_to_mtd(chip);
316
317         if (chip->options & NAND_NO_BBM_QUIRK)
318                 return 0;
319
320         /* Check if the region is secured */
321         if (nand_region_is_secured(chip, ofs, mtd->erasesize))
322                 return -EIO;
323
324         if (mtd_check_expert_analysis_mode())
325                 return 0;
326
327         if (chip->legacy.block_bad)
328                 return chip->legacy.block_bad(chip, ofs);
329
330         return nand_block_bad(chip, ofs);
331 }
332
333 /**
334  * nand_get_device - [GENERIC] Get chip for selected access
335  * @chip: NAND chip structure
336  *
337  * Lock the device and its controller for exclusive access
338  */
339 static void nand_get_device(struct nand_chip *chip)
340 {
341         /* Wait until the device is resumed. */
342         while (1) {
343                 mutex_lock(&chip->lock);
344                 if (!chip->suspended) {
345                         mutex_lock(&chip->controller->lock);
346                         return;
347                 }
348                 mutex_unlock(&chip->lock);
349
350                 wait_event(chip->resume_wq, !chip->suspended);
351         }
352 }
353
354 /**
355  * nand_check_wp - [GENERIC] check if the chip is write protected
356  * @chip: NAND chip object
357  *
358  * Check, if the device is write protected. The function expects, that the
359  * device is already selected.
360  */
361 static int nand_check_wp(struct nand_chip *chip)
362 {
363         u8 status;
364         int ret;
365
366         /* Broken xD cards report WP despite being writable */
367         if (chip->options & NAND_BROKEN_XD)
368                 return 0;
369
370         /* Check the WP bit */
371         ret = nand_status_op(chip, &status);
372         if (ret)
373                 return ret;
374
375         return status & NAND_STATUS_WP ? 0 : 1;
376 }
377
378 /**
379  * nand_fill_oob - [INTERN] Transfer client buffer to oob
380  * @chip: NAND chip object
381  * @oob: oob data buffer
382  * @len: oob data write length
383  * @ops: oob ops structure
384  */
385 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
386                               struct mtd_oob_ops *ops)
387 {
388         struct mtd_info *mtd = nand_to_mtd(chip);
389         int ret;
390
391         /*
392          * Initialise to all 0xFF, to avoid the possibility of left over OOB
393          * data from a previous OOB read.
394          */
395         memset(chip->oob_poi, 0xff, mtd->oobsize);
396
397         switch (ops->mode) {
398
399         case MTD_OPS_PLACE_OOB:
400         case MTD_OPS_RAW:
401                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
402                 return oob + len;
403
404         case MTD_OPS_AUTO_OOB:
405                 ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
406                                                   ops->ooboffs, len);
407                 BUG_ON(ret);
408                 return oob + len;
409
410         default:
411                 BUG();
412         }
413         return NULL;
414 }
415
416 /**
417  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
418  * @chip: NAND chip object
419  * @to: offset to write to
420  * @ops: oob operation description structure
421  *
422  * NAND write out-of-band.
423  */
424 static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
425                              struct mtd_oob_ops *ops)
426 {
427         struct mtd_info *mtd = nand_to_mtd(chip);
428         int chipnr, page, status, len, ret;
429
430         pr_debug("%s: to = 0x%08x, len = %i\n",
431                          __func__, (unsigned int)to, (int)ops->ooblen);
432
433         len = mtd_oobavail(mtd, ops);
434
435         /* Do not allow write past end of page */
436         if ((ops->ooboffs + ops->ooblen) > len) {
437                 pr_debug("%s: attempt to write past end of page\n",
438                                 __func__);
439                 return -EINVAL;
440         }
441
442         /* Check if the region is secured */
443         if (nand_region_is_secured(chip, to, ops->ooblen))
444                 return -EIO;
445
446         chipnr = (int)(to >> chip->chip_shift);
447
448         /*
449          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
450          * of my DiskOnChip 2000 test units) will clear the whole data page too
451          * if we don't do this. I have no clue why, but I seem to have 'fixed'
452          * it in the doc2000 driver in August 1999.  dwmw2.
453          */
454         ret = nand_reset(chip, chipnr);
455         if (ret)
456                 return ret;
457
458         nand_select_target(chip, chipnr);
459
460         /* Shift to get page */
461         page = (int)(to >> chip->page_shift);
462
463         /* Check, if it is write protected */
464         if (nand_check_wp(chip)) {
465                 nand_deselect_target(chip);
466                 return -EROFS;
467         }
468
469         /* Invalidate the page cache, if we write to the cached page */
470         if (page == chip->pagecache.page)
471                 chip->pagecache.page = -1;
472
473         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
474
475         if (ops->mode == MTD_OPS_RAW)
476                 status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
477         else
478                 status = chip->ecc.write_oob(chip, page & chip->pagemask);
479
480         nand_deselect_target(chip);
481
482         if (status)
483                 return status;
484
485         ops->oobretlen = ops->ooblen;
486
487         return 0;
488 }
489
490 /**
491  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
492  * @chip: NAND chip object
493  * @ofs: offset from device start
494  *
495  * This is the default implementation, which can be overridden by a hardware
496  * specific driver. It provides the details for writing a bad block marker to a
497  * block.
498  */
499 static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
500 {
501         struct mtd_info *mtd = nand_to_mtd(chip);
502         struct mtd_oob_ops ops;
503         uint8_t buf[2] = { 0, 0 };
504         int ret = 0, res, page_offset;
505
506         memset(&ops, 0, sizeof(ops));
507         ops.oobbuf = buf;
508         ops.ooboffs = chip->badblockpos;
509         if (chip->options & NAND_BUSWIDTH_16) {
510                 ops.ooboffs &= ~0x01;
511                 ops.len = ops.ooblen = 2;
512         } else {
513                 ops.len = ops.ooblen = 1;
514         }
515         ops.mode = MTD_OPS_PLACE_OOB;
516
517         page_offset = nand_bbm_get_next_page(chip, 0);
518
519         while (page_offset >= 0) {
520                 res = nand_do_write_oob(chip,
521                                         ofs + (page_offset * mtd->writesize),
522                                         &ops);
523
524                 if (!ret)
525                         ret = res;
526
527                 page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
528         }
529
530         return ret;
531 }
532
533 /**
534  * nand_markbad_bbm - mark a block by updating the BBM
535  * @chip: NAND chip object
536  * @ofs: offset of the block to mark bad
537  */
538 int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
539 {
540         if (chip->legacy.block_markbad)
541                 return chip->legacy.block_markbad(chip, ofs);
542
543         return nand_default_block_markbad(chip, ofs);
544 }
545
546 /**
547  * nand_block_markbad_lowlevel - mark a block bad
548  * @chip: NAND chip object
549  * @ofs: offset from device start
550  *
551  * This function performs the generic NAND bad block marking steps (i.e., bad
552  * block table(s) and/or marker(s)). We only allow the hardware driver to
553  * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
554  *
555  * We try operations in the following order:
556  *
557  *  (1) erase the affected block, to allow OOB marker to be written cleanly
558  *  (2) write bad block marker to OOB area of affected block (unless flag
559  *      NAND_BBT_NO_OOB_BBM is present)
560  *  (3) update the BBT
561  *
562  * Note that we retain the first error encountered in (2) or (3), finish the
563  * procedures, and dump the error in the end.
564 */
565 static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
566 {
567         struct mtd_info *mtd = nand_to_mtd(chip);
568         int res, ret = 0;
569
570         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
571                 struct erase_info einfo;
572
573                 /* Attempt erase before marking OOB */
574                 memset(&einfo, 0, sizeof(einfo));
575                 einfo.addr = ofs;
576                 einfo.len = 1ULL << chip->phys_erase_shift;
577                 nand_erase_nand(chip, &einfo, 0);
578
579                 /* Write bad block marker to OOB */
580                 nand_get_device(chip);
581
582                 ret = nand_markbad_bbm(chip, ofs);
583                 nand_release_device(chip);
584         }
585
586         /* Mark block bad in BBT */
587         if (chip->bbt) {
588                 res = nand_markbad_bbt(chip, ofs);
589                 if (!ret)
590                         ret = res;
591         }
592
593         if (!ret)
594                 mtd->ecc_stats.badblocks++;
595
596         return ret;
597 }
598
599 /**
600  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
601  * @mtd: MTD device structure
602  * @ofs: offset from device start
603  *
604  * Check if the block is marked as reserved.
605  */
606 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
607 {
608         struct nand_chip *chip = mtd_to_nand(mtd);
609
610         if (!chip->bbt)
611                 return 0;
612         /* Return info from the table */
613         return nand_isreserved_bbt(chip, ofs);
614 }
615
616 /**
617  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
618  * @chip: NAND chip object
619  * @ofs: offset from device start
620  * @allowbbt: 1, if its allowed to access the bbt area
621  *
622  * Check, if the block is bad. Either by reading the bad block table or
623  * calling of the scan function.
624  */
625 static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
626 {
627         /* Return info from the table */
628         if (chip->bbt)
629                 return nand_isbad_bbt(chip, ofs, allowbbt);
630
631         return nand_isbad_bbm(chip, ofs);
632 }
633
634 /**
635  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
636  * @chip: NAND chip structure
637  * @timeout_ms: Timeout in ms
638  *
639  * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
640  * If that does not happen whitin the specified timeout, -ETIMEDOUT is
641  * returned.
642  *
643  * This helper is intended to be used when the controller does not have access
644  * to the NAND R/B pin.
645  *
646  * Be aware that calling this helper from an ->exec_op() implementation means
647  * ->exec_op() must be re-entrant.
648  *
649  * Return 0 if the NAND chip is ready, a negative error otherwise.
650  */
651 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
652 {
653         const struct nand_interface_config *conf;
654         u8 status = 0;
655         int ret;
656
657         if (!nand_has_exec_op(chip))
658                 return -ENOTSUPP;
659
660         /* Wait tWB before polling the STATUS reg. */
661         conf = nand_get_interface_config(chip);
662         ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
663
664         ret = nand_status_op(chip, NULL);
665         if (ret)
666                 return ret;
667
668         /*
669          * +1 below is necessary because if we are now in the last fraction
670          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
671          * small jiffy fraction - possibly leading to false timeout
672          */
673         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
674         do {
675                 ret = nand_read_data_op(chip, &status, sizeof(status), true,
676                                         false);
677                 if (ret)
678                         break;
679
680                 if (status & NAND_STATUS_READY)
681                         break;
682
683                 /*
684                  * Typical lowest execution time for a tR on most NANDs is 10us,
685                  * use this as polling delay before doing something smarter (ie.
686                  * deriving a delay from the timeout value, timeout_ms/ratio).
687                  */
688                 udelay(10);
689         } while (time_before(jiffies, timeout_ms));
690
691         /*
692          * We have to exit READ_STATUS mode in order to read real data on the
693          * bus in case the WAITRDY instruction is preceding a DATA_IN
694          * instruction.
695          */
696         nand_exit_status_op(chip);
697
698         if (ret)
699                 return ret;
700
701         return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
702 };
703 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
704
705 /**
706  * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
707  * @chip: NAND chip structure
708  * @gpiod: GPIO descriptor of R/B pin
709  * @timeout_ms: Timeout in ms
710  *
711  * Poll the R/B GPIO pin until it becomes ready. If that does not happen
712  * whitin the specified timeout, -ETIMEDOUT is returned.
713  *
714  * This helper is intended to be used when the controller has access to the
715  * NAND R/B pin over GPIO.
716  *
717  * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
718  */
719 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
720                       unsigned long timeout_ms)
721 {
722
723         /*
724          * Wait until R/B pin indicates chip is ready or timeout occurs.
725          * +1 below is necessary because if we are now in the last fraction
726          * of jiffy and msecs_to_jiffies is 1 then we will wait only that
727          * small jiffy fraction - possibly leading to false timeout.
728          */
729         timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
730         do {
731                 if (gpiod_get_value_cansleep(gpiod))
732                         return 0;
733
734                 cond_resched();
735         } while (time_before(jiffies, timeout_ms));
736
737         return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
738 };
739 EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
740
741 /**
742  * panic_nand_wait - [GENERIC] wait until the command is done
743  * @chip: NAND chip structure
744  * @timeo: timeout
745  *
746  * Wait for command done. This is a helper function for nand_wait used when
747  * we are in interrupt context. May happen when in panic and trying to write
748  * an oops through mtdoops.
749  */
750 void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
751 {
752         int i;
753         for (i = 0; i < timeo; i++) {
754                 if (chip->legacy.dev_ready) {
755                         if (chip->legacy.dev_ready(chip))
756                                 break;
757                 } else {
758                         int ret;
759                         u8 status;
760
761                         ret = nand_read_data_op(chip, &status, sizeof(status),
762                                                 true, false);
763                         if (ret)
764                                 return;
765
766                         if (status & NAND_STATUS_READY)
767                                 break;
768                 }
769                 mdelay(1);
770         }
771 }
772
773 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
774 {
775         return (chip->parameters.supports_set_get_features &&
776                 test_bit(addr, chip->parameters.get_feature_list));
777 }
778
779 static bool nand_supports_set_features(struct nand_chip *chip, int addr)
780 {
781         return (chip->parameters.supports_set_get_features &&
782                 test_bit(addr, chip->parameters.set_feature_list));
783 }
784
785 /**
786  * nand_reset_interface - Reset data interface and timings
787  * @chip: The NAND chip
788  * @chipnr: Internal die id
789  *
790  * Reset the Data interface and timings to ONFI mode 0.
791  *
792  * Returns 0 for success or negative error code otherwise.
793  */
794 static int nand_reset_interface(struct nand_chip *chip, int chipnr)
795 {
796         const struct nand_controller_ops *ops = chip->controller->ops;
797         int ret;
798
799         if (!nand_controller_can_setup_interface(chip))
800                 return 0;
801
802         /*
803          * The ONFI specification says:
804          * "
805          * To transition from NV-DDR or NV-DDR2 to the SDR data
806          * interface, the host shall use the Reset (FFh) command
807          * using SDR timing mode 0. A device in any timing mode is
808          * required to recognize Reset (FFh) command issued in SDR
809          * timing mode 0.
810          * "
811          *
812          * Configure the data interface in SDR mode and set the
813          * timings to timing mode 0.
814          */
815
816         chip->current_interface_config = nand_get_reset_interface_config();
817         ret = ops->setup_interface(chip, chipnr,
818                                    chip->current_interface_config);
819         if (ret)
820                 pr_err("Failed to configure data interface to SDR timing mode 0\n");
821
822         return ret;
823 }
824
825 /**
826  * nand_setup_interface - Setup the best data interface and timings
827  * @chip: The NAND chip
828  * @chipnr: Internal die id
829  *
830  * Configure what has been reported to be the best data interface and NAND
831  * timings supported by the chip and the driver.
832  *
833  * Returns 0 for success or negative error code otherwise.
834  */
835 static int nand_setup_interface(struct nand_chip *chip, int chipnr)
836 {
837         const struct nand_controller_ops *ops = chip->controller->ops;
838         u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
839         int ret;
840
841         if (!nand_controller_can_setup_interface(chip))
842                 return 0;
843
844         /*
845          * A nand_reset_interface() put both the NAND chip and the NAND
846          * controller in timings mode 0. If the default mode for this chip is
847          * also 0, no need to proceed to the change again. Plus, at probe time,
848          * nand_setup_interface() uses ->set/get_features() which would
849          * fail anyway as the parameter page is not available yet.
850          */
851         if (!chip->best_interface_config)
852                 return 0;
853
854         request = chip->best_interface_config->timings.mode;
855         if (nand_interface_is_sdr(chip->best_interface_config))
856                 request |= ONFI_DATA_INTERFACE_SDR;
857         else
858                 request |= ONFI_DATA_INTERFACE_NVDDR;
859         tmode_param[0] = request;
860
861         /* Change the mode on the chip side (if supported by the NAND chip) */
862         if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
863                 nand_select_target(chip, chipnr);
864                 ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
865                                         tmode_param);
866                 nand_deselect_target(chip);
867                 if (ret)
868                         return ret;
869         }
870
871         /* Change the mode on the controller side */
872         ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
873         if (ret)
874                 return ret;
875
876         /* Check the mode has been accepted by the chip, if supported */
877         if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
878                 goto update_interface_config;
879
880         memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
881         nand_select_target(chip, chipnr);
882         ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
883                                 tmode_param);
884         nand_deselect_target(chip);
885         if (ret)
886                 goto err_reset_chip;
887
888         if (request != tmode_param[0]) {
889                 pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
890                         nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
891                         chip->best_interface_config->timings.mode);
892                 pr_debug("NAND chip would work in %s timing mode %d\n",
893                          tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
894                          (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
895                 goto err_reset_chip;
896         }
897
898 update_interface_config:
899         chip->current_interface_config = chip->best_interface_config;
900
901         return 0;
902
903 err_reset_chip:
904         /*
905          * Fallback to mode 0 if the chip explicitly did not ack the chosen
906          * timing mode.
907          */
908         nand_reset_interface(chip, chipnr);
909         nand_select_target(chip, chipnr);
910         nand_reset_op(chip);
911         nand_deselect_target(chip);
912
913         return ret;
914 }
915
916 /**
917  * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
918  *                                NAND controller and the NAND chip support
919  * @chip: the NAND chip
920  * @iface: the interface configuration (can eventually be updated)
921  * @spec_timings: specific timings, when not fitting the ONFI specification
922  *
923  * If specific timings are provided, use them. Otherwise, retrieve supported
924  * timing modes from ONFI information.
925  */
926 int nand_choose_best_sdr_timings(struct nand_chip *chip,
927                                  struct nand_interface_config *iface,
928                                  struct nand_sdr_timings *spec_timings)
929 {
930         const struct nand_controller_ops *ops = chip->controller->ops;
931         int best_mode = 0, mode, ret = -EOPNOTSUPP;
932
933         iface->type = NAND_SDR_IFACE;
934
935         if (spec_timings) {
936                 iface->timings.sdr = *spec_timings;
937                 iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
938
939                 /* Verify the controller supports the requested interface */
940                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
941                                            iface);
942                 if (!ret) {
943                         chip->best_interface_config = iface;
944                         return ret;
945                 }
946
947                 /* Fallback to slower modes */
948                 best_mode = iface->timings.mode;
949         } else if (chip->parameters.onfi) {
950                 best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
951         }
952
953         for (mode = best_mode; mode >= 0; mode--) {
954                 onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
955
956                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
957                                            iface);
958                 if (!ret) {
959                         chip->best_interface_config = iface;
960                         break;
961                 }
962         }
963
964         return ret;
965 }
966
967 /**
968  * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
969  *                                  NAND controller and the NAND chip support
970  * @chip: the NAND chip
971  * @iface: the interface configuration (can eventually be updated)
972  * @spec_timings: specific timings, when not fitting the ONFI specification
973  *
974  * If specific timings are provided, use them. Otherwise, retrieve supported
975  * timing modes from ONFI information.
976  */
977 int nand_choose_best_nvddr_timings(struct nand_chip *chip,
978                                    struct nand_interface_config *iface,
979                                    struct nand_nvddr_timings *spec_timings)
980 {
981         const struct nand_controller_ops *ops = chip->controller->ops;
982         int best_mode = 0, mode, ret = -EOPNOTSUPP;
983
984         iface->type = NAND_NVDDR_IFACE;
985
986         if (spec_timings) {
987                 iface->timings.nvddr = *spec_timings;
988                 iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
989
990                 /* Verify the controller supports the requested interface */
991                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
992                                            iface);
993                 if (!ret) {
994                         chip->best_interface_config = iface;
995                         return ret;
996                 }
997
998                 /* Fallback to slower modes */
999                 best_mode = iface->timings.mode;
1000         } else if (chip->parameters.onfi) {
1001                 best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1002         }
1003
1004         for (mode = best_mode; mode >= 0; mode--) {
1005                 onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1006
1007                 ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1008                                            iface);
1009                 if (!ret) {
1010                         chip->best_interface_config = iface;
1011                         break;
1012                 }
1013         }
1014
1015         return ret;
1016 }
1017
1018 /**
1019  * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1020  *                            NAND controller and the NAND chip support
1021  * @chip: the NAND chip
1022  * @iface: the interface configuration (can eventually be updated)
1023  *
1024  * If specific timings are provided, use them. Otherwise, retrieve supported
1025  * timing modes from ONFI information.
1026  */
1027 static int nand_choose_best_timings(struct nand_chip *chip,
1028                                     struct nand_interface_config *iface)
1029 {
1030         int ret;
1031
1032         /* Try the fastest timings: NV-DDR */
1033         ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1034         if (!ret)
1035                 return 0;
1036
1037         /* Fallback to SDR timings otherwise */
1038         return nand_choose_best_sdr_timings(chip, iface, NULL);
1039 }
1040
1041 /**
1042  * nand_choose_interface_config - find the best data interface and timings
1043  * @chip: The NAND chip
1044  *
1045  * Find the best data interface and NAND timings supported by the chip
1046  * and the driver. Eventually let the NAND manufacturer driver propose his own
1047  * set of timings.
1048  *
1049  * After this function nand_chip->interface_config is initialized with the best
1050  * timing mode available.
1051  *
1052  * Returns 0 for success or negative error code otherwise.
1053  */
1054 static int nand_choose_interface_config(struct nand_chip *chip)
1055 {
1056         struct nand_interface_config *iface;
1057         int ret;
1058
1059         if (!nand_controller_can_setup_interface(chip))
1060                 return 0;
1061
1062         iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1063         if (!iface)
1064                 return -ENOMEM;
1065
1066         if (chip->ops.choose_interface_config)
1067                 ret = chip->ops.choose_interface_config(chip, iface);
1068         else
1069                 ret = nand_choose_best_timings(chip, iface);
1070
1071         if (ret)
1072                 kfree(iface);
1073
1074         return ret;
1075 }
1076
1077 /**
1078  * nand_fill_column_cycles - fill the column cycles of an address
1079  * @chip: The NAND chip
1080  * @addrs: Array of address cycles to fill
1081  * @offset_in_page: The offset in the page
1082  *
1083  * Fills the first or the first two bytes of the @addrs field depending
1084  * on the NAND bus width and the page size.
1085  *
1086  * Returns the number of cycles needed to encode the column, or a negative
1087  * error code in case one of the arguments is invalid.
1088  */
1089 static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1090                                    unsigned int offset_in_page)
1091 {
1092         struct mtd_info *mtd = nand_to_mtd(chip);
1093
1094         /* Make sure the offset is less than the actual page size. */
1095         if (offset_in_page > mtd->writesize + mtd->oobsize)
1096                 return -EINVAL;
1097
1098         /*
1099          * On small page NANDs, there's a dedicated command to access the OOB
1100          * area, and the column address is relative to the start of the OOB
1101          * area, not the start of the page. Asjust the address accordingly.
1102          */
1103         if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1104                 offset_in_page -= mtd->writesize;
1105
1106         /*
1107          * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1108          * wide, then it must be divided by 2.
