Merge tag 'for-5.3/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[platform/kernel/linux-rpi.git] / drivers / mtd / nand / raw / gpmi-nand / gpmi-lib.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/delay.h>
9 #include <linux/clk.h>
10 #include <linux/slab.h>
11
12 #include "gpmi-nand.h"
13 #include "gpmi-regs.h"
14 #include "bch-regs.h"
15
16 /* Converts time to clock cycles */
17 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
18
19 #define MXS_SET_ADDR            0x4
20 #define MXS_CLR_ADDR            0x8
21 /*
22  * Clear the bit and poll it cleared.  This is usually called with
23  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
24  * (bit 30).
25  */
26 static int clear_poll_bit(void __iomem *addr, u32 mask)
27 {
28         int timeout = 0x400;
29
30         /* clear the bit */
31         writel(mask, addr + MXS_CLR_ADDR);
32
33         /*
34          * SFTRST needs 3 GPMI clocks to settle, the reference manual
35          * recommends to wait 1us.
36          */
37         udelay(1);
38
39         /* poll the bit becoming clear */
40         while ((readl(addr) & mask) && --timeout)
41                 /* nothing */;
42
43         return !timeout;
44 }
45
46 #define MODULE_CLKGATE          (1 << 30)
47 #define MODULE_SFTRST           (1 << 31)
48 /*
49  * The current mxs_reset_block() will do two things:
50  *  [1] enable the module.
51  *  [2] reset the module.
52  *
53  * In most of the cases, it's ok.
54  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
55  * If you try to soft reset the BCH block, it becomes unusable until
56  * the next hard reset. This case occurs in the NAND boot mode. When the board
57  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
58  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
59  * You will see a DMA timeout in this case. The bug has been fixed
60  * in the following chips, such as MX28.
61  *
62  * To avoid this bug, just add a new parameter `just_enable` for
63  * the mxs_reset_block(), and rewrite it here.
64  */
65 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
66 {
67         int ret;
68         int timeout = 0x400;
69
70         /* clear and poll SFTRST */
71         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
72         if (unlikely(ret))
73                 goto error;
74
75         /* clear CLKGATE */
76         writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
77
78         if (!just_enable) {
79                 /* set SFTRST to reset the block */
80                 writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
81                 udelay(1);
82
83                 /* poll CLKGATE becoming set */
84                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
85                         /* nothing */;
86                 if (unlikely(!timeout))
87                         goto error;
88         }
89
90         /* clear and poll SFTRST */
91         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92         if (unlikely(ret))
93                 goto error;
94
95         /* clear and poll CLKGATE */
96         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
97         if (unlikely(ret))
98                 goto error;
99
100         return 0;
101
102 error:
103         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
104         return -ETIMEDOUT;
105 }
106
107 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
108 {
109         struct clk *clk;
110         int ret;
111         int i;
112
113         for (i = 0; i < GPMI_CLK_MAX; i++) {
114                 clk = this->resources.clock[i];
115                 if (!clk)
116                         break;
117
118                 if (v) {
119                         ret = clk_prepare_enable(clk);
120                         if (ret)
121                                 goto err_clk;
122                 } else {
123                         clk_disable_unprepare(clk);
124                 }
125         }
126         return 0;
127
128 err_clk:
129         for (; i > 0; i--)
130                 clk_disable_unprepare(this->resources.clock[i - 1]);
131         return ret;
132 }
133
134 int gpmi_enable_clk(struct gpmi_nand_data *this)
135 {
136         return __gpmi_enable_clk(this, true);
137 }
138
139 int gpmi_disable_clk(struct gpmi_nand_data *this)
140 {
141         return __gpmi_enable_clk(this, false);
142 }
143
144 int gpmi_init(struct gpmi_nand_data *this)
145 {
146         struct resources *r = &this->resources;
147         int ret;
148
149         ret = gpmi_enable_clk(this);
150         if (ret)
151                 return ret;
152         ret = gpmi_reset_block(r->gpmi_regs, false);
153         if (ret)
154                 goto err_out;
155
156         /*
157          * Reset BCH here, too. We got failures otherwise :(
158          * See later BCH reset for explanation of MX23 and MX28 handling
159          */
160         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
161         if (ret)
162                 goto err_out;
163
164         /* Choose NAND mode. */
165         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
166
167         /* Set the IRQ polarity. */
168         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
169                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
170
171         /* Disable Write-Protection. */
172         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
173
174         /* Select BCH ECC. */
175         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
176
177         /*
178          * Decouple the chip select from dma channel. We use dma0 for all
179          * the chips.
