1 // SPDX-License-Identifier: GPL-2.0
3 * Marvell NAND flash controller driver
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
43 * -------------------------------------------
44 * ... | Data N | Free OOB bytes N | ECC N |
45 * -------------------------------------------
47 * --------------------------------------------+
48 * Last Data | Last Free OOB bytes | Last ECC |
49 * --------------------------------------------+
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
56 * The controller has certain limitations that are handled by the
58 * - It can only read 2k at a time. To overcome this limitation, the
59 * driver issues data cycles on the bus, without issuing new
60 * CMD + ADDR cycles. The Marvell term is "naked" operations.
61 * - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 * bits. What can be tuned is the ECC block size as long as it
63 * stays between 512B and 2kiB. It's usually chosen based on the
64 * chip ECC requirements. For instance, using 2kiB ECC chunks
65 * provides 4b/512B correctability.
66 * - The controller will always treat data bytes, free OOB bytes
67 * and ECC bytes in that order, no matter what the real layout is
68 * (which is usually all data then all OOB bytes). The
69 * marvell_nfc_layouts array below contains the currently
71 * - Because of these weird layouts, the Bad Block Markers can be
72 * located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 * option must be set to prevent scanning/writing bad block
77 #include <linux/module.h>
78 #include <linux/clk.h>
79 #include <linux/mtd/rawnand.h>
80 #include <linux/of_platform.h>
81 #include <linux/iopoll.h>
82 #include <linux/interrupt.h>
83 #include <linux/slab.h>
84 #include <linux/mfd/syscon.h>
85 #include <linux/regmap.h>
86 #include <asm/unaligned.h>
88 #include <linux/dmaengine.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/dma/pxa-dma.h>
91 #include <linux/platform_data/mtd-nand-pxa3xx.h>
93 /* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95 #define FIFO_REP(x) (x / sizeof(u32))
96 #define BCH_SEQ_READS (32 / FIFO_DEPTH)
97 /* NFC does not support transfers of larger chunks at a time */
98 #define MAX_CHUNK_SIZE 2112
99 /* NFCv1 cannot read more that 7 bytes of ID */
100 #define NFCV1_READID_LEN 7
101 /* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
102 #define POLL_PERIOD 0
103 #define POLL_TIMEOUT 100000
104 /* Interrupt maximum wait period in ms */
105 #define IRQ_TIMEOUT 1000
106 /* Latency in clock cycles between SoC pins and NFC logic */
107 #define MIN_RD_DEL_CNT 3
108 /* Maximum number of contiguous address cycles */
109 #define MAX_ADDRESS_CYC_NFCV1 5
110 #define MAX_ADDRESS_CYC_NFCV2 7
111 /* System control registers/bits to enable the NAND controller on some SoCs */
112 #define GENCONF_SOC_DEVICE_MUX 0x208
113 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
114 #define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
115 #define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
116 #define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
117 #define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
118 #define GENCONF_CLK_GATING_CTRL 0x220
119 #define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
120 #define GENCONF_ND_CLK_CTRL 0x700
121 #define GENCONF_ND_CLK_CTRL_EN BIT(0)
123 /* NAND controller data flash control register */
125 #define NDCR_ALL_INT GENMASK(11, 0)
126 #define NDCR_CS1_CMDDM BIT(7)
127 #define NDCR_CS0_CMDDM BIT(8)
128 #define NDCR_RDYM BIT(11)
129 #define NDCR_ND_ARB_EN BIT(12)
130 #define NDCR_RA_START BIT(15)
131 #define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16)
132 #define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0)
133 #define NDCR_DWIDTH_M BIT(26)
134 #define NDCR_DWIDTH_C BIT(27)
135 #define NDCR_ND_RUN BIT(28)
136 #define NDCR_DMA_EN BIT(29)
137 #define NDCR_ECC_EN BIT(30)
138 #define NDCR_SPARE_EN BIT(31)
139 #define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
140 NDCR_DWIDTH_M | NDCR_DWIDTH_C))
142 /* NAND interface timing parameter 0 register */
144 #define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0)
145 #define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3)
146 #define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3)
147 #define NDTR0_SEL_NRE_EDGE BIT(7)
148 #define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8)
149 #define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11)
150 #define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16)
151 #define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19)
152 #define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22)
153 #define NDTR0_SELCNTR BIT(26)
154 #define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27)
156 /* NAND interface timing parameter 1 register */
158 #define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0)
159 #define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4)
160 #define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8)
161 #define NDTR1_PRESCALE BIT(14)
162 #define NDTR1_WAIT_MODE BIT(15)
163 #define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16)
165 /* NAND controller status register */
167 #define NDSR_WRCMDREQ BIT(0)
168 #define NDSR_RDDREQ BIT(1)
169 #define NDSR_WRDREQ BIT(2)
170 #define NDSR_CORERR BIT(3)
171 #define NDSR_UNCERR BIT(4)
172 #define NDSR_CMDD(cs) BIT(8 - cs)
173 #define NDSR_RDY(rb) BIT(11 + rb)
174 #define NDSR_ERRCNT(x) ((x >> 16) & 0x1F)
176 /* NAND ECC control register */
177 #define NDECCCTRL 0x28
178 #define NDECCCTRL_BCH_EN BIT(0)
180 /* NAND controller data buffer register */
183 /* NAND controller command buffer 0 register */
185 #define NDCB0_CMD1(x) ((x & 0xFF) << 0)
186 #define NDCB0_CMD2(x) ((x & 0xFF) << 8)
187 #define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16)
188 #define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
189 #define NDCB0_DBC BIT(19)
190 #define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21)
191 #define NDCB0_CSEL BIT(24)
192 #define NDCB0_RDY_BYP BIT(27)
193 #define NDCB0_LEN_OVRD BIT(28)
194 #define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29)
196 /* NAND controller command buffer 1 register */
198 #define NDCB1_COLS(x) ((x & 0xFFFF) << 0)
199 #define NDCB1_ADDRS_PAGE(x) (x << 16)
201 /* NAND controller command buffer 2 register */
203 #define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0)
204 #define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0)
206 /* NAND controller command buffer 3 register */
208 #define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16)
209 #define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24)
211 /* NAND controller command buffer 0 register 'type' and 'xtype' fields */
215 #define TYPE_READ_ID 3
216 #define TYPE_STATUS 4
218 #define TYPE_NAKED_CMD 6
219 #define TYPE_NAKED_ADDR 7
221 #define XTYPE_MONOLITHIC_RW 0
222 #define XTYPE_LAST_NAKED_RW 1
223 #define XTYPE_FINAL_COMMAND 3
225 #define XTYPE_WRITE_DISPATCH 4
226 #define XTYPE_NAKED_RW 5
227 #define XTYPE_COMMAND_DISPATCH 6
231 * struct marvell_hw_ecc_layout - layout of Marvell ECC
233 * Marvell ECC engine works differently than the others, in order to limit the
234 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
235 * per subpage, and depending on a the desired strength needed by the NAND chip,
236 * a particular layout mixing data/spare/ecc is defined, with a possible last
237 * chunk smaller that the others.
239 * @writesize: Full page size on which the layout applies
240 * @chunk: Desired ECC chunk size on which the layout applies
241 * @strength: Desired ECC strength (per chunk size bytes) on which the
243 * @nchunks: Total number of chunks
244 * @full_chunk_cnt: Number of full-sized chunks, which is the number of
245 * repetitions of the pattern:
246 * (data_bytes + spare_bytes + ecc_bytes).
247 * @data_bytes: Number of data bytes per chunk
248 * @spare_bytes: Number of spare bytes per chunk
249 * @ecc_bytes: Number of ecc bytes per chunk
250 * @last_data_bytes: Number of data bytes in the last chunk
251 * @last_spare_bytes: Number of spare bytes in the last chunk
252 * @last_ecc_bytes: Number of ecc bytes in the last chunk
254 struct marvell_hw_ecc_layout {
259 /* Corresponding layout */
266 int last_spare_bytes;
270 #define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \
276 .full_chunk_cnt = fcc, \
280 .last_data_bytes = ldb, \
281 .last_spare_bytes = lsb, \
282 .last_ecc_bytes = leb, \
285 /* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
286 static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
287 MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0),
288 MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0),
289 MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0),
290 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30),
291 MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,64, 30),
292 MARVELL_LAYOUT( 2048, 512, 12, 3, 2, 704, 0, 30,640, 0, 30),
293 MARVELL_LAYOUT( 2048, 512, 16, 5, 4, 512, 0, 30, 0, 32, 30),
294 MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0),
295 MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30),
296 MARVELL_LAYOUT( 4096, 512, 12, 6, 5, 704, 0, 30,576, 32, 30),
297 MARVELL_LAYOUT( 4096, 512, 16, 9, 8, 512, 0, 30, 0, 32, 30),
298 MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0),
299 MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30),
300 MARVELL_LAYOUT( 8192, 512, 12, 12, 11, 704, 0, 30,448, 64, 30),
301 MARVELL_LAYOUT( 8192, 512, 16, 17, 16, 512, 0, 30, 0, 32, 30),
305 * struct marvell_nand_chip_sel - CS line description
307 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
308 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
309 * The datasheet describes the logic with an error: ADDR5 field is once
310 * declared at the beginning of NDCB2, and another time at its end. Because the
311 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
312 * to use the last bit of this field instead of the first ones.