1109          */
1110         if (chip->options & NAND_BUSWIDTH_16) {
1111                 if (WARN_ON(offset_in_page % 2))
1112                         return -EINVAL;
1113
1114                 offset_in_page /= 2;
1115         }
1116
1117         addrs[0] = offset_in_page;
1118
1119         /*
1120          * Small page NANDs use 1 cycle for the columns, while large page NANDs
1121          * need 2
1122          */
1123         if (mtd->writesize <= 512)
1124                 return 1;
1125
1126         addrs[1] = offset_in_page >> 8;
1127
1128         return 2;
1129 }
1130
1131 static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1132                                      unsigned int offset_in_page, void *buf,
1133                                      unsigned int len)
1134 {
1135         const struct nand_interface_config *conf =
1136                 nand_get_interface_config(chip);
1137         struct mtd_info *mtd = nand_to_mtd(chip);
1138         u8 addrs[4];
1139         struct nand_op_instr instrs[] = {
1140                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1141                 NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1142                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1143                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1144                 NAND_OP_DATA_IN(len, buf, 0),
1145         };
1146         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1147         int ret;
1148
1149         /* Drop the DATA_IN instruction if len is set to 0. */
1150         if (!len)
1151                 op.ninstrs--;
1152
1153         if (offset_in_page >= mtd->writesize)
1154                 instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1155         else if (offset_in_page >= 256 &&
1156                  !(chip->options & NAND_BUSWIDTH_16))
1157                 instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1158
1159         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1160         if (ret < 0)
1161                 return ret;
1162
1163         addrs[1] = page;
1164         addrs[2] = page >> 8;
1165
1166         if (chip->options & NAND_ROW_ADDR_3) {
1167                 addrs[3] = page >> 16;
1168                 instrs[1].ctx.addr.naddrs++;
1169         }
1170
1171         return nand_exec_op(chip, &op);
1172 }
1173
1174 static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1175                                      unsigned int offset_in_page, void *buf,
1176                                      unsigned int len)
1177 {
1178         const struct nand_interface_config *conf =
1179                 nand_get_interface_config(chip);
1180         u8 addrs[5];
1181         struct nand_op_instr instrs[] = {
1182                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1183                 NAND_OP_ADDR(4, addrs, 0),
1184                 NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1185                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1186                                  NAND_COMMON_TIMING_NS(conf, tRR_min)),
1187                 NAND_OP_DATA_IN(len, buf, 0),
1188         };
1189         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1190         int ret;
1191
1192         /* Drop the DATA_IN instruction if len is set to 0. */
1193         if (!len)
1194                 op.ninstrs--;
1195
1196         ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1197         if (ret < 0)
1198                 return ret;
1199
1200         addrs[2] = page;
1201         addrs[3] = page >> 8;
1202
1203         if (chip->options & NAND_ROW_ADDR_3) {
1204                 addrs[4] = page >> 16;
1205                 instrs[1].ctx.addr.naddrs++;
1206         }
1207
1208         return nand_exec_op(chip, &op);
1209 }
1210
1211 /**
1212  * nand_read_page_op - Do a READ PAGE operation
1213  * @chip: The NAND chip
1214  * @page: page to read
1215  * @offset_in_page: offset within the page
1216  * @buf: buffer used to store the data
1217  * @len: length of the buffer
1218  *
1219  * This function issues a READ PAGE operation.
1220  * This function does not select/unselect the CS line.
1221  *
1222  * Returns 0 on success, a negative error code otherwise.
1223  */
1224 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1225                       unsigned int offset_in_page, void *buf, unsigned int len)
1226 {
1227         struct mtd_info *mtd = nand_to_mtd(chip);
1228
1229         if (len && !buf)
1230                 return -EINVAL;
1231
1232         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1233                 return -EINVAL;
1234
1235         if (nand_has_exec_op(chip)) {
1236                 if (mtd->writesize > 512)
1237                         return nand_lp_exec_read_page_op(chip, page,
1238                                                          offset_in_page, buf,
1239                                                          len);
1240
1241                 return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1242                                                  buf, len);
1243         }
1244
1245         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1246         if (len)
1247                 chip->legacy.read_buf(chip, buf, len);
1248
1249         return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(nand_read_page_op);
1252
1253 /**
1254  * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1255  * @chip: The NAND chip
1256  * @page: parameter page to read
1257  * @buf: buffer used to store the data
1258  * @len: length of the buffer
1259  *
1260  * This function issues a READ PARAMETER PAGE operation.
1261  * This function does not select/unselect the CS line.
1262  *
1263  * Returns 0 on success, a negative error code otherwise.
1264  */
1265 int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1266                             unsigned int len)
1267 {
1268         unsigned int i;
1269         u8 *p = buf;
1270
1271         if (len && !buf)
1272                 return -EINVAL;
1273
1274         if (nand_has_exec_op(chip)) {
1275                 const struct nand_interface_config *conf =
1276                         nand_get_interface_config(chip);
1277                 struct nand_op_instr instrs[] = {
1278                         NAND_OP_CMD(NAND_CMD_PARAM, 0),
1279                         NAND_OP_ADDR(1, &page,
1280                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
1281                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1282                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
1283                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1284                 };
1285                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1286
1287                 /* Drop the DATA_IN instruction if len is set to 0. */
1288                 if (!len)
1289                         op.ninstrs--;
1290
1291                 return nand_exec_op(chip, &op);
1292         }
1293
1294         chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1295         for (i = 0; i < len; i++)
1296                 p[i] = chip->legacy.read_byte(chip);
1297
1298         return 0;
1299 }
1300
1301 /**
1302  * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1303  * @chip: The NAND chip
1304  * @offset_in_page: offset within the page
1305  * @buf: buffer used to store the data
1306  * @len: length of the buffer
1307  * @force_8bit: force 8-bit bus access
1308  *
1309  * This function issues a CHANGE READ COLUMN operation.
1310  * This function does not select/unselect the CS line.
1311  *
1312  * Returns 0 on success, a negative error code otherwise.
1313  */
1314 int nand_change_read_column_op(struct nand_chip *chip,
1315                                unsigned int offset_in_page, void *buf,
1316                                unsigned int len, bool force_8bit)
1317 {
1318         struct mtd_info *mtd = nand_to_mtd(chip);
1319
1320         if (len && !buf)
1321                 return -EINVAL;
1322
1323         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1324                 return -EINVAL;
1325
1326         /* Small page NANDs do not support column change. */
1327         if (mtd->writesize <= 512)
1328                 return -ENOTSUPP;
1329
1330         if (nand_has_exec_op(chip)) {
1331                 const struct nand_interface_config *conf =
1332                         nand_get_interface_config(chip);
1333                 u8 addrs[2] = {};
1334                 struct nand_op_instr instrs[] = {
1335                         NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1336                         NAND_OP_ADDR(2, addrs, 0),
1337                         NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1338                                     NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1339                         NAND_OP_DATA_IN(len, buf, 0),
1340                 };
1341                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1342                 int ret;
1343
1344                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1345                 if (ret < 0)
1346                         return ret;
1347
1348                 /* Drop the DATA_IN instruction if len is set to 0. */
1349                 if (!len)
1350                         op.ninstrs--;
1351
1352                 instrs[3].ctx.data.force_8bit = force_8bit;
1353
1354                 return nand_exec_op(chip, &op);
1355         }
1356
1357         chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1358         if (len)
1359                 chip->legacy.read_buf(chip, buf, len);
1360
1361         return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1364
1365 /**
1366  * nand_read_oob_op - Do a READ OOB operation
1367  * @chip: The NAND chip
1368  * @page: page to read
1369  * @offset_in_oob: offset within the OOB area
1370  * @buf: buffer used to store the data
1371  * @len: length of the buffer
1372  *
1373  * This function issues a READ OOB operation.
1374  * This function does not select/unselect the CS line.
1375  *
1376  * Returns 0 on success, a negative error code otherwise.
1377  */
1378 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1379                      unsigned int offset_in_oob, void *buf, unsigned int len)
1380 {
1381         struct mtd_info *mtd = nand_to_mtd(chip);
1382
1383         if (len && !buf)
1384                 return -EINVAL;
1385
1386         if (offset_in_oob + len > mtd->oobsize)
1387                 return -EINVAL;
1388
1389         if (nand_has_exec_op(chip))
1390                 return nand_read_page_op(chip, page,
1391                                          mtd->writesize + offset_in_oob,
1392                                          buf, len);
1393
1394         chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1395         if (len)
1396                 chip->legacy.read_buf(chip, buf, len);
1397
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(nand_read_oob_op);
1401
1402 static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1403                                   unsigned int offset_in_page, const void *buf,
1404                                   unsigned int len, bool prog)
1405 {
1406         const struct nand_interface_config *conf =
1407                 nand_get_interface_config(chip);
1408         struct mtd_info *mtd = nand_to_mtd(chip);
1409         u8 addrs[5] = {};
1410         struct nand_op_instr instrs[] = {
1411                 /*
1412                  * The first instruction will be dropped if we're dealing
1413                  * with a large page NAND and adjusted if we're dealing
1414                  * with a small page NAND and the page offset is > 255.
1415                  */
1416                 NAND_OP_CMD(NAND_CMD_READ0, 0),
1417                 NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1418                 NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1419                 NAND_OP_DATA_OUT(len, buf, 0),
1420                 NAND_OP_CMD(NAND_CMD_PAGEPROG,
1421                             NAND_COMMON_TIMING_NS(conf, tWB_max)),
1422                 NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1423         };
1424         struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1425         int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1426
1427         if (naddrs < 0)
1428                 return naddrs;
1429
1430         addrs[naddrs++] = page;
1431         addrs[naddrs++] = page >> 8;
1432         if (chip->options & NAND_ROW_ADDR_3)
1433                 addrs[naddrs++] = page >> 16;
1434
1435         instrs[2].ctx.addr.naddrs = naddrs;
1436
1437         /* Drop the last two instructions if we're not programming the page. */
1438         if (!prog) {
1439                 op.ninstrs -= 2;
1440                 /* Also drop the DATA_OUT instruction if empty. */
1441                 if (!len)
1442                         op.ninstrs--;
1443         }
1444
1445         if (mtd->writesize <= 512) {
1446                 /*
1447                  * Small pages need some more tweaking: we have to adjust the
1448                  * first instruction depending on the page offset we're trying
1449                  * to access.
1450                  */
1451                 if (offset_in_page >= mtd->writesize)
1452                         instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1453                 else if (offset_in_page >= 256 &&
1454                          !(chip->options & NAND_BUSWIDTH_16))
1455                         instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1456         } else {
1457                 /*
1458                  * Drop the first command if we're dealing with a large page
1459                  * NAND.
1460                  */
1461                 op.instrs++;
1462                 op.ninstrs--;
1463         }
1464
1465         return nand_exec_op(chip, &op);
1466 }
1467
1468 /**
1469  * nand_prog_page_begin_op - starts a PROG PAGE operation
1470  * @chip: The NAND chip
1471  * @page: page to write
1472  * @offset_in_page: offset within the page
1473  * @buf: buffer containing the data to write to the page
1474  * @len: length of the buffer
1475  *
1476  * This function issues the first half of a PROG PAGE operation.
1477  * This function does not select/unselect the CS line.
1478  *
1479  * Returns 0 on success, a negative error code otherwise.
1480  */
1481 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1482                             unsigned int offset_in_page, const void *buf,
1483                             unsigned int len)
1484 {
1485         struct mtd_info *mtd = nand_to_mtd(chip);
1486
1487         if (len && !buf)
1488                 return -EINVAL;
1489
1490         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1491                 return -EINVAL;
1492
1493         if (nand_has_exec_op(chip))
1494                 return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1495                                               len, false);
1496
1497         chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1498
1499         if (buf)
1500                 chip->legacy.write_buf(chip, buf, len);
1501
1502         return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1505
1506 /**
1507  * nand_prog_page_end_op - ends a PROG PAGE operation
1508  * @chip: The NAND chip
1509  *
1510  * This function issues the second half of a PROG PAGE operation.
1511  * This function does not select/unselect the CS line.
1512  *
1513  * Returns 0 on success, a negative error code otherwise.
1514  */
1515 int nand_prog_page_end_op(struct nand_chip *chip)
1516 {
1517         int ret;
1518         u8 status;
1519
1520         if (nand_has_exec_op(chip)) {
1521                 const struct nand_interface_config *conf =
1522                         nand_get_interface_config(chip);
1523                 struct nand_op_instr instrs[] = {
1524                         NAND_OP_CMD(NAND_CMD_PAGEPROG,
1525                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1526                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1527                                          0),
1528                 };
1529                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1530
1531                 ret = nand_exec_op(chip, &op);
1532                 if (ret)
1533                         return ret;
1534
1535                 ret = nand_status_op(chip, &status);
1536                 if (ret)
1537                         return ret;
1538         } else {
1539                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1540                 ret = chip->legacy.waitfunc(chip);
1541                 if (ret < 0)
1542                         return ret;
1543
1544                 status = ret;
1545         }
1546
1547         if (status & NAND_STATUS_FAIL)
1548                 return -EIO;
1549
1550         return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1553
1554 /**
1555  * nand_prog_page_op - Do a full PROG PAGE operation
1556  * @chip: The NAND chip
1557  * @page: page to write
1558  * @offset_in_page: offset within the page
1559  * @buf: buffer containing the data to write to the page
1560  * @len: length of the buffer
1561  *
1562  * This function issues a full PROG PAGE operation.
1563  * This function does not select/unselect the CS line.
1564  *
1565  * Returns 0 on success, a negative error code otherwise.
1566  */
1567 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1568                       unsigned int offset_in_page, const void *buf,
1569                       unsigned int len)
1570 {
1571         struct mtd_info *mtd = nand_to_mtd(chip);
1572         u8 status;
1573         int ret;
1574
1575         if (!len || !buf)
1576                 return -EINVAL;
1577
1578         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1579                 return -EINVAL;
1580
1581         if (nand_has_exec_op(chip)) {
1582                 ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1583                                                 len, true);
1584                 if (ret)
1585                         return ret;
1586
1587                 ret = nand_status_op(chip, &status);
1588                 if (ret)
1589                         return ret;
1590         } else {
1591                 chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1592                                      page);
1593                 chip->legacy.write_buf(chip, buf, len);
1594                 chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1595                 ret = chip->legacy.waitfunc(chip);
1596                 if (ret < 0)
1597                         return ret;
1598
1599                 status = ret;
1600         }
1601
1602         if (status & NAND_STATUS_FAIL)
1603                 return -EIO;
1604
1605         return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(nand_prog_page_op);
1608
1609 /**
1610  * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1611  * @chip: The NAND chip
1612  * @offset_in_page: offset within the page
1613  * @buf: buffer containing the data to send to the NAND
1614  * @len: length of the buffer
1615  * @force_8bit: force 8-bit bus access
1616  *
1617  * This function issues a CHANGE WRITE COLUMN operation.
1618  * This function does not select/unselect the CS line.
1619  *
1620  * Returns 0 on success, a negative error code otherwise.
1621  */
1622 int nand_change_write_column_op(struct nand_chip *chip,
1623                                 unsigned int offset_in_page,
1624                                 const void *buf, unsigned int len,
1625                                 bool force_8bit)
1626 {
1627         struct mtd_info *mtd = nand_to_mtd(chip);
1628
1629         if (len && !buf)
1630                 return -EINVAL;
1631
1632         if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1633                 return -EINVAL;
1634
1635         /* Small page NANDs do not support column change. */
1636         if (mtd->writesize <= 512)
1637                 return -ENOTSUPP;
1638
1639         if (nand_has_exec_op(chip)) {
1640                 const struct nand_interface_config *conf =
1641                         nand_get_interface_config(chip);
1642                 u8 addrs[2];
1643                 struct nand_op_instr instrs[] = {
1644                         NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1645                         NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1646                         NAND_OP_DATA_OUT(len, buf, 0),
1647                 };
1648                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1649                 int ret;
1650
1651                 ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1652                 if (ret < 0)
1653                         return ret;
1654
1655                 instrs[2].ctx.data.force_8bit = force_8bit;
1656
1657                 /* Drop the DATA_OUT instruction if len is set to 0. */
1658                 if (!len)
1659                         op.ninstrs--;
1660
1661                 return nand_exec_op(chip, &op);
1662         }
1663
1664         chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1665         if (len)
1666                 chip->legacy.write_buf(chip, buf, len);
1667
1668         return 0;
1669 }
1670 EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1671
1672 /**
1673  * nand_readid_op - Do a READID operation
1674  * @chip: The NAND chip
1675  * @addr: address cycle to pass after the READID command
1676  * @buf: buffer used to store the ID
1677  * @len: length of the buffer
1678  *
1679  * This function sends a READID command and reads back the ID returned by the
1680  * NAND.
1681  * This function does not select/unselect the CS line.
1682  *
1683  * Returns 0 on success, a negative error code otherwise.
1684  */
1685 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1686                    unsigned int len)
1687 {
1688         unsigned int i;
1689         u8 *id = buf, *ddrbuf = NULL;
1690
1691         if (len && !buf)
1692                 return -EINVAL;
1693
1694         if (nand_has_exec_op(chip)) {
1695                 const struct nand_interface_config *conf =
1696                         nand_get_interface_config(chip);
1697                 struct nand_op_instr instrs[] = {
1698                         NAND_OP_CMD(NAND_CMD_READID, 0),
1699                         NAND_OP_ADDR(1, &addr,
1700                                      NAND_COMMON_TIMING_NS(conf, tADL_min)),
1701                         NAND_OP_8BIT_DATA_IN(len, buf, 0),
1702                 };
1703                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1704                 int ret;
1705
1706                 /* READ_ID data bytes are received twice in NV-DDR mode */
1707                 if (len && nand_interface_is_nvddr(conf)) {
1708                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1709                         if (!ddrbuf)
1710                                 return -ENOMEM;
1711
1712                         instrs[2].ctx.data.len *= 2;
1713                         instrs[2].ctx.data.buf.in = ddrbuf;
1714                 }
1715
1716                 /* Drop the DATA_IN instruction if len is set to 0. */
1717                 if (!len)
1718                         op.ninstrs--;
1719
1720                 ret = nand_exec_op(chip, &op);
1721                 if (!ret && len && nand_interface_is_nvddr(conf)) {
1722                         for (i = 0; i < len; i++)
1723                                 id[i] = ddrbuf[i * 2];
1724                 }
1725
1726                 kfree(ddrbuf);
1727
1728                 return ret;
1729         }
1730
1731         chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1732
1733         for (i = 0; i < len; i++)
1734                 id[i] = chip->legacy.read_byte(chip);
1735
1736         return 0;
1737 }
1738 EXPORT_SYMBOL_GPL(nand_readid_op);
1739
1740 /**
1741  * nand_status_op - Do a STATUS operation
1742  * @chip: The NAND chip
1743  * @status: out variable to store the NAND status
1744  *
1745  * This function sends a STATUS command and reads back the status returned by
1746  * the NAND.
1747  * This function does not select/unselect the CS line.
1748  *
1749  * Returns 0 on success, a negative error code otherwise.
1750  */
1751 int nand_status_op(struct nand_chip *chip, u8 *status)
1752 {
1753         if (nand_has_exec_op(chip)) {
1754                 const struct nand_interface_config *conf =
1755                         nand_get_interface_config(chip);
1756                 u8 ddrstatus[2];
1757                 struct nand_op_instr instrs[] = {
1758                         NAND_OP_CMD(NAND_CMD_STATUS,
1759                                     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1760                         NAND_OP_8BIT_DATA_IN(1, status, 0),
1761                 };
1762                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1763                 int ret;
1764
1765                 /* The status data byte will be received twice in NV-DDR mode */
1766                 if (status && nand_interface_is_nvddr(conf)) {
1767                         instrs[1].ctx.data.len *= 2;
1768                         instrs[1].ctx.data.buf.in = ddrstatus;
1769                 }
1770
1771                 if (!status)
1772                         op.ninstrs--;
1773
1774                 ret = nand_exec_op(chip, &op);
1775                 if (!ret && status && nand_interface_is_nvddr(conf))
1776                         *status = ddrstatus[0];
1777
1778                 return ret;
1779         }
1780
1781         chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1782         if (status)
1783                 *status = chip->legacy.read_byte(chip);
1784
1785         return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(nand_status_op);
1788
1789 /**
1790  * nand_exit_status_op - Exit a STATUS operation
1791  * @chip: The NAND chip
1792  *
1793  * This function sends a READ0 command to cancel the effect of the STATUS
1794  * command to avoid reading only the status until a new read command is sent.
1795  *
1796  * This function does not select/unselect the CS line.
1797  *
1798  * Returns 0 on success, a negative error code otherwise.
1799  */
1800 int nand_exit_status_op(struct nand_chip *chip)
1801 {
1802         if (nand_has_exec_op(chip)) {
1803                 struct nand_op_instr instrs[] = {
1804                         NAND_OP_CMD(NAND_CMD_READ0, 0),
1805                 };
1806                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1807
1808                 return nand_exec_op(chip, &op);
1809         }
1810
1811         chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1812
1813         return 0;
1814 }
1815
1816 /**
1817  * nand_erase_op - Do an erase operation
1818  * @chip: The NAND chip
1819  * @eraseblock: block to erase
1820  *
1821  * This function sends an ERASE command and waits for the NAND to be ready
1822  * before returning.
1823  * This function does not select/unselect the CS line.
1824  *
1825  * Returns 0 on success, a negative error code otherwise.
1826  */
1827 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1828 {
1829         unsigned int page = eraseblock <<
1830                             (chip->phys_erase_shift - chip->page_shift);
1831         int ret;
1832         u8 status;
1833
1834         if (nand_has_exec_op(chip)) {
1835                 const struct nand_interface_config *conf =
1836                         nand_get_interface_config(chip);
1837                 u8 addrs[3] = { page, page >> 8, page >> 16 };
1838                 struct nand_op_instr instrs[] = {
1839                         NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1840                         NAND_OP_ADDR(2, addrs, 0),
1841                         NAND_OP_CMD(NAND_CMD_ERASE2,
1842                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1843                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1844                                          0),
1845                 };
1846                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1847
1848                 if (chip->options & NAND_ROW_ADDR_3)
1849                         instrs[1].ctx.addr.naddrs++;
1850
1851                 ret = nand_exec_op(chip, &op);
1852                 if (ret)
1853                         return ret;
1854
1855                 ret = nand_status_op(chip, &status);
1856                 if (ret)
1857                         return ret;
1858         } else {
1859                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1860                 chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1861
1862                 ret = chip->legacy.waitfunc(chip);
1863                 if (ret < 0)
1864                         return ret;
1865
1866                 status = ret;
1867         }
1868
1869         if (status & NAND_STATUS_FAIL)
1870                 return -EIO;
1871
1872         return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(nand_erase_op);
1875
1876 /**
1877  * nand_set_features_op - Do a SET FEATURES operation
1878  * @chip: The NAND chip
1879  * @feature: feature id
1880  * @data: 4 bytes of data
1881  *
1882  * This function sends a SET FEATURES command and waits for the NAND to be
1883  * ready before returning.
1884  * This function does not select/unselect the CS line.
1885  *
1886  * Returns 0 on success, a negative error code otherwise.
1887  */
1888 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
1889                                 const void *data)
1890 {
1891         const u8 *params = data;
1892         int i, ret;
1893
1894         if (nand_has_exec_op(chip)) {
1895                 const struct nand_interface_config *conf =
1896                         nand_get_interface_config(chip);
1897                 struct nand_op_instr instrs[] = {
1898                         NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
1899                         NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
1900                                                                         tADL_min)),
1901                         NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
1902                                               NAND_COMMON_TIMING_NS(conf,
1903                                                                     tWB_max)),
1904                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1905                                          0),
1906                 };
1907                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1908
1909                 return nand_exec_op(chip, &op);
1910         }
1911
1912         chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
1913         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1914                 chip->legacy.write_byte(chip, params[i]);
1915
1916         ret = chip->legacy.waitfunc(chip);
1917         if (ret < 0)
1918                 return ret;
1919
1920         if (ret & NAND_STATUS_FAIL)
1921                 return -EIO;
1922
1923         return 0;
1924 }
1925
1926 /**
1927  * nand_get_features_op - Do a GET FEATURES operation
1928  * @chip: The NAND chip
1929  * @feature: feature id
1930  * @data: 4 bytes of data
1931  *
1932  * This function sends a GET FEATURES command and waits for the NAND to be
1933  * ready before returning.
1934  * This function does not select/unselect the CS line.
1935  *
1936  * Returns 0 on success, a negative error code otherwise.