180          */
181         writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
182
183         gpmi_disable_clk(this);
184         return 0;
185 err_out:
186         gpmi_disable_clk(this);
187         return ret;
188 }
189
190 /* This function is very useful. It is called only when the bug occur. */
191 void gpmi_dump_info(struct gpmi_nand_data *this)
192 {
193         struct resources *r = &this->resources;
194         struct bch_geometry *geo = &this->bch_geometry;
195         u32 reg;
196         int i;
197
198         dev_err(this->dev, "Show GPMI registers :\n");
199         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
200                 reg = readl(r->gpmi_regs + i * 0x10);
201                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
202         }
203
204         /* start to print out the BCH info */
205         dev_err(this->dev, "Show BCH registers :\n");
206         for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
207                 reg = readl(r->bch_regs + i * 0x10);
208                 dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
209         }
210         dev_err(this->dev, "BCH Geometry :\n"
211                 "GF length              : %u\n"
212                 "ECC Strength           : %u\n"
213                 "Page Size in Bytes     : %u\n"
214                 "Metadata Size in Bytes : %u\n"
215                 "ECC Chunk Size in Bytes: %u\n"
216                 "ECC Chunk Count        : %u\n"
217                 "Payload Size in Bytes  : %u\n"
218                 "Auxiliary Size in Bytes: %u\n"
219                 "Auxiliary Status Offset: %u\n"
220                 "Block Mark Byte Offset : %u\n"
221                 "Block Mark Bit Offset  : %u\n",
222                 geo->gf_len,
223                 geo->ecc_strength,
224                 geo->page_size,
225                 geo->metadata_size,
226                 geo->ecc_chunk_size,
227                 geo->ecc_chunk_count,
228                 geo->payload_size,
229                 geo->auxiliary_size,
230                 geo->auxiliary_status_offset,
231                 geo->block_mark_byte_offset,
232                 geo->block_mark_bit_offset);
233 }
234
235 /* Configures the geometry for BCH.  */
236 int bch_set_geometry(struct gpmi_nand_data *this)
237 {
238         struct resources *r = &this->resources;
239         struct bch_geometry *bch_geo = &this->bch_geometry;
240         unsigned int block_count;
241         unsigned int block_size;
242         unsigned int metadata_size;
243         unsigned int ecc_strength;
244         unsigned int page_size;
245         unsigned int gf_len;
246         int ret;
247
248         ret = common_nfc_set_geometry(this);
249         if (ret)
250                 return ret;
251
252         block_count   = bch_geo->ecc_chunk_count - 1;
253         block_size    = bch_geo->ecc_chunk_size;
254         metadata_size = bch_geo->metadata_size;
255         ecc_strength  = bch_geo->ecc_strength >> 1;
256         page_size     = bch_geo->page_size;
257         gf_len        = bch_geo->gf_len;
258
259         ret = gpmi_enable_clk(this);
260         if (ret)
261                 return ret;
262
263         /*
264         * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
265         * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
266         * and MX28.
267         */
268         ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
269         if (ret)
270                 goto err_out;
271
272         /* Configure layout 0. */
273         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
274                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
275                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
276                         | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
277                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
278                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
279
280         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
281                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
282                         | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
283                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
284                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
285
286         /* Set *all* chip selects to use layout 0. */
287         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
288
289         /* Enable interrupts. */
290         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
291                                 r->bch_regs + HW_BCH_CTRL_SET);
292
293         gpmi_disable_clk(this);
294         return 0;
295 err_out:
296         gpmi_disable_clk(this);
297         return ret;
298 }
299
300 /*
301  * <1> Firstly, we should know what's the GPMI-clock means.