314 * @cs: Wanted CE lane.
315 * @ndcb0_csel: Value of the NDCB0 register with or without the flag
316 * selecting the wanted CE lane. This is set once when
317 * the Device Tree is probed.
318 * @rb: Ready/Busy pin for the flash chip
320 struct marvell_nand_chip_sel {
327 * struct marvell_nand_chip - stores NAND chip device related information
329 * @chip: Base NAND chip structure
330 * @node: Used to store NAND chips into a list
331 * @layout: NAND layout when using hardware ECC
332 * @ndcr: Controller register value for this NAND chip
333 * @ndtr0: Timing registers 0 value for this NAND chip
334 * @ndtr1: Timing registers 1 value for this NAND chip
335 * @addr_cyc: Amount of cycles needed to pass column address
336 * @selected_die: Current active CS
337 * @nsels: Number of CS lines required by the NAND chip
338 * @sels: Array of CS lines descriptions
340 struct marvell_nand_chip {
341 struct nand_chip chip;
342 struct list_head node;
343 const struct marvell_hw_ecc_layout *layout;
350 struct marvell_nand_chip_sel sels[];
353 static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
355 return container_of(chip, struct marvell_nand_chip, chip);
358 static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
361 return &nand->sels[nand->selected_die];
365 * struct marvell_nfc_caps - NAND controller capabilities for distinction
366 * between compatible strings
368 * @max_cs_nb: Number of Chip Select lines available
369 * @max_rb_nb: Number of Ready/Busy lines available
370 * @need_system_controller: Indicates if the SoC needs to have access to the
371 * system controller (ie. to enable the NAND controller)
372 * @legacy_of_bindings: Indicates if DT parsing must be done using the old
374 * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie.
375 * BCH error detection and correction algorithm,
376 * NDCB3 register has been added
377 * @use_dma: Use dma for data transfers
379 struct marvell_nfc_caps {
380 unsigned int max_cs_nb;
381 unsigned int max_rb_nb;
382 bool need_system_controller;
383 bool legacy_of_bindings;
389 * struct marvell_nfc - stores Marvell NAND controller information
391 * @controller: Base controller structure
392 * @dev: Parent device (used to print error messages)
393 * @regs: NAND controller registers
394 * @core_clk: Core clock
395 * @reg_clk: Registers clock
396 * @complete: Completion object to wait for NAND controller events
397 * @assigned_cs: Bitmask describing already assigned CS lines
398 * @chips: List containing all the NAND chips attached to
399 * this NAND controller
400 * @selected_chip: Currently selected target chip
401 * @caps: NAND controller capabilities for each compatible string
402 * @use_dma: Whetner DMA is used
403 * @dma_chan: DMA channel (NFCv1 only)
404 * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only)
407 struct nand_controller controller;
410 struct clk *core_clk;
412 struct completion complete;
413 unsigned long assigned_cs;
414 struct list_head chips;
415 struct nand_chip *selected_chip;
416 const struct marvell_nfc_caps *caps;
418 /* DMA (NFCv1 only) */
420 struct dma_chan *dma_chan;
424 static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
426 return container_of(ctrl, struct marvell_nfc, controller);
430 * struct marvell_nfc_timings - NAND controller timings expressed in NAND
431 * Controller clock cycles
433 * @tRP: ND_nRE pulse width
434 * @tRH: ND_nRE high duration
435 * @tWP: ND_nWE pulse time
436 * @tWH: ND_nWE high duration
437 * @tCS: Enable signal setup time
438 * @tCH: Enable signal hold time
439 * @tADL: Address to write data delay
440 * @tAR: ND_ALE low to ND_nRE low delay
441 * @tWHR: ND_nWE high to ND_nRE low for status read
442 * @tRHW: ND_nRE high duration, read to write delay
443 * @tR: ND_nWE high to ND_nRE low for read
445 struct marvell_nfc_timings {
462 * TO_CYCLES() - Derives a duration in numbers of clock cycles.
464 * @ps: Duration in pico-seconds
465 * @period_ns: Clock period in nano-seconds
467 * Convert the duration in nano-seconds, then divide by the period and
468 * return the number of clock periods.
470 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
471 #define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
475 * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
476 * subop subset of instructions.
478 * @ndcb: Array of values written to NDCBx registers
479 * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle
480 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
481 * @rdy_delay_ns: Optional delay after waiting for the RB pin
482 * @data_delay_ns: Optional delay after the data xfer
483 * @data_instr_idx: Index of the data instruction in the subop
484 * @data_instr: Pointer to the data instruction in the subop
486 struct marvell_nfc_op {
488 unsigned int cle_ale_delay_ns;
489 unsigned int rdy_timeout_ms;
490 unsigned int rdy_delay_ns;
491 unsigned int data_delay_ns;
492 unsigned int data_instr_idx;
493 const struct nand_op_instr *data_instr;
497 * Internal helper to conditionnally apply a delay (from the above structure,
500 static void cond_delay(unsigned int ns)
508 udelay(DIV_ROUND_UP(ns, 1000));
512 * The controller has many flags that could generate interrupts, most of them
513 * are disabled and polling is used. For the very slow signals, using interrupts
514 * may relax the CPU charge.
516 static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
520 /* Writing 1 disables the interrupt */
521 reg = readl_relaxed(nfc->regs + NDCR);
522 writel_relaxed(reg | int_mask, nfc->regs + NDCR);
525 static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
529 /* Writing 0 enables the interrupt */
530 reg = readl_relaxed(nfc->regs + NDCR);
531 writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
534 static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
538 reg = readl_relaxed(nfc->regs + NDSR);
539 writel_relaxed(int_mask, nfc->regs + NDSR);
541 return reg & int_mask;
544 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
547 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
551 * Callers of this function do not verify if the NAND is using a 16-bit
552 * an 8-bit bus for normal operations, so we need to take care of that
553 * here by leaving the configuration unchanged if the NAND does not have
554 * the NAND_BUSWIDTH_16 flag set.
556 if (!(chip->options & NAND_BUSWIDTH_16))
559 ndcr = readl_relaxed(nfc->regs + NDCR);
562 ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
564 ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
566 writel_relaxed(ndcr, nfc->regs + NDCR);
569 static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
571 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
576 * The command is being processed, wait for the ND_RUN bit to be
577 * cleared by the NFC. If not, we must clear it by hand.
579 ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
580 (val & NDCR_ND_RUN) == 0,
581 POLL_PERIOD, POLL_TIMEOUT);
583 dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
584 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
593 * Any time a command has to be sent to the controller, the following sequence
594 * has to be followed:
595 * - call marvell_nfc_prepare_cmd()
596 * -> activate the ND_RUN bit that will kind of 'start a job'
597 * -> wait the signal indicating the NFC is waiting for a command
598 * - send the command (cmd and address cycles)
599 * - enventually send or receive the data
600 * - call marvell_nfc_end_cmd() with the corresponding flag
601 * -> wait the flag to be triggered or cancel the job with a timeout
603 * The following helpers are here to factorize the code a bit so that
604 * specialized functions responsible for executing the actual NAND
605 * operations do not have to replicate the same code blocks.
607 static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
609 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
613 /* Poll ND_RUN and clear NDSR before issuing any command */
614 ret = marvell_nfc_wait_ndrun(chip);
616 dev_err(nfc->dev, "Last operation did not succeed\n");
620 ndcr = readl_relaxed(nfc->regs + NDCR);
621 writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
623 /* Assert ND_RUN bit and wait the NFC to be ready */
624 writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
625 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
627 POLL_PERIOD, POLL_TIMEOUT);
629 dev_err(nfc->dev, "Timeout on WRCMDRE\n");
633 /* Command may be written, clear WRCMDREQ status bit */
634 writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
639 static void marvell_nfc_send_cmd(struct nand_chip *chip,
640 struct marvell_nfc_op *nfc_op)
642 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
643 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
645 dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n"
646 "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
647 (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
648 nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
650 writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
652 writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
653 writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
656 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
657 * fields are used (only available on NFCv2).
659 if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
660 NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
661 if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
662 writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
666 static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
669 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
673 ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
675 POLL_PERIOD, POLL_TIMEOUT);
678 dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
681 dmaengine_terminate_all(nfc->dma_chan);
686 * DMA function uses this helper to poll on CMDD bits without wanting
687 * them to be cleared.