1937  */
1938 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
1939                                 void *data)
1940 {
1941         u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
1942         int i;
1943
1944         if (nand_has_exec_op(chip)) {
1945                 const struct nand_interface_config *conf =
1946                         nand_get_interface_config(chip);
1947                 struct nand_op_instr instrs[] = {
1948                         NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
1949                         NAND_OP_ADDR(1, &feature,
1950                                      NAND_COMMON_TIMING_NS(conf, tWB_max)),
1951                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
1952                                          NAND_COMMON_TIMING_NS(conf, tRR_min)),
1953                         NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
1954                                              data, 0),
1955                 };
1956                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1957                 int ret;
1958
1959                 /* GET_FEATURE data bytes are received twice in NV-DDR mode */
1960                 if (nand_interface_is_nvddr(conf)) {
1961                         instrs[3].ctx.data.len *= 2;
1962                         instrs[3].ctx.data.buf.in = ddrbuf;
1963                 }
1964
1965                 ret = nand_exec_op(chip, &op);
1966                 if (nand_interface_is_nvddr(conf)) {
1967                         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
1968                                 params[i] = ddrbuf[i * 2];
1969                 }
1970
1971                 return ret;
1972         }
1973
1974         chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
1975         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1976                 params[i] = chip->legacy.read_byte(chip);
1977
1978         return 0;
1979 }
1980
1981 static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
1982                             unsigned int delay_ns)
1983 {
1984         if (nand_has_exec_op(chip)) {
1985                 struct nand_op_instr instrs[] = {
1986                         NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
1987                                          PSEC_TO_NSEC(delay_ns)),
1988                 };
1989                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1990
1991                 return nand_exec_op(chip, &op);
1992         }
1993
1994         /* Apply delay or wait for ready/busy pin */
1995         if (!chip->legacy.dev_ready)
1996                 udelay(chip->legacy.chip_delay);
1997         else
1998                 nand_wait_ready(chip);
1999
2000         return 0;
2001 }
2002
2003 /**
2004  * nand_reset_op - Do a reset operation
2005  * @chip: The NAND chip
2006  *
2007  * This function sends a RESET command and waits for the NAND to be ready
2008  * before returning.
2009  * This function does not select/unselect the CS line.
2010  *
2011  * Returns 0 on success, a negative error code otherwise.
2012  */
2013 int nand_reset_op(struct nand_chip *chip)
2014 {
2015         if (nand_has_exec_op(chip)) {
2016                 const struct nand_interface_config *conf =
2017                         nand_get_interface_config(chip);
2018                 struct nand_op_instr instrs[] = {
2019                         NAND_OP_CMD(NAND_CMD_RESET,
2020                                     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2021                         NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2022                                          0),
2023                 };
2024                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2025
2026                 return nand_exec_op(chip, &op);
2027         }
2028
2029         chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2030
2031         return 0;
2032 }
2033 EXPORT_SYMBOL_GPL(nand_reset_op);
2034
2035 /**
2036  * nand_read_data_op - Read data from the NAND
2037  * @chip: The NAND chip
2038  * @buf: buffer used to store the data
2039  * @len: length of the buffer
2040  * @force_8bit: force 8-bit bus access
2041  * @check_only: do not actually run the command, only checks if the
2042  *              controller driver supports it
2043  *
2044  * This function does a raw data read on the bus. Usually used after launching
2045  * another NAND operation like nand_read_page_op().
2046  * This function does not select/unselect the CS line.
2047  *
2048  * Returns 0 on success, a negative error code otherwise.
2049  */
2050 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2051                       bool force_8bit, bool check_only)
2052 {
2053         if (!len || !buf)
2054                 return -EINVAL;
2055
2056         if (nand_has_exec_op(chip)) {
2057                 const struct nand_interface_config *conf =
2058                         nand_get_interface_config(chip);
2059                 struct nand_op_instr instrs[] = {
2060                         NAND_OP_DATA_IN(len, buf, 0),
2061                 };
2062                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2063                 u8 *ddrbuf = NULL;
2064                 int ret, i;
2065
2066                 instrs[0].ctx.data.force_8bit = force_8bit;
2067
2068                 /*
2069                  * Parameter payloads (ID, status, features, etc) do not go
2070                  * through the same pipeline as regular data, hence the
2071                  * force_8bit flag must be set and this also indicates that in
2072                  * case NV-DDR timings are being used the data will be received
2073                  * twice.
2074                  */
2075                 if (force_8bit && nand_interface_is_nvddr(conf)) {
2076                         ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2077                         if (!ddrbuf)
2078                                 return -ENOMEM;
2079
2080                         instrs[0].ctx.data.len *= 2;
2081                         instrs[0].ctx.data.buf.in = ddrbuf;
2082                 }
2083
2084                 if (check_only) {
2085                         ret = nand_check_op(chip, &op);
2086                         kfree(ddrbuf);
2087                         return ret;
2088                 }
2089
2090                 ret = nand_exec_op(chip, &op);
2091                 if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2092                         u8 *dst = buf;
2093
2094                         for (i = 0; i < len; i++)
2095                                 dst[i] = ddrbuf[i * 2];
2096                 }
2097
2098                 kfree(ddrbuf);
2099
2100                 return ret;
2101         }
2102
2103         if (check_only)
2104                 return 0;
2105
2106         if (force_8bit) {
2107                 u8 *p = buf;
2108                 unsigned int i;
2109
2110                 for (i = 0; i < len; i++)
2111                         p[i] = chip->legacy.read_byte(chip);
2112         } else {
2113                 chip->legacy.read_buf(chip, buf, len);
2114         }
2115
2116         return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(nand_read_data_op);
2119
2120 /**
2121  * nand_write_data_op - Write data from the NAND
2122  * @chip: The NAND chip
2123  * @buf: buffer containing the data to send on the bus
2124  * @len: length of the buffer
2125  * @force_8bit: force 8-bit bus access
2126  *
2127  * This function does a raw data write on the bus. Usually used after launching
2128  * another NAND operation like nand_write_page_begin_op().
2129  * This function does not select/unselect the CS line.
2130  *
2131  * Returns 0 on success, a negative error code otherwise.
2132  */
2133 int nand_write_data_op(struct nand_chip *chip, const void *buf,
2134                        unsigned int len, bool force_8bit)
2135 {
2136         if (!len || !buf)
2137                 return -EINVAL;
2138
2139         if (nand_has_exec_op(chip)) {
2140                 struct nand_op_instr instrs[] = {
2141                         NAND_OP_DATA_OUT(len, buf, 0),
2142                 };
2143                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2144
2145                 instrs[0].ctx.data.force_8bit = force_8bit;
2146
2147                 return nand_exec_op(chip, &op);
2148         }
2149
2150         if (force_8bit) {
2151                 const u8 *p = buf;
2152                 unsigned int i;
2153
2154                 for (i = 0; i < len; i++)
2155                         chip->legacy.write_byte(chip, p[i]);
2156         } else {
2157                 chip->legacy.write_buf(chip, buf, len);
2158         }
2159
2160         return 0;
2161 }
2162 EXPORT_SYMBOL_GPL(nand_write_data_op);
2163
2164 /**
2165  * struct nand_op_parser_ctx - Context used by the parser
2166  * @instrs: array of all the instructions that must be addressed
2167  * @ninstrs: length of the @instrs array
2168  * @subop: Sub-operation to be passed to the NAND controller
2169  *
2170  * This structure is used by the core to split NAND operations into
2171  * sub-operations that can be handled by the NAND controller.
2172  */
2173 struct nand_op_parser_ctx {
2174         const struct nand_op_instr *instrs;
2175         unsigned int ninstrs;
2176         struct nand_subop subop;
2177 };
2178
2179 /**
2180  * nand_op_parser_must_split_instr - Checks if an instruction must be split
2181  * @pat: the parser pattern element that matches @instr
2182  * @instr: pointer to the instruction to check
2183  * @start_offset: this is an in/out parameter. If @instr has already been
2184  *                split, then @start_offset is the offset from which to start
2185  *                (either an address cycle or an offset in the data buffer).
2186  *                Conversely, if the function returns true (ie. instr must be
2187  *                split), this parameter is updated to point to the first
2188  *                data/address cycle that has not been taken care of.
2189  *
2190  * Some NAND controllers are limited and cannot send X address cycles with a
2191  * unique operation, or cannot read/write more than Y bytes at the same time.
2192  * In this case, split the instruction that does not fit in a single
2193  * controller-operation into two or more chunks.
2194  *
2195  * Returns true if the instruction must be split, false otherwise.
2196  * The @start_offset parameter is also updated to the offset at which the next
2197  * bundle of instruction must start (if an address or a data instruction).
2198  */
2199 static bool
2200 nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2201                                 const struct nand_op_instr *instr,
2202                                 unsigned int *start_offset)
2203 {
2204         switch (pat->type) {
2205         case NAND_OP_ADDR_INSTR:
2206                 if (!pat->ctx.addr.maxcycles)
2207                         break;
2208
2209                 if (instr->ctx.addr.naddrs - *start_offset >
2210                     pat->ctx.addr.maxcycles) {
2211                         *start_offset += pat->ctx.addr.maxcycles;
2212                         return true;
2213                 }
2214                 break;
2215
2216         case NAND_OP_DATA_IN_INSTR:
2217         case NAND_OP_DATA_OUT_INSTR:
2218                 if (!pat->ctx.data.maxlen)
2219                         break;
2220
2221                 if (instr->ctx.data.len - *start_offset >
2222                     pat->ctx.data.maxlen) {
2223                         *start_offset += pat->ctx.data.maxlen;
2224                         return true;
2225                 }
2226                 break;
2227
2228         default:
2229                 break;
2230         }
2231
2232         return false;
2233 }
2234
2235 /**
2236  * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2237  *                            remaining in the parser context
2238  * @pat: the pattern to test
2239  * @ctx: the parser context structure to match with the pattern @pat
2240  *
2241  * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2242  * Returns true if this is the case, false ortherwise. When true is returned,
2243  * @ctx->subop is updated with the set of instructions to be passed to the
2244  * controller driver.
2245  */
2246 static bool
2247 nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2248                          struct nand_op_parser_ctx *ctx)
2249 {
2250         unsigned int instr_offset = ctx->subop.first_instr_start_off;
2251         const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2252         const struct nand_op_instr *instr = ctx->subop.instrs;
2253         unsigned int i, ninstrs;
2254
2255         for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2256                 /*
2257                  * The pattern instruction does not match the operation
2258                  * instruction. If the instruction is marked optional in the
2259                  * pattern definition, we skip the pattern element and continue
2260                  * to the next one. If the element is mandatory, there's no
2261                  * match and we can return false directly.
2262                  */
2263                 if (instr->type != pat->elems[i].type) {
2264                         if (!pat->elems[i].optional)
2265                                 return false;
2266
2267                         continue;
2268                 }
2269
2270                 /*
2271                  * Now check the pattern element constraints. If the pattern is
2272                  * not able to handle the whole instruction in a single step,
2273                  * we have to split it.
2274                  * The last_instr_end_off value comes back updated to point to
2275                  * the position where we have to split the instruction (the
2276                  * start of the next subop chunk).
2277                  */
2278                 if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2279                                                     &instr_offset)) {
2280                         ninstrs++;
2281                         i++;
2282                         break;
2283                 }
2284
2285                 instr++;
2286                 ninstrs++;
2287                 instr_offset = 0;
2288         }
2289
2290         /*
2291          * This can happen if all instructions of a pattern are optional.
2292          * Still, if there's not at least one instruction handled by this
2293          * pattern, this is not a match, and we should try the next one (if
2294          * any).
2295          */
2296         if (!ninstrs)
2297                 return false;
2298
2299         /*
2300          * We had a match on the pattern head, but the pattern may be longer
2301          * than the instructions we're asked to execute. We need to make sure
2302          * there's no mandatory elements in the pattern tail.
2303          */
2304         for (; i < pat->nelems; i++) {
2305                 if (!pat->elems[i].optional)
2306                         return false;
2307         }
2308
2309         /*
2310          * We have a match: update the subop structure accordingly and return
2311          * true.
2312          */
2313         ctx->subop.ninstrs = ninstrs;
2314         ctx->subop.last_instr_end_off = instr_offset;
2315
2316         return true;
2317 }
2318
2319 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2320 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2321 {
2322         const struct nand_op_instr *instr;
2323         char *prefix = "      ";
2324         unsigned int i;
2325
2326         pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2327
2328         for (i = 0; i < ctx->ninstrs; i++) {
2329                 instr = &ctx->instrs[i];
2330
2331                 if (instr == &ctx->subop.instrs[0])
2332                         prefix = "    ->";
2333
2334                 nand_op_trace(prefix, instr);
2335
2336                 if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2337                         prefix = "      ";
2338         }
2339 }
2340 #else
2341 static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2342 {
2343         /* NOP */
2344 }
2345 #endif
2346
2347 static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2348                                   const struct nand_op_parser_ctx *b)
2349 {
2350         if (a->subop.ninstrs < b->subop.ninstrs)
2351                 return -1;
2352         else if (a->subop.ninstrs > b->subop.ninstrs)
2353                 return 1;
2354
2355         if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2356                 return -1;
2357         else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2358                 return 1;
2359
2360         return 0;
2361 }
2362
2363 /**
2364  * nand_op_parser_exec_op - exec_op parser
2365  * @chip: the NAND chip
2366  * @parser: patterns description provided by the controller driver
2367  * @op: the NAND operation to address
2368  * @check_only: when true, the function only checks if @op can be handled but
2369  *              does not execute the operation
2370  *
2371  * Helper function designed to ease integration of NAND controller drivers that
2372  * only support a limited set of instruction sequences. The supported sequences
2373  * are described in @parser, and the framework takes care of splitting @op into
2374  * multiple sub-operations (if required) and pass them back to the ->exec()
2375  * callback of the matching pattern if @check_only is set to false.
2376  *
2377  * NAND controller drivers should call this function from their own ->exec_op()
2378  * implementation.
2379  *
2380  * Returns 0 on success, a negative error code otherwise. A failure can be
2381  * caused by an unsupported operation (none of the supported patterns is able
2382  * to handle the requested operation), or an error returned by one of the
2383  * matching pattern->exec() hook.
2384  */
2385 int nand_op_parser_exec_op(struct nand_chip *chip,
2386                            const struct nand_op_parser *parser,
2387                            const struct nand_operation *op, bool check_only)
2388 {
2389         struct nand_op_parser_ctx ctx = {
2390                 .subop.cs = op->cs,
2391                 .subop.instrs = op->instrs,
2392                 .instrs = op->instrs,
2393                 .ninstrs = op->ninstrs,
2394         };
2395         unsigned int i;
2396
2397         while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2398                 const struct nand_op_parser_pattern *pattern;
2399                 struct nand_op_parser_ctx best_ctx;
2400                 int ret, best_pattern = -1;
2401
2402                 for (i = 0; i < parser->npatterns; i++) {
2403                         struct nand_op_parser_ctx test_ctx = ctx;
2404
2405                         pattern = &parser->patterns[i];
2406                         if (!nand_op_parser_match_pat(pattern, &test_ctx))
2407                                 continue;
2408
2409                         if (best_pattern >= 0 &&
2410                             nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2411                                 continue;
2412
2413                         best_pattern = i;
2414                         best_ctx = test_ctx;
2415                 }
2416
2417                 if (best_pattern < 0) {
2418                         pr_debug("->exec_op() parser: pattern not found!\n");
2419                         return -ENOTSUPP;
2420                 }
2421
2422                 ctx = best_ctx;
2423                 nand_op_parser_trace(&ctx);
2424
2425                 if (!check_only) {
2426                         pattern = &parser->patterns[best_pattern];
2427                         ret = pattern->exec(chip, &ctx.subop);
2428                         if (ret)
2429                                 return ret;
2430                 }
2431
2432                 /*
2433                  * Update the context structure by pointing to the start of the
2434                  * next subop.
2435                  */
2436                 ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2437                 if (ctx.subop.last_instr_end_off)
2438                         ctx.subop.instrs -= 1;
2439
2440                 ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2441         }
2442
2443         return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2446
2447 static bool nand_instr_is_data(const struct nand_op_instr *instr)
2448 {
2449         return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2450                          instr->type == NAND_OP_DATA_OUT_INSTR);
2451 }
2452
2453 static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2454                                       unsigned int instr_idx)
2455 {
2456         return subop && instr_idx < subop->ninstrs;
2457 }
2458
2459 static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2460                                              unsigned int instr_idx)
2461 {
2462         if (instr_idx)
2463                 return 0;
2464
2465         return subop->first_instr_start_off;
2466 }
2467
2468 /**
2469  * nand_subop_get_addr_start_off - Get the start offset in an address array
2470  * @subop: The entire sub-operation
2471  * @instr_idx: Index of the instruction inside the sub-operation
2472  *
2473  * During driver development, one could be tempted to directly use the
2474  * ->addr.addrs field of address instructions. This is wrong as address
2475  * instructions might be split.
2476  *
2477  * Given an address instruction, returns the offset of the first cycle to issue.
2478  */
2479 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2480                                            unsigned int instr_idx)
2481 {
2482         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2483                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2484                 return 0;
2485
2486         return nand_subop_get_start_off(subop, instr_idx);
2487 }
2488 EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2489
2490 /**
2491  * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2492  * @subop: The entire sub-operation
2493  * @instr_idx: Index of the instruction inside the sub-operation
2494  *
2495  * During driver development, one could be tempted to directly use the
2496  * ->addr->naddrs field of a data instruction. This is wrong as instructions
2497  * might be split.
2498  *
2499  * Given an address instruction, returns the number of address cycle to issue.
2500  */
2501 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2502                                          unsigned int instr_idx)
2503 {
2504         int start_off, end_off;
2505
2506         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2507                     subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2508                 return 0;
2509
2510         start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2511
2512         if (instr_idx == subop->ninstrs - 1 &&
2513             subop->last_instr_end_off)
2514                 end_off = subop->last_instr_end_off;
2515         else
2516                 end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2517
2518         return end_off - start_off;
2519 }
2520 EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2521
2522 /**
2523  * nand_subop_get_data_start_off - Get the start offset in a data array
2524  * @subop: The entire sub-operation
2525  * @instr_idx: Index of the instruction inside the sub-operation
2526  *
2527  * During driver development, one could be tempted to directly use the
2528  * ->data->buf.{in,out} field of data instructions. This is wrong as data
2529  * instructions might be split.
2530  *
2531  * Given a data instruction, returns the offset to start from.
2532  */
2533 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2534                                            unsigned int instr_idx)
2535 {
2536         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2537                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2538                 return 0;
2539
2540         return nand_subop_get_start_off(subop, instr_idx);
2541 }
2542 EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2543
2544 /**
2545  * nand_subop_get_data_len - Get the number of bytes to retrieve
2546  * @subop: The entire sub-operation
2547  * @instr_idx: Index of the instruction inside the sub-operation
2548  *
2549  * During driver development, one could be tempted to directly use the
2550  * ->data->len field of a data instruction. This is wrong as data instructions
2551  * might be split.
2552  *
2553  * Returns the length of the chunk of data to send/receive.
2554  */
2555 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2556                                      unsigned int instr_idx)
2557 {
2558         int start_off = 0, end_off;
2559
2560         if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2561                     !nand_instr_is_data(&subop->instrs[instr_idx])))
2562                 return 0;
2563
2564         start_off = nand_subop_get_data_start_off(subop, instr_idx);
2565
2566         if (instr_idx == subop->ninstrs - 1 &&
2567             subop->last_instr_end_off)
2568                 end_off = subop->last_instr_end_off;
2569         else
2570                 end_off = subop->instrs[instr_idx].ctx.data.len;
2571
2572         return end_off - start_off;
2573 }
2574 EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2575
2576 /**
2577  * nand_reset - Reset and initialize a NAND device
2578  * @chip: The NAND chip
2579  * @chipnr: Internal die id
2580  *
2581  * Save the timings data structure, then apply SDR timings mode 0 (see
2582  * nand_reset_interface for details), do the reset operation, and apply
2583  * back the previous timings.
2584  *
2585  * Returns 0 on success, a negative error code otherwise.
2586  */
2587 int nand_reset(struct nand_chip *chip, int chipnr)
2588 {
2589         int ret;
2590
2591         ret = nand_reset_interface(chip, chipnr);
2592         if (ret)
2593                 return ret;
2594
2595         /*
2596          * The CS line has to be released before we can apply the new NAND
2597          * interface settings, hence this weird nand_select_target()
2598          * nand_deselect_target() dance.
2599          */
2600         nand_select_target(chip, chipnr);
2601         ret = nand_reset_op(chip);
2602         nand_deselect_target(chip);
2603         if (ret)
2604                 return ret;
2605
2606         ret = nand_setup_interface(chip, chipnr);
2607         if (ret)
2608                 return ret;
2609
2610         return 0;
2611 }
2612 EXPORT_SYMBOL_GPL(nand_reset);
2613
2614 /**
2615  * nand_get_features - wrapper to perform a GET_FEATURE
2616  * @chip: NAND chip info structure
2617  * @addr: feature address
2618  * @subfeature_param: the subfeature parameters, a four bytes array
2619  *
2620  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2621  * operation cannot be handled.
2622  */
2623 int nand_get_features(struct nand_chip *chip, int addr,
2624                       u8 *subfeature_param)
2625 {
2626         if (!nand_supports_get_features(chip, addr))
2627                 return -ENOTSUPP;
2628
2629         if (chip->legacy.get_features)
2630                 return chip->legacy.get_features(chip, addr, subfeature_param);
2631
2632         return nand_get_features_op(chip, addr, subfeature_param);
2633 }
2634
2635 /**
2636  * nand_set_features - wrapper to perform a SET_FEATURE
2637  * @chip: NAND chip info structure
2638  * @addr: feature address
2639  * @subfeature_param: the subfeature parameters, a four bytes array
2640  *
2641  * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2642  * operation cannot be handled.
2643  */
2644 int nand_set_features(struct nand_chip *chip, int addr,
2645                       u8 *subfeature_param)
2646 {
2647         if (!nand_supports_set_features(chip, addr))
2648                 return -ENOTSUPP;
2649
2650         if (chip->legacy.set_features)
2651                 return chip->legacy.set_features(chip, addr, subfeature_param);
2652
2653         return nand_set_features_op(chip, addr, subfeature_param);
2654 }
2655
2656 /**
2657  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2658  * @buf: buffer to test
2659  * @len: buffer length
2660  * @bitflips_threshold: maximum number of bitflips
2661  *
2662  * Check if a buffer contains only 0xff, which means the underlying region
2663  * has been erased and is ready to be programmed.
2664  * The bitflips_threshold specify the maximum number of bitflips before
2665  * considering the region is not erased.
2666  * Note: The logic of this function has been extracted from the memweight
2667  * implementation, except that nand_check_erased_buf function exit before
2668  * testing the whole buffer if the number of bitflips exceed the
2669  * bitflips_threshold value.
2670  *
2671  * Returns a positive number of bitflips less than or equal to
2672  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2673  * threshold.
2674  */
2675 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2676 {
2677         const unsigned char *bitmap = buf;
2678         int bitflips = 0;
2679         int weight;
2680
2681         for (; len && ((uintptr_t)bitmap) % sizeof(long);
2682              len--, bitmap++) {
2683                 weight = hweight8(*bitmap);
2684                 bitflips += BITS_PER_BYTE - weight;
2685                 if (unlikely(bitflips > bitflips_threshold))
2686                         return -EBADMSG;
2687         }
2688
2689         for (; len >= sizeof(long);
2690              len -= sizeof(long), bitmap += sizeof(long)) {
2691                 unsigned long d = *((unsigned long *)bitmap);
2692                 if (d == ~0UL)
2693                         continue;
2694                 weight = hweight_long(d);
2695                 bitflips += BITS_PER_LONG - weight;
2696                 if (unlikely(bitflips > bitflips_threshold))
2697                         return -EBADMSG;
2698         }
2699
2700         for (; len > 0; len--, bitmap++) {
2701                 weight = hweight8(*bitmap);
2702                 bitflips += BITS_PER_BYTE - weight;
2703                 if (unlikely(bitflips > bitflips_threshold))
2704                         return -EBADMSG;
2705         }
2706
2707         return bitflips;
2708 }
2709
2710 /**
2711  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2712  *                               0xff data
2713  * @data: data buffer to test
2714  * @datalen: data length
2715  * @ecc: ECC buffer
2716  * @ecclen: ECC length
2717  * @extraoob: extra OOB buffer
2718  * @extraooblen: extra OOB length
2719  * @bitflips_threshold: maximum number of bitflips
2720  *
2721  * Check if a data buffer and its associated ECC and OOB data contains only
2722  * 0xff pattern, which means the underlying region has been erased and is
2723  * ready to be programmed.