302  *     The GPMI-clock is the internal clock in the gpmi nand controller.
303  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
304  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
305  *
306  * <2> Secondly, we should know what's the frequency on the nand chip pins.
307  *     The frequency on the nand chip pins is derived from the GPMI-clock.
308  *     We can get it from the following equation:
309  *
310  *         F = G / (DS + DH)
311  *
312  *         F  : the frequency on the nand chip pins.
313  *         G  : the GPMI clock, such as 100MHz.
314  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
315  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
316  *
317  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
318  *     the nand EDO(extended Data Out) timing could be applied.
319  *     The GPMI implements a feedback read strobe to sample the read data.
320  *     The feedback read strobe can be delayed to support the nand EDO timing
321  *     where the read strobe may deasserts before the read data is valid, and
322  *     read data is valid for some time after read strobe.
323  *
324  *     The following figure illustrates some aspects of a NAND Flash read:
325  *
326  *                   |<---tREA---->|
327  *                   |             |
328  *                   |         |   |
329  *                   |<--tRP-->|   |
330  *                   |         |   |
331  *                  __          ___|__________________________________
332  *     RDN            \________/   |
333  *                                 |
334  *                                 /---------\
335  *     Read Data    --------------<           >---------
336  *                                 \---------/
337  *                                |     |
338  *                                |<-D->|
339  *     FeedbackRDN  ________             ____________
340  *                          \___________/
341  *
342  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
343  *
344  *
345  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
346  *
347  *  4.1) From the aspect of the nand chip pins:
348  *        Delay = (tREA + C - tRP)               {1}
349  *
350  *        tREA : the maximum read access time.
351  *        C    : a constant to adjust the delay. default is 4000ps.
352  *        tRP  : the read pulse width, which is exactly:
353  *                   tRP = (GPMI-clock-period) * DATA_SETUP
354  *
355  *  4.2) From the aspect of the GPMI nand controller:
356  *         Delay = RDN_DELAY * 0.125 * RP        {2}
357  *
358  *         RP   : the DLL reference period.
359  *            if (GPMI-clock-period > DLL_THRETHOLD)
360  *                   RP = GPMI-clock-period / 2;
361  *            else
362  *                   RP = GPMI-clock-period;
363  *
364  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
365  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
366  *            is 16000ps, but in mx6q, we use 12000ps.
367  *
368  *  4.3) since {1} equals {2}, we get:
369  *
370  *                     (tREA + 4000 - tRP) * 8
371  *         RDN_DELAY = -----------------------     {3}
372  *                           RP
373  */
374 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
375                                      const struct nand_sdr_timings *sdr)
376 {
377         struct gpmi_nfc_hardware_timing *hw = &this->hw;
378         unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
379         unsigned int period_ps, reference_period_ps;
380         unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
381         unsigned int tRP_ps;
382         bool use_half_period;
383         int sample_delay_ps, sample_delay_factor;
384         u16 busy_timeout_cycles;
385         u8 wrn_dly_sel;
386
387         if (sdr->tRC_min >= 30000) {
388                 /* ONFI non-EDO modes [0-3] */
389                 hw->clk_rate = 22000000;
390                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
391         } else if (sdr->tRC_min >= 25000) {
392                 /* ONFI EDO mode 4 */
393                 hw->clk_rate = 80000000;
394                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
395         } else {
396                 /* ONFI EDO mode 5 */
397                 hw->clk_rate = 100000000;
398                 wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
399         }
400
401         /* SDR core timings are given in picoseconds */
402         period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
403
404         addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