689 if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
692 writel_relaxed(flag, nfc->regs + NDSR);
697 static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
699 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
700 int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
702 return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
705 static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
706 u32 expected_val, unsigned long timeout_ms)
711 limit = jiffies + msecs_to_jiffies(timeout_ms);
713 st = readl_relaxed(nfc->regs + NDSR);
714 if (st & NDSR_RDY(1))
717 if ((st & mask) == expected_val)
721 } while (time_after(limit, jiffies));
726 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
728 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
729 struct mtd_info *mtd = nand_to_mtd(chip);
733 /* Timeout is expressed in ms */
735 timeout_ms = IRQ_TIMEOUT;
737 if (mtd->oops_panic_write) {
738 ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
742 init_completion(&nfc->complete);
744 marvell_nfc_enable_int(nfc, NDCR_RDYM);
745 ret = wait_for_completion_timeout(&nfc->complete,
746 msecs_to_jiffies(timeout_ms));
747 marvell_nfc_disable_int(nfc, NDCR_RDYM);
749 pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
752 * In case the interrupt was not served in the required time frame,
753 * check if the ISR was not served or if something went actually wrong.
755 if (!ret && !pending) {
756 dev_err(nfc->dev, "Timeout waiting for RB signal\n");
763 static void marvell_nfc_select_target(struct nand_chip *chip,
766 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
767 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
771 * Reset the NDCR register to a clean state for this particular chip,
772 * also clear ND_RUN bit.
774 ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
775 NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
776 writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
778 /* Also reset the interrupt status register */
779 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
781 if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
784 writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
785 writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
787 nfc->selected_chip = chip;
788 marvell_nand->selected_die = die_nr;
791 static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
793 struct marvell_nfc *nfc = dev_id;
794 u32 st = readl_relaxed(nfc->regs + NDSR);
795 u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
798 * RDY interrupt mask is one bit in NDCR while there are two status
799 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
801 if (st & NDSR_RDY(1))
807 marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
809 if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
810 complete(&nfc->complete);
815 /* HW ECC related functions */
816 static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
818 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
819 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
821 if (!(ndcr & NDCR_ECC_EN)) {
822 writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
825 * When enabling BCH, set threshold to 0 to always know the
826 * number of corrected bitflips.
828 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
829 writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
833 static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
835 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
836 u32 ndcr = readl_relaxed(nfc->regs + NDCR);
838 if (ndcr & NDCR_ECC_EN) {
839 writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
840 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
841 writel_relaxed(0, nfc->regs + NDECCCTRL);
845 /* DMA related helpers */
846 static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
850 reg = readl_relaxed(nfc->regs + NDCR);
851 writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
854 static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
858 reg = readl_relaxed(nfc->regs + NDCR);
859 writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
862 /* Read/write PIO/DMA accessors */
863 static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
864 enum dma_data_direction direction,
867 unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
868 struct dma_async_tx_descriptor *tx;
869 struct scatterlist sg;
873 marvell_nfc_enable_dma(nfc);
874 /* Prepare the DMA transfer */
875 sg_init_one(&sg, nfc->dma_buf, dma_len);
876 ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
878 dev_err(nfc->dev, "Could not map DMA S/G list\n");
882 tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
883 direction == DMA_FROM_DEVICE ?
884 DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
887 dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
888 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
892 /* Do the task and wait for it to finish */
893 cookie = dmaengine_submit(tx);
894 ret = dma_submit_error(cookie);
898 dma_async_issue_pending(nfc->dma_chan);
899 ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
900 dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
901 marvell_nfc_disable_dma(nfc);
903 dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
904 dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
905 dmaengine_terminate_all(nfc->dma_chan);
912 static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
915 unsigned int last_len = len % FIFO_DEPTH;
916 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
919 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
920 ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
923 u8 tmp_buf[FIFO_DEPTH];
925 ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
926 memcpy(in + last_full_offset, tmp_buf, last_len);
932 static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
935 unsigned int last_len = len % FIFO_DEPTH;
936 unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
939 for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
940 iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
943 u8 tmp_buf[FIFO_DEPTH];
945 memcpy(tmp_buf, out + last_full_offset, last_len);
946 iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
952 static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
953 u8 *data, int data_len,
954 u8 *spare, int spare_len,
955 u8 *ecc, int ecc_len,
956 unsigned int *max_bitflips)
958 struct mtd_info *mtd = nand_to_mtd(chip);
962 * Blank pages (all 0xFF) that have not been written may be recognized
963 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
964 * check if the entire page (with ECC bytes) is actually blank or not.
973 bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
974 spare, spare_len, chip->ecc.strength);
976 mtd->ecc_stats.failed++;
980 /* Update the stats and max_bitflips */
981 mtd->ecc_stats.corrected += bf;
982 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
986 * Check if a chunk is correct or not according to the hardware ECC engine.
987 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
988 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
989 * value indicating that a check on the emptyness of the subpage must be
990 * performed before actually declaring the subpage as "corrupted".
992 static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
993 unsigned int *max_bitflips)
995 struct mtd_info *mtd = nand_to_mtd(chip);
996 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1000 ndsr = readl_relaxed(nfc->regs + NDSR);
1002 /* Check uncorrectable error flag */
1003 if (ndsr & NDSR_UNCERR) {
1004 writel_relaxed(ndsr, nfc->regs + NDSR);
1007 * Do not increment ->ecc_stats.failed now, instead, return a
1008 * non-zero value to indicate that this chunk was apparently
1009 * bad, and it should be check to see if it empty or not. If
1010 * the chunk (with ECC bytes) is not declared empty, the calling
1011 * function must increment the failure count.
1016 /* Check correctable error flag */
1017 if (ndsr & NDSR_CORERR) {
1018 writel_relaxed(ndsr, nfc->regs + NDSR);
1020 if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1021 bf = NDSR_ERRCNT(ndsr);
1026 /* Update the stats and max_bitflips */
1027 mtd->ecc_stats.corrected += bf;
1028 *max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1033 /* Hamming read helpers */
1034 static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1035 u8 *data_buf, u8 *oob_buf,
1038 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1039 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1040 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1041 struct marvell_nfc_op nfc_op = {
1042 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1043 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1045 NDCB0_CMD1(NAND_CMD_READ0) |
1046 NDCB0_CMD2(NAND_CMD_READSTART),
1047 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1048 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1050 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1053 /* NFCv2 needs more information about the operation being executed */
1054 if (nfc->caps->is_nfcv2)
1055 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1057 ret = marvell_nfc_prepare_cmd(chip);
1061 marvell_nfc_send_cmd(chip, &nfc_op);
1062 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1063 "RDDREQ while draining FIFO (data/oob)");
1068 * Read the page then the OOB area. Unlike what is shown in current
1069 * documentation, spare bytes are protected by the ECC engine, and must
1070 * be at the beginning of the OOB area or running this driver on legacy
1071 * systems will prevent the discovery of the BBM/BBT.
1074 marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1075 lt->data_bytes + oob_bytes);
1076 memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1077 memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1079 marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1080 marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1083 ret = marvell_nfc_wait_cmdd(chip);
1087 static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1088 int oob_required, int page)
1090 marvell_nfc_select_target(chip, chip->cur_cs);
1091 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1095 static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1096 int oob_required, int page)
1098 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1099 unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1100 int max_bitflips = 0, ret;
1103 marvell_nfc_select_target(chip, chip->cur_cs);
1104 marvell_nfc_enable_hw_ecc(chip);
1105 marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1107 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1108 marvell_nfc_disable_hw_ecc(chip);
1111 return max_bitflips;
1114 * When ECC failures are detected, check if the full page has been
1115 * written or not. Ignore the failure if it is actually empty.
1117 raw_buf = kmalloc(full_sz, GFP_KERNEL);
1121 marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1122 lt->data_bytes, true, page);
1123 marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1127 return max_bitflips;
1131 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1132 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1133 * also stands for ->read_oob().
1135 static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1137 u8 *buf = nand_get_data_buf(chip);
1139 marvell_nfc_select_target(chip, chip->cur_cs);
1140 return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1144 /* Hamming write helpers */
1145 static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1147 const u8 *oob_buf, bool raw,
1150 const struct nand_sdr_timings *sdr =
1151 nand_get_sdr_timings(nand_get_interface_config(chip));
1152 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1153 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1154 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1155 struct marvell_nfc_op nfc_op = {
1156 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1157 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1158 NDCB0_CMD1(NAND_CMD_SEQIN) |
1159 NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1161 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1162 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1164 unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1167 /* NFCv2 needs more information about the operation being executed */
1168 if (nfc->caps->is_nfcv2)
1169 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1171 ret = marvell_nfc_prepare_cmd(chip);
1175 marvell_nfc_send_cmd(chip, &nfc_op);
1176 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1177 "WRDREQ while loading FIFO (data)");
1181 /* Write the page then the OOB area */
1183 memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1184 memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1185 marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1186 lt->ecc_bytes + lt->spare_bytes);
1188 marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1189 marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1192 ret = marvell_nfc_wait_cmdd(chip);
1196 ret = marvell_nfc_wait_op(chip,
1197 PSEC_TO_MSEC(sdr->tPROG_max));
1201 static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1203 int oob_required, int page)
1205 marvell_nfc_select_target(chip, chip->cur_cs);
1206 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1210 static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1212 int oob_required, int page)
1216 marvell_nfc_select_target(chip, chip->cur_cs);
1217 marvell_nfc_enable_hw_ecc(chip);
1218 ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1220 marvell_nfc_disable_hw_ecc(chip);
1226 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1227 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1228 * also stands for ->write_oob().