2724  * The bitflips_threshold specify the maximum number of bitflips before
2725  * considering the region as not erased.
2726  *
2727  * Note:
2728  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2729  *    different from the NAND page size. When fixing bitflips, ECC engines will
2730  *    report the number of errors per chunk, and the NAND core infrastructure
2731  *    expect you to return the maximum number of bitflips for the whole page.
2732  *    This is why you should always use this function on a single chunk and
2733  *    not on the whole page. After checking each chunk you should update your
2734  *    max_bitflips value accordingly.
2735  * 2/ When checking for bitflips in erased pages you should not only check
2736  *    the payload data but also their associated ECC data, because a user might
2737  *    have programmed almost all bits to 1 but a few. In this case, we
2738  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2739  *    this case.
2740  * 3/ The extraoob argument is optional, and should be used if some of your OOB
2741  *    data are protected by the ECC engine.
2742  *    It could also be used if you support subpages and want to attach some
2743  *    extra OOB data to an ECC chunk.
2744  *
2745  * Returns a positive number of bitflips less than or equal to
2746  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2747  * threshold. In case of success, the passed buffers are filled with 0xff.
2748  */
2749 int nand_check_erased_ecc_chunk(void *data, int datalen,
2750                                 void *ecc, int ecclen,
2751                                 void *extraoob, int extraooblen,
2752                                 int bitflips_threshold)
2753 {
2754         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2755
2756         data_bitflips = nand_check_erased_buf(data, datalen,
2757                                               bitflips_threshold);
2758         if (data_bitflips < 0)
2759                 return data_bitflips;
2760
2761         bitflips_threshold -= data_bitflips;
2762
2763         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2764         if (ecc_bitflips < 0)
2765                 return ecc_bitflips;
2766
2767         bitflips_threshold -= ecc_bitflips;
2768
2769         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2770                                                   bitflips_threshold);
2771         if (extraoob_bitflips < 0)
2772                 return extraoob_bitflips;
2773
2774         if (data_bitflips)
2775                 memset(data, 0xff, datalen);
2776
2777         if (ecc_bitflips)
2778                 memset(ecc, 0xff, ecclen);
2779
2780         if (extraoob_bitflips)
2781                 memset(extraoob, 0xff, extraooblen);
2782
2783         return data_bitflips + ecc_bitflips + extraoob_bitflips;
2784 }
2785 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2786
2787 /**
2788  * nand_read_page_raw_notsupp - dummy read raw page function
2789  * @chip: nand chip info structure
2790  * @buf: buffer to store read data
2791  * @oob_required: caller requires OOB data read to chip->oob_poi
2792  * @page: page number to read
2793  *
2794  * Returns -ENOTSUPP unconditionally.
2795  */
2796 int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2797                                int oob_required, int page)
2798 {
2799         return -ENOTSUPP;
2800 }
2801
2802 /**
2803  * nand_read_page_raw - [INTERN] read raw page data without ecc
2804  * @chip: nand chip info structure
2805  * @buf: buffer to store read data
2806  * @oob_required: caller requires OOB data read to chip->oob_poi
2807  * @page: page number to read
2808  *
2809  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2810  */
2811 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2812                        int page)
2813 {
2814         struct mtd_info *mtd = nand_to_mtd(chip);
2815         int ret;
2816
2817         ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2818         if (ret)
2819                 return ret;
2820
2821         if (oob_required) {
2822                 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2823                                         false, false);
2824                 if (ret)
2825                         return ret;
2826         }
2827
2828         return 0;
2829 }
2830 EXPORT_SYMBOL(nand_read_page_raw);
2831
2832 /**
2833  * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2834  * @chip: NAND chip info structure
2835  * @buf: buffer to store read data
2836  * @oob_required: caller requires OOB data read to chip->oob_poi
2837  * @page: page number to read
2838  *
2839  * This is a raw page read, ie. without any error detection/correction.
2840  * Monolithic means we are requesting all the relevant data (main plus
2841  * eventually OOB) to be loaded in the NAND cache and sent over the
2842  * bus (from the NAND chip to the NAND controller) in a single
2843  * operation. This is an alternative to nand_read_page_raw(), which
2844  * first reads the main data, and if the OOB data is requested too,
2845  * then reads more data on the bus.
2846  */
2847 int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2848                                   int oob_required, int page)
2849 {
2850         struct mtd_info *mtd = nand_to_mtd(chip);
2851         unsigned int size = mtd->writesize;
2852         u8 *read_buf = buf;
2853         int ret;
2854
2855         if (oob_required) {
2856                 size += mtd->oobsize;
2857
2858                 if (buf != chip->data_buf)
2859                         read_buf = nand_get_data_buf(chip);
2860         }
2861
2862         ret = nand_read_page_op(chip, page, 0, read_buf, size);
2863         if (ret)
2864                 return ret;
2865
2866         if (buf != chip->data_buf)
2867                 memcpy(buf, read_buf, mtd->writesize);
2868
2869         return 0;
2870 }
2871 EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2872
2873 /**
2874  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2875  * @chip: nand chip info structure
2876  * @buf: buffer to store read data
2877  * @oob_required: caller requires OOB data read to chip->oob_poi
2878  * @page: page number to read
2879  *
2880  * We need a special oob layout and handling even when OOB isn't used.
2881  */
2882 static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
2883                                        int oob_required, int page)
2884 {
2885         struct mtd_info *mtd = nand_to_mtd(chip);
2886         int eccsize = chip->ecc.size;
2887         int eccbytes = chip->ecc.bytes;
2888         uint8_t *oob = chip->oob_poi;
2889         int steps, size, ret;
2890
2891         ret = nand_read_page_op(chip, page, 0, NULL, 0);
2892         if (ret)
2893                 return ret;
2894
2895         for (steps = chip->ecc.steps; steps > 0; steps--) {
2896                 ret = nand_read_data_op(chip, buf, eccsize, false, false);
2897                 if (ret)
2898                         return ret;
2899
2900                 buf += eccsize;
2901
2902                 if (chip->ecc.prepad) {
2903                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
2904                                                 false, false);
2905                         if (ret)
2906                                 return ret;
2907
2908                         oob += chip->ecc.prepad;
2909                 }
2910
2911                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
2912                 if (ret)
2913                         return ret;
2914
2915                 oob += eccbytes;
2916
2917                 if (chip->ecc.postpad) {
2918                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
2919                                                 false, false);
2920                         if (ret)
2921                                 return ret;
2922
2923                         oob += chip->ecc.postpad;
2924                 }
2925         }
2926
2927         size = mtd->oobsize - (oob - chip->oob_poi);
2928         if (size) {
2929                 ret = nand_read_data_op(chip, oob, size, false, false);
2930                 if (ret)
2931                         return ret;
2932         }
2933
2934         return 0;
2935 }
2936
2937 /**
2938  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
2939  * @chip: nand chip info structure
2940  * @buf: buffer to store read data
2941  * @oob_required: caller requires OOB data read to chip->oob_poi
2942  * @page: page number to read
2943  */
2944 static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
2945                                 int oob_required, int page)
2946 {
2947         struct mtd_info *mtd = nand_to_mtd(chip);
2948         int i, eccsize = chip->ecc.size, ret;
2949         int eccbytes = chip->ecc.bytes;
2950         int eccsteps = chip->ecc.steps;
2951         uint8_t *p = buf;
2952         uint8_t *ecc_calc = chip->ecc.calc_buf;
2953         uint8_t *ecc_code = chip->ecc.code_buf;
2954         unsigned int max_bitflips = 0;
2955
2956         chip->ecc.read_page_raw(chip, buf, 1, page);
2957
2958         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2959                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
2960
2961         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
2962                                          chip->ecc.total);
2963         if (ret)
2964                 return ret;
2965
2966         eccsteps = chip->ecc.steps;
2967         p = buf;
2968
2969         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2970                 int stat;
2971
2972                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
2973                 if (stat < 0) {
2974                         mtd->ecc_stats.failed++;
2975                 } else {
2976                         mtd->ecc_stats.corrected += stat;
2977                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
2978                 }
2979         }
2980         return max_bitflips;
2981 }
2982
2983 /**
2984  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
2985  * @chip: nand chip info structure
2986  * @data_offs: offset of requested data within the page
2987  * @readlen: data length
2988  * @bufpoi: buffer to store read data
2989  * @page: page number to read
2990  */
2991 static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
2992                              uint32_t readlen, uint8_t *bufpoi, int page)
2993 {
2994         struct mtd_info *mtd = nand_to_mtd(chip);
2995         int start_step, end_step, num_steps, ret;
2996         uint8_t *p;
2997         int data_col_addr, i, gaps = 0;
2998         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
2999         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3000         int index, section = 0;
3001         unsigned int max_bitflips = 0;
3002         struct mtd_oob_region oobregion = { };
3003
3004         /* Column address within the page aligned to ECC size (256bytes) */
3005         start_step = data_offs / chip->ecc.size;
3006         end_step = (data_offs + readlen - 1) / chip->ecc.size;
3007         num_steps = end_step - start_step + 1;
3008         index = start_step * chip->ecc.bytes;
3009
3010         /* Data size aligned to ECC ecc.size */
3011         datafrag_len = num_steps * chip->ecc.size;
3012         eccfrag_len = num_steps * chip->ecc.bytes;
3013
3014         data_col_addr = start_step * chip->ecc.size;
3015         /* If we read not a page aligned data */
3016         p = bufpoi + data_col_addr;
3017         ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3018         if (ret)
3019                 return ret;
3020
3021         /* Calculate ECC */
3022         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3023                 chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3024
3025         /*
3026          * The performance is faster if we position offsets according to
3027          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3028          */
3029         ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3030         if (ret)
3031                 return ret;
3032
3033         if (oobregion.length < eccfrag_len)
3034                 gaps = 1;
3035
3036         if (gaps) {
3037                 ret = nand_change_read_column_op(chip, mtd->writesize,
3038                                                  chip->oob_poi, mtd->oobsize,
3039                                                  false);
3040                 if (ret)
3041                         return ret;
3042         } else {
3043                 /*
3044                  * Send the command to read the particular ECC bytes take care
3045                  * about buswidth alignment in read_buf.
3046                  */
3047                 aligned_pos = oobregion.offset & ~(busw - 1);
3048                 aligned_len = eccfrag_len;
3049                 if (oobregion.offset & (busw - 1))
3050                         aligned_len++;
3051                 if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3052                     (busw - 1))
3053                         aligned_len++;
3054
3055                 ret = nand_change_read_column_op(chip,
3056                                                  mtd->writesize + aligned_pos,
3057                                                  &chip->oob_poi[aligned_pos],
3058                                                  aligned_len, false);
3059                 if (ret)
3060                         return ret;
3061         }
3062
3063         ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3064                                          chip->oob_poi, index, eccfrag_len);
3065         if (ret)
3066                 return ret;
3067
3068         p = bufpoi + data_col_addr;
3069         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3070                 int stat;
3071
3072                 stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3073                                          &chip->ecc.calc_buf[i]);
3074                 if (stat == -EBADMSG &&
3075                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3076                         /* check for empty pages with bitflips */
3077                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3078                                                 &chip->ecc.code_buf[i],
3079                                                 chip->ecc.bytes,
3080                                                 NULL, 0,
3081                                                 chip->ecc.strength);
3082                 }
3083
3084                 if (stat < 0) {
3085                         mtd->ecc_stats.failed++;
3086                 } else {
3087                         mtd->ecc_stats.corrected += stat;
3088                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3089                 }
3090         }
3091         return max_bitflips;
3092 }
3093
3094 /**
3095  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3096  * @chip: nand chip info structure
3097  * @buf: buffer to store read data
3098  * @oob_required: caller requires OOB data read to chip->oob_poi
3099  * @page: page number to read
3100  *
3101  * Not for syndrome calculating ECC controllers which need a special oob layout.
3102  */
3103 static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3104                                 int oob_required, int page)
3105 {
3106         struct mtd_info *mtd = nand_to_mtd(chip);
3107         int i, eccsize = chip->ecc.size, ret;
3108         int eccbytes = chip->ecc.bytes;
3109         int eccsteps = chip->ecc.steps;
3110         uint8_t *p = buf;
3111         uint8_t *ecc_calc = chip->ecc.calc_buf;
3112         uint8_t *ecc_code = chip->ecc.code_buf;
3113         unsigned int max_bitflips = 0;
3114
3115         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3116         if (ret)
3117                 return ret;
3118
3119         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3120                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3121
3122                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3123                 if (ret)
3124                         return ret;
3125
3126                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
3127         }
3128
3129         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3130                                 false);
3131         if (ret)
3132                 return ret;
3133
3134         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3135                                          chip->ecc.total);
3136         if (ret)
3137                 return ret;
3138
3139         eccsteps = chip->ecc.steps;
3140         p = buf;
3141
3142         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3143                 int stat;
3144
3145                 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3146                 if (stat == -EBADMSG &&
3147                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3148                         /* check for empty pages with bitflips */
3149                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3150                                                 &ecc_code[i], eccbytes,
3151                                                 NULL, 0,
3152                                                 chip->ecc.strength);
3153                 }
3154
3155                 if (stat < 0) {
3156                         mtd->ecc_stats.failed++;
3157                 } else {
3158                         mtd->ecc_stats.corrected += stat;
3159                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3160                 }
3161         }
3162         return max_bitflips;
3163 }
3164
3165 /**
3166  * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3167  *                                  data read from OOB area
3168  * @chip: nand chip info structure
3169  * @buf: buffer to store read data
3170  * @oob_required: caller requires OOB data read to chip->oob_poi
3171  * @page: page number to read
3172  *
3173  * Hardware ECC for large page chips, which requires the ECC data to be
3174  * extracted from the OOB before the actual data is read.
3175  */
3176 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3177                                    int oob_required, int page)
3178 {
3179         struct mtd_info *mtd = nand_to_mtd(chip);
3180         int i, eccsize = chip->ecc.size, ret;
3181         int eccbytes = chip->ecc.bytes;
3182         int eccsteps = chip->ecc.steps;
3183         uint8_t *p = buf;
3184         uint8_t *ecc_code = chip->ecc.code_buf;
3185         unsigned int max_bitflips = 0;
3186
3187         /* Read the OOB area first */
3188         ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3189         if (ret)
3190                 return ret;
3191
3192         /* Move read cursor to start of page */
3193         ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3194         if (ret)
3195                 return ret;
3196
3197         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3198                                          chip->ecc.total);
3199         if (ret)
3200                 return ret;
3201
3202         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3203                 int stat;
3204
3205                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3206
3207                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3208                 if (ret)
3209                         return ret;
3210
3211                 stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3212                 if (stat == -EBADMSG &&
3213                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3214                         /* check for empty pages with bitflips */
3215                         stat = nand_check_erased_ecc_chunk(p, eccsize,
3216                                                            &ecc_code[i],
3217                                                            eccbytes, NULL, 0,
3218                                                            chip->ecc.strength);
3219                 }
3220
3221                 if (stat < 0) {
3222                         mtd->ecc_stats.failed++;
3223                 } else {
3224                         mtd->ecc_stats.corrected += stat;
3225                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3226                 }
3227         }
3228         return max_bitflips;
3229 }
3230 EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3231
3232 /**
3233  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3234  * @chip: nand chip info structure
3235  * @buf: buffer to store read data
3236  * @oob_required: caller requires OOB data read to chip->oob_poi
3237  * @page: page number to read
3238  *
3239  * The hw generator calculates the error syndrome automatically. Therefore we
3240  * need a special oob layout and handling.
3241  */
3242 static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3243                                    int oob_required, int page)
3244 {
3245         struct mtd_info *mtd = nand_to_mtd(chip);
3246         int ret, i, eccsize = chip->ecc.size;
3247         int eccbytes = chip->ecc.bytes;
3248         int eccsteps = chip->ecc.steps;
3249         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3250         uint8_t *p = buf;
3251         uint8_t *oob = chip->oob_poi;
3252         unsigned int max_bitflips = 0;
3253
3254         ret = nand_read_page_op(chip, page, 0, NULL, 0);
3255         if (ret)
3256                 return ret;
3257
3258         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3259                 int stat;
3260
3261                 chip->ecc.hwctl(chip, NAND_ECC_READ);
3262
3263                 ret = nand_read_data_op(chip, p, eccsize, false, false);
3264                 if (ret)
3265                         return ret;
3266
3267                 if (chip->ecc.prepad) {
3268                         ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3269                                                 false, false);
3270                         if (ret)
3271                                 return ret;
3272
3273                         oob += chip->ecc.prepad;
3274                 }
3275
3276                 chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3277
3278                 ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3279                 if (ret)
3280                         return ret;
3281
3282                 stat = chip->ecc.correct(chip, p, oob, NULL);
3283
3284                 oob += eccbytes;
3285
3286                 if (chip->ecc.postpad) {
3287                         ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3288                                                 false, false);
3289                         if (ret)
3290                                 return ret;
3291
3292                         oob += chip->ecc.postpad;
3293                 }
3294
3295                 if (stat == -EBADMSG &&
3296                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3297                         /* check for empty pages with bitflips */
3298                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3299                                                            oob - eccpadbytes,
3300                                                            eccpadbytes,
3301                                                            NULL, 0,
3302                                                            chip->ecc.strength);
3303                 }
3304
3305                 if (stat < 0) {
3306                         mtd->ecc_stats.failed++;
3307                 } else {
3308                         mtd->ecc_stats.corrected += stat;
3309                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
3310                 }
3311         }
3312
3313         /* Calculate remaining oob bytes */
3314         i = mtd->oobsize - (oob - chip->oob_poi);
3315         if (i) {
3316                 ret = nand_read_data_op(chip, oob, i, false, false);
3317                 if (ret)
3318                         return ret;
3319         }
3320
3321         return max_bitflips;
3322 }
3323
3324 /**
3325  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3326  * @chip: NAND chip object
3327  * @oob: oob destination address
3328  * @ops: oob ops structure
3329  * @len: size of oob to transfer
3330  */
3331 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3332                                   struct mtd_oob_ops *ops, size_t len)
3333 {
3334         struct mtd_info *mtd = nand_to_mtd(chip);
3335         int ret;
3336
3337         switch (ops->mode) {
3338
3339         case MTD_OPS_PLACE_OOB:
3340         case MTD_OPS_RAW:
3341                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3342                 return oob + len;
3343
3344         case MTD_OPS_AUTO_OOB:
3345                 ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3346                                                   ops->ooboffs, len);
3347                 BUG_ON(ret);
3348                 return oob + len;
3349
3350         default:
3351                 BUG();
3352         }
3353         return NULL;
3354 }
3355
3356 /**
3357  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3358  * @chip: NAND chip object
3359  * @retry_mode: the retry mode to use
3360  *
3361  * Some vendors supply a special command to shift the Vt threshold, to be used
3362  * when there are too many bitflips in a page (i.e., ECC error). After setting
3363  * a new threshold, the host should retry reading the page.
3364  */
3365 static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3366 {
3367         pr_debug("setting READ RETRY mode %d\n", retry_mode);
3368
3369         if (retry_mode >= chip->read_retries)
3370                 return -EINVAL;
3371
3372         if (!chip->ops.setup_read_retry)
3373                 return -EOPNOTSUPP;
3374
3375         return chip->ops.setup_read_retry(chip, retry_mode);
3376 }
3377
3378 static void nand_wait_readrdy(struct nand_chip *chip)
3379 {
3380         const struct nand_interface_config *conf;
3381
3382         if (!(chip->options & NAND_NEED_READRDY))
3383                 return;
3384
3385         conf = nand_get_interface_config(chip);
3386         WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3387 }
3388
3389 /**
3390  * nand_do_read_ops - [INTERN] Read data with ECC
3391  * @chip: NAND chip object
3392  * @from: offset to read from
3393  * @ops: oob ops structure
3394  *
3395  * Internal function. Called with chip held.
3396  */
3397 static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3398                             struct mtd_oob_ops *ops)
3399 {
3400         int chipnr, page, realpage, col, bytes, aligned, oob_required;
3401         struct mtd_info *mtd = nand_to_mtd(chip);
3402         int ret = 0;
3403         uint32_t readlen = ops->len;
3404         uint32_t oobreadlen = ops->ooblen;
3405         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3406
3407         uint8_t *bufpoi, *oob, *buf;
3408         int use_bounce_buf;
3409         unsigned int max_bitflips = 0;
3410         int retry_mode = 0;
3411         bool ecc_fail = false;
3412
3413         /* Check if the region is secured */
3414         if (nand_region_is_secured(chip, from, readlen))
3415                 return -EIO;
3416
3417         chipnr = (int)(from >> chip->chip_shift);
3418         nand_select_target(chip, chipnr);
3419
3420         realpage = (int)(from >> chip->page_shift);
3421         page = realpage & chip->pagemask;
3422
3423         col = (int)(from & (mtd->writesize - 1));
3424
3425         buf = ops->datbuf;
3426         oob = ops->oobbuf;
3427         oob_required = oob ? 1 : 0;
3428
3429         while (1) {
3430                 struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3431
3432                 bytes = min(mtd->writesize - col, readlen);
3433                 aligned = (bytes == mtd->writesize);
3434
3435                 if (!aligned)
3436                         use_bounce_buf = 1;
3437                 else if (chip->options & NAND_USES_DMA)
3438                         use_bounce_buf = !virt_addr_valid(buf) ||
3439                                          !IS_ALIGNED((unsigned long)buf,
3440                                                      chip->buf_align);
3441                 else
3442                         use_bounce_buf = 0;
3443
3444                 /* Is the current page in the buffer? */
3445                 if (realpage != chip->pagecache.page || oob) {
3446                         bufpoi = use_bounce_buf ? chip->data_buf : buf;
3447
3448                         if (use_bounce_buf && aligned)
3449                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
3450                                                  __func__, buf);
3451
3452 read_retry:
3453                         /*
3454                          * Now read the page into the buffer.  Absent an error,
3455                          * the read methods return max bitflips per ecc step.
3456                          */
3457                         if (unlikely(ops->mode == MTD_OPS_RAW))
3458                                 ret = chip->ecc.read_page_raw(chip, bufpoi,
3459                                                               oob_required,
3460                                                               page);
3461                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3462                                  !oob)
3463                                 ret = chip->ecc.read_subpage(chip, col, bytes,
3464                                                              bufpoi, page);
3465                         else
3466                                 ret = chip->ecc.read_page(chip, bufpoi,
3467                                                           oob_required, page);
3468                         if (ret < 0) {
3469                                 if (use_bounce_buf)
3470                                         /* Invalidate page cache */
3471                                         chip->pagecache.page = -1;
3472                                 break;
3473                         }
3474
3475                         /*
3476                          * Copy back the data in the initial buffer when reading
3477                          * partial pages or when a bounce buffer is required.