405         data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
406         data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
407         busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
408
409         hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
410                       BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
411                       BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
412         hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
413
414         /*
415          * Derive NFC ideal delay from {3}:
416          *
417          *                     (tREA + 4000 - tRP) * 8
418          *         RDN_DELAY = -----------------------
419          *                                RP
420          */
421         if (period_ps > dll_threshold_ps) {
422                 use_half_period = true;
423                 reference_period_ps = period_ps / 2;
424         } else {
425                 use_half_period = false;
426                 reference_period_ps = period_ps;
427         }
428
429         tRP_ps = data_setup_cycles * period_ps;
430         sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
431         if (sample_delay_ps > 0)
432                 sample_delay_factor = sample_delay_ps / reference_period_ps;
433         else
434                 sample_delay_factor = 0;
435
436         hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
437         if (sample_delay_factor)
438                 hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
439                               BM_GPMI_CTRL1_DLL_ENABLE |
440                               (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
441 }
442
443 void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
444 {
445         struct gpmi_nfc_hardware_timing *hw = &this->hw;
446         struct resources *r = &this->resources;
447         void __iomem *gpmi_regs = r->gpmi_regs;
448         unsigned int dll_wait_time_us;
449
450         clk_set_rate(r->clock[0], hw->clk_rate);
451
452         writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
453         writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
454
455         /*
456          * Clear several CTRL1 fields, DLL must be disabled when setting
457          * RDN_DELAY or HALF_PERIOD.
458          */
459         writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
460         writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
461
462         /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
463         dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
464         if (!dll_wait_time_us)
465                 dll_wait_time_us = 1;
466
467         /* Wait for the DLL to settle. */
468         udelay(dll_wait_time_us);
469 }
470
471 int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
472                               const struct nand_data_interface *conf)
473 {
474         struct gpmi_nand_data *this = nand_get_controller_data(chip);
475         const struct nand_sdr_timings *sdr;
476
477         /* Retrieve required NAND timings */
478         sdr = nand_get_sdr_timings(conf);
479         if (IS_ERR(sdr))
480                 return PTR_ERR(sdr);
481
482         /* Only MX6 GPMI controller can reach EDO timings */
483         if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
484                 return -ENOTSUPP;
485
486         /* Stop here if this call was just a check */
487         if (chipnr < 0)
488                 return 0;
489
490         /* Do the actual derivation of the controller timings */
491         gpmi_nfc_compute_timings(this, sdr);
492
493         this->hw.must_apply_timings = true;
494
495         return 0;
496 }
497
498 /* Clears a BCH interrupt. */
499 void gpmi_clear_bch(struct gpmi_nand_data *this)
500 {
501         struct resources *r = &this->resources;
502         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
503 }
504
505 /* Returns the Ready/Busy status of the given chip. */
506 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
507 {
508         struct resources *r = &this->resources;
509         uint32_t mask = 0;
510         uint32_t reg = 0;
511
512         if (GPMI_IS_MX23(this)) {
513                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
514                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
515         } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
516                 /*
517                  * In the imx6, all the ready/busy pins are bound
518                  * together. So we only need to check chip 0.