1230 static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1233 struct mtd_info *mtd = nand_to_mtd(chip);
1234 u8 *buf = nand_get_data_buf(chip);
1236 memset(buf, 0xFF, mtd->writesize);
1238 marvell_nfc_select_target(chip, chip->cur_cs);
1239 return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1243 /* BCH read helpers */
1244 static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1245 int oob_required, int page)
1247 struct mtd_info *mtd = nand_to_mtd(chip);
1248 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1249 u8 *oob = chip->oob_poi;
1250 int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1251 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1252 lt->last_spare_bytes;
1253 int data_len = lt->data_bytes;
1254 int spare_len = lt->spare_bytes;
1255 int ecc_len = lt->ecc_bytes;
1258 marvell_nfc_select_target(chip, chip->cur_cs);
1261 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1263 nand_read_page_op(chip, page, 0, NULL, 0);
1265 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1266 /* Update last chunk length */
1267 if (chunk >= lt->full_chunk_cnt) {
1268 data_len = lt->last_data_bytes;
1269 spare_len = lt->last_spare_bytes;
1270 ecc_len = lt->last_ecc_bytes;
1273 /* Read data bytes*/
1274 nand_change_read_column_op(chip, chunk * chunk_size,
1275 buf + (lt->data_bytes * chunk),
1278 /* Read spare bytes */
1279 nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1280 spare_len, false, false);
1282 /* Read ECC bytes */
1283 nand_read_data_op(chip, oob + ecc_offset +
1284 (ALIGN(lt->ecc_bytes, 32) * chunk),
1285 ecc_len, false, false);
1291 static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1292 u8 *data, unsigned int data_len,
1293 u8 *spare, unsigned int spare_len,
1296 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1297 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1298 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1300 struct marvell_nfc_op nfc_op = {
1301 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1302 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1304 .ndcb[1] = NDCB1_ADDRS_PAGE(page),
1305 .ndcb[2] = NDCB2_ADDR5_PAGE(page),
1306 .ndcb[3] = data_len + spare_len,
1309 ret = marvell_nfc_prepare_cmd(chip);
1314 nfc_op.ndcb[0] |= NDCB0_DBC |
1315 NDCB0_CMD1(NAND_CMD_READ0) |
1316 NDCB0_CMD2(NAND_CMD_READSTART);
1319 * Trigger the monolithic read on the first chunk, then naked read on
1320 * intermediate chunks and finally a last naked read on the last chunk.
1323 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1324 else if (chunk < lt->nchunks - 1)
1325 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1327 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1329 marvell_nfc_send_cmd(chip, &nfc_op);
1332 * According to the datasheet, when reading from NDDB
1333 * with BCH enabled, after each 32 bytes reads, we
1334 * have to make sure that the NDSR.RDDREQ bit is set.
1336 * Drain the FIFO, 8 32-bit reads at a time, and skip
1337 * the polling on the last read.
1339 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1341 for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1342 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1343 "RDDREQ while draining FIFO (data)");
1344 marvell_nfc_xfer_data_in_pio(nfc, data,
1345 FIFO_DEPTH * BCH_SEQ_READS);
1346 data += FIFO_DEPTH * BCH_SEQ_READS;
1349 for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1350 marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1351 "RDDREQ while draining FIFO (OOB)");
1352 marvell_nfc_xfer_data_in_pio(nfc, spare,
1353 FIFO_DEPTH * BCH_SEQ_READS);
1354 spare += FIFO_DEPTH * BCH_SEQ_READS;
1358 static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1359 u8 *buf, int oob_required,
1362 struct mtd_info *mtd = nand_to_mtd(chip);
1363 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1364 int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1365 u8 *data = buf, *spare = chip->oob_poi;
1366 int max_bitflips = 0;
1367 u32 failure_mask = 0;
1370 marvell_nfc_select_target(chip, chip->cur_cs);
1373 * With BCH, OOB is not fully used (and thus not read entirely), not
1374 * expected bytes could show up at the end of the OOB buffer if not
1375 * explicitly erased.
1378 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1380 marvell_nfc_enable_hw_ecc(chip);
1382 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1383 /* Update length for the last chunk */
1384 if (chunk >= lt->full_chunk_cnt) {
1385 data_len = lt->last_data_bytes;
1386 spare_len = lt->last_spare_bytes;
1389 /* Read the chunk and detect number of bitflips */
1390 marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1391 spare, spare_len, page);
1392 ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1394 failure_mask |= BIT(chunk);
1400 marvell_nfc_disable_hw_ecc(chip);
1403 return max_bitflips;
1406 * Please note that dumping the ECC bytes during a normal read with OOB
1407 * area would add a significant overhead as ECC bytes are "consumed" by
1408 * the controller in normal mode and must be re-read in raw mode. To
1409 * avoid dropping the performances, we prefer not to include them. The
1410 * user should re-read the page in raw mode if ECC bytes are required.
1414 * In case there is any subpage read error, we usually re-read only ECC
1415 * bytes in raw mode and check if the whole page is empty. In this case,
1416 * it is normal that the ECC check failed and we just ignore the error.
1418 * However, it has been empirically observed that for some layouts (e.g
1419 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1420 * bits and may create itself bitflips in the erased area. To overcome
1421 * this strange behavior, the whole page is re-read in raw mode, not
1422 * only the ECC bytes.
1424 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1425 int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1426 int data_off, spare_off, ecc_off;
1427 int data_len, spare_len, ecc_len;
1429 /* No failure reported for this chunk, move to the next one */
1430 if (!(failure_mask & BIT(chunk)))
1433 data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1435 spare_off_in_page = data_off_in_page +
1436 (chunk < lt->full_chunk_cnt ? lt->data_bytes :
1437 lt->last_data_bytes);
1438 ecc_off_in_page = spare_off_in_page +
1439 (chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1440 lt->last_spare_bytes);
1442 data_off = chunk * lt->data_bytes;
1443 spare_off = chunk * lt->spare_bytes;
1444 ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1445 lt->last_spare_bytes +
1446 (chunk * (lt->ecc_bytes + 2));
1448 data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1449 lt->last_data_bytes;
1450 spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1451 lt->last_spare_bytes;
1452 ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1456 * Only re-read the ECC bytes, unless we are using the 2k/8b
1457 * layout which is buggy in the sense that the ECC engine will
1458 * try to correct data bytes anyway, creating bitflips. In this
1459 * case, re-read the entire page.
1461 if (lt->writesize == 2048 && lt->strength == 8) {
1462 nand_change_read_column_op(chip, data_off_in_page,
1463 buf + data_off, data_len,
1465 nand_change_read_column_op(chip, spare_off_in_page,
1466 chip->oob_poi + spare_off, spare_len,
1470 nand_change_read_column_op(chip, ecc_off_in_page,
1471 chip->oob_poi + ecc_off, ecc_len,
1474 /* Check the entire chunk (data + spare + ecc) for emptyness */
1475 marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1476 chip->oob_poi + spare_off, spare_len,
1477 chip->oob_poi + ecc_off, ecc_len,
1481 return max_bitflips;
1484 static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1486 u8 *buf = nand_get_data_buf(chip);
1488 return chip->ecc.read_page_raw(chip, buf, true, page);
1491 static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1493 u8 *buf = nand_get_data_buf(chip);
1495 return chip->ecc.read_page(chip, buf, true, page);
1498 /* BCH write helpers */
1499 static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1501 int oob_required, int page)
1503 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1504 int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1505 int data_len = lt->data_bytes;
1506 int spare_len = lt->spare_bytes;
1507 int ecc_len = lt->ecc_bytes;
1508 int spare_offset = 0;
1509 int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1510 lt->last_spare_bytes;
1513 marvell_nfc_select_target(chip, chip->cur_cs);
1515 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1517 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1518 if (chunk >= lt->full_chunk_cnt) {
1519 data_len = lt->last_data_bytes;
1520 spare_len = lt->last_spare_bytes;
1521 ecc_len = lt->last_ecc_bytes;
1524 /* Point to the column of the next chunk */
1525 nand_change_write_column_op(chip, chunk * full_chunk_size,
1528 /* Write the data */
1529 nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1535 /* Write the spare bytes */
1537 nand_write_data_op(chip, chip->oob_poi + spare_offset,
1540 /* Write the ECC bytes */
1542 nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1545 spare_offset += spare_len;
1546 ecc_offset += ALIGN(ecc_len, 32);
1549 return nand_prog_page_end_op(chip);
1553 marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1554 const u8 *data, unsigned int data_len,
1555 const u8 *spare, unsigned int spare_len,
1558 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1559 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1560 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1563 struct marvell_nfc_op nfc_op = {
1564 .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1565 .ndcb[3] = data_len + spare_len,
1569 * First operation dispatches the CMD_SEQIN command, issue the address
1570 * cycles and asks for the first chunk of data.