3478                          */
3479                         if (use_bounce_buf) {
3480                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3481                                     !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3482                                     (ops->mode != MTD_OPS_RAW)) {
3483                                         chip->pagecache.page = realpage;
3484                                         chip->pagecache.bitflips = ret;
3485                                 } else {
3486                                         /* Invalidate page cache */
3487                                         chip->pagecache.page = -1;
3488                                 }
3489                                 memcpy(buf, bufpoi + col, bytes);
3490                         }
3491
3492                         if (unlikely(oob)) {
3493                                 int toread = min(oobreadlen, max_oobsize);
3494
3495                                 if (toread) {
3496                                         oob = nand_transfer_oob(chip, oob, ops,
3497                                                                 toread);
3498                                         oobreadlen -= toread;
3499                                 }
3500                         }
3501
3502                         nand_wait_readrdy(chip);
3503
3504                         if (mtd->ecc_stats.failed - ecc_stats.failed) {
3505                                 if (retry_mode + 1 < chip->read_retries) {
3506                                         retry_mode++;
3507                                         ret = nand_setup_read_retry(chip,
3508                                                         retry_mode);
3509                                         if (ret < 0)
3510                                                 break;
3511
3512                                         /* Reset ecc_stats; retry */
3513                                         mtd->ecc_stats = ecc_stats;
3514                                         goto read_retry;
3515                                 } else {
3516                                         /* No more retry modes; real failure */
3517                                         ecc_fail = true;
3518                                 }
3519                         }
3520
3521                         buf += bytes;
3522                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
3523                 } else {
3524                         memcpy(buf, chip->data_buf + col, bytes);
3525                         buf += bytes;
3526                         max_bitflips = max_t(unsigned int, max_bitflips,
3527                                              chip->pagecache.bitflips);
3528                 }
3529
3530                 readlen -= bytes;
3531
3532                 /* Reset to retry mode 0 */
3533                 if (retry_mode) {
3534                         ret = nand_setup_read_retry(chip, 0);
3535                         if (ret < 0)
3536                                 break;
3537                         retry_mode = 0;
3538                 }
3539
3540                 if (!readlen)
3541                         break;
3542
3543                 /* For subsequent reads align to page boundary */
3544                 col = 0;
3545                 /* Increment page address */
3546                 realpage++;
3547
3548                 page = realpage & chip->pagemask;
3549                 /* Check, if we cross a chip boundary */
3550                 if (!page) {
3551                         chipnr++;
3552                         nand_deselect_target(chip);
3553                         nand_select_target(chip, chipnr);
3554                 }
3555         }
3556         nand_deselect_target(chip);
3557
3558         ops->retlen = ops->len - (size_t) readlen;
3559         if (oob)
3560                 ops->oobretlen = ops->ooblen - oobreadlen;
3561
3562         if (ret < 0)
3563                 return ret;
3564
3565         if (ecc_fail)
3566                 return -EBADMSG;
3567
3568         return max_bitflips;
3569 }
3570
3571 /**
3572  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3573  * @chip: nand chip info structure
3574  * @page: page number to read
3575  */
3576 int nand_read_oob_std(struct nand_chip *chip, int page)
3577 {
3578         struct mtd_info *mtd = nand_to_mtd(chip);
3579
3580         return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3581 }
3582 EXPORT_SYMBOL(nand_read_oob_std);
3583
3584 /**
3585  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3586  *                          with syndromes
3587  * @chip: nand chip info structure
3588  * @page: page number to read
3589  */
3590 static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3591 {
3592         struct mtd_info *mtd = nand_to_mtd(chip);
3593         int length = mtd->oobsize;
3594         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3595         int eccsize = chip->ecc.size;
3596         uint8_t *bufpoi = chip->oob_poi;
3597         int i, toread, sndrnd = 0, pos, ret;
3598
3599         ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3600         if (ret)
3601                 return ret;
3602
3603         for (i = 0; i < chip->ecc.steps; i++) {
3604                 if (sndrnd) {
3605                         int ret;
3606
3607                         pos = eccsize + i * (eccsize + chunk);
3608                         if (mtd->writesize > 512)
3609                                 ret = nand_change_read_column_op(chip, pos,
3610                                                                  NULL, 0,
3611                                                                  false);
3612                         else
3613                                 ret = nand_read_page_op(chip, page, pos, NULL,
3614                                                         0);
3615
3616                         if (ret)
3617                                 return ret;
3618                 } else
3619                         sndrnd = 1;
3620                 toread = min_t(int, length, chunk);
3621
3622                 ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3623                 if (ret)
3624                         return ret;
3625
3626                 bufpoi += toread;
3627                 length -= toread;
3628         }
3629         if (length > 0) {
3630                 ret = nand_read_data_op(chip, bufpoi, length, false, false);
3631                 if (ret)
3632                         return ret;
3633         }
3634
3635         return 0;
3636 }
3637
3638 /**
3639  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3640  * @chip: nand chip info structure
3641  * @page: page number to write
3642  */
3643 int nand_write_oob_std(struct nand_chip *chip, int page)
3644 {
3645         struct mtd_info *mtd = nand_to_mtd(chip);
3646
3647         return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3648                                  mtd->oobsize);
3649 }
3650 EXPORT_SYMBOL(nand_write_oob_std);
3651
3652 /**
3653  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3654  *                           with syndrome - only for large page flash
3655  * @chip: nand chip info structure
3656  * @page: page number to write
3657  */
3658 static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3659 {
3660         struct mtd_info *mtd = nand_to_mtd(chip);
3661         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3662         int eccsize = chip->ecc.size, length = mtd->oobsize;
3663         int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3664         const uint8_t *bufpoi = chip->oob_poi;
3665
3666         /*
3667          * data-ecc-data-ecc ... ecc-oob
3668          * or
3669          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3670          */
3671         if (!chip->ecc.prepad && !chip->ecc.postpad) {
3672                 pos = steps * (eccsize + chunk);
3673                 steps = 0;
3674         } else
3675                 pos = eccsize;
3676
3677         ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3678         if (ret)
3679                 return ret;
3680
3681         for (i = 0; i < steps; i++) {
3682                 if (sndcmd) {
3683                         if (mtd->writesize <= 512) {
3684                                 uint32_t fill = 0xFFFFFFFF;
3685
3686                                 len = eccsize;
3687                                 while (len > 0) {
3688                                         int num = min_t(int, len, 4);
3689
3690                                         ret = nand_write_data_op(chip, &fill,
3691                                                                  num, false);
3692                                         if (ret)
3693                                                 return ret;
3694
3695                                         len -= num;
3696                                 }
3697                         } else {
3698                                 pos = eccsize + i * (eccsize + chunk);
3699                                 ret = nand_change_write_column_op(chip, pos,
3700                                                                   NULL, 0,
3701                                                                   false);
3702                                 if (ret)
3703                                         return ret;
3704                         }
3705                 } else
3706                         sndcmd = 1;
3707                 len = min_t(int, length, chunk);
3708
3709                 ret = nand_write_data_op(chip, bufpoi, len, false);
3710                 if (ret)
3711                         return ret;
3712
3713                 bufpoi += len;
3714                 length -= len;
3715         }
3716         if (length > 0) {
3717                 ret = nand_write_data_op(chip, bufpoi, length, false);
3718                 if (ret)
3719                         return ret;
3720         }
3721
3722         return nand_prog_page_end_op(chip);
3723 }
3724
3725 /**
3726  * nand_do_read_oob - [INTERN] NAND read out-of-band
3727  * @chip: NAND chip object
3728  * @from: offset to read from
3729  * @ops: oob operations description structure
3730  *
3731  * NAND read out-of-band data from the spare area.
3732  */
3733 static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3734                             struct mtd_oob_ops *ops)
3735 {
3736         struct mtd_info *mtd = nand_to_mtd(chip);
3737         unsigned int max_bitflips = 0;
3738         int page, realpage, chipnr;
3739         struct mtd_ecc_stats stats;
3740         int readlen = ops->ooblen;
3741         int len;
3742         uint8_t *buf = ops->oobbuf;
3743         int ret = 0;
3744
3745         pr_debug("%s: from = 0x%08Lx, len = %i\n",
3746                         __func__, (unsigned long long)from, readlen);
3747
3748         /* Check if the region is secured */
3749         if (nand_region_is_secured(chip, from, readlen))
3750                 return -EIO;
3751
3752         stats = mtd->ecc_stats;
3753
3754         len = mtd_oobavail(mtd, ops);
3755
3756         chipnr = (int)(from >> chip->chip_shift);
3757         nand_select_target(chip, chipnr);
3758
3759         /* Shift to get page */
3760         realpage = (int)(from >> chip->page_shift);
3761         page = realpage & chip->pagemask;
3762
3763         while (1) {
3764                 if (ops->mode == MTD_OPS_RAW)
3765                         ret = chip->ecc.read_oob_raw(chip, page);
3766                 else
3767                         ret = chip->ecc.read_oob(chip, page);
3768
3769                 if (ret < 0)
3770                         break;
3771
3772                 len = min(len, readlen);
3773                 buf = nand_transfer_oob(chip, buf, ops, len);
3774
3775                 nand_wait_readrdy(chip);
3776
3777                 max_bitflips = max_t(unsigned int, max_bitflips, ret);
3778
3779                 readlen -= len;
3780                 if (!readlen)
3781                         break;
3782
3783                 /* Increment page address */
3784                 realpage++;
3785
3786                 page = realpage & chip->pagemask;
3787                 /* Check, if we cross a chip boundary */
3788                 if (!page) {
3789                         chipnr++;
3790                         nand_deselect_target(chip);
3791                         nand_select_target(chip, chipnr);
3792                 }
3793         }
3794         nand_deselect_target(chip);
3795
3796         ops->oobretlen = ops->ooblen - readlen;
3797
3798         if (ret < 0)
3799                 return ret;
3800
3801         if (mtd->ecc_stats.failed - stats.failed)
3802                 return -EBADMSG;
3803
3804         return max_bitflips;
3805 }
3806
3807 /**
3808  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3809  * @mtd: MTD device structure
3810  * @from: offset to read from
3811  * @ops: oob operation description structure
3812  *
3813  * NAND read data and/or out-of-band data.
3814  */
3815 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3816                          struct mtd_oob_ops *ops)
3817 {
3818         struct nand_chip *chip = mtd_to_nand(mtd);
3819         struct mtd_ecc_stats old_stats;
3820         int ret;
3821
3822         ops->retlen = 0;
3823
3824         if (ops->mode != MTD_OPS_PLACE_OOB &&
3825             ops->mode != MTD_OPS_AUTO_OOB &&
3826             ops->mode != MTD_OPS_RAW)
3827                 return -ENOTSUPP;
3828
3829         nand_get_device(chip);
3830
3831         old_stats = mtd->ecc_stats;
3832
3833         if (!ops->datbuf)
3834                 ret = nand_do_read_oob(chip, from, ops);
3835         else
3836                 ret = nand_do_read_ops(chip, from, ops);
3837
3838         if (ops->stats) {
3839                 ops->stats->uncorrectable_errors +=
3840                         mtd->ecc_stats.failed - old_stats.failed;
3841                 ops->stats->corrected_bitflips +=
3842                         mtd->ecc_stats.corrected - old_stats.corrected;
3843         }
3844
3845         nand_release_device(chip);
3846         return ret;
3847 }
3848
3849 /**
3850  * nand_write_page_raw_notsupp - dummy raw page write function
3851  * @chip: nand chip info structure
3852  * @buf: data buffer
3853  * @oob_required: must write chip->oob_poi to OOB
3854  * @page: page number to write
3855  *
3856  * Returns -ENOTSUPP unconditionally.
3857  */
3858 int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
3859                                 int oob_required, int page)
3860 {
3861         return -ENOTSUPP;
3862 }
3863
3864 /**
3865  * nand_write_page_raw - [INTERN] raw page write function
3866  * @chip: nand chip info structure
3867  * @buf: data buffer
3868  * @oob_required: must write chip->oob_poi to OOB
3869  * @page: page number to write
3870  *
3871  * Not for syndrome calculating ECC controllers, which use a special oob layout.
3872  */
3873 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
3874                         int oob_required, int page)
3875 {
3876         struct mtd_info *mtd = nand_to_mtd(chip);
3877         int ret;
3878
3879         ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
3880         if (ret)
3881                 return ret;
3882
3883         if (oob_required) {
3884                 ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
3885                                          false);
3886                 if (ret)
3887                         return ret;
3888         }
3889
3890         return nand_prog_page_end_op(chip);
3891 }
3892 EXPORT_SYMBOL(nand_write_page_raw);
3893
3894 /**
3895  * nand_monolithic_write_page_raw - Monolithic page write in raw mode
3896  * @chip: NAND chip info structure
3897  * @buf: data buffer to write
3898  * @oob_required: must write chip->oob_poi to OOB
3899  * @page: page number to write
3900  *
3901  * This is a raw page write, ie. without any error detection/correction.
3902  * Monolithic means we are requesting all the relevant data (main plus
3903  * eventually OOB) to be sent over the bus and effectively programmed
3904  * into the NAND chip arrays in a single operation. This is an
3905  * alternative to nand_write_page_raw(), which first sends the main
3906  * data, then eventually send the OOB data by latching more data
3907  * cycles on the NAND bus, and finally sends the program command to
3908  * synchronyze the NAND chip cache.
3909  */
3910 int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
3911                                    int oob_required, int page)
3912 {
3913         struct mtd_info *mtd = nand_to_mtd(chip);
3914         unsigned int size = mtd->writesize;
3915         u8 *write_buf = (u8 *)buf;
3916
3917         if (oob_required) {
3918                 size += mtd->oobsize;
3919
3920                 if (buf != chip->data_buf) {
3921                         write_buf = nand_get_data_buf(chip);
3922                         memcpy(write_buf, buf, mtd->writesize);
3923                 }
3924         }
3925
3926         return nand_prog_page_op(chip, page, 0, write_buf, size);
3927 }
3928 EXPORT_SYMBOL(nand_monolithic_write_page_raw);
3929
3930 /**
3931  * nand_write_page_raw_syndrome - [INTERN] raw page write function
3932  * @chip: nand chip info structure
3933  * @buf: data buffer
3934  * @oob_required: must write chip->oob_poi to OOB
3935  * @page: page number to write
3936  *
3937  * We need a special oob layout and handling even when ECC isn't checked.
3938  */
3939 static int nand_write_page_raw_syndrome(struct nand_chip *chip,
3940                                         const uint8_t *buf, int oob_required,
3941                                         int page)
3942 {
3943         struct mtd_info *mtd = nand_to_mtd(chip);
3944         int eccsize = chip->ecc.size;
3945         int eccbytes = chip->ecc.bytes;
3946         uint8_t *oob = chip->oob_poi;
3947         int steps, size, ret;
3948
3949         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
3950         if (ret)
3951                 return ret;
3952
3953         for (steps = chip->ecc.steps; steps > 0; steps--) {
3954                 ret = nand_write_data_op(chip, buf, eccsize, false);
3955                 if (ret)
3956                         return ret;
3957
3958                 buf += eccsize;
3959
3960                 if (chip->ecc.prepad) {
3961                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
3962                                                  false);
3963                         if (ret)
3964                                 return ret;
3965
3966                         oob += chip->ecc.prepad;
3967                 }
3968
3969                 ret = nand_write_data_op(chip, oob, eccbytes, false);
3970                 if (ret)
3971                         return ret;
3972
3973                 oob += eccbytes;
3974
3975                 if (chip->ecc.postpad) {
3976                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
3977                                                  false);
3978                         if (ret)
3979                                 return ret;
3980
3981                         oob += chip->ecc.postpad;
3982                 }
3983         }
3984
3985         size = mtd->oobsize - (oob - chip->oob_poi);
3986         if (size) {
3987                 ret = nand_write_data_op(chip, oob, size, false);
3988                 if (ret)
3989                         return ret;
3990         }
3991
3992         return nand_prog_page_end_op(chip);
3993 }
3994 /**
3995  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
3996  * @chip: nand chip info structure
3997  * @buf: data buffer
3998  * @oob_required: must write chip->oob_poi to OOB
3999  * @page: page number to write
4000  */
4001 static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4002                                  int oob_required, int page)
4003 {
4004         struct mtd_info *mtd = nand_to_mtd(chip);
4005         int i, eccsize = chip->ecc.size, ret;
4006         int eccbytes = chip->ecc.bytes;
4007         int eccsteps = chip->ecc.steps;
4008         uint8_t *ecc_calc = chip->ecc.calc_buf;
4009         const uint8_t *p = buf;
4010
4011         /* Software ECC calculation */
4012         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4013                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4014
4015         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4016                                          chip->ecc.total);
4017         if (ret)
4018                 return ret;
4019
4020         return chip->ecc.write_page_raw(chip, buf, 1, page);
4021 }
4022
4023 /**
4024  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4025  * @chip: nand chip info structure
4026  * @buf: data buffer
4027  * @oob_required: must write chip->oob_poi to OOB
4028  * @page: page number to write
4029  */
4030 static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4031                                  int oob_required, int page)
4032 {
4033         struct mtd_info *mtd = nand_to_mtd(chip);
4034         int i, eccsize = chip->ecc.size, ret;
4035         int eccbytes = chip->ecc.bytes;
4036         int eccsteps = chip->ecc.steps;
4037         uint8_t *ecc_calc = chip->ecc.calc_buf;
4038         const uint8_t *p = buf;
4039
4040         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4041         if (ret)
4042                 return ret;
4043
4044         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4045                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4046
4047                 ret = nand_write_data_op(chip, p, eccsize, false);
4048                 if (ret)
4049                         return ret;
4050
4051                 chip->ecc.calculate(chip, p, &ecc_calc[i]);
4052         }
4053
4054         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4055                                          chip->ecc.total);
4056         if (ret)
4057                 return ret;
4058
4059         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4060         if (ret)
4061                 return ret;
4062
4063         return nand_prog_page_end_op(chip);
4064 }
4065
4066
4067 /**
4068  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4069  * @chip:       nand chip info structure
4070  * @offset:     column address of subpage within the page
4071  * @data_len:   data length
4072  * @buf:        data buffer
4073  * @oob_required: must write chip->oob_poi to OOB
4074  * @page: page number to write
4075  */
4076 static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4077                                     uint32_t data_len, const uint8_t *buf,
4078                                     int oob_required, int page)
4079 {
4080         struct mtd_info *mtd = nand_to_mtd(chip);
4081         uint8_t *oob_buf  = chip->oob_poi;
4082         uint8_t *ecc_calc = chip->ecc.calc_buf;
4083         int ecc_size      = chip->ecc.size;
4084         int ecc_bytes     = chip->ecc.bytes;
4085         int ecc_steps     = chip->ecc.steps;
4086         uint32_t start_step = offset / ecc_size;
4087         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4088         int oob_bytes       = mtd->oobsize / ecc_steps;
4089         int step, ret;
4090
4091         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4092         if (ret)
4093                 return ret;
4094
4095         for (step = 0; step < ecc_steps; step++) {
4096                 /* configure controller for WRITE access */
4097                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4098
4099                 /* write data (untouched subpages already masked by 0xFF) */
4100                 ret = nand_write_data_op(chip, buf, ecc_size, false);
4101                 if (ret)
4102                         return ret;
4103
4104                 /* mask ECC of un-touched subpages by padding 0xFF */
4105                 if ((step < start_step) || (step > end_step))
4106                         memset(ecc_calc, 0xff, ecc_bytes);
4107                 else
4108                         chip->ecc.calculate(chip, buf, ecc_calc);
4109
4110                 /* mask OOB of un-touched subpages by padding 0xFF */
4111                 /* if oob_required, preserve OOB metadata of written subpage */
4112                 if (!oob_required || (step < start_step) || (step > end_step))
4113                         memset(oob_buf, 0xff, oob_bytes);
4114
4115                 buf += ecc_size;
4116                 ecc_calc += ecc_bytes;
4117                 oob_buf  += oob_bytes;
4118         }
4119
4120         /* copy calculated ECC for whole page to chip->buffer->oob */
4121         /* this include masked-value(0xFF) for unwritten subpages */
4122         ecc_calc = chip->ecc.calc_buf;
4123         ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4124                                          chip->ecc.total);
4125         if (ret)
4126                 return ret;
4127
4128         /* write OOB buffer to NAND device */
4129         ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4130         if (ret)
4131                 return ret;
4132
4133         return nand_prog_page_end_op(chip);
4134 }
4135
4136
4137 /**
4138  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4139  * @chip: nand chip info structure
4140  * @buf: data buffer
4141  * @oob_required: must write chip->oob_poi to OOB
4142  * @page: page number to write
4143  *
4144  * The hw generator calculates the error syndrome automatically. Therefore we
4145  * need a special oob layout and handling.
4146  */
4147 static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4148                                     int oob_required, int page)
4149 {
4150         struct mtd_info *mtd = nand_to_mtd(chip);
4151         int i, eccsize = chip->ecc.size;
4152         int eccbytes = chip->ecc.bytes;
4153         int eccsteps = chip->ecc.steps;
4154         const uint8_t *p = buf;
4155         uint8_t *oob = chip->oob_poi;
4156         int ret;
4157
4158         ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4159         if (ret)
4160                 return ret;
4161
4162         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4163                 chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4164
4165                 ret = nand_write_data_op(chip, p, eccsize, false);
4166                 if (ret)
4167                         return ret;
4168
4169                 if (chip->ecc.prepad) {
4170                         ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4171                                                  false);
4172                         if (ret)
4173                                 return ret;
4174
4175                         oob += chip->ecc.prepad;
4176                 }
4177
4178                 chip->ecc.calculate(chip, p, oob);
4179
4180                 ret = nand_write_data_op(chip, oob, eccbytes, false);
4181                 if (ret)
4182                         return ret;
4183
4184                 oob += eccbytes;
4185
4186                 if (chip->ecc.postpad) {
4187                         ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4188                                                  false);
4189                         if (ret)
4190                                 return ret;
4191
4192                         oob += chip->ecc.postpad;
4193                 }
4194         }
4195
4196         /* Calculate remaining oob bytes */
4197         i = mtd->oobsize - (oob - chip->oob_poi);
4198         if (i) {
4199                 ret = nand_write_data_op(chip, oob, i, false);
4200                 if (ret)
4201                         return ret;
4202         }
4203
4204         return nand_prog_page_end_op(chip);
4205 }
4206
4207 /**
4208  * nand_write_page - write one page
4209  * @chip: NAND chip descriptor
4210  * @offset: address offset within the page
4211  * @data_len: length of actual data to be written
4212  * @buf: the data to write
4213  * @oob_required: must write chip->oob_poi to OOB
4214  * @page: page number to write
4215  * @raw: use _raw version of write_page
4216  */
4217 static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4218                            int data_len, const uint8_t *buf, int oob_required,
4219                            int page, int raw)
4220 {
4221         struct mtd_info *mtd = nand_to_mtd(chip);
4222         int status, subpage;
4223
4224         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4225                 chip->ecc.write_subpage)
4226                 subpage = offset || (data_len < mtd->writesize);
4227         else
4228                 subpage = 0;
4229
4230         if (unlikely(raw))
4231                 status = chip->ecc.write_page_raw(chip, buf, oob_required,
4232                                                   page);
4233         else if (subpage)
4234                 status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4235                                                  oob_required, page);
4236         else
4237                 status = chip->ecc.write_page(chip, buf, oob_required, page);
4238
4239         if (status < 0)
4240                 return status;
4241
4242         return 0;
4243 }
4244
4245 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
4246
4247 /**
4248  * nand_do_write_ops - [INTERN] NAND write with ECC
4249  * @chip: NAND chip object
4250  * @to: offset to write to
4251  * @ops: oob operations description structure
4252  *
4253  * NAND write with ECC.