519                  */
520                 if (GPMI_IS_MX6(this))
521                         chip = 0;
522
523                 /* MX28 shares the same R/B register as MX6Q. */
524                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
525                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
526         } else
527                 dev_err(this->dev, "unknown arch.\n");
528         return reg & mask;
529 }
530
531 int gpmi_send_command(struct gpmi_nand_data *this)
532 {
533         struct dma_chan *channel = get_dma_chan(this);
534         struct dma_async_tx_descriptor *desc;
535         struct scatterlist *sgl;
536         int chip = this->current_chip;
537         int ret;
538         u32 pio[3];
539
540         /* [1] send out the PIO words */
541         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
542                 | BM_GPMI_CTRL0_WORD_LENGTH
543                 | BF_GPMI_CTRL0_CS(chip, this)
544                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
545                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
546                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
547                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
548         pio[1] = pio[2] = 0;
549         desc = dmaengine_prep_slave_sg(channel,
550                                         (struct scatterlist *)pio,
551                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
552         if (!desc)
553                 return -EINVAL;
554
555         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
556         sgl = &this->cmd_sgl;
557
558         sg_init_one(sgl, this->cmd_buffer, this->command_length);
559         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
560         desc = dmaengine_prep_slave_sg(channel,
561                                 sgl, 1, DMA_MEM_TO_DEV,
562                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
563         if (!desc)
564                 return -EINVAL;
565
566         /* [3] submit the DMA */
567         ret = start_dma_without_bch_irq(this, desc);
568
569         dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
570
571         return ret;
572 }
573
574 int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
575 {
576         struct dma_async_tx_descriptor *desc;
577         struct dma_chan *channel = get_dma_chan(this);
578         int chip = this->current_chip;
579         int ret;
580         uint32_t command_mode;
581         uint32_t address;
582         u32 pio[2];
583
584         /* [1] PIO */
585         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
586         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
587
588         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
589                 | BM_GPMI_CTRL0_WORD_LENGTH
590                 | BF_GPMI_CTRL0_CS(chip, this)
591                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
592                 | BF_GPMI_CTRL0_ADDRESS(address)
593                 | BF_GPMI_CTRL0_XFER_COUNT(len);
594         pio[1] = 0;
595         desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
596                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
597         if (!desc)
598                 return -EINVAL;
599
600         /* [2] send DMA request */
601         prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
602         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
603                                         1, DMA_MEM_TO_DEV,
604                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
605         if (!desc)
606                 return -EINVAL;
607
608         /* [3] submit the DMA */
609         ret = start_dma_without_bch_irq(this, desc);
610
611         dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
612
613         return ret;
614 }
615
616 int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
617 {
618         struct dma_async_tx_descriptor *desc;
619         struct dma_chan *channel = get_dma_chan(this);
620         int chip = this->current_chip;
621         int ret;
622         u32 pio[2];
623         bool direct;
624
625         /* [1] : send PIO */
626         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
627                 | BM_GPMI_CTRL0_WORD_LENGTH
628                 | BF_GPMI_CTRL0_CS(chip, this)
629                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
630                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
631                 | BF_GPMI_CTRL0_XFER_COUNT(len);
632         pio[1] = 0;
633         desc = dmaengine_prep_slave_sg(channel,
634                                         (struct scatterlist *)pio,
635                                         ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
636         if (!desc)
637                 return -EINVAL;
638
639         /* [2] : send DMA request */
640         direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
641         desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
642                                         1, DMA_DEV_TO_MEM,
643                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
644         if (!desc)
645                 return -EINVAL;
646
647         /* [3] : submit the DMA */
648
649         ret = start_dma_without_bch_irq(this, desc);
650
651         dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
652         if (!direct)
653                 memcpy(buf, this->data_buffer_dma, len);
654
655         return ret;
656 }
657
658 int gpmi_send_page(struct gpmi_nand_data *this,
659                         dma_addr_t payload, dma_addr_t auxiliary)
660 {
661         struct bch_geometry *geo = &this->bch_geometry;
662         uint32_t command_mode;
663         uint32_t address;
664         uint32_t ecc_command;
665         uint32_t buffer_mask;
666         struct dma_async_tx_descriptor *desc;
667         struct dma_chan *channel = get_dma_chan(this);
668         int chip = this->current_chip;
669         u32 pio[6];
670
671         /* A DMA descriptor that does an ECC page read. */
672         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
673         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
674         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