1571 * All operations in the middle (if any) will issue a naked write and
1572 * also ask for data.
1573 * Last operation (if any) asks for the last chunk of data through a
1577 if (lt->nchunks == 1)
1578 xtype = XTYPE_MONOLITHIC_RW;
1580 xtype = XTYPE_WRITE_DISPATCH;
1582 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1583 NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1584 NDCB0_CMD1(NAND_CMD_SEQIN);
1585 nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1586 nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1587 } else if (chunk < lt->nchunks - 1) {
1588 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1590 nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1593 /* Always dispatch the PAGEPROG command on the last chunk */
1594 if (chunk == lt->nchunks - 1)
1595 nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1597 ret = marvell_nfc_prepare_cmd(chip);
1601 marvell_nfc_send_cmd(chip, &nfc_op);
1602 ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1603 "WRDREQ while loading FIFO (data)");
1607 /* Transfer the contents */
1608 iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1609 iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1614 static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1616 int oob_required, int page)
1618 const struct nand_sdr_timings *sdr =
1619 nand_get_sdr_timings(nand_get_interface_config(chip));
1620 struct mtd_info *mtd = nand_to_mtd(chip);
1621 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1622 const u8 *data = buf;
1623 const u8 *spare = chip->oob_poi;
1624 int data_len = lt->data_bytes;
1625 int spare_len = lt->spare_bytes;
1628 marvell_nfc_select_target(chip, chip->cur_cs);
1630 /* Spare data will be written anyway, so clear it to avoid garbage */
1632 memset(chip->oob_poi, 0xFF, mtd->oobsize);
1634 marvell_nfc_enable_hw_ecc(chip);
1636 for (chunk = 0; chunk < lt->nchunks; chunk++) {
1637 if (chunk >= lt->full_chunk_cnt) {
1638 data_len = lt->last_data_bytes;
1639 spare_len = lt->last_spare_bytes;
1642 marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1643 spare, spare_len, page);
1648 * Waiting only for CMDD or PAGED is not enough, ECC are
1649 * partially written. No flag is set once the operation is
1650 * really finished but the ND_RUN bit is cleared, so wait for it
1651 * before stepping into the next command.
1653 marvell_nfc_wait_ndrun(chip);
1656 ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1658 marvell_nfc_disable_hw_ecc(chip);
1666 static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1669 struct mtd_info *mtd = nand_to_mtd(chip);
1670 u8 *buf = nand_get_data_buf(chip);
1672 memset(buf, 0xFF, mtd->writesize);
1674 return chip->ecc.write_page_raw(chip, buf, true, page);
1677 static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1679 struct mtd_info *mtd = nand_to_mtd(chip);
1680 u8 *buf = nand_get_data_buf(chip);
1682 memset(buf, 0xFF, mtd->writesize);
1684 return chip->ecc.write_page(chip, buf, true, page);
1687 /* NAND framework ->exec_op() hooks and related helpers */
1688 static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1689 const struct nand_subop *subop,
1690 struct marvell_nfc_op *nfc_op)
1692 const struct nand_op_instr *instr = NULL;
1693 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1694 bool first_cmd = true;
1698 /* Reset the input structure as most of its fields will be OR'ed */
1699 memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1701 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1702 unsigned int offset, naddrs;
1706 instr = &subop->instrs[op_id];
1708 switch (instr->type) {
1709 case NAND_OP_CMD_INSTR:
1712 NDCB0_CMD1(instr->ctx.cmd.opcode);
1715 NDCB0_CMD2(instr->ctx.cmd.opcode) |
1718 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1722 case NAND_OP_ADDR_INSTR:
1723 offset = nand_subop_get_addr_start_off(subop, op_id);
1724 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1725 addrs = &instr->ctx.addr.addrs[offset];
1727 nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1729 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1730 nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1733 nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1735 nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1737 nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1739 nfc_op->cle_ale_delay_ns = instr->delay_ns;
1742 case NAND_OP_DATA_IN_INSTR:
1743 nfc_op->data_instr = instr;
1744 nfc_op->data_instr_idx = op_id;
1745 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1746 if (nfc->caps->is_nfcv2) {
1748 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1750 len = nand_subop_get_data_len(subop, op_id);
1751 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1753 nfc_op->data_delay_ns = instr->delay_ns;
1756 case NAND_OP_DATA_OUT_INSTR:
1757 nfc_op->data_instr = instr;
1758 nfc_op->data_instr_idx = op_id;
1759 nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1760 if (nfc->caps->is_nfcv2) {
1762 NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1764 len = nand_subop_get_data_len(subop, op_id);
1765 nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1767 nfc_op->data_delay_ns = instr->delay_ns;
1770 case NAND_OP_WAITRDY_INSTR:
1771 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1772 nfc_op->rdy_delay_ns = instr->delay_ns;
1778 static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1779 const struct nand_subop *subop,
1780 struct marvell_nfc_op *nfc_op)
1782 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1783 const struct nand_op_instr *instr = nfc_op->data_instr;
1784 unsigned int op_id = nfc_op->data_instr_idx;
1785 unsigned int len = nand_subop_get_data_len(subop, op_id);
1786 unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1787 bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1790 if (instr->ctx.data.force_8bit)
1791 marvell_nfc_force_byte_access(chip, true);
1794 u8 *in = instr->ctx.data.buf.in + offset;
1796 ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1798 const u8 *out = instr->ctx.data.buf.out + offset;
1800 ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1803 if (instr->ctx.data.force_8bit)
1804 marvell_nfc_force_byte_access(chip, false);
1809 static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1810 const struct nand_subop *subop)
1812 struct marvell_nfc_op nfc_op;
1816 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1817 reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1819 ret = marvell_nfc_prepare_cmd(chip);
1823 marvell_nfc_send_cmd(chip, &nfc_op);
1824 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1825 "RDDREQ/WRDREQ while draining raw data");
1829 cond_delay(nfc_op.cle_ale_delay_ns);
1832 if (nfc_op.rdy_timeout_ms) {
1833 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1838 cond_delay(nfc_op.rdy_delay_ns);
1841 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1842 ret = marvell_nfc_wait_cmdd(chip);
1846 cond_delay(nfc_op.data_delay_ns);
1849 if (nfc_op.rdy_timeout_ms) {
1850 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1855 cond_delay(nfc_op.rdy_delay_ns);
1859 * NDCR ND_RUN bit should be cleared automatically at the end of each
1860 * operation but experience shows that the behavior is buggy when it
1861 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1864 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1866 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1873 static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1874 const struct nand_subop *subop)
1876 struct marvell_nfc_op nfc_op;
1879 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1882 * Naked access are different in that they need to be flagged as naked
1883 * by the controller. Reset the controller registers fields that inform
1884 * on the type and refill them according to the ongoing operation.