4254  */
4255 static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4256                              struct mtd_oob_ops *ops)
4257 {
4258         struct mtd_info *mtd = nand_to_mtd(chip);
4259         int chipnr, realpage, page, column;
4260         uint32_t writelen = ops->len;
4261
4262         uint32_t oobwritelen = ops->ooblen;
4263         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4264
4265         uint8_t *oob = ops->oobbuf;
4266         uint8_t *buf = ops->datbuf;
4267         int ret;
4268         int oob_required = oob ? 1 : 0;
4269
4270         ops->retlen = 0;
4271         if (!writelen)
4272                 return 0;
4273
4274         /* Reject writes, which are not page aligned */
4275         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4276                 pr_notice("%s: attempt to write non page aligned data\n",
4277                            __func__);
4278                 return -EINVAL;
4279         }
4280
4281         /* Check if the region is secured */
4282         if (nand_region_is_secured(chip, to, writelen))
4283                 return -EIO;
4284
4285         column = to & (mtd->writesize - 1);
4286
4287         chipnr = (int)(to >> chip->chip_shift);
4288         nand_select_target(chip, chipnr);
4289
4290         /* Check, if it is write protected */
4291         if (nand_check_wp(chip)) {
4292                 ret = -EIO;
4293                 goto err_out;
4294         }
4295
4296         realpage = (int)(to >> chip->page_shift);
4297         page = realpage & chip->pagemask;
4298
4299         /* Invalidate the page cache, when we write to the cached page */
4300         if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4301             ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4302                 chip->pagecache.page = -1;
4303
4304         /* Don't allow multipage oob writes with offset */
4305         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4306                 ret = -EINVAL;
4307                 goto err_out;
4308         }
4309
4310         while (1) {
4311                 int bytes = mtd->writesize;
4312                 uint8_t *wbuf = buf;
4313                 int use_bounce_buf;
4314                 int part_pagewr = (column || writelen < mtd->writesize);
4315
4316                 if (part_pagewr)
4317                         use_bounce_buf = 1;
4318                 else if (chip->options & NAND_USES_DMA)
4319                         use_bounce_buf = !virt_addr_valid(buf) ||
4320                                          !IS_ALIGNED((unsigned long)buf,
4321                                                      chip->buf_align);
4322                 else
4323                         use_bounce_buf = 0;
4324
4325                 /*
4326                  * Copy the data from the initial buffer when doing partial page
4327                  * writes or when a bounce buffer is required.
4328                  */
4329                 if (use_bounce_buf) {
4330                         pr_debug("%s: using write bounce buffer for buf@%p\n",
4331                                          __func__, buf);
4332                         if (part_pagewr)
4333                                 bytes = min_t(int, bytes - column, writelen);
4334                         wbuf = nand_get_data_buf(chip);
4335                         memset(wbuf, 0xff, mtd->writesize);
4336                         memcpy(&wbuf[column], buf, bytes);
4337                 }
4338
4339                 if (unlikely(oob)) {
4340                         size_t len = min(oobwritelen, oobmaxlen);
4341                         oob = nand_fill_oob(chip, oob, len, ops);
4342                         oobwritelen -= len;
4343                 } else {
4344                         /* We still need to erase leftover OOB data */
4345                         memset(chip->oob_poi, 0xff, mtd->oobsize);
4346                 }
4347
4348                 ret = nand_write_page(chip, column, bytes, wbuf,
4349                                       oob_required, page,
4350                                       (ops->mode == MTD_OPS_RAW));
4351                 if (ret)
4352                         break;
4353
4354                 writelen -= bytes;
4355                 if (!writelen)
4356                         break;
4357
4358                 column = 0;
4359                 buf += bytes;
4360                 realpage++;
4361
4362                 page = realpage & chip->pagemask;
4363                 /* Check, if we cross a chip boundary */
4364                 if (!page) {
4365                         chipnr++;
4366                         nand_deselect_target(chip);
4367                         nand_select_target(chip, chipnr);
4368                 }
4369         }
4370
4371         ops->retlen = ops->len - writelen;
4372         if (unlikely(oob))
4373                 ops->oobretlen = ops->ooblen;
4374
4375 err_out:
4376         nand_deselect_target(chip);
4377         return ret;
4378 }
4379
4380 /**
4381  * panic_nand_write - [MTD Interface] NAND write with ECC
4382  * @mtd: MTD device structure
4383  * @to: offset to write to
4384  * @len: number of bytes to write
4385  * @retlen: pointer to variable to store the number of written bytes
4386  * @buf: the data to write
4387  *
4388  * NAND write with ECC. Used when performing writes in interrupt context, this
4389  * may for example be called by mtdoops when writing an oops while in panic.
4390  */
4391 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4392                             size_t *retlen, const uint8_t *buf)
4393 {
4394         struct nand_chip *chip = mtd_to_nand(mtd);
4395         int chipnr = (int)(to >> chip->chip_shift);
4396         struct mtd_oob_ops ops;
4397         int ret;
4398
4399         nand_select_target(chip, chipnr);
4400
4401         /* Wait for the device to get ready */
4402         panic_nand_wait(chip, 400);
4403
4404         memset(&ops, 0, sizeof(ops));
4405         ops.len = len;
4406         ops.datbuf = (uint8_t *)buf;
4407         ops.mode = MTD_OPS_PLACE_OOB;
4408
4409         ret = nand_do_write_ops(chip, to, &ops);
4410
4411         *retlen = ops.retlen;
4412         return ret;
4413 }
4414
4415 /**
4416  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4417  * @mtd: MTD device structure
4418  * @to: offset to write to
4419  * @ops: oob operation description structure
4420  */
4421 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4422                           struct mtd_oob_ops *ops)
4423 {
4424         struct nand_chip *chip = mtd_to_nand(mtd);
4425         int ret = 0;
4426
4427         ops->retlen = 0;
4428
4429         nand_get_device(chip);
4430
4431         switch (ops->mode) {
4432         case MTD_OPS_PLACE_OOB:
4433         case MTD_OPS_AUTO_OOB:
4434         case MTD_OPS_RAW:
4435                 break;
4436
4437         default:
4438                 goto out;
4439         }
4440
4441         if (!ops->datbuf)
4442                 ret = nand_do_write_oob(chip, to, ops);
4443         else
4444                 ret = nand_do_write_ops(chip, to, ops);
4445
4446 out:
4447         nand_release_device(chip);
4448         return ret;
4449 }
4450
4451 /**
4452  * nand_erase - [MTD Interface] erase block(s)
4453  * @mtd: MTD device structure
4454  * @instr: erase instruction
4455  *
4456  * Erase one ore more blocks.
4457  */
4458 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4459 {
4460         return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4461 }
4462
4463 /**
4464  * nand_erase_nand - [INTERN] erase block(s)
4465  * @chip: NAND chip object
4466  * @instr: erase instruction
4467  * @allowbbt: allow erasing the bbt area
4468  *
4469  * Erase one ore more blocks.
4470  */
4471 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4472                     int allowbbt)
4473 {
4474         int page, pages_per_block, ret, chipnr;
4475         loff_t len;
4476
4477         pr_debug("%s: start = 0x%012llx, len = %llu\n",
4478                         __func__, (unsigned long long)instr->addr,
4479                         (unsigned long long)instr->len);
4480
4481         if (check_offs_len(chip, instr->addr, instr->len))
4482                 return -EINVAL;
4483
4484         /* Check if the region is secured */
4485         if (nand_region_is_secured(chip, instr->addr, instr->len))
4486                 return -EIO;
4487
4488         /* Grab the lock and see if the device is available */
4489         nand_get_device(chip);
4490
4491         /* Shift to get first page */
4492         page = (int)(instr->addr >> chip->page_shift);
4493         chipnr = (int)(instr->addr >> chip->chip_shift);
4494
4495         /* Calculate pages in each block */
4496         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4497
4498         /* Select the NAND device */
4499         nand_select_target(chip, chipnr);
4500
4501         /* Check, if it is write protected */
4502         if (nand_check_wp(chip)) {
4503                 pr_debug("%s: device is write protected!\n",
4504                                 __func__);
4505                 ret = -EIO;
4506                 goto erase_exit;
4507         }
4508
4509         /* Loop through the pages */
4510         len = instr->len;
4511
4512         while (len) {
4513                 loff_t ofs = (loff_t)page << chip->page_shift;
4514
4515                 /* Check if we have a bad block, we do not erase bad blocks! */
4516                 if (nand_block_checkbad(chip, ((loff_t) page) <<
4517                                         chip->page_shift, allowbbt)) {
4518                         pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4519                                     __func__, (unsigned long long)ofs);
4520                         ret = -EIO;
4521                         goto erase_exit;
4522                 }
4523
4524                 /*
4525                  * Invalidate the page cache, if we erase the block which
4526                  * contains the current cached page.
4527                  */
4528                 if (page <= chip->pagecache.page && chip->pagecache.page <
4529                     (page + pages_per_block))
4530                         chip->pagecache.page = -1;
4531
4532                 ret = nand_erase_op(chip, (page & chip->pagemask) >>
4533                                     (chip->phys_erase_shift - chip->page_shift));
4534                 if (ret) {
4535                         pr_debug("%s: failed erase, page 0x%08x\n",
4536                                         __func__, page);
4537                         instr->fail_addr = ofs;
4538                         goto erase_exit;
4539                 }
4540
4541                 /* Increment page address and decrement length */
4542                 len -= (1ULL << chip->phys_erase_shift);
4543                 page += pages_per_block;
4544
4545                 /* Check, if we cross a chip boundary */
4546                 if (len && !(page & chip->pagemask)) {
4547                         chipnr++;
4548                         nand_deselect_target(chip);
4549                         nand_select_target(chip, chipnr);
4550                 }
4551         }
4552
4553         ret = 0;
4554 erase_exit:
4555
4556         /* Deselect and wake up anyone waiting on the device */
4557         nand_deselect_target(chip);
4558         nand_release_device(chip);
4559
4560         /* Return more or less happy */
4561         return ret;
4562 }
4563
4564 /**
4565  * nand_sync - [MTD Interface] sync
4566  * @mtd: MTD device structure
4567  *
4568  * Sync is actually a wait for chip ready function.
4569  */
4570 static void nand_sync(struct mtd_info *mtd)
4571 {
4572         struct nand_chip *chip = mtd_to_nand(mtd);
4573
4574         pr_debug("%s: called\n", __func__);
4575
4576         /* Grab the lock and see if the device is available */
4577         nand_get_device(chip);
4578         /* Release it and go back */
4579         nand_release_device(chip);
4580 }
4581
4582 /**
4583  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4584  * @mtd: MTD device structure
4585  * @offs: offset relative to mtd start
4586  */
4587 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4588 {
4589         struct nand_chip *chip = mtd_to_nand(mtd);
4590         int chipnr = (int)(offs >> chip->chip_shift);
4591         int ret;
4592
4593         /* Select the NAND device */
4594         nand_get_device(chip);
4595
4596         nand_select_target(chip, chipnr);
4597
4598         ret = nand_block_checkbad(chip, offs, 0);
4599
4600         nand_deselect_target(chip);
4601         nand_release_device(chip);
4602
4603         return ret;
4604 }
4605
4606 /**
4607  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4608  * @mtd: MTD device structure
4609  * @ofs: offset relative to mtd start
4610  */
4611 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4612 {
4613         int ret;
4614
4615         ret = nand_block_isbad(mtd, ofs);
4616         if (ret) {
4617                 /* If it was bad already, return success and do nothing */
4618                 if (ret > 0)
4619                         return 0;
4620                 return ret;
4621         }
4622
4623         return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4624 }
4625
4626 /**
4627  * nand_suspend - [MTD Interface] Suspend the NAND flash
4628  * @mtd: MTD device structure
4629  *
4630  * Returns 0 for success or negative error code otherwise.
4631  */
4632 static int nand_suspend(struct mtd_info *mtd)
4633 {
4634         struct nand_chip *chip = mtd_to_nand(mtd);
4635         int ret = 0;
4636
4637         mutex_lock(&chip->lock);
4638         if (chip->ops.suspend)
4639                 ret = chip->ops.suspend(chip);
4640         if (!ret)
4641                 chip->suspended = 1;
4642         mutex_unlock(&chip->lock);
4643
4644         return ret;
4645 }
4646
4647 /**
4648  * nand_resume - [MTD Interface] Resume the NAND flash
4649  * @mtd: MTD device structure
4650  */
4651 static void nand_resume(struct mtd_info *mtd)
4652 {
4653         struct nand_chip *chip = mtd_to_nand(mtd);
4654
4655         mutex_lock(&chip->lock);
4656         if (chip->suspended) {
4657                 if (chip->ops.resume)
4658                         chip->ops.resume(chip);
4659                 chip->suspended = 0;
4660         } else {
4661                 pr_err("%s called for a chip which is not in suspended state\n",
4662                         __func__);
4663         }
4664         mutex_unlock(&chip->lock);
4665
4666         wake_up_all(&chip->resume_wq);
4667 }
4668
4669 /**
4670  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4671  *                 prevent further operations
4672  * @mtd: MTD device structure
4673  */
4674 static void nand_shutdown(struct mtd_info *mtd)
4675 {
4676         nand_suspend(mtd);
4677 }
4678
4679 /**
4680  * nand_lock - [MTD Interface] Lock the NAND flash
4681  * @mtd: MTD device structure
4682  * @ofs: offset byte address
4683  * @len: number of bytes to lock (must be a multiple of block/page size)
4684  */
4685 static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4686 {
4687         struct nand_chip *chip = mtd_to_nand(mtd);
4688
4689         if (!chip->ops.lock_area)
4690                 return -ENOTSUPP;
4691
4692         return chip->ops.lock_area(chip, ofs, len);
4693 }
4694
4695 /**
4696  * nand_unlock - [MTD Interface] Unlock the NAND flash
4697  * @mtd: MTD device structure
4698  * @ofs: offset byte address
4699  * @len: number of bytes to unlock (must be a multiple of block/page size)
4700  */
4701 static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4702 {
4703         struct nand_chip *chip = mtd_to_nand(mtd);
4704
4705         if (!chip->ops.unlock_area)
4706                 return -ENOTSUPP;
4707
4708         return chip->ops.unlock_area(chip, ofs, len);
4709 }
4710
4711 /* Set default functions */
4712 static void nand_set_defaults(struct nand_chip *chip)
4713 {
4714         /* If no controller is provided, use the dummy, legacy one. */
4715         if (!chip->controller) {
4716                 chip->controller = &chip->legacy.dummy_controller;
4717                 nand_controller_init(chip->controller);
4718         }
4719
4720         nand_legacy_set_defaults(chip);
4721
4722         if (!chip->buf_align)
4723                 chip->buf_align = 1;
4724 }
4725
4726 /* Sanitize ONFI strings so we can safely print them */
4727 void sanitize_string(uint8_t *s, size_t len)
4728 {
4729         ssize_t i;
4730
4731         /* Null terminate */
4732         s[len - 1] = 0;
4733
4734         /* Remove non printable chars */
4735         for (i = 0; i < len - 1; i++) {
4736                 if (s[i] < ' ' || s[i] > 127)
4737                         s[i] = '?';
4738         }
4739
4740         /* Remove trailing spaces */
4741         strim(s);
4742 }
4743
4744 /*
4745  * nand_id_has_period - Check if an ID string has a given wraparound period
4746  * @id_data: the ID string
4747  * @arrlen: the length of the @id_data array
4748  * @period: the period of repitition
4749  *
4750  * Check if an ID string is repeated within a given sequence of bytes at
4751  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4752  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4753  * if the repetition has a period of @period; otherwise, returns zero.
4754  */
4755 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4756 {
4757         int i, j;
4758         for (i = 0; i < period; i++)
4759                 for (j = i + period; j < arrlen; j += period)
4760                         if (id_data[i] != id_data[j])
4761                                 return 0;
4762         return 1;
4763 }
4764
4765 /*
4766  * nand_id_len - Get the length of an ID string returned by CMD_READID
4767  * @id_data: the ID string
4768  * @arrlen: the length of the @id_data array
4769
4770  * Returns the length of the ID string, according to known wraparound/trailing
4771  * zero patterns. If no pattern exists, returns the length of the array.
4772  */
4773 static int nand_id_len(u8 *id_data, int arrlen)
4774 {
4775         int last_nonzero, period;
4776
4777         /* Find last non-zero byte */
4778         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4779                 if (id_data[last_nonzero])
4780                         break;
4781
4782         /* All zeros */
4783         if (last_nonzero < 0)
4784                 return 0;
4785
4786         /* Calculate wraparound period */
4787         for (period = 1; period < arrlen; period++)
4788                 if (nand_id_has_period(id_data, arrlen, period))
4789                         break;
4790
4791         /* There's a repeated pattern */
4792         if (period < arrlen)
4793                 return period;
4794
4795         /* There are trailing zeros */
4796         if (last_nonzero < arrlen - 1)
4797                 return last_nonzero + 1;
4798
4799         /* No pattern detected */
4800         return arrlen;
4801 }
4802
4803 /* Extract the bits of per cell from the 3rd byte of the extended ID */
4804 static int nand_get_bits_per_cell(u8 cellinfo)
4805 {
4806         int bits;
4807
4808         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4809         bits >>= NAND_CI_CELLTYPE_SHIFT;
4810         return bits + 1;
4811 }
4812
4813 /*
4814  * Many new NAND share similar device ID codes, which represent the size of the
4815  * chip. The rest of the parameters must be decoded according to generic or
4816  * manufacturer-specific "extended ID" decoding patterns.
4817  */
4818 void nand_decode_ext_id(struct nand_chip *chip)
4819 {
4820         struct nand_memory_organization *memorg;
4821         struct mtd_info *mtd = nand_to_mtd(chip);
4822         int extid;
4823         u8 *id_data = chip->id.data;
4824
4825         memorg = nanddev_get_memorg(&chip->base);
4826
4827         /* The 3rd id byte holds MLC / multichip data */
4828         memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4829         /* The 4th id byte is the important one */
4830         extid = id_data[3];
4831
4832         /* Calc pagesize */
4833         memorg->pagesize = 1024 << (extid & 0x03);
4834         mtd->writesize = memorg->pagesize;
4835         extid >>= 2;
4836         /* Calc oobsize */
4837         memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
4838         mtd->oobsize = memorg->oobsize;
4839         extid >>= 2;
4840         /* Calc blocksize. Blocksize is multiples of 64KiB */
4841         memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
4842                                        memorg->pagesize;
4843         mtd->erasesize = (64 * 1024) << (extid & 0x03);
4844         extid >>= 2;
4845         /* Get buswidth information */
4846         if (extid & 0x1)
4847                 chip->options |= NAND_BUSWIDTH_16;
4848 }
4849 EXPORT_SYMBOL_GPL(nand_decode_ext_id);
4850
4851 /*
4852  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
4853  * decodes a matching ID table entry and assigns the MTD size parameters for
4854  * the chip.
4855  */
4856 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
4857 {
4858         struct mtd_info *mtd = nand_to_mtd(chip);
4859         struct nand_memory_organization *memorg;
4860
4861         memorg = nanddev_get_memorg(&chip->base);
4862
4863         memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
4864         mtd->erasesize = type->erasesize;
4865         memorg->pagesize = type->pagesize;
4866         mtd->writesize = memorg->pagesize;
4867         memorg->oobsize = memorg->pagesize / 32;
4868         mtd->oobsize = memorg->oobsize;
4869
4870         /* All legacy ID NAND are small-page, SLC */
4871         memorg->bits_per_cell = 1;
4872 }
4873
4874 /*
4875  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
4876  * heuristic patterns using various detected parameters (e.g., manufacturer,
4877  * page size, cell-type information).
4878  */
4879 static void nand_decode_bbm_options(struct nand_chip *chip)
4880 {
4881         struct mtd_info *mtd = nand_to_mtd(chip);
4882
4883         /* Set the bad block position */
4884         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
4885                 chip->badblockpos = NAND_BBM_POS_LARGE;
4886         else
4887                 chip->badblockpos = NAND_BBM_POS_SMALL;
4888 }
4889
4890 static inline bool is_full_id_nand(struct nand_flash_dev *type)
4891 {
4892         return type->id_len;
4893 }
4894
4895 static bool find_full_id_nand(struct nand_chip *chip,
4896                               struct nand_flash_dev *type)
4897 {
4898         struct nand_device *base = &chip->base;
4899         struct nand_ecc_props requirements;
4900         struct mtd_info *mtd = nand_to_mtd(chip);
4901         struct nand_memory_organization *memorg;
4902         u8 *id_data = chip->id.data;
4903
4904         memorg = nanddev_get_memorg(&chip->base);
4905
4906         if (!strncmp(type->id, id_data, type->id_len)) {
4907                 memorg->pagesize = type->pagesize;
4908                 mtd->writesize = memorg->pagesize;
4909                 memorg->pages_per_eraseblock = type->erasesize /
4910                                                type->pagesize;
4911                 mtd->erasesize = type->erasesize;
4912                 memorg->oobsize = type->oobsize;
4913                 mtd->oobsize = memorg->oobsize;
4914
4915                 memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
4916                 memorg->eraseblocks_per_lun =
4917                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
4918                                            memorg->pagesize *
4919                                            memorg->pages_per_eraseblock);
4920                 chip->options |= type->options;
4921                 requirements.strength = NAND_ECC_STRENGTH(type);
4922                 requirements.step_size = NAND_ECC_STEP(type);
4923                 nanddev_set_ecc_requirements(base, &requirements);
4924
4925                 chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
4926                 if (!chip->parameters.model)
4927                         return false;
4928
4929                 return true;
4930         }
4931         return false;
4932 }
4933
4934 /*
4935  * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
4936  * compliant and does not have a full-id or legacy-id entry in the nand_ids
4937  * table.
4938  */
4939 static void nand_manufacturer_detect(struct nand_chip *chip)
4940 {
4941         /*
4942          * Try manufacturer detection if available and use
4943          * nand_decode_ext_id() otherwise.
4944          */
4945         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4946             chip->manufacturer.desc->ops->detect) {
4947                 struct nand_memory_organization *memorg;
4948
4949                 memorg = nanddev_get_memorg(&chip->base);
4950
4951                 /* The 3rd id byte holds MLC / multichip data */
4952                 memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
4953                 chip->manufacturer.desc->ops->detect(chip);
4954         } else {
4955                 nand_decode_ext_id(chip);
4956         }
4957 }
4958
4959 /*
4960  * Manufacturer initialization. This function is called for all NANDs including
4961  * ONFI and JEDEC compliant ones.
4962  * Manufacturer drivers should put all their specific initialization code in
4963  * their ->init() hook.
4964  */
4965 static int nand_manufacturer_init(struct nand_chip *chip)
4966 {
4967         if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
4968             !chip->manufacturer.desc->ops->init)
4969                 return 0;
4970
4971         return chip->manufacturer.desc->ops->init(chip);
4972 }
4973
4974 /*
4975  * Manufacturer cleanup. This function is called for all NANDs including
4976  * ONFI and JEDEC compliant ones.
4977  * Manufacturer drivers should put all their specific cleanup code in their
4978  * ->cleanup() hook.
4979  */
4980 static void nand_manufacturer_cleanup(struct nand_chip *chip)
4981 {
4982         /* Release manufacturer private data */
4983         if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
4984             chip->manufacturer.desc->ops->cleanup)
4985                 chip->manufacturer.desc->ops->cleanup(chip);
4986 }
4987
4988 static const char *
4989 nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
4990 {
4991         return manufacturer_desc ? manufacturer_desc->name : "Unknown";
4992 }
4993
4994 /*
4995  * Get the flash and manufacturer id and lookup if the type is supported.
4996  */
4997 static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
4998 {
4999         const struct nand_manufacturer_desc *manufacturer_desc;
5000         struct mtd_info *mtd = nand_to_mtd(chip);
5001         struct nand_memory_organization *memorg;
5002         int busw, ret;
5003         u8 *id_data = chip->id.data;
5004         u8 maf_id, dev_id;
5005         u64 targetsize;
5006
5007         /*
5008          * Let's start by initializing memorg fields that might be left
5009          * unassigned by the ID-based detection logic.
5010          */
5011         memorg = nanddev_get_memorg(&chip->base);
5012         memorg->planes_per_lun = 1;
5013         memorg->luns_per_target = 1;
5014
5015         /*
5016          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5017          * after power-up.