675         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
676                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
677
678         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
679                 | BM_GPMI_CTRL0_WORD_LENGTH
680                 | BF_GPMI_CTRL0_CS(chip, this)
681                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
682                 | BF_GPMI_CTRL0_ADDRESS(address)
683                 | BF_GPMI_CTRL0_XFER_COUNT(0);
684         pio[1] = 0;
685         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
686                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
687                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
688         pio[3] = geo->page_size;
689         pio[4] = payload;
690         pio[5] = auxiliary;
691
692         desc = dmaengine_prep_slave_sg(channel,
693                                         (struct scatterlist *)pio,
694                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
695                                         DMA_CTRL_ACK);
696         if (!desc)
697                 return -EINVAL;
698
699         return start_dma_with_bch_irq(this, desc);
700 }
701
702 int gpmi_read_page(struct gpmi_nand_data *this,
703                                 dma_addr_t payload, dma_addr_t auxiliary)
704 {
705         struct bch_geometry *geo = &this->bch_geometry;
706         uint32_t command_mode;
707         uint32_t address;
708         uint32_t ecc_command;
709         uint32_t buffer_mask;
710         struct dma_async_tx_descriptor *desc;
711         struct dma_chan *channel = get_dma_chan(this);
712         int chip = this->current_chip;
713         u32 pio[6];
714
715         /* [1] Wait for the chip to report ready. */
716         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
717         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
718
719         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
720                 | BM_GPMI_CTRL0_WORD_LENGTH
721                 | BF_GPMI_CTRL0_CS(chip, this)
722                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
723                 | BF_GPMI_CTRL0_ADDRESS(address)
724                 | BF_GPMI_CTRL0_XFER_COUNT(0);
725         pio[1] = 0;
726         desc = dmaengine_prep_slave_sg(channel,
727                                 (struct scatterlist *)pio, 2,
728                                 DMA_TRANS_NONE, 0);
729         if (!desc)
730                 return -EINVAL;
731
732         /* [2] Enable the BCH block and read. */
733         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
734         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
735         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
736         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
737                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
738
739         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
740                 | BM_GPMI_CTRL0_WORD_LENGTH
741                 | BF_GPMI_CTRL0_CS(chip, this)
742                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
743                 | BF_GPMI_CTRL0_ADDRESS(address)
744                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
745
746         pio[1] = 0;
747         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
748                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
749                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
750         pio[3] = geo->page_size;
751         pio[4] = payload;
752         pio[5] = auxiliary;
753         desc = dmaengine_prep_slave_sg(channel,
754                                         (struct scatterlist *)pio,
755                                         ARRAY_SIZE(pio), DMA_TRANS_NONE,
756                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
757         if (!desc)
758                 return -EINVAL;
759
760         /* [3] Disable the BCH block */
761         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
762         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
763
764         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
765                 | BM_GPMI_CTRL0_WORD_LENGTH
766                 | BF_GPMI_CTRL0_CS(chip, this)
767                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
768                 | BF_GPMI_CTRL0_ADDRESS(address)
769                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
770         pio[1] = 0;
771         pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
772         desc = dmaengine_prep_slave_sg(channel,
773                                 (struct scatterlist *)pio, 3,
774                                 DMA_TRANS_NONE,
775                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
776         if (!desc)
777                 return -EINVAL;
778
779         /* [4] submit the DMA */
780         return start_dma_with_bch_irq(this, desc);
781 }
782
783 /**
784  * gpmi_copy_bits - copy bits from one memory region to another
785  * @dst: destination buffer
786  * @dst_bit_off: bit offset we're starting to write at
787  * @src: source buffer
788  * @src_bit_off: bit offset we're starting to read from
789  * @nbits: number of bits to copy
790  *
791  * This functions copies bits from one memory region to another, and is used by
792  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
793  * aligned.
794  *
795  * src and dst should not overlap.
796  *
797  */
798 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
799                     const u8 *src, size_t src_bit_off,
800                     size_t nbits)
801 {
802         size_t i;
803         size_t nbytes;
804         u32 src_buffer = 0;
805         size_t bits_in_src_buffer = 0;
806
807         if (!nbits)
808                 return;
809
810         /*
811          * Move src and dst pointers to the closest byte pointer and store bit
812          * offsets within a byte.
813          */
814         src += src_bit_off / 8;
815         src_bit_off %= 8;
816
817         dst += dst_bit_off / 8;
818         dst_bit_off %= 8;
819
820         /*
821          * Initialize the src_buffer value with bits available in the first
822          * byte of data so that we end up with a byte aligned src pointer.