1886 nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1887 NDCB0_CMD_XTYPE(XTYPE_MASK));
1888 switch (subop->instrs[0].type) {
1889 case NAND_OP_CMD_INSTR:
1890 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1892 case NAND_OP_ADDR_INSTR:
1893 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1895 case NAND_OP_DATA_IN_INSTR:
1896 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1897 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1899 case NAND_OP_DATA_OUT_INSTR:
1900 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1901 NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1904 /* This should never happen */
1908 ret = marvell_nfc_prepare_cmd(chip);
1912 marvell_nfc_send_cmd(chip, &nfc_op);
1914 if (!nfc_op.data_instr) {
1915 ret = marvell_nfc_wait_cmdd(chip);
1916 cond_delay(nfc_op.cle_ale_delay_ns);
1920 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1921 "RDDREQ/WRDREQ while draining raw data");
1925 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1926 ret = marvell_nfc_wait_cmdd(chip);
1931 * NDCR ND_RUN bit should be cleared automatically at the end of each
1932 * operation but experience shows that the behavior is buggy when it
1933 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1935 if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1936 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1938 writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1945 static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1946 const struct nand_subop *subop)
1948 struct marvell_nfc_op nfc_op;
1951 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1953 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1954 cond_delay(nfc_op.rdy_delay_ns);
1959 static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1960 const struct nand_subop *subop)
1962 struct marvell_nfc_op nfc_op;
1965 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1966 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1967 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1969 ret = marvell_nfc_prepare_cmd(chip);
1973 marvell_nfc_send_cmd(chip, &nfc_op);
1974 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1975 "RDDREQ while reading ID");
1979 cond_delay(nfc_op.cle_ale_delay_ns);
1981 if (nfc_op.rdy_timeout_ms) {
1982 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1987 cond_delay(nfc_op.rdy_delay_ns);
1989 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1990 ret = marvell_nfc_wait_cmdd(chip);
1994 cond_delay(nfc_op.data_delay_ns);
1999 static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2000 const struct nand_subop *subop)
2002 struct marvell_nfc_op nfc_op;
2005 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2006 nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2007 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2009 ret = marvell_nfc_prepare_cmd(chip);
2013 marvell_nfc_send_cmd(chip, &nfc_op);
2014 ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2015 "RDDREQ while reading status");
2019 cond_delay(nfc_op.cle_ale_delay_ns);
2021 if (nfc_op.rdy_timeout_ms) {
2022 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2027 cond_delay(nfc_op.rdy_delay_ns);
2029 marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2030 ret = marvell_nfc_wait_cmdd(chip);
2034 cond_delay(nfc_op.data_delay_ns);
2039 static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2040 const struct nand_subop *subop)
2042 struct marvell_nfc_op nfc_op;
2045 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2046 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2048 ret = marvell_nfc_prepare_cmd(chip);
2052 marvell_nfc_send_cmd(chip, &nfc_op);
2053 ret = marvell_nfc_wait_cmdd(chip);
2057 cond_delay(nfc_op.cle_ale_delay_ns);
2059 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2063 cond_delay(nfc_op.rdy_delay_ns);
2068 static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2069 const struct nand_subop *subop)
2071 struct marvell_nfc_op nfc_op;
2074 marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2075 nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2077 ret = marvell_nfc_prepare_cmd(chip);
2081 marvell_nfc_send_cmd(chip, &nfc_op);
2082 ret = marvell_nfc_wait_cmdd(chip);
2086 cond_delay(nfc_op.cle_ale_delay_ns);
2088 ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2092 cond_delay(nfc_op.rdy_delay_ns);
2097 static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2098 /* Monolithic reads/writes */
2099 NAND_OP_PARSER_PATTERN(
2100 marvell_nfc_monolithic_access_exec,
2101 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2102 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2103 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2104 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2105 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2106 NAND_OP_PARSER_PATTERN(
2107 marvell_nfc_monolithic_access_exec,
2108 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2109 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2110 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2111 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2112 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2113 /* Naked commands */
2114 NAND_OP_PARSER_PATTERN(
2115 marvell_nfc_naked_access_exec,
2116 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2117 NAND_OP_PARSER_PATTERN(
2118 marvell_nfc_naked_access_exec,
2119 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2120 NAND_OP_PARSER_PATTERN(
2121 marvell_nfc_naked_access_exec,
2122 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2123 NAND_OP_PARSER_PATTERN(
2124 marvell_nfc_naked_access_exec,
2125 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2126 NAND_OP_PARSER_PATTERN(
2127 marvell_nfc_naked_waitrdy_exec,
2128 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2131 static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2132 /* Naked commands not supported, use a function for each pattern */
2133 NAND_OP_PARSER_PATTERN(
2134 marvell_nfc_read_id_type_exec,
2135 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2136 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2137 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2138 NAND_OP_PARSER_PATTERN(
2139 marvell_nfc_erase_cmd_type_exec,
2140 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2141 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2142 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2143 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2144 NAND_OP_PARSER_PATTERN(
2145 marvell_nfc_read_status_exec,
2146 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2147 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2148 NAND_OP_PARSER_PATTERN(
2149 marvell_nfc_reset_cmd_type_exec,
2150 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2151 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2152 NAND_OP_PARSER_PATTERN(
2153 marvell_nfc_naked_waitrdy_exec,
2154 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2157 static int marvell_nfc_exec_op(struct nand_chip *chip,
2158 const struct nand_operation *op,
2161 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2164 marvell_nfc_select_target(chip, op->cs);
2166 if (nfc->caps->is_nfcv2)
2167 return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2170 return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2175 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2178 static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2179 struct mtd_oob_region *oobregion)
2181 struct nand_chip *chip = mtd_to_nand(mtd);
2182 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2187 oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2189 oobregion->offset = mtd->oobsize - oobregion->length;
2194 static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2195 struct mtd_oob_region *oobregion)
2197 struct nand_chip *chip = mtd_to_nand(mtd);
2198 const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2204 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2205 * 4KB page / 4bit BCH combination.
2207 if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2208 oobregion->offset = 6;
2210 oobregion->offset = 2;
2212 oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2213 lt->last_spare_bytes - oobregion->offset;
2218 static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2219 .ecc = marvell_nand_ooblayout_ecc,
2220 .free = marvell_nand_ooblayout_free,
2223 static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2224 struct nand_ecc_ctrl *ecc)
2226 struct nand_chip *chip = mtd_to_nand(mtd);
2227 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2228 const struct marvell_hw_ecc_layout *l;
2231 if (!nfc->caps->is_nfcv2 &&
2232 (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2234 "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2235 mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2239 to_marvell_nand(chip)->layout = NULL;
2240 for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2241 l = &marvell_nfc_layouts[i];
2242 if (mtd->writesize == l->writesize &&
2243 ecc->size == l->chunk && ecc->strength == l->strength) {
2244 to_marvell_nand(chip)->layout = l;
2249 if (!to_marvell_nand(chip)->layout ||
2250 (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2252 "ECC strength %d at page size %d is not supported\n",
2253 ecc->strength, mtd->writesize);
2257 /* Special care for the layout 2k/8-bit/512B */
2258 if (l->writesize == 2048 && l->strength == 8) {
2259 if (mtd->oobsize < 128) {
2260 dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2263 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2267 mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2268 ecc->steps = l->nchunks;
2269 ecc->size = l->data_bytes;
2271 if (ecc->strength == 1) {
2272 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2273 ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2274 ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2275 ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2276 ecc->read_oob = ecc->read_oob_raw;
2277 ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2278 ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2279 ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2280 ecc->write_oob = ecc->write_oob_raw;
2282 chip->ecc.algo = NAND_ECC_ALGO_BCH;
2284 ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2285 ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2286 ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2287 ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2288 ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2289 ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2290 ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2291 ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2297 static int marvell_nand_ecc_init(struct mtd_info *mtd,
2298 struct nand_ecc_ctrl *ecc)
2300 struct nand_chip *chip = mtd_to_nand(mtd);
2301 const struct nand_ecc_props *requirements =
2302 nanddev_get_ecc_requirements(&chip->base);
2303 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2306 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2307 (!ecc->size || !ecc->strength)) {
2308 if (requirements->step_size && requirements->strength) {
2309 ecc->size = requirements->step_size;
2310 ecc->strength = requirements->strength;
2313 "No minimum ECC strength, using 1b/512B\n");
2319 switch (ecc->engine_type) {
2320 case NAND_ECC_ENGINE_TYPE_ON_HOST:
2321 ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2325 case NAND_ECC_ENGINE_TYPE_NONE:
2326 case NAND_ECC_ENGINE_TYPE_SOFT:
2327 case NAND_ECC_ENGINE_TYPE_ON_DIE:
2328 if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2329 mtd->writesize != SZ_2K) {
2330 dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2342 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2343 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2345 static struct nand_bbt_descr bbt_main_descr = {
2346 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2347 NAND_BBT_2BIT | NAND_BBT_VERSION,
2351 .maxblocks = 8, /* Last 8 blocks in each chip */
2352 .pattern = bbt_pattern
2355 static struct nand_bbt_descr bbt_mirror_descr = {
2356 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2357 NAND_BBT_2BIT | NAND_BBT_VERSION,
2361 .maxblocks = 8, /* Last 8 blocks in each chip */
2362 .pattern = bbt_mirror_pattern
2365 static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2366 const struct nand_interface_config *conf)
2368 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2369 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2370 unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2371 const struct nand_sdr_timings *sdr;
2372 struct marvell_nfc_timings nfc_tmg;
2375 sdr = nand_get_sdr_timings(conf);
2377 return PTR_ERR(sdr);
2380 * SDR timings are given in pico-seconds while NFC timings must be
2381 * expressed in NAND controller clock cycles, which is half of the
2382 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2383 * This is not written anywhere in the datasheet but was observed
2384 * with an oscilloscope.
2386 * NFC datasheet gives equations from which thoses calculations
2387 * are derived, they tend to be slightly more restrictives than the
2388 * given core timings and may improve the overall speed.
2390 nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2391 nfc_tmg.tRH = nfc_tmg.tRP;
2392 nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2393 nfc_tmg.tWH = nfc_tmg.tWP;
2394 nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2395 nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2396 nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2398 * Read delay is the time of propagation from SoC pins to NFC internal
2399 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2400 * EDO mode, an additional delay of tRH must be taken into account so
2401 * the data is sampled on the falling edge instead of the rising edge.