5018          */
5019         ret = nand_reset(chip, 0);
5020         if (ret)
5021                 return ret;
5022
5023         /* Select the device */
5024         nand_select_target(chip, 0);
5025
5026         /* Send the command for reading device ID */
5027         ret = nand_readid_op(chip, 0, id_data, 2);
5028         if (ret)
5029                 return ret;
5030
5031         /* Read manufacturer and device IDs */
5032         maf_id = id_data[0];
5033         dev_id = id_data[1];
5034
5035         /*
5036          * Try again to make sure, as some systems the bus-hold or other
5037          * interface concerns can cause random data which looks like a
5038          * possibly credible NAND flash to appear. If the two results do
5039          * not match, ignore the device completely.
5040          */
5041
5042         /* Read entire ID string */
5043         ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5044         if (ret)
5045                 return ret;
5046
5047         if (id_data[0] != maf_id || id_data[1] != dev_id) {
5048                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5049                         maf_id, dev_id, id_data[0], id_data[1]);
5050                 return -ENODEV;
5051         }
5052
5053         chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5054
5055         /* Try to identify manufacturer */
5056         manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5057         chip->manufacturer.desc = manufacturer_desc;
5058
5059         if (!type)
5060                 type = nand_flash_ids;
5061
5062         /*
5063          * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5064          * override it.
5065          * This is required to make sure initial NAND bus width set by the
5066          * NAND controller driver is coherent with the real NAND bus width
5067          * (extracted by auto-detection code).
5068          */
5069         busw = chip->options & NAND_BUSWIDTH_16;
5070
5071         /*
5072          * The flag is only set (never cleared), reset it to its default value
5073          * before starting auto-detection.
5074          */
5075         chip->options &= ~NAND_BUSWIDTH_16;
5076
5077         for (; type->name != NULL; type++) {
5078                 if (is_full_id_nand(type)) {
5079                         if (find_full_id_nand(chip, type))
5080                                 goto ident_done;
5081                 } else if (dev_id == type->dev_id) {
5082                         break;
5083                 }
5084         }
5085
5086         if (!type->name || !type->pagesize) {
5087                 /* Check if the chip is ONFI compliant */
5088                 ret = nand_onfi_detect(chip);
5089                 if (ret < 0)
5090                         return ret;
5091                 else if (ret)
5092                         goto ident_done;
5093
5094                 /* Check if the chip is JEDEC compliant */
5095                 ret = nand_jedec_detect(chip);
5096                 if (ret < 0)
5097                         return ret;
5098                 else if (ret)
5099                         goto ident_done;
5100         }
5101
5102         if (!type->name)
5103                 return -ENODEV;
5104
5105         chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5106         if (!chip->parameters.model)
5107                 return -ENOMEM;
5108
5109         if (!type->pagesize)
5110                 nand_manufacturer_detect(chip);
5111         else
5112                 nand_decode_id(chip, type);
5113
5114         /* Get chip options */
5115         chip->options |= type->options;
5116
5117         memorg->eraseblocks_per_lun =
5118                         DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5119                                            memorg->pagesize *
5120                                            memorg->pages_per_eraseblock);
5121
5122 ident_done:
5123         if (!mtd->name)
5124                 mtd->name = chip->parameters.model;
5125
5126         if (chip->options & NAND_BUSWIDTH_AUTO) {
5127                 WARN_ON(busw & NAND_BUSWIDTH_16);
5128                 nand_set_defaults(chip);
5129         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5130                 /*
5131                  * Check, if buswidth is correct. Hardware drivers should set
5132                  * chip correct!
5133                  */
5134                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5135                         maf_id, dev_id);
5136                 pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5137                         mtd->name);
5138                 pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5139                         (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5140                 ret = -EINVAL;
5141
5142                 goto free_detect_allocation;
5143         }
5144
5145         nand_decode_bbm_options(chip);
5146
5147         /* Calculate the address shift from the page size */
5148         chip->page_shift = ffs(mtd->writesize) - 1;
5149         /* Convert chipsize to number of pages per chip -1 */
5150         targetsize = nanddev_target_size(&chip->base);
5151         chip->pagemask = (targetsize >> chip->page_shift) - 1;
5152
5153         chip->bbt_erase_shift = chip->phys_erase_shift =
5154                 ffs(mtd->erasesize) - 1;
5155         if (targetsize & 0xffffffff)
5156                 chip->chip_shift = ffs((unsigned)targetsize) - 1;
5157         else {
5158                 chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5159                 chip->chip_shift += 32 - 1;
5160         }
5161
5162         if (chip->chip_shift - chip->page_shift > 16)
5163                 chip->options |= NAND_ROW_ADDR_3;
5164
5165         chip->badblockbits = 8;
5166
5167         nand_legacy_adjust_cmdfunc(chip);
5168
5169         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5170                 maf_id, dev_id);
5171         pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5172                 chip->parameters.model);
5173         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5174                 (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5175                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5176         return 0;
5177
5178 free_detect_allocation:
5179         kfree(chip->parameters.model);
5180
5181         return ret;
5182 }
5183
5184 static enum nand_ecc_engine_type
5185 of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5186 {
5187         enum nand_ecc_legacy_mode {
5188                 NAND_ECC_INVALID,
5189                 NAND_ECC_NONE,
5190                 NAND_ECC_SOFT,
5191                 NAND_ECC_SOFT_BCH,
5192                 NAND_ECC_HW,
5193                 NAND_ECC_HW_SYNDROME,
5194                 NAND_ECC_ON_DIE,
5195         };
5196         const char * const nand_ecc_legacy_modes[] = {
5197                 [NAND_ECC_NONE]         = "none",
5198                 [NAND_ECC_SOFT]         = "soft",
5199                 [NAND_ECC_SOFT_BCH]     = "soft_bch",
5200                 [NAND_ECC_HW]           = "hw",
5201                 [NAND_ECC_HW_SYNDROME]  = "hw_syndrome",
5202                 [NAND_ECC_ON_DIE]       = "on-die",
5203         };
5204         enum nand_ecc_legacy_mode eng_type;
5205         const char *pm;
5206         int err;
5207
5208         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5209         if (err)
5210                 return NAND_ECC_ENGINE_TYPE_INVALID;
5211
5212         for (eng_type = NAND_ECC_NONE;
5213              eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5214                 if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5215                         switch (eng_type) {
5216                         case NAND_ECC_NONE:
5217                                 return NAND_ECC_ENGINE_TYPE_NONE;
5218                         case NAND_ECC_SOFT:
5219                         case NAND_ECC_SOFT_BCH:
5220                                 return NAND_ECC_ENGINE_TYPE_SOFT;
5221                         case NAND_ECC_HW:
5222                         case NAND_ECC_HW_SYNDROME:
5223                                 return NAND_ECC_ENGINE_TYPE_ON_HOST;
5224                         case NAND_ECC_ON_DIE:
5225                                 return NAND_ECC_ENGINE_TYPE_ON_DIE;
5226                         default:
5227                                 break;
5228                         }
5229                 }
5230         }
5231
5232         return NAND_ECC_ENGINE_TYPE_INVALID;
5233 }
5234
5235 static enum nand_ecc_placement
5236 of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5237 {
5238         const char *pm;
5239         int err;
5240
5241         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5242         if (!err) {
5243                 if (!strcasecmp(pm, "hw_syndrome"))
5244                         return NAND_ECC_PLACEMENT_INTERLEAVED;
5245         }
5246
5247         return NAND_ECC_PLACEMENT_UNKNOWN;
5248 }
5249
5250 static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5251 {
5252         const char *pm;
5253         int err;
5254
5255         err = of_property_read_string(np, "nand-ecc-mode", &pm);
5256         if (!err) {
5257                 if (!strcasecmp(pm, "soft"))
5258                         return NAND_ECC_ALGO_HAMMING;
5259                 else if (!strcasecmp(pm, "soft_bch"))
5260                         return NAND_ECC_ALGO_BCH;
5261         }
5262
5263         return NAND_ECC_ALGO_UNKNOWN;
5264 }
5265
5266 static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5267 {
5268         struct device_node *dn = nand_get_flash_node(chip);
5269         struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5270
5271         if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5272                 user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5273
5274         if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5275                 user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5276
5277         if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5278                 user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5279 }
5280
5281 static int of_get_nand_bus_width(struct nand_chip *chip)
5282 {
5283         struct device_node *dn = nand_get_flash_node(chip);
5284         u32 val;
5285         int ret;
5286
5287         ret = of_property_read_u32(dn, "nand-bus-width", &val);
5288         if (ret == -EINVAL)
5289                 /* Buswidth defaults to 8 if the property does not exist .*/
5290                 return 0;
5291         else if (ret)
5292                 return ret;
5293
5294         if (val == 16)
5295                 chip->options |= NAND_BUSWIDTH_16;
5296         else if (val != 8)
5297                 return -EINVAL;
5298         return 0;
5299 }
5300
5301 static int of_get_nand_secure_regions(struct nand_chip *chip)
5302 {
5303         struct device_node *dn = nand_get_flash_node(chip);
5304         struct property *prop;
5305         int nr_elem, i, j;
5306
5307         /* Only proceed if the "secure-regions" property is present in DT */
5308         prop = of_find_property(dn, "secure-regions", NULL);
5309         if (!prop)
5310                 return 0;
5311
5312         nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5313         if (nr_elem <= 0)
5314                 return nr_elem;
5315
5316         chip->nr_secure_regions = nr_elem / 2;
5317         chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5318                                        GFP_KERNEL);
5319         if (!chip->secure_regions)
5320                 return -ENOMEM;
5321
5322         for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5323                 of_property_read_u64_index(dn, "secure-regions", j,
5324                                            &chip->secure_regions[i].offset);
5325                 of_property_read_u64_index(dn, "secure-regions", j + 1,
5326                                            &chip->secure_regions[i].size);
5327         }
5328
5329         return 0;
5330 }
5331
5332 /**
5333  * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5334  * @dev: Device that will be parsed. Also used for managed allocations.
5335  * @cs_array: Array of GPIO desc pointers allocated on success
5336  * @ncs_array: Number of entries in @cs_array updated on success.
5337  * @return 0 on success, an error otherwise.
5338  */
5339 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5340                              unsigned int *ncs_array)
5341 {
5342         struct gpio_desc **descs;
5343         int ndescs, i;
5344
5345         ndescs = gpiod_count(dev, "cs");
5346         if (ndescs < 0) {
5347                 dev_dbg(dev, "No valid cs-gpios property\n");
5348                 return 0;
5349         }
5350
5351         descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5352         if (!descs)
5353                 return -ENOMEM;
5354
5355         for (i = 0; i < ndescs; i++) {
5356                 descs[i] = gpiod_get_index_optional(dev, "cs", i,
5357                                                     GPIOD_OUT_HIGH);
5358                 if (IS_ERR(descs[i]))
5359                         return PTR_ERR(descs[i]);
5360         }
5361
5362         *ncs_array = ndescs;
5363         *cs_array = descs;
5364
5365         return 0;
5366 }
5367 EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5368
5369 static int rawnand_dt_init(struct nand_chip *chip)
5370 {
5371         struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5372         struct device_node *dn = nand_get_flash_node(chip);
5373         int ret;
5374
5375         if (!dn)
5376                 return 0;
5377
5378         ret = of_get_nand_bus_width(chip);
5379         if (ret)
5380                 return ret;
5381
5382         if (of_property_read_bool(dn, "nand-is-boot-medium"))
5383                 chip->options |= NAND_IS_BOOT_MEDIUM;
5384
5385         if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5386                 chip->bbt_options |= NAND_BBT_USE_FLASH;
5387
5388         of_get_nand_ecc_user_config(nand);
5389         of_get_nand_ecc_legacy_user_config(chip);
5390
5391         /*
5392          * If neither the user nor the NAND controller have requested a specific
5393          * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5394          */
5395         nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5396
5397         /*
5398          * Use the user requested engine type, unless there is none, in this
5399          * case default to the NAND controller choice, otherwise fallback to
5400          * the raw NAND default one.
5401          */
5402         if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5403                 chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5404         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5405                 chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5406
5407         chip->ecc.placement = nand->ecc.user_conf.placement;
5408         chip->ecc.algo = nand->ecc.user_conf.algo;
5409         chip->ecc.strength = nand->ecc.user_conf.strength;
5410         chip->ecc.size = nand->ecc.user_conf.step_size;
5411
5412         return 0;
5413 }
5414
5415 /**
5416  * nand_scan_ident - Scan for the NAND device
5417  * @chip: NAND chip object
5418  * @maxchips: number of chips to scan for
5419  * @table: alternative NAND ID table
5420  *
5421  * This is the first phase of the normal nand_scan() function. It reads the
5422  * flash ID and sets up MTD fields accordingly.
5423  *
5424  * This helper used to be called directly from controller drivers that needed
5425  * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5426  * prevented dynamic allocations during this phase which was unconvenient and
5427  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5428  */
5429 static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5430                            struct nand_flash_dev *table)
5431 {
5432         struct mtd_info *mtd = nand_to_mtd(chip);
5433         struct nand_memory_organization *memorg;
5434         int nand_maf_id, nand_dev_id;
5435         unsigned int i;
5436         int ret;
5437
5438         memorg = nanddev_get_memorg(&chip->base);
5439
5440         /* Assume all dies are deselected when we enter nand_scan_ident(). */
5441         chip->cur_cs = -1;
5442
5443         mutex_init(&chip->lock);
5444         init_waitqueue_head(&chip->resume_wq);
5445
5446         /* Enforce the right timings for reset/detection */
5447         chip->current_interface_config = nand_get_reset_interface_config();
5448
5449         ret = rawnand_dt_init(chip);
5450         if (ret)
5451                 return ret;
5452
5453         if (!mtd->name && mtd->dev.parent)
5454                 mtd->name = dev_name(mtd->dev.parent);
5455
5456         /* Set the default functions */
5457         nand_set_defaults(chip);
5458
5459         ret = nand_legacy_check_hooks(chip);
5460         if (ret)
5461                 return ret;
5462
5463         memorg->ntargets = maxchips;
5464
5465         /* Read the flash type */
5466         ret = nand_detect(chip, table);
5467         if (ret) {
5468                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5469                         pr_warn("No NAND device found\n");
5470                 nand_deselect_target(chip);
5471                 return ret;
5472         }
5473
5474         nand_maf_id = chip->id.data[0];
5475         nand_dev_id = chip->id.data[1];
5476
5477         nand_deselect_target(chip);
5478
5479         /* Check for a chip array */
5480         for (i = 1; i < maxchips; i++) {
5481                 u8 id[2];
5482
5483                 /* See comment in nand_get_flash_type for reset */
5484                 ret = nand_reset(chip, i);
5485                 if (ret)
5486                         break;
5487
5488                 nand_select_target(chip, i);
5489                 /* Send the command for reading device ID */
5490                 ret = nand_readid_op(chip, 0, id, sizeof(id));
5491                 if (ret)
5492                         break;
5493                 /* Read manufacturer and device IDs */
5494                 if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5495                         nand_deselect_target(chip);
5496                         break;
5497                 }
5498                 nand_deselect_target(chip);
5499         }
5500         if (i > 1)
5501                 pr_info("%d chips detected\n", i);
5502
5503         /* Store the number of chips and calc total size for mtd */
5504         memorg->ntargets = i;
5505         mtd->size = i * nanddev_target_size(&chip->base);
5506
5507         return 0;
5508 }
5509
5510 static void nand_scan_ident_cleanup(struct nand_chip *chip)
5511 {
5512         kfree(chip->parameters.model);
5513         kfree(chip->parameters.onfi);
5514 }
5515
5516 int rawnand_sw_hamming_init(struct nand_chip *chip)
5517 {
5518         struct nand_ecc_sw_hamming_conf *engine_conf;
5519         struct nand_device *base = &chip->base;
5520         int ret;
5521
5522         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5523         base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5524         base->ecc.user_conf.strength = chip->ecc.strength;
5525         base->ecc.user_conf.step_size = chip->ecc.size;
5526
5527         ret = nand_ecc_sw_hamming_init_ctx(base);
5528         if (ret)
5529                 return ret;
5530
5531         engine_conf = base->ecc.ctx.priv;
5532
5533         if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5534                 engine_conf->sm_order = true;
5535
5536         chip->ecc.size = base->ecc.ctx.conf.step_size;
5537         chip->ecc.strength = base->ecc.ctx.conf.strength;
5538         chip->ecc.total = base->ecc.ctx.total;
5539         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5540         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5541
5542         return 0;
5543 }
5544 EXPORT_SYMBOL(rawnand_sw_hamming_init);
5545
5546 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5547                                  const unsigned char *buf,
5548                                  unsigned char *code)
5549 {
5550         struct nand_device *base = &chip->base;
5551
5552         return nand_ecc_sw_hamming_calculate(base, buf, code);
5553 }
5554 EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5555
5556 int rawnand_sw_hamming_correct(struct nand_chip *chip,
5557                                unsigned char *buf,
5558                                unsigned char *read_ecc,
5559                                unsigned char *calc_ecc)
5560 {
5561         struct nand_device *base = &chip->base;
5562
5563         return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5564 }
5565 EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5566
5567 void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5568 {
5569         struct nand_device *base = &chip->base;
5570
5571         nand_ecc_sw_hamming_cleanup_ctx(base);
5572 }
5573 EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5574
5575 int rawnand_sw_bch_init(struct nand_chip *chip)
5576 {
5577         struct nand_device *base = &chip->base;
5578         const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5579         int ret;
5580
5581         base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5582         base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5583         base->ecc.user_conf.step_size = chip->ecc.size;
5584         base->ecc.user_conf.strength = chip->ecc.strength;
5585
5586         ret = nand_ecc_sw_bch_init_ctx(base);
5587         if (ret)
5588                 return ret;
5589
5590         chip->ecc.size = ecc_conf->step_size;
5591         chip->ecc.strength = ecc_conf->strength;
5592         chip->ecc.total = base->ecc.ctx.total;
5593         chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5594         chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5595
5596         return 0;
5597 }
5598 EXPORT_SYMBOL(rawnand_sw_bch_init);
5599
5600 static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5601                                     const unsigned char *buf,
5602                                     unsigned char *code)
5603 {
5604         struct nand_device *base = &chip->base;
5605
5606         return nand_ecc_sw_bch_calculate(base, buf, code);
5607 }
5608
5609 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5610                            unsigned char *read_ecc, unsigned char *calc_ecc)
5611 {
5612         struct nand_device *base = &chip->base;
5613
5614         return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5615 }
5616 EXPORT_SYMBOL(rawnand_sw_bch_correct);
5617
5618 void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5619 {
5620         struct nand_device *base = &chip->base;
5621
5622         nand_ecc_sw_bch_cleanup_ctx(base);
5623 }
5624 EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5625
5626 static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5627 {
5628         struct nand_ecc_ctrl *ecc = &chip->ecc;
5629
5630         switch (ecc->placement) {
5631         case NAND_ECC_PLACEMENT_UNKNOWN:
5632         case NAND_ECC_PLACEMENT_OOB:
5633                 /* Use standard hwecc read page function? */
5634                 if (!ecc->read_page)
5635                         ecc->read_page = nand_read_page_hwecc;
5636                 if (!ecc->write_page)
5637                         ecc->write_page = nand_write_page_hwecc;
5638                 if (!ecc->read_page_raw)
5639                         ecc->read_page_raw = nand_read_page_raw;
5640                 if (!ecc->write_page_raw)
5641                         ecc->write_page_raw = nand_write_page_raw;
5642                 if (!ecc->read_oob)
5643                         ecc->read_oob = nand_read_oob_std;
5644                 if (!ecc->write_oob)
5645                         ecc->write_oob = nand_write_oob_std;
5646                 if (!ecc->read_subpage)
5647                         ecc->read_subpage = nand_read_subpage;
5648                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5649                         ecc->write_subpage = nand_write_subpage_hwecc;
5650                 fallthrough;
5651
5652         case NAND_ECC_PLACEMENT_INTERLEAVED:
5653                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5654                     (!ecc->read_page ||
5655                      ecc->read_page == nand_read_page_hwecc ||
5656                      !ecc->write_page ||
5657                      ecc->write_page == nand_write_page_hwecc)) {
5658                         WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5659                         return -EINVAL;
5660                 }
5661                 /* Use standard syndrome read/write page function? */
5662                 if (!ecc->read_page)
5663                         ecc->read_page = nand_read_page_syndrome;
5664                 if (!ecc->write_page)
5665                         ecc->write_page = nand_write_page_syndrome;
5666                 if (!ecc->read_page_raw)
5667                         ecc->read_page_raw = nand_read_page_raw_syndrome;
5668                 if (!ecc->write_page_raw)
5669                         ecc->write_page_raw = nand_write_page_raw_syndrome;
5670                 if (!ecc->read_oob)
5671                         ecc->read_oob = nand_read_oob_syndrome;
5672                 if (!ecc->write_oob)
5673                         ecc->write_oob = nand_write_oob_syndrome;
5674                 break;
5675
5676         default:
5677                 pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5678                         ecc->placement);
5679                 return -EINVAL;
5680         }
5681
5682         return 0;
5683 }
5684
5685 static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5686 {
5687         struct mtd_info *mtd = nand_to_mtd(chip);
5688         struct nand_device *nanddev = mtd_to_nanddev(mtd);
5689         struct nand_ecc_ctrl *ecc = &chip->ecc;
5690         int ret;
5691
5692         if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5693                 return -EINVAL;
5694
5695         switch (ecc->algo) {
5696         case NAND_ECC_ALGO_HAMMING:
5697                 ecc->calculate = rawnand_sw_hamming_calculate;
5698                 ecc->correct = rawnand_sw_hamming_correct;
5699                 ecc->read_page = nand_read_page_swecc;
5700                 ecc->read_subpage = nand_read_subpage;
5701                 ecc->write_page = nand_write_page_swecc;
5702                 if (!ecc->read_page_raw)
5703                         ecc->read_page_raw = nand_read_page_raw;
5704                 if (!ecc->write_page_raw)
5705                         ecc->write_page_raw = nand_write_page_raw;
5706                 ecc->read_oob = nand_read_oob_std;
5707                 ecc->write_oob = nand_write_oob_std;
5708                 if (!ecc->size)
5709                         ecc->size = 256;
5710                 ecc->bytes = 3;
5711                 ecc->strength = 1;
5712
5713                 if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5714                         ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5715
5716                 ret = rawnand_sw_hamming_init(chip);
5717                 if (ret) {
5718                         WARN(1, "Hamming ECC initialization failed!\n");
5719                         return ret;
5720                 }
5721
5722                 return 0;
5723         case NAND_ECC_ALGO_BCH:
5724                 if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5725                         WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5726                         return -EINVAL;
5727                 }
5728                 ecc->calculate = rawnand_sw_bch_calculate;
5729                 ecc->correct = rawnand_sw_bch_correct;
5730                 ecc->read_page = nand_read_page_swecc;
5731                 ecc->read_subpage = nand_read_subpage;
5732                 ecc->write_page = nand_write_page_swecc;
5733                 if (!ecc->read_page_raw)
5734                         ecc->read_page_raw = nand_read_page_raw;
5735                 if (!ecc->write_page_raw)
5736                         ecc->write_page_raw = nand_write_page_raw;
5737                 ecc->read_oob = nand_read_oob_std;
5738                 ecc->write_oob = nand_write_oob_std;
5739
5740                 /*
5741                  * We can only maximize ECC config when the default layout is
5742                  * used, otherwise we don't know how many bytes can really be
5743                  * used.
5744                  */
5745                 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5746                     mtd->ooblayout != nand_get_large_page_ooblayout())
5747                         nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5748
5749                 ret = rawnand_sw_bch_init(chip);
5750                 if (ret) {
5751                         WARN(1, "BCH ECC initialization failed!\n");
5752                         return ret;
5753                 }
5754
5755                 return 0;
5756         default:
5757                 WARN(1, "Unsupported ECC algorithm!\n");
5758                 return -EINVAL;
5759         }
5760 }
5761
5762 /**
5763  * nand_check_ecc_caps - check the sanity of preset ECC settings
5764  * @chip: nand chip info structure
5765  * @caps: ECC caps info structure
5766  * @oobavail: OOB size that the ECC engine can use
5767  *
5768  * When ECC step size and strength are already set, check if they are supported
5769  * by the controller and the calculated ECC bytes fit within the chip's OOB.