823          */
824         if (src_bit_off) {
825                 src_buffer = src[0] >> src_bit_off;
826                 if (nbits >= (8 - src_bit_off)) {
827                         bits_in_src_buffer += 8 - src_bit_off;
828                 } else {
829                         src_buffer &= GENMASK(nbits - 1, 0);
830                         bits_in_src_buffer += nbits;
831                 }
832                 nbits -= bits_in_src_buffer;
833                 src++;
834         }
835
836         /* Calculate the number of bytes that can be copied from src to dst. */
837         nbytes = nbits / 8;
838
839         /* Try to align dst to a byte boundary. */
840         if (dst_bit_off) {
841                 if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
842                         src_buffer |= src[0] << bits_in_src_buffer;
843                         bits_in_src_buffer += 8;
844                         src++;
845                         nbytes--;
846                 }
847
848                 if (bits_in_src_buffer >= (8 - dst_bit_off)) {
849                         dst[0] &= GENMASK(dst_bit_off - 1, 0);
850                         dst[0] |= src_buffer << dst_bit_off;
851                         src_buffer >>= (8 - dst_bit_off);
852                         bits_in_src_buffer -= (8 - dst_bit_off);
853                         dst_bit_off = 0;
854                         dst++;
855                         if (bits_in_src_buffer > 7) {
856                                 bits_in_src_buffer -= 8;
857                                 dst[0] = src_buffer;
858                                 dst++;
859                                 src_buffer >>= 8;
860                         }
861                 }
862         }
863
864         if (!bits_in_src_buffer && !dst_bit_off) {
865                 /*
866                  * Both src and dst pointers are byte aligned, thus we can
867                  * just use the optimized memcpy function.
868                  */
869                 if (nbytes)
870                         memcpy(dst, src, nbytes);
871         } else {
872                 /*
873                  * src buffer is not byte aligned, hence we have to copy each
874                  * src byte to the src_buffer variable before extracting a byte
875                  * to store in dst.
876                  */
877                 for (i = 0; i < nbytes; i++) {
878                         src_buffer |= src[i] << bits_in_src_buffer;
879                         dst[i] = src_buffer;
880                         src_buffer >>= 8;
881                 }
882         }
883         /* Update dst and src pointers */
884         dst += nbytes;
885         src += nbytes;
886
887         /*
888          * nbits is the number of remaining bits. It should not exceed 8 as
889          * we've already copied as much bytes as possible.
890          */
891         nbits %= 8;
892
893         /*
894          * If there's no more bits to copy to the destination and src buffer
895          * was already byte aligned, then we're done.
896          */
897         if (!nbits && !bits_in_src_buffer)
898                 return;
899
900         /* Copy the remaining bits to src_buffer */
901         if (nbits)
902                 src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
903                               bits_in_src_buffer;
904         bits_in_src_buffer += nbits;
905
906         /*
907          * In case there were not enough bits to get a byte aligned dst buffer
908          * prepare the src_buffer variable to match the dst organization (shift
909          * src_buffer by dst_bit_off and retrieve the least significant bits
910          * from dst).
911          */
912         if (dst_bit_off)
913                 src_buffer = (src_buffer << dst_bit_off) |
914                              (*dst & GENMASK(dst_bit_off - 1, 0));
915         bits_in_src_buffer += dst_bit_off;
916
917         /*
918          * Keep most significant bits from dst if we end up with an unaligned
919          * number of bits.
920          */
921         nbytes = bits_in_src_buffer / 8;
922         if (bits_in_src_buffer % 8) {
923                 src_buffer |= (dst[nbytes] &
924                                GENMASK(7, bits_in_src_buffer % 8)) <<
925                               (nbytes * 8);
926                 nbytes++;
927         }
928
929         /* Copy the remaining bytes to dst */
930         for (i = 0; i < nbytes; i++) {
931                 dst[i] = src_buffer;
932                 src_buffer >>= 8;
933         }
934 }