2403 read_delay = sdr->tRC_min >= 30000 ?
2404 MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2406 nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2408 * tWHR and tRHW are supposed to be read to write delays (and vice
2409 * versa) but in some cases, ie. when doing a change column, they must
2410 * be greater than that to be sure tCCS delay is respected.
2412 nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2414 nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2418 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2419 * NFCv1: No WAIT_MODE, tR must be maximal.
2421 if (nfc->caps->is_nfcv2) {
2422 nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2424 nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2426 if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2427 nfc_tmg.tR = nfc_tmg.tCH - 3;
2435 marvell_nand->ndtr0 =
2436 NDTR0_TRP(nfc_tmg.tRP) |
2437 NDTR0_TRH(nfc_tmg.tRH) |
2438 NDTR0_ETRP(nfc_tmg.tRP) |
2439 NDTR0_TWP(nfc_tmg.tWP) |
2440 NDTR0_TWH(nfc_tmg.tWH) |
2441 NDTR0_TCS(nfc_tmg.tCS) |
2442 NDTR0_TCH(nfc_tmg.tCH);
2444 marvell_nand->ndtr1 =
2445 NDTR1_TAR(nfc_tmg.tAR) |
2446 NDTR1_TWHR(nfc_tmg.tWHR) |
2447 NDTR1_TR(nfc_tmg.tR);
2449 if (nfc->caps->is_nfcv2) {
2450 marvell_nand->ndtr0 |=
2451 NDTR0_RD_CNT_DEL(read_delay) |
2453 NDTR0_TADL(nfc_tmg.tADL);
2455 marvell_nand->ndtr1 |=
2456 NDTR1_TRHW(nfc_tmg.tRHW) |
2463 static int marvell_nand_attach_chip(struct nand_chip *chip)
2465 struct mtd_info *mtd = nand_to_mtd(chip);
2466 struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2467 struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2468 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2471 if (pdata && pdata->flash_bbt)
2472 chip->bbt_options |= NAND_BBT_USE_FLASH;
2474 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2476 * We'll use a bad block table stored in-flash and don't
2477 * allow writing the bad block marker to the flash.
2479 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2480 chip->bbt_td = &bbt_main_descr;
2481 chip->bbt_md = &bbt_mirror_descr;
2484 /* Save the chip-specific fields of NDCR */
2485 marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2486 if (chip->options & NAND_BUSWIDTH_16)
2487 marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2490 * On small page NANDs, only one cycle is needed to pass the
2493 if (mtd->writesize <= 512) {
2494 marvell_nand->addr_cyc = 1;
2496 marvell_nand->addr_cyc = 2;
2497 marvell_nand->ndcr |= NDCR_RA_START;
2501 * Now add the number of cycles needed to pass the row
2504 * Addressing a chip using CS 2 or 3 should also need the third row
2505 * cycle but due to inconsistance in the documentation and lack of
2506 * hardware to test this situation, this case is not supported.
2508 if (chip->options & NAND_ROW_ADDR_3)
2509 marvell_nand->addr_cyc += 3;
2511 marvell_nand->addr_cyc += 2;
2514 chip->ecc.size = pdata->ecc_step_size;
2515 chip->ecc.strength = pdata->ecc_strength;
2518 ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2520 dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2524 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2526 * Subpage write not available with hardware ECC, prohibit also
2527 * subpage read as in userspace subpage access would still be
2528 * allowed and subpage write, if used, would lead to numerous
2529 * uncorrectable ECC errors.
2531 chip->options |= NAND_NO_SUBPAGE_WRITE;
2534 if (pdata || nfc->caps->legacy_of_bindings) {
2536 * We keep the MTD name unchanged to avoid breaking platforms
2537 * where the MTD cmdline parser is used and the bootloader
2538 * has not been updated to use the new naming scheme.
2540 mtd->name = "pxa3xx_nand-0";
2541 } else if (!mtd->name) {
2543 * If the new bindings are used and the bootloader has not been
2544 * updated to pass a new mtdparts parameter on the cmdline, you
2545 * should define the following property in your NAND node, ie:
2547 * label = "main-storage";
2549 * This way, mtd->name will be set by the core when
2550 * nand_set_flash_node() is called.
2552 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2553 "%s:nand.%d", dev_name(nfc->dev),
2554 marvell_nand->sels[0].cs);
2556 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2564 static const struct nand_controller_ops marvell_nand_controller_ops = {
2565 .attach_chip = marvell_nand_attach_chip,
2566 .exec_op = marvell_nfc_exec_op,
2567 .setup_interface = marvell_nfc_setup_interface,
2570 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2571 struct device_node *np)
2573 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2574 struct marvell_nand_chip *marvell_nand;
2575 struct mtd_info *mtd;
2576 struct nand_chip *chip;
2581 * The legacy "num-cs" property indicates the number of CS on the only
2582 * chip connected to the controller (legacy bindings does not support
2583 * more than one chip). The CS and RB pins are always the #0.
2585 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2586 * properties must be filled. For each chip, expressed as a subnode,
2587 * "reg" points to the CS lines and "nand-rb" to the RB line.
2589 if (pdata || nfc->caps->legacy_of_bindings) {
2592 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2594 dev_err(dev, "missing/invalid reg property\n");
2599 /* Alloc the nand chip structure */
2600 marvell_nand = devm_kzalloc(dev,
2601 struct_size(marvell_nand, sels, nsels),
2603 if (!marvell_nand) {
2604 dev_err(dev, "could not allocate chip structure\n");
2608 marvell_nand->nsels = nsels;
2609 marvell_nand->selected_die = -1;
2611 for (i = 0; i < nsels; i++) {
2612 if (pdata || nfc->caps->legacy_of_bindings) {
2614 * Legacy bindings use the CS lines in natural
2619 /* Retrieve CS id */
2620 ret = of_property_read_u32_index(np, "reg", i, &cs);
2622 dev_err(dev, "could not retrieve reg property: %d\n",
2628 if (cs >= nfc->caps->max_cs_nb) {
2629 dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2630 cs, nfc->caps->max_cs_nb);
2634 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2635 dev_err(dev, "CS %d already assigned\n", cs);
2640 * The cs variable represents the chip select id, which must be
2641 * converted in bit fields for NDCB0 and NDCB2 to select the
2642 * right chip. Unfortunately, due to a lack of information on
2643 * the subject and incoherent documentation, the user should not
2644 * use CS1 and CS3 at all as asserting them is not supported in
2645 * a reliable way (due to multiplexing inside ADDR5 field).
2647 marvell_nand->sels[i].cs = cs;
2651 marvell_nand->sels[i].ndcb0_csel = 0;
2655 marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2661 /* Retrieve RB id */
2662 if (pdata || nfc->caps->legacy_of_bindings) {
2663 /* Legacy bindings always use RB #0 */
2666 ret = of_property_read_u32_index(np, "nand-rb", i,
2670 "could not retrieve RB property: %d\n",
2676 if (rb >= nfc->caps->max_rb_nb) {
2677 dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2678 rb, nfc->caps->max_rb_nb);
2682 marvell_nand->sels[i].rb = rb;
2685 chip = &marvell_nand->chip;
2686 chip->controller = &nfc->controller;
2687 nand_set_flash_node(chip, np);
2689 if (of_property_read_bool(np, "marvell,nand-keep-config"))
2690 chip->options |= NAND_KEEP_TIMINGS;
2692 mtd = nand_to_mtd(chip);
2693 mtd->dev.parent = dev;
2696 * Save a reference value for timing registers before
2697 * ->setup_interface() is called.
2699 marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2700 marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2702 chip->options |= NAND_BUSWIDTH_AUTO;
2704 ret = nand_scan(chip, marvell_nand->nsels);
2706 dev_err(dev, "could not scan the nand chip\n");
2711 /* Legacy bindings support only one chip */
2712 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2714 ret = mtd_device_register(mtd, NULL, 0);
2716 dev_err(dev, "failed to register mtd device: %d\n", ret);
2721 list_add_tail(&marvell_nand->node, &nfc->chips);
2726 static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2728 struct marvell_nand_chip *entry, *temp;
2729 struct nand_chip *chip;
2732 list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2733 chip = &entry->chip;
2734 ret = mtd_device_unregister(nand_to_mtd(chip));
2737 list_del(&entry->node);
2741 static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2743 struct device_node *np = dev->of_node;
2744 struct device_node *nand_np;
2745 int max_cs = nfc->caps->max_cs_nb;
2752 nchips = of_get_child_count(np);
2754 if (nchips > max_cs) {
2755 dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2761 * Legacy bindings do not use child nodes to exhibit NAND chip
2762 * properties and layout. Instead, NAND properties are mixed with the
2763 * controller ones, and partitions are defined as direct subnodes of the
2764 * NAND controller node.