5770  * On success, the calculated ECC bytes is set.
5771  */
5772 static int
5773 nand_check_ecc_caps(struct nand_chip *chip,
5774                     const struct nand_ecc_caps *caps, int oobavail)
5775 {
5776         struct mtd_info *mtd = nand_to_mtd(chip);
5777         const struct nand_ecc_step_info *stepinfo;
5778         int preset_step = chip->ecc.size;
5779         int preset_strength = chip->ecc.strength;
5780         int ecc_bytes, nsteps = mtd->writesize / preset_step;
5781         int i, j;
5782
5783         for (i = 0; i < caps->nstepinfos; i++) {
5784                 stepinfo = &caps->stepinfos[i];
5785
5786                 if (stepinfo->stepsize != preset_step)
5787                         continue;
5788
5789                 for (j = 0; j < stepinfo->nstrengths; j++) {
5790                         if (stepinfo->strengths[j] != preset_strength)
5791                                 continue;
5792
5793                         ecc_bytes = caps->calc_ecc_bytes(preset_step,
5794                                                          preset_strength);
5795                         if (WARN_ON_ONCE(ecc_bytes < 0))
5796                                 return ecc_bytes;
5797
5798                         if (ecc_bytes * nsteps > oobavail) {
5799                                 pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
5800                                        preset_step, preset_strength);
5801                                 return -ENOSPC;
5802                         }
5803
5804                         chip->ecc.bytes = ecc_bytes;
5805
5806                         return 0;
5807                 }
5808         }
5809
5810         pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
5811                preset_step, preset_strength);
5812
5813         return -ENOTSUPP;
5814 }
5815
5816 /**
5817  * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
5818  * @chip: nand chip info structure
5819  * @caps: ECC engine caps info structure
5820  * @oobavail: OOB size that the ECC engine can use
5821  *
5822  * If a chip's ECC requirement is provided, try to meet it with the least
5823  * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
5824  * On success, the chosen ECC settings are set.
5825  */
5826 static int
5827 nand_match_ecc_req(struct nand_chip *chip,
5828                    const struct nand_ecc_caps *caps, int oobavail)
5829 {
5830         const struct nand_ecc_props *requirements =
5831                 nanddev_get_ecc_requirements(&chip->base);
5832         struct mtd_info *mtd = nand_to_mtd(chip);
5833         const struct nand_ecc_step_info *stepinfo;
5834         int req_step = requirements->step_size;
5835         int req_strength = requirements->strength;
5836         int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
5837         int best_step, best_strength, best_ecc_bytes;
5838         int best_ecc_bytes_total = INT_MAX;
5839         int i, j;
5840
5841         /* No information provided by the NAND chip */
5842         if (!req_step || !req_strength)
5843                 return -ENOTSUPP;
5844
5845         /* number of correctable bits the chip requires in a page */
5846         req_corr = mtd->writesize / req_step * req_strength;
5847
5848         for (i = 0; i < caps->nstepinfos; i++) {
5849                 stepinfo = &caps->stepinfos[i];
5850                 step_size = stepinfo->stepsize;
5851
5852                 for (j = 0; j < stepinfo->nstrengths; j++) {
5853                         strength = stepinfo->strengths[j];
5854
5855                         /*
5856                          * If both step size and strength are smaller than the
5857                          * chip's requirement, it is not easy to compare the
5858                          * resulted reliability.
5859                          */
5860                         if (step_size < req_step && strength < req_strength)
5861                                 continue;
5862
5863                         if (mtd->writesize % step_size)
5864                                 continue;
5865
5866                         nsteps = mtd->writesize / step_size;
5867
5868                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5869                         if (WARN_ON_ONCE(ecc_bytes < 0))
5870                                 continue;
5871                         ecc_bytes_total = ecc_bytes * nsteps;
5872
5873                         if (ecc_bytes_total > oobavail ||
5874                             strength * nsteps < req_corr)
5875                                 continue;
5876
5877                         /*
5878                          * We assume the best is to meet the chip's requrement
5879                          * with the least number of ECC bytes.
5880                          */
5881                         if (ecc_bytes_total < best_ecc_bytes_total) {
5882                                 best_ecc_bytes_total = ecc_bytes_total;
5883                                 best_step = step_size;
5884                                 best_strength = strength;
5885                                 best_ecc_bytes = ecc_bytes;
5886                         }
5887                 }
5888         }
5889
5890         if (best_ecc_bytes_total == INT_MAX)
5891                 return -ENOTSUPP;
5892
5893         chip->ecc.size = best_step;
5894         chip->ecc.strength = best_strength;
5895         chip->ecc.bytes = best_ecc_bytes;
5896
5897         return 0;
5898 }
5899
5900 /**
5901  * nand_maximize_ecc - choose the max ECC strength available
5902  * @chip: nand chip info structure
5903  * @caps: ECC engine caps info structure
5904  * @oobavail: OOB size that the ECC engine can use
5905  *
5906  * Choose the max ECC strength that is supported on the controller, and can fit
5907  * within the chip's OOB.  On success, the chosen ECC settings are set.
5908  */
5909 static int
5910 nand_maximize_ecc(struct nand_chip *chip,
5911                   const struct nand_ecc_caps *caps, int oobavail)
5912 {
5913         struct mtd_info *mtd = nand_to_mtd(chip);
5914         const struct nand_ecc_step_info *stepinfo;
5915         int step_size, strength, nsteps, ecc_bytes, corr;
5916         int best_corr = 0;
5917         int best_step = 0;
5918         int best_strength, best_ecc_bytes;
5919         int i, j;
5920
5921         for (i = 0; i < caps->nstepinfos; i++) {
5922                 stepinfo = &caps->stepinfos[i];
5923                 step_size = stepinfo->stepsize;
5924
5925                 /* If chip->ecc.size is already set, respect it */
5926                 if (chip->ecc.size && step_size != chip->ecc.size)
5927                         continue;
5928
5929                 for (j = 0; j < stepinfo->nstrengths; j++) {
5930                         strength = stepinfo->strengths[j];
5931
5932                         if (mtd->writesize % step_size)
5933                                 continue;
5934
5935                         nsteps = mtd->writesize / step_size;
5936
5937                         ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
5938                         if (WARN_ON_ONCE(ecc_bytes < 0))
5939                                 continue;
5940
5941                         if (ecc_bytes * nsteps > oobavail)
5942                                 continue;
5943
5944                         corr = strength * nsteps;
5945
5946                         /*
5947                          * If the number of correctable bits is the same,
5948                          * bigger step_size has more reliability.
5949                          */
5950                         if (corr > best_corr ||
5951                             (corr == best_corr && step_size > best_step)) {
5952                                 best_corr = corr;
5953                                 best_step = step_size;
5954                                 best_strength = strength;
5955                                 best_ecc_bytes = ecc_bytes;
5956                         }
5957                 }
5958         }
5959
5960         if (!best_corr)
5961                 return -ENOTSUPP;
5962
5963         chip->ecc.size = best_step;
5964         chip->ecc.strength = best_strength;
5965         chip->ecc.bytes = best_ecc_bytes;
5966
5967         return 0;
5968 }
5969
5970 /**
5971  * nand_ecc_choose_conf - Set the ECC strength and ECC step size
5972  * @chip: nand chip info structure
5973  * @caps: ECC engine caps info structure
5974  * @oobavail: OOB size that the ECC engine can use
5975  *
5976  * Choose the ECC configuration according to following logic.
5977  *
5978  * 1. If both ECC step size and ECC strength are already set (usually by DT)
5979  *    then check if it is supported by this controller.
5980  * 2. If the user provided the nand-ecc-maximize property, then select maximum
5981  *    ECC strength.
5982  * 3. Otherwise, try to match the ECC step size and ECC strength closest
5983  *    to the chip's requirement. If available OOB size can't fit the chip
5984  *    requirement then fallback to the maximum ECC step size and ECC strength.
5985  *
5986  * On success, the chosen ECC settings are set.
5987  */
5988 int nand_ecc_choose_conf(struct nand_chip *chip,
5989                          const struct nand_ecc_caps *caps, int oobavail)
5990 {
5991         struct mtd_info *mtd = nand_to_mtd(chip);
5992         struct nand_device *nanddev = mtd_to_nanddev(mtd);
5993
5994         if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
5995                 return -EINVAL;
5996
5997         if (chip->ecc.size && chip->ecc.strength)
5998                 return nand_check_ecc_caps(chip, caps, oobavail);
5999
6000         if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6001                 return nand_maximize_ecc(chip, caps, oobavail);
6002
6003         if (!nand_match_ecc_req(chip, caps, oobavail))
6004                 return 0;
6005
6006         return nand_maximize_ecc(chip, caps, oobavail);
6007 }
6008 EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6009
6010 static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6011 {
6012         struct nand_chip *chip = container_of(nand, struct nand_chip,
6013                                               base);
6014         unsigned int eb = nanddev_pos_to_row(nand, pos);
6015         int ret;
6016
6017         eb >>= nand->rowconv.eraseblock_addr_shift;
6018
6019         nand_select_target(chip, pos->target);
6020         ret = nand_erase_op(chip, eb);
6021         nand_deselect_target(chip);
6022
6023         return ret;
6024 }
6025
6026 static int rawnand_markbad(struct nand_device *nand,
6027                            const struct nand_pos *pos)
6028 {
6029         struct nand_chip *chip = container_of(nand, struct nand_chip,
6030                                               base);
6031
6032         return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6033 }
6034
6035 static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6036 {
6037         struct nand_chip *chip = container_of(nand, struct nand_chip,
6038                                               base);
6039         int ret;
6040
6041         nand_select_target(chip, pos->target);
6042         ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6043         nand_deselect_target(chip);
6044
6045         return ret;
6046 }
6047
6048 static const struct nand_ops rawnand_ops = {
6049         .erase = rawnand_erase,
6050         .markbad = rawnand_markbad,
6051         .isbad = rawnand_isbad,
6052 };
6053
6054 /**
6055  * nand_scan_tail - Scan for the NAND device
6056  * @chip: NAND chip object
6057  *
6058  * This is the second phase of the normal nand_scan() function. It fills out
6059  * all the uninitialized function pointers with the defaults and scans for a
6060  * bad block table if appropriate.
6061  */
6062 static int nand_scan_tail(struct nand_chip *chip)
6063 {
6064         struct mtd_info *mtd = nand_to_mtd(chip);
6065         struct nand_ecc_ctrl *ecc = &chip->ecc;
6066         int ret, i;
6067
6068         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
6069         if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6070                    !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6071                 return -EINVAL;
6072         }
6073
6074         chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6075         if (!chip->data_buf)
6076                 return -ENOMEM;
6077
6078         /*
6079          * FIXME: some NAND manufacturer drivers expect the first die to be
6080          * selected when manufacturer->init() is called. They should be fixed
6081          * to explictly select the relevant die when interacting with the NAND
6082          * chip.
6083          */
6084         nand_select_target(chip, 0);
6085         ret = nand_manufacturer_init(chip);
6086         nand_deselect_target(chip);
6087         if (ret)
6088                 goto err_free_buf;
6089
6090         /* Set the internal oob buffer location, just after the page data */
6091         chip->oob_poi = chip->data_buf + mtd->writesize;
6092
6093         /*
6094          * If no default placement scheme is given, select an appropriate one.
6095          */
6096         if (!mtd->ooblayout &&
6097             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6098               ecc->algo == NAND_ECC_ALGO_BCH) &&
6099             !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6100               ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6101                 switch (mtd->oobsize) {
6102                 case 8:
6103                 case 16:
6104                         mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6105                         break;
6106                 case 64:
6107                 case 128:
6108                         mtd_set_ooblayout(mtd,
6109                                           nand_get_large_page_hamming_ooblayout());
6110                         break;
6111                 default:
6112                         /*
6113                          * Expose the whole OOB area to users if ECC_NONE
6114                          * is passed. We could do that for all kind of
6115                          * ->oobsize, but we must keep the old large/small
6116                          * page with ECC layout when ->oobsize <= 128 for
6117                          * compatibility reasons.
6118                          */
6119                         if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6120                                 mtd_set_ooblayout(mtd,
6121                                                   nand_get_large_page_ooblayout());
6122                                 break;
6123                         }
6124
6125                         WARN(1, "No oob scheme defined for oobsize %d\n",
6126                                 mtd->oobsize);
6127                         ret = -EINVAL;
6128                         goto err_nand_manuf_cleanup;
6129                 }
6130         }
6131
6132         /*
6133          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6134          * selected and we have 256 byte pagesize fallback to software ECC
6135          */
6136
6137         switch (ecc->engine_type) {
6138         case NAND_ECC_ENGINE_TYPE_ON_HOST:
6139                 ret = nand_set_ecc_on_host_ops(chip);
6140                 if (ret)
6141                         goto err_nand_manuf_cleanup;
6142
6143                 if (mtd->writesize >= ecc->size) {
6144                         if (!ecc->strength) {
6145                                 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6146                                 ret = -EINVAL;
6147                                 goto err_nand_manuf_cleanup;
6148                         }
6149                         break;
6150                 }
6151                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6152                         ecc->size, mtd->writesize);
6153                 ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6154                 ecc->algo = NAND_ECC_ALGO_HAMMING;
6155                 fallthrough;
6156
6157         case NAND_ECC_ENGINE_TYPE_SOFT:
6158                 ret = nand_set_ecc_soft_ops(chip);
6159                 if (ret)
6160                         goto err_nand_manuf_cleanup;
6161                 break;
6162
6163         case NAND_ECC_ENGINE_TYPE_ON_DIE:
6164                 if (!ecc->read_page || !ecc->write_page) {
6165                         WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6166                         ret = -EINVAL;
6167                         goto err_nand_manuf_cleanup;
6168                 }
6169                 if (!ecc->read_oob)
6170                         ecc->read_oob = nand_read_oob_std;
6171                 if (!ecc->write_oob)
6172                         ecc->write_oob = nand_write_oob_std;
6173                 break;
6174
6175         case NAND_ECC_ENGINE_TYPE_NONE:
6176                 pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6177                 ecc->read_page = nand_read_page_raw;
6178                 ecc->write_page = nand_write_page_raw;
6179                 ecc->read_oob = nand_read_oob_std;
6180                 ecc->read_page_raw = nand_read_page_raw;
6181                 ecc->write_page_raw = nand_write_page_raw;
6182                 ecc->write_oob = nand_write_oob_std;
6183                 ecc->size = mtd->writesize;
6184                 ecc->bytes = 0;
6185                 ecc->strength = 0;
6186                 break;
6187
6188         default:
6189                 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6190                 ret = -EINVAL;
6191                 goto err_nand_manuf_cleanup;
6192         }
6193
6194         if (ecc->correct || ecc->calculate) {
6195                 ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6196                 ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6197                 if (!ecc->calc_buf || !ecc->code_buf) {
6198                         ret = -ENOMEM;
6199                         goto err_nand_manuf_cleanup;
6200                 }
6201         }
6202
6203         /* For many systems, the standard OOB write also works for raw */
6204         if (!ecc->read_oob_raw)
6205                 ecc->read_oob_raw = ecc->read_oob;
6206         if (!ecc->write_oob_raw)
6207                 ecc->write_oob_raw = ecc->write_oob;
6208
6209         /* propagate ecc info to mtd_info */
6210         mtd->ecc_strength = ecc->strength;
6211         mtd->ecc_step_size = ecc->size;
6212
6213         /*
6214          * Set the number of read / write steps for one page depending on ECC
6215          * mode.
6216          */
6217         if (!ecc->steps)
6218                 ecc->steps = mtd->writesize / ecc->size;
6219         if (ecc->steps * ecc->size != mtd->writesize) {
6220                 WARN(1, "Invalid ECC parameters\n");
6221                 ret = -EINVAL;
6222                 goto err_nand_manuf_cleanup;
6223         }
6224
6225         if (!ecc->total) {
6226                 ecc->total = ecc->steps * ecc->bytes;
6227                 chip->base.ecc.ctx.total = ecc->total;
6228         }
6229
6230         if (ecc->total > mtd->oobsize) {
6231                 WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6232                 ret = -EINVAL;
6233                 goto err_nand_manuf_cleanup;
6234         }
6235
6236         /*
6237          * The number of bytes available for a client to place data into
6238          * the out of band area.
6239          */
6240         ret = mtd_ooblayout_count_freebytes(mtd);
6241         if (ret < 0)
6242                 ret = 0;
6243
6244         mtd->oobavail = ret;
6245
6246         /* ECC sanity check: warn if it's too weak */
6247         if (!nand_ecc_is_strong_enough(&chip->base))
6248                 pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6249                         mtd->name, chip->ecc.strength, chip->ecc.size,
6250                         nanddev_get_ecc_requirements(&chip->base)->strength,
6251                         nanddev_get_ecc_requirements(&chip->base)->step_size);
6252
6253         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6254         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6255                 switch (ecc->steps) {
6256                 case 2:
6257                         mtd->subpage_sft = 1;
6258                         break;
6259                 case 4:
6260                 case 8:
6261                 case 16:
6262                         mtd->subpage_sft = 2;
6263                         break;
6264                 }
6265         }
6266         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6267
6268         /* Invalidate the pagebuffer reference */
6269         chip->pagecache.page = -1;
6270
6271         /* Large page NAND with SOFT_ECC should support subpage reads */
6272         switch (ecc->engine_type) {
6273         case NAND_ECC_ENGINE_TYPE_SOFT:
6274                 if (chip->page_shift > 9)
6275                         chip->options |= NAND_SUBPAGE_READ;
6276                 break;
6277
6278         default:
6279                 break;
6280         }
6281
6282         ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6283         if (ret)
6284                 goto err_nand_manuf_cleanup;
6285
6286         /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6287         if (chip->options & NAND_ROM)
6288                 mtd->flags = MTD_CAP_ROM;
6289
6290         /* Fill in remaining MTD driver data */
6291         mtd->_erase = nand_erase;
6292         mtd->_point = NULL;
6293         mtd->_unpoint = NULL;
6294         mtd->_panic_write = panic_nand_write;
6295         mtd->_read_oob = nand_read_oob;
6296         mtd->_write_oob = nand_write_oob;
6297         mtd->_sync = nand_sync;
6298         mtd->_lock = nand_lock;
6299         mtd->_unlock = nand_unlock;
6300         mtd->_suspend = nand_suspend;
6301         mtd->_resume = nand_resume;
6302         mtd->_reboot = nand_shutdown;
6303         mtd->_block_isreserved = nand_block_isreserved;
6304         mtd->_block_isbad = nand_block_isbad;
6305         mtd->_block_markbad = nand_block_markbad;
6306         mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6307
6308         /*
6309          * Initialize bitflip_threshold to its default prior scan_bbt() call.
6310          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6311          * properly set.
6312          */
6313         if (!mtd->bitflip_threshold)
6314                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6315
6316         /* Find the fastest data interface for this chip */
6317         ret = nand_choose_interface_config(chip);
6318         if (ret)
6319                 goto err_nanddev_cleanup;
6320
6321         /* Enter fastest possible mode on all dies. */
6322         for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6323                 ret = nand_setup_interface(chip, i);
6324                 if (ret)
6325                         goto err_free_interface_config;
6326         }
6327
6328         /*
6329          * Look for secure regions in the NAND chip. These regions are supposed
6330          * to be protected by a secure element like Trustzone. So the read/write
6331          * accesses to these regions will be blocked in the runtime by this
6332          * driver.
6333          */
6334         ret = of_get_nand_secure_regions(chip);
6335         if (ret)
6336                 goto err_free_interface_config;
6337
6338         /* Check, if we should skip the bad block table scan */
6339         if (chip->options & NAND_SKIP_BBTSCAN)
6340                 return 0;
6341
6342         /* Build bad block table */
6343         ret = nand_create_bbt(chip);
6344         if (ret)
6345                 goto err_free_secure_regions;
6346
6347         return 0;
6348
6349 err_free_secure_regions:
6350         kfree(chip->secure_regions);
6351
6352 err_free_interface_config:
6353         kfree(chip->best_interface_config);
6354
6355 err_nanddev_cleanup:
6356         nanddev_cleanup(&chip->base);
6357
6358 err_nand_manuf_cleanup:
6359         nand_manufacturer_cleanup(chip);
6360
6361 err_free_buf:
6362         kfree(chip->data_buf);
6363         kfree(ecc->code_buf);
6364         kfree(ecc->calc_buf);
6365
6366         return ret;
6367 }
6368
6369 static int nand_attach(struct nand_chip *chip)
6370 {
6371         if (chip->controller->ops && chip->controller->ops->attach_chip)
6372                 return chip->controller->ops->attach_chip(chip);
6373
6374         return 0;
6375 }
6376
6377 static void nand_detach(struct nand_chip *chip)
6378 {
6379         if (chip->controller->ops && chip->controller->ops->detach_chip)
6380                 chip->controller->ops->detach_chip(chip);
6381 }
6382
6383 /**
6384  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6385  * @chip: NAND chip object
6386  * @maxchips: number of chips to scan for.
6387  * @ids: optional flash IDs table
6388  *
6389  * This fills out all the uninitialized function pointers with the defaults.
6390  * The flash ID is read and the mtd/chip structures are filled with the
6391  * appropriate values.
6392  */
6393 int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6394                        struct nand_flash_dev *ids)
6395 {
6396         int ret;
6397
6398         if (!maxchips)
6399                 return -EINVAL;
6400
6401         ret = nand_scan_ident(chip, maxchips, ids);
6402         if (ret)
6403                 return ret;
6404
6405         ret = nand_attach(chip);
6406         if (ret)
6407                 goto cleanup_ident;
6408
6409         ret = nand_scan_tail(chip);
6410         if (ret)
6411                 goto detach_chip;
6412
6413         return 0;
6414
6415 detach_chip:
6416         nand_detach(chip);
6417 cleanup_ident:
6418         nand_scan_ident_cleanup(chip);
6419
6420         return ret;
6421 }
6422 EXPORT_SYMBOL(nand_scan_with_ids);
6423
6424 /**
6425  * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6426  * @chip: NAND chip object
6427  */
6428 void nand_cleanup(struct nand_chip *chip)
6429 {
6430         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6431                 if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6432                         rawnand_sw_hamming_cleanup(chip);
6433                 else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6434                         rawnand_sw_bch_cleanup(chip);
6435         }
6436
6437         nanddev_cleanup(&chip->base);
6438
6439         /* Free secure regions data */
6440         kfree(chip->secure_regions);
6441
6442         /* Free bad block table memory */
6443         kfree(chip->bbt);
6444         kfree(chip->data_buf);
6445         kfree(chip->ecc.code_buf);
6446         kfree(chip->ecc.calc_buf);
6447
6448         /* Free bad block descriptor memory */
6449         if (chip->badblock_pattern && chip->badblock_pattern->options
6450                         & NAND_BBT_DYNAMICSTRUCT)
6451                 kfree(chip->badblock_pattern);
6452
6453         /* Free the data interface */
6454         kfree(chip->best_interface_config);
6455
6456         /* Free manufacturer priv data. */
6457         nand_manufacturer_cleanup(chip);
6458
6459         /* Free controller specific allocations after chip identification */
6460         nand_detach(chip);
6461
6462         /* Free identification phase allocations */
6463         nand_scan_ident_cleanup(chip);
6464 }
6465
6466 EXPORT_SYMBOL_GPL(nand_cleanup);
6467
6468 MODULE_LICENSE("GPL");
6469 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6470 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6471 MODULE_DESCRIPTION("Generic NAND flash driver code");