2766 if (nfc->caps->legacy_of_bindings) {
2767 ret = marvell_nand_chip_init(dev, nfc, np);
2771 for_each_child_of_node(np, nand_np) {
2772 ret = marvell_nand_chip_init(dev, nfc, nand_np);
2774 of_node_put(nand_np);
2782 marvell_nand_chips_cleanup(nfc);
2787 static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2789 struct platform_device *pdev = container_of(nfc->dev,
2790 struct platform_device,
2792 struct dma_slave_config config = {};
2796 if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2798 "DMA not enabled in configuration\n");
2802 ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2806 nfc->dma_chan = dma_request_chan(nfc->dev, "data");
2807 if (IS_ERR(nfc->dma_chan)) {
2808 ret = PTR_ERR(nfc->dma_chan);
2809 nfc->dma_chan = NULL;
2810 return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2813 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2816 goto release_channel;
2819 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2820 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2821 config.src_addr = r->start + NDDB;
2822 config.dst_addr = r->start + NDDB;
2823 config.src_maxburst = 32;
2824 config.dst_maxburst = 32;
2825 ret = dmaengine_slave_config(nfc->dma_chan, &config);
2827 dev_err(nfc->dev, "Failed to configure DMA channel\n");
2828 goto release_channel;
2832 * DMA must act on length multiple of 32 and this length may be
2833 * bigger than the destination buffer. Use this buffer instead
2834 * for DMA transfers and then copy the desired amount of data to
2835 * the provided buffer.
2837 nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2838 if (!nfc->dma_buf) {
2840 goto release_channel;
2843 nfc->use_dma = true;
2848 dma_release_channel(nfc->dma_chan);
2849 nfc->dma_chan = NULL;
2854 static void marvell_nfc_reset(struct marvell_nfc *nfc)
2857 * ECC operations and interruptions are only enabled when specifically
2858 * needed. ECC shall not be activated in the early stages (fails probe).
2859 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2860 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2861 * offset in the read page and this will fail the protection.
2863 writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2864 NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2865 writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2866 writel_relaxed(0, nfc->regs + NDECCCTRL);
2869 static int marvell_nfc_init(struct marvell_nfc *nfc)
2871 struct device_node *np = nfc->dev->of_node;
2874 * Some SoCs like A7k/A8k need to enable manually the NAND
2875 * controller, gated clocks and reset bits to avoid being bootloader
2876 * dependent. This is done through the use of the System Functions
2879 if (nfc->caps->need_system_controller) {
2880 struct regmap *sysctrl_base =
2881 syscon_regmap_lookup_by_phandle(np,
2882 "marvell,system-controller");
2884 if (IS_ERR(sysctrl_base))
2885 return PTR_ERR(sysctrl_base);
2887 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2888 GENCONF_SOC_DEVICE_MUX_NFC_EN |
2889 GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2890 GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2891 GENCONF_SOC_DEVICE_MUX_NFC_INT_EN |
2892 GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN);
2894 regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2895 GENCONF_CLK_GATING_CTRL_ND_GATE,
2896 GENCONF_CLK_GATING_CTRL_ND_GATE);
2898 regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
2899 GENCONF_ND_CLK_CTRL_EN,
2900 GENCONF_ND_CLK_CTRL_EN);
2903 /* Configure the DMA if appropriate */
2904 if (!nfc->caps->is_nfcv2)
2905 marvell_nfc_init_dma(nfc);
2907 marvell_nfc_reset(nfc);
2912 static int marvell_nfc_probe(struct platform_device *pdev)
2914 struct device *dev = &pdev->dev;
2915 struct marvell_nfc *nfc;
2919 nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2925 nand_controller_init(&nfc->controller);
2926 nfc->controller.ops = &marvell_nand_controller_ops;
2927 INIT_LIST_HEAD(&nfc->chips);
2929 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2930 if (IS_ERR(nfc->regs))
2931 return PTR_ERR(nfc->regs);
2933 irq = platform_get_irq(pdev, 0);
2937 nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2939 /* Managed the legacy case (when the first clock was not named) */
2940 if (nfc->core_clk == ERR_PTR(-ENOENT))
2941 nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2943 if (IS_ERR(nfc->core_clk))
2944 return PTR_ERR(nfc->core_clk);
2946 ret = clk_prepare_enable(nfc->core_clk);
2950 nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2951 if (IS_ERR(nfc->reg_clk)) {
2952 if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2953 ret = PTR_ERR(nfc->reg_clk);
2954 goto unprepare_core_clk;
2957 nfc->reg_clk = NULL;
2960 ret = clk_prepare_enable(nfc->reg_clk);
2962 goto unprepare_core_clk;
2964 marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2965 marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2966 ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2967 0, "marvell-nfc", nfc);
2969 goto unprepare_reg_clk;
2971 /* Get NAND controller capabilities */
2973 nfc->caps = (void *)pdev->id_entry->driver_data;
2975 nfc->caps = of_device_get_match_data(&pdev->dev);
2978 dev_err(dev, "Could not retrieve NFC caps\n");
2980 goto unprepare_reg_clk;
2983 /* Init the controller and then probe the chips */
2984 ret = marvell_nfc_init(nfc);
2986 goto unprepare_reg_clk;
2988 platform_set_drvdata(pdev, nfc);
2990 ret = marvell_nand_chips_init(dev, nfc);
2998 dma_release_channel(nfc->dma_chan);
3000 clk_disable_unprepare(nfc->reg_clk);
3002 clk_disable_unprepare(nfc->core_clk);
3007 static void marvell_nfc_remove(struct platform_device *pdev)
3009 struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3011 marvell_nand_chips_cleanup(nfc);
3014 dmaengine_terminate_all(nfc->dma_chan);
3015 dma_release_channel(nfc->dma_chan);
3018 clk_disable_unprepare(nfc->reg_clk);
3019 clk_disable_unprepare(nfc->core_clk);
3022 static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3024 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3025 struct marvell_nand_chip *chip;
3027 list_for_each_entry(chip, &nfc->chips, node)
3028 marvell_nfc_wait_ndrun(&chip->chip);
3030 clk_disable_unprepare(nfc->reg_clk);
3031 clk_disable_unprepare(nfc->core_clk);
3036 static int __maybe_unused marvell_nfc_resume(struct device *dev)
3038 struct marvell_nfc *nfc = dev_get_drvdata(dev);
3041 ret = clk_prepare_enable(nfc->core_clk);
3045 ret = clk_prepare_enable(nfc->reg_clk);
3047 clk_disable_unprepare(nfc->core_clk);
3052 * Reset nfc->selected_chip so the next command will cause the timing
3053 * registers to be restored in marvell_nfc_select_target().
3055 nfc->selected_chip = NULL;
3057 /* Reset registers that have lost their contents */
3058 marvell_nfc_reset(nfc);
3063 static const struct dev_pm_ops marvell_nfc_pm_ops = {
3064 SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3067 static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3070 .need_system_controller = true,
3074 static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3080 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3086 static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3089 .need_system_controller = true,
3090 .legacy_of_bindings = true,
3094 static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3097 .legacy_of_bindings = true,
3101 static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3104 .legacy_of_bindings = true,
3108 static const struct platform_device_id marvell_nfc_platform_ids[] = {
3110 .name = "pxa3xx-nand",
3111 .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3115 MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3117 static const struct of_device_id marvell_nfc_of_ids[] = {
3119 .compatible = "marvell,armada-8k-nand-controller",
3120 .data = &marvell_armada_8k_nfc_caps,
3123 .compatible = "marvell,armada370-nand-controller",
3124 .data = &marvell_armada370_nfc_caps,
3127 .compatible = "marvell,pxa3xx-nand-controller",
3128 .data = &marvell_pxa3xx_nfc_caps,
3130 /* Support for old/deprecated bindings: */
3132 .compatible = "marvell,armada-8k-nand",
3133 .data = &marvell_armada_8k_nfc_legacy_caps,
3136 .compatible = "marvell,armada370-nand",
3137 .data = &marvell_armada370_nfc_legacy_caps,
3140 .compatible = "marvell,pxa3xx-nand",
3141 .data = &marvell_pxa3xx_nfc_legacy_caps,
3145 MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3147 static struct platform_driver marvell_nfc_driver = {
3149 .name = "marvell-nfc",
3150 .of_match_table = marvell_nfc_of_ids,
3151 .pm = &marvell_nfc_pm_ops,
3153 .id_table = marvell_nfc_platform_ids,
3154 .probe = marvell_nfc_probe,
3155 .remove_new = marvell_nfc_remove,
3157 module_platform_driver(marvell_nfc_driver);
3159 MODULE_LICENSE("GPL");
3160 MODULE_DESCRIPTION("Marvell NAND controller driver");